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Error and performance analysis of cold-atom inertial sensors for navigation

by Nikolaos Dedes

Cold-atom inertial (CAI) sensors based on light-pulse atom interferometry show much
promise for the next generation of navigation systems thanks to their low scale-factor
and bias instability. Despite the high performance demonstrated in laboratory-based
experiments, CAI technology is still far from being deployed in real-world navigation
applications, and an analysis of the potential errors must be carried out in order to as-
sess their impact on sensor performance.
Within this context, we conduct a theoretical analysis to identify some of the most im-
portant error sources, disclose their physical mechanisms, and assess their impact on
sensor performance. Through a multidisciplinary approach that combines different
methodologies spanning from system engineering to quantum physics modeling, we
analyse the response of the CAI sensor to several error sources, including scale-factor,
bias, and noise, and establishing clear relations between system parameters and sensor
performance. Particular emphasis is given to error sources stemming from the laser-
atom interaction during the Raman-pulse sequence and from state detection and imag-
ing.
Moreover, we present a method for optimizing beam-splitter pulses based on time-
dependent perturbation theory, demonstrating improvements in the simulated perfor-
mance of a CAI sensor.
Finally. due to its attractive multi-axial sensitivity and inherent capability to discrimi-
nate the acceleration from the rotational signal, we study in more detail errors sources
in CAI sensors based on point-source interferometry. We therefore present a read-out
method based on Kalman filtering to extract the interferometric phase map from inter-
ferograms, along with a compensation scheme for real-time calibration of the rotational
scale-factor based on the integration of the CAI sensor with classical inertial sensors.
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Chapter 1

Introduction

1.1 What is navigation?

The concept of navigation is broad and encompasses various aspects. In its simplest
form, navigation refers to the process of determining and following a course or route to
reach a destination [1]. However, this definition includes two distinct concepts: firstly,
the determination of the position of a vehicle, and secondly, the capability to follow a
predetermined set of position points.
A more modern definition of navigation is related to the concept of GNC (guidance,
navigation, and control). While guidance involves determining the optimal path or
trajectory to reach a destination or achieve a specific objective, and control involves
adjusting the vehicle’s actuators to achieve the desired trajectory or maintain stability,
navigation fundamentally pertains to determining the vehicle’s position, velocity, and
orientation relative to a reference frame or a desired path [2].
Navigation methods can be broadly divided into two main categories: position fixing
and dead reckoning. Position fixing involves the direct determination of the naviga-
tion state using external information. This category includes methods such as proxim-
ity, ranging and angular positioning, Doppler positioning, and pattern matching [3].
Examples of navigation systems based on position fixing include Global Navigation
Satellite Systems (GNSSs), navaids, and visual systems.
In contrast, dead reckoning indirectly determines the navigation state by exploiting
measurements of its rate of change. Therefore, estimation of the navigation state is per-
formed via time integration.
Unlike position fixing, dead reckoning does not rely on external information; instead,
it depends solely on the vehicle’s dynamics. This characteristic ensures robustness
against disruptions or corruption of external signals and enhances autonomy. How-
ever, the major drawback of dead reckoning lies in the time integration process: errors
inherent in the measurements of the rate of change of the navigation state accumulate
and propagate during integration leading to inaccuracy and error drifts. This makes
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FIGURE 1.1: Block diagram representation of an inertial navigation system.

dead reckoning unsuitable for medium and long-term navigation, requiring combina-
tion with position fixing to recover accuracy.

1.2 Inertial navigation systems

The inertial navigation system (INS) is one of the most commonly used dead reckon-
ing navigation systems. In its simplest form, it comprises two main components: an
inertial measurement unit (IMU), which includes a triad of orthogonal gyroscopes and
a triad of orthogonal accelerometers; and a computer that processes the IMU output to
estimate the current navigation state. Gyroscopes measure the angular rate that charac-
terizes the rotation of the body frame with respect to an inertial frame (ωib). Accelerom-
eters measure the specific force, i.e., the acceleration of the body frame with respect to
an inertial frame minus the acceleration due to gravitational force (fib = aib − γib). As a
result, an accelerometer in a static position will measure the reaction to gravity, while in
free fall, it will register zero output. Since the accelerometer measures a specific force,
a gravity model is needed in order to estimate the navigation state.

INSs can be classified into two categories: gimbaled and strapdown systems. In gim-
baled systems, the accelerometer and gyroscope triads are mounted on a platform that
is always maintained aligned with the local horizon. In this scheme, gyroscope mea-
surements are used in a closed-loop configuration to provide feedback signals to the
gimbal torque motors, which rotate the platform until the gyroscope output is zeroed.
Therefore, the orientation of the vehicle is determined by the initial value plus the rota-
tion needed to keep the platform stable. Once the orientation is known, the accelerom-
eter measurements can be used to estimate position and velocity [4].
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In strapdown systems, the inertial sensors are rigidly attached to the vehicle’s body
frame. This greatly simplifies the architecture, reducing cost, size, and weight. How-
ever, this simplicity comes at the cost of higher complexity in the algorithms required
for estimating the navigation state and increased requirements in terms of dynamic
range and bandwidth for the inertial sensors 1. The possibility to realize compact sys-
tems without expensive and complex gimbals makes the strapdown configuration the
most diffused and common architecture for INSs.

Nevertheless the type of INS architecture, the estimation of the current navigation state
is affected by four main error sources:

• Inertial sensors errors. The estimation of the navigation state is performed inte-
grating in time the specific forces and the angular rates, therefore errors in the
measurement process propagate and grow in time [1].

• Alignment (or initialization) errors. In particular, errors in the initial heading
estimation are critical and lead to a position error that drifts in time [1].

• Gravity model. The value of the true gravity varies with the position and can
differ significantly from the model value. For instance, gravity anomalies of sev-
eral tenths of nano-g can induce position errors that exceed 100m after 10min of
navigation [5].

• Computational errors. These include, the choice of the navigation equation ‘mech-
anization’ (i.e. the navigation algorithm) and the computational errors due to
processor’s finite precision [4].

1.2.1 Inertial sensor errors

Errors in the IMU measurements are the dominant source of error in INSs. Both noise
and systematic errors impact the estimation of the current navigation state. In particu-
lar, the time-varying nature of systematic errors is critical, as it necessitates additional
navigation systems for in-flight calibration.
Inertial sensor errors can be grouped in four categories [3]:

• Bias represents the systematic error component along the sensor’s sensitive axis
under conditions of zero input. Bias encompasses several categories, including
fixed bias, run-to-run bias, and anisoinertia bias. While fixed bias is repeatable,
the run-to-run component represents the fraction of bias that changes from one
switch-on event to another. Anisoinertia bias describes errors resulting from an-
gular rates and accelerations occurring along axes orthogonal to the sensitive one.

1The inertial sensors measure the angular rates and specific forces of the vehicle itself, necessitating
sufficient bandwidth and dynamic range to accurately track the vehicle dynamics.
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Unfortunately, bias also exhibits a time-varying random component known as in-
run bias instability, or simply bias instability, which significantly affects medium
and long-term navigation. Bias is usually expressed in degrees per hour for gyro-
scopes and submultiples of g for accelerometers.

• Scale-factor error represents the deviation of the slope of the input-output sen-
sor’s curve from unity. It also includes non-linearity errors, which represent the
deviation of the input-output curve from a straight line. Unlike bias, scale-factor
error occurs for non-zero input. Additionally, it presents a time-varying stochastic
component called scale-factor instability. Scale-factor error is usually expressed
in parts per million (ppm).

• Misalignment error is due to the deviation of each sensor’ sensitive axis from the
orthogonality condition. As a consequence a sensor’s measurement is affect by
inertial actions along axes orthogonal to its sensitive one. It is usually expressed
in ppm.

• Random noise represents the stochastic zero-mean high-frequency error compo-
nent. It is usually described in terms of white noise spectral density. For the gyro-
scope, random noise is expressed in terms of angle random walk with dimensions
of deg/

√
h, while for the accelerometer, it is expressed in terms of velocity ran-

dom walk (m/s/
√

h) or spectral density (µg/
√

Hz).

The measurement model of an inertial sensor is usually given by [3]

η̃ =
(︁
I + Sη

)︁
η+ bη + nη , (1.1)

where η̃ is a 3x1 vector containing the triad measurements, I is the 3x3 identity ma-
trix, Sη is a matrix whose diagonal terms contain the scale-factor error and whose off-
diagonal terms contain the misalignment errors, η represents the vector of the true in-
ertial action (i.e. either the true specif force vector or the angular rate vector), bη is the
bias term, and nη is the random noise term. The above equation is valid for either a
triad of accelerometers or a triad of gyroscopes.

1.2.2 Inertial sensor classification

According to the level of error, inertial sensors can be grouped into different cate-
gories. The categorization and their corresponding requirements are not universally
determined, as various definitions can be found in the literature [3, 6, 7].
Table 1.1 presents a typical performance-based classification of inertial sensors. Ex-
cluding consumer-grade sensors not utilized in navigation applications, tactical-grade
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Grade Strategic Navigation Tactical Consumer

Accelerometer noise
[mg/

√
Hz]

< 0.001 < 0.1 ∼ 1 Several

Accelerometer bias inst.
[mg]

< 0.001 < 0.1 ∼ 1 > 5

Gyroscope noise
[deg/

√
h]

< 0.001 < 0.05 < 0.5 Several

Gyroscope bias inst.
[deg/h]

< 0.001 < 0.05 0.1 − 10 > 10

Position error
[nmi/h]

< 0.05 ∼ 1 10 − 20 Large

TABLE 1.1: Classification of inertial sensors.

sensors offer an accuracy suitable only for short-term navigation (typically less than 5
minutes). In contrast, navigation-grade sensors are suitable for medium-term naviga-
tion (up to several hours) but necessitate integration with additional navigation sys-
tems, such as GNSS, to correct position drifts. Consequently, a navigation-grade iner-
tial sensor serves as an aid for the GNSS receiver, providing high-data-rate estimation
of the navigation state. An INS based on navigation-grade sensors typically exhibits
a position error of one nautical mile after one hour of free-inertial navigation2. This
requirement is crucial for en-route aerial navigation: for instance, within the context of
required navigation performance (RNP), RNP-1 mandates aircraft to remain laterally
within one nautical mile of a defined path 95% of the time [8].
INSs based on strategic-grade sensors can achieve position errors of less than 100m
after one hour of free-inertial navigation. Therefore, they are suitable for navigation
applications demanding high levels of autonomy and accuracy, such as space and sub-
marine navigation, as well as for intercontinental ballistic missiles.

1.3 Cold-atom inertial sensors

The need for increasingly high-performance and autonomous navigation systems has
been one of the major drivers in the development of cold-atom inertial (CAI) sensors.
Since the pioneering experiments led by Kasevich and Chu in the early 1990s [9], the
use of cold atoms for probing inertial effects has emerged as a disruptive technology,
potentially capable of revolutionizing navigation.

2In free-inertial navigation, the position is estimated solely by the INS without aid from GNSS mea-
surements.
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FIGURE 1.2: The laser grating is used as a ‘ruler’ to measure the atomic displacement
during the interferometer’s sequence.

When cooled to temperatures on the order of a few micro-Kelvin, atoms behave like
waves, forming so-called ‘matter-waves.’ Similar to the behavior of light, which can be
diffracted or reflected by crystals and mirrors, atomic matter-waves can be coherently
manipulated by laser fields acting as diffraction gratings and mirrors. The diffracted
matter-waves can be combined to form an interferometer that is sensitive to inertial ac-
tions, mirroring the same mechanism exploited by classical optical gyroscopes, i.e., the
Sagnac effect.
The Sagnac effect can be summarized as follows: under the action of a rotation acting
orthogonally to a closed loop, the distance traveled by the diffracted waves along the
upper and lower arms of the loop differs. This difference in length manifests as a phase
shift in the interference pattern formed by the two waves, which is directly propor-
tional to the area of the loop and inversely proportional to the velocity of the wave. It
appears that for a given loop area, the matter-wave interferometer would be charac-
terized by a significantly increased sensitivity, owing to the fact that cold atoms move
at a speed approximately ten orders of magnitude slower than the speed of light. For
years, this has been the typical way to explain the ’quantum advantage’ of CAI sensors
[10, 11]. But is this explanation correct and sufficient?
First, the Sagnac effect does not account for accelerations, and it is not immediately
clear what the advantage of a cold-atom accelerometer over a classical one would be.
Second, the projected increase in sensitivity is based on the assumption that the loop
area of the interferometer in a cold-atom gyroscope is the same as that of an optical
gyroscope. However, this is not the case, as in fiber optic gyroscopes, coils contain-
ing kilometers of fibers can provide extremely large sensitive areas that can be several
orders of magnitude higher than those of cold-atom gyroscopes. Therefore, we need
another explanation for the quantum advantage.
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Research group
Sensor
(Year)

Short-term
sensitivity

Long-term
stability

Comments

Sandia Labs
IMU

(2014)

3.7mdeg/
√

h
0.9µg/

√
Hz

−
Two-axis dual sensor with
high data-rate ( fc = 60Hz).

Ref. [12]

LNE-SYRTE
Gyroscope

(2018)
0.1mdeg/

√
h 0.06mdeg/h

4-pulse interferometer
in zero-dead-time mode.

Ref. [13]

Weizmann Institute
Gyroscope

(2020)
160mdeg/

√
h 100mdeg/h

Point-source interferometry.
Ref. [14]

State Key Labs
Gyroscope

(2021)
0.5mdeg/

√
h 0.2mdeg/h

Dual sensor with spatially
separated Raman beams.

Ref. [15]

iXBlue
Accelerometer

(2022)
22µg/

√
Hz 60ng

Three-axis sensor.
Ref. [16]

TABLE 1.2: Performance of state-of-the-art CAI sensors using different system archi-
tectures.

CAI sensors measure specific forces and angular rates by detecting the relative dis-
placement of atoms with respect to a laser standing wave. The relative distance trav-
eled by the atoms can be detected by counting the number of crossings in a standing
wave, N (t) = ∆ra(t)/λsw, where ∆ra(t) is the atomic displacement in time t, and λsw

is the wavelength of the standing wave. Atoms are nearly perfect proof masses, and
their motion is highly repeatable in principle. If we use a stable laser to measure their
motion, the wavelength λsw is also highly repeatable. Therefore, the overall measure-
ment of the number of crossings (i.e., the phase) is characterized by high stability. It is
indeed this stability in the measurement process that makes CAI sensors so attractive:
once calibrated, their measurements remain stable over time and are characterized by
minimal drifts.

Table 1.2 shows the state-of-the-art of CAI sensors for different system architectures and
configurations. Except for the point-source interferometry architecture, state-of-the-art
CAI sensors have demonstrated low-noise and high-stability performance. However, it
must be noted that the actual data reported in the table refer to lab-based experiments
characterized by benign and controlled environments. So far, only a few field trials
have been conducted, showing performance worsening by up to one or more orders of
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magnitude in challenging environments [17]. Therefore, the actual performance of CAI
sensors in real-world applications is unknown and requires proper investigation.

1.4 Thesis outline

In principle, CAI sensor’ measurements are characterized by high stability. However,
various error sources, stemming from different physical mechanisms and depending
on different system parameters, affect the different sensor’s performance. In many
cases, these errors could result in non-stable or excessively noisy measurements.
The aim of this thesis work is to establish the performance of CAI sensors for navigation
applications by identifying and evaluating their characteristics, sensitivities, and limi-
tations. In order to achieve this, we identify several error sources, disclose the physical
mechanisms behind them, and assess their impact on sensor performance both qual-
itatively and, when possible, quantitatively. Unless otherwise specified, the chosen
atomic species in the numerical analysis is 85Rb, primarily due to the fact that our re-
search group has historically adopted this atomic species.
The thesis is organized as follows:

• Chapter 2. We introduce the working principles of CAI sensors based on light-
pulse atom interferometry. We focus in particular on a three-pulse Mach-Zehnder
interferometer scheme using stimulated Raman transitions. Moreover, we ex-
plore how CAI sensors can be utilized for navigation.

• Chapter 3. We analyze the CAI sensor from a system point of view, identifying the
major error sources, their physical mechanisms, and their impact on the sensor’s
performance.

• Chapter 4. We introduce the sensitivity function formalism as a powerful the-
oretical tool to compute the response of a CAI sensor to both deterministic and
stochastic inputs.

• Chapter 5. We present a method for designing optimized beam-splitter pulses
based on time-dependent perturbation theory, which links the sensitivity function
formalism to optimal control in the Bloch sphere picture. We discuss the impact
of optimized beam-splitter pulses on scale-factor errors and biases arising from
inter-pulse laser intensity variations.

• Chapter 6. We address the errors induced by wavefront distortions on CAI sen-
sors operating with both standard and point-source interferometry detection, and
highlight possible sources of noise and long-term instability.

• Chapter 7. We analyze CAI sensors based on point-source interferometry in more
detail. We address the issues of contrast decay and rotational scale-factor errors



1.4. Thesis outline 9

arising from the initial atomic distribution. Additionally, we present a read-
out method that employs an extended Kalman filter for extracting the phase
map from interferograms, and a compensation scheme that integrates informa-
tion from a classical gyroscope to stabilize the rotational scale-factor and limits
total contrast loss due to high rotation rates.

• Chapter 8. We analyze some of the error sources arising during state detection
and imaging, considering different imaging methods.

• Chapter 9. We provide a projection for the performance of a CAI sensor, identify-
ing limitations and trends. For a simple case, we compute the projected naviga-
tion performance.

• Chapter 10. We draw conclusions and offer perspectives on future research.
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Chapter 2

Cold-atom inertial sensors for
navigation applications

2.1 Light-pulse atom interferometry principles

Light-pulse atom interferometry (LPAI) represents the most common and mature tech-
nology for probing inertial effects using cold atoms. In LPAI, atomic matter-waves are
diffracted and recombined by means of laser pulses in free-space [18]. Unlike config-
urations where the atomic wave packets are confined to move within a wave-guide
potential [19], free-space propagation ensures the high stability of the atomic trajecto-
ries, which do not depend on imperfections in the wave-guide realization [20].

Different diffraction methods have been proposed, each with its pros and cons.
Two-photon Raman diffraction is the most common and widely used method to diffract
atomic matter-waves. This technique involves creating a long-lived superposition be-
tween the two ground states of an alkali element using a two-photon transition. Two
laser beams are precisely tuned so that their frequency difference matches the hyper-
fine splitting [21]. Arranging the lasers in a counter-propagate configuration ensures
Doppler sensitivity and inertial effects probing. In two-photon Raman diffraction the
superposition is created between both internal and momentum states. As a result, the
phase accumulated by the atomic wavefunction during the interferometer sequence
depends on error sources affecting the atomic internal state, such as laser phase noise
or stray magnetic fields.
Two-photon Bragg diffraction has gained popularity in recent years as an alternative
method. By adjusting the frequencies of two lasers to match the recoil shift, it creates a
superposition of only momentum states. While this approach provides immunity to er-
ror sources affecting the atomic internal state, it necessitates colder atoms. Additionally,
depending on the power of the lasers, Bragg pulses may diffract atomic matter-waves
into multiple momentum orders, leading to a reduction in signal-to-noise ratio and the
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FIGURE 2.1: Energy diagram (not to scale) of the two-photon Raman diffraction. Two
lasers couple the state |g⟩ to the state |e⟩ via the far-detuned upper state |i⟩.

emergence of spurious phases due to the interference of these extra states [22].
Only in recent years, the improved stability of laser systems has made possible the im-
plementation of single-photon diffraction using narrow and ultra-narrow clock transi-
tions in alkali-earth elements, such as strontium [23]. Single-photon transitions ensure
high transfer efficiency with Rabi frequencies of the order of MHz, thus making possi-
ble the realization of large-momentum transfer (LMT) pulse sequences, where multiple
laser pulses are concatenated to enlarge the interferometer’s area and improve sensi-
tivity [24]. However, the difficulty in realizing agile and robust laser systems charac-
terized by high frequency stability and high powers at different wavelengths 1, and the
limitations imposed by spontaneous emissions, are factors that contribute to a less ma-
ture technology for the realization of CAI sensors for inertial navigation applications.
Two-photon Raman diffraction operating with rubidium remains the preferred choice
in state-of-the-art CAI sensors to this day. Firstly, Raman pulses are more efficient than
Bragg pulses, as they do not require atomic ensembles characterized by sub-recoil ve-
locity distributions. Secondly, all laser systems (e.g., for trapping, cooling, interferom-
etry, and detection) share the same wavelength, simplifying the sensor’s architecture.
Thirdly, robust, efficient, high-power, and cost-effective laser systems can be realized
using telecom fiber components via frequency-doubling. The use of fiber components
reduces the need for free-space optics, enabling the realization of compact systems, and
reducing the sensitivity to optical misalignment in challenging environments [26].

2.1.1 Two-photon Raman diffraction

In two-photon Raman diffraction, two laser beams couple the state |g, p⟩ with the state
|e, p + h̄keff⟩ via the far-detuned upper state |i, p + h̄k1⟩, where |g⟩ and |e⟩ represent
the lower and upper ground states, respectively (i.e., the internal degree of freedom).

1For example, in the case of 88Sr, the cooling transition necessitates a blue laser, while the clock tran-
sition for interferometry requires a red laser [25].
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|p⟩ represents the momentum state (i.e., the external degree of freedom), and keff =

k1 − k2 is the Raman effective wave-vector, given by the difference between the wave-
vectors associated with the two lasers. During the diffraction process, the atom acquires
a momentum h̄keff as a results of the conservation of momentum.
If the Raman lasers are far-detuned from the upper excited state, the atomic evolution
can be described by an effective two-level system. Therefore, for an atom initially in
the state |g, p⟩, the probability to be in |e, p + h̄keff⟩ is given by

Pe =
Ωeff

ΩR
sin2
Å

ΩR τ

2

ã
, (2.1)

where, Ωeff is the effective (or two-photon) Rabi frequency, τ is the laser pulse dura-
tion, ΩR =

»
Ω2

eff + δ2 is the off-resonance Rabi frequency, and δ is the two-photon
detuning. The two-photon detuning is given by δ = δ12 − δAC = δL − (ωeg + δD + δR +

δZ) − δAC, where δL is the laser detuning, ωeg is the hyperfine splitting of the ground
state, δD = keff · v is the Doppler detuning, δR = h̄k2

eff/(2 m) is the recoil shift, δZ is the
Zeeman shift, and δAC is the AC Stark shift (or one-photon light-shift).
Eq. (2.1) describes the so-called Rabi flopping: the laser pulse interacts with the atomic
matter-wave inducing periodic transitions between its energy states. On resonance
(δ = 0), the probability Pe is a periodic function depending only on the product θ =

Ωeff τ, and has a unitary amplitude. We observe that the condition θ = π, correspond-
ing to Pe = 1, indicates a state inversion, while the condition θ = π/2, corresponding
to Pe = 1/2, places the atomic state in a 50/50 superposition. Therefore, adjusting
the pulse duration allows for the inversion and redirection of the atomic state (mirror
pulse), or the splitting of the atomic wavefunction into a coherent superposition (beam-
splitter pulse).
Eq. (2.1), in its simplicity, highlights two sources of error affecting the efficiency of the
diffraction process: pulse-length errors and off-resonance errors. Pulse-length errors
result from deviations of the effective Rabi frequency from the nominal resonant value.
This occurs, for instance, due to spatial inhomogeneities in the laser intensity experi-
enced by atoms. In contrast, off-resonance errors arise from the frequency difference
between the two lasers not precisely matching the hyperfine splitting. For instance,
atoms moving in the direction of the effective wave-vector experience Doppler detun-
ing, resulting in sub-optimal diffraction.
Figure 2.2 displays experimental Rabi flopping data. In contrast to the ideal resonant
case characterized by a constant and unitary amplitude, the experimental data exhibit
damped oscillations. The observed dephasing in the experimental data is likely due to
several factors, including Doppler broadening, Zeeman degeneracy, and pulse-length
errors resulting from the expansion of the atomic cloud in a Gaussian laser beam. In ad-
dition to the collection of the experimental data, we have developed a numerical model
based on Monte Carlo simulation that takes as input the measured Zeeman population,
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FIGURE 2.2: Rabi flopping of 85Rb. The black circles are experimental data, while
the magenta line represents the result of a numerical model based on Monte Carlo
simulation. The shaded magenta area individuates the 3 − σ bounds. The inset shows
the Zeeman sub-levels population. Experimental parameters: laser power of 110mW
and 130mW, lin ⊥ lin polarization, single-photon detuning ∆ = 2 π × 6.8GHz, beam

waist 1.5mm, atomic temperature 10µK, width of the initial cloud 500µm.

the atomic velocity distribution, the initial parameters of the atomic cloud, and the in-
tensity profile of the Raman beam.

