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Frequency-Domain Approach to Self-Force in Hyperbolic Scattering

by Christopher Luke Whittall

Gravitational self-force is a well-established method for modelling the dynamics of binary

systems in general relativity when one object is significantly less massive than the other.

Existing study has focused primarily on the dynamics of bound systems, driven by a

desire to model astrophysically relevant extreme mass ratio inspirals. In recent years,

however, it has come to be understood that self-force can play a vital role in an ongo-

ing cross-disciplinary effort to study black hole scattering, enabling explorations of the

interface between different modelling approaches and advancing the post-Minkowskian

and effective-one-body approaches to general relativistic 2-body motion.

In this thesis we investigate a method for calculating the self-force along hyperbolic

orbits. Whilst some progress has previously been made towards this aim by working in

the time-domain, our purpose will be the development of a frequency-domain approach.

Frequency domain self-force methods are common for bound systems, where they provide

superior performance compared to time-domain codes, but there are several challenges

when moving to unbound systems. To investigate and overcome these, we will use

a scalar-field toy model, which captures all of the essential challenges but is simpler

to implement, and restrict ourselves to the case of a non-rotating, Schwarzschild black

hole. Problems will be encountered with the standard method of extended homogeneous

solutions, which cannot be fully applied to the unbound problem, and which suffers

growing errors at early and late times. We will also face and overcome difficulties

numerically evaluating oscillatory integrals which stretch to radial infinity. We develop

solutions to each of these issues in turn, and present example results from our numerical

implementation. We then illustrate how strong-field self-force scatter results can be used

to resum weak-field post-Minkowskian results, extending the latter’s domain of validity.

We find that our frequency-domain approach is critical for high-precision strong-field

calculations at high velocities. Initial work on an analytical calculation to obtain the

self-force at early and late times is also presented. To conclude, we discuss the future

development of the techniques developed herein, and the outlook for the self-force scatter

programme at large.

http://www.southampton.ac.uk
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Chapter 1

Introduction

1.1 The gravitational wave era

Shortly before 5AM local time on the 14th September 2015, a small disturbance was

noted at the LIGO facility in Livingston, Louisiana. The sophisticated instruments

contained within the site’s 4km long arms had detected changes in their length of barely

1 part per 1021, around one thousandth of the width of a proton. On the other side

of the United States, Livingston’s sister facility at Hanford, Washington, detected the

same event 7ms later. Subsequent analysis would identify the origin of this disturbance

as the merger of two black holes, with masses approximately 36 and 29 times that of

the Sun, in a galaxy 1.3 billion light years away [1]. During the final seconds of their

lives, as they spiralled towards each other at a significant fraction of the speed of light,

the two black holes emitted the equivalent of 3 solar masses of energy in the form

of gravitational waves. After driving the binary to its merger by removing energy and

angular momentum from the system, the emitted gravitational waves continued to travel

essentially unimpeded through space long after the final coalescence, bringing news of

the cataclysm to distant observers.

The signal detected by LIGO – displayed in Fig. 1.1 and christened GW150914 – was

our first direct detection of gravitational waves. In 1915, a mere 100 years before this

1.3 billion year old message reached Earth, Einstein introduced the definitive version

of his theory of General Relativity [2]. The following year, Einstein discovered that

when the field equations of general relativity were linearised in the limit of weak gravi-

tational fields, they admitted solutions representing waves that propagate at the speed

of light [3, 4]. Despite this, it was initially unclear whether these waves represented real

physical phenomena. Weyl classified Einstein’s waves into three types [5]. Eddington

studied these waves, and concluded that two of the three types were unphysical modes

whose propagation velocities actually depend on the coordinate system used [6]. On the

other hand, Eddington confirmed that the third type propagate at the speed of light
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Figure 1.1: Gravitational wave signal GW150914. Top row: signal observed by LIGO
Hanford, compared to theoretical prediction. Middle row: signal observed by LIGO
Livingston, compared to theoretical prediction. Bottom row: side-by-side comparison
of the two detector signals, aligned to account for the light-speed travel delay between
the two sites. The data from the two detectors agree well with each other and with the
predictions of general relativity. Image credit: Caltech/MIT/LIGO.

in all coordinate systems, but still he was not convinced of their existence. Einstein

too remained sceptical, and in 1936 argued against the existence of plane gravitational

waves alongside his assistant Nathan Rosen, but withdrew the manuscript in protest af-

ter receiving critical feedback from an anonymous referee [7]. With hints from Einstein’s

Princeton colleague Howard Robertson (who happened to be the anonymous referee), a

modified version was published in a different journal a year later, establishing the exis-

tence of cylindrical gravitational waves [8]. The physical understanding of gravitational

waves was boosted in 1956 by Felix Pirani, who developed a mathematical framework

for interpreting physical effects using the Riemann tensor and tetrad formalism [9]. Pi-

rani’s ideas contributed to discussions on the nature of gravitational waves at the 1957

conference on gravitation at Chapel Hill, during which many of the initially sceptical

theorists present were convinced of their existence [10].

With growing theoretical acceptance, the search for experimental evidence gained mo-

mentum. An important development occurred in 1974, when astronomers Russell Hulse

and Joseph Taylor reported the discovery of PSR 1913+16 [11], a pulsar forming a bi-

nary system with what is now known to be another neutron star. Observations over the
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following years allowed for increasingly accurate measurements of parameters such as the

orbital period and its rate of change over time [12, 13]. These values were found to be in

excellent agreement with energy being removed from the binary system by gravitational

radiation, at precisely the rate predicted by general relativity [14, 15]. For their work

leading to the first evidence for the existence of gravitational waves, Hulse and Taylor

shared the 1993 Nobel Prize in Physics. But the radio astronomers had only detected

electromagnetic radiation emitted by the pulsar, from which they extracted information

about the binary dynamics and hence indirectly inferred the emission of gravitational

radiation. It remained to directly detect the gravitational waves themselves.

In fact, Joseph Weber had already claimed such a detection in 1969, 5 years prior to

Hulse and Taylor’s announcement of PSR 1913+16 [16]. Weber was experimenting

with resonant mass detectors, metal cylinders which, it was theorised, would exhibit

measurable vibrations in response to passing gravitational waves. In this way, Weber

claimed regular detection of gravitational waves, including anisotropic reception from

the direction of the galactic centre [17]. Weber was also principal investigator for the

Lunar Surface Gravimeter, deployed during the Apollo 17 landing mission in 1972, which

he hoped would detect seismic events correlated with his observations in the laboratory

[18]. In the event, the experiment failed to function correctly on the Moon and no

relevant data could be collected. Weber’s detections were likewise never replicated by

his earthbound peers, despite significant efforts to do so. Concerns were also raised at the

time as to whether the high rates of galactic mass loss implied by Weber’s measurements

were realistic or consistent with observations of the Milky Way [19, 20]. By the end of the

1970s, Weber’s results were almost universally believed to be erroneous, but he receives

personal recognition as an early pioneer of direct detection efforts [10].

The lack of confirmed detections did not derail the growing enthusiasm for gravitational

wave experiments, and groups continued to pursue both resonant mass detectors and

alternative approaches. Among these, the use of laser interferometers to detect grav-

itational waves had been formally proposed as early as the 1960s, but had not been

immediately pursued [21–23]. As illustrated in Fig. 1.2, an interferometer exploits the

interference of light beams to measure the relative change in length of two perpendicular

arms caused by a passing gravitational wave. This approach was developed with smaller

interferometers throughout the 1970s, and multiple proposals for large-scale detectors

were developed in the following decades [10]. By the early 2000s, several major inter-

ferometers were under construction or in commissioning, including GEO600 (located in

Germany) [24], LIGO (2 sites in the USA) [25] and Virgo (Italy) [26]. These instruments

did not detect gravitational waves in their original science runs, and the latter two were

upgraded to “advanced” configurations at the start of the 2010s.

The detection of GW150914 came just days into the first observing run (O1) of the
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Figure 1.2: Operating principles of a simple laser interferometer. A laser produces a
beam of monochromatic light, which is diverted into two perpendicular arms by a beam
splitter. The light is reflected by mirrors at the end of each arm and returns to the beam
splitter, where the two beams recombine and are directed towards a photodetector.
When a gravitational wave passes the detector, it changes the length of the two arms
by different amounts, altering the phase difference between the two beams where they
recombine and hence changing the intensity of light incident on the photodetector.

advanced LIGO detector. 1 In addition to the first direct detection of gravitational

waves, this event provided concrete evidence for the existence of black holes and allowed

for unprecedented confirmation of the validity of general relativity in the strong-field

regime [28]. The O1 run concluded in January 2016, having detected a total of 3 binary

black hole (BBH) mergers [29, 30]. For their work on the LIGO detector, the 2017 Nobel

Prize in Physics was awarded to Rainer Weiss, Barry Barish and Kip Thorne. The O2

run commenced at the end of November 2016 and continued until the end of August 2017,

with the advanced Virgo detector joining for the final month of observations. A total of

7 BBH events (including the first three-detector event, GW170814 [31]) were identified

from the O2 data [30]. In addition, on the 17th August 2017, the first gravitational

waves were detected from a binary neutron star (BNS) merger [32]. This landmark

signal, named GW170817, was followed 1.74s later by a short gamma ray burst (GRB)

[33, 34]. Radiation from across the electromagnetic spectrum was subsequently detected

by follow-up searches. Multi-messenger events of this nature allow for greater physical

information to be obtained: the discovery of an optical counterpart consistent with the

gravitational wave sky localisation enabled the host galaxy to be identified; BNS mergers

were identified as the progenitors of at least some short GRBs; the difference between

the speeds of light and gravity was constrained; and restrictions were placed on the

neutron star equation of state [34–36].

1GW150914 occurred 3 days into stable data collection, but 4 days before the officially scheduled
start of O1 [27].
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A third pair of observing runs were completed in 2019-20, bringing the total to 90

detected events [37–39]. Highlights from O3 include the first confident detections of

neutron star-black hole mergers [40]; the first BBH merger leading to the creation of an

intermediate mass black hole [41]; the most asymmetric black hole binary observed thus

far [42]; and a second observation of a likely BNS merger [43]. Notably, the Japanese

KAGRA observatory conducted its first runs during the O3 period [44]. The network’s

O4 run began in May 2023, with some early results already announced [45]. Additional

periods of upgrades and observations are planned for the LIGO-Virgo-KAGRA (LVK)

network in the coming years, including the addition of a new LIGO antenna in India

[46, 47]. Adding additional detectors to the network increases the amount of time

that multiple detectors are collecting science data, increasing the detected event rates.

Networks consisting of multiple detectors with greater geographic spread also allow for

more precise sky localisation of gravitational wave events, critical for multi-messenger

follow-up.

In the longer term, there is a proposal to install upgraded detectors, called LIGO Voy-

ager, at the current LIGO sites [48]. New 3rd generation (3G) detectors with arm lengths

of tens of kilometres, such as Cosmic Explorer (2 sites in the USA) [49] and the Einstein

Telescope (Europe) [50], are also envisaged joining the network, perhaps as early as the

2030s.These detectors will be able to detect BBH and BNS mergers at much greater

distances and in greater numbers, allowing us to build an accurate history of compact

object populations and merger rates throughout cosmic history [51]. Highly precise

multi-messenger observations of BNS mergers will provide an unprecedented window in

to the properties of matter at extremely high densities. The 3G observatories will, how-

ever, largely remain sensitive only to the roughly 10 − 104 Hz frequency range of their

2nd generation forebears. Expanding observations to different frequency bands, and

hence different sources, is thus an important goal. Initial success in this direction has

been achieved by pulsar timing arrays, radio telescopes that search for correlated delays

in the arrival of pulses from a network of pulsars. In 2023, the NANOGrav collaboration

(itself a part of the larger International Pulsar Timing Array) announced evidence in

their 15 year observational data set for a gravitational wave background at nanohertz

frequencies, consistent with that expected from a background of supermassive black hole

binaries [52].

Another recent milestone is the formal adoption of the Laser Interferometer Space An-

tenna (LISA) mission by the European Space Agency in January 2024 [54, 55]. LISA

will consist of 3 spacecraft in heliocentric orbit, forming an equilateral triangle interfer-

ometer with arms 2.5 million km long, and will be sensitive to gravitational waves with

frequencies in the millihertz band (0.1 mHz - 1 Hz). The lower frequency range will

make LISA sensitive to BBH systems containing supermassive and intermediate mass

black holes, in contrast to the less massive stellar mass black holes typically observed

by the LVK network. It may also be possible for LISA to detect some stellar mass
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Figure 1.3: Strain sensitivity curves for different current and planned gravitational
wave detectors: the International Pulsar Timing Array (IPTA), LISA, DECIGO, Ad-
vanced LIGO and Cosmic Explorer. Different detectors are sensitive to different fre-
quency ranges, corresponding to different astrophysical sources. Image created using
[53].

binaries earlier in their inspiral, when they are emitting gravitational waves in the mHz

band. This opens the door to potential multi-band gravitational wave observations in

which LISA provides prior warning and sky localisation for ground based detectors and

electromagnetic follow-up. Other space based detector concepts include the Japanese

decihertz proposal, DECIGO [56], and the Chinese millihertz band TianQin and Taiji

programmes [57, 58]. Figure 1.3 displays strain sensitivity curves for a selection of cur-

rent and future detectors, demonstrating how having a variety of instruments gives us

better coverage of potential sources.

The detection of GW150914 marked the beginning of the era of gravitational wave as-

tronomy. Nearly a decade later, the field is flourishing and beginning to answer impor-

tant questions in both astro- and fundamental physics. These results build on over 100

years of work in theoretical relativity, numerical methods and detector technology. If we

are to seize the opportunity presented by next-generation observatories, it is necessary

to redouble these efforts.

1.2 Gravitational wave source modeling

To identify gravitational wave events and accurately extract the parameters of the source

we commonly make use of matched filtering. Crucial to this process is the availability

of highly accurate waveform templates which, given a set of source parameters, tell us
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the theoretically predicted gravitational wave strain for that source. Members of our

template bank may be correlated against the detector output to calculate the signal-to-

noise ratio (SNR) for that template. If the SNR exceeds a given threshold, this may

be considered a candidate detection requiring follow-up, and the template with highest

SNR represents the best initial estimate for the source parameters [59]. During follow-

up, the waveform templates are again required as part of a Bayesian framework to infer

the posterior probability distribution on the source parameters.

Future detector developments pose two main challenges for waveform modelling. Firstly,

as detector noise falls, so too do the resulting statistical measurement errors, and hence

systematic errors in our waveform models potentially gain greater significance. Sec-

ondly, as new detectors probe new frequency bands and hence new sources, we need to

expand the range of validity of our models to ensure full coverage of all expected targets.

Current waveform models have proven largely adequate for the groundbreaking initial

observations by the LIGO and Virgo detectors, but achieving the scientific potential

of LISA and the 3G detectors is certain to demand significant improvements in both

accuracy and parameter space coverage [60, 61].

In this section we review the main methods used to model general relativistic binary

systems. Starting with a brief survey of some relevant astrophysical targets to illustrate

the different regimes that must be covered, we will then outline the different modelling

approaches one may take and discuss their respective domains of application.

1.2.1 Compact binary targets for LISA

The largest class of compact binary targets for LISA is likely to be the population of

stellar-origin compact binaries in the Milky Way. Known as galactic binaries, these

systems mostly consist of binary white dwarfs, with a much smaller number of systems

containing neutron stars or a single black hole. The binary components will typically

have roughly equal masses around 1 solar mass (1M⊙). Such systems evolve only on

timescales much longer than the planned duration of LISA’s observations, and would

thus appear as nearly-monochromatic sources in the LISA data stream. It is estimated

there may be up to 10,000 individually resolvable white dwarf binaries, including roughly

30 “verification binaries” which have been identified in advance using electromagnetic

observations [60]. LISA may also be able to detect some stellar origin black hole binaries

outside of the Milky Way. Consisting of two black holes with masses in the range

(few − 100)M⊙, these systems are expected to have roughly symmetric mass ratios,

between 1 : 1 and 3 : 1 [60]. Entering the mHz band several years before merger, it

is estimated that during the LISA mission it may be possible to track the evolution of

between 0 and a few dozen such systems across the LISA and ground-based bands, all

the way until merger [62].
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Figure 1.4: An example bound geodesic in the Kerr spacetime. The central Kerr
black hole has mass M and angular momentum J/M2 = 0.2, and the geodesic has
eccentricity e = 0.2, semi-latus rectum p = 10M and inclination ι = π/8. Trajectory
calculated using the KerrGeodesics package from the BHP Toolkit [63].

Another important class of targets are massive black hole (MBH) binaries. Containing

two black holes in the mass range (105 − 108)M⊙, these systems are expected to have

roughly symmetric mass ratios in the range (1 − 10) : 1. Depending on the formation

mechanisms assumed, LISA event rate estimates range from a few per year to a few

tens over the 4 year initial mission [60]. Some MBH mergers may be exceptionally loud

signals, with accumulated SNRs of over 1000 possible over the course of the inspiral

and merger. Highly accurate waveform templates for these sources are thus required,

as any errors may result in high-power residuals after subtracting the MBH signal from

the data, complicating the analysis of the quieter sources left behind [59]. LISA is also

expected to detect the merger of MBHs with intermediate mass black holes, defined to

have masses between 100M⊙ and 104M⊙. Systems such as these, which have a mass

ratio in the range (10−104) : 1, are known as intermediate mass-ratio inspirals (IMRIs);

a second class of IMRI targets for LISA arise from the merger of stellar mass black holes

with intermediate mass black holes.

Perhaps the most interesting LISA sources are the so-called extreme mass-ratio inspirals

(EMRIs). A typical EMRI consists of a stellar mass compact body with mass µ ∼
(1− 100)M⊙ inspiralling and merging with an MBH of mass M ∼ (105 − 107)M⊙. We

define the mass ratio to be η := µ/M (note we adopt the convention with η ≤ 1), which

for EMRIs will typically lie in the range 10−6 ≲ η ≲ 10−4. This extremely small mass

ratio results in a clear separation of timescales in the EMRI problem. Gravitational wave

emission alters the trajectory over the radiation reaction timescale TRR ∼ M/η, which

for EMRIs is much longer than the orbital time period Torb ∼M [64]. This means that

over orbital timescales the smaller object appears to be moving along a fixed geodesic in

the spacetime of the MBH. For a rotating Kerr black hole these geodesics are tri-periodic

(with separate radial, azimuthal and longitudinal periods) and generically ergodic, as
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Figure 1.5: Illustration of the parameter space for compact binary modelling: sep-
aration (R) vs mass-ratio (η ≤ 1). The post-Newtonian (PN) and post-Minkowskian
(PM) approaches may be used to model widely separated binaries, and self-force may
be used to model binaries with significant mass asymmetry. Numerical relativity is
used to model roughly symmetric binaries close to merger, but becomes inefficient in
the limit of large separations or small mass ratios.

illustrated in Fig. 1.4. Over the final several years before merger, the smaller object

will trace out TRR/Torb ∼ 1/η ∼ 105 orbital cycles in close proximity to the massive

black hole, emitting gravitational waves in the LISA band as it does so. The resulting

gravitational waveforms will thus encode exquisite information about the strong-field

region around the MBH, allowing us to place strong constraints on any deviation from

the Kerr geometry and measure the mass and spin of the MBH with great precision [60].

It has been estimated that LISA will observe between a few and a few thousand EMRIs

per year, depending on the astrophysical assumptions made, with SNRs up to O(100)

[65].

1.2.2 Modelling approaches

The two most important parameters informing our choice of modelling approach for a

compact binary are the orbital separation R and the binary’s mass ratio, η ≤ 1. This

parameter space, and the optimal choices of modelling approach for each region, are

illustrated in Fig. 1.5. An important approach is numerical relativity (NR), in which

the full non-linear Einstein equations are recast as an initial value problem and solved
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numerically – see Ref. [66] for a review of 21st century breakthroughs and the state of

the art techniques in this area. NR is able to model binaries in the strong-field regime,

including the final inspiral and merger, but the calculations are highly computationally

expensive. This issue becomes particularly pressing when there is a separation of scales

within the problem, such as when the orbital separation is much larger than the objects,

or when one component is significantly more massive than the other. This means that,

in practice, NR is only suitable for modelling the late stages of roughly comparable mass

binaries. For widely-separated systems such as galactic binaries and other targets earlier

in their inspirals, the dynamics are well-described by weak-field approximations. The

leading approach in this area is post-Newtonian (PN) theory, which relies on expansions

in powers of the gravitational constant G and velocities v [67]. Alternatively, in post-

Minkowskian (PM) theory one dispenses with the slow-velocity assumption and expands

only in G [68]. The combination of NR and weak-field methods (primarily PN) has

proven highly successful for modelling the stellar origin BBH and BNS mergers observed

by LIGO and Virgo, and these approaches will remain the mainstay for other sufficiently

symmetric LISA targets such as MBH binaries.

The most asymmetric event observed by LIGO and Virgo thus far was GW191219 163120,

a suspected neutron star-black hole merger with a mass ratio η ≤ 0.041 at the 90% cred-

ible level [39]. This already exceeds the limits of current routine NR simulations: the

smallest mass-ratio included in the latest catalogue of numerical relativity simulations

by the SXS collaboration, for example, is only η = 0.1 [69]. Other teams have suc-

cessfully simulated a short inspiral and plunge for a binary with η = 1/100 [70], and a

head-on collision between two black holes with mass-ratio η = 1/1024 [71], but these

are currently only isolated experimental results. The fundamental challenge is the need

to use a numerical grid which simultaneously resolves the length scale of both the large

and small object, and to evolve the system over multiples of the long radiation-reaction

timescale TRR ∼ 1/η. When η becomes small, this results in a rapid growth in runtime

proportional to 1/η2 [72]. Greater success simulating low mass ratio binaries may be

expected with theoretical and computational developments, but NR will not be able

to model the most asymmetric IMRIs and EMRIs that we expect to observe for the

first time with LISA. For this, we turn to a form of black hole perturbation theory

called self-force (SF) theory [73–76]. The self-force approach relies on an expansion in

the mass-ratio, without any expansions in G or v. This results in an approximation

which is valid in the strong-field and with arbitrary velocities, but only for binaries with

sufficiently small mass ratio. Unlike PN, SF results are not in general given analyti-

cally, and the SF expanded field equations must be solved numerically. This process

can require significant computational resources, but solving the perturbative self-force

equations (which are linear and separable) is typically much less expensive than the NR

simulations used in the comparable mass regime. PN results may continue to be used

to model extreme mass ratio systems at large separation, including the use of combined
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Figure 1.6: Approaches which inform development of effective-one-body (EOB) mod-
els. EOB combines information from different numerical and perturbative approaches
to produce a universal model of binary inspiral, merger and ringdown. Image credit:
[60]

PN-SF expansions that obtain higher-order PN results by restricting to first-order in

the mass-ratio [77–82].

Before reviewing the foundations of self-force theory in greater detail, we consider how

results from the above approaches are combined to generate waveforms for use in real-

world gravitational wave searches and parameter estimation. In order to be of practical

use, our waveform models need to be much faster to evaluate than the NR or SF calcula-

tions described above, which are far too slow to be evaluated on the fly. This requires the

creation of secondary models which, informed by PN and numerical NR/SF calibration

data, can give rapid predictions for the waveform for arbitrary parameters. An example

is the IMRPhenom family [83–86] of phenomenological models, which play a key role in

LVK data analysis [30, 38, 39]. In this approach, the waveform is split into sections (e.g.

inspiral, merger-ringdown and the intermediate region between) and functions such as

the (spherical harmonic mode) phase and amplitude in each section are described by

physically motivated closed-form ansatze with undetermined coefficients [60]. These co-

efficients are fit to a bank of calibration waveforms constructed using, for example, PN

and NR, and then interpolated across the parameter space.

Another important tool for obtaining gravitational waveforms is effective-one-body (EOB)

theory [87]. This approach relies on a map between the real two-body dynamics and

the motion of an effective test particle in a deformed black hole background. An EOB

model then contains three essential ingredients: a Hamiltonian (containing certain a pri-

ori undetermined potentials) describing the conservative dynamics; a description of the

radiation-reaction force; and a description of the gravitational waveform emitted during

the inspiral, merger and remnant ringdown phases [88, 89]. Each of these contributions

must be calibrated against the primary modelling approaches described above. This

was originally achieved using resummed PN results, and later with information from
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NR simulations [88, 89]. Modern EOB models may also incorporate information from

self-force [90–99] or PM theory [100–105] in addition – see Fig. 1.6 for a summary of the

different approaches that have been integrated into the EOB framework. EOB combines

and resums the information from these different approaches, producing models which

cover a larger region of parameter space than the primary methods alone [60], and which

are much more rapid to evaluate than the expensive NR (or SF) calculations used for

calibration.

1.3 Gravitational self-force

The basic principle of self-force theory is to expand all quantities as a series in the small

mass ratio, identifying the perturbations as objects on the background spacetime of the

large primary object. The motion of the smaller secondary object is represented by

an effective worldline in the background, and the key goal is to obtain its equation of

motion order-by-order in the mass ratio.

More concretely, suppose our primary object has mass M , and the small, secondary,

object has mass µ ≪ M . The “physical” metric describing the combined spacetime of

the two objects may be expanded

gphysαβ = gαβ + ηh
(1)
αβ + η2h

(2)
αβ + ..., (1.1)

where gαβ is the “background” metric describing the isolated primary body and, recall,

η := µ/M ≪ 1. The physical metric obeys the Einstein field equations,

Gαβ[g
phys] = 8πTαβ, (1.2)

where Gαβ[g
phys] is the Einstein tensor constructed from the metric gphysαβ and Tαβ is the

stress-energy tensor. Substituting Eq. (1.1) into Eq. (1.2), the left hand side becomes

Gαβ[g
phys] = Gαβ[g] + ηδGαβ[h

(1)] + η2
(︂
δGαβ[h

(2)] + δ2Gαβ[h
(1), h(1)]

)︂
+O(η3),

(1.3)

where δGαβ[h] is a 2nd order linear differential operator acting on h and δ2Gαβ is a 2nd

order quadratic differential operator with schematic form δ2G[h, h] ∼ (∂h)2+h∂2h [75].

Assuming the stress-energy tensor may also be expanded as

Tαβ = T
(0)
αβ + ηT

(1)
αβ + η2T

(2)
αβ +O(η3), (1.4)
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Eq. (1.2) gives rise to a hierarchy of equations,

Gαβ[g] = 8πT
(0)
αβ , (1.5)

δGαβ[h
(1)] = 8πT

(1)
αβ , (1.6)

δGαβ[h
(2)] = 8πT

(2)
αβ − δ2Gαβ[h

(1), h(1)], (1.7)

and so on. We will assume the primary body is a black hole, meaning T
(0)
αβ = 0.

A significant early result in the development of gravitational self-force theory was the

demonstration by D’Eath that, at first order in q, the metric perturbation outside a

small body is equivalent to that obtained by solving Eq. (1.6) with a point-particle

source [106],

T
(1)
αβ (x) = µ

∫︂
uαuβ

δ4(x− xp(τ))√
−g

dτ, (1.8)

where xp(τ) is an effective worldline describing the motion of the smaller object in

the background spacetime, τ is the small body’s proper time in that spacetime, and

uα := dxαp /dτ is the small object’s 4-velocity. This result applies even when the small

body is a black hole, for which the true stress-energy vanishes. The existence of a

point-particle description at first order is notable because, in general, point particles

do not make sense as a concept in general relativity. Due to their nonlinear nature,

the Einstein field equations do not admit solutions over any sensible space of functions

when the stress-energy is a distribution supported on some worldline [107]. The physical

origin of this problem is clear: any attempt to compress a finite mass into an infinitesimal

volume would result in a collapse to form a black hole of finite diameter instead. Another

important point to emphasise is that, although many self-force calculations start from

Eqs. (1.6) & (1.8) without commenting on their origin, the validity of the effective point

particle description they define has been rigorously derived and is not an assumption of

the theory.

D’Eath’s analysis made use of an important method in self-force, the method of matched

asymptotic expansions. The presence of two disparate length scales µ ≪ M in the

problem allows us to expand the physical metric in two distinct limits. In the “near

zone” r ≪ M (where r is the proper spatial distance from the small-body worldline),

the metric appears to be that of the small object, with corrections arising from tidal

perturbations by the primary object. In the “far zone” r ≫ µ, however, the metric

appears to be that of the background, perturbed by small corrections arising from the

small-body, which appears distant and point-like at this scale. Crucially, as illustrated

in Fig. 1.7, both expansions remain valid in the “buffer region” µ≪ r ≪M , and hence

both expansions must agree here. Requiring that the two expansions match in the

buffer region is a remarkably powerful technique, and it has been used to derive many

key results in self-force theory, including the derivation of the equation of motion for the
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Figure 1.7: Illustration of the different regions around the small body in the method
of matched asymptotic expansions. The near and far zones are the regions at distances
r ≪ M and r ≫ µ from the small body respectively. The separation of mass scales
µ≪M ensures the existence of a buffer zone µ≪ r ≪M between them.

small body at O(η). Before we can present this result, however, we must introduce two

more self-force concepts.

The first is the concept of gauge freedom in self-force theory. In general relativity,

gauge freedom corresponds to the freedom to map our spacetime manifold to itself via

a diffeomorphism without altering the physics (or, equivalently, freedom to choose our

coordinate systems). In self-force, gauge freedom arises from the redundancy in our

choice of identification map between the physical and background spacetimes [108]. A

gauge transformation may be described by a “small” coordinate transformation, xα ↦→
xα + ηξα +O(η2), under which [75]

h
(1)
αβ ↦→ h

(1)
αβ −∇αξβ −∇βξα, (1.9)

where ∇α is the Levi-Civita connection compatible with the background metric. For the

remainder of this section we assume the gauge freedom has been exploited to choose the

Lorenz gauge, obeying the condition ∇α
(︁
hαβ − 1

2g
µνhµνgαβ

)︁
= 0.

The second concept is the decomposition of the metric perturbation into pieces which

are, respectively, singular and regular in the vicinity of the small body. An example of

this is the construction introduced by Detweiler and Whiting in Ref. [109], where they

showed that the first order metric perturbation may be split in the form

h
(1)
αβ = hS1αβ + hR1

αβ, (1.10)

where hS1αβ and hR1
αβ are defined in terms of certain Green’s functions such that they have

the following properties. The singular field hS1αβ is a particular solution to Eq. (1.6) with

a point particle source and hence has the same singularity structure as the full (retarded)
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solution in the vicinity of the small body,

hS1αβ ∼ µ

r
. (1.11)

The regular field hR1
αβ, on the other hand, is a solution to the vacuum linearised Einstein

equation,

δGαβ[h
R1] = 0, (1.12)

and is (as the name would suggest) regular everywhere, including on the small body’s

worldline. The motion of the small body is affected only by the regular field; for a

non-spinning small body, the equation of motion is given by

D2xαp
dτ2

= −η
2
gαβ

(︁
2hR1

βρ;σ − hR1
ρσ;β

)︁
uρuσ +O(q2) := Fαself/µ, (1.13)

where semicolons denote covariant derivatives and D/dτ := uβ∇β. The quantity on the

right hand side of Eq. (1.13) defines the (first-order) gravitational self-force, Fαself . The

formula is known as the MiSaTaQuWa equation after the groups of Mino, Sasaki and

Tanaka, who first derived it using matched asymptotic expansions [110], and Quinn and

Wald, who independently derived it using an axiomatic approach [111] a short time later.

Both teams originally made use of an alternative singular/regular split for the metric

perturbation, with the formulation in terms of Detweiler-Whiting fields introduced at

the same time as that decomposition in Ref. [109].

We note that Eq. (1.13) is consistent with the standard equivalence principle of general

relativity: at zeroth order in the mass ratio, any sufficiently small body (regardless of

its internal structure) moves along a geodesic in the background spacetime. Indeed, this

fact is not assumed in self-force theory, and self-force may thus be considered to provide a

derivation of the geodesic postulate. Furthermore, Eq. (1.13) suggests a generalisation of

the equivalence principle. Introducing the first order effective metric geffαβ := gαβ + ηh
R1
αβ,

the MiSaTaQuWa equation becomes [109]

D̃
2
xαp

dτ̃2
= O(η2), (1.14)

where objects with a tilde are defined with respect to the effective metric. In other

words, at first order in the mass-ratio an arbitrary small body moves along a geodesic

in a certain effective vacuum spacetime. As elegant as this result is, however, it is

important to remember that hR1
αβ, and hence geffαβ, is not a physical quantity. The split

into regular and singular pieces is not unique, and only the combination h
(1)
αβ = hR1

αβ+h
S1
αβ

can be considered truly physical [75].

The Detweiler-Whiting construction does not extend to second order, but it is still

possible to define convenient splits h
(2)
αβ = hS2αβ + hR2

αβ. One such approach introduced by
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Pound in Ref. [112] ensures that the second order effective metric geffαβ := gαβ + ηhR1
αβ +

η2hR2
αβ obeys the vacuum Einstein equation through second order,

Gαβ[g
eff ] = O(η3). (1.15)

With this choice of regular field, Pound showed that at second order the equation of

motion is given by

D2xαp
dτ2

= −1

2

(︂
gαβ − hαβR

)︂ (︁
2hRβρ;σ − hRρσ;β

)︁
uρuσ +O(η3), (1.16)

where hRαβ := ηhR1
αβ + η2hR2

αβ is the total second order regular field. The O(η2) part of

the right hand side is known as the second-order self-force (per unit µ). This may be

recast in terms of geffαβ,

D̃
2
xαp

dτ̃2
= O(η3), (1.17)

establishing that the generalised equivalence principle also holds at second self-force

order.

The development of self-force theory in recent decades has been driven primarily by the

need to accurately model EMRIs for LISA. In Ref. [64], Hinderer and Flanagan showed

that the orbital phases φA of an EMRI take the form

φA =
1

η

(︂
φ
(0)
A + ηφ

(1)
A +O(η2)

)︂
, (1.18)

where the “adiabatic” term φ
(0)
A depends on the first-order dissipative (see Sec. 2.2.3) self-

force, and the first “post-adiabatic” term φ
(1)
A depends on the full first-order self-force,

plus the dissipative piece of the second order self-force. Accurately tracking the waveform

phase to sub-radian accuracy is critical for LISA data analysis, thus we require the orbital

phases correct to first post-adiabatic order, and hence must calculate the second-order

self-force. At first-order, the gravitational self-force has been calculated along generic

(i.e. eccentric and inclined) bound geodesics in the Kerr spacetime [113, 114]. Second

order self-force calculations are significantly less mature, but early examples include

the calculation of the binding energy [115] and gravitational wave energy flux [116]

for a quasicircular binary with a Schwarzschild primary, and most recently a waveform

for a full quasicircular inspiral into a Schwarzschild black hole [117]. Extending these

calculations to eccentric orbits and a Kerr primary [118, 119] are important goals of the

self-force programme.
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1.4 Black hole scattering

The potential compact binary sources for LISA discussed in Sec. 1.2.1 are all examples

of bound systems, in which the objects have insufficient orbital energy to escape to

infinity, remaining instead a finite distance apart until they eventually merge. This

thesis, however, is interested in a distinct problem – that of scattering motion. During a

scatter encounter, two initially distant objects approach each other closely but, having

sufficient energy and angular momentum, avoid merging and begin to separate once

more, never to interact again.

Extreme mass ratio scatter events (the class of scattering systems that may be directly

modelled using self-force methods) are not considered one of the primary observational

targets for LISA, although a small number of detections may be possible [60]. The

reason for this is clear if one compares the dynamics to those of an EMRI with similar

component properties. As discussed previously, an EMRI may emit 1/η ∼ 105 gravita-

tional wavecycles in the LISA frequency band prior to merger, allowing us to accumulate

SNR over these many cycles despite the relatively low amplitude (compared to, say, an

MBH binary.) Scatter events, meanwhile, will emit strongly only during the closest

period of the encounter, appearing as a gravitational wave burst rather than a multi-

year EMRI. With this relatively short period of emission, an extreme mass ratio burst

would only be identifiable in the LISA data stream if it had much greater amplitude

than the comparable EMRI, which in turn requires the scatter system to be located

much closer. The study in Ref. [120] estimated that on average around 2 bursts may be

detected from the galactic centre during a notional 2 year mission. Looking at potential

extragalactic sources, Ref. [121] concluded that detections may be possible out to dis-

tances ∼ 100 Mpc but, when considering parameter estimation for sources in a selection

of potential nearby host galaxies, they found that only binaries with very small closest

separation would yield useful information about the primary black hole. In any case,

the inclusion of the self-force is much less important for modelling astrophysical scat-

ter events than for EMRIs, because the duration of the observed burst is much shorter

than the radiation-reaction timescale. Consequently, waveform generation for extreme

mass ratio bursts is not an important inspiration for our work. In fact, several other

compelling motivations exist.

The first is pure theoretical interest. Scatter orbits are good natural probes of the

strong-field region outside black holes, able to penetrate deep into the region inside the

innermost stable circular orbit (ISCO) and stay there for long periods, even at low ve-

locities and with minimal tuning of the initial conditions. By contrast, bound systems

will generically plunge after crossing the ISCO. The scatter problem, with motion be-

ginning and ending in the asymptotically flat region, also admits “in” and “out” states

with well-defined energy and angular momentum, free of the gauge ambiguities which

complicate the interpretation of physical effects for bound orbits.
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Another important motivation was the realisation that the gravitational scatter an-

gle completely determines the EOB Hamiltonian, and hence the entire conservative

2-body dynamics [100, 101]. The self-force approach constitutes one way to obtain the

scatter angle (as an expansion in the mass ratio), and this is an important objective

motivating the development of gravitational self-force calculations along scatter orbits.

In the meantime, there has been significant interest in the use of the PM expansion

[100, 101, 122, 123], an approach which has benefitted in recent years from the introduc-

tion of established techniques from outside the usual gravitational physics community.

Among the new methods adopted are advanced quantum amplitude techniques such

as generalised unitarity [124, 125] and double copy [126–128], which have been used to

develop “dictionaries” that translate quantum scattering amplitudes to classical gravita-

tional dynamics. This has led to rapid advances in the PM theory of two-body dynamics

[129–132], culminating in the derivation of the conservative 2-body Hamiltonian at 4th

PM (4PM, O(G4)) order [133], and more recently the 5PM conservative scatter angle

correct at first-order in the mass ratio [134]. These are supplemented by similar calcu-

lations using effective field theory (EFT) [135–140]. There has also been work towards

including radiative effects [131, 141, 142].

