The University of Southampton
University of Southampton Institutional Repository

Convolutional neural network-based classification of glaucoma using optic radiation tissue properties

Convolutional neural network-based classification of glaucoma using optic radiation tissue properties
Convolutional neural network-based classification of glaucoma using optic radiation tissue properties

Background: sensory changes due to aging or disease can impact brain tissue. This study aims to investigate the link between glaucoma, a leading cause of blindness, and alterations in brain connections. 

Methods: we analyzed diffusion MRI measurements of white matter tissue in a large group, consisting of 905 glaucoma patients (aged 49-80) and 5292 healthy individuals (aged 45-80) from the UK Biobank. Confounds due to group differences were mitigated by matching a sub-sample of controls to glaucoma subjects. We compared classification of glaucoma using convolutional neural networks (CNNs) focusing on the optic radiations, which are the primary visual connection to the cortex, against those analyzing non-visual brain connections. As a control, we evaluated the performance of regularized linear regression models. 

Results: we showed that CNNs using information from the optic radiations exhibited higher accuracy in classifying subjects with glaucoma when contrasted with CNNs relying on information from non-visual brain connections. Regularized linear regression models were also tested, and showed significantly weaker classification performance. Additionally, the CNN was unable to generalize to the classification of age-group or of age-related macular degeneration. 

Conclusions: our findings indicate a distinct and potentially non-linear signature of glaucoma in the tissue properties of optic radiations. This study enhances our understanding of how glaucoma affects brain tissue and opens avenues for further research into how diseases that affect sensory input may also affect brain aging.