2.1.2 Mach-Zehnder interferometer

Mirror and beam-splitter pulses are the cornerstone of LPAI, forming the basis of vari-
ous types of atom interferometers. Among these, the three-pulse Mach-Zehnder inter-
ferometer is the most commonly used for detecting inertial effects.
Initially, the atomic matter-wave is diffracted by a first beam-splitter pulse in a coher-
ent superposition of two states. Subsequently, the atomic wave-packets undergo a first
period of free-evolution, during which, they separate in space. A mirror pulse then
inverts the atomic states and redirects the wave-packets to close the interferometer’s
loop. Another period of free evolution follows, during which the spread between the
upper and lower wave-packets reduces. Finally, a second beam-splitter pulse allows
for interference between the upper and lower wavepackets.
The probability for an atom to be in the |e, p + h̄keff⟩ state at the output port of the
interferometer is (see Appendix A).

Pe = P0 −
C
2

cos (∆Φ) , (2.2)

where P0 is the probability offset, C is the fringe’s contrast, and ∆Φ is the interferometric
phase, that contains both the momentum and internal-state dependent phase. A more
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FIGURE 2.3: Recoil diagram of an atom Mach-Zehnder interferometer. The two free-
evolution periods are chosen with same duration (T1 = T2 = T) to suppress initial
velocity sensitivity. The continuous and dashed lines represent the upper and lower
arm of the interferometer, respectively. The purple line is the centre-of-mass trajectory

(or midpoint line).

in-depth analysis of the various phase terms is deferred to Chapter 4.
We anticipate here that the momentum-dependent phase contains the inertial effects,

and in the limit of the semi-classical approximation and infinitesimal pulses, it is given
by

∆Φk = keff · rba(t1) − 2 keff · rba(t2) + keff · rba(t3) , (2.3)

with rba(tj) relative position of the atomic centre-of-mass’ trajectory, represented with a
purple line in figure 2.3, with respect to the laser frame at the j-th pulse.
While the expression of the interferometric phase appears to be classical, its origin is
purely quantum-mechanical: it arises from the position-dependent phase imparted to
the atomic wave-packets by the Raman lasers at each laser pulse.
Assuming for simplicity that the relative motion is described by rba(t) = r0 + v0 t +
1/2 a t2, we obtain

∆Φk = keff · v0 (T2 − T1) + keff · a

ñ
(T1 + T2)2

2
− T2

1

ô
, (2.4)

where T1 and T2 are, respectively, the duration of the first and second free-evolution
periods. We observe that selecting a symmetric pulse sequence with respect to the mir-
ror pulse (T1 = T2 = T) ensures the suppression of the initial velocity dependent term,
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causing the above equation to reduce to the well-known result ∆Φk = keff · a T2. In
Chapters 4 and 5, we will see that there can still be a residual sensitivity to the initial
velocity when we account for the asymmetries induced by finite-pulse effects.
We observe that the detection of inertial effects through a phase shift limits the sen-
sor’s dynamic range. This limitation arises because the cosine function appearing in
the interferometric signal expression is periodic, and extracting the term ∆Φ from the
inversion of Eq. (2.2) results in phase ambiguity.

2.2 Cold-atom inertial sensors for navigation applications

The most intuitive way to use CAI sensors for navigation applications is as an IMU.
However, the presence of dead times in the duty cycle, the low bandwidth, and the
limited dynamic range prevent the use of CAI sensors as standalone IMUs. Different
solutions can be engineered to exploit the ‘quantum advantage’ of CAI sensors in nav-
igation applications. Here, we report some examples.

2.2.1 IMU in zero-dead-time configuration

The presence of dead times in the sensor’s cycle induces both aliasing noise and a
reduced capability to capture the vehicle dynamics. Zero-dead-time (ZDT) can be
achieved in pulsed interferometers by staggering different interferometers in time. This
requires accurate synchronization of atom trapping and cooling, state preparation, Ra-
man pulse timing, and detection [13]. The staggering could occur between different
atomic sensors operating in parallel or within one sensor, in which the cooled atomic
clouds are launched sequentially in a fountain configuration [27].
Continuous cooled (or thermal) atomic beam interferometers offer an alternative to
pulsed counterparts, as they naturally allow for continuous measurements without the
need to stagger multiple interferometers in time [28]. Here, atoms are not prepared in
a cloud but are focused in a beam propagating in the direction transverse to the Raman
beams.
The main drawback of pulsed-ZDT and atomic beam sensors is due to the fact that
Raman pulses are delivered by multiple counter-propagating laser pairs that are phys-
ically spaced. This poses three main problems. First, the alignment of the multiple
Raman pairs requires careful consideration, as eventual misalignments introduce both
contrast decay and biases [29]. Second, the Raman light is delivered in the sensor head
through independent optics and is retro-reflected by multiple mirrors. Therefore, vari-
ations in the optical path and non-common-mode wavefront distortions are potential
instability sources. Third, the inertial scale-factor does not depend anymore on the time
between the pulses, but on the physical distance between the Raman beams. This can
be problematic, since in challenging environments, thermoelastic loads and structural
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vibrations could induce variations in the spacing between the beams.
In any case, the ZDT mode does not resolve the issue of dynamic range stemming from
phase ambiguity, as an aiding sensor is still necessary to lock the atomic sensor onto
the correct fringe. A partial solution to this problem, at least for the gyroscope signal,
could be the adoption of point-source interferometry read-out [28].

2.2.2 Hybridization with conventional IMU

Hybridization of CAI sensors with a conventional (or equivalently, classical) IMU com-
bines the high data rate, bandwidth, and dynamic range of conventional inertial sen-
sors with the high stability of atomic ones. The output from a conventional IMU serves
essentially three purposes. Firstly, it provides quasi-continuous inertial measurements,
enabling the capture of the vehicle’s dynamics. Secondly, conventional IMU measure-
ments can be correlated with interferometer measurements to solve phase ambiguity,
monitor random phase due to vibrations, and compensate for off-resonance errors re-
sulting from accelerations [17, 16, 30]. In contrast, the high stability and accuracy of
the CAI sensor are used to estimate conventional sensor biases, leading to an improve-
ment in long-term stability performance [31]. This type of sensor architecture, initially
developed by LNE-SYRTE and then improved and implemented in the realization of a
cold-atom accelerometer triad by iXBlue, is suitable for strapdown configurations and
does not require bulky and expensive gyro-stabilized platforms. Although it consti-
tutes an elegant solution to multiple problems, the hybridization of CAI sensors with
a conventional IMU requires the implementation of complex real-time feedback mech-
anisms and a careful design of data-fusion algorithms. Moreover, the short-term sen-
sitivity of the hybridized sensor will inevitably be limited by the conventional sensor.
This is not necessarily a drawback, as in many cases, the cold-atom sensor may exhibit
higher short-term noise than its conventional counterpart.

2.2.3 Gravity gradient based navigation

A gravity gradiometer exploits the simultaneous free-fall of two atomic ensembles to
measure gravity gradients, effectively functioning as a differential accelerometer. The
differential configuration contributes to the cancellation of several error sources that
are common-mode between the two atomic clouds, leading to superior performance
compared to cold-atom accelerometers and gyroscopes [32].
The idea of using cold-atom based gravity gradiometry for high-accuracy free-inertial
navigation has first been proposed for submarine applications [33, 34]. Two main meth-
ods can be found in literature, both requiring the installation of the atomic sensors on
stabilized platform in order to limit the error induced by attitude incorrect estimation.
The first, called gravity-map matching, is a position-fixing technique that correlates the
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Vehicle trajectory

Atom

FIGURE 2.4: Cold-atom based local-positioning system exploits the interferometric
measurements and the estimated absolute atomic motion to reconstruct the vehicle’s

position.

gradiometer measurements with predicted values from a gravity database via data-
fusion algorithms [35]. The main limitation of this method is due to the resolution of
the gravity database 2. The second is a dead reckoning method, in which the gradiome-
ter measurements are paired with the vehicle’s velocity estimates to accurately estimate
the gravity vector [36]. Clearly, this second method is suitable for INSs operating with
high-performance sensors, where the ultimate navigation performance is limited by
errors introduced by the gravity model.

2.2.4 Local positioning system

Specific forces and angular rates are indirect measurements of a CAI sensor. What a
CAI sensor truly measures is a linear combination of the relative atomic positions (rba)
at each laser pulse. Knowledge of the gravitational field allows for the estimation of
atomic motion with respect to an inertial frame (ria). Therefore, the vehicle’s position
with respect to an inertial frame can be reconstructed by subtracting the atomic relative
positions from the absolute atomic trajectory (rib = ria − rba).
This approach has been termed local positioning system (LPS) as it uses known ab-
solute atomic motion as a reference against which the vehicle’s position is estimated
[37]. From a certain perspective, the interferometric measurement is comparable to an
ultra-accurate ranging measurement, resembling a ‘local GPS’. Kasevich and Dubetsky
proposed a stabilized platform mechanization to retrieve the position and velocity of
a vehicle in the Earth Centred Earth Fixed (ECEF) reference frame using atomic sen-
sors in a zero-dead-time configuration [38]. The major drawback of cold-atom-based
LPS is the stringent requirement for precise knowledge of the local gravitational field
to accurately determine the atomic absolute motion. Gravity anomalies not reported in
databases could lead to significant errors in position estimation.

2For instance, the EGM2008 database is characterized by a 1 nautical mile resolution
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Chapter 3

Error sources in cold-atom inertial
sensors

Although cold-atom inertial (CAI) sensors have demonstrated high long-term stabil-
ity and low noise in lab-based experiments, their performance in real-world scenarios
is still, for the most part, unknown. CAI sensor performance deteriorates in dynamic
environments mainly because of a decrease in signal-to-noise ratio due to disturbances
such as platform vibrations and rotations, external magnetic fields, and relative motion
of the hosting vehicle with respect to the atomic cloud [17]. In many cases, bulky gyro-
stabilized platforms, magnetic field shielding, complex feedback mechanisms, and in-
tegration with aiding sensors are necessary to limit the impact of several error sources
upon CAI sensor performance [39]. In this context, it is crucial to identify and analyze
potential error sources in CAI sensors, their dependency on system parameters, and
their impact on performance.
It is important to note that with the term ‘error source,’ we do not only refer to those
affecting the sensor’s output, i.e., the measured phase shift, but also those affecting the
interferometric signal’s visibility, i.e., fringe contrast. This is because, among other fac-
tors, contrast directly affects the signal-to-noise ratio and the availability of the sensor
measurement.
The analysis of the impact of error sources on sensor performance is not an easy task,
as it depends on the adopted pulse sequence, diffraction scheme, and overall architec-
ture. For practicality, we focus on a CAI sensor based on a three-pulse Mach-Zehnder
interferometer, in which the atomic matter-waves are diffracted by two-photon Raman
diffraction.
Our analysis is organized as follows: first, we describe the sensor’s system architecture
from a functional perspective. Second, we identify and analyze several error sources
grouping them on the basis of the affected performance. The analysis aims to disclose
the physical mechanisms behind each error source, highlighting mutual interactions
and their impact on the sensor’s performance.
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FIGURE 3.1: System architecture of a CAI sensor based on functional components.

3.1 System architecture

In general, five functional components, represented in Figure 3.1, can be identified as
the main building blocks of a CAI sensor:

1. Trapping and cooling. Atoms are loaded from a background vapour into a magneto-
optic trap (MOT). Ultra-high vacuum pressure levels (< 10−9mbar) are required
to avoid decoherence induced by atomic collisions with the background gas. Atoms
are trapped in the zero of a quadrupole magnetic field and slowed by the scat-
tering force of laser light tuned to a closed optical transition. Once the atomic
thermal velocity is sufficiently small, the quadrupole field is switched off, and
the intensity of the laser is decreased, further reducing the width of the thermal
velocity distribution to an equivalent temperature of a few µK.

2. State preparation. At the end of the trapping and cooling stage, the atomic cloud
is released from the optical molasses, and atoms populate all the Zeeman mag-
netic sub-levels, mF, within a hyperfine ground state. Using optical pumping and
microwave pulses, atoms are then prepared in the mF = 0 state, which is, at first
order, insensitive to magnetic fields. In some cases, additional laser pulses are
used to selectively choose atoms from lower velocity classes. This ensures better
efficiency in the Raman diffraction process and higher contrast.

3. Raman pulse sequence. Atoms prepared in the mF = 0 state interact with three
Raman laser pulses. The first pulse acts like a beam-splitter, diffracting the atomic
wave-function into a coherent superposition of two states. After the first pulse,
the atomic wave-function exists in a coherent superposition of both internal and
momentum states and evolves freely for a period T. The second pulse acts like
a mirror, inverting the atomic states and redirecting them. The wave-packets
propagate for a second free-evolution period of duration T, and at the end of
it, a third pulse recombines them, ensuring interference.

4. State detection and imaging. The interferometric signal is obtained in the form of
a probability by measuring the fraction of atoms in one of the two Mach-Zehnder
states. Laser pulses tuned to optical transitions are used to transfer atoms to
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FIGURE 3.2: Coupling between atomic trajectories and spatial inhomogeneities in the
intensity profile of the Raman beam. Panel (a): static conditions. Panel (b): dynamic

conditions.

excited states, during which photons are emitted. By counting the number of
photons with a photodetector, the probability of having the atoms in one of the
two states - and thus the interferometric signal - can be determined. Two main
read-out techniques are used in CAI sensors: cloud-averaging and point-source
interferometry (PSI). In PSI, the interferometric signal is imaged onto a plane in
the form of a spatial probability distribution [40]. In cloud-averaging, the inter-
ferometric signal is obtained by averaging the probability distribution over the
entire atomic cloud, thus requiring scanning of the laser phase to extract inertial
information.

5. Processing and output. The inertial information is embedded in the phase of
the interferometric signal. Depending on the detection scheme, phase extrac-
tion requires discriminating the rotation-induced phase (gyroscope signal) from
the acceleration-induced phase (accelerometer signal), resolving phase ambigu-
ity, and performing optimal estimation.

3.2 Contrast loss mechanisms

3.2.1 Pulse-length errors

Pulse-length errors arise from the coupling between atomic trajectories and spatial
inhomogeneities in the intensity profile of the Raman beam. Typically, Raman laser
beams with Gaussian intensity profiles are utilized in light-pulse atom interferometry
applications. Gaussian beams are easily achievable experimentally and enable high
peak intensities.
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(A) Static (B) Dynamic

FIGURE 3.3: Simulated effect of pulse-length errors on contrast loss. Panel (A): Cou-
pling between the atomic cloud expansion in the plane transverse to the Raman axis
and laser intensity inhomogeneity. We assume a beam-splitter pulse duration τ = 5µs
and cloud temperature T = 5µK. Panel (B): fractional contrast decay due to an accel-
eration transverse to the Raman propagation axis for free-evolution time T = 10ms.

In both cases we assume a Gaussian intensity profile and 85Rb atoms.

Under static conditions, the spatial inhomogeneity of the intensity profile couples with
the expansion of the atomic cloud in the plane orthogonal to the Raman wave-vector
direction, thereby inducing a decay in the contrast of the interferometric signal. This
decay depends on the width of the atomic space and velocity distributions, as well as
on the waist of the intensity profile. In practice, the intensity profile deviates from a
Gaussian mode: higher-order Gauss-Laguerre modes and localized inhomogeneities,
such as bright spots and intensity rings, further impact the interferometric signal, re-
sulting in reduced contrast [41].
Under dynamic conditions, accelerations acting in the transverse direction to the Ra-
man axis, as shown in Figure 3.2, induce a relative displacement between the center-
of-mass of the atomic cloud and the centroid of the Raman beam, leading to further
contrast loss.
Figure 3.3 shows the simulated effects of pulse-length errors on interferometer’s con-
trast for both static and dynamic conditions. As expected, the longer the free-evolution
time, the more the atomic cloud expands, experiencing intensity variations, and conse-
quently, the more the contrast drops. For the simulation of the dynamic condition case,
we assume that the atomic cloud is perfectly centered with the Raman beam at the time
of the first pulse. For a free-evolution time of 10ms, a beam waist of 10mm is required
to have negligible fractional contrast loss up to 1.5g of transverse acceleration. Clearly,
the longer the free-evolution time, the higher the contrast loss for a given acceleration.
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(A) Pulse duration and longitudinal
temperature

(B) Longitudinal vibrations

FIGURE 3.4: Effect of off-resonance errors on contrast loss. Panel (A): effect of pulse
duration and longitudinal temperature on interferometer contrast for a free-evolution
time T = 10ms. Panel (B): fraction of contrast decay due to the effect of longitudinal
vibrations for beams-splitter duration τ = 5µs. In both cases we assume 85Rb atoms.

3.2.2 Off-resonance errors

Off-resonance errors arise from detuning sources. While the light-shift term is typically
suppressed by adjusting the intensities of the Raman lasers, the recoil shift is compen-
sated for by shifting the laser frequencies. If the atoms are correctly prepared in the
mF = 0 state, the quadratic Zeeman shift is negligible for magnetic fields of the order of
a few hundred milli-Gauss. The presence of a residual number of atoms in the mF ̸= 0
states could cause contrast decay and magnetic-dependent phases. However, the ap-
plication of a sufficiently large bias field would render these states off-resonant.
In a counter-propagating arrangement, the primary source of off-resonance errors is
the Doppler shift resulting from the component of the relative atomic velocity along
the Raman effective wave-vector. The efficiency of the Raman diffraction depends on
the convolution between the atomic velocity distribution and the spectral profile of the
pulse. The width of the spectral profile is proportional to the effective Rabi frequency;
therefore, a high Rabi frequency is required to improve the transfer efficiency.
The presence of an acceleration along the Raman axis is a further source of Doppler
detuning. The higher the free-evolution time, the higher the contrast loss induced by a
longitudinal accelerations.
Figure 3.4 shows the simulated effect of off-resonance errors on contrast decay. In the
simulations, we consider both the influence of the Raman pulse duration and the lon-
gitudinal velocity distribution (expressed here as a function of an equivalent tempera-
ture). For a given velocity distribution, the shorter the pulse duration (i.e., the higher
the Rabi frequency), the less the contrast decay. Furthermore, we analyse the impact
of longitudinal vibrations on the contrast. As a rule of thumb, vibrations do not typi-
cally constitute a significant source of contrast loss if the induced Doppler shift is much
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FIGURE 3.5: Effect of the rotation of the Raman beam upon the wave-packets trajec-
tories. The green (blue) colour represents the upper (lower) arm of the interferometer.
For completeness, we added also the effect of an acceleration along the z-axis. At the
first pulse, the Raman beam is aligned with the z-axis. The red lines indicate the times
at which the laser pulses occur. A rotation acting about the y-axis determines an ‘open’

interferometer configuration.

smaller than the Rabi frequency, i.e., keff σa T ≪ Ωeff. Therefore, for a given interroga-
tion time, vibrations are less critical for atomic species characterized by a lower value
of the effective wave-vector 1.

3.2.3 Rotations of the Raman beam

A rotation of the Raman beam relative to the atomic trajectory leads to contrast loss
through two primary mechanisms.
Firstly, when the Raman beam rotates during the pulse sequence, it induces a varia-
tion in the momentum kick imparted to the centers of mass of the atomic wave-packets
traveling along the upper and lower arms of the Mach-Zehnder interferometer. Conse-
quently, the wave-packets at the time of the final pulse do not perfectly overlap, result-
ing in reduced interference and contrast reduction [42]. Figure 3.5 shows the upper and
lower atomic trajectories in presence of a transverse angular rate and a longitudinal ac-
celeration. The extent of contrast decay depends on the size of the wave-packets at the
output port of the interferometer and on the free-evolution time. The wave-packet size
is determined by both the atomic momentum distribution and the velocity selectivity
of the Raman diffraction process [43].
Secondly, in a CAI sensor with PSI detection, the finite size of the initial atomic cloud
couples with angular rates, further reducing the contrast [44]. The initial cloud can
be envisioned as an ensemble of point sources that expand over time, accumulating a
phase shift proportional to the angular rate via the atomic thermal velocity (Coriolis

1For instance, Cs has an effective wave-vector that is 87% of Rb’s one.
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FIGURE 3.6: Energy diagram of Raman diffraction in presence of retro-reflection. The
retro-reflecting arrangement induces a double-diffraction scheme that couples multi-
ple momentum states. In the picture, we truncate the momentum ladder to the ±keff

orders.

acceleration). When the cloud is imaged onto a CCD, the averaging process over the
velocity distribution results in contrast reduction.

3.2.4 Wavefront distortions

Wavefront distortions couple with atomic trajectories, imprinting position-dependent
phases. When averaging over the phase-space distribution, the interference induced
by these phases leads to contrast loss.
In most scenarios, wavefront distortions are not the primary source of contrast de-
cay. However, for extended free-evolution times (typically exceeding 100ms) or in se-
quences involving large momentum transfer, contrast decay resulting from aberrated
wavefronts could become significant [45].

3.2.5 Retro-reflection effects

In a retro-reflecting configuration, the incident and reflected wave-vectors generate a
momentum ladder, causing Raman transitions to couple multiple momentum states, as
shown in Figure 3.6. Consequently, the atomic evolution is no longer described by a
single-diffraction process within an effective two-level system. Limiting our attention
to the states |g, p⟩ and |e, p ± h̄keff⟩, a sufficient separation between the ±keff transi-
tions must be ensured in order to have single-diffraction. However, when this separa-
tion is insufficient, a pulse with a high Rabi frequency may excite unwanted transitions,
leading to contrast decay [22]. The excitation of unwanted transitions is particularly
critical for beam-splitter pulses, which exhibit a higher bandwidth compared to mirror
pulses [46].
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3.2.6 Detection

PSI detection impacts the contrast of the interferometric signal in the presence of spa-
tial modulation induced by rotations. Firstly, contrast loss occurs due to misalignments
between the imaging line-of-sight and the direction orthogonal to the rotation-induced
wave-vector. Therefore, to achieve maximum contrast, the imaging line-of-sight should
be orthogonal to the spatial modulation. Secondly, long imaging pulses may induce
blurring and distortions in the atomic cloud, further reducing contrast [40].
However, PSI detection does not involve averaging over the spatial distribution. Con-
sequently, the contrast decay in the presence of rotations is lower compared to the con-
ventional detection method [40].

3.3 Systematic errors

3.3.1 High-order inertial effects

As stated before, what a CAI sensor really measures is a linear combination of the
relative position of the atomic cloud with respect to the laser frame at the different
pulses. To find the relative atomic position at the time of each laser pulse, one must
solve the equations of motion in the laser rotating frame. For constant specific forces
and angular rates, the solution of the equation of motion contains terms that give rise
to spurious phase shifts, which depend on the vehicle’s dynamics and the duration of
the interferometric sequence [47]. These high-order inertial effects are due to couplings
between accelerations and angular rates acting along axes orthogonal to the sensitive
one and are analogous to anisoinertia bias in classic inertial sensors.
Gravity gradients are another form of high-order inertial effect, as they modify the
atomic trajectories, introducing error phases .