As well as directly calibrating EOB, self-force scatter calculations can play a role in PM

calculations. As noted by Damour in Ref. [122], self-force calculations give relatively easy

access to higher order PM terms in the scatter problem. Remarkably, the scatter angle

of geodesics is sufficient to determine the full conservative 2-body dynamics (at all mass

ratios) of structureless point particles to 2PM order on a Schwarzschild background,

whilst knowing the first-order self-force correction to the scatter angle (that is to say

the part of the correction linear in the small mass ratio η) is sufficient to determine the

full conservative 4PM dynamics. A second-order self-force calculation could push this

further to 6PM order. The origin of self-force’s determinative power lies in the particular

polynomial dependence of PM coefficients on the masses, combined with the expected

mass-exchange symmetry. As a simple example, consider the scattering of two particles

with masses mi
2, during which each experiences an impulse ∆pµi := pµi,final − pµi,initial.

The momentum transfer Q :=
√︁
ηµν∆p

µ
1∆p

ν
2 has a PM expansion of the form [122]

Q =
2Gm1m2

b

[︄
Q1PM(v) +

(︃
Q2PM

1 (v)
Gm1

b
+Q2PM

2 (v)
Gm2

b

)︃
+O(G3)

]︄
, (1.19)

where b is the impact parameter (distance of closest approach in the absence of gravita-

tional interaction) and v is the initial relative velocity. At each PM order the coefficients

are homogeneous polynomials of the two masses. In the self-force limit m2 ≪ m1, the

2PM order term involving Q2PM
2 is formally first order in the mass-ratio, being sup-

pressed by a factor of η = m2/m1 relative to the Q2PM
1 term. However, the mass

exchange symmetry m1 ↔ m2 requires Q2PM
1 = Q2PM

2 , so that the full 2PM term is in

2Note the use of m1 and m2 for the masses rather than our previous notation, µ and M . We do this
to emphasise that Eq. (1.19) is completely general, without any restrictions on the mass ratio.
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fact completely determined by its geodesic order piece. In general, the expansion correct

to nPM order may be completely determined by an ⌊n−1
2 ⌋ order self-force calculation

[122].

Self-force results for the scatter angle can be compared to PM results in an overlapping

domain of validity, providing useful checks on both schemes. Given the first-order grav-

itational self-force correction to the scatter angle, one could completely verify the state

of the art 4PM and 5PM-1SF analytical results; in the future, an extension to second-

order self-force might allow the full 6PM dynamics to be determined earlier than possible

using analytical means. Furthermore, self-force results remain exact in the strong-field

limit (at a given order in the mass-ratio), and may thus be used to benchmark or cali-

brate PM results in this regime. We will explore the idea of using strong-field self-force

information to extend the range of validity of weak-field PM results in Chapter 5.

Effective-one-body models incorporating self-force scatter angle data may be used to

provide waveforms for bound compact binary systems. By calibrating EOB with SF-

informed, mass-symmetrised, PM results, we may even help to model the dynamics and

gravitational wave emission of comparable mass binaries (such as MBH or stellar-origin

binaries), not just EMRIs. An alternative way to obtain bound orbit information from

scatter calculations is provided by so-called “boundary to bound” maps, derived using

effective field theory [143]. These maps have typically been developed in the context of

PM theory, and formulations exist to map between (PM expanded) observables such as

the scatter angle and bound orbit periastron advance [143], radiative fluxes [144], and

most recently direct maps between scatter and bound orbit waveforms [145]. Relations

between exact scatter and bound orbit observables have also been derived for geodesic

orbits in the Kerr spacetime [146], and work is underway to extend this to higher orders

in the self-force expansion [147]. If these self-force boundary to bound maps can be

successfully developed, self-force scatter calculations would provide an additional (or

alternative) approach to obtain bound orbit self-force information.

A first step towards a full self-force calculation of the scatter angle was taken by Long

and Barack in Ref. [148], which demonstrated a method to reconstruct the linear metric

perturbation sourced by a point mass moving along a fixed hyperbolic geodesic in the

Schwarzschild spacetime, in a gauge suitable for self-force calculations. To demonstrate

the practicality of their approach, they developed a time-domain numerical scheme for

obtaining the scalar-like “Hertz potential”, from which the metric perturbation (and

hence self-force) can be derived. But that initial work stopped short of a calculation of

the self-force itself. In a subsequent work by the same authors [149], a first calculation of

the self-force correction to the scatter angle was carried out, albeit in a scalar-field toy

model. This numerical calculation was performed using an adapted version of the time-

domain computational platform developed in Ref. [148]. In addition to these numerical

results, the scalar (as well as electromagnetic and gravitational) self-force corrections to

the scatter angle were derived analytically at leading (2PM) order by Gralla and Lobo
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in Ref. [150]. The leading-order (3PM) piece of the dissipative gravitational and scalar-

field self-force scatter angle corrections were first written down in Ref. [149]. Knowledge

of the scalar-field self-force correction to the scatter angle was subsequently improved

to 4PM order using scattering amplitude methods, showing impressive agreement with

the self-force results [151].

1.5 Outline

The purpose of this thesis is to develop frequency-domain numerical methods to calculate

the self-force along fixed hyperbolic scatter geodesics. Frequency-domain methods are

ubiquitous for self-force calculations along bound geodesics, being valued for their ability

to give highly accurate results at relatively high speed by reducing the governing partial

differential equations to ordinary differential equations. For example, the state-of-the-art

code developed in Refs. [113, 114], which is able to compute the 1st order gravitational

self-force along generic bound geodesics in a Kerr background, solves the Teukolsky

equation in the frequency-domain to obtain the necessary Hertz potential. Frequency-

domain methods are hoped to retain much of their advantage over time-domain codes

when applied to unbound orbits, but several significant challenges to this extension are

clear a priori.

An obvious difference between the bound and scatter orbit problems lies in the nature of

the frequency spectrum. As noted in Sec. 1.2.1, bound geodesics in the Kerr spacetime

are tri-periodic, giving rise to a discrete frequency spectrum for the scalar-field. Scatter

orbits, however, lack any periodicity, leaving us with a continuous frequency spectrum

for the scalar-field. In general this requires us to evaluate a greater number of frequency

modes than an equivalent bound orbit calculation. It will be important therefore to take

any steps we can to minimise the number of modes we must calculate, and in particular

to maximise the re-use of frequency-domain quantities where possible. The calculation

of the frequency modes themselves is also complicated for unbound orbits. A main-

stay of frequency-domain self-force calculations is the method of extended homogeneous

solutions (EHS) [152], in which the time-domain field is reconstructed piecewise from

frequency modes of certain homogeneous solutions to the field equation. This approach

avoids the problematic Gibbs ringing that confounds a naive attempt to reconstruct the

time-domain field from the inhomogeneous frequency-domain solution, but, importantly,

the usual EHS construction relies on the radial compactness of the particle’s orbit. This

condition fails to be satisfied for scatter orbits, and the applicability or otherwise of EHS

will have to be established.

Other problems will only be discovered along the way. To investigate and resolve all these

difficulties, and in line with the existing scalar-field scatter angle calculations performed

in the time-domain, we make use of a scalar field model in a background Schwarzschild
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spacetime. This model will capture the essential difficulties of the self-force scatter

problem, while remaining simpler to implement overall than an equivalent calculation

in gravity. The use of scalar-field toy models to develop new self-force techniques is a

well-established strategy, and a number of frequency-domain scalar-field self-force codes

exist for bound orbits (see examples in Refs. [153–156]). The approach of Ref. [154], in

particular, inspired our initial numerical method. We note also that a frequency-domain

method was used in Refs. [157, 158] to calculate the gravitational radiation from a

point mass scattered off a Schwarzschild black hole. That work made use of the Regge-

Wheeler-Zerilli formalism, in which information about the gravitational perturbation is

encoded in a scalar-like field that obeys an equation very similar to that of our scalar-

field model (to be introduced in Sec. 2.2). Crucially, however, that work considered only

asymptotic waveforms and fluxes, which did not require the use of EHS.

1.5.1 Structure

The structure of this thesis is as follows. Chapter 2 provides the mathematical prelimi-

naries for our approach, beginning with an introduction to hyperbolic scatter geodesics

in the Schwarzschild spacetime. Our scalar-field self-force model is then described, and

the method of mode-sum regularisation by which we will calculate the self-force is ex-

plained. The self-force correction to the scatter angle is defined, and existing numerical

SF and analytical PM results reviewed. The frequency-domain scalar-field equation with

a scattering source is obtained, and its inhomogeneous solution found using variation of

parameters. The chapter concludes by presenting the EHS method, in the context of

our scatter problem. Notably, we confirm that an EHS may be used to reconstruct the

time-domain field in the “internal” region r ≤ rp(τ), where r is the Schwarzschild radial

coordinate, and rp(τ) is the radial position along the geodesic, parameterised by proper

time τ . The usual construction fails in the external region, r ≥ rp(τ), but we are still

able to proceed with the self-force calculation using a one-sided mode-sum regularisation

procedure which only requires the values of the field and its derivatives as r → rp(τ)

from below.

Chapter 3 concerns the numerical calculation of the frequency modes of the internal

EHS. This requires us to evaluate certain normalisation integrals C−
ℓmω (one for each

frequency-harmonic mode), which are obtained by numerically evaluating radial integrals

along the orbit, which stretches to radial infinity. These integrals exhibit slow, oscillatory

convergence, rendering them slow to evaluate, and making the error from the necessary

finite-radius truncation hard to control. Two complementary analytical solutions are

developed to minimise this truncation error. Integration by parts is used to increase the

decay rate of the integrand, reducing the truncation error at a given finite truncation

radius. The tail correction scheme uses a large-radius expansion of the integrand to

approximate the value of the neglected tail. The numerical method for evaluating the
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integrals is described, including the use of quadrature routines specialised towards highly

oscillatory integrands. Finally, example numerical results are used to illustrate the

success of our methods.

Our all-up numerical method for calculating the self-force along a given scatter geodesic

is presented in Chapter 4. Efficient time-domain reconstruction is achieved by calculating

discretised C−
ℓmω data in advance, and interpolating to obtain the values at the interme-

diate frequencies we require when evaluating the Fourier integrals for the time-domain

field. All stages of our calculation can be significantly accelerated using parallel comput-

ing. With an efficient method at hand, we present initial numerical results. Validation

is obtained by comparing the numerical results with the analytically known regularisa-

tion parameters, and by comparisons with the extant time-domain code of Ref. [149].

The conclusions of these tests are that our frequency-domain code is highly accurate

in the strong-field region near to the periapsis of our example orbit, giving access to

high angular ℓ-modes, and exceeding the precision of the time-domain code as hoped.

Distressingly, however, the frequency-domain code is observed to deteriorate rapidly at

larger radii along the orbit. This issue is traced to cancellation between low-frequency

modes of the EHS; this problem has been previously noted in bound-orbit gravitational

self-force calculations [113], but affects our scatter calculation even more severely. As

an interim measure, we adopt an adaptive truncation algorithm which detects the onset

of anomalous ℓ-mode behaviour, and truncates the self-force mode-sum early to prevent

their inclusion. This preserves the high precision of the frequency-domain code near to

periapsis, but transforms the catastrophic deterioration previously seen at large radii in

to a much more gradual reduction in accuracy due to the progressively earlier truncation

of the mode-sum.

In Chapter 5 we apply our method to calculate the self-force along near-critical geodesics,

which lie close to the transition between scattering and plunging behaviour. It is discov-

ered that in the limit of high-velocities, the large-ℓ contributions to the self-force become

increasingly significant in the vicinity of periapsis, modes which only our frequency-

domain code can provide. A hybrid method is thus developed, utilising the frequency-

domain code in the central region where it has high-precision access to the large-ℓ modes

of the field, before transitioning to the time-domain code of Ref. [149] as the accuracy of

the frequency-domain method falls at larger radii. We extract a certain parameter char-

acterising the divergence of the scatter angle correction in the limit of the transition to

plunge. This information is then used to inform a resummation of the post-Minkowskian

expansion of the scatter angle, resulting in a semi-analytic model which is fast to eval-

uate and uniformly accurate across both the strong and weak field (at first-order in the

scalar-field self-force expansion parameter).

Ongoing work to obtain analytical results for the self-force at early and late times along

the orbit is discussed in Chapter 6. Chapter 7 then concludes this thesis with a sum-

mary of our successful progress towards frequency-domain self-force calculations along
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scatter geodesics, and the limitations of our approach that still remain. Several avenues

for future work are highlighted, and the broader direction of self-force scatter research

(including the extension to gravity) is discussed briefly.

1.5.2 Summary of own contribution

Chapters 2-4 of this thesis are based upon my work, published in Ref. [159] with my

supervisor Leor Barack. Chapter 2 contains primarily review material, except for the

derivation of the frequency-domain solution with a scatter source in Sec. 2.4, which is

my own original work. Chapters 3 and 4 are my own work.

Chapter 5 is based upon collaborative work with Oliver Long and Leor Barack, published

in Ref. [160]. My primary contributions to this chapter were: the self-force calculation

using the frequency-domain code, the development of the hybrid TD/FD approach, and

the estimation of the singularity coefficient and its errors.

Chapter 6 is primarily my own original work, except for the review of the hierarchical

expansion and its Green’s function.

1.5.3 Conventions

Throughout this thesis we work in natural units with G = 1 = c and metric signature

(−,+,+,+). The central object is represented by a background Schwarzschild spacetime

of mass M , which, in Schwarzschild coordinates xα = (t, r, θ, φ), has the line element

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, (1.20)

where f(r) := 1 − 2M/r, and dΩ2 := dθ2 + sin2 θ dφ2 is the metric on a unit 2-sphere.

The Levi-Civita connection compatible with this metric is denoted ∇µ. The smaller

object is described by a pointlike particle endowed with mass µ≪M and “small” scalar

charge q ≪
√
µM . Its trajectory is described by a worldline xαp (τ) in the background

spacetime, parameterized by proper time τ , with 4-velocity uα(τ) := dxαp /dτ .
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Chapter 2

Mathematical preliminaries

In this chapter we outline the mathematical details of our model and the key concepts

and methods we will be using. Our first objective is to summarise timelike scatter

geodesics in the Schwarzschild spacetime, describing different choices of orbital param-

eters and the means to convert between them. We will then give an overview of our

scalar-field model, including a description of the method of mode-sum regularisation used

to calculate the self-force. The self-force correction to the scatter angle is introduced,

and its known properties reviewed. Finally, we derive the solution of the scalar-field

equation sourced by a scalar charge moving along a scatter geodesic using frequency-

domain techniques, highlighting the limitations of the standard method of extended

homogeneous solutions when applied to the scatter problem.

2.1 Scatter geodesics in the Schwarzschild spacetime

In the test particle limit µ/M → 0 and q2/(µM) → 0, the small object moves along

a timelike geodesic in the background Schwarzschild spacetime, which, without loss of

generality, may be taken to lie in the equatorial plane, θ = π/2. The timelike and

azimuthal Killing vectors give rise to conserved quantities E (specific energy) and L

(specific angular momentum), respectively given by

E = f(rp)ṫp, (2.1)

L = r2pφ̇p, (2.2)

where overdots denote derivatives with respect to proper time. The normalisation of the

4-velocity, uαuα = −1, gives rise to an effective potential equation for the radial motion,

ṙp = ±
√︂
E2 − V (rp;L), (2.3)
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with effective potential

V (r;L) := f(r)

(︃
1 +

L2

r2

)︃
. (2.4)

We are interested in the scattering problem, in which rp → ∞ as t→ ±∞, which requires

E > 1. Note that the 3-velocity at infinity, vi :=
dxip
dt

⃓⃓
r→∞ (i = r, θ, ϕ), has magnitude

v :=

√︂
(vr)2 + ((rvφ)∞)2 =

√
E2 − 1

E
, (2.5)

leading to

E = (1− v2)−1/2, (2.6)

the standard Lorentz factor. The particle scatters back to infinity if, and only if, L >

Lc(E), where

Lc(E) =
M

Ev

√︁
(27E4 + 9νE3 − 36E2 − 8νE + 8)/2, (2.7)

with ν :=
√
9E2 − 8.

We may use the first integrals E and L to parameterise our orbit, or we may choose to

replace L with the impact parameter b:

b := lim
τ→−∞

rp(τ) sin |φp(τ)− φp(−∞)| = L√
E2 − 1

. (2.8)

Likewise, we may replace E with v using Eq. (2.6). The orbit (b, v) is then a scatter

orbit provided

b > bc(E) :=
Lc(E)√
E2 − 1

. (2.9)

For a given E > 1 and L > Lc(E), the cubic equation

ṙ2p = E2 − V (r;L) = 0 (2.10)

has three real roots r1, r2 and rmin, with r1 < 0 and 2M < r2 < rmin. These are given

explicitly by [161]

r1 =
6M

1− 2ζ sin
(︁
π
6 + ξ

)︁ , (2.11)

r2 =
6M

1 + 2ζ cos ξ
, (2.12)

rmin =
6M

1− 2ζ sin
(︁
π
6 − ξ

)︁ , (2.13)
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where ζ :=
√︁
1− 12M2/L2 and

ξ :=
1

3
arccos

(︃
1 + (36− 54E2)M2/L2

ζ3

)︃
. (2.14)

The root rmin is the periapsis radius for the orbit, and may be calculated from E and L

using Eq. (2.13). At the same time, Eq. (2.10) allows one to determine L for a given rmin

and E > 1. The pair (E, rmin) provides an alternative parameterisation for the orbit.

The orbital turning points also give rise to another parameterisation, in terms of an

eccentricity e > 1 and a semi-latus rectum p, defined by the relations

r1 =
Mp

1− e
, rmin =

Mp

1 + e
. (2.15)

Substituting Eqs. (2.15) into Eq. (2.10) and solving for E and L, one finds the same

relations as in the bound case,

E2 =
(p− 2)2 − 4e2

p(p− 3− e2)
, L2 =

p2M2

p− 3− e2
. (2.16)

To invert Eqs. (2.16), it is easiest to first use Eq. (2.15) to write p in terms of rmin and

e, and then solve the second equation in (2.16) to find

e =
L2rmin − 2Mr2min

2M(L2 + r2min)
+

√︂
L4(r2min + 4Mrmin − 12M2)− 16L2M2r2min

2M(L2 + r2min)
. (2.17)

Using Eq. (2.13), we thus get e(E,L), and hence also p(E,L) = rmin(1 + e)/M using

Eq. (2.15).

With the (e, p) parameterisation, the radial motion is described in the familiar Keplerian-

like form [162, 163],

rp(χ) =
Mp

1 + e cosχ
, (2.18)

in terms of the relativistic anomaly χ. This anomaly takes values in −χ∞ < χ < χ∞,

where χ∞ := arccos (−1/e) corresponds to the particle returning to infinity, and χ = 0

corresponds to the periapsis passage. The (e, p) parameterisation is also convenient for

calculating the other components of xαp , using χ as the parameter along the orbit. tp(χ)

can be obtained using Eqs. (2.1) and (2.3), and then substituting Eqs. (2.16) and (2.18):

dtp
dχ

=
ṫp
ṙp

drp
dχ

=
Mp2

(p− 2− 2e cosχ)(1 + e cosχ)2

√︄
(p− 2)2 − 4e2

p− 6− 2e cosχ
. (2.19)

This equation can then be integrated numerically, subject to an initial condition, to

give tp(χ). In this work we chose to take tp = 0 at periapsis (χ = 0), which gives the
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symmetry relation tp(−χ) = −tp(χ). Similarly, we express

dφp
dχ

=
φ̇p
ṙp

drp
dχ

, (2.20)

which, using Eqs. (2.2) and (2.3) and then substituting from Eqs. (2.16) and (2.18),

gives

dφp
dχ

=

√︃
p

p− 6− 2e cosχ
. (2.21)

We can integrate this up to give

φp(χ) = 2

√︃
p

p− 6− 2e

∫︂ χ/2

0

dθ√︁
1 + k2 sin2 θ

(2.22)

= k

√︃
p

e
El1
(︂χ
2
,−k2

)︂
, (2.23)

where k2 := 4e/(p− 6− 2e), and El1(ϕ, z) is the incomplete elliptic integral of the first

kind with parameter z:

El1(ϕ, z) =

∫︂ ϕ

0

dθ√︁
1− z sin2 θ

. (2.24)

Note that we selected the initial condition φp(χ = 0) = 0, which once again gives rise to

a symmetry, φp(−χ) = −φp(χ).

We define φin and φout to be the asymptotic values of φp as χ → −χ∞ and χ → χ∞

respectively. The scatter angle is then defined to be

δφ := φout − φin − π, (2.25)

which for a geodesic trajectory is given by

δφ = 2k

√︃
p

e
El1
(︂χ∞

2
,−k2

)︂
− π. (2.26)

Here we used Eq. (2.23) along with the identity El1(−ϕ, z) = −El1(ϕ, z).

Finally, using r as a parameter along the outbound leg of the orbit (ṙp > 0), the relations

tp(r) and φp(r) admit useful large-r expansions in 1/r. For example, for tp we find

tp(r) = t0 +
r

v
+ 2MB log

(︂ r

2M

)︂
+ 2M

∞∑︂
n=1

Cn

(︃
2M

r

)︃n
(2.27)

as r → ∞, where the constants B and Cn are given analytically in terms of E and L in

Appendix A for n ≤ 5. The constant t0 is fixed by the boundary condition tp(rmin) = 0.
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Figure 2.1: Geometric interpretation of the impact parameter b and the scatter angle
δφ (modulo 2π). The geodesic orbit displayed here has E = 1.1 and rmin = 4M ,
corresponding to L ≈ 4.7666M , b ≈ 10.4015M , v ≈ 0.4166, e ≈ 1.6273 and p ≈ 10.5092.
The scatter angle is δφ ≈ 323◦. The view is in the equatorial plane, plotted on axes
x = r cosφ and y = r sinφ. The black hole (black disk) and the innermost stable
circular orbit (blue circle) are to scale.

Likewise,

φp(r) = φ∞ +
∞∑︂
n=1

Dn

(︃
2M

r

)︃n
(2.28)

as r → ∞, where φ∞ := φout = −φin. The constants Dn are given analytically in

Appendix A. Expressions along the inbound leg of the orbit may be obtained by using

the symmetry relations tp(χ) = −tp(−χ) and φp(χ) = −φp(−χ). We will also make use

of the large-r expansion for the radial component of the 4-velocity,(︃
drp
dτ

)︃−1

=
∞∑︂
n=0

Un

(︃
2M

r

)︃n
, (2.29)

as r → ∞, where the first few coefficients Un are given in Appendix A.

Above we have introduced several alternative parameterisations for scattering geodesics,

and described the means to convert between them. In this thesis we will primarily make

use of the (E, rmin) and (v, b) parameterisations. The (E, rmin) parameterisation is

convenient because it allows one to control how relativistic the particle motion is at

infinity (by varying E), and also how deep the orbit penetrates into the strong-field

region (by varying rmin). We will make use of this pair primarily when developing and

demonstrating our numerical method. On the other hand, the parameters (v, b), being



30 Chapter 2. Mathematical preliminaries

defined as quantities at infinity (and hence free of gauge ambiguities in the gravitational

problem), are the most convenient to use when considering the physical effects of the

self-force. In particular, in Sec. 2.3 we will define the self-force correction to the scatter

angle at fixed values of (v, b). Whichever parameterisation is used to describe an orbit,

we will calculate and use the corresponding values of all parameters E, rmin, v, b, L, e

and p. A sample scattering orbit, with parameters E = 1.1 and rmin = 4M , is depicted

in Fig. 2.1.

2.2 Scalar-field model

In this section we will present the details of the scalar-field model, including the governing

field equations and the definition of the scalar-field self-force. We will then summarise

the standard method of mode-sum regularisation used to calculate the self-force from

spherical harmonic modes of the retarded field, and also define the conservative and

dissipative pieces of the self-force.

2.2.1 Scalar-field self force

The particle sources a scalar field Φ, which we assume is massless and minimally coupled.

This field obeys the Klein-Gordon equation on the background Schwarzschild spacetime,

∇µ∇µΦ = −4πT, (2.30)

where the scalar charge density is

T (xα) := q

∫︂ +∞

−∞
δ4
(︁
xα − xαp (τ)

)︁ dτ√︁
−g(x)

, (2.31)

with g being the determinant of the Schwarzschild metric.

In analogy with Eq. (1.10), the full (retarded) scalar field may be decomposed as

Φ = ΦR +ΦS , (2.32)

where ΦR and ΦS are the Detweiler-Whiting regular and singular fields respectively,

introduced in [109]. The regular field ΦR is a certain vacuum solution to the scalar field

equation, smooth everywhere, including at the particle’s location. The singular field ΦS

is a particular solution of Eq. (2.30), singular at the worldline. Interaction with its own

scalar field modifies the particle’s trajectory according to [164]

uν∇ν (µu
µ) = q∇µΦR. (2.33)
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Note that we have not included the gravitational self-force acting on the particle, nor

the effect of the scalar field’s backreaction on the background spacetime.

We refer to the quantity on the right-hand side of Eq. (2.33) as the scalar-field self-force,

Fαself := q∇αΦR ∝ q2. (2.34)

The singular field ΦS does not appear; the self-force arises due to the interaction between

the particle and its regular field only. Furthermore, the derivative on the right-hand side

is not generically orthogonal to the 4-velocity, uµ. The implications of this become clear

if one splits Eq. (2.33) into parts parallel and perpendicular to uα:

dµ

dτ
= −quµ∇µΦR, (2.35)

µuν∇νu
µ = q (gµν + uµuν)∇νΦ

R. (2.36)

From this we see that the component parallel to uα is responsible for a variation in the

particle’s rest mass. Equation (2.35) can be integrated to give

µ(τ) = µ0 − qΦR(τ), (2.37)

where µ0 is a constant of integration. It is expected that ΦR(−∞) = ΦR(∞), in which

case there is no net mass change overall. Equation (2.36), meanwhile, can be rewritten

as

uν∇νu
µ = ηqF

µ
⊥, (2.38)

where ηq := q2/(µM) ≪ 1, and the perpendicular components of the self-force are

defined by

ηqF
µ
⊥ :=

q

µ
(gµν + uµuν)∇νΦ

R. (2.39)

Fµ⊥ gives rise to the self-acceleration that alters the trajectory.

The purpose of this thesis is to use Eq. (2.33) to calculate the self-force that would

be felt by a scalar charge moving along a fixed hyperbolic geodesic in a Schwarzschild

background. Therefore, from now on it is to be understood that xαp (τ) refers specifically

to such a geodesic.

2.2.2 Mode-sum regularisation

The self-force will be calculated using the mode-sum regularisation procedure originally

introduced by Barack and Ori for the scalar-field self-force in Ref. [165], and extended

to the full gravitational self-force problem in Ref. [166]. As a first step to describe this
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method, we use Eq. (2.32) to recast Eq. (2.33) as the subtraction formula,

F self
α (τ) = q lim

x→xp(τ)

(︁
∇αΦ(x)−∇αΦ

S(x)
)︁

(2.40)

Note that, unlike ΦR, the fields Φ and ΦS are individually divergent at the wordline and

hence we must introduce this (well-defined) limit. The difficulty in a practical imple-

mentation of Eq. (2.40) is the need to take the limit of the difference of two divergent

quantities. The mode-sum method resolves this issue by decomposing in a basis of

spherical harmonics and performing the subtraction mode by finite mode.

More precisely, we rewrite Eq. (2.40) as

F self
α (τ) = lim

x→xp(τ)

[︂
F full
α (x)− F S

α (x)
]︂
, (2.41)

where the new fields are defined by

F full
α (x) := q∇αΦ(x), F S

α (x) := q∇αΦ
S(x). (2.42)

The fields F full
α and F S

α are divergent as x→ xp(τ), but their difference is a smooth (in

fact, analytic) function of x, even at the worldline. Working in Schwarzschild coordi-

nates, we can treat each component as a scalar function and decompose into spherical

harmonics defined on constant t, r surfaces in Schwarzschild coordinates:

F full/S
α (xµ) =

∑︂
ℓm

F
full/S
α,ℓm (t, r)Yℓm(θ, φ). (2.43)

The ℓ-mode contributions to the forces are defined by summing over m,

F
full/S
α,ℓ (x) :=

ℓ∑︂
m=−ℓ

F
full/S
α,ℓm (t, r)Yℓm(θ, φ), (2.44)

and they are finite, even at the worldline [165]. Equation (2.41) becomes

F self
α (τ) = lim

x→xp(τ)

∞∑︂
ℓ=0

[︂
F full
α,ℓ (x)− F S

α,ℓ(x)
]︂
. (2.45)

Since F full
α (x) − F S

α (x) is a smooth function for all x, this sum is exponentially and

uniformly convergent, even at x = xp(τ). This allows us to exchange the order of the

sum and limit, giving

F self
α (τ) =

∞∑︂
ℓ=0

[︂
F full±
α,ℓ (xp(τ))− F S±

α,ℓ (xp(τ))
]︂
, (2.46)

where the ± denotes whether the limit is taken from outside (r → rp(τ)
+) or inside

(r → rp(τ)
−) the orbit. Note that the difference F full±

α,ℓ (xp(τ)) − F S±
α,ℓ (xp(τ)) does not
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exhibit this directional ambiguity.

It can be shown that F S
α,ℓ has the large-ℓ behaviour, [165]

F S±
α,ℓ = LA±

α +Bα + Cα/L+O
(︁
L−2

)︁
, (2.47)

where L := ℓ + 1
2 and once again the positive (negative) sign is taken when the limit

is taken from outside (inside) the orbit. Note that, by smoothness, the mode sum in

Eq. (2.46) is expected to converge exponentially, and hence F full
α,ℓ and F S

α,ℓ must share

the same large-ℓ expansion (2.47). Thus we rewrite Eq. (2.46) in the form

F self
α (τ) =

∞∑︂
ℓ=0

[︂
F full±
α,ℓ (xp(τ))− LA±

α −Bα − Cα/L
]︂

−
∞∑︂
ℓ=0

[︂
F S±
α,ℓ (xp(τ))− LA±

α −Bα − Cα/L
]︂
, (2.48)

where we have been able to split into two individually convergent sums. To be precise,

the terms in each of the two series decay like 1/L2 at large L, and hence converge like

1/ℓ overall. We thus arrive at the following mode-sum expression for the self-force

F self
α (τ) =

∞∑︂
ℓ=0

[︂
F full±
α,ℓ (xp(τ))− LA±

α −Bα − Cα/L
]︂
−Dα, (2.49)

where

Dα :=
∞∑︂
l=0

[︂
Fα,lS±(xp(τ))− LAα± −Bα − Cα/L

]︂
. (2.50)

The ℓ-independent quantities A±
α , Bα, Cα and Dα are called the regularisation parame-

ters.

Analytical expressions for the scalar field regularisation parameters in Schwarzschild

were first derived in [167]. The non-vanishing components are:

A±
t = ± q2ṙp

(L2 + r2p)
, Bt −

q2Erpṙp

π(L2 + r2p)
3/2

(2E − K), (2.51)

A±
r = ∓ q2E

(1− 2M/rp)(L2 + r2p)
, Br =

q2(ṙ2p − 2E2)K + (ṙ2p + E2)E
πr2p(1− 2M/rp)(1 + L2/r2p)

3/2
, (2.52)

Bφ =
q2rpṙp(K − E)
πL(r2p + L2)1/2

, (2.53)

where K := El1
(︁
π/2; L2/(L2 + r2p)

)︁
(recalling El1 is the incomplete elliptic integral of

the first kind, defined in Eq. (2.24)), and E := El2
(︁
π/2; L2/(L2 + r2p)

)︁
, where

El2(ϕ, z) =

∫︂ ϕ

0

√︁
1− z sin2 θ dθ. (2.54)



34 Chapter 2. Mathematical preliminaries

is the incomplete elliptic integral of the second kind. Note that Cα = Dα = 0 for a

scalar field in the Schwarzschild spacetime.

The summand in Eq. (2.49) decays like O(ℓ−2), leaving a truncation error of O(ℓ−1
max)

when (in practical calculations) the mode-sum is truncated at ℓ = ℓmax. Fundamentally,

this decay rate indicates the smoothness of the field we are reconstructing; the terms

in the sum of Eq. (2.49) are not the ℓ-modes of q∇αΦ
R (which decay exponentially due

to the analyticity of the regular field), but rather the ℓ-modes of the regular field plus

a piece of the singular field which vanishes on the worldline. To understand why, note

that the form (2.47) is derived using a local expansion of ΦS in powers of the distance

ϵ from the worldline, with the displayed terms accounting only for the terms up to

and including O(ϵ0) in F S
α (x) [167]. After subtracting the A±

α , Bα and Cα terms in

the mode-sum (2.49), therefore, we leave behind pieces corresponding to the vanishing

terms ∝ ϵn>0 in the local expansion of F S
α . The ℓ-modes of the vanishing terms do not

contribute to the SF, giving zero when summed over ℓ, but they decay only polynomially

in ℓ and hence dominate the summand in Eq. (2.49) at large-ℓ. It has been shown that

the higher-order terms in Eq. (2.47) may be written in the convenient form [168]

F
[2]
α(︁

ℓ− 1
2

)︁ (︁
ℓ+ 3

2

)︁ + F
[4]
α(︁

ℓ− 3
2

)︁ (︁
ℓ− 1

2

)︁ (︁
ℓ+ 3

2

)︁ (︁
ℓ+ 5

2

)︁ + · · · , (2.55)

where the coefficients F
[2n]
α are known as higher-order regularisation parameters. The

form of the polynomial terms in the denominators of Eq. (2.55) ensures that each term

sums to zero individually in the sum over ℓ. By additionally subtracting the higher

order parameters in the mode-sum (2.49), one can thus accelerate the convergence of

the sum without altering its value [168]; if terms up to and including F
[2n]
α have been

subtracted, the terms in the mode sum decay like O
(︁
ℓ−(2n+2)

)︁
, and the truncation error

is O
(︂
ℓ
−(2n+1)
max

)︂
. Taking advantage of high-order local expansions for the Detweiler-

Whiting singular field, the higher order regularisation parameters F
[2n]
α have been derived

analytically for n = 1, 2 and 3 for the scalar-field self-force along generic geodesic orbits

in the Schwarzschild spacetime [169, 170].

2.2.3 Conservative and dissipative forces

When considering the physical effects of the self-force, it can be convenient to decompose

it into “conservative” (time-symmetric) and “dissipative” (time-antisymmetric) pieces,

F self
α = F cons

α + F diss
α (2.56)
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[64, 171], defined by

F cons
α =

1

2

[︂
F self(ret)
α + F self(adv)

α

]︂
, (2.57)

F diss
α =

1

2

[︂
F self(ret)
α − F self(adv)

α

]︂
. (2.58)

Here F
self(ret)
α is the usual self-force constructed from the retarded scalar field, and

F
self(adv)
α is the self-force constructed in the same way the scalar field obeying advanced

boundary conditions.

Helpfully, thanks to the symmmetries of Kerr geodesics, we do not have to actually

calculate the advanced scalar field in order to calculate the conservative and dissipative

pieces of the self-force. Treating the self-force as a function of the particle’s four velocity

at the evaluation point, it may be shown that [64]

F self(adv)
α

(︂
ṫp, ṙp, θ̇p, φ̇p

)︂
= ϵαF

self(ret)
α

(︂
ṫp,−ṙp,−θ̇p, φ̇p

)︂
, (2.59)

where ϵα = (−1, 1, 1,−1) in Boyer-Linqduist coordinates and there is no sum over α on

the right hand side. For a particle moving along a Kerr geodesic that is either equatorial

or inclined-circular, the orbital symmetries then allow us to rewrite Eq. (2.59) as a

relation between the retarded and advanced forces along the geodesic, [64, 172]

F self(adv)
α (τ) = ϵαF

self(ret)
α (−τ), (2.60)

where we assumed the periapsis is at τ = 0 for eccentric orbits. Note that all Schwarzschild

geodesics may be taken to be equatorial, so Eq. (2.60) holds for all Schwarzschild

geodesics, including our hyperbolic orbits. The use of the Kerr geodesic symmetries

in this context was first noted by Mino in Ref. [172], where he showed that what we now

call the dissipative force gives the correct time-averaged radiation-reaction force act-

ing on a particle orbiting a Kerr black hole. Barack and Sago were the first to propose

Eq. (2.60) as a practical method to compute the advanced, and hence conservative, force

in Ref. [173], using it for their calculation of the conservative gravitational self-force shift

to the ISCO around a Schwarzschild black hole.

The mode sums for the advanced and retarded self-force give mode sums for the conser-

vative and dissipative pieces of the force [171],

F cons
α =

∞∑︂
ℓ=0

[︂
F

full(cons)±
α,ℓ − LA±

α −Bα

]︂
, (2.61)

F diss
α =

∞∑︂
ℓ=0

F
full(diss)±
α,ℓ , (2.62)
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where, recall, L := ℓ+ 1
2 and

F
full(cons)±
α,ℓ =

1

2

[︂
F

full(ret)±
α,ℓ + F

full(adv)±
α,ℓ

]︂
, (2.63)

F
full(diss)±
α,ℓ =

1

2

[︂
F

full(ret)±
α,ℓ − F

full(adv)±
α,ℓ

]︂
. (2.64)

In particular, we note that the terms in the mode-sum for F cons
α require regularisation

(with the same parameters) and decay at the same rate as the total self-force, while

F diss
α does not require regularisation and the mode sum converges exponentially [171].

The convergence of the mode sum for the conservative piece may be accelerated by

subtracting higher-order regularisation parameters in the same way as for the total self-

force.

2.3 First-order self-force correction to the scatter angle

The primary observable of interest is the scatter angle δφ. It was shown in Ref. [149]

that the scatter angle admits a self-force expansion,

δφ = δφ(0) + ηqδφ
(1) +O(η2q ), (2.65)

where δφ(0) is the geodesic scatter angle given in Eq. (2.26), and

δφ(1) =

∫︂ χ∞

−χ∞

[︂
GE(χ)F⊥

t (χ)− GL(χ)F⊥
φ (χ)

]︂
τχdχ (2.66)

is the first-order self-force (1SF) correction to the scatter angle. In Eq. (2.66), τχ :=

dt/dχ is evaluated along the background geodesic and F⊥
α is the projected self-force (as

defined in Eq. (2.39)) that would be felt by a particle moving along the background

geodesic. The functions GE/L(χ) are expressed in terms of the orbital parameters e and

p of the background geodesic, and are the same for both the gravitational and scalar-field

self-force; explicit expressions may be found in Sec. IV A of Ref. [149].