2730-664X
Kruper, John
588aebe3-9555-4f3e-bea6-4f6f752857d4
Richie-Halford, Adam
ce0ca812-7406-4e8f-a28a-0b4f503a65cd
Benson, Noah C.
b283fe34-86cf-4cc3-9071-8574e5d59081
Caffarra, Sendy
0054bc11-df2c-4433-b010-f778a3163c0a
Owen, Julia
10ca4dd4-fb4c-435b-b7b4-3e3fcd848218
Wu, Yue
d3aa5005-2d35-492a-9c16-828b6e37ce79
Egan, Catherine
20273940-9b84-46d6-a48e-c3f78e35ad4a
Lee, Aaron Y.
edad50d2-d35e-4bdd-8ebf-496d8114aa56
Lee, Cecilia S.
3a761eea-1cc3-4897-9ca0-9c767aa79a1e
Yeatman, Jason D.
f9e50d93-5d41-4304-a99f-0d4aa558e7a1
Rokem, Ariel
8559229a-8f50-43b8-bc82-70dc0c92292e
Zheng, Yalin
cf121a1d-9a54-4d7c-aeea-6354fe19d880
Yates, Max
97b56755-063e-4986-bf6f-487cc649f5bc
Woodside, Jayne
8ed81a6d-4e4f-4ee4-ac15-7b9b6b18d528
Williams, Cathy
80d41825-ac47-47c6-bb00-1cb8ce6b7bda
Williams, Katie
4c3109b3-9291-4203-bca0-7656f64ae8d2
Weedon, Mike
39de9049-49c1-40ba-87cd-9fc3d7fc2cc7
Vitart, Veronique
1794d62f-7c77-4d28-968f-08226c9db492
Viswanathan, Ananth
ba3b9d6a-0b3f-4d53-8878-0fc2667ad136
Tufail, Adnan
4370b3b4-906d-4fe5-92bd-e6207fa1d59b
Trucco, Emanuele
f28246f9-9b1a-45d8-978e-7f93e164899e
Thomas, Mervyn
43580622-2633-4694-960c-098d045d6144
Thomas, Dhanes
a23c1b67-b997-4df5-8028-08739b112313
Tapp, Robyn
646b435d-02e9-4f01-a89a-596c7cafaa6e
Sun, Zihan
2362fc86-75da-4233-89fb-5548e88784ed
Sudlow, Cathie
c1884a16-0661-477c-92c9-006dcca2e712
Strouthidis, Nicholas
245291a1-8ccd-4409-8f74-6dc284912c14
Stratton, Irene
63be11ee-b2d7-49b8-8b49-d0f3d909cf1d
Steel, David
19ff4055-0027-4dd1-bf0d-9136eba932db
Sivaprasad, Sobha
f2d2ba7d-03f8-48e2-9f2b-2bbe6ffd5213
Sergouniotis, Panagiotis
d9e3116d-beff-4259-bbb3-e5ef7539b725
Self, Jay
0f6efc58-ae24-4667-b8d6-6fafa849e389
Sattar, Naveed
c81a1259-e177-4522-a732-52d8218384f6
Rudnicka, Alicja
497d1ac3-d9be-4a3f-9892-b351a243b9e0
Rahi, Jugnoo
243a4ce6-5961-4215-bf07-91d56aefb32d
Pontikos, Nikolas
5a964059-ef8e-4b83-8a5a-6d832839e0f2
Petzold, Axel
f7d23dac-63d2-4b0c-a0c1-0c2e60cffdc1
Peto, Tunde
e5511bbd-2ef8-4465-a2b3-46c8cc3ce63e
Paterson, Euan
e009cf42-41ce-4668-a247-51ae92d69ecb
Patel, Praveen
91baf7b2-de1c-40aa-b3f4-7cc7007220f2
Owen, Chris
89cdf35d-611f-43f7-b5de-021fe5fcb01e
Oram, Richard
85d10f5d-afc9-46e8-9a49-a6dae59bbed0
O’Sullivan, Eoin
98103240-6b9f-4f1a-879e-734e48d6ae9b
Morgan, James
0b9ef53d-b810-4565-ba90-c2af8b61274f
Moore, Tony
d6ffc03b-59a9-4f90-af32-8043a887481d
McKibbin, Martin
227d9f5a-b07a-42bd-b6bc-212937543295
Lotery, Andrew
5ecc2d2d-d0b4-468f-ad2c-df7156f8e514
Gibson, Jane
855033a6-38f3-4853-8f60-d7d4561226ae
Ennis, Sarah
7b57f188-9d91-4beb-b217-09856146f1e9
Carare, Roxana
0478c197-b0c1-4206-acae-54e88c8f21fa
UK Biobank Eye and Vision Consortium
Kruper, John
588aebe3-9555-4f3e-bea6-4f6f752857d4
Richie-Halford, Adam
ce0ca812-7406-4e8f-a28a-0b4f503a65cd
Benson, Noah C.
b283fe34-86cf-4cc3-9071-8574e5d59081
Caffarra, Sendy
0054bc11-df2c-4433-b010-f778a3163c0a
Owen, Julia
10ca4dd4-fb4c-435b-b7b4-3e3fcd848218
Wu, Yue
d3aa5005-2d35-492a-9c16-828b6e37ce79
Egan, Catherine
20273940-9b84-46d6-a48e-c3f78e35ad4a
Lee, Aaron Y.
edad50d2-d35e-4bdd-8ebf-496d8114aa56
Lee, Cecilia S.
3a761eea-1cc3-4897-9ca0-9c767aa79a1e
Yeatman, Jason D.
f9e50d93-5d41-4304-a99f-0d4aa558e7a1
Rokem, Ariel
8559229a-8f50-43b8-bc82-70dc0c92292e
Zheng, Yalin
cf121a1d-9a54-4d7c-aeea-6354fe19d880
Yates, Max
97b56755-063e-4986-bf6f-487cc649f5bc
Woodside, Jayne
8ed81a6d-4e4f-4ee4-ac15-7b9b6b18d528
Williams, Cathy
80d41825-ac47-47c6-bb00-1cb8ce6b7bda
Williams, Katie
4c3109b3-9291-4203-bca0-7656f64ae8d2
Weedon, Mike
39de9049-49c1-40ba-87cd-9fc3d7fc2cc7
Vitart, Veronique
1794d62f-7c77-4d28-968f-08226c9db492
Viswanathan, Ananth
ba3b9d6a-0b3f-4d53-8878-0fc2667ad136
Tufail, Adnan
4370b3b4-906d-4fe5-92bd-e6207fa1d59b
Trucco, Emanuele
f28246f9-9b1a-45d8-978e-7f93e164899e
Thomas, Mervyn
43580622-2633-4694-960c-098d045d6144
Thomas, Dhanes
a23c1b67-b997-4df5-8028-08739b112313
Tapp, Robyn
646b435d-02e9-4f01-a89a-596c7cafaa6e
Sun, Zihan
2362fc86-75da-4233-89fb-5548e88784ed
Sudlow, Cathie
c1884a16-0661-477c-92c9-006dcca2e712
Strouthidis, Nicholas
245291a1-8ccd-4409-8f74-6dc284912c14
Stratton, Irene
63be11ee-b2d7-49b8-8b49-d0f3d909cf1d
Steel, David
19ff4055-0027-4dd1-bf0d-9136eba932db
Sivaprasad, Sobha
f2d2ba7d-03f8-48e2-9f2b-2bbe6ffd5213
Sergouniotis, Panagiotis
d9e3116d-beff-4259-bbb3-e5ef7539b725
Self, Jay
0f6efc58-ae24-4667-b8d6-6fafa849e389
Sattar, Naveed
c81a1259-e177-4522-a732-52d8218384f6
Rudnicka, Alicja
497d1ac3-d9be-4a3f-9892-b351a243b9e0
Rahi, Jugnoo
243a4ce6-5961-4215-bf07-91d56aefb32d
Pontikos, Nikolas
5a964059-ef8e-4b83-8a5a-6d832839e0f2
Petzold, Axel
f7d23dac-63d2-4b0c-a0c1-0c2e60cffdc1
Peto, Tunde
e5511bbd-2ef8-4465-a2b3-46c8cc3ce63e
Paterson, Euan
e009cf42-41ce-4668-a247-51ae92d69ecb
Patel, Praveen
91baf7b2-de1c-40aa-b3f4-7cc7007220f2
Owen, Chris
89cdf35d-611f-43f7-b5de-021fe5fcb01e
Oram, Richard
85d10f5d-afc9-46e8-9a49-a6dae59bbed0
O’Sullivan, Eoin
98103240-6b9f-4f1a-879e-734e48d6ae9b
Morgan, James
0b9ef53d-b810-4565-ba90-c2af8b61274f
Moore, Tony
d6ffc03b-59a9-4f90-af32-8043a887481d
McKibbin, Martin
227d9f5a-b07a-42bd-b6bc-212937543295
Lotery, Andrew
5ecc2d2d-d0b4-468f-ad2c-df7156f8e514
Gibson, Jane
855033a6-38f3-4853-8f60-d7d4561226ae
Ennis, Sarah
7b57f188-9d91-4beb-b217-09856146f1e9
Carare, Roxana
0478c197-b0c1-4206-acae-54e88c8f21fa