3.3.2 Quadratic Zeeman effect

The energy levels of atoms in the mF = 0 Zeeman state exhibit a quadratic magnetic
field dependency. A DC field does not affect a CAI sensor because the phase accumu-
lated by the atomic wavefunction is the same in the two halves of the interferometer.
However, if the atoms experience time-varying magnetic fields during the interfero-
metric sequence, a phase error arises. Magnetic fields affect a CAI sensor through three
main mechanisms [48]:

• Temporal variations. Purely temporal magnetic field variations are mainly due
to eddy currents that manifest as transients of the switch-on/off of the magnetic
coils during the trapping stage and serve as a bias source.



3.3. Systematic errors 27

| ⟩𝑔𝑔,𝐩𝐩

| ⟩𝑒𝑒,𝐩𝐩 + ħ𝐤𝐤𝐞𝐞𝐞𝐞𝐞𝐞

| ⟩𝑖𝑖,𝐩𝐩 + ħ𝐤𝐤𝟏𝟏

| ⟩𝑖𝑖,𝐩𝐩 + ħ𝐤𝐤𝟐𝟐

| ⟩𝑖𝑖,𝐩𝐩 + ħ(𝐤𝐤𝐞𝐞𝐞𝐞𝐞𝐞+ 𝐤𝐤𝟏𝟏)

FIGURE 3.7: Internal state energy diagram (not to scale) of the Raman diffraction pro-
cess. The one-photon light-shifts are due to the self-coupling terms in the effective

two-level system.

• Spatial variations along the Raman axis. Spatial inhomogeneities of the magnetic
field couple with atomic trajectories along the Raman axis, giving rise to bias and
scale-factor errors.

• Magnetic gradient force. A spatial variation of the magnetic field determines a
state-dependent force that modifies the atomic trajectories in a Mach-Zehnder
interferometer, introducing a further source of bias and scale-factor errors.

3.3.3 Light-shifts

3.3.3.1 One-photon light-shift

Stimulated Raman transitions couple states |g, p⟩ and |e, p + h̄keff⟩ via a far-detuned
upper state, as presented in Figure 3.7. One-photon light-shifts (OPLS), or AC Stark
shifts, represent self-coupling terms that shift the atomic energy levels according to the
laser intensity, polarization, and detuning from the upper state. OPLS is typically sup-
pressed by carefully adjusting laser intensities or frequencies [49]. However, variations
in laser intensity from the nominal value can lead to a residual sensitivity to light-shifts,
which couples with asymmetries induced by the expansion of the atomic cloud in the
presence of spatial intensity inhomogeneities, thus resulting in systematic errors.

3.3.3.2 Two-photon light-shift

Additional light-shifts occur when implementing a laser counter-propagating arrange-
ment with a retro-reflecting mirror. The presence of both momentum states, |p ± h̄keff⟩,
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in the Raman diffraction process allows for double transitions in both wave-vector di-
rections. To resolve this Doppler degeneracy and prevent double-diffraction, the Ra-
man transitions in the two wave-vector directions must be sufficiently separated in
frequency. This can be achieved through either Doppler detuning [50] or by chirping
the laser frequency during the laser pulses [51]. By doing so, the Raman laser can be
tuned to one of the two counter-propagating transitions, and the atomic matter-waves
undergo standard single-diffraction. However, the presence of an off-resonance tran-
sition shifts the atomic energy levels of the resonant one. This detuning is known as
two-photon light shift (TPLS) and depends on the Rabi frequency and the detuning be-
tween the two momentum transitions [52]. Therefore, TPLS is a systematic error source
if there are variations in the Rabi frequency or in the detuning experienced by the atoms
during the interferometric sequence.

3.3.4 Wavefront distortions

Non-flatness of the Raman laser wavefront represents one of the major systematic er-
rors in CAI sensors [53]. It can be induced by laser intensity inhomogeneity, collimation
errors, or by imperfections in the optical elements through which the laser propagates.
The phase error impressed by the distorted wavefront onto the atomic wavefunction
depends on the position of the atom within the wavefront itself, in the plane orthogonal
to the laser propagation axis. For these reasons it is a function of different parameters
such as the sensor configuration, the expansion time of the atomic cloud, the width of
the transverse velocity distribution, the type of wavefront distortion, the Raman beam
waist, the detection beam radius [53]. Long-term drifts in atomic trajectories are a ma-
jor source of bias instability when coupled with wavefront distortions.
In CAI sensors with PSI detection, wavefront distortions are particularly critical as
they are directly mapped onto the interferometer signal without any averaging pro-
cess over the space distribution. Consequently, the distribution of phase errors distorts
the fringes and severely impacts the extraction of rotational and acceleration signals.

3.3.5 Asymmetry of the interferometer

Variations of the Rabi frequency experienced by the atoms during the first and last
pulse or timing errors in the pulse sequence break the temporal symmetry of the inter-
ferometer with respect to the central mirror pulse. As a consequence, the CAI sensor
becomes sensitive to a steady detuning leading to systematic errors [54]. This occurs
because the phase accumulated by the atoms during the first half of the interferometer
is no more compensated by the phase shift accumulated during the second half. The
major error source is constituted by the asymmetry and/or the offset of the longitudinal
atomic velocity distribution entering the pulse sequence.
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FIGURE 3.8: The interaction between distorted wavefronts and atomic motion occurs
in the transverse plane. The phase imposed on the atom at each pulse depends on its

position within the distorted wavefront.

3.3.6 Atomic cloud properties: initial size and cloud density

3.3.6.1 Initial size

The finite initial size couples with spatial-dependent phases, such as those caused by
rotations and wavefront distortions, leading to systematic errors. Specifically, in a CAI
sensor based on PSI detection, the initial size of the cloud affects the rotational scale-
factor as a result of the blurred position-velocity correlations in phase-space.

3.3.6.2 Atomic density

The atomic density is a source of systematic errors through two main mechanisms:
variations of the refractive index and cold-atom collisions.
The actual momentum imparted to the atom by the Raman laser depends on the refrac-
tive index of the medium [55]. The density of the atomic cloud (ρ) modifies the refrac-
tive index, and, therefore, the momentum kick imparted to the atomic wave-packets.
The momentum imparted to the atom at each pulse is given by n h̄keff, where the re-
fractive index n =

√︁
1 + Re{χ}, and χ is the atomic susceptibility [56]. For a two-level

system, with a single-photon detuning (∆) much larger than the Rabi frequency and the
transition natural linewidth (Γ), we get n = 1 + δn, with δn ≈ −(3/2) (π/k3

0) (Γ/∆) ρ,
and k0 laser wave-number. The variation of the refractive index, δn, induces systematic
errors that depend on the density of the atomic cloud, and the coupling with the atomic
trajectory along the Raman axis.
Cold-atom collisions determine a shift of the energy levels that depends on the den-
sity of the atomic cloud and on the atomic state [57]. Since, the atomic cloud expands
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during the interferometric sequence, its density, and hence, the detuning from Raman
transition varies determining a bias that depends on the initial atomic phase-space dis-
tribution and on the number of atoms.

3.3.7 Finite pulse duration

The finite duration of Raman pulses affects the scale-factor of a CAI sensor. This can
be understood in geometric terms, considering that the scale-factor is proportional to
the area enclosed by paths along which the atomic wavepackets travel during the inter-
ferometric sequence. A pulse with a finite duration diffracts the center of mass of the
wavepacket along paths that differ from the infinitely short duration case [58]. Drifts of
the Raman intensity from the nominal value result in a variation of the Rabi frequency,
which translates into an effective pulse-length error further affecting the sensor’s scale-
factor.

3.3.8 Misalignment of the Raman axis

Misalignments of the Raman axis with respect to the vehicle’s body frame induce sys-
tematic errors in the form of cross-couplings between the different sensitive axes and
scale-factor errors. For instance, a tilt of the Raman axis relative to the transverse plane,
determined by the xb and yb axes, results in a scale-factor error SFϵ ≈ θ2

⊥/2.

3.3.9 Spontaneous emissions

Spontaneous emissions induce decoherence in the interferometric signal, and their prob-
ability of occurrence is proportional to the overall time that the Raman laser remains
on. Therefore, spontaneous emissions are more critical for atom interferometers oper-
ating in large momentum transfer configurations.
A second effect of spontaneous emissions is represented by the so-called coherent pop-
ulation trapping (CPT). The term CPT refers to the phenomenon in which, due to spon-
taneous emissions, atomic populations become trapped in a dark state, which is a co-
herent superposition of the two ground states. Because of CPT, the atomic wavefunc-
tion accumulates a phase during the first beam-splitter pulse that affects the interfero-
metric phase [59].
Both decoherence and CPT can be mitigated by choosing a large single-photon detun-
ing (∆ > 2GHz).
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3.3.10 Multiple Raman lines

The two Raman lasers are typically generated from a common seed through modu-
lation using an electro-optic modulator. When the modulation produces a comb-like
spectrum with each electric field line separated by a frequency close to the hyperfine
splitting, multiple electric field pairs drive the Raman transition [60]. The presence of
parasitic transitions leads to variations in the momentum imparted to the atom, gen-
erating a ladder of momentum states. Consequently, the atomic evolution is no longer
described by a two-level system. Since each transition imparts a slightly different mo-
mentum to the wavepackets, multiple spurious paths originate from each laser pulse,
resulting in systematic effects [60].
This effect can be mitigated using optical single-sideband modulation [61].

3.3.11 Detection

The detection process introduces systematic errors due to the convolution of its re-
sponse function with the atomic distribution.
In conventional cloud-averaging detection, an offset of the atomic distribution relative
to the center of the response function results in asymmetric detection of velocity classes.
When averaging over space, more atoms from one of the tails of the velocity distribu-
tion contribute to the interferometric signal. Consequently, the detected velocity dis-
tribution exhibits an apparent offset, leading to systematic effects on the acceleration
signal in the presence of angular rates [62].
In PSI detection, systematic errors arise from three main mechanisms: motion blur, op-
tical distortions and misalignments, and finite resolution of the CCD. Motion blur is
caused by the relative motion of the atoms with respect to the imaging system, with
accelerations in the transverse plane and thermal expansion of the atomic cloud due to
recoil heating being the primary sources. Additionally, blurring of the detected atomic
distribution is induced by optical distortions of the imaging system. An important
effect is represented by the misaligments in the telescope system used to image the
atomic cloud, resulting in magnification errors that directly affect the estimation of the
spatial frequency modulation. Lastly, the sampling process due to the finite resolution
of the CCD leads to aliasing, resulting in detected spatial frequencies differing from the
nominal ones.
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3.4 Noise

3.4.1 Raman laser

3.4.1.1 Phase noise

Phase noise is due to phase fluctuations in the two Raman frequency components. If
these components share the same optical path, phase noise due to perturbations in the
path becomes common-mode between them and does not impact the interferometer
output. The primary source of phase noise is typically the RF chain utilized for fre-
quency modulation and the generation of Raman components [61].
Phase affects interferometer performance because atoms interact with laser fields for
a finite time. The interferometer behaves as a band-pass filter, with its bandwidth de-
termined by the free-evolution time at low frequencies, and by the pulse shape and
duration at high frequencies [63]. For a given maximum intensity, a smooth waveform
allows for better rejection of high-frequency noise. This can be understood because the
high-frequency response of the interferometer is essentially determined by the Fourier
transform of the pulse. Therefore, pulses characterized by sharper edges and shorter
duration have a larger bandwidth (in the limit of a Dirac pulse, the bandwidth is infi-
nite).

3.4.1.2 Frequency noise

In a retro-reflecting mirror arrangement, the time at which the atomic cloud interacts
with the incident laser and the reflected laser differs due to the finite speed at which
light propagates. This time delay couples with the Raman frequency noise, inducing a
degradation of the signal-to-noise ratio of the interferometer. The degradation is pro-
portional to the time delay and, hence, to the distance between the position at which
the atomic cloud interacts with the Raman pulses and the retro-reflecting mirror [64].

3.4.1.3 Intensity noise

Temporal intensity noise affects the interferometric signal via light-shifts. Low-frequency
intensity noise affects the interferometer mainly via TPLS, while high-frequency inten-
sity noise is dominated by the OPLS. In particular, in the case of OPLS, the longer
the laser-atom interaction, the higher the noise imparted to the atomic wavefunction.
Therefore, laser intensity noise is particularly critical for large momentum transfer in-
terferometers.
Spatial intensity noise, resulting from factors such as poor quality optics, induces short-
scale phase fluctuations that locally distort the laser wavefronts. This leads to spatial
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fluctuations in the momentum imparted to the atomic wavepackets and introduces
noise into the interferometric signal. This effect has more impact on PSI sensors, as
the conventional detection method significantly suppresses this local effect through
averaging over the spatial distribution [65].

3.4.2 Magnetic noise

Temporal and spatial fluctuations of the magnetic field experienced by the atoms dur-
ing the interferometric sequence affect the noise performance of the CAI sensor via
the quadratic Zeeman effect. We anticipate that both the temporal and spatial fre-
quency responses are characterized by a band-pass-like structure, with the bandwidth
determined by the duration of the free-evolution time. Specifically, the longer the free-
evolution time, the higher the sensitivity of the interferometer to low-frequency tem-
poral noise and long-wavelength spatial noise.

3.4.3 Vibrations

Vibrations are one of the dominant noise sources in CAI sensors [20]. Both linear and
angular vibrations cause random fluctuations in the relative position of the laser wave-
fronts with respect to the atomic position. The frequency response of the interferometer
to vibrations exhibits a low-pass filter behavior, with the bandwidth determined by the
free-evolution period. Specifically, the longer the free-evolution period, the higher the
induced phase noise.
Linear vibrations along the direction of the Raman axis directly affect the acceleration
signal, while vibrations in the plane transverse to the Raman axis couple with wave-
front distortions, impacting both acceleration and rotational signals [66]. Angular vi-
brations result from the pointing jitter of the Raman axis and affect both the rotational
and acceleration signals.

3.4.4 Dead time effects

Aliasing noise affects the performance of CAI sensors operating in pulse-mode, as dead
times associated with trapping, cooling, preparation, and atom detection are unavoid-
able. During these dead times, no measurements are taken, resulting in uncorrelated
noise from different sensor cycles. This directly affects the slope of the Allan deviation
of the interferometric signal, which scales as 1/

√
τc, with τc representing the cluster

time. Additionally, the sensor will be affected by noise at multiple integers of the cy-
cling frequency, inducing an aliasing phenomenon similar to that observed in atomic
clocks [67].
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3.4.5 Detection

3.4.5.1 Atom shot noise

Atom shot noise sets the ultimate theoretical limit of a CAI sensor operating with un-
entangled atoms and its nature is purely statistical [68]. At the end of the Raman pulse
sequence, the Mach-Zehnder interferometer presents two output ports in which the
probability to find the atoms in one of the two states follows, in the approximation of
central limit theorem, a Gaussian distribution with standard deviation 1/

√
N, where N

is the total number of detected atoms.

3.4.5.2 Photon shot noise

Atomic populations are detected by measuring the number of emitted or absorbed pho-
tons. Photon shot noise is not connected to any quantum phenomenon and arises from
the random arrival times of photons in a detection system. Photon shot noise is due to
the discrete nature of photon arrivals and can be described by a Poisson distribution
with standard deviation

√︁
Np, where Np is the number of detected photons.

3.4.5.3 Technical noise

The laser system used for state detection and imaging is a primary source of technical
noise through frequency and intensity fluctuations.
The photodetector is an additional source of technical noise. For instance, random fluc-
tuations in pixel-to-pixel sensitivity, dark current, and thermal noise in the photodetec-
tor amplifier circuits (Johnson noise), are noise sources in a CCD.
Finally, stray light scattered by the vacuum chamber walls and fluorescence from back-
ground atoms also contribute to technical noise during the detection process.
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Chapter 4

The sensitivity function formalism

The output of an atom interferometer is represented by the phase shift resulting from
the interference of the wavepackets traveling along its arms. During the time evolution,
the wavepackets accumulate a phase that, in general, will depend on the interaction be-
tween the laser and the atomic system at each pulse.
Although various formalisms have been proposed in the literature to compute the out-
put of an atom interferometer, none of them exhibit the unique features of the sensi-
tivity function. For instance, the Feynman path integral approach [47] and the density
matrix in Wigner representation [69] have been used to obtain analytic expressions of
high-order inertial phase shifts, but they neglect the effect of the finite pulse duration.
The transfer matrix approach has been employed to take into account finite laser pulse
duration effects, but it comes at the cost of great analytic complexity [58, 70, 71]. More-
over, none of the previous formalisms can be extended to describe the phase response
of the interferometer to a general time-varying input without adding further complex-
ity. In contrast, the sensitivity function formalism provides the phase response of an
atom interferometer to time-varying inputs and accounts for finite pulse effects in an
easy and intuitive fashion [72]. Furthermore, its counterpart in the frequency domain
allows for the determination of the interferometer response to stochastic inputs, closely
resembling the transfer function approach in system engineering [67].

Given a pulse sequence, the sensitivity function formalism provides:

• Scale-factor of the interferometer. This is obtained when the input is represented
by the intended quantity to be measured, i.e. angular rates and specific forces.

• Bias of the interferometer. This is obtained when the input is given by an error
source (e.g. time-varying magnetic fields, light-shifts, etc.). The capability to de-
scribe the phase response to time-varying inputs also allows for the estimation of
maneuvering-dependent bias (e.g. response to acceleration jerk, angular acceler-
ation or cross-axis effects).
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• Noise performance of the interferometer. The frequency-domain representation
of the sensitivity function allows for the determination of the uncertainty of the
interferometric phase for a given noise source.

Although, the interferometer phase response can be obtained analytically in the case
of conventional rectangular pulses, the sensitivity function formalism can be easily ex-
tended to the case of tailored pulses that exhibit time-varying power profiles [63], thus
enabling the possibility to study the effects of non-resonant pulses [73].

These features make this formalism suitable for developing an error model for the in-
terferometer and can be utilized in real-time systems to suppress certain error sources
[30]. For these reasons, we will extensively employ the sensitivity function throughout
this thesis work to quantitatively estimate how the system parameters of the interfer-
ometer influence the performance of the cold-atom inertial (CAI) sensor.

The chapter is organized as follows:

1. We introduce and define the phase sensitivity within a general framework, ac-
counting for both cases where the superposed states are in different internal and
momentum states (π/2 − π − π/2 Raman pulse sequence) or in the same inter-
nal state but different momentum states (Bragg or composite alternate pulse se-
quences).

2. Focusing on the π/2 − π − π/2 scheme using rectangular Raman pulses, we
present the phase sensitivity function, taking into account finite pulse duration
effects and non-resonant conditions. Furthermore, we extend the formalism to
analyze the interferometer’s response to a general time-varying deterministic or
stochastic input.

3. We show how to compute the interferometer’s response to inertial effects, encom-
passing linear accelerations and angular rates, whether they are acting along the
sensitive axis or along a direction orthogonal to it.

4. Building on previous works that focused on the interferometer’s response to phase
noise and longitudinal accelerations, we extend the formalism to encompass time-
and space-varying magnetic fields, one- and two-photon light-shifts, and atomic
collisions.

5. We show how to combine properly multiple atom interferometers in order to
achieve uniform sensitivity in zero-dead-time (ZDT) mode and the effects upon
the inertial sensor short-term sensitivity.
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4.1 The phase sensitivity function

First introduced by Dick in his seminal paper [74] to study the instabilities caused by
local oscillators in atomic clocks, the sensitivity function formalism has been extended
to atom interferometry by SYRTE group [67].
The sensitivity function is defined as the response of the interferometric signal to an
infinitesimal phase step input [67]. The interferometric signal is represented by the
relative number of atoms measured at one of the output ports of the interferometer

P2 = P0 −
C
2

cos (∆Φ) , (4.1)

where |1⟩ and |2⟩ are the two interferometer’s atomic states, P0 is the interferometric
signal offset, C is the contrast, and ∆Φ is the interferometric phase. Assuming that
∆Φ = ∆Φ0 + δϕ, where ∆Φ0 is a controllable phase offset and δϕ is a small perturbation
such that |δϕ| ≪ 1, we obtain

P2 = P0 −
C
2

cos (∆Φ0)⏞ ⏟⏟ ⏞
P2,u

+
C
2

sin (∆Φ0)δϕ⏞ ⏟⏟ ⏞
δP2

, (4.2)

with P2,u and δP2 the unperturbed signal and first-order perturbation term, respectively.
Note that the perturbation term δP2 is maximum when ∆Φ0 = π/2 and minimum
when ∆Φ0 = 0; this is in agreement with the fact that the interferometer’s maximum
(minimum) sensitivity is achieved on the side (bottom) of the central fringe [50].
The sensitivity function is obtained evaluating the variation of the first-order perturba-
tion term with respect to the magnitude of the phase perturbation

g(t) := lim
δϕ→0

δP2(t)
δϕ

, (4.3)

where the perturbation δP2(t) = P2(t) − P2,u is given by the difference between the per-
turbed and the unperturbed interferometric signals, and the perturbed signal P2(t) is
computed assuming a phase perturbation δϕ(t) = δϕ Θ(t′ − t), with Θ(. . . ) the Heavi-
side step function.
In an analogous way, we can define the phase sensitivity function as the variation of
the interferometric phase with respect to the magnitude of an infinitesimal perturbation
phase

gϕ(t) := lim
δϕ→0

∆Φ(t)
δϕ

=
2

C sin (∆Φ0)
g(t) , (4.4)
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where ∆Φ(t) is the interferometric phase accumulated during the pulse sequence. Un-
like the sensitivity function that exhibits a dependency on the contrast and the work-
ing point of the interferometer [67], the phase sensitivity function is normalized with
respect to the contrast and offset phase. This ensures that interferometric phase accu-
mulated by a mono-kinetic atom does not depend on the contrast or phase offset.
The interferometric phase can be computed from Eq. (4.4) as

∆Φ =
∫︂ +∞

−∞
gϕ(t)

dϕ

dt
dt , (4.5)

where ϕ(t) is the phase of the atomic wavefunction. Eq. (4.5) is the cornerstone of the
sensitivity function formalism: the interferometric phase is given by the rate of change
of the phase accumulated by the atomic wavefunction, weighed by the phase sensitivity
function.

4.1.1 Internal state vs momentum state

Assuming a potential at most quadratic in space, the interferometric phase can be com-
puted using the midpoint theorem [75]

∆Φ =
N

∑
i=1

(k1,i − k2,i) z̄i⏞ ⏟⏟ ⏞
∆Φk

−(ω1,i − ω2,i) ti + (φ1,i − φ2,i)⏞ ⏟⏟ ⏞
∆Φint

(4.6)

where kn,i z̄i, ωn,i and φn,i are, respectively, the position-dependent phase, the effective
angular frequency and the effective arbitrary phase acquired by the atomic wavepack-
ets travelling along the n-th arm of the interferometer and at the i-th laser pulse 1. We
note that the interferometric phase exhibits a term that depends on the spatial separa-
tion between the arms of the interferometer, i.e. on the atomic momentum state (∆Φk),
and a term that depends only on the internal state (∆Φint). The terms kn,i, ωn,i and
φn,i have a positive (negative) sign if the atom gains (loses) energy; they are zero if no
energy variation occurs.