The relations between orbital parameters derived in Chapter 2.1 are only valid for

geodesic orbits, so when expanding the self-force as in Eq. (2.65), it is important to

be clear which pair of orbital parameters are being taken to be fixed. Fixing different

choices of parameters yields different values of δφ(1). In Ref. [149], the parameters (v, b)

are taken to be fixed, and Eq. (2.66) is correct for this convention.

It is possible to consider the effects of the conservative and dissipative self-force sepa-

rately,

δφ(1) = δφ(1)
cons + δφ

(1)
diss, (2.67)
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where [149]

δφ(1)
cons =

∫︂ χ∞

0

[︂
Gcons
E (χ)F⊥cons

t (χ)− Gcons
L (χ)F⊥cons

φ (χ)
]︂
τχdχ, (2.68)

δφ
(1)
diss =

∫︂ χ∞

0

[︂
−αEE∞F

⊥diss
t (χ) + αLL∞F

⊥diss
φ (χ)

]︂
τχdχ, (2.69)

and explicit forms of the functions Gcons
E/L(χ) and constants αE/L may be found in Sec.

IV B of Ref. [149]. Notice that, using the symmetries F⊥cons
α (χ) = −F⊥cons

α (−χ) and

F⊥diss
α (χ) = F⊥diss

α (−χ) for α = t, φ, it was possible to express Eqs. (2.68) & (2.69) as

integrals along the outbound leg χ > 0 only. Notice also that Eq. (2.69) is expressed in

terms of E∞ and L∞, respectively the energy and angular momentum as τ → −∞; under

the action of the self-force, the energy and angular momentum cease to be constants of

the motion. It is easily shown (for example in Sec. III of Ref. [149]) that, including the

first order self-force, the energy and angular momentum evolve along the orbit according

to

E(χ) = E∞ − ηq

∫︂ χ

−χ∞

F⊥
t (χ′)τχdχ

′, L(χ) = L∞ + ηq

∫︂ χ

−χ∞

F⊥
φ (χ′)τχdχ

′. (2.70)

Equation (2.69) may thus be rewritten as [149]

δφ
(1)
diss =

1

2
(αEE∞Erad + αLL∞Lrad) , (2.71)

where

Erad := −
∫︂ +χ∞

−χ∞

F⊥diss
t τχdχ, Lrad :=

∫︂ +χ∞

−χ∞

F⊥diss
φ τχdχ (2.72)

are the total energy and angular momentum (per unit q2/M) dissipated in gravitational

waves respectively. Analogous results relating dissipative scatter angle effects to the

total radiated energy and angular momentum have previously been derived in other

perturbative approaches, notably PN [174] and PM [175].

The first numerical calculations of δφ(1) were carried out by Barack and Long in Ref. [149]

using their time-domain numerical platform to calculate the scalar-field self-force. Ex-

ample results, plotted as a function of b at fixed velocity v = 0.2, are displayed in

Fig. 2.2. Several key features are immediately visible. First, the dissipative piece of the

scatter angle correction is always found to be positive, while the conservative piece is

always negative. It was expected that δφ
(1)
diss should be positive, because the effect of

the dissipative self-force is to remove energy and angular momentum from the system,

driving the particle deeper into the potential of the central black hole for longer, and

hence increase the total deflection. The sign of δφ
(1)
cons was, however, not predicted on

physical grounds a priori. We note that the first-order gravitational SF correction to

the periastron advance for bound Schwarzschild geodesics was also found to be negative

in Ref. [176], although comparisons are complicated by the different parameterisations



38 Chapter 2. Mathematical preliminaries

Figure 2.2: Example 1SF scatter angle correction results from Ref. [149], displayed as
a function of b (lower axis) or rmin (upper axis) at fixed v = 0.2. Total, conservative and
dissipative angles are displayed separately. In the notation of this thesis, ψ = δφ(0),
δψ = ηqδφ

(1), qs = ηq and r0 = rmin. Inset: Magnified view of the PM regime
bv2 ≫ M , comparing the numerical results to the analytical 2PM total and 3PM
dissipative results. Image credit: [149]

used: the periastron advance correction was calculated at fixed (e, p), and the scatter

angle correction at fixed (v, b). Second, we note that although the (positive) dissipative

piece dominates over the (negative) conservative piece at small values of b, the dissipa-

tive decays more rapidly at large b and hence eventually the conservative piece becomes

dominant. A consequence of this is that the total δφ(1) changes sign at an intermediate

value of b. Finally, the total, conservative and dissipative scatter corrections all diverge

in the limit b→ bc, at a rate that was found to be [149]

δφ(1) ∼ 1

b− bc
. (2.73)

We will revisit this divergence in Chapter 5.

2.3.1 PM expansion of δφ(1)

As mentioned in Chapter 1.4, comparisons with post-Minkowskian results are an im-

portant motivation for the self-force scattering programme. It is helpful therefore to

introduce the PM expansion of δφ(1):

δφ(1) =

∞∑︂
k=2

δφ(1,k)(v)

(︃
GM

b

)︃k
, (2.74)
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Figure 2.3: Comparison between numerical dissipative self-force scatter angle results
and successive analytic PM approximations from Ref. [151]. The corrections are plotted
as a function of b (lower axis) or rmin (upper axis) at fixed velocity v = 0.5. The

numerical values for δφ
(1)
diss (blue dots) approach the 3PM prediction (blue dashed) as b

increases. Subtracting the 3PM approximation results in a residual which approaches
the analytic result for the 4PM term. Further subtracting this 4PM term results in a
residual which decays at the expected 5PM (∝ 1/b5) rate. In the notation of this thesis,

m2 =M , δχ = δφ(1) and δχdiss
k = δφ

(1,k)
diss (GM/b)k. Image credit: [151]

and analogous expansions for δφ
(1)
cons/diss. We have temporarily re-introduced factors of

G (previously set to unity) to aid power counting and enable comparisons with the PM

results. For the scalar-field self-force, the leading-order non-zero coefficients are found

to be

δφ(1,2)
cons = −π

4
, (2.75)

δφ
(1,3)
diss =

2E

3

(1 + v2)2

v3
, (2.76)

i.e. the effect of the dissipative self-force enters the scatter angle only at 3PM order,

explaining the more rapid decay observed for that piece in Fig. 2.2. The expression in

Eq. (2.75) was first derived in Ref. [150], and Eq. (2.76) was first derived in Ref. [149] by

substituting expressions for the PM-expanded self-force from [150] into (a PM expanded

form of) Eq. (2.69). Numerical values of δφ(1) at large impact parameter and fixed

v = 0.2 are compared to the 2PM (purely conservative) piece of δφ(1), and to the 3PM

piece of δφ
(1)
diss, in the inset of Fig. 2.2, showing increasing agreement with growing b.

Subsequently, expressions for δφ
(1,k)
cons/diss were derived up to and including 4PM order (i.e.

k = 4) in Ref. [151], making use of quantum amplitude techniques. These were compared

to numerical scalar-field self-force results at large impact parameters (again obtained us-

ing the time-domain platform of Ref. [149]), with good agreement found through 4PM

order [151] – see Fig. 2.3 for an illustration. The analytical result for δφ
(1,4)
cons originally
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obtained in [151] contained two undetermined constant parameters, which they cali-

brated against the numerical self-force data, demonstrating the capacity for numerical

self-force calculations to resolve ambiguities in analytical results. The coefficients have

more recently been determined through two independent methods: Matching of ampli-

tude calculations in effective-field theory and black hole perturbation theory [177]; and a

double PM/PN expansion of the self-force [178]. Expressions for all analytically known

PM coefficients δφ
(1,k)
cons/diss are given in Appendix B. These will be required when we

explore the use of self-force to calibrate PM results in the strong field in Chapter 5.

2.4 Frequency-domain solution for the scalar field with a

scattering source

In this section we solve the scalar field equation (2.30) with the source (2.31) corre-

sponding to a scalar charge moving along a fixed scatter geodesic. We begin by fully

decomposing the field and source into combined angular- and time-harmonic modes,

and derive the ordinary differential equation they satisfy. The inhomogeneous solution

obeying retarded boundary conditions is then constructed, and it is explained why, due

to issues of slow convergence, this solution is not suitable for our self-force calculation.

The method of extended homogeneous solutions is introduced to resolve this issue, but

it is noted that, for a scattering source, this method may only be used to reconstruct

the time-domain field in the region r ≤ rp(t).

2.4.1 Mode decomposition

As a first step towards the solution of the scalar field equation (2.30), the scalar field

and scalar charge density are decomposed into a basis of spherical harmonics Yℓm(θ, φ)

defined on surfaces of constant t and r around the central black hole,

Φ =
∑︂
ℓm

1

r
ψℓm(t, r)Yℓm(θ, φ), (2.77)

T =
∑︂
ℓm

Tℓm(t, r)Yℓm(θ, φ). (2.78)

Equation (2.30) then becomes

−∂
2ψℓm
∂t2

+
∂2ψℓm
∂r2∗

− Vℓ(r)ψℓm = −4πrf(r)Tℓm, (2.79)
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where r∗ := r + 2M log
(︁
r

2M − 1
)︁
is the Regge-Wheeler tortoise coordinate, and the

potential Vℓ(r) is defined by

Vℓ(r) :=

(︃
ℓ(ℓ+ 1)

r2
+

2M

r3

)︃
f(r). (2.80)

As a final step, we make a Fourier decomposition

ψℓm(t, r) =

∫︂ +∞

−∞
dω e−iωtψℓmω(r), (2.81)

Tℓm(t, r) =

∫︂ +∞

−∞
dω e−iωtTℓmω(r), (2.82)

to get the frequency-domain radial equation

d2ψℓmω
dr2∗

− (Vl(r)− ω2)ψℓmω = −4πrf(r)Tℓmω. (2.83)

The source modes Tℓmω are obtained as follows. First, integrating in Eq. (2.31), we

obtain

T (xα) =
q

r2pu
t
δ(r − rp(t))δ(φ− φp(t))δ(θ − π/2). (2.84)

The spherical harmonics take the form Yℓm(θ, φ) = cℓme
imφPℓm(cos θ), where cℓm are

certain real constants and Pℓm are the associated Legendre polynomials. Using the

orthogonality relations we have

Tℓm(t, r) =

∫︂
d2Ω Y ∗

ℓm(θ, φ)T (t, r, θ, φ), (2.85)

where ∗ denotes complex conjugation, and substituting for T from Eq. (2.84), we obtain

Tℓm(t, r) = dℓme
−imφp(t) q

r2pu
t
δ(r − rp(t)), (2.86)

where dℓm := cℓmPℓm(0) is a constant. A Fourier transform now yields

Tℓmω =
1

2π

∫︂ +∞

−∞
dt dℓme

−imφp(t) q

r2pu
t
δ(r − rp(t))e

iωt. (2.87)

Switching integration variable to rp and using the orbital symmetries tp(−χ) = −tp(χ)
and φp(−χ) = −φp(χ), gives

Tℓmω(r) =
qdℓm
π

∫︂ +∞

rmin

drp
|ṙp|

δ(r − rp)

r2p
cos (ωtp(rp)−mφp(rp)) (2.88)

=
qdℓm

πr2|ṙp(r)|
cos (ωtp(r)−mφp(r))Θ(r − rmin). (2.89)
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Finally, we note that conjugation symmetry relates some modes to others. Since Φ is a

real scalar field, we have that Φ∗ = Φ and hence, using Eq. (2.77),

Φ =
∑︂
ℓm

1

r
ψ∗
ℓmY

∗
ℓm. (2.90)

Recalling the identity

Y ∗
ℓm(θ, φ) = (−1)mYℓ,−m(θ, φ), (2.91)

we may rewrite Φ as

Φ =
∑︂
ℓm

1

r
(−1)mψ∗

ℓmYℓ,−m, (2.92)

and hence obtain

ψℓm(t, r) = (−1)mψ∗
ℓ,−m(t, r). (2.93)

This means we only need to calculate modes with m ≥ 0. Furthermore, when ℓ +m is

odd, dℓm = 0 and hence the source Tℓm vanishes. From this we conclude that the modes

of the retarded field with odd ℓ+m are identically zero, everywhere. Thus, for a given

ℓ-mode we only need to calculate those modes with m ≥ 0 and ℓ+m even, roughly one

quarter as many as naively expected. The θ-derivative of the scalar field also vanishes

on the equator by symmetry.

2.4.2 Homogeneous solutions

We first consider the solutions to the homogeneous form of Eq. (2.83),

d2ψℓmω
dr2∗

− (Vl(r)− ω2)ψℓmω = 0. (2.94)

From Eq. (2.80), we see that Vℓ(r) → 0 as r∗ → ±∞, i.e. at the horizon and infinity. In

those limits, the radial equation reduces to a harmonic oscillator,

d2ψℓmω
dr2∗

+ ω2ψℓmω ≈ 0, (2.95)

whose solution is given by a superposition of sinusoidal modes eiωr∗ and e−iωr∗ .

The physical, inhomogeneous, scalar field sourced by the particle should obey retarded

boundary conditions with purely ingoing radiation at the horizon, and asymptotically

outgoing radiation at infinity. In the frequency domain, using the Fourier conventions
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of Eq. (2.81), this requirement translates to

ψℓmω ∼ eiωr∗ as r∗ → +∞, (2.96)

ψℓmω ∼ e−iωr∗ as r∗ → −∞. (2.97)

It is therefore convenient to define the basis of homogeneous solutions {ψ−
ℓω, ψ

+
ℓω}, which

for ω ̸= 0 are defined to be the solutions to the homogeneous equation (2.94) obeying

the boundary conditions

ψ±
ℓω ∼ e±iωr∗ as r∗ → ±∞. (2.98)

We note that neither these boundary conditions nor the homogeneous equation (2.94)

depend on the mode numberm, so that the homogeneous solutions ψ±
ℓω(r) can be labelled

only by ℓ and ω.

These homogeneous solutions may be expanded as a series in the appropriate wave zone.

For example, as r → ∞, we have

ψ+
ℓω(r) = eiωr∗

kout∑︂
k=0

c∞k

(︃
2M

r

)︃k
+O

(︃
2M

r

)︃kout+1

, (2.99)

where the coefficients c∞k>0 depend on ℓ and ω, and are determined in terms of c∞0 using

a recurrence relation described in Appendix C. We adopt an overall normalisation such

that c∞0 = 1. Likewise, in the near-horizon wave zone, r → 2M , we have an expansion

ψ−
ℓω(r) = e−iωr∗

kin∑︂
k=0

cehk

(︂ r

2M
− 1
)︂k

+O (r − 2M)kin+1 . (2.100)

The coefficients cehk>0 are determined from ceh0 using another recurrence relation, also

summarised in Appendix C. We choose a normalisation such that ceh0 = 1.

For ω = 0, Eq. (2.94) can be rewritten in the form

d

dρ

[︃
(1− ρ2)

dRℓ
dρ

]︃
+ ℓ(ℓ+ 1)Rℓ = 0, (2.101)

where Rℓ := ψℓ0/r and ρ = (r −M)/M . The general solution is

Rℓ(ρ) = aℓPℓ(ρ) + bℓQℓ(ρ), (2.102)

for arbitrary constants aℓ and bℓ. Here Pℓ(ρ) is the Legendre polynomial, which is regular

at all finite points but blows up as ρ→ ±∞ for ℓ > 0, and Qℓ(ρ) is the Legendre function

of the second kind, which decays at infinity but is singular at ρ = 1 (r = 2M). Thus for
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ω = 0 we take our basis of homogeneous solutions to be

ψ−
ℓ0(r) := rPℓ

(︃
r −M

M

)︃
, (2.103)

ψ+
ℓ0(r) := rQℓ

(︃
r −M

M

)︃
. (2.104)

The large-r behavior of these solutions, needed for later discussion, is

ψ−
ℓ0(r) ∼ rℓ+1, ψ+

ℓ0(r) ∼ r−ℓ. (2.105)

2.4.3 The inhomogeneous solution

Solutions to the inhomogeneous frequency-domain equation (2.83) can be found using

variation of parameters. One such solution is given by

ψℓmω(r) = ψ+
ℓω(r)

∫︂ r

rmin

ψ−
ℓω(r

′)Sℓmω(r
′)

Wℓω

dr′

f(r′)
+ ψ−

ℓω(r)

∫︂ +∞

r

ψ+
ℓω(r

′)Sℓmω(r
′)

Wℓω

dr′

f(r′)
,

(2.106)

where

Sℓmω := −4πrf(r)Tℓmω (2.107)

is the source on the right-hand side of Eq. (2.83), and Wℓω := ψ−
ℓω
dψ+

ℓω
dr∗

− ψ+
ℓω
dψ−

ℓω
dr∗

is the

Wronskian of the homogeneous solutions, which depends only on ℓ and ω, and not on r.

For convenience we give names to the integrals in Eq. (2.106):

c+ℓmω(r) :=

∫︂ r

rmin

ψ−
ℓω(r

′)Sℓmω(r
′)

Wℓω

dr′

f(r′)
, (2.108)

c−ℓmω(r) :=

∫︂ +∞

r

ψ+
ℓω(r

′)Sℓmω(r
′)

Wℓω

dr′

f(r′)
. (2.109)

We will find that Eq. (2.106) gives the correct retarded solution to Eq. (2.83), except

for the special case ℓ = 0 = ω discussed below. We show this for the non-static ω ̸= 0

modes first, with the first task being to show that the integral defining c−ℓmω converges.

Substituting Tℓmω from Eq. (2.89), and recalling the expansions (2.27)-(2.29) and (2.98),

the integrand of c−ℓmω takes the schematic form

J−
ℓmω(r) ∼ eiω(1+1/v)rriω(1+B)−1 + eiω(1−1/v)rriω(1−B)−1 (2.110)

as r → ∞, where B is one of the constants appearing in expansion (2.27). The integral

defining c−ℓmω thus converges like sinusoidal oscillations/r at large radius. As we will see

later, this slow oscillatory convergence is numerically challenging.
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Next we check the boundary conditions. Since the source is supported only on r ≥ rmin,

the integral c+lmω(r) vanishes for r ≤ rmin. Thus, for 2M < r < rmin we have

ψℓmω(r) = C−
ℓmωψ

−
ℓω(r), (2.111)

where we defined the normalisation integral

C−
ℓmω :=

∫︂ +∞

rmin

ψ+
ℓω(r

′)Sℓmω(r
′)

Wℓωf(r′)
dr′. (2.112)

Hence, as r −→ 2M ,

ψℓmω(r) ∼ C−
ℓmωe

−iωr∗ , (2.113)

as required.

Meanwhile, as r −→ ∞,

ψ−
lw(r) ∼ aℓω e

iωr∗ + bℓω e
−iωr∗ , (2.114)

for some constants aℓω and bℓω, and in particular it is bounded. Since c−ℓmω(r) = O
(︁
r−1
)︁

as r → ∞, we have that

lim
r→∞

c−ℓmω(r)ψ
−
ℓmω(r) = 0. (2.115)

Furthermore, as r → ∞, ψ+
ℓω(r) ∼ eiωr∗ and thus

ψℓmω(r) ∼ C+
ℓmωe

iωr∗ , (2.116)

where

C+
ℓmω :=

∫︂ +∞

rmin

ψ−
ℓω(r

′)Sℓmω(r
′)

Wℓωf(r′)
dr′. (2.117)

This integral converges by a similar argument to that used for the convergence of c−ℓmω(r).

Thus we have shown that the solution (2.106) is the retarded inhomogeneous solution

for the non-static modes.

The situation is more subtle for the static modes ω = 0. As before we must first check

that the integral defining c−ℓmω is convergent and well-defined. The integrand of c−ℓmω(r)

now takes the form

Jℓm(r) =
ψ+
ℓ0(r) cos(mφp(r))

r|ṙp(r)|
, (2.118)

where we have neglected overall numerical factors. Using Eq. (2.105), we find that the

integrand goes like r−(ℓ+1) as r → ∞, and does not oscillate. That is because φp(r)
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tends to a finite limit, and ψ+
ℓ0 is no longer asymptotically oscillatory. This means our

integral converges for ℓ > 0, but not for ℓ = 0. The form of Eq. (2.106) will require

modification for ℓ = 0, and we will give further consideration to the large-r behaviour of

the static ℓ = 0 solution below. For now, we return to the task of checking the boundary

conditions for ℓ > 0 and ω = 0.

When considering bound particle motion, the appropriate boundary condition for the

static field is for it to be regular on the horizon, r = 2M , and decaying as r → ∞.

However, we find that these conditions cannot be imposed when the particle moves

along a hyperbolic orbit, and instead we impose a condition of “greatest regularity”,

described below.

The horizon boundary condition is easiest to investigate: because the source is supported

only on r ≥ rmin, the field is given by

ψℓm0(r) = rC−
ℓm0Pℓ

(︃
r −M

M

)︃
(2.119)

for 2M < r ≤ rmin, where C
−
ℓm0 is as defined in Eq, (2.112) and we have substituted for

ψ−
ℓ0 from Eq. (2.103). The solution in Eq. (2.106) is therefore regular at the horizon.

The large-r behaviour is more subtle, because the factors c+ℓm0(r) and ψ−
ℓ0(r) grow as

r → ∞, while c−ℓm0(r) and ψ+
ℓ0(r) decay. This means that each term in Eq. (2.106)

consists of a decaying factor and a growing factor. A careful analysis using Eq. (2.105)

gives that, for ℓ > 0,

c±ℓm0(r)ψ
±
ℓm0(r) ∼ r as r → ∞, (2.120)

so that the solution in Eq. (2.106) diverges at infinity unless there is cancellation between

the two terms. A more detailed calculation confirms that total cancellation does not

occur, and hence ψℓm0 ∼ r. Indeed, considering the dominant terms of Eq. (2.83) at

large r,

d2ψℓm0

dr2
− ℓ(ℓ+ 1)

r2
ψℓm0 =

S1
r

(2.121)

(where S1 is a certain constant), we have the particular solution

ψℓm0(r) = − S1r

ℓ(ℓ+ 1)
. (2.122)

This is genuine behaviour; there is no homogeneous solution with matching large-r

behaviour that we can subtract off to remove the divergence. For ℓ = 0, a similar

argument suggests that the behaviour is

ψ000 ∼ r log r (2.123)
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at large r, which is what one would obtain by truncating the logarithmically divergent

integral c−000(r) at a finite upper integration limit in the variation of parameters formula,

Eq. (2.106).

In terms of the scalar field Φ itself [recall Eq. (2.77)], this behaviour translates to Φℓ>0 ∼
const and Φℓ=0 ∼ log r as r → ∞. Perhaps surprisingly, the static contributions to the

scalar field do not fall off at infinity. Nonetheless Eq. (2.106) gives the most regular

solution for ω = 0 and ℓ > 0, in the sense that any other solution would either be

irregular on the horizon or diverge as r → ∞. For ω = 0 = ℓ, Eq. (2.106) does not give

the correct retarded solution (the integral in the second line is indefinite), but the true

solution must diverge like ψ000(r) ∼ r log r as r → ∞. This does not, however, mean

that the time-domain solution diverges at infinity, and there is no sign of such behaviour

in our numerical results.

2.4.4 Method of extended homogeneous solutions

The primary inputs for the mode-sum formula are the ℓm-modes of the time-domain

scalar field and its derivatives at the particle. A naive attempt to obtain these from the

frequency-domain field in Eq. (2.106) faces the problem of the Gibbs phenomenon, first

discussed in this context in Ref. [152]. The presence of a Dirac delta function source,

supported on the worldline, on the right hand side of Eq. (2.79) causes the derivatives

ψℓm,t and ψℓm,r to be discontinuous at the worldline. A standard result from Fourier

analysis says that the Fourier series/integrals for these derivatives will then converge to

the correct value everywhere off the worldline, but will do so slowly [with terms decaying

like O
(︁
ω−1

)︁
] and non-uniformly in the vicinity of the particle. On the worldline, the

series would be expected to converge to the 2-sided average of the derivative.

The solution to this problem was developed in Ref. [152] for bound particle motion.

It involves expressing the field on either side of the worldline [i.e. in r ≤ rp(t) and

r ≥ rp(t)] in terms of analytic, homogeneous, frequency modes that have exponentially

convergent Fourier series. Here we present the argument used in [152], adapted to the

unbound problem, to reconstruct the field in the interior region r ≤ rp(t).

First one defines the internal extended homogeneous solution,

ψ̃
−
ℓmω(r) := C−

ℓmωψ
−
ℓω(r), (2.124)

where the normalisation integral C−
ℓmω is as defined in Eq. (2.112). With this choice,

the internal EHS is equal to the inhomogeneous field ψℓmω when r ≤ rmin. Denoting the

corresponding time-domain EHS field by ψ̃
−
ℓm(t, r), we thus have

ψℓm(t, r) = ψ̃
−
ℓm(t, r) for r ≤ rmin. (2.125)



48 Chapter 2. Mathematical preliminaries

It was demonstrated in Ref. [152] that C−
ℓmω is expected to decay exponentially with

ω, such that ψ̃
−
ℓm(t, r) is analytic in both t and r. The inhomogeneous field ψℓm(t, r) is

likewise expected to be analytic everywhere in r < rp(t), and agrees with ψ̃
−
ℓm(t, r) in

the open set r < rmin. We must therefore have an equality throughout the domain,

ψℓm(t, r) = ψ̃
−
ℓm(t, r) for r < rp(t). (2.126)

Crucial to this argument is the existence of the vacuum region r ≤ rmin where the inho-

mogeneous field coincides with a homogeneous solution. In the case of bound motion,

there is also a vacuum region r ≥ rmax that allows the definition of an external EHS

field that may be used to reconstruct the field in the region r ≥ rp(t). Such an external

vacuum region does not exist for a hyperbolic orbit, and the EHS method is constrained

to calculating only the time-domain scalar field in the region r ≤ rp(t).

The mode-sum regularisation approach outlined in Chapter 2.2.2 is usually implemented

using a two-side average of the limiting values corresponding to x→ x±p , which simplifies

the form of the regularisation parameters. However, this is not strictly necessary, and

it is possible to carry out the regularisation procedure “one-sided”, making use of only

the value of the scalar field derivatives taken from the direction r < rp(t). This is the

approach we will be taking in this thesis.

We note here the small-frequency behaviour of ψ̃
−
ℓmω(r), which will play a role later. For

r ≪ ω−1, the homogeneous solution ψ−
ℓω(r) behaves like the polynomially growing static

solution in Eq. (2.105), growing approximately proportionally to rℓ+1. We thus have

that

ψ̃
−
ℓmω(rp) ∼

(︃
rp
rmin

)︃ℓ+1

ψℓmω(rmin) (2.127)

for rmin ≤ rp ≪ ω−1, where we made use of the fact that the internal EHS and the

physical, inhomogeneous field coincide in r ≤ rmin. At small frequency the internal

EHS field at the particle thus grows as a power law in rp, and exponentially in ℓ. It

was noted in Ref. [113] that this behaviour results in significant cancellation between

low-frequency modes when the EHS method is used to reconstruct the time-domain field

away from the orbital turning points, with subsequent loss of precision. This problem

and its implications will be further explored in Chapter 4.6.
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Chapter 3

Frequency modes of the extended

homogeneous solutions

In this chapter we will explore the numerical challenges faced when evaluating the ex-

tended homogeneous solution ψ̃
−
ℓmω(r) for a scattering source, and develop the theoret-

ical tools and numerical methods to overcome them. The success of these tools is then

demonstrated with example numerical results.

3.1 Normalisation integrals

When calculating the scalar-field self-force using the EHS method and one-sided regular-

isation, a key numerical task is to evaluate the normalisation integrals C−
ℓmω defined in

Eq. (2.112). As discussed in Section 2.4.3, this integral displays marginal ∼ oscillations/r

convergence. In this section we will explore the consequences of truncating the normal-

isation integral at a finite radius, and develop two techniques to suppress the resulting

truncation error. The tail correction scheme will involve a series of analytical approxi-

mations to the neglected tail of the integral, while integration by parts will be used to

increase the decay rate of the original integrand.

3.1.1 Truncating the normalisation integral

In order to calculate the normalisation integral C−
ℓmω numerically, we wish to truncate it

at some finite radius rmax. Figure 3.1 displays some examples of C−
ℓmω spectra for the two

geodesics with (E, rmin) = (1.1, 4M) and (1.1, 10M). These integrals were calculated

numerically using the numerical methods discussed in Sec. 3.2, truncating the integral at

rmax = 2000M . The modes (ℓ,m) = (2, 2) and (10, 6) are displayed for both geodesics.

We note that as we move away from the peak, high-frequency noise appears in the
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Figure 3.1: Example spectra of |C−
ℓmω|, shifted by the peak frequency and normalised

to unity at the peak. The modes (ℓ,m) = (2, 2) and (10, 6) are illustrated, for the
geodesics with fixed E = 1.1 and rmin ∈ {4M, 10M}. The peak frequencies were
Mωpeak ≈ 0.29, 0.96, 0.095 and 0.45 for modes (a)–(d), respectively. The numerical
integrals were truncated at rmax = 2000M . High-frequency noise is visible in the tails
of the spectrum as a result of this truncation.

spectra and the numerical curves break away from the expected decaying trend. For a

given energy and fixed rmax, the problem is more acute for geodesics with larger rmin

and at larger ℓ.

The high-frequency noise is not a numerical artefact, and can be traced to the trunca-

tion of C−
ℓmω at finite radius. Because of the marginal oscillations/r-type convergence,

suppressing this issue by increasing rmax is impractical. Instead, we introduce two an-

alytical mitigation techniques, with negligible increase in computational cost. The first

technique is based on an analytical approximation of the large-r truncated tail of the

C−
ℓmω integral, and the second uses integration by parts to improve the convergence of

the integral. In the rest of this section we discuss each technique in turn, and in Sec. 3.3

we will illustrate their effectiveness in enabling a fast and efficient evaluation of C−
ℓmω.

3.1.2 Tail correction scheme

We write C−
ℓmω, defined in Eq. (2.112), in the form

C−
ℓmω = −4qdℓm

Wℓω

∫︂ ∞

rmin

Jℓmω(r)dr, (3.1)
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where

Jℓmω(r) =
1

2

∑︂
σ=±1

ψ+
ℓω(r) exp [iσ (ωtp(r)−mφp(r))]

r |ṙp(r)|
. (3.2)

We seek to obtain a large-r asymptotic expansion for Jℓmω. Starting with the homoge-

neous solution factor, we recall from Eq. (2.99) its asymptotic form,

ψ+
ℓω(x) = eiω̃x∗

∞∑︂
k=0

c∞k x
−k, (3.3)

where for convenience we have introduced here x := r/(2M), as well as x∗ := r∗/(2M)

and ω̃ := 2Mω. Using the identity

x∗ = x+ log x−
∞∑︂
n=1

1

n
x−n, (3.4)

this becomes

ψ+
ℓω(x) = eiω̃xxiω̃

(︄
1 +

∞∑︂
n=1

ĉ∞n x
−n

)︄
, (3.5)

where the new expansion coefficients, ĉ∞n , can be written in terms of the old ones, c∞n .

In Appendix D we give the explicit relations for 1 ≤ n ≤ 5, which will suffice for our

purpose.

We turn next to the phase factor in (3.2). Using Eqs. (2.27) and (2.28), we obtain

ωtp −mφp = ω̃
(︂x
v
+B log x

)︂
+
∑︂
n≥0

∆nx
−n, (3.6)

where

∆0 := ωt0 −mφ∞ and ∆n>0 := ω̃Cn −mDn, (3.7)

with B, t0, φ∞, Cn and Dn being the coefficients appearing in the expansions (2.27) and

(2.28). We further recall the large-r expansion of 1/|ṙp| from Eq. (2.29),

1

|ṙp|
=

∞∑︂
n=0

Unx
−n. (3.8)

The complex exponential function is then expanded as

exp

⎡⎣iσ∑︂
n≥0

∆nx
−n

⎤⎦ = ei∆0

⎡⎣1 +∑︂
n≥1

Hnσx
−n

⎤⎦ , (3.9)

where expressions for Hnσ are given in terms of ∆n for n ≤ 5 in Appendix D.
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Substituting the above expansions, Eq. (3.2) takes the form

Jℓmω(x) =
1

2

∑︂
σ=±1

∑︂
n≥0

λnσe
iΩ̃σxxanσ−1, (3.10)

as x→ ∞, where

Ω̃σ := (1 + σ/v)ω̃, (3.11)

anσ := i(1 + σB)ω̃ − n, (3.12)

and

λnσ :=
1

2M
eiσ∆0

∑︂
q+r+s=n

Uq ĉ
∞
r Hsσ, (3.13)

where the sum is taken over non-negative integers q, r, s, and we define H0σ = 1 = ĉ∞0 .

A key observation is that the expression in (3.10) can be integrated analytically, term

by term: ∫︂ +∞

xmax

Jℓmω(x
′)dx′

=
1

2

∑︂
σ=±1

∑︂
n≥0

λnσ

(︂
−iΩ̃σ

)︂−anσ

Γ[anσ, zσ], (3.14)

where xmax = rmax/2M , anσ depends on σ and n through Eq. (3.12), zσ := −iΩ̃σxmax,

and Γ[a, z] is the upper incomplete gamma function, calculated in practice using the

continued fraction representation,

Γ[a, z] =
zae−a

z +
1− a

1 +
1

z +
2− a

1 +
2

z +
.. .

. (3.15)

As xmax → ∞, the n-th term of the series in Eq. (3.14) has the asymptotic behaviour

|Γ[anσ, zσ]| ∼
1

xn+1
max

. (3.16)

The tail expression (3.14) may be added to a numerical integral that has been truncated

at finite radius rmax, to obtain a more accurate estimate of C−
ℓmω. We define a tail

correction scheme of order N as one obtained by truncating Eq. (3.14) at finite order

n = N − 1, and using this expression as an approximation to the tail of the integral
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C−
ℓmω. In this scheme, terms up to and including r−N are included in the expansion

of the integrand, and the error in the tail estimate is O
(︂
r
−(N+1)
max

)︂
, where rmax is the

radius at which the numerical portion of the integral is truncated. This error estimate

is obtained by applying Eq. (3.16) to the first neglected term, n = N , of Eq. (3.14). For

a correction scheme of order N , one requires the coefficients λnσ up to and including

n = N − 1. We have obtained these coefficients up to n = 5, sufficient to implement the

tail correction scheme at orders up to N = 6.

3.1.3 Integration by parts

The key to the integration by parts (IBP) approach is to factorise the integrand Jℓmω

in Eq. (3.1) into (a) a sinusoidal factor that may be integrated repeatedly, and (b) a

decaying factor that may be practically differentiated without recourse to numerical

differentiation, and which decays more rapidly each time it is differentiated. In this

section, we will demonstrate the existence of such a factorisation, and thus show how

IBP may be used to increase the rate of convergence of the integrals C−
ℓmω.

First, however, we make a remark about the behaviour of the integrand Jlmω at the lower

boundary, r = rmin. As can be seen from Eq. (3.2), there is a factor of |ṙp| ∝ (r−rmin)
1/2

present in the denominator, which results in an integrable singularity. Although this

does not prevent the integral converging, it is numerically problematic, and confounds

an attempt at integration by parts, which may introduce a stronger, non-integrable

singularity.

To handle this issue, we select some radius rcut > rmin, and use the relativistic anomaly

χ as the integration variable in the region rmin ≤ r ≤ rcut. The use of χ as integration

variable produces an integrand which is regular at rmin, but which suffers from increas-

ingly rapid, large amplitude oscillations as χ → χ∞. It is therefore more practical to

use r as the integration variable for the r > rcut leg of the integral. A similar approach

was adopted in Ref. [158]. The practical details of the integration, including the choice

of rcut, will be discussed in Section 3.2.

We thus wish to apply IBP to the integral

C
(r)−
ℓmω :=

∫︂ ∞

rcut

Jℓmω(r
′)dr, (3.17)

where the integrand Jℓmω, recall, is given in Eq. (3.2). To obtain the sinusoidal factor

we desire, we consider the phases of the oscillatory factors in the integrand, and remove

the parts that grow linearly with r at large radii. Define

∆(r) := ωtp(r)−mφp(r)−
ωr

v
, (3.18)
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and note that Eq. (3.6) implies

∆(r) = ω̃B log (x) +
∑︂
n≥0

∆nx
−n (3.19)

as r → ∞, where the coefficients ∆n are the same as those defined in Sec. 3.1.2 for the

correction scheme. Equation (3.19) then implies that

d

dr
∆(r) = O

(︁
r−1
)︁

(3.20)

as r → ∞. We rewrite Eq. (3.18) as

∆(r) = ωt̂p(r)−mφp(r), (3.21)

introducing the new time coordinate

t̂p(r) := tp(r)− r/v, (3.22)

which diverges logarithmically as r → ∞. t̂p can be calculated directly by integrating

dt̂p
dχ

=
M

(1 + e cosχ)2

[︄
− pe sinχ

v
+

p2

p− 2− 2e cosχ

√︄
(p− 2)2 − 4e2

p− 6− 2e cosχ

]︄
, (3.23)

obtained using Eqs. (2.19) and (2.18). We also introduce the new field

Pℓω(r) := e−iwrψ+
ℓω(r), (3.24)

which, using (2.94), satisfies

d2Pℓω
dr2∗

+2iωf(r)
dPℓω
dr∗

+

[︃
−Vl + ω2 − ω2f(r)2 +

2iMω

r2
f(r)

]︃
Pℓω(r) = 0. (3.25)

The large-r behaviour of Pℓω is easily deduced from that of ψ+
ℓω given in Eq. (2.99):

Pℓω = exp
[︂
2iMω log

(︂ r

2M
− 1
)︂]︂ ∞∑︂

k=0

c∞k

(︃
2M

r

)︃k
(3.26)

as r → ∞. Note Pℓω oscillates with only logarithmic phase at infinity.

With these definitions of ∆(r) and Pℓω(r), we obtain

C
(r)−
ℓmω =

1

2

∑︂
σ=±1

∫︂ +∞

rcut

eiΩσrKσ
ℓmω(r)dr, (3.27)

where

Ωσ := (1 + σ/v)ω (3.28)
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is related to Eq. (3.11) by Ωσ = Ω̃σ/2M , and

Kσ
ℓmω(r) :=

Pℓω(r)e
iσ∆(r)

r|ṙp(r)|
. (3.29)

We note two properties of the function Kσ
ℓmω. First, we have closed form expressions for

ṙp(r) using Eq. (2.3), and also

d

dr
∆(r) =

ωE

f(r)ṙp(r)
− mL

r2ṙp(r)
− ω

v
, (3.30)

both of which can be differentiated in closed analytical form any number of times. We can

also determine Pℓω and dPℓω/dr numerically, and then recursively determine any number

of derivatives using the field equation (3.25). Thus we may practically differentiateKσ
ℓmω

any given number of times using repeated applications of the product rule.