Kruper, John, Richie-Halford, Adam, Benson, Noah C., Caffarra, Sendy, Owen, Julia, Wu, Yue, Egan, Catherine, Lee, Aaron Y., Lee, Cecilia S., Yeatman, Jason D. and Rokem, Ariel , UK Biobank Eye and Vision Consortium (2024) Convolutional neural network-based classification of glaucoma using optic radiation tissue properties. Communications Medicine, 4 (1), [72]. (doi:10.1038/s43856-024-00496-w).

Record type: Article

Abstract

Background: sensory changes due to aging or disease can impact brain tissue. This study aims to investigate the link between glaucoma, a leading cause of blindness, and alterations in brain connections. 

Methods: we analyzed diffusion MRI measurements of white matter tissue in a large group, consisting of 905 glaucoma patients (aged 49-80) and 5292 healthy individuals (aged 45-80) from the UK Biobank. Confounds due to group differences were mitigated by matching a sub-sample of controls to glaucoma subjects. We compared classification of glaucoma using convolutional neural networks (CNNs) focusing on the optic radiations, which are the primary visual connection to the cortex, against those analyzing non-visual brain connections. As a control, we evaluated the performance of regularized linear regression models. 

Results: we showed that CNNs using information from the optic radiations exhibited higher accuracy in classifying subjects with glaucoma when contrasted with CNNs relying on information from non-visual brain connections. Regularized linear regression models were also tested, and showed significantly weaker classification performance. Additionally, the CNN was unable to generalize to the classification of age-group or of age-related macular degeneration. 

Conclusions: our findings indicate a distinct and potentially non-linear signature of glaucoma in the tissue properties of optic radiations. This study enhances our understanding of how glaucoma affects brain tissue and opens avenues for further research into how diseases that affect sensory input may also affect brain aging.

Text
s43856-024-00496-w - Version of Record
Available under License Creative Commons Attribution.
Download (1MB)

More information

Accepted/In Press date: 28 March 2024
Published date: 11 April 2024

Identifiers

Local EPrints ID: 494756
URI: http://eprints.soton.ac.uk/id/eprint/494756
ISSN: 2730-664X
PURE UUID: 94637ca4-9a1c-4d37-b274-7242dc7f2818
ORCID for Jay Self: ORCID iD orcid.org/0000-0002-1030-9963
ORCID for Andrew Lotery: ORCID iD orcid.org/0000-0001-5541-4305
ORCID for Jane Gibson: ORCID iD orcid.org/0000-0002-0973-8285
ORCID for Sarah Ennis: ORCID iD orcid.org/0000-0003-2648-0869
ORCID for Roxana Carare: ORCID iD orcid.org/0000-0001-6458-3776

Catalogue record

Date deposited: 15 Oct 2024 16:39
Last modified: 16 Oct 2024 01:43

Export record

Altmetrics

Contributors

Author: John Kruper
Author: Adam Richie-Halford
Author: Noah C. Benson
Author: Sendy Caffarra
Author: Julia Owen
Author: Yue Wu
Author: Catherine Egan
Author: Aaron Y. Lee
Author: Cecilia S. Lee
Author: Jason D. Yeatman
Author: Ariel Rokem
Author: Yalin Zheng
Author: Max Yates
Author: Jayne Woodside
Author: Cathy Williams
Author: Katie Williams
Author: Mike Weedon
Author: Veronique Vitart
Author: Ananth Viswanathan
Author: Adnan Tufail
Author: Emanuele Trucco
Author: Mervyn Thomas
Author: Dhanes Thomas
Author: Robyn Tapp
Author: Zihan Sun
Author: Cathie Sudlow
Author: Nicholas Strouthidis
Author: Irene Stratton
Author: David Steel
Author: Sobha Sivaprasad
Author: Panagiotis Sergouniotis
Author: Jay Self ORCID iD
Author: Naveed Sattar
Author: Alicja Rudnicka
Author: Jugnoo Rahi
Author: Nikolas Pontikos
Author: Axel Petzold
Author: Tunde Peto
Author: Euan Paterson
Author: Praveen Patel
Author: Chris Owen
Author: Richard Oram
Author: Eoin O’Sullivan
Author: James Morgan
Author: Tony Moore
Author: Martin McKibbin
Author: Andrew Lotery ORCID iD
Author: Jane Gibson ORCID iD
Author: Sarah Ennis ORCID iD
Author: Roxana Carare ORCID iD
Corporate Author: UK Biobank Eye and Vision Consortium

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×