Applying the midpoint theorem to the case of a π/2 − π − π/2 interferometer using
rectangular Raman pulses, leads to

∆Φ(3P)
int = φ1,1 − (φ1,2 + φ2,2) + φ1,3 = φeff,1 − 2φeff,2 + φeff,3 , (4.7)

1The quantity z̄i = (z1,i − z2,i)/2 is the midpoint trajectory, or, equivalently, the centre-of-mass trajec-
tory described by the atomic wavepackets travelling along the upper and lower arm of the interferometer.
The quantity kn,i represents the Raman effective wave-vector.
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∆Φ(3P)
k = k1 z̄1 − 2 k2 z̄2 + k3 z̄3 , (4.8)

We note that the momentum and the internal state dependent phase have the same
form. This is due to the fact that at each pulse both the internal and momentum state
change accordingly. Then we expect that the internal state and momentum state phase
sensitivity functions are equivalent.
In contrast, considering the alternate composite sequence of Ref. [76] we obtain

∆Φ(ACP)
int = φeff,1 − φeff,2 − φeff,3 + 2φeff,4 − φeff,5 − φeff,6 + φeff,7 (4.9)

∆Φ(ACP)
k = k1 z̄1 + k2 z̄2 − k3 z̄3 − 2 k4 z̄4 − k5 z̄5 + k6 z̄6 + k7 z̄7 . (4.10)

In this case the momentum state and internal state dependent phases have different
forms. As a consequence, we expect that the momentum state and the internal state
phase sensitivity functions differ.
Figure 4.1 shows the the recoil diagrams and both the momentum state and the internal
state phase sensitivity functions for the conventional π/2 − π − π/2 and the alternate
composite sequence. In particular, the internal state phase sensitivity function is zero
during the free-evolution period, a consequence of the atomic wavefunction being in
a superposition of momentum states only. This makes the interferometer robust to
momentum-independent error sources such as stray magnetic fields, thus not requiring
k-reversal [76].

Although in the following sections we focus on the π/2 − π − π/2 interferometer, in
which the momentum state phase sensitivity function coincides with the internal state
phase sensitivity function, we stress here that in general, the two differ. In particular,
the example of the alternate composite pulse highlights the possibility of extending
the formalism to compute the phase sensitivity of interferometers that have the atomic
wavefunction in a superposition state of momentum states only, such as those adopting
Bragg pulses [77] or Raman double diffraction [78].

4.1.2 The phase sensitivity function

The derivation of the phase sensitivity function for a conventional π/2-π-π/2 interfer-
ometer with rectangular Raman pulses is provided in the Appendix A. In this section,
we present only the result
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(A) Rectangular pulse sequence (B) Alternate composite sequence

FIGURE 4.1: Momentum state (black) and internal state (purple) dependent sensitivity
functions for the rectangular and alternate composite pulse sequence. For complete-
ness, we show the recoil diagrams with blue and cyan colours representing the upper
and lower internal states trajectories. The arrows indicate the verse of the effective

Raman wave-vector at each laser pulse.

gϕ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sin (Ω1 t)
sin (θ1) 0 ≤ t ≤ τ

−1 τ ≤ t ≤ T + τ

sin (Ω2(t−T−2τ))
sin (θ2/2) T + τ ≤ t ≤ T + 3τ

+1 T + 3τ ≤ t ≤ 2T + 3τ

− sin (Ω3(t−2T−4τ))
sin (θ3) 2T + 3τ ≤ t ≤ 2T + 4τ

0 otherwise ,

(4.11)

with τ duration of the π/2 pulse, T duration of the free-evolution period, Ωi and θi,
respectively, the effective Rabi frequency and pulse area of the i-th pulse.
The function gϕ(t) represents the phase sensitivity of the interferometer under the as-
sumption of a flat laser wavefront and for a mono-kinetic atom. It’s important to note
that Eq. (4.11) takes into consideration the impact of pulse-length errors; indeed, for
resonant pulses (θ1 = θ3 = π/2, θ2 = π, and Ωi = π/(2τ)) Eq. (4.11) reduces to the ex-
pression presented in Ref. [67]. As expected, the value of the phase sensitivity function
during the free-evolution period remains unaffected by the effective Rabi frequency
as shown in Figure 4.2. The sensitivity function’s odd parity with respect to the mid-
point of the mirror pulse is a result of the pulse sequence’s symmetry, which guarantees
insensitivity to DC detunings. Therefore, asymmetries observed in the sensitivity func-
tion, as experimentally measured by Cheinet et al. [67], can be explained by variations
in the Rabi frequency experienced by the atoms within the interferometer.
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FIGURE 4.2: Phase sensitivity function for a conventional π/2 − π − π/2 interferom-
eter. The black line represents the resonant case. The magenta (green) line represents
the case in which the effective Rabi frequency is lower (higher) than the resonant case.

The red-shaded areas represent the pulses.

4.1.2.1 Link between sensitivity function and atomic trajectories

An intriguing connection between the atomic trajectories and the phase sensitivity
function emerges when we examine the dynamics of the wavepackets in momentum
space. The rate of change of the mean position of the atomic wavepacket along the
Raman effective wave-vector direction is given by [73]

d ⟨z⟩
dt

= −
∫︂ +∞

−∞
|Ψ(k)|2 ∂ω

∂k
dk , (4.12)

where Ψ(k) is the initial momentum-space wavefunction and ∂ω/∂k is the group veloc-
ity. Assuming that the wavepacket is narrow in momentum space around k = 0, we
obtain

d ⟨z⟩
dt

≈ −h̄
∂ω

∂p

⃓⃓⃓⃓
p→0

, (4.13)

with p = h̄k, momentum. The angular frequency ω(p, t) is the time derivative of the
phase accumulated by the atomic wavefunction during the interferometric sequence
and can be expressed by means of Eq. (4.5) as

ω(p, t) = gϕ(t)ϕ̇(p, t) . (4.14)
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When considering solely the position-dependent phase resulting from the momentum
imparted by the Raman laser onto the atomic wavefunction, i.e., ϕ̇(p, t) = keff v, we
arrive at the following expression

d ⟨z⟩
dt

≈ −vrec gϕ(t) , (4.15)

where vrec = h̄keff/m is the recoil velocity, v is the atomic velocity with respect to the
laser frame and, we indicated with keff the Raman effective wave-vector.
Referring to Eq. (4.15), the phase sensitivity function is proportional to the momen-
tum imparted to the centre of mass of the atomic wavepacket. Specifically, the phase
sensitivity function quantifies the average velocity difference between the wavepack-
ets traveling along the interferometer arms. Starting from an initial zero-momentum
state, the mean velocity difference increases until it reaches the value vrec. During the
free-evolution period the upper wavepacket moves with constant velocity vrec, while
the lower remains stationary. During the central mirror pulse, state-inversion occurs
and the velocity difference changes sign becoming negative. This implies that the sepa-
ration between the trajectories of the upper and lower wavepackets diminishes during
the second half of the interferometric sequence as pictured in Figure (4.1). Due to the
sensitivity function’s odd parity, the mean velocity of the wavepacket along the upper
arm in the first half of the interferometric sequence equals that of the wavepacket along
the lower arm in the second half. This ensures that the upper and lower wavepackets
overlap at the end of the interferometric sequence. However, when inter-pulse Rabi
frequency variations break the symmetry of the phase sensitivity function with respect
to the midpoint of the mirror pulse, the upper and lower wavepackets do not perfectly
overlap at the output port of the interferometer leading to additional phase shifts and
contrast decay [79].

4.1.3 From phase to arbitrary sensitivity

The phase sensitivity function provides the response of the interferometer (∆Φ) to the
time derivative of the Raman phase (ϕ), i.e. the phase imparted to the atomic wave-
function by the Raman pulse. However, expressing the Raman phase as a function of
an arbitrary quantity ξ(t), we can generalize the sensitivity function formalism as

gξ(t) := lim
δξ→0

∆Φ(t)
δξ

, (4.16)

where gξ is the response of the interferometer to an infinitesimal step input ξ(t) =

δξ Θ(t′ − t). The interferometric phase is given by
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∆Φ =
∫︂ +∞

−∞
gξ(t)

dξ

dt
dt , (4.17)

and integrating by parts we obtain

∆Φ =
∫︂ +∞

−∞
hξ(t) ξ(t) dt , (4.18)

where hξ(t) = −gξ̇(t) is the impulsive response function (IRF).
If we look at the interferometer as a black-box system, the IRF maps a time-varying
input (ξ(t)) to an output (∆Φ), as shown in Figure 4.3. Therefore, the Fourier transform
of the IRF, denoted as Hξ(ω), is the transfer function of the interferometer, and allows
for the estimation of the output uncertainty for a given stochastic input. In the presence
of coloured noise sources, the Allan variance is the most used uncertainty estimator,
and it is given by

AVAR∆Φ(τc) =
∫︂ +∞

0
F(ω, τc) |Hξ(ω)|2 Sξ(ω)⏞ ⏟⏟ ⏞

S∆Φ(ω)

dω

2π
, (4.19)

where Sξ(ω) is the power spectral density of the input noise source, and F(ω, τc) is
the filter function that links the power spectral density of the output, S∆Φ(ω), with the
uncertainty estimator and is given by [80]

F(ω, τc) =
1

2 m2

4 sin4 (︁ω m Tc/2
)︁

sin2 (︁ω Tc/2
)︁ (4.20)

with Tc sensor cycling period (i.e., the inverse of the cycling frequency), and τc = m Tc

the cluster time expressed as multiple integers of the cycling period.
Assuming that the cluster time is much greater than the cycling period leads to

AVAR∆Φ(τc) =
1
τc

+∞

∑
n=1

|Hξ(2πn fc)|2 Sξ(2πn fc) . (4.21)

with fc = 1/Tc cycling frequency (or, equivalently, sensor’s sampling rate). Conse-
quently, the Allan variance is only affected by noise at multiple integers of the cy-
cling frequency weighted by the square of the transfer function evaluated at the same
harmonics. For a CAI sensor operating in pulse-mode the cycling period is always
higher than the interferometer duration because of the dead times associated to atom
trapping and cooling, state preparation, and state detection and imaging. As a conse-
quence, noise is uncorrelated between two consecutive measurement cycles and scales
as ∼ 1/

√
τc.
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(A) Time domain (B) Frequency domain

FIGURE 4.3: Block diagrams for sensitivity of the interferometer to arbitrary input in
time and frequency domain.

4.1.4 The phase impulsive response function

The phase IRF provides the response of the interferometer to a Dirac delta Raman phase
and is related to the acceleration imparted to the wavepackets. Taking the time deriva-
tive of Eq. (4.11) leads to

hϕ(t) = −
dgϕ

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω1 cos (Ω1 t)
sin (θ1) 0 ≤ t ≤ τ

0 τ ≤ t ≤ T + τ

−Ω2 cos (Ω2(t−T−2τ))
sin (θ2/2) T + τ ≤ t ≤ T + 3τ

0 T + 3τ ≤ t ≤ 2T + 3τ

Ω3 cos (Ω3(t−2T−4τ))
sin (θ3) 2T + 3τ ≤ t ≤ 2T + 4τ

0 otherwise .

(4.22)

Figure 4.4 shows the phase IRF in the case of both resonant and off-resonant pulses. We
note that in the case of off-resonant pulses the symmetry of the function with respect
to the midpoint of the mirror pulse is broken. However, the area underneath the func-
tion is independent on the value of the Rabi frequency. Physically this means that the
interferometric phase does not depend on the initial phase of the atomic wavefunction.

The phase transfer function, Hϕ(ω), is the frequency response to a sinusoidal phase
input. Recalling the property of the Fourier transform of the derivative of a function,
Hϕ(ω) = i ω Gϕ(ω), where Gϕ(ω) is the Fourier transform of the phase sensitivity func-
tion. Because of the symmetry with respect to the midpoint of the central pulse, it
is convenient to take the Fourier transform of the shifted phase sensitivity function,
gϕ(t − T − 2τ). Thus, we obtain

Hϕ(ω) = Re{Hϕ(ω)}+ i Im{Hϕ(ω)} (4.23)

where the real and imaginary part of the phase transfer function are given by
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FIGURE 4.4: Phase impulsive response function for a conventional π/2 − π − π/2
interferometer normalized with respect to the resonant Rabi frequency, Ω0. The black
and the green line represent, respectively, the resonant case (Ωi = Ω0, with i = 1, 2, 3)
and off-resonant case (Ω1 = Ω0, Ω2 = 0.9Ω0 and Ω2 = 0.8Ω0). The magenta line
represents the area underneath hϕ(t) for each pulse and it is independent on the Rabi

frequency value.

Re{Hϕ(ω)} = 4 sin
Å

2x − y
2

ã
sin
(︂y

2

)︂
+ . . .

ω̂1

1 − ω̂2
1

ï
sin (y)
sin (θ1)

− cot (θ1) sin (x) − ω̂1 cos (x)
ò
+ . . .

ω̂3

1 − ω̂2
3

ï
sin (y)
sin (θ3)

− cot (θ3) sin (x) − ω̂3 cos (x)
ò
+ . . .

2 ω̂2

1 − ω̂2
2

ï
ω̂2 cos (y − x) − cot

Å
θ2

2

ã
sin (y − x)

ò
,

(4.24)

Im{Hϕ(ω)} =
ω̂1

1 − ω̂2
1

ï
ω̂1 sin (x) − cot (θ1) cos (x) +

cos(y)
sin (θ1)

ò
− . . .

ω̂3

1 − ω̂2
3

ï
ω̂3 sin (x) − cot (θ3) cos (x) +

cos(y)
sin (θ3)

ò
,

(4.25)

with x = ω(T + τ), y = ω(T + 2τ), ω̂i = ω/Ωi.
The imaginary part of the phase transfer function is non-zero only if the Rabi frequen-
cies during the first and last pulse differ, meaning that the even parity of the phase IRF
is broken for a non-symmetric laser intensity configuration. The real part of the transfer
function depends on two contributions: at low frequencies the behaviour is dominated
by the free-evolution period (first row of Eq. (4.24)), while at high frequencies it mainly
depends on the value of the Rabi frequency and on the pulse shape. Focusing on the
resonant case (Ωi = Ω0), for ω ≪ Ω0 the function |Hϕ( f )| ∝ f 2T2 behaving like a
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FIGURE 4.5: Phase transfer function for a conventional π/2-π-π/2 sequence. For fre-
quencies f ≳ 2000Hz, only the envelope of the high-frequency oscillations is dis-
played. The black and the magenta line represent, respectively, the resonant case
(Ωi = Ω0, with i = 1, 2, 3) and off-resonant case (Ω1 = Ω0, Ω2 = 1.1Ω0 and
Ω2 = 1.2Ω0). The blue line represents the imaginary part of transfer function for

the off-resonant case. The red dashed line indicates the resonant Rabi frequency.
Simulation parameters: τ = 10µs, T = 1ms.

second-order high-pass filter with a sets of zeros at frequencies fn = n/(T + 2τ), where
n = 0, 1, 2, . . . . This implies that the CAI sensor is not affected by aliasing noise when
operating at a cycling frequency fc = 1/(T + 2τ), thereby exploiting the use of multiple
staggered interferometers in a zero dead-time mode. For ω ≫ Ω0, the transfer func-
tion |Hϕ( f )| ∝ Ω0/(2π f ), thus behaving as a first-order low-pass filter with a cutoff
frequency proportional to the Rabi frequency.

Figure 4.5 displays the absolute value of the phase transfer function of a conventional
π/2-π-π/2 interferometer with a free-evolution time of T = 1ms and a pulse duration
of τ = 10µs. The phase frequency response of the interferometer resembles that of a
band-pass filter, with a bandwidth roughly determined by Bϕ ∼ [1/T, Ω0/(2π)]. We
present both the transfer functions of the interferometer with resonant and off-resonant
pulses. As expected, the transfer functions exhibit differences primarily at high fre-
quencies, where the imaginary part of the off-resonant transfer function has an impact.

4.1.4.1 Response to laser phase noise

Following the method reported in Appendix A, we compute the Allan variance of the
interferometric phase assuming a white noise model for the laser phase
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AVAR∆Φ(τc) =
S0

ϕ

τc

Tc

2

ï
Ω1(2 θ1 + sin (2 θ1))

4 sin2 (θ1)
+ . . .

Ω3(2 θ3 + sin (2 θ3))
4 sin2 (θ3)

+ . . .

Ω2(θ2 + sin (θ2))
2 sin2 (θ2/2)

ò
,

(4.26)

with S0
ϕ power spectral density of the laser phase noise. Assuming that Ωi = Ω0(1+ η),

where η = δΩ/Ω0 is the fractional variation in Rabi frequency, we obtain for |η| ≪ 1

AVAR∆Φ(τc) ≈
π2

4
Tc

τc

S0
ϕ

τ
(1 + η) . (4.27)

The Allan variance of the interferometric phase is inversely proportional to the pulse
duration. In particular, a longer pulse (corresponding to a lower Rabi frequency) results
in a narrower bandwidth for the phase transfer function, leading to less susceptibility
to laser noise. Physically, this phenomenon can be explained by considering that longer
pulses result in a more significant averaging of phase noise.

4.2 Inertial sensitivity

In this Section we use the sensitivity function formalism to derive the sensitivity of a
conventional π/2−π −π/2 interferometer to inertial effects. Specifically, starting from
the phase sensitivity function, we derive the sensitivity to rotational and linear motion.
The relative motion of a mono-kinetic atom with respect to the laser induces a position-
dependent phase given by

ϕ(t′) =
(︁
C(t′) k

)︁
· rba(t′) (4.28)

where k is the effective wave-vector, rba is the relative position of the atom with respect
to the body-frame (here indicated with the subscript b) to which the laser is attached,
and the matrix C is the direction cosine matrix that describes the orientation of the
effective wave-vector with respect to an inertial frame.
The cosine direction matrix at time t′ can be obtained as C(t′) = C(0) Cb−

b+(t′), where
C(0) is the initial cosine direction matrix and can be assumed, for simplicity, equal to the
identity matrix. The matrix Cb−

b+ accounts for attitude variation and can be expressed
using the Euler-Rodrigues formula [3]

Cb−
b+(t′) = I +

sin |ψib(t′)|
|ψib(t′)| Ψib(t′) +

1 − cos |ψib(t′)|
|ψib(t′)|2 Ψ2

ib(t′) (4.29)



48 Chapter 4. The sensitivity function formalism

FIGURE 4.6: Rotation of the Raman effective wave-vector with respect to the mean
atomic motion.

with the I 3x3 identity matrix, ψib the 3x1 vector that expresses the attitude of the body
frame with respect to the inertial frame, and Ψib the skew-symmetric matrix of the
attitude vector. Assuming an infinitesimal step rotation, ψib(t′) = δψib Θ(t′ − t) with
|δψib| ≪ 1, we get

ϕ(t′) ≈
(︁
I + δψib Θ(t′ − t)×

)︁
k · rba(t′) , (4.30)

and inserting its time derivative in Eq. (4.5) we obtain

∆Φ = ∆Φtrs + ∆Φrot (4.31)

with

∆Φtrs =
∫︂ +∞

−∞
dt′ gϕ(t′) k · ṙba(t′) , (4.32)

∆Φrot =
∫︂ +∞

−∞
dt′ gϕ(t′)

ï
k × ṙba(t′) · δψib Θ(t′ − t) + . . .

k × rba(t′) · δψib δ(t′ − t)
ò

.
(4.33)

The terms ∆Φtrs and ∆Φrot correspond, respectively, to the interferometric phase shifts
arising from translational and rotational motion of the atom with respect to the laser.
The decoupling of translational motion from rotational motion is a consequence of the
small perturbation approach, in which we neglect contributions of order higher than or
equal to o(ψ2

ib).
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4.2.1 Rotational dynamics

We start with the definition of the inertial rotation sensitivity function as interferometric
phase response to an infinitesimal step rotation

gψib (t) := lim
δψib→0

∆Φrot(t)
δψib

, (4.34)

and by expressing the atomic trajectory as

rba(t′) = ℓ+ v0 t′ +
∫︂ t′

0
dt′′

∫︂ t′′

0
r̈ba(t′′′) dt′′′ , (4.35)

where ℓ is the initial position offset of the atom with respect to the origin of the body
frame (i.e. the lever-arm), and v0 is the initial velocity.
After substitution of Eq. (4.35) into Eq. (4.33), integration by parts and application of
the definition of the rotation sensitivity function we get

gψib (t) = gϕ(t) (k × ℓ) + w(t) (k × v0) + . . .

+ ha(t)
∫︂ t

0
dt′
(︁
k × r̈ba(t′)

)︁
+ gϕ(t)

Ç∫︂ t

0
dt′
∫︂ t′

0
k × r̈ba(t′′) dt′′

å
+ . . .

+
∫︂ +∞

t
dt′ ha(t′) (k × r̈ba(t′)) ,

(4.36)

with w(t) = t gϕ(t) + ha(t), and ha(t) =
∫︁ +∞

t gϕ(t′) dt′.
The relative atomic trajectory rba(t) can be written as the difference between the atom’s
absolute motion and body frame’s absolute motion. Assuming that the gravitation
acting on the body frame is the same of the gravitation acting on the atom we obtain

gψib (t) = gϕ(t) (kb × ℓb) + w(t)
Ä

kb × vb
0

ä
+ . . .

− ha(t)
∫︂ t

0
dt′
Ä

kb × fb
ib(t′)
ä
− gϕ(t)

Ç∫︂ t

0
dt′′

∫︂ t′′

0
kb × fb

ib(t′′) dt′′
å
+ . . .

−
∫︂ +∞

t
dt′ ha(t′) (kb × fb

ib(t′)) ,

(4.37)

where the superscript b indicates the reference frame in which the vectors are repre-
sented and the term fb

ib is the specific force, i.e. the difference between the absolute
acceleration of the body frame and the gravitation vector [3].
The interferometric phase shift due to the rotational dynamics of the laser frame is
given by
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FIGURE 4.7: Coriolis sensitivity for a conventional π/2-π-π/2 sequence. The insert
shows the detail of the Coriolis sensitivity in the proximity of the first pulse in the case

of resonant (black) and off-resonant (magenta) pulse.

∆Φrot =
∫︂ +∞

−∞
gψib (t) · ψ̇

b
ib(t) dt =

∫︂ +∞

−∞
hωib (t) · ωb

ib(t) dt , (4.38)

where the second equality holds if we neglect high-frequency coning motion [3]. Hence,
the rotation sensitivity function is equivalent to the angular rate IRF, i.e. gψib (t) ≡
hωib (t).
The angular rate IRF gives the sensitivity of the interferometer to the rotation of the
body-frame with respect to the inertial frame. It has three contributions that depend on
the relative motion of the atom in the plane transverse to the effective wave-vector:

1. The first term depends on the lever-arm (ℓb) via the phase sensitivity function and
is nonzero either in cases of time-varying angular rates or non-resonant pulses.

2. The second term depends on the initial atomic velocity via the function w(t), and
represents the sensitivity of the interferometer to the Coriolis acceleration.

3. The third term represents the coupling between angular rate and specific force
and gives rise to the so-called anisoinertia bias.

In particular, we observe that the term
∫︁ +∞

t dt′ ha(t′) (kb × fb
ib(t′)) describes the effect of

the rotation of the specific force vector. For a geostationary sensor there is no relative
rotation of the specific force vector (coincident with the gravity vector) with respect to
the body frame and this term is zero [81].
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4.2.1.1 Coriolis sensitivity

It is interesting to analyse the Coriolis term, where the angular rate IRF reduces essen-
tially to the function w(t).
Figure 4.7 shows the function w(t), with t = 0 being the starting point of the first pulse.
Unlike the phase sensitivity function, w(t) is not invariant under temporal translation
because the rotational dynamics depends on the choice of the centre of rotation 2. How-
ever, regardless of temporal translation, it retains constancy during the free-evolution
periods, and the area beneath it remains independent on the time origin as a conse-
quence of the gauge invariance of the interferometric phase. The constancy of w(t)
during the free-evolution periods stems from the fact that a step variation in the tilt
angle ψb

ib induces a corresponding step variation in the Raman phase, resembling the
behavior observed in the phase sensitivity function gϕ(t).
We observe that the function w(t) is not equal to zero for time intervals preceding the
first pulse if there is a discrepancy in the Rabi frequency between the initial and final
pulses. Physically this means that the interferometer becomes sensitive to the projec-
tion of the atomic velocity along the Raman wave-vector direction due to an initial tilt.
From Figure 4.7, we note that,in the limit of infinitesimally short pulses (τ ≪ T), the
function w(t) tends to the rectangular function w(t) → 2 T rect(t − 3 T/2). This means
that, the interferometer detects the angular rate by measuring the difference in the angle
that the Raman wave-vector forms with respect to the absolute atomic motion between
the last and second pulse, i.e. ∆ψb

ib = ψb
ib(2T) − ψb

ib(T).