Second, each derivative of Kσ
ℓmω decays one order more rapidly in r than the previous

derivative:

K
σ(N)
ℓmω = O

(︃
1

rN+1

)︃
(3.31)

as r → ∞, where we introduced the derivative notation K
σ(N)
ℓmω := dNKσ

ℓmω/dr
N . To

show this, it suffices to show that each factor in Eq. (3.29) decays one order more rapidly

each time it is differentiated. This is easily confirmed using the closed-form expressions

for the derivatives of eiσ∆ and of 1/(r|rṗ|). The result for the Pℓω factor follows from

Eq. (3.26). Crucial to this result was the fact that the two oscillatory factors eiσ∆ and

Pℓω oscillate with only logarithmic phase as r → ∞ and hence have decaying derivatives.

Equation (3.27) thus provides the desired factorisation of the integrand. Integrating by

parts N + 1 times gives

C
(r)−
ℓmω =

1

2

∑︂
σ=±1

{︄
N∑︂
n=0

[︄(︃
i

Ωσ

)︃n+1

eiΩσrcutK
σ(n)
ℓmω (rcut)

]︄

+

(︃
i

Ωσ

)︃N+1 ∫︂ +∞

rcut

eiΩσrK
σ(N+1)
ℓmω (r)dr

}︄
. (3.32)

We can practically apply integration by parts any number of times, and hence achieve any

polynomial rate of decay in the integrand. Using Eq. (3.31), we see that the integrand

in Eq. (3.32) decays like r−(N+2) as r → ∞. The limiting factor of the IBP method is

the need to derive expressions for the necessary derivatives of Kσ
ℓmω in advance, which

becomes increasingly complicated at high orders. In practice we have only derived the

expressions for derivatives up to and including K
σ(4)
ℓmω , allowing for four iterations of IBP

and a truncation error of O(r−5
max).
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It is possible to derive a tail correction scheme, analogous to Eq. (3.14), to approximate

the tail of the integral in Eq. (3.32). Indeed, comparing the form of the integrand in

Eq. (3.27) to the expansion in Eq. (3.10), we can read off the series expansion for Kσ
ℓmω

at large r:

Kσ
ℓmω =

∑︂
n≥0

λnσx
anσ−1, (3.33)

where x = r/(2M) as usual. Differentiating this term by term, we have(︃
i

Ωσ

)︃p
K
σ(p)
ℓmω =

∑︂
n≥0

λnpσx
an+p,σ−1, (3.34)

where the new coefficients λnpσ are given by

λnpσ =

(︃
i

Ω̃σ

)︃p
λnσ

p−1∏︂
q=0

[an+q,σ − 1] . (3.35)

The tail of the IBP integral may then be approximated using(︃
i

Ωσ

)︃p ∫︂ +∞

xmax

dx eiΩσrK
σ(p)
ℓmω ≈ 1

2

nmax∑︂
n=0

∫︂ +∞

xmax

dx λnpσe
iΩ̃σxxan+p,σ−1

=
1

2

nmax∑︂
n=0

λnpσ

(︂
−iΩ̃σ

)︂−an+p,σ

Γ[an+p,σ, zσ], (3.36)

where anσ is as defined in Eq. (3.12) and again zσ = −iΩ̃σxmax.

3.2 Numerical method

In this section we present the details of our numerical approach, implemented in C.

We start with the numerical calculation of the homogeneous solutions ψ±
ℓω, and then

describe the quadrature routines used to calculate the normalisation integrals C−
ℓmω,

and the details of our application of the tail correction and IBP methods.

3.2.1 Homogeneous solutions

Boundary conditions for the homogeneous solution ψ−
ℓω and its radial derivative are

provided by the series in Eq. (2.100). The coefficients cehk>0 are obtained by recursively

using the relation in Appendix C, with initial conditions cehk<0 = 0 and ceh0 = 1. Successive

terms in the series are calculated and added, stopping when the relative contribution

of the last term falls below some threshold, usually taken to be 10−16. The boundary

conditions for ψ−
ℓω are specified at radius rin∗ = −60M . This value is limited by machine
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precision when inverting the relation r∗(r) to get r(r∗); for r
in
∗ < −60M , r begins to

become indistinguishable from 2M at double precision. Despite this, we find that this

choice of rin∗ is adequate for rapid convergence of series (2.100).

The field ψ−
ℓω is then obtained at radii r∗ > rin∗ by evolving the initial data according

to the homogeneous equation (2.94). This is done numerically using the Runge-Kutta

Prince-Dormand (8,9) method rk8pd implemented in the GNU Scientific Library (GSL)

[179], with a requested relative error tolerance of 10−12.

The calculation of the field Pℓω = e−iωrψ+
ℓω is similar. Boundary conditions are obtained

from the series in Eq. (3.26) and its derivative, evaluated at some outer radius rout∗ .

The coefficients c∞k>0 are once again obtained recursively using the relation described

in Appendix C with initial conditions c∞k<0 = 0 and c∞0 = 1. The series is once again

truncated when the relative contribution of the last term falls below 10−16. As noted in

Ref. [154], however, the terms in series (3.26) can begin to increase again after initially

decreasing. This lack of convergence is unsurprising; the expansion in Eq. (3.26) is only

expected to converge in the wave zone ωr ≫ 1. For small frequency, the wave zone

may lie beyond rout∗ , in which case the series is not expected to converge. To resolve

this we adopt a similar approach to Ref. [154], increasing rout∗ in steps of 2000M until

convergence is achieved. For an initial value of rout∗ we usually choose a value slightly

larger than r∗(rmax), where rmax is the desired truncation radius for the normalisation

integral C−
ℓmω.

Once the boundary conditions for Pℓω have been calculated, the field at radii r∗ < rout∗

is obtained by integrating Eq. (3.25) inwards with respect to r∗. Once again we use the

rk8pd routine from the GSL, with a relative error tolerance of 10−12.

3.2.2 Normalisation integrals

As discussed briefly in Chapter 3.1.3, the radial integration is divided in two. In the

region rmin ≤ r < rcut we use χ as the integration variable,

C
(χ)−
ℓmω :=

∫︂ χ(rcut)

χ=0
Jℓmω(rp(χ))

drp
dχ

dχ. (3.37)

The section over rcut ≤ r ≤ ∞, which we earlier named C
(r)−
ℓmω , then uses r as the integra-

tion variable. C
(r)−
ℓmω is calculated from Eq. (3.32) with the desired level of IBP applied;

note that the integral is only to be truncated at finite radius rmax after integration by

parts has been applied.

We make use of two quadrature routines from the GSL [179]. The first is the QAG

general purpose adaptive integrator, which can be made to use Gauss-Kronrod rules

with varying numbers of points. In particular, we make extensive use of QAG with
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the 61pt Gauss-Kronrod rule, an approach we refer to as QAG61. The second method

we used is based on the QAWO routine, an adaptive integrator based around a 25pt

Clenshaw-Curtis rule tailored towards integrands with a sinusoidal weight function. Such

a routine is well suited for calculating C
(r)−
ℓmω because, as we have seen in Eqs. (3.27) and

(3.32), the integrand can be factored into a sinusoidal factor and a factor that oscillates

with only logarithmic phase.

When evaluating Jℓmω(rp(χ)) in the integrand of C
(χ)−
ℓmω , we require the geodesic functions

tp(χ) and φp(χ). These are calculated numerically by integrating Eqs. (2.19) and (2.21)

using the QAG61 routine with a relative error tolerance of 10−12. Evaluating C
(r)−
ℓmω

additionally requires the modified time coordinate t̂p = tp − r/v, which we calculate

directly by integrating Eq. (3.23) numerically using QAG61 with error tolerance 10−12.

For a given ℓ, m and ω, the approach taken to evaluate the normalisation integrals C−
ℓmω

with a given truncation radius rmax is then as follows:

1. The homogeneous solutions ψ−
ℓω and Pℓω are calculated using the method described

in Sec. 3.2.1 and stored at a dense sample of points in an interval containing

[rmin, rmax]. The Wronskian Wℓω = W [ψ−
ℓω, ψ

+
ℓω] is also calculated. When, in

subsequent steps, the homogeneous solutions are required at arbitrary radii rmin ≤
r ≤ rmax, these gridpoints are used as initial data and the homogeneous solution

at the desired radius is obtained by integrating the appropriate field equation.

2. An initial choice of rcut = 2rmin is selected. The integral C
(χ)−
ℓmω is calculated

numerically using the QAG61 routine. The relative error threshold is set at 10−10.

3. If the integrator reports that it cannot achieve the error tolerance, rcut is reduced

to 1.5rmin and step (2) is repeated. This estimate is then stored, whether or not

the new relative error estimate is less than 10−10.

4. The integral C
(r)−
ℓmω is integrated by parts X times before being truncated at rmax,

and then evaluated numerically with a relative error threshold of 10−10. This may

be achieved using either the QAG61 or QAWO routine.

5. An order Y correction to the neglected tail (appropriate to the number of iterations

of IBP) is then added.

The above algorithm involves two parameters, X and Y , which control the number of

iterations of IBP and the order of the tail correction, respectively. We refer to such a

method as IBPXcorrY. For example, IBP0corr0 uses neither integration by parts nor

adds any approximation for the neglected tail, while IBP4corr5 uses 4 iterations of IBP

and a 5th order correction.

One issue presents itself when attempting to use IBP at small frequencies. At small

frequency, both the surface term and integral in Eq. (3.32) can grow very large, and
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there is a significant degree of cancellation between them. This results in a loss of

precision, which, for some ℓm modes, creates a noisy spike in the C−
ℓmω spectrum at small

frequency. Fortunately, a simple solution is available to this problem. By introducing an

additional breakpoint rsplit between rcut and rmax, one can evaluate the integral without

IBP (or using low order IBP) in the interval rcut < r < rsplit, and then use a higher

order of IBP for r > rsplit. When rsplit ≫ rcut, the error from cancellation between the

surface term at rsplit and the integral over r > rsplit is much reduced. We refer to such

split-order IBP methods as IBPXYcorrZ, where X and Y are the orders of the IBP used

in the regions rcut ≤ r < rsplit and r > rsplit respectively, and Z is the order of the tail

correction applied. In practice we only make use of IBP04corrZ methods in this paper.

3.3 Numerical results for C−
ℓmω

In this section we will examine the effectiveness of the methods we have developed

to mitigate the high-frequency noise problem. Satisfied with the results, we will then

examine the features of the C−
ℓmω spectra.

Before displaying the numerical results, it is worth discussing whether the C−
ℓmω spectra

can be assigned physical meaning. The EHS ψ̃
−
ℓmω(r) is not a physical field by itself,

although, by construction, it does coincide with the true frequency modes of the physical

scalar-field (given in Eq. (2.106)) when r ≤ rmin. More significantly, there is ambiguity

in the definition of C−
ℓmω; in principle, one may choose to exchange factors between C−

ℓmω

and ψ−
ℓω(r), altering their individual values without changing their product. Put another

way, the value of C−
ℓmω is only defined up to a change in the (arbitrary) normalisation

of the homogeneous solution ψ−
ℓω(r). Indeed, formally – but not practically – one could

even adopt a normalisation in which C−
ℓmω ≡ 1. But we have not left the normalisation

of ψ−
ℓω arbitrary during our numerical calculation, adopting instead the concrete choice

ceh0 = 1 in Eq. (2.100). With this unit-normalised convention, one can assign a certain

interpretation to the value of C−
ℓmω as follows. For 2M < r ≤ rp(t) we have

ψℓm(t, r) =

∫︂ +∞

−∞
C−
ℓmωψ

−
ℓω(r)e

−iωt dω. (3.38)

Taking r → 2M with v := t+ r∗ fixed, and recalling ψ−
ℓω ∼ e−iωr∗ as r → 2M , this gives

ψH+

ℓm (v) =

∫︂ +∞

−∞
C−
ℓmωe

−iωv dω, (3.39)

i.e. C−
ℓmω is the Fourier transform with respect to advanced time of the spherical har-

monic modes of the scalar field on the event horizon H+.
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Figure 3.2: C−
ℓmω against frequency for the mode (ℓ,m) = (10, 6) and the geodesic

with parameters E = 1.1 and rmin = 4M , as calculated using the IBP0corr0, IBP0corr6,
IBP4corr0 and IBP4corr6 methods. All numerical integrals were calculated using the
QAWO quadrature routine and truncated at rmax = 2000M . Tail corrections alone
are sufficient to delay the onset of noise until further into the tail, but IBP4 is even
more effective. Tail corrections provide a small, but non-zero, positive effect when using
IBP4.

3.3.1 Effect of IBP and tail corrections

We begin by investigating the effect of varying the order of IBP and tail correction on

the calculation of C−
ℓmω. Figure 3.2 displays C−

ℓmω for the mode (ℓ,m) = (10, 6) and the

geodesic E = 1.1 and rmin = 4M , as calculated using different methods. Comparing the

IBP0corr0 and IBP0corr6 results confirms that the correction scheme delays the onset

of noise and hence allows a greater level of decay to be achieved, in this case gaining

approximately 3 orders of magnitude greater decay to the right of the peak. This

confirms the utility of the correction scheme, and the successful cancellation between

the numerical integral and the tail correction also validates the implementation of the

correction. One may confirm that using a lower-order correction produces a smaller, but

still positive, improvement.

If instead we compare IBP0corr6 and IBP4corr0, we see that the IBP4 without tail

corrections achieves a greater level of decay than corrections alone, by approximately 3

additional orders of magnitude to the right of the peak in this case. The inset compares

IBP4corr0 and IBP4corr6 in the right-hand tail of the spectrum, showing that including
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Figure 3.3: C−
ℓmω against frequency for the mode (ℓ,m) = (12, 10) and the geodesic

with parameters E = 1.1 and rmin = 4M , as calculated using the IBP4corr6 and
IBP04corr6 methods. All numerical integrals were calculated using the QAWO routine
and truncated at rmax = 2000M . For the split-order IBP04corr6 method, the transi-
tion between IBP0 and IBP4 took place at rsplit = 500M . When using IBP4 for the
entire integration region, a sharp spike centred on ω = 0 is observed in the spectrum,
which appears noisy when zoomed in (inset). The use of split-order IBP prevents this
phenomenon in all instances it has been observed, and is adopted as standard at small
frequency.

the tail corrections introduces further improvement. This improvement, however, is

responsible for only a small proportion of the total improvement compared to IBP0corr0,

and the effect of including tail corrections is much smaller with IBP4 than with IBP0.

Despite this, we believe that continuing to include tail corrections when using IBP is

justified on the grounds of improved accuracy (including a reduction in truncation error

at intermediate frequencies) and negligible cost. The tail corrections are expressed in

terms of gamma functions, which are near-instantaneous to compute compared to the

numerical integrals.

Next we investigate the benefits of split-order IBP. Figure 3.3 displays C−
ℓmω for the

mode (ℓ,m) = (12, 10), again for the geodesic with parameters E = 1.1 and rmin = 4M ,

as calculated using the pure IBP4corr6 method and the split-order IBP04corr6 method.

This example has been chosen because it displays the serious side effect of IBP raised

in Sec. 3.2.2, where cancellation between the surface term and the numerical integral

sometimes causes a sharp numerical blow-up at small-frequency. As illustrated in the

figure, this issue does not occur when the use of IBP is delayed until larger radii (in
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Figure 3.4: CPU time to calculate a single C−
ℓmω integral (truncated at rmax =

2000M) as a function of frequency using different methods. The mode ℓ = m = 10 was
selected for the geodesic with parameters E = 1.1, rmin = 4M , and the test was carried
out on a laptop computer with Intel i7-11850H processor (8 cores at 2.5 GHz). Different
orders of IBP (0 vs 4) and quadrature routines (QAG61 vs QAWO) for computing the
r ≥ rcut portion of C−

ℓmω were tested. Using IBP has a modest time benefit in most
circumstances, but the optimum quadrature routine depends on frequency.

this case rsplit = 500M). In fact, the use of split-order IBP has resolved the issue of

small-frequency spikes in every instance they have been observed. Currently there is

no means of predicting whether a particular ℓm mode will be affected by this rare but

serious issue in advance of the calculation, so we instead adopt a cautious approach

and use the split-order IBP04 method as the first-line method for all modes at small

frequency (typically conservatively chosen to mean frequencies |Mω| < 0.05).

3.3.2 Performance

Figure 3.4 displays the time taken to calculate C−
10,10,ω as a function of ω for the geodesic

with E = 1.1 and rmin = 4M , using different choices of IBP order and quadrature

routine to evaluate C
(r)−
ℓmω . At small frequencies, a single integral takes ∼ 1s when using

QAG61 quadrature without any integration by parts, but this quickly rises in a stepwise

fashion (almost doubling each step) and a single integral can exceed 60s at |Mω| ≳ 2.5.

Introducing IBP4 but maintaining QAG61 quadrature decreases the runtime to sub-1s at

small frequency, but the runtime still increases rapidly and may exceed 15s at the highest
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Figure 3.5: Selection of C−
ℓmω spectra for a variety of parameters. Left panel : different

values of (ℓ,m) with fixed orbital parameters E = 1.1, rmin = 4M . Right panel : fixed
ℓ = m = 5 for different scatter orbits. The IBP4corr6 method was used for frequencies
|Mω| ≥ 0.05, and IBP04corr6 with rsplit = 500M was used for frequencies smaller than
this. All numerical integrals were truncated at rmax = 2000M . In all cases the displayed
frequency range is the maximum one before noise is detected at the endpoints.

frequencies, a reduction of approximately 75% compared to IBP0. QAWO quadrature

produces a significant reduction in runtime at high frequencies, keeping runtimes below

approximately 5s in this test, but at lower frequencies the QAG61 routine is faster.

This is not unexpected; when the (sub-)interval length falls below a few wavelengths,

the QAWO routine defaults to a 15pt Gauss-Kronrod rule, which is lower order than

the 61pt rule we use with the QAG61 routine [179]. Integration by parts produces

an approximately 40% (∼ 1.5s) time saving when using QAWO quadrature at high

frequencies, but makes little difference at low frequency.

For convenience we wish to adopt a single quadrature routine to evaluate C
(r)−
ℓmω , to

be used at all frequencies. It is therefore sensible to make use of the QAWO routine,

because this is the faster routine at the majority of frequencies we require, and because

this routine makes the largest absolute time savings. From here on, C
(r)−
ℓmω is always

evaluated using the QAWO routine unless otherwise stated.

3.3.3 General features

The left panel of Fig. 3.5 displays sample C−
ℓmω spectra for different ℓm modes for the

geodesic with parameters E = 1.1 and rmin = 4M . For fixed ℓ and m ≥ 0, the location

of the peak frequency increases in approximate proportion to m, while the amplitude at

peak also increases with m and decreases with ℓ. The exponential decay at large |Mω|
is evident. The right panel of Fig. 3.5 instead shows the fixed mode ℓ = m = 5 for

a variety of different orbital parameters. Decreasing the periapsis radius increases the

amplitude as expected. Increasing the energy results in a broader spectrum, but only a

slight increase in the peak amplitude.
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3.3.4 Quasinormal modes

A striking feature in Fig. 3.5 is the presence of “mountains” in the tail of the spectrum,

defined by a sharp triangular peak that interrupts the overall decay trend. As can be

seen in the left panel of Fig. 3.5, the location and profile of this feature is roughly

independent of m for a given ℓ. The right panel meanwhile illustrates that this feature

occurs in roughly the same location for a wide variety of orbital parameters, although its

prominence is variable. These spectral features may occur at either positive or negative

frequency, and occasionally both for the same mode.

These observed behaviors hint at the physical origin of the mountain feature. Indeed,

our investigation reveals that the location of the mountain peak coincides with (plus or

minus) the real part of the fundamental quasinormal mode frequency, suggesting these

features may be associated with quasinormal excitation of the black hole. We note

that for scalar perturbations in Schwarzschild, the quasinormal mode frequencies are

independent of m, and of the orbital parameters, in line with the above observations.

Quasinormal excitation phenomena have previously been observed in self-force calcula-

tions for highly eccentric bound orbits [156, 180], and subsequently in both gravitational

and scalar calculations for scatter orbits [148, 149].

Figure 3.6: C−
ℓmω centred on the positive-frequency mountain feature for (ℓ,m) =

(8, 2) and a selection of orbits. Indicated in vertical dashed line is the real part of the
corresponding fundamental quasinormal frequency, Re(ωn=0

QNM) ≈ 1.63656/M , which
appears to coincide with the peak frequency. The mountain feature becomes more
prominent when rmin is decreased.
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Figure 3.6 illustrates mountains at positive frequency for (ℓ,m) = (8, 2) and a selection

of orbits, also showing the value of real part of the fundamental quasinormal mode

frequency ωn=0
QNM. The figure demonstrates the close proximity between the peak and

the fundamental quasinormal frequency. It also illustrates the increasing prominence of

the quasinormal mode contribution as rmin decreases and the orbit further penetrates

the strong-field region.

This phenomenon becomes particularly pronounced in the near-critical limit, where

the impact parameter b lies close to the critical value bc(v) defined in Eq. (2.9). This is

illustrated vividly in Fig. 3.7, which shows the C−
ℓmω spectrum for (ℓ,m) = (10, 2) for the

geodesic with parameters v = 0.8 and b = 6.07387M , corresponding to b−bc(v) ≈ 0.0005.

Along this orbit, the particle spends a prolonged period of time orbiting at around

rmin ≈ 3.18M , eliciting strong quasinormal excitation. The resulting triangular peaks

in the C−
ℓmω spectra can approach - and sometimes even exceed - the amplitude of the

primary central peak.

Figure 3.7: C−
ℓmω with (ℓ,m) = (10, 2) for the orbit with parameters v = 0.8 and

b = 6.07387M (corresponding to E = 5/3 and rmin ≈ 3.18M). Indicated in vertical
dashed lines are plus and minus the real part of the fundamental ℓ = 10 quasinormal
frequency, Re(ωn=0

QNM) ≈ 2.02132/M .
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3.3.5 Zeros in the spectrum

Another notable feature in Fig. 3.5 are the locations where |C−
ℓmω| drops sharply, assumed

to vanish. These points correspond to frequencies at which both the real and imaginary

parts of C−
ℓmω appear to vanish simultaneously. Individual zeros of the real and imaginary

parts are expected, but it is not clear what physical or mathematical mechanism is

responsible for simultaneous zeros. Features suggestive of these zeroes have previously

been observed in discrete spectra (see e.g. Fig. 1 in Ref. [113]), but we are not aware of

any proposed explanations.

One possible explanation for this phenomenon comes from considering the behaviour of

the homogeneous solutions ψ±
ℓω at low frequency. As described in Chapter 2.4.2, bound-

ary conditions for ψ−
ℓω are specified near the horizon and then integrated outwards. For

sufficiently small frequencies, there is a region r ≲ ω−1 where the potential term in

Eq. (2.94) dominates over the ω2 term, and ψ−
ℓω behaves like a static solution, quickly

approaching a (complex-valued) multiple of the polynomially growing real-valued solu-

tion ψ−
ℓ,ω=0. Likewise, boundary data for ψ+

ℓω is specified in the large-r wave-zone, and

it generically becomes proportional to the real-valued ψ+
ℓ,ω=0 as we move inwards into

the potential-dominated region.

Therefore, if ω is sufficiently small that a potential-dominated region exists, and if

rmin ≲ ω−1, then there is a radial range rmin < r ≲ ω−1 where the homogeneous solutions

may be approximated by (frequency-dependent) complex multiples of the respective

static solution. It follows that the integrand in this region can be expressed as a real

function of r multiplied by a frequency dependent complex constant. The integrand is

largest in the potential-dominated region rmin < r ≲ ω−1 on account of the quasi-static

polynomial growth of the homogeneous solutions, and thus the integral over this region

is expected to provide the dominant contribution to C−
ℓmω. The real-valued factor of the

integrand is oscillatory, and thus the integral of this is an oscillatory function of ω too;

where the real-valued integral vanishes, both real and imaginary parts of C−
ℓmω vanish

simultaneously.
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Chapter 4

Time-domain reconstruction and

the scalar-field self-force

Having established a reliable and accurate method to calculate the frequency-modes

of the extended homogeneous solution, we turn our attention to the problem of recon-

structing the spherical harmonic modes of the time-domain field, and hence the self-force.

Our approach relies on a multi-step process in which discretised C−
ℓmω data is generated

first, and then intermediate frequencies are obtained using interpolation when evalu-

ating the Fourier integrals for the time-domain field. Numerical results are presented

using our method, showing excellent agreement with regularisation parameters up to at

least ℓ = 25 near to periapsis, and seemingly exceeding the precision of the time-domain

code of Ref. [149] in this regime. Our frequency-domain method begins to break down

rapidly at larger radii, however, due to an issue calculating modes with large values of

ℓ. Without an immediate solution to this problem, we instead dynamically truncate the

mode-sum in Eq. (2.49) to exclude problematic ℓ-modes when they are encountered, re-

sulting in significantly improved large-rp behaviour. In the final section of this chapter,

we discuss the root cause of our difficulties at large rp and large ℓ, and propose potential

future directions to resolve this issue completely.

4.1 Efficient time-domain reconstruction

In order to calculate the ℓ-mode contributions to the t, r and φ derivatives of the scalar-

field at a point xαp along the orbit, we have to numerically evaluate the inverse Fourier
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integrals

Φℓm−
t := − 1

rp

∫︂ +∞

−∞
dω iω C−

ℓmωψ
−
ℓω(rp)e

−iωtp , (4.1)

Φℓm−
r :=

∫︂ +∞

−∞
dω C−

ℓmω∂r

(︃
ψ−
ℓω(r)

r

)︃
r=rp

e−iωtp , (4.2)

Φℓm−
φ :=

1

rp

∫︂ +∞

−∞
dω im C−

ℓmωψ
−
ℓω(rp)e

−iωtp , (4.3)

for m ≥ 0 and ℓ +m even. Using the symmetry relation in Eq. (2.93), the ℓ-modes of

the full force are then given by

F full−
α,ℓ = qΦℓ0−α Yℓ0

(︂π
2
, φp

)︂
+ 2q

∑︂
m>0

Re
[︂
Φℓm−
α Yℓm

(︂π
2
, φp

)︂]︂
, (4.4)

for α = t, r, φ, where only modes with ℓ+m = even contribute.

The most obvious way to evaluate integrals (4.1)-(4.3) is to use an adaptive integrator

such as the QAG61 routine we have made extensive use of. One issue with this approach

is that an adaptive integrator will generically call different frequencies when evaluating

different components, or when evaluating the integrals at different orbital positions.

The oscillatory factors ψ−
ℓω(rp) and e−iωtp in the integrand may also require a denser

sampling to resolve, particularly when |tp| is large, resulting in wasteful over-sampling

of the normalisation integrals. Given that a single C−
ℓmω integral takes several seconds

to compute in general (see Sec. 3.3.2), it would be a very lengthy process to calculate

C−
ℓmω on the fly at every required frequency.

Interpolation provides one solution to this problem. In this approach, one first calculates

the integrals C−
ℓmω at a dense sample of frequency nodes ωn for the ℓm-modes required.

The value of C−
ℓmω at an intermediate frequency ω can then be estimated using inter-

polation. We do this by identifying the node ωN that lies nearest to ω, and then using

the 2d-degree polynomial that fits the data at the nodes ωN−d, ωN−d+1, ..., ωN+d. This

interpolation is carried out in practice using the gsl interp polynomial interpolator

type included in the GSL [179] and a degree 8 polynomial.

Given a repository of C−
ℓmω data at an appropriately dense sample of frequencies, in-

tegrals (4.1)-(4.3) are then evaluated using the QAG61 routine with a relative error

threshold of 10−8. These are summed over m to get F full−
α,ℓ using Eq. (4.4).

4.2 Overall approach

The numerical method for calculating the normalisation integrals was outlined in Sec. 3.2.2,

and in Sec. 4.1 we described how to efficiently calculate the ℓm-mode contributions to
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the scalar field in the time domain, and hence the ℓ modes of the full force. We now out-

line how these blocks are combined to produce an end-to-end calculation of the self-force

along an orbit with parameters (E, rmin).

Step 1: We find the maximal frequency limits that may be used before high-frequency

noise appears in the spectra of C−
ℓmω. For a given ℓm mode, we begin calculating C−

ℓmω

at ω = mωcirc, corresponding to the frequency of a circular geodesic of radius rmin,

namely Mωcirc = (M/rmin)
3/2. This frequency was used as an estimate of the peak

frequency, and worked well in our tests. The frequency was then increased in steps

M∆ω = 5× 10−3, and at each step the following procedure was applied:

1. If fewer than 6 data points (ω,C−
ℓmω) are available, continue.

2. If more than 6 data points are available, take the most recent 6 and calculate the

gradients of the 5 chords in this interval.

3. Flag noise if there are 3 or more changes of sign between consecutive gradients.

Once noise is detected, the noisy interval was discarded, the maximal value of ω was

recorded and the process halted. The same was then applied stepping backwards for

ω < mωcirc. This is repeated for all ℓm modes with m ≥ 0 and ℓ + m = even, up

to some ℓ = ℓmax. The values of the integrals and frequency limits were stored. To

minimise duplicate evaluations of the homogeneous solutions ψ−
ℓω and Pℓω (which are m-

independent), modes with the same value of ℓ but different m were calculated together.

Step 2: Additional C−
ℓmω data at intermediate frequencies may be calculated and stored

if the desired frequency sampling density is higher than the one used in Step 1.

Step 3: Given the stored C−
ℓmω data for all modes up to ℓ = ℓmax, the corresponding

ℓ-modes of the full force F full−
α,ℓ may be calculated at any point along the orbit using the

method of Chapter 4.1. For a given ℓ, the terms in the mode sum (2.49) are calculated

by subtracting the regularisation terms up to and including F
[6]
α . The self-force may

then be approximated by summing the mode-sum up to ℓ = ℓmax.

Our calculation can be significantly accelerated by making use of parallelisation, which

we achieved using the OpenMP library [181]. The calculation of integrals C−
ℓmω with

different values of ℓ and ω have no common dependencies, which makes these labels

ideal for parallelising over. However, in Step 1 above, the frequencies required are not

known in advance, so Step 1 is only parallelised over ℓ. Step 2 may be parallelised over

both ℓ and ω because the frequencies are known in advance, motivating the division

between Steps 1 and 2. Parallelisation over m is also possible, but this then requires

duplicate calculations of the homogeneous solutions, and therefore is only advisable if

there remain additional unutilised cores after parallelising over ℓ and/or ω. Finally, the

calculation of ℓm-mode contributions to the scalar-field derivatives for Step 3 may also
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be parallelised over ℓ, m, orbital position or component; we were able to utilise all cores

available to us by parallelising only over orbital position.

4.3 Scalar-field self-force: initial results

We illustrate the calculation of the self-force with the example of the geodesic orbit with

parameters E = 1.1 and rmin = 4M , which is displayed in Fig. 2.1. The coefficients

C−
ℓmω were calculated for ℓ up to a maximum value ℓmax = 25 using the IBP4corr6

method with rmax = 2000M for frequencies |Mω| ≥ 0.05, and IBP04corr6 with rsplit =

500M and rmax = 2000M for |Mω| < 0.05. The C−
ℓmω data was stored with density

M∆ω = 1.25 × 10−3. The ℓm-modes of the scalar field derivatives in the time-domain

are obtained by integrating Eqs. (4.1)-(4.3) numerically and then constructing F full−
α,ℓ

using Eq. (4.4), as described in Chapter 4.1.

As a first test, we validate our code against the analytically known regularisation param-

eters, confirming that the terms in the mode sum (2.49) decay with ℓ at the expected rate.

We then display the self-force along the orbit. At both stages we compare the results

obtained using our frequency-domain (FD) code to those obtained with the time-domain

code developed in Refs. [149], hereafter referred to simply as the time-domain (TD) code.

4.3.1 Large-ℓ behaviour and code validation

Figure 4.1 displays the regularised ℓ-mode contributions to the t component of the

self-force at the point rp = 6M along the inbound leg of the orbit, with two different

levels of regularisation applied. In the first set of data, represented by solid circles, the

regularisation terms involving At and Bt have been subtracted from F full−
α,ℓ , as in the

summand of Eq. (2.49). At large ℓ the terms of this series are known to behave like

the higher-order regularisation terms in expression (2.55), decaying as ℓ−2. Comparison

with the reference line representing the first term in that expression confirms that our

numerical results have the correct asymptotic behaviour, holding until at least ℓ = 25.

The convergence of the mode-sum may be accelerated by subtracting the higher-order

regularisation terms in expression (2.55) from the summand of Eq. (2.49). Once all

terms up to and including F[6]α have been subtracted, the terms of the mode sum

should behave asymptotically as the first neglected term in expression (2.55), which is

expected to decay as ℓ−8 (with a coefficient we don’t currently have). The terms in the

mode-sum with parameters up to and including F[6]t removed are represented in Fig. 4.1

with solid squares, and good agreement with the reference line proportional to ℓ−8 is

seen all the way until ℓ = 25, when the numerical data begins to deviate from the trend

line.
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Figure 4.1: Regularised ℓ-mode contributions to the t component of the self-force at
the point rp = 6M along the inbound leg of the orbit with parameters E = 1.1 and
rmin = 4M . The corresponding results from the time-domain code of Ref. [149] are also
displayed for comparison for 5 ≤ ℓ ≤ 15. Two different levels of regularisation, subtract-
ing parameters up to and including Bt or F[6]t, are displayed. The B-regularised and

F[6]-regularised data agree well at large ℓ with the reference lines
F[2]t

(2ℓ−1)(2ℓ+3) (dashed)

and ∝ ℓ−8 (dash-dot) respectively, validating our code. Note how the F[6]t-regularised
TD data becomes noise-dominated already at ℓ ∼ 10, while the corresponding FD data
remains faithful down to ℓ ∼ 24. Evidently, the FD calculation is much more precise.

Obtaining the correct asymptotic behaviour is a strong internal check on the accuracy

of our code. The ℓ-mode contributions to the full-force diverge like ℓ, so to achieve the

expected decay rate requires delicate cancellation between the numerically calculated

ℓ-mode and the regularisation terms, with a greater degree of cancellation required at

larger ℓ and when greater numbers of regularisation parameters are subtracted. Once ℓ

becomes large enough, the required degree of cancellation exceeds the precision of the

numerical cancellation, and noise is expected to appear. In the example in Fig. 4.1, this

is first observed for the F[6]-regularised data at around ℓ = 25.

Additional, external validation is provided by comparison with the TD results, displayed

in red in Fig. 4.1. At small ℓ there is good agreement, but by ℓ = 10 the F[6]-regularised

TD results have visibly broken away from the corresponding FD ones, with the latter

continuing to approach the reference lines. By ℓ = 15, this deviation is visible even in the

B-regularised modes. Given the superior agreement with the regularisation parameters,

it is evident that the FD code is significantly more accurate than the TD code at large-ℓ,



72 Chapter 4. Time-domain reconstruction and the scalar-field self-force

at least at this orbital position. This also enables the FD code to reach larger values of

ℓ before noise appears in the regularised modes, allowing us to use larger values of ℓmax

than the TD code, and thus reducing the error from truncating the mode-sum at finite

ℓ.

4.3.2 Self-force along the orbit

Figure 4.2 displays the t, r and φ components of the self-force F selfα as functions of

time t and radius r along our sample orbit. We used ℓmax = 15, to allow like-to-like

comparison with existing TD results, which are also plotted for comparison. The self-

force is, predictably, largest in the vicinity of periapsis (r = rmin, t = 0), but the

peaks are offset from the periapsis position. This behaviour was previously noted for

the scalar-field self-force along scatter orbits in Ref. [149], and for bound orbits (e.g.

Ref. [182]).

There is a good agreement between the FD and TD codes in the near-periapsis region

4M ≤ r ≲ 10M (|t| ≲ 37M), where the results are visually indistinguishable. The

insets to Fig. 4.2 display the relative difference (normalised by the results of the FD

code) between the two methods for two different choices of the TD grid spacing h. With

the higher TD resolution (h = M/128), the relative difference is between 10−3 and

10−2 in the post-periapsis, small radius region for the t and r components, and slightly

larger than this shortly before periapsis. For the φ component, a tighter agreement of

between 10−4 and 10−3 is achieved in this region. Near periapsis, the relative difference

is sensitive to the resolution used in the TD code, suggesting that the FD code is more

accurate here, consistent with our findings in Chapter 4.3.1. The relative difference gives

an estimate of the relative numerical error in the TD calculation, and an upper bound on

the numerical error of the FD calculation with this choice of ℓmax. The closer agreement

for F self
φ may be attributed to the greater accuracy of the TD code for this component,

which (unlike the t or r components) is obtained directly from the spherical harmonic

modes of the scalar field themselves, without having to take numerical derivatives.

As we move outwards along the orbit, the agreement between the TD and FD results

deteriorates, independently of the TD resolution. For F self
r and F self

φ this occurs at

approximately r = 10M (t ∼ 37M), but agreement is maintained until around r = 15M

(t ∼ 50M) for F self
t . Referring back to the main plots in Fig. 4.2, it is clear that the FD

method is responsible, breaking sharply away from the smoothly decaying curve obtained

using the TD method. An examination of the ℓ-mode contributions to the self-force at

these larger radii shows that the regularised ℓ-modes in the tail of the mode sum cease

to decay, and instead begin to blow up rapidly with ℓ. As the radius is increased, the

problem affects successively lower values of ℓ. This phenomenon is associated with error

messages from the numerical integrator, indicating that the inverse Fourier integrals

(4.1)-(4.3) cannot be evaluated to the requested relative error tolerance of 10−8.
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Figure 4.2: Components F self
t (top), F self

r (middle) and F self
φ (bottom) of the scalar-

field self-force along the orbit with parameters E = 1.1 and rmin = 4M , plotted against
time t (lower axis) and orbital radius r (upper axis). Results of the frequency-domain
code developed in this paper (solid red) are compared to those of the time-domain code
developed in Ref. [149] (dashed black, grid spacing h = M/128). Periapsis occurs at
t = 0, r = rmin = 4M , which is represented by the central vertical line. Insets: relative
difference between the frequency-domain code and two runs of the time-domain code
with different grid spacings h = M/128 and h = M/64, normalised by the frequency-
domain results. A fiducial choice of ℓmax = 15 and F[6] regularisation have been adopted
for this test. There is good agreement between the two methods near periapsis, but the
accuracy of the frequency-domain code deteriorates rapidly for rp ≳ 10M .
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The above results are reassuring, if mixed. The successful regularisation tests and agree-

ment with TD results validate our new code, and eliminate the possibility of any serious

errors in the calculation of FD quantities such as the C−
ℓmω. We have illustrated the

higher accuracy of the new FD code at small radii (compared to the existing TD im-

plementation), where it exhibits superior large-ℓ performance and greater accuracy in

the summed force. However, as r is increased, the code quickly loses accuracy at large

ℓ. In practice, this means that, without directly addressing the problem, we are lim-

ited to ℓmax values that must be made smaller with increasing r, at a cost of increased

truncation error.

In Section 4.6 we discuss the cause of the problem at large r and possible remedies

for it. Since we are yet to develop a complete satisfactory cure, we proceed here with

a temporary solution, involving a procedure for an adaptive adjustment of ℓmax as a

function of r along the orbit.

4.4 Adaptive truncation of ℓ-mode summation

To detect when the terms of the mode-sum begin to rapidly lose accuracy, the fol-

lowing algorithm was applied. First, regularised ℓ-modes F
(reg)ℓ
α are calculated and

added for 0 ≤ ℓ ≤ ℓmin, where ℓmin takes some pre-selected value. Additional modes

are then added so long as at least one of the following two criteria are met: Either⃓⃓⃓
F

(reg)ℓ
α

⃓⃓⃓
< σ1

⃓⃓⃓
F

(reg)ℓ−1
α

⃓⃓⃓
; or there is precisely one change of sign among the succes-

sive ℓ-modes F
(reg)ℓ−3
α , F

(reg)ℓ−2
α , F

(reg)ℓ−1
α and F

(reg)ℓ
α , and, in addition,

⃓⃓⃓
F

(reg)ℓ
α

⃓⃓⃓
<

σ2 max
(︂⃓⃓⃓
F

(reg)ℓ−2
α

⃓⃓⃓
,
⃓⃓⃓
F

(reg)ℓ−3
α

⃓⃓⃓)︂
. The second condition is designed to allow change-of-

sign features to pass through the filter without triggering the truncation mechanism.

Repeated changes of sign are taken to indicate noise or other difficulties in the ℓ-modes,

and treated as a trigger for truncation. The constants σ1,2 are safety factors to prevent

the truncation mechanism from being falsely triggered by any legitimate small-scale fea-

tures, such as “bounce-back” after a change of sign. Values of σ1 = 1.1 and σ2 = 2

were adopted. A minimum number of ℓ-modes, ℓmin, are always included, so that the

truncation mechanism is not triggered by transient small-ℓ behaviour. A piecewise value

ℓmin = 10 for rp ≤ 10M and ℓmin = 5 for rp > 10M was selected. The maximum possible

value of ℓmax is set by the largest value of ℓ for which C−
ℓmω data is available, which in

the present case was ℓmax = 25.

F[6]-regularised ℓ-mode contributions to the self-force were calculated in advance up to

ℓ = 25, 20 and 15 for rp ≤ 6M , 6M < rp ≤ 15M and rp > 15M respectively, at

points along the orbit which are uniformly spaced in χ between rp = 50M (inbound)

and rp = 50M (outbound). The truncation algorithm was then applied to determine

the appropriate value of ℓmax at each location. The resulting self-force along the orbit

is displayed in Fig. 4.3, with the TD results (still using ℓmax = 15) for comparison.
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Figure 4.3: Same as Fig. 4.2, after applying the adaptive mode-sum truncation
procedure described in the text. The time-domain data continues to use ℓmax = 15.
The improvement at large r is manifest.
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We observe that the use of adaptive truncation of the mode sum prevents any visible

blow-up in the FD calculation, out to at least r = 50M . This represents a significant

improvement compared to the fiducial ℓmax = 15 test in Fig. 4.2. The insets to Fig. 4.3

once again display the relative difference between the FD results and two TD runs with

different resolutions (h = M/128 and h = M/64). For the t component of the force,

the relative difference is sub-1% at late times, and O(1)-O(10)% at early times, with

significant sensitivity to the TD resolution used. This once again suggests that the FD

code is more accurate here, even at r = 50M . For the r and φ components, however,

the relative difference is broadly insensitive to the TD resolution used, and the errors

increase with radius, becoming O(10)% at late time, and even larger at very early time.

To pin down the dominant source of numerical error in these domains would require a

more detailed analysis of both FD and TD codes, which we have not performed here.

We suspect, however, that the large-ℓ truncation error in the FD code is dominant at

large rp.

4.5 Example scatter angle calculation

We will now illustrate a full calculation of the self-force correction to the scatter angle,

δφ(1), choosing our background geodesic to be the same orbit we considered in Sec-

tions 4.3 and 4.4. In those previous sections, we chose to define the orbit using specific

choices for the energy and periapsis radius, namely E = 1.1 and rmin = 4M , whereas

the expression for δφ(1) given in Eq. (2.66) is for the scatter angle correction at fixed

values of the parameters (v, b). It should be understood, therefore, that we will actually

be calculating the scatter angle correction with fixed values of (v, b) exactly equal to

those of the geodesic orbit with parameters E = 1.1 and rmin = 4M . These values are

given approximately by

b ≈ 10.401M, v ≈ 0.41660. (4.5)

We calculate δφ
(1)
cons and δφ

(1)
diss separately by numerically integrating Eqs. (2.68) and

(2.69). Our scatter angle script takes as input the total, unprojected, self-force F self
α at

8N discrete locations, χn := nhχ for n = ±1,±2, ...,±4N . Here N is an integer, hχ is

the spacing of the χ sample, and χmax := 4Nhχ is the value of χ where the integrals will

be truncated. (The point χ = 0 is not initially included in our sample because, although

the entire integrand is bounded at χ = 0, the factors G(cons)
E/L are individually singular

there; instead, we obtain the value at χ = 0 via extrapolation.) Given the unprojected

self-force data, the script calculates the projection of the self-force orthogonal to the

4-velocity using Eq. (2.39), and then it separates it into conservative and dissipative

pieces, F⊥cons
α and F⊥diss

α , using Eqs. (2.57)-(2.60). The integrands in Eqs. (2.68) and

(2.69) are then constructed at the 4N positions in 0 < χ ≤ χmax, and extended to χ = 0
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via extrapolation. The scatter-angle integrals (truncated at χ = χmax) are evaluated

using Simpson’s 1/3 rule, which requires an odd number of data points. Because 4N +1

data points are available, 2 estimates of the integral may be obtained, one using step

width hχ, and another using step width 2hχ. The former is used as the best estimate

for the scatter angle, while the difference

ϵ =
1

15

(︂
δφ(1)(2hχ)− δφ(1)(hχ)

)︂
(4.6)

provides an estimate of the quadrature error.

The self-force was calculated out to rp = 50M along both inbound and outbound legs

of the orbit, with χ-spacing hχ = χ50/1024, where χ50 ≈ 2.0776 is defined by rp(χ50) =

50M . This choice of hχ is found to produce a quadrature error much smaller than

other sources of error in our calculation (see below). The integrals (2.68) and (2.69)

were truncated at χmax = χ50. The resulting estimates for the scatter angle correction,

expressed to 5 significant figures, were

δφ(1)
cons = −1.5032, δφ

(1)
diss = 2.7034 (FD, rmax = 50M), (4.7)

with respective estimated quadrature errors ϵcons ≈ −1.1×10−7 and ϵdiss ≈ −7.9×10−7.

For comparison, we apply the same method (with the same values of the χ-spacing

hχ and truncation point χmax) to the self-force data obtained using the TD code of

Ref. [149]. This approach yields estimates of

δφ(1)
cons = −1.5309, δφ

(1)
diss = 2.6950 (TD, rmax = 50M), (4.8)

The difference relative to our estimates in Eq. (4.7) is approximately 1.8% (0.31%) in

the conservative (dissipative) pieces. This discrepancy is significantly larger than the

quadrature errors estimated above. In Chapter 4 it was found that the disagreement

between the FD and TD self-force values was greatest at large radius, and thus it is

expected that the large-radius portions of the integrals (2.68) and (2.69) contribute most

significantly to the discrepancy in the scatter angle estimates. This may be investigated

by truncating the integrals (2.68) and (2.69) at a smaller value of χ and examining the

effect on the discrepancy. Using the same value of hχ but a reduced truncation position

χmax = 976hχ (corresponding to rp ≈ 29.8M), the FD self-force data provided estimates

−1.4515 (2.6382) for the conservative (dissipative) piece of the scatter angle correction,

compared to −1.4627 (2.6298) using the TD self-force data. The relative difference

between the conservative parts has reduced significantly to 0.77%, but remains broadly

unchanged at 0.32% for the dissipative part. This supports the idea that, in our tests,

the discrepancy between the FD and TD conservative scatter angles is dominated by

the loss of accuracy in the FD self-force at large radius, but the (smaller) discrepancy

in the dissipative pieces may have a different root cause.
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This test highlights another significant source of error in the estimates (4.7), that which

arises from truncating the integrals (2.68) and (2.69) at χ < χ∞. To quantify this error,

we change integration variable in Eq. (2.68),

δφ(1)
cons =

∫︂ ∞

rmin

[︂
G(cons)
E (rp)F

⊥cons
t (rp)− G(cons)

L (rp)F
⊥cons
φ (rp)

]︂drp
ṙp
, (4.9)

and note that the self-force components decay like r−ap as rp → ∞, where a = 3 for

α = t and r, and a = 2 for α = φ [149]. A simple asymptotic analysis shows that

the full integrand in Eq. (4.9) decays like r−2
p . Hence, when Eq. (2.68) is truncated at

χmax < χ∞, the resulting truncation error behaves as r−1
max, where rmax = rp(χmax). The

same decay rate applies for the dissipative piece also.

Based on this reasoning, the relative truncation error in the scatter angle corrections may

be approximated by (rmin/rmax). For truncation at rmax = 50M , this would suggest an

error of approximately (4/50) = 0.08. This is, of course, a very crude estimate, because

the integrand is not a strict power-law function, and may also exhibit changes of sign.

To better estimate the true truncation error in our calculation, we may compare to the

values obtained in [149], where use was made of a larger truncation radius, with an

analytic approximation for the large-r tail of the integral. This more precise calculation

gave

δφ(1)
cons = −1.5957± 0.0023, δφ

(1)
diss = 2.7612± 0.0026

(TD, rmax = ∞), (4.10)

suggesting relative errors of approximately 4.1% and 2.5% in the truncated TD estimates

(4.8). These are somewhat smaller than our crude ∼ 8% estimate.

In summary, we see that the dominant source of error in our FD value (4.7) is the large-

r truncation of the orbital integration. Mitigating this truncation error is challenging

within our current FD framework. As we have discussed, increasing the truncation

radius results in significant loss of accuracy. Indeed, even truncating at rp = 50M we

found that the error associated with the large-r self-force may be as much as half the

size of the truncation error for the conservative piece. Attempting to extrapolate the

self-force to large radii is likewise more challenging for our FD code than it was for the

TD code. If a tail is fitted to inaccurate large-radius self-force data, the accuracy of the

extrapolation will be fundamentally limited. It is for this reason we find fitting a tail to

our self-force data impractical. It is clear that high-precision scatter angle calculations

will require improvements at large radius.

The next section will explore more deeply the reasons for our problems at large r, and

suggest mitigations.
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Figure 4.4: Integrand J ℓm
t [as defined in Eq. (4.11)] plotted against ω for the mode

(ℓ,m) = (10, 2) at selected radii along the inbound leg of the orbit with parameters
E = 1.1 and rmin = 4M . Also plotted is a vertical line representing the frequency
ωpeak at which C−

10,2,ω peaks. The peak value of the integrand grows rapidly and is
increasingly shifted towards ω = 0 as the radius is increased, while the frequency of the
oscillations also increases.

4.6 Cancellation problem

We seek to understand the origin of the observed loss of accuracy at large r and large

ℓ. To this end, consider the integrand of the Fourier integral Φℓm−
t in Eq. (4.1) as an

example. In order to reconstruct F full−
t,ℓ using Eq. (4.4), the real-valued integrand of

interest is

J ℓm
t (ω) := −Re

[︃
iω

rp
C−
ℓmωψ

−
ℓωe

−iwtpYℓm

(︂π
2
, φp

)︂]︃
. (4.11)

In Fig. 4.4 we plot this quantity as a function of frequency at selected radii along the

inbound leg of the orbit for the mode (ℓ,m) = (10, 2). The peak of J ℓm
t is seen to

shift away from that of C−
ℓmω and towards ω = 0, where the homogeneous solution

factor, ψ−
ℓω(rp), peaks. This offset is small at small radii, but the peak grows rapidly

and becomes increasingly shifted towards ω = 0 as rp is increased, due to the quasi-

static growth of the homogeneous solution, ψ−
ℓ,ω=0 ∼ rℓ+1, at relatively small frequencies

ω ≪ ℓr−1. At the same time, the integrand oscillates at an increasing rate due to the
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factors ψ−
ℓω(rp) and e−iωtp , which have phases ∼ ωrp∗ and ωtp respectively. The same

behavior is observed in the r and φ components too.

The ℓ-modes of the self-force, however, decay with radius. The conclusion is that there

must be an increasing degree of cancellation in the Fourier integrals as the radius is

increased. This increasing cancellation in the time-domain reconstruction due to the

quasi-static growth of the EHS was first noted in Ref. [113], which studied the gravi-

tational self-force on particles moving along eccentric, bound, Kerr geodesics. In that

paper the author explained that the EHS modes with relatively small frequency exhibit

unphysical amplitude variations along the orbit, by an amount that grows exponentially

in ℓ. In the case of our scatter orbits, the unphysical growth of the EHS is encapsulated

by Eq. (2.127), which makes the exponential dependence on ℓ clear.

The cancellation in the Fourier integral amplifies the error in the numerically calculated

integrand, and we refer to this phenomenon as the cancellation problem. Once the loss

of precision exceeds the precision of the underlying frequency-domain calculations, the

cancellation in the numerical Fourier integrals cannot occur and our calculated self-

force loses accuracy and begins to blow-up. The degree of cancellation (and hence the

resulting loss of precision) may be quantified for the case of the t component by

Rℓ := max
m

⎛⎝ ∥J ℓm
t ∥1⃓⃓⃓

Re
(︂
Φℓm−
t Yℓm

)︂⃓⃓⃓
⎞⎠ , (4.12)

where

∥f∥1 :=
∫︂ +∞

−∞
|f(ω, rp)| dω (4.13)

is the L1-norm over frequency at fixed orbital position. This quantity is plotted in

Fig. 4.5, demonstrating the increased cancellation with rp, and in particular reproducing

the expected exponential growth with ℓ.

In Refs. [113] and [114] the author managed the cancellation problem by using arbitrary

precision arithmetic, calculating frequency-modes at sufficiently high precision to ensure

the desired level of accuracy even after the loss of precision during time-domain recon-

struction. The key downside of this approach is the significantly increased computational

cost that comes with higher precision arithmetic, which is particularly undesirable for

hyperbolic orbits given the already reduced efficiency of frequency-domain methods in

this regime. There are several other reasons why this approach is less effective in the

scatter problem. First, we have seen that the scatter problem introduces a new source of

error, arising from the truncation of the normalisation integrals C−
ℓmω at a finite radius.

To benefit from improved-precision arithmetic would require a commensurate reduction

in this truncation error, which, in turn, is likely to demand the use of new techniques,

such as the derivation of higher-order IBP rules or the use of compactification [183, 184],
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Figure 4.5: Degree of cancellation Rℓ [as defined in Eq. (4.12)] in the calculation of
the Fourier integral Φℓm−

t at selected points along the inbound leg of the orbit with
parameters E = 1.1, rmin = 4M . The degree of cancellation (and hence loss of precision)
increases with rp, and exponentially in ℓ.

with their own challenges and costs to bear. Second, achieving very high accuracy in

the interpolation of C−
ℓmω will inevitably require the calculation of a larger number of

frequency modes to use as data nodes, introducing extra cost and compounding the first

issue. This is in contrast to the discrete-frequency bound case, where approximately the

same number of frequencies are required even at radii where the cancellation problem is

more severe.

We see several possible directions for mitigating the cancellation problem in future work.

The most straightforward approach is to refine our existing double-precision code to

improve the precision of the various frequency-domain quantities that go into the Fourier

integrals, and hence delay the onset of breakdown. For example, adaptive placement

of interpolation nodes for C−
ℓmω may be used to reduce interpolation error at those

frequencies that contribute strongly to the cancellation, while reducing sample density

to conserve computation time at frequencies in the tail of the spectrum, where the error

requirement is less stringent. Another option is the use of semi-analytical results, based

around small-ω expansions of the homogeneous solutions, to improve the accuracy of

C−
ℓmω around ω = 0. A more ambitious objective would be to use small-ω expansions of

the homogeneous solutions to better understand the nature of the cancellation, with an

aim to achieve part of the cancellation analytically.



82 Chapter 4. Time-domain reconstruction and the scalar-field self-force

In parallel to these direct mitigations of the cancellation problem, one should develop

analytical approximations for the large-r tail of the self-force, which would reduce the

need for a numerical calculation at large radius. This would also be beneficial for the

TD approach, which also suffers from a loss of accuracy and efficiency at large radii.

Work towards this objective will be presented in Chapter 6.

It should be reminded here that the cancellation problem is an inherent feature of the

EHS approach, where unphysical, growing homogeneous solutions are extended into the

source region. The problem would not occur in a calculation based on the standard

variation-of-parameters formula, if a way was found to enable an efficient reconstruction

of the TD field at the particle despite the Gibbs phenomena. Ultimately, therefore, a

full satisfactory solution to the cancellation problem might need to involve a departure

from the usual EHS approach. Alternatives would have to tackle the Gibbs phenomenon

head-on. Ideas to be explored involve the application of spectral filtering to improve the

convergence of the Fourier integral near the particle [185]; and/or the use of extrapolation

to estimate the one-sided limits of the field derivatives based on values calculated away

from the particle location, where the impact of the Gibbs phenomenon is less severe.
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Chapter 5

Scattering near the transition to

plunge and the resummation of

post-Minkowskian series

In this chapter we turn our attention to scattering near the separatrix between scattering

and plunging geodesics. In this limit, the correction δφ(1) is characterised by a single

coefficient A1(v), which we extract numerically from calculations of the self-force along

near-separatrix orbits. We then propose a method by which A1(v) may be used to resum

analytical PM results, with the aim of improving their fidelity in the strong field regime.

Our FD method turns out to be excellently suited to calculations of the self-force along

orbits near to the separatrix. Observing the great significance of modes ℓ > 15 in the

vicinity of periapsis for larger velocities, modes which only our FD method can currently

provide, we develop a hybrid TD/FD method to obtain the self-force along near-critical

geodesics. Using this method, we illustrate the self-force in the near-separatrix limit,

and extract the values of A1(v) at a selection of velocities. We conclude the chapter by

exploring the effectiveness of our resummation scheme, finding a remarkable improve-

ment in faithfulness compared to the plain PM expansion, in both the strong and weak

field limits.

5.1 Scatter geodesics: transition to plunge

As explained in Sec. 2.1, a test particle starting at infinity with energy E and angular

momentum L will scatter off the central black hole without being captured if, and only

if, L > Lc(E), where Lc(E) is given in Eq. (2.7). For orbits with L < Lc(E), instead of

scattering and returning to infinity, the particle will instead plunge towards the central

black hole, being captured at some finite proper time. The one-parameter curve in

geodesic parameter space defined by L = Lc(E) forms the separatrix between scattering
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post-Minkowskian series

Figure 5.1: Effective potential for the radial motion [as defined in Eq. (2.4)] compared
to E2 for E = 1.1 and three different values of the angular momentum: L = 0.9Lc(1.1),
L = Lc(1.1) and L = 1.25Lc(1.1).

and plunging orbits. The origin of the transition to plunge may be explained using the

effective potential description for the radial motion, Eq. (2.3),

ṙp = ±
√︂
E2 − V (rp;L), (5.1)

where the effective potential V (r;L) is given in Eq. (2.4). Figure 5.1 displays this

potential, and the value of E2, for E = 1.1 and three different choices of L. The

figure illustrates that, for L > Lc(E), a particle beginning its motion at infinity cannot

overcome the potential barrier and will instead scatter back to infinity. For L < Lc(E),

however, the peak of the potential barrier lies below E2, and thus the particle is able to

reach r = 2M and be captured. In the critical case L = Lc(E), the peak of the potential

lies exactly at the level of E2, and a particle that initially moves inwards from infinity

with this critical angular momentum will be captured into an (unstable) circular orbit

as proper time τ → ∞.

The separatrix may also be described as b = bc(v) where, as usual, v is the velocity-at-

infinity, b is the impact parameter, and

bc(v) =
M√
2 v2

√︁
8v4 + β − 1 + 4v2(2β + 5), (5.2)

with

β :=
√︁

1 + 8v2. (5.3)

Equation (5.2) is easily obtained by substituting Eq. (2.7) into Eq. (2.9), and then re-

expressing in terms of the velocity using E = (1−v2)−1/2. Orbits with b > bc(v) scatter,
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Figure 5.2: Scatter geodesics with v = 0.5 and: b = 9.30734M (solid, highlighted left),
b = 8.85734M (dashed, highlighted center), and b = 8.80784M (dotted, highlighted
right). These correspond to values of δb ≈ 0.5, 0.05 and 0.0005 respectively. The
view is in the equatorial plane, plotted on axes x = r cosφ and y = r sinφ, and each
individual orbit has been rotated such that φp = 5π/8 when rp = 25M along the
inbound leg. The black hole (black disk) and the ISCO (blue circle) are to scale.

and those with b < bc(v) plunge; the distance from the separatrix (at fixed v) may be

parameterised by

δb := b− bc(v), (5.4)

with δb > 0 for scatter geodesics. Figure 5.2 displays three scatter geodesics with fixed

v = 0.5 and different values of the impact parameter. For sufficiently small δb, one

obtains zoom-whirl orbits, along which the particle performs a near-circular whirl before

escaping back to infinity. As δb→ 0+, the particle spends longer and longer on the whirl

portion, which becomes increasingly circularised. This is consistent with our effective

potential analysis, which concluded that an incoming particle will be captured into a

circular orbit for δb = 0.

In fact, this is only half of the picture. The critical orbit b = bc(v) has two distinct

branches, both of which are complete geodesics (in the sense that the proper time along

each stretches from −∞ to +∞). We have already discussed the inbound branch, which

begins with the particle moving inwards at early times (τ → −∞) before being asymp-

totically captured into a circular orbit as τ → +∞. The outbound branch, on the other

hand, begins on a circular orbit at very early times, before escaping to radial infinity at

late times.
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5.2 Scatter angle in the limit of transition to plunge

It is evident that the geodesic scatter angle δφ(0) must diverge as the separatrix is

approached and the trajectory tends closer and closer to the infinite whirl of the critical

orbit. In fact, it can be established that δφ(0) diverges logarithmically:

δφ(0) = A0(v) ln

(︃
δb

bc(v)

)︃
+ const(v) + · · · , (5.5)

where

A0(v) = −
(︃
1− 12M2(1− v2)

v2bc(v)2

)︃−1/4

. (5.6)

This result is derived in Appendix E.

Moving on to include the effect of the self-force, there is some subtlety in the near-

separatrix limit. Until now, we had assumed that, under the action of the self-force,

the perturbed trajectory remained “close” to the background geodesic. This allowed us,

for example, to calculate the scatter angle correction by evaluating the self-force and

the scatter angle integral (2.66) along the background geodesic. In the near-separatrix

limit, however, this assumption must break down; rather than continue on an infinite

circular whirl, the emission of radiation means the SF-perturbed trajectory would either

plunge into the black hole, or scatter back to infinity, after a finite whirl time. Despite

this concern, our usual definition of δφ(1), in which we evaluate integral (2.66) along

the background geodesic, remains perfectly well-defined in the near-separatrix limit. It

may no longer be the case, however, that ηqδφ
(1) ≪ δφ(0), even for “small” values of

ηq. Indeed, it was found numerically in Ref. [149] that δφ(1) exhibits an even stronger

divergence than δφ(0) as δb→ 0,

δφ(1) ∼ A1(v)

(︃
bc(v)

δb

)︃
, (5.7)

where A1(v) is some function of v and ∼ denotes leading-order asymptotic equivalence

as δb → 0 (inclusive of all multiplicative factors on the right hand side). This ensures

that for any fixed value of ηq > 0, the “correction” term ηqδφ
(1) will always exceed the

geodesic term δφ(0) for sufficiently small δb.

Our next task is to derive an expression for the coefficient A1(v) as an integral of the

self-force along the critical orbit, analytically confirming the form of the divergence in

Eq. (5.7) in the process. Considering first the dissipative piece, our starting point is the

general formula for δφ
(1)
diss in Eq. (2.69), which we rewrite as an integral over proper time

dτ = τχdχ. Our goal is to approximate this expression at small δb = b − bc(v) for an

arbitrary v. To this end, we substitute p = pc(e) + δp = 6 + 2e + δp in αE,L, expand

to leading order in δp (at fixed e), and then substitute for δp in terms of δb using the

leading-order expression (E.5) from App. E. This procedure gives, at leading order in
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δb,

δφ
(1)
diss ∼

1

δb

∫︂ +∞

−∞

(︂
cEF

⊥diss
t + cLF

⊥diss
φ

)︂
dτ, (5.8)

with

cE = −2(3− e)1/2(3 + e)5/2M

(e+ 1)2
√︁
e(e− 1)

, (5.9)

cL = −(3 + e)(3− e)1/2√︁
2e(e2 − 1)

. (5.10)

Here the integrand is evaluated along the outbound branch of the critical geodesic with

b = bc(v), whose periapsis is at τ → −∞. We have thus reproduced Eq. (5.7), with

Adiss
1 (v) =

1

bc(v)

∫︂ +∞

−∞

(︂
cEF

⊥diss
t + cLF

⊥diss
φ

)︂
dτ. (5.11)

One should resist temptation to write the integral here as −cEErad + cLLrad [recalling

Eq. (2.71)], since both Erad and Lrad diverge for a critical geodesic, due to the infinite

whirl. The integral in Eq. (5.11), however, is well defined and finite. We discuss the

convergence of this integral further below, in Sec. 5.2.1.

A similar procedure is applied to the conservative piece. Starting with Eq. (2.68), we

expand the functions Gcons
E (τ) and Gcons

L (τ) (given explicitly in Ref. [149] in terms of p, e)

in δp about pc(e) + δp = 6 + 2e at fixed e and τ , and then substitute for δp in terms of

δb using the leading-order expression (E.5) from App. E. We find that the leading-order

term in δb is τ -independent. In fact, the calculation yields an expression of a very similar

form to that for δφ
(1)
diss:

δφ(1)
cons ∼ − 1

δb

∫︂ +∞

−∞

(︂
cEF

⊥cons
t + cLF

⊥cons
φ

)︂
dτ, (5.12)

with the same coefficients cE and cL as in Eq. (5.8). Thus

Acons
1 (v) = − 1

bc(v)

∫︂ +∞

−∞

(︂
cEF

⊥cons
t + cLF

⊥cons
φ

)︂
dτ. (5.13)

Again, the integration is done along the outbound branch of the critical orbit with

velocity v. Its convergence is discussed in Sec. 5.2.1.

In Chapter 4, we obtained the conservative and dissipative forces along our given orbit

from a calculation of only the retarded scalar-field along that orbit. We achieved this

using the general Eq. (2.59), which relates the self-force arising from the advanced field

at a given point to the self-force from the retarded field at a “conjugate” point with the

same value of rp, but opposite sign of ṙp. For the case of a critical orbit b = bc(v), the

conjugate to a given point now lies on the opposite branch. A numerical calculation of

the conservative and dissipative forces along a critical orbit thus requires a calculation
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of the self-force along both critical branches (or, in principle, separate calculations of

the advanced and retarded forces along a single branch instead).

Our immediate concern, however, is the reverse problem. Equations (5.11) and (5.13)

give us expressions for Acons
1 and Adiss

1 in terms of the conservative and dissipative forces

evaluated along the outbound branch of the critical orbit, and we wish to add them to

obtain the total coefficient A1(v) = Acons
1 (v) + Adiss

1 (v) in terms of the total self-force,

F⊥
α . Adding Eqs. (5.11) & (5.13), we get

A1(v) =
1

bc(v)

∫︂ +∞

−∞

[︂
cE

(︂
F⊥diss
t − F⊥cons

t

)︂
+ cL

(︂
F⊥diss
φ − F⊥cons

φ

)︂]︂
dτ, (5.14)

where the self-forces and integral are again evaluated on the outbound branch. This

cannot be immediately expressed in terms of an integral of the total F⊥
α . Instead, we use

Eq. (2.59) with Eqs. (2.57) & (2.58) to note that for α = t, φ, the value of F⊥diss
α −F⊥cons

α

at a given point along the outbound branch is equal to F⊥diss
φ + F⊥cons

φ = F⊥
α at the

conjugate point along the inbound branch. Equation (5.14) can thus be rewritten

A1(v) =
1

bc(v)

∫︂ +∞

−∞

(︂
cEF

⊥
t + cLF

⊥
φ

)︂
dτ, (5.15)

where the integral is now evaluated along the inbound branch. In Eq. (5.15), as in (5.11),

the individual integrals over the cE and cL terms do not exist, but the integral of their

sum does, as we explain next.

5.2.1 Convergence of integrals

At large radius, F⊥
t and F⊥

φ /rp decay as r−3
p ∼ τ−3 [149], so the integrals in Eqs. (5.11))

and (5.13) converge well at their upper limits, and the one in (5.15) converges well at

its lower limit. As mentioned, the convergence in the opposite limit, where the critical

geodesic executes an infinite whirl, is more subtle, and requires some analysis.

We start with the conservative case. For a nearly circular orbit we have F⊥cons
α ∝ ṙp for

α = t, φ [186], so (5.13) can be written as

Acons
1 (v) = − 1

bc(v)

∫︂ +∞

rmin

(︂
cEF̂

cons
t + cLF̂

cons
φ

)︂
dr, (5.16)

where rmin is the whirl (periapsis) radius, and F̂
cons
α := F⊥cons

α /ṙp has a finite r → rmin

limit. In fact, each of the components are bounded everywhere in the integration domain,

and fall off as F̂
cons
t ∼ r−3

p and F̂
cons
φ ∼ r−2

p at large r, so the integral in (5.16) exists.

The dissipative case is more delicate. The components F⊥diss
t and F⊥diss

φ do not vanish

on the whirl radius, so the integrals of the corresponding terms in Eq. (5.11) do not
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separately converge, and the same holds true also for the two separate full SF integrals

in Eq. (5.15) (since the integrals of the conservative pieces do converge). However, the

integral of the sum of cE and cL terms does converge, in both (5.11) and (5.15). To see

this, note

cL
cE

=
1

M

(︃
1 + e

6 + 2e

)︃3/2

=

√︄
M

r3min

= ΩLSO, (5.17)

the angular frequency (= φ̇p/ṫp) of the whirl. Near the whirl radius we have φ̇p/ṫp =

ΩLSO +O(ṙp), so, using u
αF⊥

α = 0, it follows that, during the whirl,

cEF
⊥
t + cLF

⊥
φ = cE(F

⊥
t +ΩLSOF

⊥
φ )

= −cE(ṙp/ṫp)F⊥
r +O(ṙp). (5.18)

Thus the integrand in Eq. (5.15) is bounded everywhere (falling off as r−2
p at infinity),

and we conclude that the integral converges. Since the integral of the conservative

piece converges also, we can conclude that, in Eq. (5.11), the integral of the dissipative

piece alone also converges. Nonetheless, care must be taken if numerically evaluating

the integrands in Eqs. (5.11) & (5.15) near the whirl radius, due the large degree of

cancellation expected between the cE and cL terms.

5.3 Resumming post-Minkowskian expansions using strong-

field self-force results

In this section, we propose a method for incorporating strong-field self-force information

(in the form of the singularity coefficient A1(v)) into post-Minkowskian results for the

scatter angle, with the aim of extending the latter’s validity to smaller values of b.

To this end, we introduce the function

Ψ(v, b) := A0(v)

[︄
log

(︃
1− bc(v)[1− ηqA1(v)/A0(v)]

b

)︃

+

4∑︂
k=1

1

k

(︃
bc(v)[1− ηqA1(v)/A0(v)]

b

)︃k ]︄
. (5.19)

This function has the following significant properties:

(i) Ψ = O(b−5) as b → ∞. This follows from noting the counter-terms in the second

line of Eq. (5.19) have been chosen to exactly cancel the leading terms in the large-b

expansion of the logarithm.
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(ii) In the geodesic limit ηq → 0, Ψ possesses the same logarithmic singularity as δφ(0).

More precisely, introducing the self-force expansion of Ψ,

Ψ = Ψ(0) + ηqΨ
(1) +O(η2q ), (5.20)

defined at fixed (v, b), we have that limb→bc(v)

(︁
δφ(0) −Ψ(0)

)︁
is finite.

(iii) At 1SF order, Ψ possesses the same ∼ 1/δb divergence as the scatter angle correc-

tion δφ(1),

Ψ(1) ∼ A1(v)

(︃
bc(v)

δb

)︃
. (5.21)

We note that the quantity −ηq bc(A1/A0) in Eq. (5.19) may be interpreted as the self-

force correction to the critical impact parameter bc(v) (at fixed v).

We then define the resummed scatter angle,

δφ̃(v, b) := δφ4PM(v, b) + Ψ(v, b), (5.22)

where δφ4PM is the “plain” expansion for the scatter angle, correct to 4PM order. This

resummed scatter angle then has the following properties:

1. Using property (i) above, δφ̃− δφ4PM = O(b−5) as b→ ∞.

2. Using property (ii) and the regularity of the plain 4PM scatter angle, for ηq = 0 the

resummed angle has the same logarithmic divergence as δφ(0) near the separatrix.

3. Using property (iii), the 1SF term in the self-force expansion of δφ̃ has the same

A1(v)bc(v)/δb divergence as δφ(1) near the separatrix.

Putting these together, δφ̃ reproduces the b → ∞ behaviour of δφ correctly through

4PM order, whilst also matching the b→ bc(v) behaviour through first self-force order.

We may test the effectiveness of our resummation in the geodesic limit immediately,

without the need for a self-force calculation. Figure 5.3 displays the plain and resummed

4PM expressions for δφ(0), alongside the exact value from Eq. (2.26). The plain 4PM

expression clearly deviates from the exact expression in the b→ bc(v) limit, as the former

does not pick up the logarithmic divergence. By design, the resummation forces better

agreement near the separatrix, but we find that it also improves agreement remarkably

at all values of b, even in the PM domain (b→ ∞).

In fact, a similar resummation utilising the logarithmic geodesic-order singularity was

previously adopted in Ref. [103], with the successful aim of improving agreement be-

tween PM expansions for the scatter angle and the results from NR simulations. The

novel feature of our proposal is the inclusion of the first-order self-force information
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Figure 5.3: Comparisons between plain (blue) and resummed (orange) 4PM expres-
sions for the geodesic scattering angle plotted as a function of δb at fixed v = 0.5.
Also plotted is the exact expression for the geodesic scatter angle (dashed black) from
Eq. (2.26). The resummation dramatically improves agreement with the exact result
at all values of b. Inset: Differences relative to the exact geodesic scatter angle for the
plain 4PM expression (blue) and resummed 4PM expression (orange). Modified from
[160].

encoded in the singularity coefficient A1(v). Resumming PM results in this manner be-

comes particularly advantageous at 1SF order, where closed-form analytic expressions

for the scatter angle are no longer available, and where numerical calculations are highly

expensive. Rather than having to populate the full 2-dimensional (v, b) orbital param-

eter space, the semi-analytic resummed scatter angle only requires us to calculate the

self-force for the 1-parameter family of geodesics with b = bc(v), significantly reducing

the computational burden.

5.4 Self-force calculations along near-critical geodesics

We established in Sec. 5.2 that, in principle, the coefficient A1(v) can be obtained from

a calculation of the self-force along the critical orbit b = bc(v). In practice, however,

we have developed our frequency-domain code to handle non-critical orbits b > bc(v)

only, and extending to b = bc(v) requires non-trivial modifications that we will discuss

in Chapter 7. The time-domain code of Ref. [149] is currently restricted to non-critical

orbits also. Consequently, rather than evaluate integral (5.15) directly, we will instead
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calculate the self-force along a sequence of orbits with small δb > 0 (at fixed values of

v), and then extract the coefficient A1(v) by numerically fitting Eq. (5.7) to the data.

In this section, therefore, we explore the calculation of the self-force along near critical

geodesics. Calculations with the FD code immediately reveal the significance of large-

ℓ modes in the high-velocity limit, motivating the development of a hybrid TD/FD

approach which exploits the FD code’s high-precision access to large-ℓ modes near to

periapsis, while also retaining the TD code’s better behaviour at large radius. We

conclude the section by presenting selected numerical results for the scalar-field self-force

along near-critical geodesics, highlighting the impact of the hybridisation and illustrating

the features of the self-force in this regime.

5.4.1 High-velocity limit

In Sec. 4.3.1 we validated our self-force calculation by verifying that the terms in the

mode-sum (2.49) decayed at the correct rate in ℓ. In that instance (as expected for

all standard self-force calculations), the terms of the mode-sum were found to decay

as ℓ−8 after subtracting the higher-order regularisation terms up to and including F[6]

from Eq. (2.55). Fundamentally, as discussed in Sec. 2.2.2, the index of the power law

reflects the residual non-smoothness of the field we are reconstructing, arising from the

incomplete subtraction of the singular field.

While examining the results of our FD code, we have discovered an interesting new

deviation from this standard behaviour, observed only in the near-separatrix, high-

velocity limit. Figure 5.4 provides an illustration. It shows the F[4]-regularised ℓ-mode

contributions to the t-component of the self-force (i.e. the terms of the mode-sum (2.49)

for α = t, with parameters up to and including F[4] subtracted), at a certain point along

a certain near-separatrix orbit with v = 0.8. For comparison, the same is also shown for

a lower-velocity orbit with v = 0.2. The standard behaviour predicts that as ℓ → ∞,

these ℓ-mode contributions should tend towards the first neglected term from Eq. (2.55),

namely

F[6]t

(ℓ− 5
2)(ℓ−

3
2)(ℓ−

1
2)(ℓ+

3
2)(ℓ+

5
2)(ℓ+

7
2)
. (5.23)

The parameter F[6]t is known analytically, and expression (5.23) is plotted for both the

v = 0.2 and v = 0.8 orbits as reference. From the figure, we can see that for the v = 0.2

case the contributions approach the asymptotic prediction closely after ℓ ≈ 15. For

v = 0.8, however, the magnitude of modal contributions picks up again at around ℓ = 14

to form a broad “bump” in the angular spectrum. The ultimate ℓ−6 tail presumably

develops only at greater values of ℓ, beyond the range accessible to us here. It is believed

that this non-standard large-ℓ behaviour, corresponding to the presence of narrow an-

gular features in the field, is associated with relativistic beaming of the scalar radiation
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Figure 5.4: F[4]-regularised ℓ-mode contributions to the t-component of the self-
force at positions rp = 4.7M and rp = 4.2M along the outbound legs of the orbits with
parameters (v, b) = (0.8, 6.07387M) and (0.2, 20.3825M), respectively (both orbits have
δb ≈ 0.0005M). Also plotted is the F[6] regularisation term for each case, towards which
the F[4]-regularised modes should tend as ℓ → ∞. The dips near ℓ = 13 correspond to
a sign change in both datasets. At high velocity, the ℓ-mode contributions take longer
to settle down to the predicted asymptotic ℓ−6 decay, with distinct large-ℓ peaks visible
at intermediate radii. Modified from [160].

emitted by the particle. Relativistic beaming was previously suggested in Ref. [187]

as the likely explanation for behaviour they observed in the ℓ-mode contributions to

various gravitational wave energy fluxes from different ultra-relativistic point particle

sources. Beaming effects were also noted in gravitational waveforms during the (ultra-

relativistic) near-horizon portion of quasicircular inspirals into near-extremal Kerr black

holes in Ref. [188].