4.2.2 Translational dynamics

The phase shift due to the translational dynamics can be obtained integrating by parts
Eq. (4.32)

∆Φtrs = −
∫︂ +∞

−∞
ha(t) kb · fb

ib(t) dt , (4.39)

where the function ha(t) =
∫︁ +∞

t gϕ(t′) dt′ is the acceleration IRF.
Figure 4.8 shows the function ha(t). We note that the function has a linear dependency
on the time during the free-evolution periods. This is due to the fact the acceleration IRF
gives the response of the interferometer to a delta-Dirac acceleration or, equivalently,
to an infinitesimal step velocity. Therefore a step variation in velocity translates into a
ramp in Raman phase. As in the case of w(t), the function ha(t) becomes non-zero for
time intervals preceding the first pulse when the Rabi frequencies during the first and

2According to Chasles’ theorem, the centre of rotation is defined as the point that satisfies the condition
ω × r = 0. For a particle moving with constant velocity r = vt, the time origin defines the centre of
rotation. The function w(t) exhibits even parity with respect to the midpoint of the mirror pulse if the time
origin coincides with it.
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FIGURE 4.8: Acceleration response function for a conventional π/2-π-π/2 sequence.
The insert shows the detail of the acceleration response function in the proximity of

the first pulse in the case of resonant (black) and off-resonant (magenta) pulse.

last pulse differ. Indeed, when the symmetry with respect to the midpoint of the mirror
pulse is broken, the interferometer becomes sensitive to an initial velocity [72].
Unlike the function w(t), the acceleration IRF is invariant under temporal translation.
This is a consequence of the fact that for a translational motion the centre of rotation is
at infinity.

4.2.3 The stationary sensor case

Using Eqs. (4.38) and (4.39) we can compute the inertial phase shift for the simple case
of a stationary sensor located on the surface of the Earth and subject to a constant an-
gular rate. The stationary sensor hypothesis implies that

• fb
ib = −gb

b, i.e. the specific force equals the reaction to the local gravity. The local
gravity is defined as the difference between the gravitation and the centrifugal
acceleration [3].

• ωb
ib = ωb

nb + ωb
ie, where the first term is the angular rate indicating the rotation

of the the body frame with respect the navigation frame and the second term is
the angular rate that expresses the rotation of the Earth Centred Earth Fixed frame
with respect to the inertial frame 3. Due to the stationary hypothesis, the so-called
‘transport-rate’ term, ωb

en, is zero.

3A common choice for the navigation frame, here indicated with the subscript n, is the so-called NED
frame where the x-axis is aligned with the North direction, the y-axis is aligned with the East direction,
and the z-axis is aligned with the local vertical. The ECEF frame, here indicated with the subscript e,
rotates about the Earth polar axis with a constant angular rate ωie ≈ 15deg/h.



4.2. Inertial sensitivity 53

FIGURE 4.9: Sensor in geostationary configuration at three time instants. The local
gravity vector points downwards (magenta arrow) and does not change orientation

with respect to the projection of the Earth rate, ωie, on the navigation frame.

Neglecting the effects of the finite pulse duration and summing the rotational and
translational phase terms we obtain

∆Φ = 2 T2 (kb × vb
0) · (ωb

nb + ωb
ie) + T2 (kb · gb

b) + . . .

+ 3 T3 (kb × gb
b) · ωb

nb + 2 T3 (kb × gb
b) · ωb

ie .
(4.40)

The first row of Eq. (4.40) contains, respectively, the cold-atom gyroscope and the ac-
celerometer scale-factors, while the second row contains the anisoinertia bias terms. In
particular, we observe that the phase shift resulting from the coupling of the gravity
with Earth rate differs from the phase shift due to the coupling of the gravity with the
rotation of the body frame relative to the navigation frame. Physically, if the sensor is
geostationary 4, as shown in Figure 4.9, the gravity vector does not change its orienta-
tion with respect to the body frame and, consequently, no extra T3 term arises [47].

4.2.4 Sensor scale-factor

In this section we focus on the CAI sensor scale-factor, i.e. the response to a constant
acceleration and rotation acting along the interferometer sensitive axis. For the gy-
roscope case, the sensitive axis belongs to the plane orthogonal to the Raman effective
wave-vector, while for the accelerometer case the sensitive axis is defined by the Raman

4The body frame does not rotates with respect to the navigation frame and the only angular rate
experienced by the CAI sensor is the Earth rate.
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effective wave-vector. In particular, we examine the effects of the finite pulse duration
and off-resonance conditions on the interferometer scale-factor.

First, let us consider the accelerometer case, assuming that a constant specific force
occurs at a time ta, while the interferometric sequence starts at time t1. Using Eq. (4.39)
leads to

∆Φ = −kb · fb
ib

ï
(T + 2τ)

Å
T +

2
Ω3

tan
θ3

2

ã
+ ϵ2 + . . .

(t1 − ta)

Ç
tan θ3

2
Ω3

−
tan θ1

2
Ω1

åò
,

(4.41)

with

ϵ2 = −
Ç

1
Ω2

1
− 2

Ω2
2
+

1
Ω2

3

å
+ τ

Ç
cot θ1

Ω1
− 2

cot θ2
2

Ω2
+

cot θ3

Ω3

å
. (4.42)

The first row in Eq. (4.41) accounts for the interferometric phase due to the constant
specific force during the pulse sequence, while the second row is due to the interfer-
ometer’s sensitivity to the initial velocity. We note that for t1 − ta = −T − 2τ (i.e. the
interferometric sequence is considered time symmetric with respect to the midpoint of
the mirror pulse and the specific force occurs at the beginning of the pulse sequence),
Eq. (4.41) reduces to

∆Φ = −kb · fb
ib

ï
(T + 2τ)

Å
T +

1
Ω1

tan
θ1

2
+

1
Ω3

tan
θ3

2

ã
+ ϵ2

ò
(4.43)

which agrees with the expression reported in Ref. [72]. The term ϵ2 represents a second-
order correction and is zero for resonant pulses; therefore, we neglect its contribution
in the following analysis.
It is convenient to rewrite the interferometric phase shift in terms of the accelerometer
scale-factor (SFa)

∆Φ = SFa · fb
ib , (4.44)

and assuming that the variations of the Rabi frequency are due to intensity fluctuations
of the Raman laser 5

5The value of the Rabi frequency at the i-th pulse is given by Ωi = Ω0 + δΩ, where Ω0 is the resonant
Rabi frequency and δΩ ≪ 1. Given the proportionality between the Rabi frequency and the square root
of the intensity of the j-th Raman laser, we can express δΩ/Ω = δIj/(2Ij)
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FIGURE 4.10: The accelerometer scale-factor is given by the response of the interfer-
ometer to a constant specific force. The time origin coincides with the release of the

atom from the MOT.

SFa = −kbT2

[︄
1 + A(τ) + B(τ)

δIj

I0
j

]︄
, (4.45)

with

A(τ) =
Å

2 +
4
π

ã
τ

T
+

8
π

(︂ τ

T

)︂2

B(τ) =
Å

1 − 2
π

ã
τ

T
+

Å
2 − 4

π

ã(︂ τ

T

)︂2
.

(4.46)

The finite pulse affects the scale-factor through two mechanisms:

• It induces a calibration error, A(τ), that depends on the finite duration of the the
Raman pulse.

• It induces a scale-factor error that depends on the deviation of the j-th Raman
laser intensity from the resonant value, I0

j . This error is difficult to calibrate be-
cause it depends on the long-term drifts of laser intensity and leads to scale-factor
instability.

For the gyroscope case we obtain the phase shift from Eq. (4.38) assuming that the atom
is characterized by a uniform motion. Following the same steps as for the accelerometer
case we obtain the gyroscope scale-factor (SFg)
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SFg = 2 (kb × vb
0) T2

[︄
1 + A(τ) + B(τ)

δIj

I0
j

]︄
, (4.47)

where the functions A(τ) and B(τ) are the same of Eqs. (4.46). We note that the scale-
factor of the gyroscope case is perfectly analogous to the accelerometer case, except for
the 2 (kb × vb

0) term. Indeed, for the gyroscope case, the rotation of the Raman effec-
tive wave-vector induces a Coriolis acceleration ac = −2 (ωb

ib × vb
0) as a consequence of

the rotating body frame. Hence, from a classical perspective, a CAI sensor exploits the
same working principle as a Coriolis Vibrating Gyroscope (CVG), [1], for detecting an-
gular rates, with the forced linear vibrational motion of the proof mass being replaced
by the uniform atomic motion.

4.2.5 Inertial noise

It is interesting to derive the cold-atom accelerometer and gyroscope transfer functions
in order to analyse the effect of the interferometer’s parameters on the sensor band-
width and the response to linear and rotational vibrations. For simplicity, we assume
that the pulses are all resonant.

The accelerometer transfer function is given by the Fourier transform of the acceleration
IRF which is related to the phase sensitivity function by the relation gϕ(t) = −ḣa(t).
Using the relation between the Fourier transform of a function and its derivative we
obtain

Gϕ(ω) = i ω Ha(ω) =⇒ Ha(ω) =
Gϕ(ω)

i ω
(4.48)

Figure 4.11 shows the absolute value of the accelerometer transfer function normalized
with respect to T2. As expected, the response is flat at low frequencies because the
interferometer is sensitive to DC acceleration. Indeed, the response at zero frequency
represents the accelerometer scale-factor. The function exhibits a set of zeros at frequen-
cies fn = n/(T + 2τ), where n = 0, 1, 2, . . .. At high frequencies, the transfer function
|Ha(ω)| is proportional to 1/(2π f )2, behaving as a second-order low-pass filter with a
cutoff frequency proportional to the inverse of the free-evolution period. Hence, the
bandwidth of the cold atom accelerometer is roughly given by Ba ∼ [0, 1/T].

As for the laser phase noise, we compute the Allan variance of the interferometric phase
in the case of linear vibrations. Assuming a white noise model and that τ ≪ T, we
obtain

AVAR∆Φ(τc) =
S0

a
2 τc

k2T4
Å

2
3

Tc

T
− 1
ã

, (4.49)
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where S0
a is the power spectral density of the linear vibration noise. We observe that

as the free-evolution period increases, the Allan variance of the interferometric phase
also increases. This can be explained by considering that a longer time between the
pulses results in a higher accumulation of vibration-induced phase noise in the atomic
wavefunction.

We compute the gyroscope transfer function applying the Fourier transform operator
to Eq. (4.37) in the hypothesis of zero specific force

Hωib (ω) = (kb × ℓb) Gϕ(ω) − i (kb × vb
0) W(ω) , (4.50)

with W(ω) Fourier transform of the Coriolis sensitivity w(t)

W(ω) =
ÅdGϕ

dω
+

Gϕ

ω

ã
. (4.51)

Figure 4.11 displays both the functions |Gϕ(ω)| and |W(ω)|, which represent the position-
dependent and velocity-dependent frequency responses of the interferometer to a si-
nusoidal angular rate, respectively. The functions have been appropriately normalized
with respect to the square of free-evolution period.
The velocity-dependent frequency response is flat at low frequencies, indicating that
the interferometer is sensitive to a DC angular rate. Moreover, it exhibits a series of ze-
ros at frequencies fn = n/(2(T + 2τ)), where n = 0, 1, 2 , . . ., i.e. at half the frequencies
of the accelerometer transfer function zeros 6. At high frequencies, the function |W( f )|
behaves as a second-order low-pass filter, with |W( f )| ∝ 1/(2π f )2. Hence, the band-
width of the cold atom gyroscope is roughly half of the accelerometer, Bg ∼ [0, 1/2T].
The position-dependent frequency response acts as a band-pass filter, with its peak sen-
sitivity occurring at approximately the same frequency as the first zero of the velocity-
dependent response function. At higher frequencies, the function scales as |Gϕ( f )| ∝
1/(2π f )2. Hence, the lever-arm, ℓ , affects the gyroscope transfer function only at
medium frequencies.

It is interesting to derive the response of the interferometer to angular vibrations, which
are linked to the pointing jitter of the Raman effective wave-vector. Assuming a white
noise model and neglecting the high-order terms in τ/T, we can express the response
of the interferometer both in terms of angular rate noise

6Physically, the interferometer detects an acceleration by measuring the increment in velocity between
the two halves, i.e. a ∝ (v32 − v21)/T, where v31 is the atomic velocity between the third and second pulse,
and v21 is the atomic velocity between the second and half pulse. In contrast, the interferometer detects
an angular rate by measuring the increment in the angle that the Raman effective wave-vector forms with
respect the atomic trajectory, i.e. ω ∝ (ψ3 − ψ2)/2T, where ψ3 is the angle at the third pulse and ψ2 is
the angle at the second pulse. The factor ‘2’ at the denominator explains why the velocity-dependent
frequency response to sinusoidal angular rate has zeros at half the frequencies of the acceleration transfer
function.
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(A) Accelerometer transfer function (B) Gyroscope transfer function

FIGURE 4.11: CAI sensor transfer functions. For frequencies f ≳ 2000Hz, only the en-
velope of the high-frequency oscillations is displayed. Panel (A): Frequency response
of the interferometer to linear acceleration. Panel (B): Frequency response of the inter-
ferometer to angular rate. The black (magenta) line represents the velocity-dependent

(position-dependent) sensitivity. Simulation parameters: τ = 10µs, T = 1ms.

AVAR∆Φ(τc) =
S0

ωib
T2

τc

ï
|Ab|2 Tc

T
+ 2 |Bb|2

Å
Tc

T
− 1
ã

T2 + 2 Ab · Bb Tc

ò
, (4.52)

or pointing noise

AVAR∆Φ(τc) =
S0

ψib
Tc

τc

ñ
|Ab|2 π2

4 τ
+ |Bb|2 3 π2 T2

8 τ
+ Ab · Bb π2 T

2 τ

ô
, (4.53)

where Ab = kb × ℓb, Bb = kb × vb
0, S0

ωib
is the white noise power spectral density of the

angular rate noise in [(rad/s)2/Hz], and S0
ψib

is the white noise power spectral density
of the pointing noise in [rad2/Hz].

4.3 Light-shift sensitivity

Light-shifts are one of the mechanisms connected to laser intensity fluctuations that
affect the interferometer output. Intensity fluctuations at high frequencies impact the
interferometer’s noise, while long-term drifts affect the bias stability of the CAI sensor.
In the hypothesis of small intensity perturbations, the sensitivity function formalism
can be applied to estimate the interferometer’s performance in terms of noise and bias
stability.
Two fundamental light-shift mechanisms occur within an interferometer: the one-photon
light-shift (OPLS) connected to the variation of the atomic energetic levels induced by
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laser intensity, and the two-photon light-shift (TPLS) induced by the off-resonant tran-
sition in a retro-reflected Raman configuration [52].

4.3.1 One-photon light-shift

The rate of change in Raman phase induced by a small perturbation in laser intensity,
δI(t), via the OPLS effect is given by

ϕ̇OPLS(t) = a1 (I0
1 + δI(t)) + a2(I0

2 + δI(t)) , (4.54)

where aj and I0
j are, respectively, the coupling coefficient 7 and the nominal intensity of

the i-th laser line. In nominal conditions it is possible to adjust the laser intensities or
frequencies in order to suppress the OPLS. Hence, assuming

a1 I0
1 + a2 I0

2 = 0 , (4.55)

and δI/I0
j ≪ 1, we obtain

ϕ̇OPLS(t) = a1 (1 − r) δI(t) , (4.56)

with r = I0
1/I0

2 , and inserting it in Eq. (4.5) we obtain

∆Φ =
∫︂ +∞

−∞
g(0)

ϕ (t) a1 (1 − r) f (t) δI(t) dt (4.57)

where f (t) is a function that is 1 during the laser pulse and 0 otherwise. The function
g(0)

ϕ (t) is the resonant phase sensitivity function 8, i.e. corresponding to the case where
the Rabi frequency during each pulse is equal to the resonant one, i.e. Ωi = Ω0 =

π/(2τ) for i = 1, 2, 3.
Following Eq. (4.18), we define the OPLS intensity IRF as

hOPLS(t) = a1 (1 − r) g(0)
ϕ (t) f (t) . (4.58)

We note that this function does not define the interferometer’s sensitivity to laser inten-
sity but rather its sensitivity to the deviation of the intensity from the nominal value.

7The OPLS coupling coefficient depends on the single-photon detuning and on the polarization of the
i-th laser line.

8We use the resonant phase sensitivity function rather than the general one because we are interested
in the effects induced by the deviations of the laser intensity with respect to its nominal value.
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(A) OPLS impulsive response function (B) OPLS transfer function

FIGURE 4.12: Sensitivity of the interferometer to laser intensity fluctuations. Panel
(A): Time response of the interferometer to laser intensity fluctuations. Panel (B):
Frequency response of the interferometer to laser intensity fluctuations ĤOPLS =
HOPLS/(a1(1 − r)) (black line). For comparison we also show the normalized phase
transfer function Ĥϕ = Hϕ/Ω0. For frequencies f ≳ 2000Hz, only the envelope of the
high-frequency oscillations is displayed. Simulation parameters: τ = 10µs, T = 1ms.

Figure 4.12 shows the OPLS intensity IRF. The odd parity with respect to the midpoint
of the mirror pulse reflects the fact that the interferometer is insensitive to a DC laser in-
tensity shift. Moreover, this odd parity suggests that, in the case of long-term intensity
drifts, the interferometric phase is mainly affected by the first and last pulses.

Figure 4.12 displays the modulus of the Fourier transform of the OPLS intensity IRF,
which represents the frequency response of the interferometer to a sinusoidal laser in-
tensity shift. At low frequencies, the response function behaves like a first-order high-
pass filter with an asymptotic trend of |HOPLS( f )| ∝ f T/Ω0. It exhibits a set of zeros at
frequencies fn = n/(2(T + 2τ)), where n = 0, 1, 2, . . . . At high frequencies, the func-
tion behaves as a first-order low-pass filter with a cut-off frequency proportional to the
Rabi frequency, resembling the asymptotic trend of the phase transfer function. As il-
lustrated in Figure 4.12, the OPLS transfer function has a wider bandwidth compared
to the phase transfer function, resulting in higher sensitivity of the interferometer to
low-frequency laser intensity drifts.

It is interesting to compute the response of the interferometer to laser intensity noise.
Assuming a white noise model for the intensity fluctuations, we compute the Allan
variance of the interferometric phase

AVAR∆Φ(τc) =
î
a1 I0

1 (1 − r)
ó2 Tc

τc
S0

η τ , (4.59)



4.3. Light-shift sensitivity 61

with S0
η power spectral density of the relative intensity noise, i.e. δI/I0

1 . Unlike the
Raman phase noise, the Allan deviation is directly proportional to the pulse duration,
meaning that the longer the laser stays on, the more noise is imprinted onto the atomic
wavefunction.

4.3.1.1 Bias instability

It is clear that if the atoms experience a time-varying intensity during the interferomet-
ric sequence, a bias is produced. However, intensity variations are not only due to the
stochastic fluctuations of the Raman laser system, but also to the coupling of the atomic
motion in an expanding cloud with laser intensity spatial inhomogeneity.
Assuming a Gaussian beam intensity profile, we obtain

ϕ̇OPLS(r⊥, t) = a1 (1 − r) δI exp

Ç
−2

r2
⊥(t)
w2

L

å
, (4.60)

where wL is the 1/e2 beam radius, and r⊥(t) denotes the atomic position in the trans-
verse plane relative to the centroid of the Raman beam.
Assuming that the initial atomic distribution is Gaussian in phase-space, and averaging
over it leads to

ϕ̇OPLS(t) = a1 (1 − r) δI
w2

L
w2

L + 4 σ2(t)
, (4.61)

with σ(t) = σ0 + σv t width of the spatial atomic distribution at time t.
The cloud expansion determines a time varying Raman phase rate and hence a bias
phase shift. Assuming that laser pulses are short compared to the free-evolution period
and, therefore, that the atomic cloud size remains constant during each laser pulse, we
obtain

∆Φ = α1 δI
16 σ2

v T (t1 + T) w2
L

(w2
L + σ2(t1 + 2T))(w2

L + σ2(t1))
, (4.62)

with α1 = a1 (1 − r) 2 τ/π, and t1 time instant at which the first pulse occurs. A simpli-
fied expression can be obtained for wL ≫ σ(t)

∆Φ ≈ α1 δI
16 σ2

v T (t1 + T)
w2

L
, (4.63)

As expected, the bias phase shift increases as the degree of asymmetry due to the atomic
cloud expansion increases. Physically, the more the cloud expands, the higher the in-
tensity gradient experienced by the atoms during the interferometer sequence.
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4.3.2 Two-photon light-shift

When a retro-reflecting mirror is used to create a counter-propagating laser arrange-
ment, two transitions are possible: one associated with the incident effective wave-
vector and the other with the reflected one. Assuming that the two transitions are
Doppler-detuned and well-resolved, it is possible to tune the Raman laser to be reso-
nant with one transition. The off-resonant transition will, in turn, cause a detuning or,
equivalently, a Raman phase rate, [52]

ϕ̇TPLS = − Ω2

8 δD
− Ω2

8 δD + 16 δR
(4.64)

where Ω is the Rabi frequency, δD and δR are, respectively, the Doppler and recoil de-
tuning.
Assuming a small laser intensity fluctuation with respect to the nominal j-th intensity,
|δI(t)| ≪ I0

j , we get

ϕ̇TPLS(t) = −β(t) Ω2
0

ñ
1 + (1 + r)

δI(t)
I0
1

ô
, (4.65)

where β(t) = 1/(8 δD(t)) + 1/(8 δD(t) + 16 δR), Ω0 is the nominal Rabi frequency, and
r = I0

1/I0
2 ratio between the nominal intensities.

Following the same procedure of the OPLS case, we define the TPLS relative intensity
IRF as

hTPLS(t) = −Ω2
0 (1 + r) g(0)

ϕ (t) β(t) f (t) , (4.66)

with g(0)
ϕ (t) the resonant phase sensitivity function, and f (t) function that is one during

the pulses and zero when the laser is off.
Figure 4.13 shows the TPLS intensity IRF. In general the function is asymmetric with
respect to the midpoint of the mirror pulse because it depends on the value of the
Doppler detuning at each pulse. This implies that even in cases where the intensity
fluctuation remains constant over time, it still leads to a bias phase shift. For example,
an acceleration along the effective wave-vector direction induces a varying Doppler
shift, resulting in a bias phase shift through the TPLS effect.

The modulus of the Fourier transform of the function hTPLS(t) represents the frequency
response to intensity fluctuations that impact the interferometer through the TPLS ef-
fect, and it is shown in Figure 4.13. At low frequencies, the function is flat, indicating
that the interferometer is sensitive to a DC intensity fluctuation. Indeed, a time-varying
Doppler detuning breaks the symmetry of the interferometer with respect to the mid-
point of the mirror pulse, leading to a bias. At high frequencies, the function behaves
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(A) TPLS impulsive response function (B) TPLS transfer function

FIGURE 4.13: Sensitivity of the interferometer to laser intensity fluctuations. Panel
(A): Time response of the interferometer to laser intensity fluctuations. Panel (B): Fre-
quency response of the interferometer to laser intensity fluctuations. For frequencies
f ≳ 2000Hz, only the envelope of the high-frequency oscillations is displayed. The red
dashed line represents the resonant Rabi frequency. Simulation parameters: τ = 10µs,

T = 1ms, Doppler detuning induced by gravity.

like a first-order low-pass filter with a cut-off frequency proportional to the Rabi fre-
quency.

We compute the response of the interferometer to laser intensity noise assuming a white
noise model for the relative intensity fluctuation η1 = δI/I0

1 . Therefore, the Allan vari-
ance of the interferometric phase is given by

AVAR∆Φ(τc) =
(︂π

2

)︂4 (1 + r)2 S0
η1

4 τc

1
τ2

ï
(β2(t1) + 2 β2(t1 + T) + β2(t1 + 2 T))

Tc

τ
− . . .

8
π2 (β(t1) − β(t1 + 2 T))2

ò
,

(4.67)

and assuming that Tc ≫ τ leads to

AVAR∆Φ(τc) ≈
(︂π

2

)︂4 (1 + r)2 S0
η1

4 τc

Tc

τ3

î
β2(t1) + 2 β2(t1 + T) + β2(t1 + 2 T)

ó
, (4.68)

with S0
η1

power spectral density of the relative intensity noise. Unlike the OPLS case,
the Allan variance decreases as the pulse length increases. This is because longer pulses
result in a narrower bandwidth of the Raman pulse and a lower probability of exciting
the off-resonant wave-vector transition, thus leading to a weaker TPLS effect.
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4.3.2.1 Bias instability

Long-term stochastic fluctuations of the Raman laser intensity lead to bias instability
through two main mechanisms:

1. Time-varying Doppler detuning.

2. Coupling between cloud expansion and laser intensity spatial inhomogeneity.

In the first case, we obtain the bias phase shift integrating the area beneath the TPLS
relative intensity IRF. Assuming that the Doppler detuning is almost constant during
the pulses (short pulse hypothesis):

∆Φ =
π

2 τ
(1 + r)

δI
I0
1

(β(t1) − β(t1 + 2 T)) , (4.69)

with t1 time at which the first pulse occurs, and T free-evolution time. We note that the
phase shift does not depend on the value of the Doppler detuning at the mirror pulse.
Therefore, as with the OPLS, the beam-splitting process is the source of the bias phase.

In the second case, a bias phase shift arises as a consequence of the coupling between
cloud expansion and laser intensity inhomogeneities. Assuming a Gaussian beam with
1/e2 waist wL, we have

ϕ̇TPLS(r⊥, t) = −β(t) (1 + r)
δI
I0
1

Ω2
0 exp

Ç
−4

r2
⊥(t)
w2

L

å
, (4.70)

and integrating over an initial Gaussian atomic distribution we obtain

∆Φ =
π

2 τ
(1 + r)

δI
I0
1

w2
L

ñ
β(t1)

w2
L + 8 σ2(t1)

− β(t1 + 2 T)
w2

L + 8 σ2(t1 + 2T)

ô
. (4.71)

Hence, the coupling between cloud expansion and laser intensity inhomogeneity in-
duces a bias even in the case of a constant Doppler shift (where the term β(t) is con-
stant). We should note that TPLS calculations are based on the assumption that the two
counter-propagating Raman transitions are well-separated in frequency, or, in other
words, that the Doppler detuning is sufficiently high to remove the double transition
degeneracy. If the Doppler detuning is not high enough, both counter-propagating
transitions become resonant, resulting in double Raman diffraction and a complete dif-
ferent interferometer scheme [82].
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4.4 Magnetic field sensitivity

Although atoms are prepared in the magnetic mF = 0 state, they still have a sensitivity
to magnetic fields via the quadratic Zeeman effect. The time derivative of the Raman
phase due to the quadratic Zeeman effect is given by [48]

ϕ̇QZ(z, t) = 2 π KQZ B2(z, t) , (4.72)

where B(z, t) is the magnetic field along the Raman effective wave-vector axis z. The
coupling constant KQZ is inversely proportional to the ground-level hyperfine splitting,
so atoms that exhibits a larger splitting are less sensitive to the quadratic Zeeman effect.
In order to decouple the temporal and the spatial components we can expand the mag-
netic field in Taylor series and compute the interferometric phase using the phase sen-
sitivity function

∆Φ = 2 π KQZ

∫︂ +∞

−∞
gϕ(t)

ï
B2(z0, t) + . . .

2 B(z0, t)
∂B
∂z

∆z(t) + . . .Ç
B(z0, t)

∂2B
∂z2 +

Å
∂B
∂z

ã2å
∆z2(t) + o(∆z3(t))

ò
dt ,

(4.73)

Here, ∆z(t) = z̄(t) − z0 is the displacement of the mean relative atomic trajectory with
respect to the location z0

9. The first term in the square brackets represents the purely
temporal contribution, while the second and third term depend on the gradient and
the curvature of the magnetic field.

4.4.1 Purely temporal sensitivity

Due to the odd parity of the phase sensitivity function with respect to the midpoint of
the mirror pulse, a steady magnetic field does not produce any bias phase shift if all the
pulses are resonant. However, if the Rabi frequency experienced by the atoms during
the first and last pulses differ, the symmetry of the interferometer is broken, and a bias
shift is produced as a result of residual sensitivity to steady detunings. Time-varying
stray magnetic fields, such as those produced by eddy currents during the switch-off
of the MOT quadrupole field, can induce a high bias, which generally depends on their

9The trajectories of the centre of mass of the wavepackets travelling along the upper and lower arm of
the interferometer can be described by a unique mean trajectory, z̄(t). The choice of the point z0 in which
the Taylor expansion is computed is completely arbitrary. For instance, we can choose z = z0 coinciding
with the centre of the quadrupole field in the MOT or with the location at which the first pulse occurs.
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amplitude and time constant [83].
During the interferometric sequence, a DC bias magnetic field, B0, aligned with the
direction of the Raman effective wave-vector, is present to define the atomic quanti-
zation axis. Therefore, it is interesting to analyze the effect of small deviations in the
magnetic field, δB(t), from this nominal value, in a similar fashion to what was done
for the light-shift effect. Assuming that |δB(t)| ≪ B0 we can define the magnetic field
impulsive response function as

hB(t) = 4 π KQZ B0 gϕ(t) . (4.74)

We remark that the function hB(t) does not represent the sensitivity with respect to the
magnetic field overall, but to the fluctuations with respect to the bias field B0.

Figure 4.14 shows the frequency response to magnetic field fluctuations. The inter-
ferometer behaves like a band-pass filter with |HB( f )| ∝ (2π f )2T2 at low frequen-
cies, |HB( f )| ∝ 1/(2π f )2 at high frequencies, and a set of zeros at frequencies fn =

n/(T + 2τ), with n as a positive integer. The magnetic field noise affects the interferom-
eter in a bandwidth which mostly depends on the free-evolution period: the higher the
free-evolution period, the more the interferometer is affected by low-frequency mag-
netic field fluctuations.

The response of the interferometer to white noise magnetic field fluctuations is given
in terms of Allan variance as

AVAR∆Φ = (4 π KQZ B0)2 Tc

τc
S0

B T (4.75)

where S0
B represents the power spectral density of magnetic field fluctuations, and we

have assumed that the pulse duration is significantly shorter than the free-evolution
time. It is noteworthy that as the free-evolution time increases, the magnetic noise
increasingly impacts the interferometer’s performance. This phenomenon can be at-
tributed to the fact that during the free-evolution period, an atom in a superposition
of two internal states accumulates a magnetic-field-dependent phase via the quadratic
Zeeman effect.

4.4.2 Magnetic field gradient

The bias phase shift due to the magnetic field gradient requires the computation of the
relative atomic trajectory. Assuming constant inertial actions and retaining only their
linear terms, we compute the mean relative atomic trajectory through Taylor expansion
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FIGURE 4.14: Frequency response of the interferometer to magnetic field fluctuations.
For frequencies f ≳ 2000Hz, only the envelope of the high-frequency oscillations is

displayed. Simulation parameters: τ = 10µs, T = 1ms.

z̄(t) = z̄0 +
(︂

vz,0 +
vrec

2

)︂
t − 1

2
[︁

fz + 2 (ωx vy,0 − ωy vx,0)
]︁

t2 + o(t3) , (4.76)

where z̄0 is the initial average position along the Raman axis, vj,0, f j and ωj are, re-
spectively, the initial position, the initial velocity, the specific force and the angular rate
along the j-th direction, and vrec is the recoil velocity. Here t = 0 indicates the starting
of the interferometric sequence.
Inserting Eq. (4.76) in (4.73) and assuming τ ≪ T, leads to

∆Φ = 4 π KQZ B0
∂B
∂z

ï
∆z0

Å
1

Ω3
tan

θ3

2
− 1

Ω1
tan

θ1

2

ã
+ ∆v0 T2 + ∆a0 T3

ò
, (4.77)

with ∆z0 = z̄0 − z0, ∆v0 = vz,0 + vrec/2, and ∆a0 = − fz − 2 (ωx vy,0 − ωy vx,0).
The magnetic field gradient induces three distinct errors: firstly, a position-dependent
bias arising from differences in the Rabi frequencies experienced by the atoms during
the initial and final pulses; secondly, a velocity-dependent bias characterized by a scal-
ing factor of T2, depending upon the initial velocity along the Raman axis and the recoil
velocity; and thirdly, a scale-factor error with a T3 scaling effect affecting both the ac-
celerometer and gyroscope signals. Long-term fluctuations in the bias magnetic field
affect both bias and scale-factor instabilities, while long-term fluctuations in atomic ve-
locity along the Raman axis are a source of bias instability.
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4.4.2.1 Magnetic force

The magnetic field gradient induces a state-dependent force perturbing atomic trajec-
tories and consequently resulting in an additional error phase shift [83]. Starting from
the expression of the potential induced by the quadratic Zeeman effect

UB(z) = ∓1
2

h KQZ B2(z) , (4.78)

where the negative and positive signs are, respectively, for the atoms in the lower
and upper ground states of 85Rb [84], and expanding in Taylor series the B(z) term,
we obtain the state-dependent acceleration acting on the centre of mass of the atomic
wavepacket travelling along each interferometer’s arm

aB(t) =

⎧⎨⎩+(α2 + β2∆z(t)) sgn(t − T) for the upper arm

−(α2 + β2∆z(t)) sgn(t − T) for the lower arm ,
(4.79)

with α2 = (h KQZ/m) B0 ∂B/∂z and β2 = (h KQZ/m) (∂B/∂z)2, h Planck constant, and m
the atomic mass. Solving the equations of motion to compute the phase accumulated
by the wavepackets along the upper and lower arms and neglecting the pulse duration
effect, we obtain

∆Φ =
2
3

keff β2 T3 (∆v0 + ∆a0 T) . (4.80)

where ∆v0 and ∆a0 are the same quantities defined in Eq. (4.77). We note that the
term α2 does not produce any phase shift because the atom spends equal amounts of
time in both internal states. The phase shift due to the magnetic force depends on
the square of the gradient of the magnetic field via the term β2: as a result of a time-
varying acceleration the phase shift includes terms with scaling higher than T2. Unlike
the phase shift induced by the magnetic field gradient, the phase shift resulting from
the magnetic force depends on the Raman effective wave-vector [48].

4.4.3 Complex spatial features

In general, the magnetic field experienced by the atoms during the interferometric se-
quence may have complex spatial features that cannot be approximated by a Taylor
expansion. In this case, it is useful to adopt a transfer function approach that describes
the response of the interferometer in the spatial frequency domain [85].
The interferometric phase due to a small magnetic field fluctuation, δB, is given by
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FIGURE 4.15: Spatial frequency response of a gravimeter to magnetic field inhomo-
geneity for different free-evolution times.

∆Φ = 4 π KQZ B0

∫︂ +∞

−∞
gϕ(t) δB(z, t) dt . (4.81)

If the magnetic field inhomogeneity exhibits complex spatial features, we can express
it in function of the frequency component as

δB(z, t) =
∫︂ +∞

−∞
δBˆ︂(k) exp (i k z̄(t))

dk
2π

, (4.82)

where δBˆ︂ is the spatial Fourier transform and k = 2π/λ is the spatial wave-vector.
Substituting Eq. (4.82) in (4.81) we finally obtain

∆Φ = 2
∫︂ +∞

0
Re{TB(k) δBˆ︂(k)} dk

2π
, (4.83)

where

TB(k) = 4 π KQZ B0

∫︂ +∞

−∞
gϕ(t) exp (i k z̄(t)) dt (4.84)

is the spatial transfer function of the magnetic field fluctuation.
Figure 4.15 displays the function |TB(λ)| for an interferometer in gravimeter configu-
ration. At short wavelengths, the transfer function scales as ∼ λ, indicating that the
interferometer acts as a spatial filter, effectively averaging over high-frequency mag-
netic field fluctuations. In contrast, at long wavelengths, the transfer function exhibits
a scaling ∼ T2/λ. As expected, this implies that with a longer free-evolution period,
the interferometer becomes more sensitive to long-wavelengths magnetic noise.
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4.5 Cold-atom collisions

After the molasses stage the atomic source is a diluted cloud of particles that may be as-
sumed to collide elastically. Cold-atom collisions shift the energy of the atomic internal
state and induce a detuning [86]

ϕ̇col = −4 π h̄
m ∑

j
ρj (1 + δgj)(1 + δej)Re{agj − aej} , (4.85)

where ρj is the atomic density associated with the j-th Zeeman sub-level, |g⟩ and |e⟩
are, respectively, the lower and upper hyperfine ground states, aij is the scattering
length resulting from the collision between atoms in the |i⟩ and |j⟩ states, and δij is
the Kronecker delta accounting for quantum statistics. Assuming that only atoms in
the Zeeman mF = 0 state participate in the interferometric pulse sequence we get

ϕ̇col = −4 π h̄
m

(︁
2 ρg Re{agg − aeg}+ 2 ρe Re{age − aee}

)︁
. (4.86)

During the interferometric sequence, atoms spend equal times in both states, so ρg =

ρe = ρ/2. In the hypothesis of elastic collisions aij = aji, and the the above equation can
be written in the compact form

ϕ̇col(t) = (Kee + Kgg) ρ(t) , (4.87)

where Kii is the coefficient that determines the frequency shift of the |i⟩ state, and
ρ(t) = N n(t), with N number of total atoms and n(t) volumetric density. Assuming
that the atomic cloud evolves in phase-state starting from an initial spherical symmet-
ric Gaussian distribution, we find an analytic expression for the volumetric density

n(t) =
1

8 π3/2 σ3(t)
, (4.88)

with σ(t) = σ0 + σv t width of the atomic distribution.
Using the sensitivity function formalism we compute the interferometric phase shift
due to cold-atom collisions

∆Φ = (Kee + Kgg)
N

8 π3/2σ2
0

ï
1
σ0

Å
1

Ω3
tan

θ3

2
− 1

Ω1
tan

θ1

2

ã
+ . . .

2 T
Å

1
σ(2T)

− 1
σ(T)

ãò
,

(4.89)
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with σ0 the width of the atomic cloud at the beginning of the interferometric sequence.
The bias phase shift induced by cold-atom collisions comprises two terms: one de-
pendent solely on the initial atomic density, resulting from the imbalance between the
Rabi frequencies experienced by the atoms during the first and last pulse, and the other
function of the free-evolution time, stemming from changes in density due to cloud ex-
pansion. In any case, the bias phase shift induced by atomic collisions increases with
higher atomic density. Consequently, the number of atoms becomes a compromise be-
tween the interferometer’s signal-to-noise ratio and accuracy.
For temperatures less than 100µK, the coefficient Kii does not depend on the atomic
kinetic energy and can be computed via scattering theory [86]. In particular, for 85Rb
atoms and a temperature T = 1µK the two coefficients are

Kgg = +
(2π) 5 · 10−3

109 ,

Kee = − (2π) 45 · 10−3

109 ,
(4.90)

with Kii in units [(rad/s) cm3]. 87Rb has scattering lengths approximately one order of
magnitude smaller than those of 85Rb, resulting in a less significant bias.

4.6 Zero-dead-time mode

Atom interferometers operating in pulse-mode are affected by aliasing noise which
severely limits their short-term sensitivity [67]. During the dead time, the Raman phase
noise is not monitored, leading to uncorrelated interferometric noise between consecu-
tive measurement cycles.
For an atom interferometer operating in pulse-mode the two-sample Allan variance of
the interferometric phase is

AVAR∆Φ =
1
2
⟨
Ä

∆Φm+1 − ∆Φm
ä2

⟩ (4.91)

where ⟨. . .⟩ is the average operator and ∆Φm = 1/m ∑m
i=1 ∆Φi is the average interfer-

ometric phase after m measurement cycles. Due to the dead time, two consecutive
measurements are uncorrelated, hence in the limit of m ≫ 1 the Allan deviation is
given by

ADEV∆Φ =
σϕ

√
6 Tc√
τc

+
σm

√
Tc√

τc
(4.92)
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where σϕ and σm are, respectively,the rms noise of the Raman phase and the rms mea-
surement noise 10, and the cluster time is a multiple of the cycling period, i.e. τc = m Tc.
The

√
6 factor is due to the fact that each interferometric phase ∆Φi = ϕ(i Tc)− 2 ϕ(i Tc +

T)+ϕ(i Tc + 2 T) is the linear combination of three uncorrelated phases and that the two
samples ∆Φm and ∆Φm+1 are uncorrelated. As expected the Allan deviation exhibits a
∼ 1/

√
τc scaling as a consequence of uncorrelated measurements.

In the context of time-domain atom interferometers 11, zero-dead-time (ZDT) mode can
be achieved by hybridizing the output of a high-frequency classical inertial sensor with
an atom interferometer [16] or by opportunely staggering in time multiple interferom-
eters in a ’juggling’ configuration [13, 27].
In the case of a π/2 − π − π/2 pulse sequence, ZDT mode can be achieved by stagger-
ing three atom interferometers with a time Ts ≈ T as shown in Figure 4.17. In this case
it is useful to write the term ∆Φm in function of the Raman phases at each pulse

∆Φm =
1
m

m−1

∑
i=0

ϕ(i T) − 2ϕ((i + 1) T) + ϕ((i + 2) T) . (4.93)

When expanding the sum in Eq. (4.93) consecutive terms cancel out reducing to

∆Φm =
1
m
[︁
ϕ(0) − ϕ(T) − ϕ(m T) + ϕ((m + 2) T)

]︁
. (4.94)

Combining this term with ∆Φm+1 and assuming m ≫ 1 leads to

ADEV∆Φ =
2 σϕ T

τc
+

σm
√

T√
τc

(4.95)

where τc = m T. The combination of the three atom interferometers creates phase cor-
relations between consecutive pulses. As a consequence, the Allan deviation exhibits a
∼ 1/τc scaling, resulting in improved short-term sensitivity compared to the standard
single-interferometer case.

In Figure 4.16, we compare the simulated cumulative interferometric phase of three
atom interferometers operating in both the standard single mode and the ZDT config-
uration. While the cumulative phase of the single interferometer exhibits a random
walk due to uncorrelated phases between consecutive cycles, the ZDT mode’s cumu-
lative phase remains bounded thanks to correlations between consecutive measure-
ment cycles. For completeness, we present the simulated Allan deviation, emphasizing
the expected ∼ 1/τc scaling in the ZDT case and the enhanced short-term sensitivity

10The measurement noise, for instance, is due to the state detection stage and is assumed to be uncor-
related.

11Zero-dead time mode is automatically achieved in the space-domain atom interferometers operating
with three Raman beams separated in space and with a continuous atomic beam [28].



4.6. Zero-dead-time mode 73

(A) Cumulative interferometric phase (B) Allan deviation

FIGURE 4.16: Comparison of atom interferometer operating in standard and zero-
dead-time (ZDT) mode. Panel (A): Simulated cumulative interferometric phase of
three atom interferometers (AIi) operating in standard and ZDT mode. The ZDT cu-
mulative phase is bound at 22mrad rms. Panel (B): Simulated Allan deviations of
an atom interferometer operating in standard mode and in ZDT mode. Simulation pa-
rameters: free-evolution time T = 10ms, cycling period of the i-th atom interferometer

Tc = 3T, laser phase noise σϕ = 10mrad rms, measurement noise σm = 1mrad rms.

(A) Pulse timing in ZDT mode (B) Combined acceleration IRFs

FIGURE 4.17: Panel (A): Pulse timing diagram of 3 Mach-Zehnder interferometers
operating in ZDT mode. The three interferometers are staggered with a time Ts =
T + 2τ . Panel (B): Combined acceleration impulsive response functions of three atom

interferometers with three different staggering times.

compared to the standard operating mode. However, as atom interferometers are ulti-
mately limited by uncorrelated measurement noise, for longer cluster times, the Allan
deviation departs from its ∼ 1/τc scaling and instead follows the standard ∼ 1/

√
τc

asymptotic behavior.
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The combination of three atom interferometers in ZDT mode necessitates a precise se-
lection of the staggering time to achieve uniform sensitivity. In Figure 4.17, we present
the combined acceleration IRF for three different staggering time values. Only in the
case of Ts = T + 2 τ the combined sensitivity is uniform, in line with the Fourier trans-
form of the single acceleration IRF, which has a zero at the frequency f = 1/(T + 2 τ).
In contrast, the cases of Ts = T and Ts = T + (2 + 4/π) τ do not yield uniform sen-
sitivity due to imperfect pulse overlap. Nevertheless, it’s worth noting that in the lat-
ter case, the combined sensitivity during the free-evolution period remains constant
at 1, indicating that the scale-factor of the ZDT accelerometer during these periods is
SFa = keff T2.
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Chapter 5

Optimized beam-splitter pulses

The performance of a cold-atom inertial (CAI) sensor strongly depends on the fidelity
of the process with which the laser pulse diffracts the atomic wavefunction. Focusing
on the conventional π/2−π −π/2 sequence using rectangular constant-power Raman
pulses, the fidelity of the inversion and beam-splitting processes primarily affects the
visibility [41, 46] and the phase shift of the interferometric signal [52, 20, 54], respec-
tively. The influence of the inversion process on the contrast fidelity of the interferom-
eter stems from the fact that a rectangular mirror pulse has a narrower bandwidth than
the corresponding beam-splitter pulse. On the other hand, the beam-splitting process
determines the splitting of the atom in a superposed state during which the wavefunc-
tion accumulates the phase impressed by the laser grating.

Composite pulses [87, 88, 89] and optimal control [90, 91] approaches have been used
to design tailored pulses that enhance the fidelity of atom interferometers. However,
while significant efforts have been invested in designing optimized pulse sequences
that demonstrate higher fringe contrast than conventional sequences with constant-
power pulses, less attention has been devoted to enhancing interferometric phase fi-
delity, with a few exceptions [92].
The phase accumulated by the atomic wavefunction at the end of the beam-splitting
process (superposition phase) depends on the detuning from the Raman transition.
Phase compensation only occurs when the Rabi frequency experienced by the atoms
during the first and last pulses is the same [92]. Any asymmetries in the temporal
profile of the Rabi frequency relative to the central mirror pulse result in uncompen-
sated superposition phase and, consequently, an error in the interferometric phase.
Optimized beam-splitter pulses are characterized by minimized superposition phase
across various detunings and Rabi frequency values, thereby ensuring reduced phase
dispersion and relaxing the requirement for a symmetric Rabi frequency configuration.
Asymmetries in the Rabi frequency experienced by the atomic ensemble can result from
various factors, such as couplings between laser spatial intensity inhomogeneities and
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atomic motion in the plane transverse to the Raman effective wave-vector, or tempo-
ral stochastic fluctuations in laser intensity. Nevertheless, coupling between Rabi fre-
quency asymmetries and phase dispersion induced by a non-optimal beam-splitting
process affects the performance of a CAI sensor in terms of bias and scale-factor error
[52, 16].