5.4.2 Numerical method

The broad ℓ-mode spectrum for high velocities noted in the previous section has impor-

tant practical implications. When truncating the mode sum at ℓmax = 15 (the practical

limit of the TD code), the error compared to ℓmax = 25 is observed to be on the order

of several percent in the vicinity of periapsis in some instances. This is significantly

larger than the other estimated numerical errors in either the TD or FD codes in that

region. Fortunately, the problem is greatest in the immediate vicinity of the periastron,

precisely where the FD method has high-precision access to large-ℓ modes. Conversely,

the problem becomes less significant at large radii, where the TD code outperforms the

FD code. This naturally suggests a hybrid TD/FD approach, which utilises the optimal

code in each regime.



94
Chapter 5. Scattering near the transition to plunge and the resummation of

post-Minkowskian series

In this section we will describe how we achieve this hybridisation in practice, beginning

with a summary of the workings of the TD code, describing the configuration of the

FD code we used for the near-critical orbit calculations, and then discussing how the

datasets from both codes were combined to create the best self-force model for a given

orbit. We end by presenting some example self-force results, illustrating the features of

the self-force along near-critical orbits and highlighting the impact of hybridisation.

5.4.2.1 Time-domain self-force calculation

The TD code developed in Ref. [149] obtains the spherical harmonic modes ψℓm(t, r)

of the field using a characteristic evolution of the (1+1)d scalar-field equation (2.79).

The initial value problem for each ψℓm is solved on a fixed grid of constant Eddington-

Finkelstein coordinates U = t − r∗, V = t + r∗, using a second-order finite difference

scheme. We do not describe the details of this scheme (which may be found in App. B of

Ref. [149]), except to note that the delta-function source is implemented using “jump”

conditions which are applied for each cell of the numerical grid crossed by the geodesic

trajectory. Vanishing initial data ψℓm = 0 is specified on the initial characteristic surfaces

U = U0, V = V0. This initial data is unphysical, leading to a spike of spurious “junk”

radiation, which propagates through the spacetime. The extraction of the physical

modes ψℓm and their derivatives evaluated on the orbit must be delayed until after this

junk has been allowed to dissipate.

A typical TD run uses a numerical grid split into cells of width h =M/128, and produces

clean SF data for rmin ≤ rp ≤ rfin (along both inbound and outbound legs of the orbit),

where in these tests rfin ranged from 450M to 1250M . Since the runtime is O(r2fin), it

is prohibitive to choose rfin much larger than this value. Furthermore, the resolution

of the grid must grow as ℓ increases, leading to a rapid degradation in computational

performance. In practice this means that it is prohibitive for the TD code to routinely

go beyond ℓmax = 15.

5.4.2.2 Frequency-domain self-force calculation

For the calculations in this chapter, we use the same overall FD method used previously

in Chapter 4. For each orbit, the values of the C−
ℓmω were pre-computed up to ℓmax = 25

using the IBP4corr5 method with rmax = 2000M for |Mω| ≥ 0.05, and IBP04corr5 with

the same rmax and rsplit = 500M when |Mω| < 0.05. The C−
ℓmω data was once again

stored with density M∆ω = 1.25× 10−3.

We once again made use of adaptive ℓ-truncation in the mode-sum (2.49). The original

algorithm introduced in Sec. 4.4 required some modifications in order to handle the

large-ℓ peaks observed in Sec. 5.4.1, which would have otherwise triggered the early
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truncation of the mode-sum. Preventing such a premature truncation is particularly

important in light of the large contribution these peaks make to the total self-force. Our

algorithm was thus modified in the following manner:

• A new clause was added which allowed the next regularised ℓ-mode to be included

in the sum provided it was less than some ceiling. The value of this ceiling, Fmax,

was updated on a rolling basis whenever ℓ ≤ ℓmin or
⃓⃓⃓
F

(reg)ℓ
α

⃓⃓⃓
< σ1

⃓⃓⃓
F

(reg)ℓ−1
α

⃓⃓⃓
, with

the value

min

(︃
Fmax, 2

⃓⃓⃓
F (reg)ℓ−3
α

⃓⃓⃓1/2 ⃓⃓⃓
F (reg)ℓ−2
α

⃓⃓⃓1/3 ⃓⃓⃓
F (reg)ℓ−1
α

⃓⃓⃓1/6)︃
. (5.24)

• The clause allowing modes to be added following a single change of sign among

the preceding four ℓ-modes was extended to the preceding five ℓ-modes.

• Minor changes were made to some parameters appearing in the algorithm. The

safety factor σ2 was increased from 2 to 5. Furthermore, rather than adopting a

piecewise value of ℓmin, we adopted a uniform value of ℓmin = 5 instead.

The effectiveness of this algorithm will be demonstrated in Sec. 5.4.3.

Furthermore, the algorithm was implemented so that the dynamical ℓ-truncation was

performed on the fly, at the same time as the calculation of the ℓ-modes themselves.

This means that we can avoid wastefully calculating large numbers of modes which will

ultimately be excluded anyway. This is in contrast to Sec. 4.4, where we pre-computed

the modes with piecewise constant ℓmax, and then used the dynamic algorithm to refine

the truncation at each orbital position, discarding many un-used modes in the process.

The computational saving of our new approach may be particularly significant, because

the discarded modes are precisely those which involve high degrees of cancellation in

the Fourier integrals, and thus take the longest to evaluate due to repeated interval

bisections in the numerical quadrature.

5.4.2.3 Hybrid scatter angle calculation

For a given geodesic orbit, the TD-FD data hybridisation is performed in the following

way. First, the TD and FD codes are run separately. The self-force is extracted from

the TD code at radii rmin ≤ rp ≤ rfin, and it is also calculated at a grid of radii in

rmin ≤ rp ≤ 50M using the FD code. The output of the FD code includes the truncation

value ℓmax used at each position, and from this we identify the largest radius rswitch such

that ℓmax ≥ 15 for all components of the force at all radii rp ≤ rswitch. For the orbits

tested in this chapter, we always found rswitch < 50M , justifying the appropriateness of

our FD radial truncation. The scatter angle is then calculated by recasting Eq. (2.66)

as an integral over radius r, and performing the sections over rmin ≤ r ≤ rswitch and
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Figure 5.5: The azimuthal component of the unprojected self-force for the orbit with
(v, b) = (0.7, 6.71257M) (corresponding to δb ≈ 0.0005M), as calculated using the FD
(blue), TD (orange) and hybrid (dashed black) approaches. The vertical lines indicate
the value of rswitch ≈ 6.97M where the hybrid model transitions between the FD and
TD data.

rswitch < r < rfin separately using self-force data from the FD and TD codes, respectively.

This integration is performed using Mathematica’s black-box NIntegrate function.

As a final step, we fit a polynomial in 1/rp to the final 10-20% of the TD self-force data;

this approximant is then used to estimate the r > rfin contribution to the scatter angle

integral. The range of the fit and the degree of the polynomial are varied, allowing us to

estimate the error ϵtail in the scatter angle arising from this tail fit. In Refs. [149, 151],

which did not encounter the large-ℓ features observed at high-velocities in Sec. 5.4.1,

ϵtail was typically the dominant source of error in the scatter angle.

5.4.3 Selected self-force results

Figure 5.5 shows the unprojected self-force component F self
φ for the orbit with parameters

v = 0.7 and b = 6.71257M , corresponding to δb ≈ 0.0005, as calculated using the

FD, TD and hybrid approaches. The impact of the hybridisation is immediately clear.

In the vicinity of periapsis (t = 0, rp = rmin ≈ 3.27M), there is a clear naked eye

difference between the FD and TD results, with a peak relative difference of 5.2%. This

difference is caused almost entirely by the inclusion of ℓ > 15 modes in the FD code,

and the hybridisation is critical to ensure we include as much of this large contribution
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Figure 5.6: Same as Fig. 5.5, but for the orbit with (v, b) = (0.2, 20.3825M) (again
δb ≈ 0.0005M). In this instance rswitch ≈ 6.01M .

as possible. As the radius rp along the orbit increases, the gap between the TD and FD

codes then closes.

At larger radii, the FD curve in Fig. 5.5 displays distinct jagged features after r ∼ rswitch,

where the FD data may deviate significantly from the smooth TD curve. These features

may be attributed to rapid variations in the value of ℓmax, and in particular the instances

of large deviation from the TD code are caused by the accidental inclusion of anomalous

high-cancellation modes. The root cause of this problem lies in the amendments we

made to our truncation algorithm in Sec. 5.4.2.2. The permissive nature of our updated

algorithm, which allows any mode to be included so long as it does not exceed the rolling

ceiling, increases the risk of including deviant modes as compared to the maximally strict

algorithm of Sec. 4.4, which only allows modes to be included if they are decreasing (with

a narrow exception to allow for routine changes of sign). The impact on our calculation,

however, is minimal. As can be seen from the figure, the jagged features only begin to

appear shortly around rswitch, and there are no features of significant amplitude in the

r ≤ rswitch region (something which we carefully verified for all orbits used in the next

section). The hybrid model is thus essentially unaffected. This is not luck or coincidence:

the inclusion of deviant ℓ-modes does not become an issue until the cancellation problem

has become well-established, by which point the FD code’s ℓmax will have already fallen

to around, or below, 15.

Figure 5.6 again displays the self-force component F self
φ , but this time for the orbit with

v = 0.2 and b = 20.3825M (again δb ≈ 0.0005). As expected, the impact of hybridisation

is much smaller at this lower velocity, and the TD and FD curves are visually coincident
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Figure 5.7: Strong-field numerical results for the dissipative (orange), conservative
(blue), and total (green) pieces of the scattering angle for an initial velocity v = 0.5.
The values were generated with the hybrid model, with error bars too small to be
discerned on the scale of this plot. The solid lines are the extracted divergences of the
form ∼ A1(bc/δb). The fitted values of A1 are given in Table 5.1. Modified from [160].

throughout the range. Another notable feature is the distinct flattening of the self-force

around periapsis. This is a generic feature of the self-force for small δb, being seen also

in Fig. 5.5, and it arises from the particle’s prolonged quasicircular whirl.

5.5 Calculating A1(v) by extrapolation

We fixed a grid of velocities in the range 0.15 ≤ v ≤ 0.7 with spacing ∆v = 0.05.

At lower velocities, the transition to the asymptotic behavior δφ(1) ∼ 1/δb is delayed

until smaller values of δb, complicating the extrapolation. At higher velocities, it takes

longer for the initial junk radiation to separate from the particle in the TD simulation,

forcing us to start at a larger initial radius and hence increasing computational cost.

For each velocity included in our sample, we ran the TD and FD codes to calculate the

SF along each of the orbits with b = bc(v) + δb, where δb takes values in {0.0005, 0.001,
0.0022, 0.005, 0.01, 0.022, 0.05, 0.1, 0.22, 0.5, 1}. The values of δφ(1)

cons and δφ
(1)
diss were then

calculated separately for each orbit using the hybrid method outlined in Sec. 5.4.2.3.

Figure 5.7 displays δφ(1), δφ
(1)
cons and δφ

(1)
diss, plotted as functions of δb at fixed v = 0.5,

illustrating the 1/δb divergence. For each value of v in our sample we fit the numerical

dataset to the expression on the right hand side of Eq. (5.7), to obtain an estimate of

A1(v). For this purpose we use Mathematica’s NonlinearModelFit function, weighting
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Figure 5.8: Values of the singularity parameter A1(v) for the conservative (blue),
dissipative (orange), and total (green) pieces as a function of initial velocity v. The
error bars on the values are shown but are barely visible on this scale. Shown in solid
lines are the best-fit curves given in Eqs. (5.25)–(5.27).

each data point by 1/ϵ2tail, where, recall, ϵtail is the estimated error in the scattering

angle due to the analytic fit to the SF at large radius. This routine returns an estimate

for the value of A1(v), together with an estimate of the fitting error in this value. We

perform the fit for the conservative and dissipative pieces separately, and then calculate

A1(v) = Adiss
1 (v) + Acons

1 (v). This approach is potentially more accurate, because, as

illustrated in Fig. 5.7, the opposite signs of the conservative and dissipative contributions

cause the total scattering angle to approach the asymptotic 1/δb behavior somewhat

more slowly than for δφ
(1)
cons and δφ

(1)
diss individually.

Our fitting procedure is as follows. For each velocity, values of Adiss
1 and Acons

1 are

obtained by fitting to the N smallest values of δb in our sample, for N = 3, ..., Nmax. We

took Nmax = 8 for v ≥ 0.3, and Nmax = 6 for v < 0.3 where the ∼ 1/δb trend is observed

to break down at lower values of δb. A best estimate for each velocity was obtained

by fitting a constant value to these individual fits, again using NonlinearModelFit,

weighting the individual fits by the inverse squares of their estimated errors. The final

error bar on A1 (for each v) was conservatively estimated as the range between the

largest and smallest values in our sample of individual fits, including their individual

error bars.
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v A1 Acons
1 Adiss

1

0.15 0.01642+80
−22 −0.01637+04

−14 0.03280+80
−17

0.20 0.01522+60
−35 −0.01600+4

−6 0.03122+60
−34

0.25 0.01373+31
−11 −0.01568+24

−05 0.02941+19
−10

0.30 0.01234+40
−31 −0.01507+16

−29 0.02741+33
−10

0.35 0.01062+12
−07 −0.01477+8

−4 0.02539+9
−5

0.40 0.0096+4
−5 −0.01393+17

−50 0.02357+32
−19

0.45 0.00839+70
−32 −0.01345+29

−21 0.02184+70
−25

0.50 0.00731+5
−4 −0.012670+26

−27 0.019978+50
−35

0.55 0.00639+21
−25 −0.01190+14

−20 0.01829+16
−15

0.60 0.00570+15
−40 −0.01119+03

−35 0.01689+15
−20

0.65 0.004761+26
−26 −0.010585+18

−18 0.015345+19
−20

0.70 0.00407+15
−15 −0.00972+11

−11 0.01379+11
−10

Table 5.1: Calculated values of A1(v), A
cons
1 (v) and Adiss

1 (v), with estimated error
bars on the last displayed decimals (e.g., 0.01642+80

−22 means 0.01642+0.00080
−0.00022). The error

bars for A1(v) are obtained by adding the error bars of the conservative and dissipative
pieces in quadrature.

The resulting values of A1(v), with error bars, are displayed in Fig. 5.8 and tabulated

in Table 5.1. Also included in Fig. 5.8 are the best-fit curves

A1(v) ≈ 0.0222− 0.0398v + 0.0199v2, (5.25)

Acons
1 (v) ≈ −0.0175 + 0.0060v + 0.0072v2, (5.26)

Adiss
1 (v) ≈ 0.0406− 0.0488v + 0.0154v2, (5.27)

obtained by fitting functions of the form a+ bv + cv2 to the numerical data, weighting

each point by the inverse square of the size of its error bar.

5.6 PM resummation: results

With values of A1(v) in hand, we now test the performance of our resummed scatter

angle (5.22), using the numerical self-force scatter angle calculation as a benchmark.

Figure 5.9 displays the numerical values of δφ
(1)
cons and δφ

(1)
diss as functions of δb at fixed

v = 0.5, alongside the plain and resummed 4PM expressions for the same quantities.

The plain 4PM expression agrees with the numerical self-force results to within a few

percent or less in the weak-field (δb ≳ 10M), but the accuracy deteriorates rapidly as

the impact parameter is reduced. The resummed PM expression, on the other hand, is

uniformly accurate across the entire domain. Indeed, the resummation appears to even

increase the agreement in the weak-field. Similar results are obtained for all other values

of v sampled in our work.
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Figure 5.9: Comparisons between the plain (dashed) and resummed (solid) 4PM
expressions for the conservative (blue) and dissipative (orange) contributions to the
scalar-field self-force correction to the scatter angle at v = 0.5. Inset: relative difference
between the PM results and the “exact” numerical self-force values. The resummation
formula, given in Eq. (5.22), uses the values of Acons

1 and Adiss
1 given in Table 5.1. The

self-force scatter angle corrections were calculated using the hybrid method for δb ≤M ,
and using the TD code alone for δb > M . Numerical errors are too small to be visible
on the scale of the main plot. Modified from [160].

We may also confirm the benefit from our novel inclusion of the 1SF terms in the resum-

mation. Figure 5.10 shows the total angle δφ1SF := δφ(0)+ηqδφ
(1) for fixed ηq = 0.1 and

v = 0.5, alongside the corresponding 4PM expressions without any resummation, with

geodesic order resummation, and with the full 1SF order resummation. Both resumma-

tions appear to increase the accuracy in the weak field by approximately an order of

magnitude relative to the plain PM expressions. Differences between the resummations

become manifest in the strong-field regime where the 1/δb divergence starts to domi-

nate. The full resummation captures the scattering angle with at least ∼ 1% precision,

including in regions where the plain PM expansion completely breaks down.
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Figure 5.10: Total scatter angle (geodesic + 1SF correction) for ηq = 0.1 and v = 0.5.
This figure compares the numerical self-force values (blue dots) to the 1SF truncation
of the 4PM scatter angle, δφ1SF

4PM, with no resummation (orange), geodesic order resum-
mation only (green), and full 1SF resummation (red). Inset: relative difference between
the PM results and the numerical values, interpolated over δb. The self-force scatter
angle corrections were calculated using the hybrid method for δb ≤ M , and using the
TD code alone for δb > M . Numerical errors are too small to be visible on the scale of
the main plot. Modified from [160].
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Large radius asymptotics of the

self-force: analytical calculation

In this chapter we present an approach for calculating the self-force analytically as an

expansion in 1/rp at early and late times along the scatter orbit. The benefit of such a

calculation is obvious in the context of our frequency-domain self-force calculations, in

which we are unable to calculate the self-force accurately at rp ≫ rmin. Having accurate

analytical expressions whose domain of validity overlaps with that of the frequency-

domain code would allow us to delegate to the analytical results at larger-rp, enabling

independent frequency-domain calculations of the self-force along the entire orbit with-

out needing to hybridise with time-domain data as in Chapter 5. The analytical results

would also be of direct benefit to time-domain methods too, allowing the simulation to

be terminated at earlier times and thus reducing runtime. Analytical data can also be

used to replace junk-contaminated data early in the simulation, improving accuracy, and

perhaps runtime by reducing the amount of time one must spend waiting for the junk ra-

diation to dissipate. Alternatively, one can tackle the junk radiation problem directly by

extending our calculation of the scalar field to arbitrary positions at early times, giving

an approximation to the physical initial data. Finally, whichever approach is taken, all

numerical self-force calculations must ultimately be truncated at some finite radius, thus

requiring an extrapolation of the self-force to infinity in order to accurately calculate the

scatter angle. Presently, this can only be achieved numerically (as in Sec. 5.4.2.3), but

analytical large-radius expansions will provide an alternate, more accurate, approach.

Our analytical calculation will be performed in the time-domain. We will work in terms

of Eddington-Finkelstein (EF) coordinates,

U := t− r∗, V := t+ r∗, (6.1)
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Figure 6.1: Penrose diagram for the r > 2M coordinate patch of Schwarzschild
spacetime containing a scatter orbit Γ. In this chapter we develop a framework for
calculating the scalar-field self-force at early and late times (highlighted in red) along
the orbit.

such that the Schwarzschild line element takes the form

ds2 = −f(r)dUdV + r2dΩ2, (6.2)

where, recall, f(r) = (1 − 2M/r) and dΩ2 = dθ2 + sin2 θdφ2 is the metric on a unit

2-sphere. We will also make use of the metric determinant, given in these coordinates

by

√
−g =

1

2
f(r)r2 sin θ. (6.3)

The surfaces U, V = const describe rays at 45◦ in the Penrose diagram for Schwarzschild

spacetime, displayed in Fig. 6.1. Also illustrated in the figure is a schematic represen-

tation of a scatter geodesic orbit. Our objective is to approximate the self-force near

past and future timelike infinity, i±. In fact, for the purposes of simplicity we will only

consider the i+ limit here, corresponding to U, V → ∞ along the orbit. The calculation

for the i− limit would proceed similarly. The scalar field equation in (1+1)D will be

reformulated in terms of EF coordinates in Sec. 6.1. We then introduce our perturbative

approach to solving the field equation, and give the appropriate Green’s function. The

leading-order terms in our expansion of the scalar-field ℓ-modes will be derived, and used

to construct the regularised terms in the mode-sums for both the Detweiler-Whiting reg-

ular field and the self-force. The sum over ℓ is performed explicitly, yielding zero in both

cases: the leading-order piece of the scalar-field does not contribute to the self-force.
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Our leading-order results for the individual ℓ-modes are also validated by comparison to

numerical data. We conclude by formulating our strategy for the next-to-leading order

calculation for the scalar-field (from which we will obtain the leading-order self-force),

the results of which remain at a preliminary stage.

6.1 Scalar-field equation in Eddington-Finkelstein coordi-

nates

In EF coordinates, the (1+1)D scalar field equation (2.79) becomes

∂2ψℓm
∂U∂V

+
1

4
Vℓ(r)ψℓm = πrf(r)Tℓm, (6.4)

where Vℓ(r) is as given in Eq. (2.80). Rather than transform Eq. (2.86) to EF coordinates,

it is easier to obtain Tℓm in terms of U, V from first principles, using the coordinate-

invariant definition of T in Eq. (2.31). By the orthogonality of the spherical harmonics,

πrf(r)Tℓm = πrf(r)

∫︂
dΩY ∗

lm(θ, φ)T (x
α
p (τ))

= πqrf(r)

∫︂
dΩY ∗

lm(θ, φ)

∫︂
dτ√
−g

δ4(xα − xαp (τ))

=
2πq

rp(U)

∫︂
dτδ(V − Vp(τ))δ(U − Up(τ))

∫︂
dθ dφY ∗

lm(θ, φ)δ(θ − π/2)δ(φ− φp(τ))

=
2πq

rp(U)u̇p(U)
δ(V − Vp(U))Y ∗

lm(π/2, φp(U)), (6.5)

where we made use of Eq. (6.3) in the third line, and overdots denote d/dτ as usual.

Notice also that we use U as parameter along the geodesic orbit, and Vp(U), for example,

is the relation between the V and U coordinates along that orbit. Equation (6.4) may

thus be rewritten

∂2ψℓm
∂U∂V

+
1

4
Vℓ(r)ψℓm = Sℓm(U)δ(V − Vp(U)), (6.6)

where

Sℓm(U) :=
2πqY ∗

lm(π/2, φp(U))

rp(U)U̇p(U)
. (6.7)

The frequency modes Sℓmω defined in Eq. (2.107) are not exactly the frequency-modes

of Sℓm, but there is no possibility of confusion: in this chapter, any reference to Sℓm will

unambiguously mean the functions defined in Eq. (6.7).
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6.2 Perturbative treatment of the (1+1)D field equation

6.2.1 Hierarchichal expansion of the scalar field

Our perturbative treatment is based on the iterative expansion of the scalar field intro-

duced in Ref. [189]. The first step is to introduce a cutoff R obeying 2M < R < r∗min,

and a new potential

V0(r) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ℓ(ℓ+ 1)

4r2∗
, r∗ ≥ R, ℓ > 0,

0 , r∗ < R, ℓ > 0,

δ(r∗ −R)/M, ℓ = 0,

(6.8)

which approximates the asymptotic behaviour of the true potential Vℓ(r) in the limits

r∗ → ±∞. Consider next an expansion

ψℓm(U, V ) =

∞∑︂
n=0

ψℓm,n(U, V ), (6.9)

where the ψℓm,n obey the iterative equations

∂2UV ψℓm,0 + V0(r)ψℓm,0 = S(U)δ(V − Vp(U)), (6.10)

∂2UV ψℓm,n + V0(r)ψℓm,n = −δV (r)ψℓm,n−1 (∀n > 0), (6.11)

with

δV (r) :=
1

4
Vℓ(r)− V0(r). (6.12)

Provided the sum converges, expansion (6.9) gives a solution to Eq. (6.6). Furthermore, if

the ψℓm,n obey retarded boundary conditions individually, then so too will solution (6.9).

We can thus construct the retarded scalar field by solving the hierarchy (6.10) and (6.11)

with retarded boundary conditions at each level.

We note that expansion (6.9) does not immediately give us the large-radius expansion

that we desire, so we must additionally expand each ψℓm,n in 1/rp. Using Eq. (6.11), and

the fact that δV ∼M , dimensional considerations imply ψℓm,n ∼ (M/L)ψℓm,n−1, where

L is some length scale that does not scale with the mass. If rp was the only other length

scale in our problem, we could immediately conclude that each term in expansion (6.9)

is suppressed by a factor M/rp relative to the preceding term. This would be highly

convenient, as it would ensure we can calculate the 1/rp expansion of the field exactly to

some order using a calculation of only finitely many ψℓm,n, each individually expanded

to the required order in 1/rp. Unfortunately, this argument fails because we have two

additional length scales in our problem: the impact parameter b, and the cutoff R (the

entire field ψℓm is independent of the arbitrary cutoff R, but the individual ψℓm,n need
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Figure 6.2: Regions of the retarded Green’s function of ∂UV + V0 for a fixed field
point (U, V ) inside the sphere r∗ = R (�left panel) and outside it (right panel). The
primary support of the Green’s function in each case is indicated by the shaded areas;
it falls off exponentially in U or V going away from each shaded band to its past.

not be). Establishing that the ψℓm,n decay more rapidly in rp with increasing n would

thus require an explicit calculation, or a careful bounding argument. For the time being,

we proceed with our calculation anyway, with the aim of demonstrating that at least

ψℓm,1 decays more rapidly than ψℓm,0 along the way.

6.2.2 The Green’s function

We find the retarded solutions to Eqs. (6.10) and (6.11) using a Green’s function ap-

proach. The Green’s function we require is the solution G(U, V ;U ′, V ′) of

G,UV + V0 G = δ(U − U ′) δ(V − V ′) (6.13)

which obeys the “retarded” conditions G(U < U ′) = 0 = G(V < V ′). This Green’s

function was derived in Ref. [189]. The functional form of G depends on the positions

of the the field point (U, V ) and source point (U ′, V ′) with respect to the cutoff radius

R. For field points outside R (i.e., V − U > 2R), we identify 3 regions I-III indicated

in the left panel of Fig. 6.2, with corresponding Green’s functions denoted GI
>, G

II
> and

GIII
> . For field points inside R (i.e., V − U < 2R), we identify 3 regions, again labelled

I-III and indicated in the right panel of Fig. 6.2, with corresponding Green’s functions

denoted GI
<, G

II
< and GIII

< .1

1Note this notation differs from that of [189], where Roman numerals were used to label regions
defined for a fixed source point; our GI−III

> correspond to Ref. [189]’s GA−C, and Ref. [189] has no
notation equivalent to our GI−III

< .
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For an external field point, Ref. [189] obtained 2

GI
> =

ℓ∑︂
n=0

Aℓn
∂nUg(U ;U ′, V ′)

(V − U)ℓ−n
, (6.14)

where

g(U ;U ′, V ′) =
1

ℓ!

[︃
(V ′ − U)(U − U ′)

(V ′ − U ′)

]︃ℓ
, (6.15)

and

Aℓn =
(2ℓ− n)!

n!(ℓ− n)!
. (6.16)

Note that for ℓ = 0 this is simply GI
> ≡ 1. We also note that the sum over n can be

evaluated explicitly to give

GI
>(U, V ;U ′, V ′) =

1

ℓ!

(V − U)ℓ+1

(V ′ − U ′)ℓ
∂ℓ

∂U ℓ

[︃
(V ′ − U)ℓ(U − U ′)ℓ

(V − U)ℓ+1

]︃
. (6.17)

The calculations in the present chapter do not currently make use of this simplification,

but this may prove useful for subsequent calculations at higher orders. For regions II

and III the expressions are

GII
> =

ℓ∑︂
n,j=0

ℓ+1∑︂
i=1

βnji
(r′∗ −R)ℓ−jRℓ+j−n

(r′∗)
ℓ rℓ−n∗

Ei(U − V ′ + 2R), (6.18)

GIII
> =

ℓ∑︂
n

ℓ+1∑︂
i=1

γni

(︃
R

r∗

)︃ℓ−n
Ei(U − U ′), (6.19)

where r′∗ = (V ′ − U ′)/2, and βnji and γni are certain constant coefficients (depending

on ℓ only) whose exact values will not be needed for our purposes. The symbol Ei(x)

represents exp(−κix/R), where κi are certain complex numbers satisfying Reκi > 0 for

all i. Hence Ei(x) decays exponentially in x. Results of this form are valid even for

ℓ = 0, where exact expressions are given in Eq. (61) of [189] .

For an internal field point, Ref. [189] obtained

GI
< ≡ 1, (6.20)

GII
< =

ℓ+1∑︂
i=1

γiEi(V − U ′ − 2R), (6.21)

and

GIII
< =

ℓ∑︂
j=0

ℓ+1∑︂
i=1

βji
(r′∗ −R)ℓ−jRj

(r′∗)
ℓ

Ei(V − V ′), (6.22)

2Note that Eq. (6.14) and all subsequent expressions for the Green’s function implicitly contain
factors Θ(V − V ′)Θ(U − U ′), where Θ is the Heaviside step function, to enforce the retarded condition
G(U, V ;U ′, V ′) = 0 whenever U < U ′ or V < V ′. We omit these factors for brevity, and enforce causality
through the choice of integration limits.
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where γi :=
∑︁ℓ

n=0 γni and βji :=
∑︁ℓ

n=0 βnji. Again, it can be checked that these forms

are valid also for ℓ = 0.

6.3 Evaluating ΦR
0 on Γ near i+

The objective of this section is to obtain the Detweiler-Whiting regular piece of the

leading-late-time (LLT), leading-hierarchical (LH) scalar field evaluated on the scatter

geodesic at late times. More precisely, we begin by deriving the retarded fields ψℓm,0

in full generality, considering the different Green’s function regions which contribute

depending on the position of the field evaluation point. We then evaluate the ψℓm,0 on

the scatter geodesic Γ, and derive their LLT behaviour. The ℓ-mode contributions to

the LH scalar field are defined to be

Φℓ0(U, V, θ, φ) :=
1

r

ℓ∑︂
m=−ℓ

ψℓm,0(U, V )Yℓm(θ, φ), (6.23)

and we obtain their LLT behaviour along Γ. Mode-sum regularisation is then used to

obtain the ℓ-mode contributions of the LLT, LH scalar field to the Detweiler-Whiting

regular field. As a final step, we perform the sum over ℓ analytically, finding that the

LLT, LH scalar field does not contribute to the regular field.

6.3.1 Derivation of ψ0

The retarded solution to Eq. (6.10) can be written in terms of the retarded Green’s

function,

ψ0(U, V ) =

∫︂ U

−∞
dU ′

∫︂ V

−∞
dV ′G(U ;U ′, V ′)S(U ′)δ(V ′ − Vp(V

′))

= ψI
0 + ψII

0 + ψIII
0 , (6.24)

where ψX
0 represents the contribution to the double integral from region X (X ∈

{I, II, II}). Note that we have suppressed the explicit ℓm labels in Eq. (6.24) for the

purposes of notational compactness, so that ψ0 ≡ ψℓm,0, S(U) ≡ Sℓm(U) etc. We will

continue with this convention, reintroducing mode labels only when necessary for clarity.

Which source regions X contribute significantly to ψ0(U, V ) depends on whether the

field evaluation point (U, V ) lies in the external zone outside the cutoff, V −U ≥ 2R, or

in the internal zone, V − U < 2R. We consider the two cases separately below.
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6.3.1.1 External evaluation point

By construction, the geodesic trajectory lies entirely outside the cutoff, and hence does

not intersect region III for an external evaluation point. This means that the source has

no support in region III, immediately giving

ψIII
0> ≡ 0 (6.25)

for any external evaluation point.

We see from Fig. 6.3 that in region II, the source is supported only in the subregion

with U ′ < Ū(U), where Ū is the solution of

Vp(Ū) = U + 2R. (6.26)

The contribution from region II is thus given by

ψII
0>(U, V ) =

∫︂ Ū(U)

−∞
dU ′

∫︂ V̄ (U)

V̄ (U ′)
dV ′GII

>(U ;U ′, U ′)S(U ′)δ(V ′ − Vp(U
′)), (6.27)

where

V̄ (U) := U + 2R. (6.28)

Performing the integral over V ′, and substituting the Green’s function from Eq. (6.18),

we arrive at

ψII
0>(U, V ) =

ℓ∑︂
n,j=0

ℓ+1∑︂
i=1

βnji

(︃
R

r∗

)︃ℓ−n ∫︂ Ū(U)

−∞
dU ′

(︃
1− R

r′∗p

)︃ℓ−j (︃ R

r′∗p

)︃j
Ei(U − Vp(U

′) + 2R)S(U ′).

(6.29)

Finally, for region I, the relevant domain of integration depends on whether V ≥ Vp(U)

(i.e. the evaluation point is outside the scatter geodesic Γ) or V < Vp(U) (the evalu-

ation point lies between R and Γ); the two scenarios are illustrated in Fig. 6.3. The

contributions in each case are

ψI
0>(U, V ≥ Vp(U)) =

∫︂ U

Ū(U)
dU ′

∫︂ Vp(U)

V̄ (U)
dV ′GI

>(U ;U ′, V ′)S(U ′)δ(V ′ − Vp(U
′)),

ψI
0>(U, V < Vp(U)) =

∫︂ Up(V )

Ū(U)
dU ′

∫︂ V

V̄ (U)
dV ′GI

>(U ;U ′, V ′)S(V ′)δ(V ′ − Vp(U
′)). (6.30)

Upon integrating over V ′, we have for either scenario

ψI
0>(U, V ) =

∫︂ Ũ(U,V )

Ū(U)
dU ′ GI

>(U ;U ′, Vp(U
′))S(U ′), (6.31)
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Figure 6.3: Two scenarios for an external evaluation point. Left panel: the case
2R + U < V < Vp(U), in which the support of the scatter geodesic Γ in region I is
Ū(U) ≤ U ′ ≤ Up(V ). Right panel: the case V > Vp(U), in which the support of Γ in
region I is Ū(U) ≤ U ′ ≤ U . Solid lines denote the boundaries of the Green’s function
regions I-III (region III omitted for clarity in left panel). The section of Γ lying in
region I is highlighted in red for both cases. Note the support in region II is the same
(U ′ ≤ Ū) for both, and there is no support in region III for either.

where we have introduced

Ũ(U, V ) =

{︄
U for V ≥ Vp(U),

Up(V ) for V < Vp(U).
(6.32)

Substituting from Eqs. (6.7) and (6.14), this becomes

ψI
0>(U, V ) =

ℓ∑︂
n=0

Aℓn
ℓ!(2r∗)ℓ−n

∫︂ Ũ(U,V )

Ū(U)
dU ′ S(U

′)

(2r′∗p)
ℓ
∂nU
[︁
(Vp(U

′)− U)(U − U ′)
]︁ℓ
. (6.33)

6.3.1.2 Internal evaluation point

For an internal field evaluation point, V −U < 2R, the situation reverses. The geodesic

Γ no longer intersects regions I or II (see Fig. 6.4), so that

ψI
0< ≡ 0 ≡ ψII

0< (6.34)

for any internal evaluation point. The sole contribution to ψ0< thus comes from region

III, and, using the Green’s function from Eq. (6.22), it reads

ψIII
0<(U, V ) =

∫︂ Up(V )

−∞
dU ′

∫︂ V

V̄ (U ′)
dV ′GIII

< (U, V ;U ′, V ′)S(U ′)δ(V ′ − Vp(U
′))
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Figure 6.4: For an internal evaluation point, with V − U < 2R, the integration has
support only in region III. Recall from Eq. (6.22) that the Green’s function in this region
is exponentially suppressed to the past of V ′ = V , so that the primary support lies in
the shaded band. Solid lines denote the boundaries of the Green’s function regions
I-III.

=
ℓ∑︂

j=0

ℓ+1∑︂
i=1

βji

∫︂ Up(V )

−∞
dU ′

(︃
1− R

r′∗p

)︃ℓ−j (︃ R

r′∗p

)︃j
Ei(V − Vp(U

′)) S(U ′).

(6.35)

We note that a calculation of the ψ0 contribution to the self-force requires only the value

of ψ0 in a neighbourhood of the worldline Γ, which lies entirely in the external zone.

Consequently, we will not need to make use of Eq. (6.35) in the remainder of this section,

or in the next. One will however require the value of ψ0 at internal evaluation points

if one wishes to solve Eq. (6.11) for ψ1, for example using the strategy we propose in

Sec. 6.5.

6.3.2 Late time expansions

We want to evaluate ψ0(U, V ) for V = Vp(U), and then take the limit U → ∞. To that

end, in this section we will collect large-U expressions for the source S(U) and other

relevant functions evaluated along the orbit.

Our first goal is to obtain large-U expansions for the geodesic trajectory. Using Eq. (2.27),

rp(t) ∼ vt (6.36)
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as t→ ∞, so that

Up(t) ∼ (1− v)t, (6.37)

and hence

r∗p(U) ∼ rp(U) ∼ v

1− v
U (6.38)

at leading order in 1/U as U → ∞. Writing Vp = Up + 2rp∗ and substituting Eq. (6.38),

we arrive at

Vp(u) ∼ αU, (6.39)

where we have introduced

α :=
1 + v

1− v
. (6.40)

We will also find it convenient to invert relation (6.39):

Up(V ) ∼ V/α, (6.41)

and to rewrite Eq. (6.38) in terms of α, in which case it becomes

r∗p(U) ∼ rp(U) ∼
(︃
α− 1

2

)︃
U. (6.42)

Furthermore, substituting Eq. (6.42) into Eq. (2.28), we get

φp(U) ∼ φ∞ +O (1/U)) (6.43)

as U → ∞.