Building upon these premises, this chapter introduces a method for designing opti-
mized beam-splitter pulses characterized by minimized superposition phases across a
range of detunings and Rabi frequency values. This method, based on time-dependent
perturbation theory (TDPT), links the sensitivity function formalism with optimal con-
trol providing a geometric interpretation of the optimization problem in the Bloch
sphere picture.

A substantial portion of the material presented here is adapted from Ref. [73]. The
structure of the chapter is based as follows

1. We present the motivations and the background theory, showing the link between
TDPT and the sensitivity function formalism, and deriving the cost function and
the constraints of the optimization problem.

2. After obtaining an optimized beam-splitter waveform that modulates the laser in-
tensity over time while constraining the laser phase to 0 and π values, we proceed
to analyze the simulated performance of this standalone optimized pulse, com-
paring it to a conventional rectangular pulse. In this context, we introduce a novel
method for visualizing the evolution of an atomic ensemble on the Bloch sphere
and formulate a criterion that attempts to explain how the optimized waveform
achieves minimized phase dispersion.

3. We compute the simulated phase fidelity of a Mach-Zehnder interferometer op-
erating with the optimized beam-splitter, showing its impact on the bias of a
cold-atom accelerometer in presence of couplings between laser intensity inho-
mogeneities and atomic motion in the plane transverse to the Raman effective
wave-vector. Furthermore, we calculate the scale-factor error caused by inter-
pulse laser intensity fluctuations, demonstrating that an atom interferometer op-
erating with optimized beam-splitters offers enhanced performance compared to
one operating with conventional rectangular pulses.

4. Finally, we evaluate the possibility to obtain smooth waveforms investigating the
effect of high-frequency components upon pulse and interferometer fidelity.
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5.1 Background theory

The rotating wave and adiabatic elimination approximations reduce the dynamics of
the atom’s hyperfine ground states undergoing stimulated Raman transition to an ef-
fective two-level system. Starting from the Liouville-von Neumann equation that de-
scribe the evolution of the density matrix

ρ =

[︄
ρgg ρge

ρeg ρee

]︄
, (5.1)

where the diagonal terms are the atomic populations, ρii = |i⟩ ⟨i|, and the off-diagonal
terms are the atomic coherences, ρij = |i⟩ ⟨j|, we define the Bloch vector with the fol-
lowing transformation [93] Ö

bx

by

bz

è
=

Ö
2 Re{ρge}
2 Im{ρge}
ρgg − ρee

è
. (5.2)

Here |g⟩ and |e⟩ are, respectively, the internal lower and upper hyperfine ground states,
and the components of the Bloch vector are expressed in the basis defined by the Pauli
matrices. With the transformation of Eq. (5.2), the Liouville-von Neumann equation is
reduced to a system of real first order ordinary differential equations (Bloch equation)

d
dt

Ö
bx

by

bz

è
=

⎡⎢⎣ 0 −δ(t) 0
δ(t) 0 Ω u(t)
0 −Ω u(t) 0

⎤⎥⎦
Ö

bx

by

bz

è
, (5.3)

with δ(t) the two-photon detuning 1, Ω the effective (or two-photon) Rabi frequency,
and u(t) a factor that accounts for the time modulation of the effective Rabi frequency.
In deriving Eq. (5.3), we made the assumption that the laser phase ϕL(t) is restricted to
take values of 0 and π. This constraint incorporates the laser phase modulation into
the sign of the factor u(t). Specifically, u(t) is positive (negative) when the laser phase
is ϕL = 0 (ϕL = π).
A closer look at Eq. (5.3) reveals that the internal state dynamics is described by the rota-
tion of the Bloch vector in a plane orthogonal to the field vector F = (−Ω u(t) , 0, δ(t))T.
To maintain population conservation, the Bloch vector’s norm is constrained to unity,
which confines its motion to a unitary sphere known as the Bloch sphere.
Eq. (5.3) has an analytical solution when δ(t) and u(t) are time-invariant. In cases with
time-variant parameters one can apply time-dependent perturbation theory (TDPT) to

1The two-photon detuning is defined as δ = δ12 − δAC = δL − (ωeg + δD + δR) − δAC



78 Chapter 5. Optimized beam-splitter pulses

obtain an approximate solution in the form of a perturbation expansion series, such
as the Magnus [94] and Dyson [95] series, for instance. Although Magnus expansion
exhibits some remarkable properties such as the conservation of the unitary charac-
ter of the time-evolution operator [96], the presence of nested commutators makes it
challenging to explicitly construct high-order terms. For this reason and because of its
direct link with the sensitivity function formalism, we focus on Dyson expansion.
Approximated solution of Eq. (5.3) can be found in form of Dyson series as

b(t) = U0(t, t0) b(t0) + . . .

U0(t, t0)
∫︂ t

t0

dt′V(t′, t0) b(t0) + . . . (5.4)

U0(t, t0)
∫︂ t

t0

∫︂ t′

t0

dt′dt′′V(t′, t0)V(t′′, t0) b(t0) + . . .

where

V(t, t0) = U0
†(t, t0)Mδ(t)U0(t, t0) , (5.5a)

Mδ(t) =

⎡⎢⎣ 0 −δ(t) 0
δ(t) 0 0
0 0 0

⎤⎥⎦ , (5.5b)

and U0(t, t0) is the unperturbed time-evolution operator that propagates the atomic
state from t0 to t in the case of zero detuning as it is given by

U0(t, t0) =

⎡⎢⎣1 0 0
0 C(t) S(t)
0 −S(t) C(t)

⎤⎥⎦ , (5.6)

with S(t) = sin θ(t) and C(t) = cos θ(t). The quantity θ(t) =
∫︁ t

t0
Ω u(t′)dt′ is the angle

described by the Bloch vector about the x-axis and is known as pulse area. As expected,
in the unperturbed case, the Bloch vector describes a trajectory in the y − z plane.

At the beginning of the Mach-Zehnder sequence, the atom is in one of the ground hy-
perfine states. Hence, it makes sense to consider as initial condition the basis state
b(t0) = (0, 0, 1)T, i.e. the Bloch vector points at the North pole of the Bloch sphere.
This assumption effectively reduces the number of elements in the matrix product

∏∞
ℓ=1 V(tℓ, t0) that need to be considered.

Therefore, we report here the Dyson series expansion up to the second order
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b(t) = b(0)(t) + δb(1)(t) + δb(2)(t) + . . . , (5.7)

where b(0)(t) is the unperturbed (zeroth order) solution

b(0)(t) =

Ö
0

S(t)
C(t)

è
, (5.8)

δb(1)(t) is the first order correction

δb(1)(t) =
∫︂ t

t0

dt′ δ(t′)

Ö
−S(t′)

0
0

è
, (5.9)

and δb(2)(t) is the second order correction

δb(2)(t) =
∫︂ t

t0

dt′
∫︂ t′

t0

dt′′ δ(t′) δ(t′′)

Ö
0

−S(t′′) S(t′)
S(t′′) C(t′)

è
. (5.10)

Defining the angles δΦ and δα, respectively, as the longitude and latitude errors with
respect to the unperturbed solution

δΦ := tan−1 bx

by
, (5.11a)

δα := sin−1 bz , (5.11b)

we can express the terms in the Dyson series in spherical coordinates. In Table 5.1 we
reported the longitude and latitude errors up to the second order.

The longitude error, δΦ, defines the azimuth deviation of the Bloch vector with respect
to the y − z plane and it is connected with the phase error accumulated by the atomic
wavefunction. On the other hand, the latitude error, δα, defines the deviation of the
Bloch vector with respect to the equatorial plane and it is connected to the amplitude
of the atomic population. The two angles, δΦ and δα, are positive as shown in Figure
5.1.
We note that, provided as initial condition the basis state b(t0) = (0, 0, 1)T, longitude
errors are given by odd-order terms of the Dyson expansion, while latitude errors are
given by even-order terms of the Dyson expansion. This somehow reflects the parity
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FIGURE 5.1: Bloch sphere representation of the two-level system dynamics. The North
and South poles coincide, respectively, with the |g⟩ and |e⟩ basis states. The blue
(magenta) curve represents the on-resonance (off-resonance) Bloch vector trajectory
obtained for a conventional beam-splitter pulse. The angles δΦ and δα are, respec-
tively, the longitude and latitude deviations of the Bloch vector from the on-resonance
solution. The red circular arrow indicates the direction of the torque due to the x-

component of the field vector.

character of the atomic wavefunction’s amplitude and phase as functions of the detun-
ing [92, 97].
For a rectangular constant-power beam-splitter pulse the longitude and latitude errors,
up to the second order, are given by

δΦ ≈ − δ

Ω
tan
Å

θ

2

ã
, (5.12a)

δα ≈
(︂

1 − π

4

)︂ δ2

Ω2 , (5.12b)

where we assumed steady detuning and δ ≪ Ω. In the case of no pulse-length errors
(Ω = Ω0 = π/(2 τ), the results agree with the expressions reported in the Appendix of
Ref. [97].

5.1.1 Link with the sensitivity function

Starting from an initial time t0, let us compute the first-order longitude (phase) error at
a final time t f . For δ ≪ Ω we get

δΦ(t f ) ≈
1

S(t f )

∫︂ t f

t0

−S(t) δ(t) dt . (5.13)
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Order δΦ δα

Zeroth 0 sin−1 [C(t)]

First tan−1
î

1
S(t)

∫︁ t
t0
−S(t′) δ(t′) dt′

ó
0

Second 0 sin−1
[︂∫︁ t

t0
dt′
∫︁ t′

t0
dt′′ δ(t′) δ(t′′) S(t′′) C(t′)

]︂

TABLE 5.1: Dyson expansion up to the second order in terms of longitude (δΦ) and
latitude (δα) errors.

Comparing Eq. (5.13) with Eq. (4.5), we recognize in the term

− S(t)
S(t f )

≡ gϕ(t) (5.14)

the phase sensitivity function. Hence, Eq. (5.13) not only provides the phase error ac-
cumulated by the atomic wavefunction after the beam-splitting process but also yields
the interferometric phase2.
Eq. (5.14) is a generalized expression for the phase sensitivity function valid in the case
of time-varying Rabi frequency, where the term S(t f ) at the denominator accounts for
pulse-length errors.
For an interferometer operating with conventional constant-power pulses, Eq. (5.14)
reduces to Eq. (4.11), and the phase error accumulated by the atomic wavefunction in
the case of steady detuning is

δΦ ≈ δ

ï
1

Ω3
tan
Å

θ3

2

ã
− 1

Ω1
tan
Å

θ1

2

ãò
. (5.15)

As expected, a steady detuning does not induce any interferometric phase shift when
there are no variations in the Rabi frequency experienced by the atoms during the first
and last pulse.

5.1.2 Optimization problem

For a resonant beam-splitter pulse, the Bloch vector starting from the basis state b(0) =
(0, 0, 1)T will end up in the state b(τ) = (0, 1, 0)T, where τ is the beam-splitter dura-
tion. Detuning (δ ̸= 0) and pulse-length errors (Ω ̸= Ω0 = π/(2 τ)) cause deviations of
the Bloch vector trajectory from the resonant case. Consequently, the final atomic state

2Note that a positive sign of the angle δΦ indicates a negative rotation about the z-axis, while a positive
detuning, δ, corresponds to positive rotations about the z-axis. Therefore, when δ in Eq. (5.13) represents
either the Doppler detuning (δD) or the differential AC Stark shift (δAC), the angle δΦ is equal to the
interferometric phase, ∆Φ. However, if δ represents the laser detuning (δL), then ∆Φ = −δΦ.



82 Chapter 5. Optimized beam-splitter pulses

will differ from (0, 1, 0)T.
Since the deviations of the Bloch sphere trajectory from the resonant case are repre-
sented by the angles δΦ and δα, it is reasonable to assume that a robust beam-splitter
pulse should ensure minimized errors for different detuning and Rabi frequency val-
ues. Hence, we optimize the beam-splitter pulse solving the following minimization
problem

min
u(t)

[︄
∑
k,i

w(k)
i δΨ(k)

i (τ) + P
]︄

∀ δ = const , (5.16)

where δΨ(k)
i is the i-th component of the k-th order of the vector δΨ = (δΦ, δα)T defin-

ing the angular deviation of the Bloch vector for the resonant case. Each term δΨ(k)
i

is weighted by a dimensionless coefficient w(k)
i that can be tuned in order to achieve

a better optimization. The term P is a penalty parameter proportional to the second
derivative of the Rabi frequency control law, i.e. P ∝ ∂2u/∂t2, and can be tuned in or-
der to enhance the waveform smoothness [98]. Given the pulse duration, τ, the output
of the optimization problem is the waveform u(t).
In the solution of the minimization problem described by Eq. (5.16) we impose the fol-
lowing non-linear constraints

S(τ) ≤ 1 , (5.17a)

|u(t)| ≤ 1 . (5.17b)

The first condition ensures that the beam-splitting condition (θ(τ) ≤ π/2) is met in the
resonant case. The inequality relaxes the constraints, enabling the optimization algo-
rithm to find better waveforms. The second condition sets a constraint on the maximum
Rabi frequency, reflecting practical limits on the achievable laser intensity.

5.1.2.1 Dyson series convergence

When using series expansion in TDPT, we need to verify that the convergence criterion
is met. In our case, each correction term in the Dyson expansion scales as (δ/Ω)k, where
k represents the perturbation order. Hence, convergence is achieved if δ ≪ Ω. Even
if the detuning is of the same order as the Rabi frequency, convergence can still be
achieved splitting the integration of Eq. (5.4) in many time intervals of duration ∆t
and ensuring that the condition ∥V(∆t) ∆t∥2 ≪ 1, with ∥. . .∥2 denoting the L2-norm, is
fulfilled [99].
We explicitly verified the convergence of the Dyson series using d’Alembert’s criterion.
Figure 5.2 shows the norm of the Bloch vector corrections up to the 7th order for δ/Ω =
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FIGURE 5.2: Norm of the Bloch vector corrections computed for δ/Ω = 1 and ∆t =
100ns.

1 and ∆t = 100ns. The 7th order term is approximately two orders of magnitude lower
than the 6th order term. This monotonic decreasing behavior confirms convergence
under our operating conditions.

5.1.3 Features of the optimization method

The choice of an optimization method based on TDPT relies on minimizing errors from
off-resonance conditions. The cost function is derived analytically from perturbation
expansion terms, eliminating the need for averaging over a specific atomic ensem-
ble, unlike non-perturbative methods such as GRAPE [90] and Krotov-based methods
[100]. Instead of aiming to achieve a target state across various detuning values, we
seek waveforms that minimize errors caused by off-resonance conditions, adopting an
approach similar to early composite pulses design [101]. This error minimization ap-
proach helps us avoid the presence of ‘wobbles’ in pulse fidelity around the resonance
condition, a characteristic issue in ensemble-based optimization methods [91, 92, 102].
Formulating the cost function in terms of deviations of the Bloch vector from the reso-
nant case allows for an intuitive geometric interpretation of the optimization problem
on the Bloch sphere. Moreover, the optimized method establishes an immediate and
direct connection with the sensitivity function formalism, facilitating a clearer under-
standing of how the beam-splitting process impacts the phase fidelity of the interfer-
ometer.

5.2 Results

In this section, we present the results of the optimization, analyzing the impact of the
various terms in the cost function. Subsequently, for a given beam-splitter waveform,
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(A) Longitude error (B) Latitude error

FIGURE 5.3: Effect of the number of Dyson expansion orders (n) upon the optimization
in terms of longitude and latitude errors. We report, as reference, the longitude and
latitude error of a conventional rectangular beam-splitter pulse. The resonant Rabi
frequency is Ω0 = 2π × 200kHz, while the duration of the optimized pulses is τ =

8 tπ .

we conduct a symmetry and stability analysis of the Bloch vector trajectories. Our goal
is to explain how the optimized pulse steers an atomic ensemble towards the target
error-free state. Finally, we analyze the impact of the optimized beam-splitter pulse on
interferometer performance, considering both contrast and phase fidelity. Specifically,
we demonstrate that optimizing the beam-splitter pulse enables the interferometer to
remain robust against errors induced by asymmetric Rabi frequency configurations rel-
ative to the central mirror pulse.

5.2.1 Optimized beam-splitter pulse

Given in input the total duration of the pulse and the maximum Rabi frequency, the
output of the optimization is the dimensionless waveform u(t).

Figure 5.3 displays the effects of Dyson series orders on the optimization in terms of
longitude (phase) and latitude (population amplitude) fidelity. As expected, the higher
the number of orders considered in the cost function, the larger the range of detunings
for which the minimization condition is achieved.

Figure 5.4 displays the waveform and pulse area of an optimized beam-splitter pulse.
We considered orders up to the 7th in the Dyson expansion. The total pulse duration
is τ = 8 tπ, where tπ represents the duration of an equivalent rectangular mirror pulse
with a Rabi frequency equal to the maximum Rabi frequency of the optimized wave-
form. The chosen maximum Rabi frequency is Ω0 = 2π × 200kHz. We divide the
waveform into 200 piecewise segments, each corresponding to a time step of duration
∆t = 100ns, which can be readily handled by the laser modulation system [91, 98, 102].
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FIGURE 5.4: Dimensionless waveform (u(t)) and pulse area (θ(t)) of an optimized
beam-splitter pulse. Dyson expansion terms up to the 7th orders have been consid-
ered in the cost function. The resonant Rabi frequency is Ω0 = 2π × 200kHz, while

the duration of the optimized pulses is τ = 8 tπ .

(A) Conventional beam-splitter (B) Optimized beam-splitter

FIGURE 5.5: Phase map of the conventional and optimized beam-splitter pulse corre-
sponding to the waveform represented in Figure 5.4.

In Figure 5.5, we compare the phase fidelity map of the selected waveform to that of an
equivalent beam-splitter pulse with the same maximum Rabi frequency. For Ω = Ω0

(no pulse-length errors), the optimized beam-splitter pulse exhibits minimal longitude
error (green-shaded area delimited by the ±0.1rad isolines) over a range of detunings
approaching the Rabi frequency. It is worth noting that as the maximum Rabi fre-
quency (Ω) decreases from the design value (Ω0), the range of detunings over which
the minimized longitude error is achieved expands.
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5.2.1.1 Symmetry and stability analysis of Bloch vector trajectories

Since the birth of composite pulses and optimal control, the longstanding question of
why and how optimized waveforms work remains open. Although in our case the wave-
form is quite regular, optimal control could produce very noisy waveforms, making it
even more difficult to interpret the results of the optimization [103].

In order to understand how the optimized waveform works, it might be useful, as
a first step, to visualize the atomic dynamics on the Bloch sphere. The atomic dy-
namics is characterized by two parameters, namely the two-photon detuning δ and
the maximum Rabi frequency Ω. Therefore, representing the time-evolution of an
atomic ensemble on the Bloch sphere under the action of the optimized waveform is
not trivial. Although various techniques can be found in literature, such as spectro-
grams or scalograms, both involving transformations in the frequency domain [103],
we propose a method based on the construction of pseudo-probability density func-
tions. Given an ensemble E = {δ/Ω0 ∈ [ϵmin, ϵmax] and Ω/Ω0 ∈ [ηmin, ηmax]} sub-
ject to the optimized waveform, we numerically integrate the Bloch equations and
construct the time-evolution of the latitude, longitude and latitude-longitude error
histograms. We obtain the pseudo-probability density function normalizing the his-
tograms with respect to its maximum value at each time-step. The normalization oper-
ation does not alter the pseudo-probability density function shape but provides a better
contrast. Figure 5.6 displays the pseudo-probability density function of an atomic en-
semble E = {δ/Ω0 ∈ [−0.8, 0.8] and Ω/Ω0 ∈ [0.8, 1.2]} of 200x200 particles. The top
row presents the longitude-latitude error pseudo-probability density function mapped
onto the Bloch sphere at three time instants, namely, t = 2, 4, and 8 tπ. The magenta
line represents the full time-evolution of the Bloch vector corresponding to δ/Ω0 = 0.4
and Ω/Ω0 = 1. We note that, given the length of the pulse, the Bloch vector tra-
jectory of a single atom wraps around the sphere multiple times, making it difficult
to understand its dynamics on the sphere. The bottom row represents the full time-
evolution of the longitude and latitude error pseudo-probability density functions with
projections of the aforementioned Bloch vector trajectory. The optimized waveform ef-
fectively ‘squeezes’ the longitude error pseudo-probability density function reducing
phase dispersion.

In Figure 5.6, we observe a symmetric pattern of the longitude error distribution with
respect to the resonant unperturbed case (i.e. zero-longitude locus), meaning that the
Bloch vector trajectories characterized by detunings of opposite signs are steered in
opposite directions. As a consequence, negative and positive detuning paths cross
each other at multiple times. Nevertheless, at the end of the pulse, the ensemble re-
combines, converging to the unperturbed target state. This symmetry arises because
atomic states are steered on the Bloch sphere solely by controlling the field vector’s
amplitude (aligned with the x-axis) and restricting the laser phase to values between
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FIGURE 5.6: Time evolution of the distribution representing the atomic ensemble E .
The value of the distribution at each time instant has been normalized with respect to
the maximum value. Upper panel: latitude-longitude distribution on the Bloch sphere
at three different times throughout our optimized pulse: t/tπ = 2, 4, and 8. The
thick meridian is given by the intersection of the Bloch sphere with the y-z plane. The
magenta line represents the Bloch vector trajectory and for δ/Ω0 = 0.4 and Ω/Ω0 = 1.
Lower panel: time evolution of the longitude distribution on the left, and latitude
distribution on the right. The magenta line represents, respectively, the longitude and

latitude projection of the aforementioned Bloch vector trajectory.

0 and π. When the system is on resonance, the Bloch vector trajectory lies in the y-z
plane; off-resonance, the plane tilts based on the detuning sign. Consequently, atoms
characterized by positive detunings have opposite longitude positions with respect to
atoms characterized by negative detunings.
To understand the convergence of the longitude error distribution to the unperturbed
case, we present a stability analysis based on the sign of the variation of the longitude
error rate with respect to the longitude error itself. Recombination of the ensemble
after each crossing point suggests that there must be a condition that forces the differ-
ent trajectories to converge towards the unperturbed solution, at the end of the pulse,
minimizing the longitude error. This stability condition is given by

S(δ, t) =
∂δΦ̇
∂δΦ

< 0 , (5.18)

where δΦ and δΦ̇ are, respectively, the longitude error and the longitude error rate. In
Figure 5.7, the stability map S(δ, t) is presented for the case of Ω = Ω0. Bloch vector
trajectories characterized by detunings falling within regions where the stability condi-
tion is met converge to the unperturbed solution. By the end of the pulse, atoms with
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FIGURE 5.7: Stability map of Bloch vector trajectories for the optimized beam-splitter
pulse. The Rabi frequency has been considered equal to the design value.

detunings in the range of ±0.5Ω0 satisfy the stability condition. This finding aligns
with the phase error map displayed in Figure 5.5, where the optimized beam-splitter
exhibits minimal phase error within the same detuning range.
The stability map offers valuable insights into the behavior of Bloch vector trajectories
of far-detuned and near-to-resonance atoms. Focusing on the final part of the pulse,
particularly when t/tπ ≳ 7, two key observations emerge: first, the Bloch vector tra-
jectories of near-resonance atoms smoothly converge to the unperturbed solution well
before the pulse’s conclusion. This convergence is clearly illustrated by the presence
of a relatively large stability region marked by the blue colour scale on the map. Con-
versely, trajectories of far-detuned atoms shift from a stable region to an unstable one,
represented by a green/yellow colour scale. This transition signifies that they cross the
zero-longitude error locus before the pulse’s end, resulting in a change in the sign of
the phase error. Second, when considering t/tπ < 8 (i.e. a shorter pulse and, hence, a
lower pulse area or a lower effective maximum Rabi frequency), the range of detuning
values that meet the stability condition becomes larger. This observation agrees with
Figure 5.5, where the detuning range exhibiting minimal phase error expands as the
ratio Ω/Ω0 becomes less than one.