We also have

V̄ (U) ∼ U (6.44)

as U → ∞, a result which follows trivially from Eq. (6.28). The expansion for Ū is

also readily obtained by combining Eq. (6.39) with the equation defining Ū , Eq. (6.26),

yielding

Ū(U) ∼ U/α (6.45)

as U → ∞.
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As a final step to obtain the large-U asymptotics of S(U), we need to expand U̇p. Using

Eqs. (2.1) and (2.10),

U̇p = ṫp − ṙ∗p =
[︂
E ∓

√︂
E2 − f(rp)(1 + L2/r2p)

]︂
/f(rp)

=
[︂
E ∓

√︂
E2 − f(rp)(1 + v2E2b2/r2p)

]︂
/f(rp)

=
E

f(rp)

[︄
1∓

√︄
v2
(︃
1− b2

r2p
+

2Mb2

r3p

)︃
+

2M

E2rp

]︄
. (6.46)

Here the upper sign is for the outbound leg of the orbit, and the lower sign is for inbound.

Taking the rp → ∞ limit, we obtain

U̇p(U → ∞) = E(1− v). (6.47)

Substituting Eqs. (6.38), (6.43) and (6.47) into Eq. (6.7) thus gives

Sℓm(U → ∞) ∼ σℓm
U

, (6.48)

where

σℓm :=
2πq

vE
Y ∗
lm(π/2, φ∞). (6.49)

6.3.3 The retarded field Φ0

We are now in a position to evaluate the fields ψ0 on the orbit and obtain their LLT

behaviour. As any point (U, Vp(U)) lies in the external evaluation zone Vp(U)−U > 2R,

we need to consider the two contributions ψII
0> and ψI

0> defined in Eqs. (6.29) and (6.33)

respectively.

6.3.3.1 Contribution from ψII
0>

Evaluating (6.29) on Γ gives

ψII
0Γ(U) := ψII

0>(U, Vp(U))

=

ℓ∑︂
n,j=0

ℓ+1∑︂
i=1

βnji

(︃
R

r∗p

)︃ℓ−n ∫︂ Ū(U)

−∞
dU ′

(︃
1− R

r′∗p

)︃ℓ−j (︃ R

r′∗p

)︃j
Ei(U − Vp(U

′) + 2R) S(U ′),

(6.50)

where r∗p = r∗p(U) = (Vp(U) − U)/2 and r′∗p = r∗p(U
′). We will now show this

contribution decays to zero as U → ∞.
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To do this, we make use of a bounding argument. Since r∗p(U) > R for all U , we have

the upper bounds

0 <

(︃
R

r∗p

)︃ℓ−n
< 1, 0 <

(︃
R

r′∗p

)︃j
< 1, 0 <

(︃
1− R

r′∗p

)︃ℓ−j
< 1 (6.51)

for all ℓ, n, j and U , and hence we may bound

|ψII
0Γ(U)| <

ℓ∑︂
n,j=0

ℓ+1∑︂
i=1

|βnji|
∫︂ Ū(U)

−∞
dU ′
⃓⃓⃓
Ei(U − Vp(U

′) + 2R) S(U ′)
⃓⃓⃓
. (6.52)

Recall now that Vp(U
′) increases monotonically with U ′ [approximately as ∼ αU ′ at

large U ′], so that when U ′ is large, the support of the integral in Eq. (6.52) decreases

exponentially in U ′ away from its upper boundary. Also, recall from Eq. (6.48) that

near the upper boundary the source function is approximately S(U ′) ∼ σlm/U
′ when U

is large. The combination of these two facts ensures that the integral vanishes in the

limit U → ∞. To prove this, we split each of the integrals on the right hand side of

Eq. (6.52) into two pieces, in the form

∫︂ Ū

−∞
dU ′ =

∫︂ Ū/2

−∞
dU ′ +

∫︂ Ū

Ū/2
dU ′, (6.53)

and consider the limit U → ∞ (in which Ū → ∞ also) of each part separately.

To tackle the first integral in (6.53), we introduce the function

K(U) :=

{︄
1 |U | ≤ U0,

U0/|U | else,
(6.54)

where U0 > 0 is some arbitrary cut-off, and then consider

Ei(U − Vp(U
′) + 2R)/K(aU ′) (6.55)

for some constant a > 0. The derivative of this function is

d

dU ′

(︂
Ei(U − Vp(U

′) + 2R)/K(aU ′)
)︂

=

[︃
κi
dVp
dU ′ − a

d

dŨ
log(K(Ũ))

⃓⃓⃓
Ũ=aU ′

]︃
Ei(U − Vp(U

′) + 2R)

K(aU ′)
. (6.56)

Note that there exists a constant λ > 0 such that dVp/dU > λ for all U .3 Furthermore,

d

dU
logK(U) :=

{︄
0 |U | ≤ U0,

−1/U else,
≤ 1

U0
, (6.57)

3This can be proved simply by noting dVp/dU = (1+ρ)/(1−ρ), where ρ := ṙp/E is bounded strictly
away from unity, i.e. |ρ| ≤ ρmax for some ρmax < 1.
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hence

d

dU ′

(︂
Ei(U − Vp(U

′) + 2R)/K(aU ′)
)︂
≥ (κiλ− a/U0)

Ei(U − Vp(U
′) + 2R)

K(aU ′)
, (6.58)

which we can make > 0 by choosing some 0 < a < κiλU0 (noting that κi, λ and U0 are

all strictly positive themselves). With this choice, the function (6.55) is monotonically

increasing in U ′, so we may bound∫︂ Ū/2

−∞
dU ′
⃓⃓⃓
Ei(U − Vp(U

′) + 2R)S(U ′)
⃓⃓⃓
<
Ei(U − Vp(Ū/2) + 2R)

K(aŪ)

∫︂ Ū(U)

−∞
dU ′⃓⃓S(U ′)K(aU ′)

⃓⃓
(6.59)

≤ Ei(U − Vp(Ū/2) + 2R)

K(aŪ)

∫︂ +∞

−∞
dU ′⃓⃓S(U ′)K(aU ′)

⃓⃓
.

(6.60)

Note that the combination S(U ′)K(aU ′) ∼ 1/U ′2 as both U ′ → ±∞, so that the integral

in the second line of Eq. (6.60) converges. Recalling Eqs. (6.39) and (6.45),

U − Vp(Ū/2) + 2R ∼ U/2 + 2R→ ∞ (6.61)

as U → ∞, and hence

Ei(U − Vp(Ū/2) + 2R)

K(aŪ)
∼ U exp [−κi(U/2 + 2R)] → 0. (6.62)

It thus follows that ∫︂ Ū/2

−∞
dU ′
⃓⃓⃓
Ei(U − Vp(U

′) + 2R)S(U ′)
⃓⃓⃓
−→ 0 (6.63)

as U → ∞.

We bound the second integral in (6.53) in the following manner. Since S(U ′) ∼ σℓm/U
′ as

U → ∞, there exist suitable positive constants U1 and C such that |Sℓm(U ′)| < C/
√
U ′

for all U > U1. From Eq. (6.45), we have Ū ∼ U/α → ∞ as U → ∞, so that Ū/2 > U1

whenever U is sufficiently large. In this case, we may bound∫︂ Ū

Ū/2
dU ′
⃓⃓⃓
Ei(U − Vp(U

′) + 2R)S(U ′)
⃓⃓⃓
< C

∫︂ U/α

U/(2α)
dU ′Ei(U − αU ′)√

U ′

<

√
2αC√
U

∫︂ U/α

U/(2α)
du′Ei(U − αU ′)

=

√
2CR

κi
√
αU

[︂
1− e−κiU/(2R)

]︂
→ 0 as U → ∞. (6.64)
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In summary, we have established that

ψII
0Γ(U → ∞) = 0. (6.65)

6.3.3.2 Contribution from ψI
0>

Evaluating (6.33) on Γ gives

ψI
0Γ(U) =

ℓ∑︂
n=0

Aℓn
ℓ!(2r∗p)ℓ−n

∫︂ U

Ū(U)
dU ′ S(U

′)

(2r′∗p)
ℓ
∂nU
[︁
(Vp(U

′)− U)(U − U ′)
]︁ℓ
. (6.66)

Using Eqs. (6.42) and (6.48), this becomes

ψI
0Γ(U → ∞) =

σℓm
ℓ!

ℓ∑︂
n=0

Aℓn
(α− 1)2ℓ−nU ℓ−n

∫︂ U

U/α
dU ′ ∂

n
U

[︁
(αU ′ − U)(U − U ′)

]︁ℓ
(U ′)ℓ+1

(6.67)

at leading order in 1/U . To simplify the integrand, we make a change of integration

variable U ′ → x(U ′), where x := U/U ′. Under this transformation we have dU ′ =

−(U/x2)dx and ∂nU = (x/U)n∂nx , so that the integral becomes

ψI
0Γ(U → ∞) =

σℓm
ℓ!

ℓ∑︂
n=0

Aℓn
(α− 1)2ℓ−n

∫︂ α

1
dx

∂nx
[︁
(α− x)ℓ(x− 1)ℓ

]︁
xℓ−n+1

. (6.68)

With n sucessive applications of integration by parts, this becomes

ψI
0Γ(U → ∞) = σℓm

ℓ∑︂
n=0

Aℓn
(α− 1)2ℓ−n(ℓ− n)!

∫︂ α

1
dx

(α− x)ℓ(x− 1)ℓ

xℓ+1
. (6.69)

Substituting Aℓn from Eq. (6.16), we may write this as

ψI
0Γ(U → ∞) =

σℓm
(α− 1)2ℓ

Hℓ(α) Iℓ(α), (6.70)

where

Hℓ(α) :=
ℓ∑︂

n=0

(2ℓ− n)!

n![(ℓ− n)!]2
(α− 1)n, Iℓ(α) :=

∫︂ α

1

(α− x)ℓ(x− 1)ℓ

xℓ+1
dx . (6.71)

Both Hℓ(α) and Iℓ(α) can be expressed in terms of simple hypergeometric functions,

which in turn are simply related to Legendre functions Pℓ and Qℓ in the variable (α +

1)/(α− 1) = 1/v. Specifically,

Hℓ(α) = F2F1(−ℓ,−ℓ, 1, α) = (α− 1)ℓ Pℓ(1/v), (6.72)
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and

Iℓ(α) =
(ℓ!)2

(2ℓ+ 1)!
(α− 1)2ℓ+1 F2F1(ℓ+ 1, ℓ+ 1, 2ℓ+ 2, 1− α)

= 2(α− 1)ℓQℓ(1/v). (6.73)

Thus, Eq. (6.70) reduces to

ψI
0Γ(U → ∞) = 2σℓmPℓ(1/v)Qℓ(1/v). (6.74)

6.3.3.3 The retarded field Φℓ0

Our final step in this section is to obtain the LLT behaviour of the ℓ-mode contributions

to the LH retarded scalar field evaluated on the worldline,

Φℓ0Γ(t) :=
1

r

ℓ∑︂
m=−ℓ

ψ0Γ
ℓm(t)Yℓm(θp(t), φp(t)). (6.75)

Substituting the LLT result from Eq. (6.74), making use of the definition of σℓm in

Eq. (6.49), and expanding Yℓm(θp, φp) at leading order as t→ ∞, we obtain

lim
t→∞

[︂
rp(t)Φ

ℓ
0Γ(t)

]︂
=

4πq

vE
Pℓ

(︃
1

v

)︃
Qℓ

(︃
1

v

)︃ ℓ∑︂
m=−ℓ

Yℓm

(︂π
2
, φ∞

)︂
Yℓm

(︂π
2
, φ∞

)︂
. (6.76)

Performing the sum over m using the addition theorem for spherical harmonics,

ℓ∑︂
m=−ℓ

Y ∗
ℓm(θ, φ)Yℓm(θ, φ) =

2l + 1

4π
, (6.77)

we finally obtain

lim
t→∞

[︂
rp(t)Φ

ℓ
0Γ(t)

]︂
= (2ℓ+ 1)

q

vE
Pℓ(y)Qℓ(y), (6.78)

where

y :=
1

v
(> 1). (6.79)

6.3.4 The Detweiler-Whiting regular field ΦR
0

In this section we will consider the Detweiler-Whiting regular piece ΦR0 of the LH scalar

field Φ0, evaluated on the worldline Γ at late times. We will calculate ΦR0 using a mode-

sum regularisation procedure analogous to that introduced for the self-force in Sec. 2.2.2.
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In the present case, the regular field on Γ is obtained via the mode-sum formula

ΦR0Γ(t) =
∞∑︂
ℓ=0

(︂
Φℓ0Γ(t)−B(t)

)︂
, (6.80)

where the regularisation parameter B(t) is given by [63, 169]

B(t) =
2q

π
√︂
L2 + r2p

El1

(︃
π

2
,

L2

L2 + r2p

)︃
, (6.81)

and El1 is defined in Eq. (2.24). As rp → ∞, B has leading-order behaviour

B(t) ∼ q

rp
. (6.82)

Substituting Eqs. (6.78) and (6.82) into Eq. (6.80), we arrive at

lim
t→∞

[︂
rp(t)Φ

R
0Γ(t)

]︂
=

q

vE

∞∑︂
ℓ=0

[︄
(2ℓ+ 1)Pℓ(y)Qℓ(y)−

1√︁
y2 − 1

]︄
, (6.83)

where, recall, y = 1/v and we used vE = (y2 − 1)−1/2.

6.3.4.1 Explicit summation over ℓ

We denote the sum in Eq. (6.83) by Λ(y):

Λ(y) :=

∞∑︂
ℓ=0

[︄
(2ℓ+ 1)Pℓ(y)Qℓ(y)−

1√︁
y2 − 1

]︄
, (6.84)

and perform the sum over ℓ analytically. Intuition strongly suggests that Λ(y) = 0.

To see why, note that the mass M of the central black hole did not enter our previous

calculation – the Green’s function does not depend on M , and neither did the source at

LLT order (recall Eq. (6.48)). The LLT source, in particular, is equivalent to that of a

particle moving along a straight line described exactly by Eq. (6.36). We are therefore

effectively calculating the regular field sourced by a particle moving in a straight line in

flat spacetime, which is known to vanish (along with the self-force).

To prove Λ = 0, we write it as

Λ(y) = lim
n→∞

lim
x→y

n∑︂
l=0

[︄
(2l + 1)Pl(x)Ql(y)−

1√︁
y2 − 1

]︄
(6.85)

and make use of Christoffel’s partial sum formula (see e.g. Eq. 4.18.6 in Ref. [190]),

n∑︂
ℓ=0

(2l + 1)Pℓ(x)Qℓ(y) =
(n+ 1) [Pn+1(x)Qn(y)− Pn(x)Qn+1(y)]− 1

x− y
, (6.86)
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to give

Λ(y) = lim
n→∞

lim
x→y

[︄
(n+ 1) [Pn+1(x)Qn(y)− Pn(x)Qn+1(y)]− 1

x− y
− n+ 1√︁

y2 − 1

]︄
. (6.87)

Replacing Pn+1(x) and Qn+1(y) using the identity

(n+ 1)Pn+1(x) = (x2 − 1)P ′
n(x) + (n+ 1)xPn(x), (6.88)

which also applies for Qn(x), we get

Λ(y) = lim
n→∞

lim
x→y

[︄
(x2 − 1)P ′

n(x)Qn(y)− (y2 − 1)Pn(x)Q
′
n(y)− 1

x− y

+ (n+ 1)Pn(x)Qn(y)−
n+ 1√︁
y2 − 1

]︄
. (6.89)

Note that the first fraction in the above gives rise to an indeterminate limit of the form

0/0, since

lim
x→y

[︂
(x2 − 1)P ′

n(x)Qn(y)− (y2 − 1)Pn(x)Q
′
n(y)− 1

]︂
= (y2 − 1)

[︂
P ′
n(y)Qn(y)− Pn(y)Q

′
n(y)

]︂
− 1

= (y2 − 1)W (y)− 1

= 0, (6.90)

where W (y) = (y2 − 1)−1 is the Wronskian of Pn and Qn. Applying l’Hopital’s rule and

taking x→ y, we obtain

Λ(y) = lim
n→∞

[︂[︁
(y2 − 1)P ′′

n (y) + 2yP ′
n(y)

]︁
Qn(y)− (y2 − 1)Q′

n(y)P
′
n(y)

+ (n+ 1)Pn(y)Qn(y)−
n+ 1√︁
y2 − 1

]︂
(6.91)

Eliminating the second derivative using Legendre’s equation,

(1− y2)P ′′
n (y)− 2yP ′

n(y) + n(n+ 1)Pn(y) = 0, (6.92)

and simplifying, this becomes

Λ(y) = lim
n→∞

[︂
(n+ 1)2Pn(y)Qn(y)− (y2 − 1)Q′

n(y)P
′
n(y)−

n+ 1√︁
y2 − 1

]︂
. (6.93)

We have thus reduced the problem to an evaluation of the single limit in Eq. (6.93). We

note the asymptotic leading-order large-n scalings Pn, Qn ∼ n−1/2 and P ′
n, Q

′
n ∼ n+1/2,

so a priori each of the 3 terms in Eq. (6.93) is of O(n). As a result, we need to know the
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asymptotic forms of Pn and Qn to O(n−3/2), i.e., to first subleading order. For y > 1,

these are

Pn(y) =
(︂ x

sinhx

)︂1/2 [︄
I0

(︂(︁
n+

1

2

)︁
x
)︂
− 1

4(2n+ 1)

(︃
1

x
− cothx

)︃
I1

(︂(︁
n+

1

2

)︁
x
)︂
+O(n−5/2)

]︄
,

Qn(y) =
(︂ x

sinhx

)︂1/2 [︄
K0

(︂(︁
n+

1

2

)︁
x
)︂
+

1

4(2n+ 1)

(︃
1

x
− cothx

)︃
K1

(︂(︁
n+

1

2

)︁
x
)︂
+O(n−5/2)

]︄
,

(6.94)

where x = cosh−1 y, and Ik and Kk are the modified Bessel functions of the first and

second kind, themselves admitting the expansions

Ik(z) =
ez√
2πz

(︃
1− 4k2 − 1

8z
+O(z−2)

)︃
,

Kk(z) =
πe−z√
2πz

(︃
1 +

4k2 − 1

8z
+O(z−2)

)︃
. (6.95)

The leading-order terms in (6.94) and high-order expansions for the Bessel functions are

widely available in standard texts [see e.g. Sections 10.40(i) and 14.15(iii) of Ref. [190]].

For the subleading terms in Eq. (6.94), we used expressions from Ref. [191], given only

for 0 < y < 1, and analytically continued them to y > 1, carefully checking the resulting

expressions numerically in Mathematica.

Using the above asymptotic expressions, we obtain

Pn(y)Qn(y) =
2n− 1

4n2
√︁
y2 − 1

+O(n−3),

P ′
n(y)Q

′
n(y) = − 2n+ 1

4(y2 − 1)3/2
+O(n−1), (6.96)

which, substituted in Eq. (6.93), gives

Λ =
1√︁
y2 − 1

lim
n→∞

[︃
(n+ 1)2(2n− 1)

4n2
+

2n+ 1

4
− (n+ 1) +O(n−1)

]︃
= 0. (6.97)

In conclusion, we have demonstrated that

lim
t→∞

[︂
rp(t)Φ

R
0 (rp(t))

]︂
= 0 . (6.98)

6.4 Evaluating the self-force F 0
α near i+

In this section we will calculate the contribution that the LLT piece of ψ0 makes to the

self-force, confirming that this too vanishes. We begin by considering the φ-component

of the force, before moving on to consider the U and V components, from which we finally
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construct the t and r components of the force. We conclude the section by comparing

our analytical results to numerical results for the ℓ-modes of the full force.

The self-force will be calculated using mode-sum regularisation as usual, using only the

one-sided derivative from r > rp for simplicity. Concretely, this means we take Ũ = U

in Eq. (6.33).

6.4.1 The azimuthal component F 0
φ

Taking the φ derivative of Eq. (6.23) and evaluating on the geodesic Γ,

rp(t)
[︂
∂φΦ

ℓ
0

]︂
Γ
(t) =

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

ψ0Γ(t)∂φYℓm

(︂π
2
, φp(t)

)︂

= i
∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

mψ0Γ(t)Yℓm

(︂π
2
, φp(t)

)︂
. (6.99)

We consider the contribution from region II first. At late times along Γ, we have

lim
t→∞

rp

[︂
∂φΦ

II, ℓ
0

]︂
Γ
= i

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

mψII
0Γ(U → ∞)Yℓm

(︂π
2
, φ∞

)︂
= 0, (6.100)

since, by virtue of Eq. (6.65), each of the ℓm modes here vanishes individually. For the

contribution from region I, we substitute Eq. (6.74) into Eq. (6.99), giving

lim
t→∞

rp

[︂
∂φΦ

II, ℓ
0

]︂
Γ
=

4πqi

vE

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

mPℓ(1/v)Qℓ(1/v)Y
∗
ℓm

(︂π
2
, φ∞

)︂
Yℓm

(︂π
2
, φ∞

)︂
.

(6.101)

The individual ℓm terms on the right hand side are non-zero, so that ψ0 would appear

to contribute to the self-force initially at 1/rp order at late times. But the sum over m

here is, in fact, exactly zero. This can be seen by noting

ℓ∑︂
m=−ℓ

m Y ∗
ℓm

(︂π
2
, φ∞

)︂
Yℓm

(︂π
2
, φ∞

)︂
=

ℓ∑︂
m=−ℓ

m
⃓⃓⃓
Yℓm

(︂π
2
, φ∞

)︂ ⃓⃓⃓2
= 0, (6.102)

because |Yℓ,m|2 = |Yℓ,−m|2 and hence the terms are antisymmetric in m. Thus, we have

established that

lim
t→∞

rp(t)
[︂
∂φΦ

ℓ
0

]︂
Γ
= 0. (6.103)

Finally, we substitute Eq. (6.103) into the mode-sum formula (2.49), confirming that

there is no 1/rp contribution to the self-force. For the φ component of the force, the

regularisation parameters (recall Eq. (2.53)) decay as 1/r3p at large rp, so that Eq. (2.49)
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reads

F 0
φ =

q2

rp

∑︂
ℓ=0

rp∂
+
φ (Φ

ℓ
0/q)

⃓⃓⃓
Γ
, (6.104)

at O(1/rp), where ∂
+
α indicates the one-sided derivative from V > Vp(U). It then follows

from Eq. (6.103) that

lim
t→∞

rp(t)F
0
φ(t) = 0, (6.105)

consistent with the empirical F self
φ ∼ 1/r2p decay found in numerical tests.

6.4.2 The components F 0
U and F 0

V : contribution from region II

It is easier to first take the U and V derivatives of the field, and then obtain the t and

r derivatives from these using the chain rule. To take U and V derivatives of ψII
0> we

need to go back to Eq. (6.29), whose restriction to V ≥ Vp(U) is

ψII
0>(U, V ) =

ℓ∑︂
n,j=0

ℓ+1∑︂
i=1

βnji

(︃
R

r∗

)︃ℓ−n ∫︂ Ū(U)

−∞
dU ′

(︃
1− R

r′∗p

)︃ℓ−j (︃ R

r′∗p

)︃j
Ei(U − Vp(U

′) + 2R)S(U ′).

(6.106)

This depends on V only through r∗, so taking the V derivative is simple:

∂V
[︁
r∗p(U)ψII

0Γ(U)
]︁

=
ℓ∑︂

n,j=0

ℓ+1∑︂
i=1

β̃nji

(︃
R

r∗p

)︃ℓ−n ∫︂ Ū(U)

−∞
dU ′

(︃
1− R

r′∗p

)︃ℓ−j (︃ R

r′∗p

)︃j
Ei(U − Vp(U

′) + 2R) S(U ′),

(6.107)

where β̃nji are some other coefficients. It is easy to see that the bounding argument

presented between Eqs. (6.51) and (6.64) holds unchanged, leading to

∂V
(︁
rpψ

II
0Γ

)︁
U→∞ = 0. (6.108)

The expression for the U derivative is a bit more involved:

r∗p∂Uψ
II
0Γ(U) =

∑︂
n,j,i

βnji
dŪ

dU

(︃
R

r∗p

)︃ℓ−n(︃
1− R

r̄∗

)︃ℓ−j (︃R
r̄∗

)︃j
r∗p(U)S(Ū)

−
∑︂
n,j,i

(︃
R

rp

)︃ℓ−n (︂
β̃njiR+ βnjiκi

r∗p
R

)︂
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×
∫︂ Ū(U)

−∞
dU ′

(︃
1− R

r′∗p

)︃ℓ−j (︃ R

r′∗p

)︃j
Ei(U − Vp(U

′) + 2R)S(U ′)

(6.109)

where r̄∗ = r∗p(Ū) = (U + 2R − Ū(U))/2. The term proportional to β̃nji contains the

same integral as in Eq. (6.50), and can thus be bounded and shown to vanish in the

limit U → ∞ in the same way. Using the asymptotic relations

Ū ∼ U/α, Vp(U
′) ∼ αU ′, r̄∗ ∼

(︃
α− 1

2α

)︃
U, r∗p ∼

(︃
α− 1

2

)︃
U (6.110)

the rest of the expression becomes, at large U ,

r∗p∂Uψ
II
0Γ ∼ −α− 1

2

∑︂
j,i

βℓjiκi
U

R

∫︂ U/α

−∞
dU ′

(︃
1− R

r′∗p

)︃ℓ−j (︃ R

r′∗p

)︃j
Ei(U − αU ′)S(U ′)

+
α− 1

2
σℓm

∑︂
i

βℓ0i. (6.111)

As observed previously, at large U the support of the integral is concentrated near its

upper end, so it suffices for us to truncate the integration from below at, say, U ′ =

U/(2α), and then consider the leading term of the integrand at large U ′:

r∗p∂Uψ
II
0Γ ∼ α− 1

2
σℓm

∑︂
i

βℓ0i

[︄
1− κi

U

R

∫︂ U/α

U/(2α)

dU ′

U ′ e
−κi(U−αU ′)/R

]︄
−→ 0 (6.112)

as U → ∞. It follows also that ∂Uψ
II
0Γ → 0, and that

∂U
(︁
rpψ

II
0Γ

)︁ ⃓⃓⃓
U→∞

= 0. (6.113)

Since the r and t derivatives are linear combinations of U and V derivatives, we find, in

conclusion,

∂t(rpψ
II
0Γ)
⃓⃓
U→∞ = 0, ∂r(rpψ

II
0Γ)
⃓⃓⃓
U→∞

= 0, (6.114)

We can therefore focus on the contribution from region I.

6.4.3 The components F 0
U and F 0

V : contribution from region I

6.4.3.1 V derivative

To take the derivatives of ψI
0> we return to Eq. (6.33),

ψI
0>(U, V ) =

ℓ∑︂
n=0

Aℓn
ℓ!(2r∗)ℓ−n

∫︂ U

Ū(U)
dU ′ S(U

′)

(2r′∗p)
ℓ
∂nU
[︁
(Vp(U

′)− U)(U − U ′)
]︁ℓ
. (6.115)
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The right hand side depends on V only through r∗, so taking ∂V is particularly simple:

r∗p
[︁
∂V ψ

I
0>

]︁
Γ
= −1

2

ℓ∑︂
n=0

(ℓ− n)Aℓn
ℓ!(2r∗p)ℓ−n

∫︂ U

Ū(U)
dU ′ S(U

′)

(2r′∗p)
ℓ
∂nU
[︁
(Vp(U

′)− U)(U − U ′)
]︁ℓ
.

(6.116)

The calculation then proceeds along the lines of Eqs. (6.66)–(6.70), leading to

lim
U→∞

r∗p
[︁
∂V ψ

I
0>

]︁
Γ
= −1

2

σℓm
(α− 1)2ℓ

H̃ℓ(α) Iℓ(α), (6.117)

where

H̃ℓ(α) :=
ℓ∑︂

n=0

(2ℓ− n)!(ℓ− n)

n![(ℓ− n)!]2
(α− 1)n. (6.118)

We can express this as a derivative of Hℓ(α):

H̃ℓ(α) = −(α− 1)ℓ+1 d

dα

[︂
(α− 1)−ℓHℓ(α)

]︂
= −(α− 1)ℓ+1 d

dα
[Pℓ(1/v)] = (α− 1)ℓ(y − 1)P ′

ℓ(y), (6.119)

where, recall, y = 1/v, and a prime now denotes d/dy. The rest of the calculation is

similar to the one leading to Eq. (6.78), instead of which we now obtain

lim
U→∞

rp

[︂
∂V

(︂
rΦℓ0

)︂ ]︂
Γ

= − q

2vE
(2ℓ+ 1)(y − 1)P ′

ℓ(y)Qℓ(y)

= −q(1− v)

2v2E
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y), (6.120)

The mode-sum formula (2.49) requires as input the derivatives of the scalar field Φ0,

given by

lim
U→∞

r2p(t)
[︂
∂V Φ

ℓ
0

]︂
Γ
= lim

U→∞

{︂
rp(t)

[︂
∂V

(︂
rΦℓ0

)︂ ]︂
Γ
− 1

2
rp(t) Φ

ℓ
0Γ

}︂
= −q(1− v)

2v2E
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y)−
q

2vE
(2ℓ+ 1)Pℓ(y)Qℓ(y), (6.121)

where we have made use of Eq. (6.78) in the second line.

6.4.3.2 U derivative

Taking the U derivative of Eq. (6.115) and evaluating on Γ we get

r∗p
[︁
∂Uψ

I
0>

]︁
Γ

= −r∗p
[︁
∂V ψ

I
0>

]︁
Γ

+
1

2

ℓ∑︂
n=0

Aℓn
ℓ!(2r∗p)ℓ−n−1

∫︂ U

Ū(U)
dU ′ S(U

′)

(2r′∗p)
ℓ
∂n+1
U

[︁
(Vp(U

′)− U)(U − U ′)
]︁ℓ
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+ r∗p

[︄
AℓℓS(U)−

ℓ∑︂
n=0

Aℓn
ℓ!(2r∗)ℓ−n

dŪ

dU

S(Ū)

(Vp(Ū)− Ū)ℓ
∂nU
[︁
(Vp(Ū)− U)(U − Ū)

]︁ℓ]︄
.

(6.122)

The second line here comes from differentiating the r∗p-dependent factor outside the

integral. The third line comes from differentiating the U -dependent expression in the

integrand, and the fourth line comes from differentiating the integration boundaries. In

the second surface term on the fourth line, we note that, at large U ,

Vp(Ū) ∼ αŪ ∼ α(U/α) = U, (6.123)

so all the terms in the sum over n vanish except the one with n = ℓ, which gives

−AℓℓS(U), precisely cancelling the first boundary term.

The expression in the third line of Eq. (6.122) becomes, at leading order in 1/U ,

1

2

σℓm
ℓ!

ℓ∑︂
n=0

Aℓn
(α− 1)2ℓ−n−1U ℓ−n−1

∫︂ U

U/α
dU ′ ∂

n+1
U

[︁
(αU ′ − U)(U − U ′)

]︁ℓ
(U ′)ℓ+1

, (6.124)

or, after transforming U ′ → x as in Eq. (6.68) and then performing n + 1 successive

integrations by parts,

1

2

σlm
l!

l∑︂
n=0

Aln
(α− 1)2l−n−1

∫︂ α

1
dx

∂n+1
x

[︁
(α− x)ℓ(x− 1)ℓ

]︁
xℓ−n

=
1

2
σℓm

ℓ−1∑︂
n=0

Aℓn(ℓ− n)

(α− 1)2ℓ−n−1(ℓ− n)!

∫︂ α

1
dx

∂x
[︁
(α− x)ℓ(x− 1)ℓ

]︁
xℓ+1

=
1

2

σℓm
(α− 1)2ℓ+1

H̃ℓ(α) Iℓ(α)

= −(α− 1) lim
U→∞

r∗p
[︁
∂V ψ

I
0>

]︁
Γ
. (6.125)

Here the first integration by parts produces (for n = ℓ) two non-zero surface terms

identical to the ones in the 3rd line of Eq. (6.122), which, however, cancel each other as

above. In the last equality we have recalled Eq. (6.117). Putting this back in Eq. (6.122)

we find, for U → ∞,

lim
U→∞

r∗p
[︁
∂Uψ

I
0>

]︁
Γ

= − lim
U→∞

r∗p
[︁
∂V ψ

I
0>

]︁
Γ
− (α− 1) lim

U→∞
r∗p
[︁
∂V ψ

I
0>

]︁
Γ

= −α lim
U→∞

r∗p
[︁
∂V ψ

I
0>

]︁
Γ
, (6.126)

so the U derivative is just (−α) times the V derivative. Recalling Eq. (6.120) we thus

immediately have

lim
U→∞

rp(t)
[︂
∂U

(︂
rΦℓ0

)︂ ]︂
Γ

=
q(1 + v)

2v2E
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y), (6.127)
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and hence

lim
U→∞

r2p(t)∂UΦ
ℓ
0Γ =

q(1 + v)

2v2E
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y) +
q

2vE
(2ℓ+ 1)Pℓ(y)Qℓ(y). (6.128)

6.4.4 The components F 0
t and F 0

r

We now derive the t and r derivatives of Φℓ0, evaluated on the worldline at late times,

and hence write down the corresponding self-force mode-sum. Using the chain rule, we

have

∂r ∼ ∂r∗ = ∂V − ∂U , ∂t = ∂V + ∂U . (6.129)

Substituting for the U and V derivatives from Eqs. (6.121) and (6.128), we thus obtain

lim
U→∞

r2p(t)
[︂
∂rΦ

ℓ
0

]︂
Γ

= − q

v2E
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y)−
q

vE
(2ℓ+ 1)Pℓ(y)Qℓ(y),

lim
U→∞

r2p(t)
[︂
∂tΦ

ℓ
0

]︂
Γ

=
q

vE
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y). (6.130)

Finally, we construct the self-force mode-sum for this contribution. From Eqs. (2.51)

and (2.52), the t and r component regularisation parameters decay like 1/r2p at large rp,

with leading-order forms

A±
α = ±q

2Āα
r2p

and Bα =
q2B̄α

r2p
, (6.131)

for α = t, r, where

Āα = E(v,−1) and B̄α =
1

2
E2(−v, 2v2 − 1) [α = t, r]. (6.132)

The mode-sum (2.49) can thus be written

F 0
α =

q2

r2p

∑︂
ℓ=0

[︂
r2p∂

+
α (Φ

ℓ
0/q)

⃓⃓⃓
Γ
− (ℓ+ 1/2)Āα − B̄α

]︂
(α = t, r) (6.133)

at (leading) 1/r2p order. Substituting from Eqs. (6.130) and (6.132), we obtain

lim
t→∞

[︂
r2p(t)F

0
r (rp(t))

]︂
= − q2

v2E

∞∑︂
ℓ=0

[︂
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y) + v(2ℓ+ 1)Pℓ(y)Qℓ(y)

− 1

2
(2l + 1)E2v2 +

1

2
E3v2(2v2 − 1)

]︂
, (6.134)

lim
t→∞

[︂
r2p(t)F

0
t (rp(t))

]︂
=

q2

vE

∞∑︂
ℓ=0

[︃
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y)−
1

2
(2ℓ+ 1)E2v2 +

1

2
E3v2

]︃
.

(6.135)

We now demonstrate that both of these sums equal 0, so that there is no 1/r2p contri-

bution to the self-force.
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6.4.4.1 Explicit summation over ℓ

Define the sum

Λ̃(y) =
∞∑︂
ℓ=0

[︃
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y)−
2ℓ+ 1

2(y2 − 1)
+

y

2(y2 − 1)3/2

]︃
. (6.136)

Provided Λ̃(y) converges, we may write Eqs. (6.134) and (6.135) as

lim
t→∞

[︂
r2p(t)F

0
r (rp(t))

]︂
= − q2

v2E

[︂
Λ̃(y) + vΛ(y)

]︂
(6.137)

and

lim
t→∞

[︂
r2p(t)F

0
t (rp(t))

]︂
=

q2

vE
Λ̃(y). (6.138)

Recalling Eq. (6.97), Λ(y) = 0 and we need only consider Λ̃(y):

Λ̃(y) = lim
n→∞

n∑︂
ℓ=0

[︂
(2ℓ+ 1)P ′

ℓ(y)Qℓ(y)−
2ℓ+ 1

2(y2 − 1)
+

y

2(y2 − 1)3/2

]︂
= lim

n→∞

{︄
n∑︂
ℓ=0

(2ℓ+ 1)P ′
ℓ(y)Qℓ(y)−

(n+ 1)2

2(y2 − 1)
+

y(n+ 1)

2(y2 − 1)3/2

}︄
(6.139)

Notice that

n∑︂
ℓ=0

(2ℓ+ 1)P ′
ℓ(y)Qℓ(y) =

1

2

n∑︂
ℓ=0

(2ℓ+ 1)
[︁
P ′
ℓ(y)Qℓ(y) + Pℓ(y)Q

′
ℓ(y)

]︁
+

1

2

n∑︂
ℓ=0

(2ℓ+ 1)
[︁
P ′
ℓ(y)Qℓ(y)− Pℓ(y)Q

′
ℓ(y)

]︁
(6.140)

=
1

2

d

dy

n∑︂
ℓ=0

(2ℓ+ 1)Pℓ(y)Qℓ(y) +
(n+ 1)2

2(y2 − 1)
, (6.141)

where we made use of the Wronskian W (y) = (y2 − 1)−1. We can then rewrite

Λ̃(y) =
1

2
lim
n→∞

{︄
d

dy

n∑︂
ℓ=0

(2ℓ+ 1)Pℓ(y)Qℓ(y) +
y(n+ 1)

(y2 − 1)3/2

}︄
. (6.142)

In Sec. 6.3.4 we found that

n∑︂
ℓ=0

(2ℓ+ 1)Pℓ(y)Qℓ(y) =
1√︁
y2 − 1

[︃
(n+ 1)2(2n− 1)

4n2
+

2n+ 1

4
+O

(︁
n−1

)︁]︃
(6.143)
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as n→ ∞. Assuming that we may differentiate this series term-by-term with respect to

y, we get

d

dy

n∑︂
ℓ=0

(2ℓ+ 1)Pℓ(y)Qℓ(y) = − (n+ 1)y

(y2 − 1)3/2
[︁
1 +O

(︁
n−2

)︁]︁
, (6.144)

and hence it follows from Eq. (6.142) that Λ̃(y) = 0. Thus we have established

lim
t→∞

r2p(t)F
0
r (t) = 0 = lim

t→∞
r2p(t)F

0
t (t). (6.145)

6.4.5 Numerical validation

We saw in the previous section that the leading term ψ0 in our hierarchical expansion

(6.9) gives rise to terms of order 1/r2p in the mode-sum for the t and r components of the

self-force, which then sum to zero. As well as establishing consistency with the numerical

results, which suggest a 1/r3p decay in those components of the self-force at large radius,

achieving the necessary cancellation with the regularisation parameters provides useful

validation for expressions (6.134) and (6.135).
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Figure 6.5: Comparison between the numerical (solid blue) and leading-order analyt-
ical (dashed orange) results for the regularised ℓ = 2 contribution to the r-component
of the self-force along the orbit with parameters b = 70M and v = 0.2. The analyt-
ical result is from Eq. (6.147), and the numerical self-force data was obtained using
the time-domain code of Ref. [149]. The numerical and analytical results are visually
coincident. Subtracting the analytical result from the numerical data, the residual is
several orders of magnitude smaller throughout the domain, and decays as 1/r3p. Image
credit: O. Long [192]

Our leading-late-time calculation of ψ0 is not able to provide us with the leading term

in the late-time expansion of F self
α for comparison with numerical data, but we can
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compare the regularised ℓ-mode contributions to the self-force, which are individually

non-zero for the t and r components. In particular, Fig. 6.5 displays the regularised

ℓ = 2 contribution to the r component of the self-force at late times along an example

orbit, i.e the term in the self-force mode-sum (2.49),

F full+
r,ℓ − (ℓ+ 1/2)A+

r −Br, (6.146)

with ℓ = 2, as well as the term in the leading-order approximation (6.133),

q∂+r Φ
ℓ
0

⃓⃓⃓
Γ
− (ℓ+ 1/2)

q2Ār
r2p

− q2B̄r

r2p
. (6.147)

Excellent agreement is observed between the two results, which are visually indistin-

guishable from at least rp = 50M onwards. Furthermore, subtracting (6.147) from

(6.146), the residual is O(1/r3p) – one order faster than (6.146), and the same order

as the empirical fall-off in F self
r . Altogether this serves as strong evidence in favour of

the correctness of our calculation so far. In particular, it strongly suggests that (6.147)

gives the exact O(1/r2p) term in (6.146), and hence that none of the n > 0 terms in

the hierarchical expansion (6.9) contribute to the mode-sum for F self
r at O(1/r2p) at late

times (or, at the very least, that any such contributions are numerically much smaller

than the O(1/r3p) terms during the time range displayed in Fig. 6.5).

6.5 Calculation of ψ1: setup and outlook

In this final section we consider the calculation of the leading-late-time piece of ψ1, the

next-to-leading order term in the hierarchical expansion (6.9). The calculation of this

term remains at a preliminary stage, so we will present only the basic outline of our

strategy, concluding with a discussion of our progress to date and the outlook for the

analytical large-rp calculation as a whole.

6.5.1 Strategy

The retarded solution to Eq (6.11) is given in terms of the Green’s function (6.13) by

ψ1(x) = −
∫︂ U

−∞
dU ′

∫︂ V

−∞
dV ′G(x;x′)δV (r′)ψ0(x

′)

= −
∫︂ U

−∞
dU ′

∫︂ V

−∞
dV ′

∫︂ U ′

−∞
dU ′′

∫︂ V ′

−∞
dV ′′G(x;x′)δV (r′)G(x′;x′′)S(U ′′)δ(V ′′ − Vp(U

′′)),

(6.148)

where x := {U, V } and x′ := {U ′, V ′}. In the second line we have substituted for ψ0 in

terms of the Green’s function from Eq. (6.24). In practice, we find it more convenient
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to change the integration order, simplifying the form of the integration limits:

ψ1(x) = −
∫︂ Ũ(U,V )

−∞
dU ′′

∫︂ U

U ′′
dU ′

∫︂ V

Vp(U ′′)
dV ′G(x;x′)δV (r′)G(x′;x′′p)S(U

′′), (6.149)

where x′′p = {U ′′, Vp(U
′′)} and so forth, and [recalling Eq. (6.32)] Ũ = U for V ≥ Vp(U)

and Ũ = Up(V ) for V < Vp(U). For each source point (U ′′, Vp(U
′′)) we now have a

rectangular integration domain over U ′, V ′, and the field is then obtained by integrating

over the source retarded time U ′′. We will be interested primarily in the value of ψ1 on

the particle,

ψ1(U, Vp(U)) =

∫︂ U

−∞
dU ′′

∫︂ U

U ′′
dU ′

∫︂ Vp(U)

Vp(U ′′)
dV ′G(xp;x

′)δV (r′)G(x′;x′′p)S(U
′′) , (6.150)

which we seek to evaluate at U ≫ R.

Figure 6.6: The division (6.151) of the worldline into early (Γ−, green), strong-field
(∆Γ, red) and late (Γ+, blue) portions.

The next step in our strategy is to split the worldline integral over U ′′ into three different

segments,

Γ+ : Ū(U) + ∆ <U ′′ ≤ U (recent, weak field),

∆Γ : Ū(U)−∆ <U ′′ ≤ Ū(U) + ∆ (strong field),

Γ− : −∞ <U ′′ ≤ Ū(U)−∆ (early, weak field), (6.151)

where ∆ is some constant retarded-time interval satisfying

R≪ ∆ ≪ U, (6.152)
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and U is assumed sufficiently large to enable this. This split is illustrated in Fig. 6.6.

We then split ψ1(U, Vp(U)) into corresponding contributions,

ψ1 = ψ+
1 +∆ψ1 + ψ−

1 , (6.153)

and evaluate each contribution separately.

Figure 6.7: Support of (U ′, V ′) integration in Eq. (6.150) for fixed U and U ′′ in the
two cases U ′′ ∈ Γ+ (left panel) and U ′′ ∈ Γ− (right panel). The red lines indicate the
borders of the integration region U < U ′ < U ′′, Vp(U) < V ′ < Vp(U

′′). The regions
for which the Green’s functions G(xp;x

′) and G(x′;x′′p) are of region-I type are shaded
yellow and blue respectively; the integrand has significant support only in the overlap
region, shaded in green. At late retarded times U , the entire integration region lies in
the weak-field r′∗ ≫ R when U ′′ ∈ Γ+. For U ′′ ∈ Γ−, the integration region notionally
extends to the strong-field, but the region of effective support remains entirely in the
weak-field.

To understand why the split (6.151) is useful, note that in order to obtain the large-rp

expansion of ψ1, we wish to expand the factor δV (r′) in Eq. (6.150) in r′∗ at r′∗ ≫ R. As

may be seen from the left panel of Fig. 6.7, for U ′′ ∈ Γ+, the (U ′, V ′) integration region

in Eq. (6.150) is confined to

r′∗ ≥
1

2

[︁
Vp(Ū +∆)− U

]︁
∼ 1

2
α∆ ≫ R, (6.154)

as U → ∞, where we made use of Vp(U) ∼ αU and Ū ∼ U/α from Eqs. (6.39) and

(6.45) respectively. We may therefore freely use weak-field, large-r′ expansions of δV (r′)

whenever U ′′ ∈ Γ+. The situation is less clear when U ∈ Γ−, however. The right panel of

Fig. 6.7 demonstrates that the integration region always extends down into the strong-

field r′∗ < R region when U ′′ ∈ Γ−. Fortunately, however, we recall from Fig. 6.2 that

the Green’s function only has significant support in region I, decaying exponentially

to the past of the region I boundary. This means that the support of the integrand

in Eq. (6.150) is effectively restricted to the region where the G(xp;x
′) and G(x′;x′′p)

Green’s functions are both of region-I type. This region is shaded green in the right
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panel of Fig. 6.7, and for large U it always lies in the strong-field:

r′∗ ≥
1

2

[︁
(U + 2R)− (Vp(Ū −∆)− 2R)

]︁
∼ 1

2
(α∆+ 4R) ≫ R. (6.155)

We are therefore able to expand δV (r′) when U ′′ ∈ Γ− too.

The calculation of ψ−
1 can also be aided by the following observation. Suppose the

point-particle source on the right hand side of Eq. (6.6) is truncated to the future of

some finite retarded time U0, i.e. replacing S(U) → S(U)Θ(U0 − U). Near to past null

infinity, U → −∞, we expect that the scalar field ψ will be static, due to the absence of

incoming radiation [note this is consistent with the static leading-order early-time result

for ψ0 obtained by substituting v → −v in Eq. (6.74)]. If this is correct, Eq. (89) of

Ref. [189] tells us that the resulting solution to the field equation with future-truncated

source decays like

ψ(t, r) ∼ 1

t2ℓ+2
rPℓ

(︃
r −M

M

)︃
(t≫ |r∗|), (6.156)

at late times, and hence ψ ∼ U−(ℓ+1) when evaluated along the orbit as U → ∞. Put

another way, the error in ψ from truncating the source to the past of U0 decays at the

same rate; given that ψ1 is expected to decay as 1/U along the orbit, the error will be

at a subdominant order for any ℓ > 0 (but not, necessarily, for ℓ = 0). This means that

for ℓ > 0, we may truncate the worldline integral in Eq. (6.150) to the past of U ′′ = U0,

where U0 is a finite constant, without affecting the leading late-time result for ψ1. The

case ℓ = 0 would need to be considered separately.

Finally, when U ′′ ∈ ∆Γ, the integrand is supported in the strong-field r′∗ ∼ R, and it

is not possible to make use of any large-r′ expansions for δV (r′) during this portion

of the worldline integral. Intuitively, however, the piece ∆ψ1 from U ′′ ∈ ∆Γ may not

contribute to the leading-late-time behaviour of ψ1, arising as it does from a constant,

finite retarded-time interval, which becomes arbitrarily distant as U → ∞. Establishing

whether this holds true – using a bounding argument, for example – is an important

aim of our approach.

6.5.2 Outlook

Our calculation of ψ1 remains at a preliminary stage, and we opt not to present detailed

results. We will, however, note several features we have observed thus far. Our initial

results are consistent with ψ1 ∼ 1/rp, i.e. ψ1 is suppressed by a factor of 1/rp relative to

ψ0 as expected, and will contribute to all components of the self-force at their empirical

leading late time orders: 1/r3p for the t and r components, and 1/r2p for the φ component.

We have also tentatively established that the contribution ∆ψ is, indeed, subdominant

at late times.
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In order to complete the calculation of F self
α at leading late time order, we must also

include the next-to-leading late time terms from ψ0, at least some of which are expected

to contribute to F self
t and F self

r at O(1/r3p), and to F self
φ at O(1/r2p). We remarked in

Sec. 6.3.4 that the LLT ψ0 calculation is effectively performed in flat spacetime with

a particle moving along the asymptotic straight line trajectory, and hence does not

give rise to a contribution to the self-force. At the first post-LLT order, ψ0 will have

a contribution from terms arising from the next-to-leading asymptotic expansions of

the geodesic trajectory; such terms describe an accelerated trajectory, which will feel a

self-force, even in flat spacetime.
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Chapter 7

Conclusions

This work has produced three primary outputs. Firstly, we successfully accomplished

our goal of developing the first frequency-domain method for calculating the scalar-field

self-force along hyperbolic geodesics in Schwarzschild spacetime. To do this, we had to

develop solutions to several significant numerical challenges, most notably the develop-

ment of the tail correction and IBP schemes in Chapter 3 to minimise the error from

truncating the slowly-convergent oscillatory integrals C−
ℓmω at finite radius, as well as

the use of sinusoid-weighted Clenshaw-Curtis quadrature to accelerate their evaluation.

As we saw in Chapter 4, our frequency-domain method can significantly exceed the pre-

cision of Ref. [149]’s time-domain platform in the strong-field region near periapsis, and

has unique access to angular modes with ℓ > 15 there.

Despite these achievements, several limitations of our frequency-domain approach do

remain, with the most significant ones arising from the use of extended homogeneous

solutions. There is no known method for reconstructing the time-domain field from

an EHS in the external region r ≥ rp(t) for a scattering source, and presently we are

restricted to a one-sided regularisation procedure in which the self-force is calculated

using the limit of the field from the r < rp(t) direction alone. Even more significantly,

in Chapter 4 the cancellation between low-frequency modes of the EHS was found to

seriously impede the reconstruction of the time-domain modes of the scalar field away

from periapsis. Compared to bound orbits, the degree of cancellation faced is intrinsically

more severe for scatter orbits due to the greater eccentricity, and the errors in the

calculation of the frequency-domain quantities are larger and more numerous. Currently,

our only solution to this challenge is a gradual, adaptive, reduction in the value of the

mode-sum truncation ℓmax as the radius is increased.

Our second output is a method for resumming the post-Minkowskian expansion of the

scatter angle using the singular structure of the self-force scatter angle correction δφ(1) in

the limit of the transition to plunge, b→ bc(v). As seen in Chapter 5, the resulting model

has the correct asymptotics to 4PM order as b→ ∞, and to 1SF order as b→ bc(v), but
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is also uniformly accurate in between. The key advantage of this semi-analytic approach

is that the resummed angle can be rapidly evaluated once given the self-force singularity

coefficient A1(v). We saw in Sec. 5.2 that A1(v) can in principle be obtained from a

calculation of the self-force along the critical orbits b = bc(v) alone, and calculating

the self-force at nodes along the 1-dimensional separatrix b = bc(v) is computationally

much cheaper than populating the full 2-dimensional (v, b) parameter space. In our

case, however, we did not calculate A1(v) by integrating along the critical orbit itself,

preferring instead to fit the coefficient numerically to values of the scatter angle along

sequences of near-critical geodesics. Performing the calculation in this manner remains

significantly faster than populating the full parameter space, but also allowed us to make

use of our exisiting time- and frequency-domain numerical methods without the need

for lengthy modifications. Our frequency-domain code proved extremely valuable to this

effort, despite its issues away from periapsis. The frequency-domain method’s access to

modes with ℓ > 15 near to periapsis led to the discovery of the high-velocity, large-ℓ

features which we attributed to likely relativistic beaming in Sec. 5.4.1, and was crucial

for capturing their large contribution to the self-force as part of the hybrid method

described in Sec. 5.4.2.3.

Finally, in Chapter 6 we initiated an analytical calculation for the scalar-field self-force

at early and late times along a hyperbolic scatter orbit, and obtained initial results

for the leading-order piece of the scalar-field evaluated on the particle. Such analytical

results, once fully developed, will be critical for supplementing both time- and frequency-

domain numerical approaches, and potentially for providing initial data for time-domain

simulations.

7.1 Outlook

The emphasis of this thesis has been primarily on the development of the numerical

method, and its subsequent application in the strong-field region (rmin ≲ 6M) of or-

bital parameter space. Ongoing work aims to expand these boundaries, exploring the

scattering parameter space at large. Particular attention should be paid to the limit

of large rmin, a regime which is crucial for comparisons with post-Minkowskian results.

Part of the challenge in the PM domain is the need to increase the radial truncation

rmax used in the integrals C−
ℓmω as rmin increases, and we need to understand the impli-

cations of this on the accuracy, and particularly the efficiency, of the code. Preliminary

results suggest that our IBP and tail correction schemes remain effective at suppressing

high-frequency noise in the tails of the C−
ℓmω spectra, but the overall level of decay we

can achieve before the onset of noise is less than for the strong-field orbits considered

previously. Some degradation in our method’s performance is thus expected in the PM

regime.
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In addition to continued exploration of the current numerical code, we highlight several

directions in which this research should be developed in the future.

7.1.1 Large radius asymptotics of the self-force

Work is ongoing to complete the calculation of the leading-order, 1/rp term in ψ1, using

the strategy described in Sec. 6.5. Once complete, and supplemented by the next-

to-leading-order piece of ψ0, we will have the necessary ingredients to calculate the

scalar-field self-force correct at leading order in 1/rp at early and late times along the

orbit. This can be compared to numerical self-force results, validating both approaches.

The leading-order self-force can also be immediately incorporated into scatter angle

calculations, complementing or replacing numerical extrapolations for the r → ∞ tail of

the scatter angle integral, a significant source of error in existing calculations. Ideally, the

domain of validity of the leading-order analytical self-force will already overlap with that

of the frequency-domain numerical approach, so that we can perform complete scatter

angle calculations without needing to hybridise with self-force data from a time-domain

code. Nonetheless, should this fail to happen, our analytical framework extends to higher

orders. Future work will also aim to extend the calculation away from the particle’s orbit,

so that we may obtain the early-time scalar-field at generic spatial positions, suitable

for use as initial data for time-domain evolutions. The analytical approach taken in

Chapter 6 can also be extended to gravity once required, as in Ref. [193], for example.

7.1.2 Self-force calculations along the critical orbit

To properly exploit the PM resummation technique developed in Chapter 5, we need

to be able to calculate the coefficients A1(v) as accurately as possible, at a sufficiently

dense grid of velocities. We established in Sec. 5.2 that A1(v) may be expressed as an

integral of the self-force along the critical orbit, but we actually calculated A1(v) using

extrapolation from b > bc(v) instead. This ensured we could make use of our existing

self-force code, but it required us to calculate the self-force along ∼ 10 orbits (rather

than just the 2 branches of the critical orbit), and introduced additional error from the

fit to numerical data. Moving forward, therefore, there is a strong incentive to develop

methods that can calculate the self-force along the critical orbits directly. From the

frequency-domain perspective, an initial analysis found that the variation of parameters

solution analogous to Eq. (2.106) for a critical orbit is divergent at ω = mωcirc, where

Mωcirc = (M/rmin)
3/2 is the frequency of the circular orbit of radius rmin. Further

investigation identified the presence of both a δ-function and a pole in the scalar-field’s

frequency spectrum, arising from the asymptotic circular whirl along the critical orbit.

An approach which subtracts the distributional piece of the spectrum, leaving behind a

residual field which we can calculate numerically, is under development, and we expect

to begin numerical trials soon.
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7.1.3 Extension to gravity

We have made good use of a scalar-field toy model to develop solutions to some of

the problems facing self-force calculations along scatter orbits, but our ultimate goal is

to calculate the gravitational self-force. One approach to gravitational SF calculations

is based upon metric reconstruction from curvature scalars [148, 194], which may be

implemented in either the time or frequency domains. A frequency-domain method

to solve the Teukolsky equation with scatter orbit source would build very naturally

on the techniques developed in this thesis, but would also inherit many of the same

limitations. Any approach based on the EHS method would continue to suffer from

the severe cancellation problem we have observed, and would still be restricted to a

one-sided mode-sum regularisation procedure based on the field in r ≤ rp(t) alone.

The latter is particularly problematic for the conventional approach, in which the self-

force is calculated from the modes of the metric perturbation in a so-called “radiation”

gauge, using a two-sided regularisation procedure; one-sided regularisation would be

much more complicated in radiation gauge, and has never been attempted. There is

no such issue in Lorenz gauge, however, where one-sided regularisation may be readily

applied [195]. Lorenz gauge metric reconstruction is less well developed than its radiation

gauge counterpart, particularly in Kerr, but progress has been made in recent years

[196–198]. In principle, one may also calculate the components of the Lorenz gauge

metric perturbation directly. This path was taken in Ref. [199], which worked in the

frequency-domain to find the tensor spherical harmonic modes of the metric perturbation

in Lorenz gauge, and hence the self-force. This code – which once again relies on EHS

– may also be extended quite naturally to scatter orbits using our techniques. A Lorenz

gauge time-domain code was also used in Ref. [200] to calculate the self-force along the

v = 0 critical orbit, and it may be possible to extend this to generic scatter orbits. In

principle, a frequency-domain variant could also be developed, incorporating some of

the techniques developed herein.

We note also that there is ongoing work to develop a modern time-domain solver for

the Teukolsky equation with a scatter orbit source, utilising hyperboloidal slicing and

compactification [184]. These techniques have previously been applied to frequency-

domain self-force calculations for bound orbits also [183], so a frequency-domain variant

of this solver may also be possible in the future.

7.1.4 Alternatives to the use of EHS

It is clear that the use of EHS is a limiting factor in frequency-domain self-force calcu-

lations for scatter orbits. In the conclusion of Sec. 4.6, we considered the idea of recon-

structing the time-domain modes of the scalar field using the variation of parameters

formula (2.106) directly, possibly using spectral filtering and/or extrapolation. As well
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as circumventing the EHS cancellation problem, if successful, such an approach would

enable the calculation of the field in r > rp(t), simplifying radiation gauge gravitational

SF calculations. Furthermore, the computational building blocks of the variations of

parameter solution (i.e. the homogeneous solutions and the integrands of the different

integrals) are the same as for the EHS approach, so that existing EHS codes will require

minimal modification. The techniques developed in Chapter 3 to accelerate the conver-

gence and evaluation of the radial integrals, in particular, could immediately be applied

to the integral with upper limit ∞ in formula (2.106).

A more radical suggestion is to abandon both EHS and mode-sum regularisation to-

gether, and make use of a puncture instead [201, 202]. In this approach, rather than

using the local expansion of ΦS in the vicinity of the worldline to obtain regularisation

parameters, one instead uses it to devise a puncture field ΦP ≈ ΦS which approximates

the local singularity at the particle, such that the residual field ΦR := Φ− ΦP ≈ ΦR is

regular (at least C1) on the worldline. Using Eq. (2.30), ΦR obeys

∇µ∇µΦR = −4πT −∇µ∇µΦP := −4πTeff , (7.1)

where the term on the right-hand side, which is regular (at least C3) at the worldline,

is known as the effective source. The self-force can be obtained by solving Eq. (7.1) for

ΦR, and then using Eq. (2.34) with the replacement ΦR → ΦR. The residual field ΦR is

smoother than the retarded field Φ at the worldline, mitigating the Gibbs phenomenon

somewhat: the spherical-harmonic frequency modes of the residual field decay as ω−k,

where k > 1 increases with the order of the puncture. While still only a polynomial

decay, for a sufficiently high-order puncture, k may be large enough to render a variations

of parameter based calculation practical. The puncture approach has been applied in the

frequency-domain previously for the scalar-field [203] and gravitational [204] SF along

circular orbits in Schwarzschild, and more recently for eccentric orbits in Schwarzschild

using a scalar-field model [205]. An extension to scatter orbits may also be possible, but

further work is needed to understand the scale of the technical challenges.

7.1.5 Beyond

Once a calculation of the gravitational SF is at hand, we will be able to attack our

ultimate objectives. A first-order gravitational SF calculation of the scatter angle will

allow us to validate and benchmark the state of the art 4PM and 5PM-1SF analytical re-

sults. The self-force scatter angle will also be incorporated into EOB models, enhancing

their performance at extreme mass ratios (and even equal mass ratios, if SF-informed,

mass-symmetric, PM results are used), and thus benefit waveform modelling for com-

pact binary gravitational wave sources. It may also be possible to compare self-force

scatter angle results, or EOB resummations thereof, to numerical relativity scatter sim-

ulations. Initial gravitational SF calculations are expected to be restricted to the case
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of a primary Schwarzschild black hole, so an extension to Kerr is essential if we are to

accurately represent the astrophysical population of black holes. Such an extension is

likely to be easiest if we use an approach based on radiation gauge metric reconstruction.

Finally, we remark that in the more distant future it may be possible to extend scatter

orbit calculations to second self-force order, giving access to 6PM terms in the conserva-

tive Hamiltonian (potentially for the first time) and, using EOB or boundary-to-bound

relations, contributing to efforts to obtain post-adiabatic EMRI waveforms. Such cal-

culations are likely to face many computational and theoretical hurdles, some of which

may be currently unknown, so that it is hard to gauge accurately the possible timescales.

It is safe to say, however, that scattering calculations will continue to develop and make

significant contributions to the field of gravitational wave astronomy in coming years.
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Appendix A

Expansion of geodesic quantities

at large radius

We collect here expressions for the coefficients that occur in the large-radius expansions

of the geodesic quantities in Eqs. (2.27) and (2.28). To obtain large-r expansions for

tp(r) and φp(r) along the outbound leg of the orbit, we rewrite the equations of motion

in terms of the parameter r, and then expand in powers of 1/r. In order to do this, we

first expand (︃
drp
dτ

)︃−1

=
∞∑︂
n=0

Un

(︃
2M

r

)︃n
, (A.1)

where the first few coefficients work out to be

U0 =
1√

E2 − 1
, (A.2)

U1 = − 1

2 (E2 − 1)3/2
, (A.3)

U2 =
3− 4L̃

2
+ 4E2L̃

2

8(E2 − 1)5/2
, (A.4)

U3 =
−5 + 4L̃

2
+ 4E2L̃

2 − 8E4L̃
2

16(E2 − 1)7/2
, (A.5)

U4 =
1

128 (E2 − 1)9/2

[︃
48E4L̃

4
+ 96E4L̃

2 − 96E2L̃
4

− 72E2L̃
2
+ 48L̃

4 − 24L̃
2
+ 35

]︃
, (A.6)

U5 =
1

256 (E2 − 1)11/2

[︃
− 63− 192E6L̃

4
+ 336E4L̃

4

− 240E4L̃
2 − 96E2L̃

4
+ 200E2L̃

2 − 48L̃
4
+ 40L̃

2
]︃
, (A.7)



142 Appendix A. Expansion of geodesic quantities at large radius

with L̃ := L/(2M). Writing

dtp
dr

=
dtp
dτ

(︃
drp
dτ

)︃−1

, (A.8)

we expand dtp/dτ , given in Eq. (2.1), and combine with (A.1) to obtain

dtp
dr

= A+
2MB

r
−

∞∑︂
n=1

nCn

(︃
2M

r

)︃n+1

, (A.9)

and therefore

tp(r) = t0 +Ar + 2MB log
(︂ r

2M

)︂
+ 2M

∞∑︂
n=1

Cn

(︃
2M

r

)︃n
. (A.10)

The dimensionless coefficients A and B work out as

A =
E√

E2 − 1
=

1

v
, (A.11)

B =
E(2E2 − 3)

2(E2 − 1)3/2
=

3v2 − 1

2v3
, (A.12)

and the first few dimensionless coefficients Cn are

C1 = −
E
[︂
4E2

(︂
L̃
2 − 5

)︂
+ 8E4 − 4L̃

2
+ 15

]︂
8(E2 − 1)5/2

, (A.13)

C2 = −
E
[︂
−35 + 70E2 − 56E4 + 16E6 − 12(E2 − 1)L̃

2
]︂

32(E2 − 1)7/2
, (A.14)

C3 = − E

384(E2 − 1)9/2

[︃
315− 840E2 + 1008E4 − 576E6

+ 128E8 + 120(E2 − 1)L̃
2
+ 48(E2 − 1)2L̃

4
]︃
, (A.15)

C4 =
E

1024(E2 − 1)11/2

[︃
693− 2310E2 + 3696E4 − 3168E6

+ 1408E8 − 256E10 + 280(−1 + E2)L̃
2

+ 48(−1 + E2)2(3 + 2E2)L̃
4
]︃
, (A.16)

C5 = − E

5120 (E2 − 1)13/2

[︃
64E6

(︂
5L̃

6
+ 15L̃

4 − 429
)︂

+ 1024E12 − 6656E10 + 18304E8 − 1260L̃
2
+ 3003

− 24E4
(︂
40L̃

6
+ 50L̃

4 − 1001
)︂
+ 720L̃

4

+ 12E2
(︂
80L̃

6 − 40L̃
4
+ 105L̃

2 − 1001
)︂
− 320L̃

6
]︃
. (A.17)
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In Eq. (A.10) t0 is a constant of integration, whose value is fixed by the initial condition

imposed on tp. In practice we determine t0 by comparing the expansion (A.10) to a

numerical integration of Eq. (2.19) at large radii.

Similarly, we can express φp(r) along the outbound leg of the orbit as an expansion in

1/r at large r. The result is

φp(r) = φ∞ +
∞∑︂
n=1

Dn

(︃
2M

r

)︃n
, (A.18)

where φ∞ := φp(χ∞) and the first few coefficients are

D1 = − L̃√
E2 − 1

, (A.19)

D2 =
L̃

4 (E2 − 1)3/2
, (A.20)

D3 =
L̃
(︂
−4E2L̃

2
+ 4L̃

2 − 3
)︂

24 (E2 − 1)5/2
, (A.21)

D4 =
L̃
[︂
8E2

(︁
E2 − 1

)︁
L̃
2
+ 4

(︁
E2 − 1

)︁
L̃
2
+ 5
]︂

64 (E2 − 1)7/2
, (A.22)

D5 = − L̃

1920 (E2 − 1)9/2

[︃
144

(︁
E2 − 1

)︁2
L̃
4

+ 288E2
(︁
E2 − 1

)︁
L̃
2
+ 72

(︁
E2 − 1

)︁
L̃
2
+ 105

]︃
. (A.23)
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Appendix B

Post-Minkowskian expansion of

the scalar-field scatter angle

correction

In analogy with Eq. (2.74), the conservative and dissipative scatter angle corrections

admit PM expansions

δφ
(1)
cons/diss =

∞∑︂
k=2

δφ
(1,k)
cons/diss(v)

(︃
GM

b

)︃k
, (B.1)

where the total coefficient is given by δφ(1,k) = δφ
(1,k)
cons + δφ

(1,k)
diss . In the conservative

sector, the known coefficients are:

δφ(1,2)
cons =− π

4
, (B.2)

δφ(1,3)
cons =−

4E
(︁
3− v2

)︁
3v2

, (B.3)

δφ(1,4)
cons =

π

32v5E4

[︄
− 6(95E + 82)v El1

(︃
π

2
,
E − 1

E + 1

)︃2

− 36E6v7 log2
(︃
1 + E

2

)︃
+ 6(E(100E + 177) + 79)v El1

(︃
π

2
,
E − 1

E + 1

)︃
El2

(︃
π

2
,
E − 1

E + 1

)︃
− 3(E + 1)

(︁
100E2 + 79

)︁
v El2

(︃
π

2
,
E − 1

E + 1

)︃2

+ 9E6v
(︁
1− 3v2

)︁2
arccosh2(E)

+ E6
(︁
1− 3v2

)︁(︃
36v4 log

(︃
Ev

2

)︃
− 29

(︁
2− v2

)︁
v2 − 16

)︃
arccosh(E)

+ 48E4v5 log (b/M) + 2E6v3
(︁
(38− 24E)v4 + (24E − 58)v2 − 16

)︁
log

(︃
Ev

2

)︃
+ 6E6v3

(︃
(8E − 27)v4 + 12v4 log

(︃
Ev

2

)︃
− 8(E − 4)v2 − 8

)︃
log

(︃
1 + E

2

)︃
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− v
[︁
18E6 + 252E5 − 216E3 + 463E2 − 348E + E4

(︁
12v4 + 8v2 − 223

)︁
+ 110

]︁ ]︄
,

(B.4)

In the dissipative sector, the known coefficients are:

δφ
(1,2)
diss = 0, (B.5)

δφ
(1,3)
diss =

2E

3

(1 + v2)2

v3
, (B.6)

δφ
(1,4)
diss =

πE

8v

[︄
3E
(︁
1− 3v2

)︁ (︁
1 + 5v2

)︁
2v3

arccosh(E) + 3E
(︁
1 + 5v2

)︁
log

(︃
1 + E

2

)︃

+
24E + (61E + 18)v6 + 2(75− 52E)v4 + (19E + 84)v2

6v4

]︄
. (B.7)

In the above expressions, El1 is the incomplete elliptic integral of the first kind [previously

defined in Eq. (2.24)], and El2 is the incomplete elliptic integral of the second kind

[previously defined in Eq. (2.54)].

The leading PM term δφ
(1,2)
cons was first obtained in [150], and the leading term δφ

(1,3)
diss

was first obtained in [149] (using results from [150]). The terms δφ
(1,3)
cons , δφ

(1,4)
cons and

δφ
(1,4)
diss were derived in [151] using Amplitude methods, except for certain pieces of the

polynomial expression in the last line of Eq. (B.4) for δφ
(1,4)
cons , associated with unde-

termined Wilson coefficients. These have more recently been determined through two

independent methods: Matching of amplitude calculations in effective-field theory and

black hole perturbation theory [177]; and a double PM/post-Newtonian expansion of

the self-force [178].
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Appendix C

Boundary conditions for

homogeneous solutions

To obtain boundary conditions for the homogeneous solution ψ+
ℓω(r) in the limit r → ∞,

we make the ansatz [152]

ψ+
ℓω(x) = eiωr∗

kout∑︂
k=0

c∞k

(︃
2M

r

)︃k
, (C.1)

and substitute into the homogeneous equation (2.94). This yields the recurrence relation

3∑︂
i=0

f∞i c
∞
k−i = 0, (C.2)

where the coefficients are given by

f∞0 = −2iω̃k, (C.3)

f∞1 = k(k − 1) + 2iω̃(k − 1)− l(l + 1), (C.4)

f∞2 = −2k2 + 5k − 3 + l(l + 1), (C.5)

f∞3 = (k − 2)2, (C.6)

with ω̃ := 2Mω.

Near the horizon we have a similar expansion for ψ−
ℓω(r),

ψ−
ℓω(x) = e−iωr∗

kin∑︂
k=0

cehk y
k, (C.7)
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where y := r/2M − 1. Again substituting into Eq. (2.94), we arrive at a recurrence

relation for the coefficients,

3∑︂
i=0

dehi c
eh
k−i = 0, (C.8)

with

deh0 = −2iω̃k + k2, (C.9)

deh1 = −6iω̃(k − 1)− 1− l(l + 1) + (k − 1)(2k − 3), (C.10)

deh2 = (k − 2)(k − 3)− l(l + 1)− 6iω̃(k − 2), (C.11)

deh3 = −2iω̃(k − 3). (C.12)

The recurrence relations (C.2) and (C.8) admit solutions with c
∞/eh
k<0 = 0, c

∞/eh
0 = 1,

and c
∞/eh
k>0 determined recursively. The number of terms, and hence accuracy of the

approximation, may be controlled by varying the truncation parameters kout and kin.
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Appendix D

Constants appearing in the tail

correction scheme

In this appendix we collect the various coefficients that appear in the expansions that

make up the tail correction scheme described in Section 3.1.2. The first 5 coefficients

ĉ∞n appearing in Eq. (3.5) are given in terms of the coefficients c∞n of Eq. (2.99) by

ĉ∞1 := c∞1 − iω̃, (D.1)

ĉ∞2 := c∞2 − iω̃c∞1 +
1

2
(−iω̃ − ω̃2), (D.2)

ĉ∞3 :=
1

6

[︁
− 3c∞1 ω̃

2 − 3ic∞1 ω̃ − 6ic∞2 ω̃ + 6c∞3 + iω̃3

− 3ω̃2 − 2iω̃
]︁
, (D.3)

ĉ∞4 :=
1

24

[︃
4iω̃3c∞1 − 12ω̃2c∞1 − 12ω̃2c∞2 − 8iω̃c∞1 − 12iω̃c∞2

− 24iω̃c∞3 + ω̃4 + 6iω̃3 − 11ω̃2 − 6iω̃ + 24c∞4

]︃
, (D.4)

ĉ∞5 :=
1

120

[︃
5ω̃4c∞1 + 30iω̃3c∞1 + 20iω̃3c∞2 − 55ω̃2c∞1

− 60ω̃2c∞2 − 60ω̃2c∞3 − 30iω̃c∞1 − 40iω̃c∞2

− 60iω̃c∞3 − 120iω̃c∞4 − iω̃5 + 10ω̃4 + 35iω̃3

− 50ω̃2 − 24iω̃ + 120c∞5

]︃
. (D.5)
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The first 5 coefficients Hnσ appearing in Eq. (3.9) are given in terms of the quantities

∆n of Eq. (3.7) by

H1,σ := iσ∆(1)
∞ , (D.6)

H2,σ :=
1

2

[︂
− (∆1)

2 + 2iσ∆2

]︂
(D.7)

H3,σ :=
i

6

[︂
−σ (∆1)

3 + 6σ∆3 + 6i∆2∆1

]︂
, (D.8)

H4,σ :=
1

24

[︃
− 12iσ∆2 (∆1)

2 + 24iσ∆4 + (∆1)
4

− 24∆3∆1 − 12 (∆2)
2

]︃
, (D.9)

H5,σ :=
i

120

[︃
σ (∆1)

5 − 20i∆2 (∆1)
3

− 60σ∆3 (∆1)
2 − 60σ (∆2)

2∆1

+ 120i∆4∆1 + 120i∆2∆3 + 120σ∆5

]︃
. (D.10)
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Appendix E

Near-separatrix behaviour of δφ(0)

In this appendix we derive Eq. (5.5) for the logarithmic divergence of the geodesic scatter

angle δφ0) in the near-separatrix limit.

Starting with the expression (2.26) for δφ(0) in terms of an elliptic function, we expand

in p about pc(e) = 6 + 2e (at fixed e), to find

δφ(0) ≃ −
(︃
6 + 2e

e

)︃1/2

ln (δp/pc) + const, (E.1)

where δp := p− pc(e). We need now to (i) express the e-dependent coefficient in terms

of v on the separatrix, and (ii) express δp/pc (fixed e) in terms of δb/bc (fixed v) inside

the logarithm. For (i), we use Eq. (2.16) to write

Lc(e)/M =
pc(e)√︁

pc(e)− 3− e2
=

6 + 2e√︁
(3− e)(1 + e)

; (E.2)

then invert to obtain e in terms of Lc on the separatrix. This yields

−
(︃
6 + 2e

e

)︃1/2

=− 2

(︃
1− 12M2

L2
c

)︃−1/4

=− 2

(︃
1− 12M2(1− v2)

v2b2c

)︃−1/4

, (E.3)

where in the second equality we have used Eqs. (2.5) and (2.8). Note that 1 < e < 3 for

critical scatter geodesics, so expressions like those in (E.2) make sense.

To achieve goal (ii) above, we write

δb = b− bc(v) =
L√

E2 − 1
− bc(v(E)), (E.4)

again using Eqs. (2.5) and (2.8), then substitute for bc(v(E)) from Eq. (5.2), and finally

for E and L in terms of p and e from Eq. (2.16). The resulting function of p and e we
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expand in p about pc(e) = 6 + 2e at fixed e. We find

δb =
e(3 + e)3/2M

16(1 + e)3(e− 1)1/2
(δp)2 +O(δp3), (E.5)

noting the linear term vanishes. Hence

ln(δp/pc) =
1

2
ln(δb/bc) + const, (E.6)

and Eq. (E.1) produces Eq. (5.5), with the coefficient A0(v) given in Eq. (5.6).
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