5.2.2 Interferometer performance

In this section, we analyze the performance of an ‘optimized’ Mach-Zehnder interfer-
ometer and compare it to a ‘conventional’ interferometer operating with rectangular
constant-power pulses. The optimized interferometer consists of a beam-splitter with a
waveform corresponding to the one shown in Figure 5.4, a rectangular constant-power
mirror, and a recombiner pulse obtained by time-reversing the beam-splitter waveform.
Time-reversal is necessary in order to guarantee symmetry of the pulse sequence with
respect to the mid-point of the mirror pulse and, hence, avoid spurious phase shifts
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[91].
Inter-pulse intensity variations break the symmetry of the interferometer, rendering
it sensitive to any asymmetry in the velocity distribution or other systematic detun-
ing, and, thus, affecting the bias instability when used as an inertial sensor [54]. Atoms
within the interferometer experience inter-pulse intensity variations due to factors such
as laser random fluctuations or motion through spatial inhomogeneity. For instance,
with a Gaussian Raman beam profile featuring a 1/e2 radius of 10mm and a free-
evolution time T = 10ms, a 1g acceleration of the sensor in the direction transverse
to the laser beam axis will cause the atomic cloud to deviate by 2mm from the beam
center. As a result, the recombiner pulse intensity that these atoms encounter is only
∼ 92% of the intensity of the beam-splitter.

Figure 5.8 displays the simulated contrast, phase error, and their product for both the
conventional and optimized Mach-Zehnder interferometers as functions of the maxi-
mum Rabi frequency ratio between the third and first pulse, Ω3/Ω1, and the Doppler
detuning, δ = keffv, where keff represents the effective wave-vector and v is the atomic
velocity. In the simulation, we assume that the maximum Rabi frequencies of the beam-
splitter (Ω1) and mirror (Ω2) pulses are equal to the resonant value, i.e., Ω1 = Ω2 =

Ω0 = 2π × 200kHz, while considering different values for the recombiner Rabi fre-
quency (Ω3).
Unlike the conventional interferometer, which exhibits a monotonically decreasing con-
trast as |δ| increases, the contrast map of the optimized interferometer displays a non-
trivial behavior with a non-monotonic trend due to the complex features of the opti-
mized waveform.
For a perfectly symmetric pulse sequence, i.e. Ω3 = Ω1, the phase error of the opti-
mized interferometer is zero for every detuning. This is a consequence of the recom-
biner being the time-reversed version of the beam-splitter. For Ω3 < Ω1, the opti-
mized interferometer exhibits a significant range of detunings over which the mini-
mized phase is achieved. However, outside the minimized phase area, represented by
the region enclosed by the ±5mrad isoline, the phase error of the optimized sequence
grows more rapidly than the phase error of the conventional one. This behaviour stems
from the perturbative approach of our optimization method that minimizes error terms
only around the resonance condition.

In order to include the contribution of the different velocity classes, the contrast-weighted
interferometric phase has to be averaged over the atomic velocity distribution and nor-
malized with respect the average contrast as reported in [54]. Hence, the average inter-
ferometric phase (actual output of the interferometer) is given by

⟨δΦ⟩ = 1
⟨C⟩

∫︂ +∞

−∞
f (v)C(v)δΦ(v) dv , (5.19)
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FIGURE 5.8: Upper panel: contrast map (panel (a)), interferometric phase map
(panel(b)) and their product (panel (c)) of the conventional interferometer. Lower
panel: contrast map (panel (d)), interferometric phase map (panel(e)) and their prod-
uct (panel (f)) of the optimized interferometer. Simulation parameters: Ω1 = Ω2 =

Ω0 = 2π × 200kHz.

where ⟨C⟩ =
∫︁ +∞
−∞ f (v)C(v) dv is the average contrast, and f (v) is the velocity distribu-

tion of the atomic cloud entering the interferometer.
Because of the odd parity of the contrast-weighted interferometric phase with respect
to the detuning, any asymmetry or non-zero mean in the atomic velocity distribution
gives rise to a bias. While asymmetries are primarily a result of the velocity selec-
tion process [41, 54], non-zero mean may arise from imbalances in counter-propagating
laser intensities affecting the release of the atomic cloud from the magneto-optic trap
[62], accelerations parallel to the Raman beam propagation axis, or misalignment of the
Raman retro-reflecting mirror with respect to the atomic launch trajectory [29].

Figure 5.9 shows the average contrast of the conventional and optimized interferom-
eters. In the simulation we model the velocity distribution along the beam propaga-
tion axis as a Gaussian having a standard deviation σv =

√︁
kBT /m, where kB, T and

m are, respectively, the Boltzmann constant, the temperature of the atomic cloud and
the mass of the atomic species (in our case 85Rb). Although the contrast maps of the
optimized and conventional interferometers differ, their average contrasts are nearly
similar. This is because for the chosen resonant Rabi frequency, the average contrast
primarily depends on the rectangular mirror pulse, which is more velocity selective
than the rectangular and optimized beam-splitter pulses.
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FIGURE 5.9: Average contrast of the conventional (dashed line) and optimized (con-
tinuous line) interferometers. The blue color indicates the case Ω3/Ω1 = 1, while the
magenta color indicates the case Ω1/Ω3 = 0.8. Simulation parameters: Ω1 = Ω2 =

Ω0 = 2π × 200kHz.

5.2.2.1 Acceleration-induced bias

As an application case, we report the simulated performance of a cold-atom accelerom-
eter in terms of bias 3 induced by the coupling between inter-pulse laser intensity vari-
ations and asymmetry in the velocity distribution. We assume that the laser intensity
variations stem from the relative motion of the atomic cloud with respect to the centroid
of a Gaussian Raman beam due to an acceleration orthogonal to the laser beam axis. In
the simulation, we assume a Gaussian atomic velocity distribution along the beam axis
with standard deviation σv and mean vsel . The maximum Rabi frequency experienced
by the atoms is given by Ω(t) = Ω0 exp

[︁
−2 ∆r⊥(t)2/w2

L
]︁
, where ∆r⊥(t) = 1/2 a⊥ t2 is

the transverse displacement of the centre of mass of the atomic cloud with respect to
the centroid of the Raman beam, t = 0 is the time instant at which the first beam-splitter
pulse occurs, and wL is the 1/e2 beam radius.
Figure 5.10 shows the simulated bias of the optimized and conventional cold-atom ac-
celerometers, both operating with a free-evolution time T = 10ms, atomic velocity
distribution characterized by a temperature T = 2.1µK, and beam waist wL = 10mm.
In the case of the optimized sequence, a bias less than 0.25µg is achieved for transverse
acceleration a⊥ ≤ 1.5g over a range |δsel | ≤ 25kHz. For a⊥ ≥ 1.6g, or equivalently
Ω3/Ω1 ≲ 0.82, the conventional pulse sequence outperforms the optimized one in
agreement with Figure 5.8.

3The bias on the acceleration signal is computed as Bias = δΦ/SFa, where (SFa = keffT2) is the ideal
scale-factor of the cold-atom accelerometer.
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(A) Conventional interferometer (B) Optimized interferometer

FIGURE 5.10: Bias of a cold-atom accelerometer due to the coupling inter-pulse laser
intensity variations and asymmetry of the velocity distribution. Panel (A): conven-
tional interferometer. Panel (B): optimized pulse interferometer. Simulation parame-
ters: free-evolution time T = 10ms; atomic temperature T = 2.1µK; Gaussian beam

waist w = 10mm; Ω1 = Ω0 = 2π × 200kHz.

5.2.2.2 Sensitivity to laser intensity drifts

One of the key features of the presented optimization method is its connection to the
sensitivity function formalism. We recall that, to first order, the phase accumulated
by the atomic wavefunction during the interferometric sequence is proportional to the
area under the sensitivity function. Consequently, we can readily deduce that the use of
optimized beam-splitter pulses significantly reduces the influence of light-shifts upon
CAI sensor’s performance, as they minimizes the phase accumulated during the beam-
splitting process.
Figure 5.11 displays the cumulative interferometric phase induced by light-shifts in
units of [δ/Ω0] for both the optimized and conventional interferometers, as deter-
mined by Eq. (5.13). The optimized sequence exhibits a minimized cumulative phase
value during the free evolution periods, ensuring robustness to intensity fluctuations
for pulse sequences in which the free-evolution time T is much greater than the pulse
duration. As an application case we compute the bias instability of the optimized and
conventional interferometers induced by the coupling between cloud expansion and
one-photon light-shift as function of the free-evolution time. Figure 5.11 presents the
simulation results, showing that the bias instability is considerably lower than that of
the conventional interferometer, ensuring enhanced long-term stability even at short
free-evolution times.
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(A) Cumulative phase (B) Bias instability

FIGURE 5.11: Panel (A): response of the interferometer to an infinitesimal δI step in-
put, in units of δ/Ω0. The plot can equivalently be seen as the cumulative interferomet-
ric phase induced by light shifts. Panel (B): bias instability of a cold-atom accelerom-
eter induced by the coupling between cloud expansion and long-term laser intensity
drifts via the one-photon light-shift as function of the free-evolution time. The ma-
genta line represents the bias instability of the conventional interferometer. The blue
line in the inset is the bias instability of the optimized interferometer. Simulation pa-
rameters: atomic temperature T = 5µK, initial size cloud σ0 = 0.5mm, Gaussian
beam with waist wL = 5mm, single photon detuning ∆ = 2π × 1.5GHz, nominal Rabi
frequency Ω0 = 2π × 200kHz, polarization configuration σ+ − σ+, relative laser in-

tensity drift δI/I0
j = 1%.

5.2.2.3 Intensity-induced scale-factor errors

Laser intensity fluctuations affect the interferometer scale-factor [16, 72]. Variations in
the Rabi frequency experienced by atoms result in a distortion of the temporal profile
of the impulse imparted by the laser field onto the atomic wave-function. As a result,
the space-time area enclosed by the the atomic states, which defines the interferome-
ter scale-factor, slightly deviates from the nominal value [58]. The sensitivity function
formalism offers a geometric interpretation of the interferometer scale-factor in time
domain, whereby the scale-factor for a cold-atom inertial sensor can be determined by
calculating the area beneath the acceleration or angular rate impulsive response func-
tions.
The sensitivity function formalism determines the interferometer scale-factor as it is in-
herently linked to the trajectory traced by the centre of mass of the atomic wavepackets
that travel along the upper and lower arms of the interferometer. Recalling Eq. (4.15)
and integrating in time we obtain

∆ ⟨z(t)⟩ = vrec ha(t) , (5.20)

where ∆ ⟨z⟩ is the spread between the centre of mass of the wavepackets travelling
along the upper and lower arms of the interferometer, vrec is the recoil velocity and ha
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FIGURE 5.12: Spread between the arms of the interferometer for both the optimized
and conventional pulse sequences. We assumed same maximum Rabi frequency. The
red-shaded areas represent the pulse duration for the optimized interferometer. The
spread function of the optimized interferometer crosses zero at the end (start) of the
first (last) pulse, ensuring robustness of the scale-factor error to laser intensity varia-

tions.

is the acceleration IRF.
The acceleration IRF coincides, modulo the recoil velocity term, with the spread func-
tion and, hence, provides the area enclosed by the upper and lower wavepackets. Fig-
ure 5.12 shows the spread function ∆ ⟨z⟩ for both the conventional and optimized in-
terferometers. As expected, the maximum separation between the arms of the interfer-
ometer occurs during the mirror pulse. The optimized interferometer exhibits a zero
spread value at the end of the the first pulse. This is a consequence of the optimization
condition for which we imposed that the phase accumulated by the wavefunction at
the end of the beam-splitter pulse is minimized. Because of the symmetry of the pulse
sequence with respect to the midpoint of the mirror pulse, the spread is also zero at the
start of the last pulse.

In the case of rectangular constant-power pulses, the relative position of the upper
wavepacket with respect to the lower one can be computed analytically. Assuming
as initial condition ⟨z(t = −∞)⟩ = 0, and considering half of the pulse sequence for
symmetry, we obtain

⟨z(t = 0)⟩ = vrec

Ç
T + τ +

1
Ωj

tan
θj

2

å
+ o(τ2) , (5.21)

where ⟨z(t = 0)⟩ is the position of the wavepacket travelling along the upper arm of the
interferometer at the midpoint of the mirror pulse, and Ωj, θj and τ are, respectively,
the Rabi frequency, the pulse area of the j-th π/2 pulse and the duration of the π/2
pulse. We note three contributions:
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FIGURE 5.13: Panel (a): recoil diagram of the conventional interferometer. The blue,
yellow, and green-shaded areas represent half of the scale-factor contribution due
to pure free-evolution of the wavepackets, finite mirror duration, and finite beam-
splitter duration, respectively. The insets show details in the proximity of the first
conventional and optimized beam-splitter pulses. Panel (b): recoil diagram of the op-
timized interferometer. In this case, there is no contribution due to the beam-splitter.
For clarity, only one output port per interferometer is represented. Panel (c): scale-
factor error of a cold-atom accelerometer due to the Rabi frequency imbalance between
the third and first beam-splitter pulse. We assume: free-evolution time T = 10ms;

Ω1 = Ω2 = Ω0 = 2π × 200kHz.

1. Free-evolution term. The fist term in the round brackets represents the displace-
ment of the wavepacket due to free-evolution duration. Its contribution to the
interferometer scale-factor is represented geometrically in Fig. 5.13 with blue.

2. Finite mirror duration. The second term represents the displacement due the fi-
nite duration of the mirror pulse. It is represented geometrically with the yellow-
shaded area.

3. Finite beam-splitter duration. The third term in the round brackets depends on
the beam-splitter Rabi frequency, and its scale-factor geometric representation
is given by the green-shaded area. Physically, this term accrues because of the
detuning-dependent phase accumulated by the atomic wavepacket during the
beam-splitting process. Hence, variations in the nominal Rabi frequency during
the beam-splitting process determine scale-factor instability for a conventional
interferometer.

In contrast, an interferometer operating with optimized beam-splitter pulses exhibits
reduced scale-factor instability due to the fact that at the end of the beam-splitting
process, the detuning-dependent phase is minimized. This is shown geometrically
in Fig. 5.13, where the optimized interferometer does not exhibit any beam-splitter-
dependent contribution to the scale-factor.
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FIGURE 5.14: Comparison between the original dimensionless waveform of Figure 5.4
(magenta line) and the new re-optimized ‘smooth’ one (black line).

5.2.3 Smooth waveform performance

While the waveform shown in Figure 5.4 can be experimentally implemented with a
laser modulation system bandwidth in the range of a few tenths of MHz 4, it is interest-
ing to analyse the optimization results when we increase the penalty parameter in the
cost function defined in Eq. (5.16).

Figure 5.14 displays the output of the optimization: the new re-optimized waveform,
represented with a black line, is compared to the original waveform from Figure 5.4,
depicted here by the magenta line. The re-optimized waveform exhibits enhanced
smoothness, making its experimental implementation even more straightforward.

Let us now compare the performance of the re-optimized waveform, here indicated
as ‘smooth’, with the original one. Figure 5.15 shows the latitude error of the stan-
dalone pulses and the interferometric phase 5. While the smoothing operation does
not have important effects upon the latitude error (i.e. population transfer), it seems
to play a crucial role on the phase fidelity of the interferometer. Panel (B) in Figure
5.15 shows the interferometric phase of Mach-Zehnder interferometers using as beam-
splitter/recombiner the original and smooth waveforms. The continuous and dashed
lines correspond to cases with Ω3/Ω1 = 0.9 and Ω3/Ω1 = 0.85, respectively. It’s worth
noting that the performance of the interferometer operating with the original waveform
is superior to the one operating with the smoothed waveform, especially as the ratio
of the maximum Rabi frequencies between the third and first pulse decreases. This
means that the high-frequency components of the original waveform are not artifacts

4The limiting factor in our case is the rise time of the acousto-optic modulator which depends on the
radius of the input beam. Commercial modulators with rise times less than 100ns are available [104].

5The original and smooth waveforms are used as beam-splitters of a Mach-Zehnder interferometer.
The recombiner is the time-reversed version of the beam-splitter pulse. In both cases, the mirror is a
conventional constant-power pulse.
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(A) Latitude error (B) Interferometric phase

FIGURE 5.15: Panel (A): latitude error of the standalone beam-splitter pulses for Ω =
Ω0. The black and magenta line correspond to the smooth and original waveforms,
respectively. Panel (B): interferometric phase of Mach-Zehnder interferometer using
as beam-splitter/recombiner the smooth and original waveforms. The continuous and
dashed lines correspond to cases with Ω3/Ω1 = 0.9 and Ω3/Ω1 = 0.85, respectively.

of the minimum search algorithm, but depend on the cost function and affect the pulse
performance.





99

Chapter 6

Wavefront distortions

The phase imprinted onto the atomic wavefunction by the laser diffraction grating gen-
erally depends on the mean position of the atomic wavepacket. When the electric field
describing the laser field features a plane wavefront, the imprinted phase depends
solely on the atomic position along the beam propagation axis. However, wavefront
distortions introduce a dependence of the phase on the atomic motion in the plane or-
thogonal to the beam propagation axis. As a consequence, coupling between atomic
transverse motion and wavefront distortions is an error source for cold-atom inertial
(CAI) sensors.

The primary effect of wavefront distortion is bias. However, since the momentum im-
parted by the laser to the atom depends, in general, on the value of the local electric
field’s amplitude and phase, severe wavefront distortions may lead to contrast decay.
Contrast decay due to wavefront distortion is particularly critical in large momen-
tum transfer configurations where multiple pulses are concatenated to enlarge the area
spanned by the wavepackets during the interferometric sequence or in atom interfer-
ometers operating with large free-evolution periods [45].

When coupled with vibrations, wavefront distortions become a noise source [66]. Vi-
brations affect the CAI output through two mechanisms: first, they induce a relative
displacement of the laser wavefronts with respect to the atom’s mean position; second,
they can trigger vibrational modes of the optical elements that induce variations in the
wavefronts.

The manner in which wavefront distortions impact the interferometer signal is not triv-
ial and generally depends on the detection scheme. In a conventional cloud-averaging
scheme, atomic populations are measured by detecting scattered photons through a
photodiode, effectively averaging over the atomic phase-space distribution. On the
other hand, the point source interferometry (PSI) technique detects the spatial distri-
bution of the atomic population on a CCD, hence not requiring averaging over the
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direction orthogonal to the camera line-of-sight. Therefore, the impact of wavefront
distortion on sensors employing cloud-averaging detection is influenced by multiple
parameters, including the size of the Raman and detection beams that act as spatial
filters [53, 105]. The clipping effect operated by the finite size of the laser beams in-
troduces non-linearity between the cloud temperature and the bias phase, making it
difficult to reconstruct the distorted wavefront [106]. In contrast, PSI provides a direct
measurement of the distorted phase distribution, making it possible to effectively re-
construct the distorted wavefront in the plane orthogonal to the Raman effective wave-
vector.

Given these premises, it is crucial to understand the effect of aberrated wavefronts upon
interferometer signal. The structure of the chapter is organized as follows:

1. We first examine possible sources of wavefront distortions, with a focus on the
Raman laser.

2. For different aberrations, we compute the resulting effect on the interferometric
phase in the case of cloud-averaging and PSI sensors.

3. We therefore analyse the coupling between vibrational motion and wavefront dis-
tortions as a noise source of the atom interferometer.

6.1 Wavefront distortions sources

6.1.1 Raman beam

The Raman laser beam is one of the main sources of wavefront distortions. In the
paraxial approximation, the free propagation of the laser electric field is described by
the Helmholtz equation

∂E(r⊥, z)
∂z

=
i

2 k0
∇2

⊥E(r⊥, z) , (6.1)

where k0 = 2π/λ is the electric field wave-number, z is the propagation axis, and ∇2
⊥ =

∂2/∂x2 + ∂2/∂y2 is the Laplacian operator in the transverse direction to the propagation
axis. Assuming that the electric field has the form E = A exp

(︁
i ϕ
)︁
, then Eq. (6.1) can be

decomposed into two equations

∂A
∂z

= − 1
2 k0

Ä
2∇⊥A∇⊥ϕ + A∇2

⊥ϕ
ä

, (6.2)

∂ϕ

∂z
=

1
2 k0

Ç
∇2

⊥A
A

− |∇⊥ϕ|2
å

. (6.3)
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The two equations propagate the amplitude, A, and the phase ϕ, of the electric field
along the z axis. In particular, Eq. (6.3) represents the wave-vector correction due to the
distorted phase and the transverse amplitude distribution. Therefore, the momentum
imparted by the laser on the centre of mass of the wavepacket exhibits an additional
term h̄ ∆k and it is equal to

h̄ k = h̄ k0

Å
1 +

∆k
k0

ã
= h̄ k0

ñ
1 +

1
2 k2

0

Ç
∇2

⊥A
A

− |∇⊥ϕ|2
åô

. (6.4)

Equation (6.4) agrees with the expression reported in [65] and emphasizes that the in-
terferometer’s scale-factor depends on the wavefront and the transverse amplitude dis-
tribution that the atoms experience during the pulse sequence. For a Gaussian beam
with a waist wL and an initial phase distribution, ϕ, the relative momentum correction
is given by

∆k
k0

=
2
k2

0

Ç
r2
⊥

w4
L
− 1

w2
L

å
− |∇⊥ϕ|2

2 k2
0

. (6.5)

The contribution of the term depending on the amplitude distribution is negligible with
respect to other error sources: for instance, assuming a beam with waist wL = 5mm and
wavelength λ = 780nm, we obtain that the scale-factor error is at most ∆k/k0 ≈ 4ppb
over a distance r⊥ ≤ 1cm from the beam centroid. Similarly, the initial wavefront-
depending term is negligible. For instance, assuming an initial phase of the form
ϕ(r⊥, 0) = α r2

⊥ and propagating it along the z-axis using the free-propagation oper-
ator (see Appendix C) we obtain

ϕ(r⊥, z) =
α r2

⊥
1 + (2 α/k0) z

, (6.6)

where the term α = k0 awf/R2, awf is the peak-to-valley amplitude of the distorted
wavefront expressed in units of λ and R is the maximum distance from the centroid of
the laser beam. Even for very bad quality optics (i.e. awf ≈ λ), we get that ϕ(r⊥, z) ≈
ϕ(r⊥, 0) for propagation distance z ≤ 1m. Hence, the scale-factor error of the interfer-
ometer is given by ∆k/k0 = −2(α r⊥)2/k2

0. Therefore, assuming awf = λ/5, the scale-
factor error is ∆k/k0 ≈ 0.5ppb over a maximum distance r⊥ = R = 1cm.

6.1.1.1 Gaussian beam

Since Eq. (6.2) and (6.3) are coupled, the Helmholtz equation can be solved in the
Fourier domain (see Appendix C)
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Ê(k⊥, z) = exp

Ç
−i

k2
⊥ z

2 k0

å
Ê(k⊥, 0) , (6.7)

where the exponential term is the free-space propagator. Assuming as the initial con-
dition at z = 0 a Gaussian amplitude profile with a waist w0 and zero phase distortion,
we compute the phase of the electric field

ϕ(r⊥, z) = k0 z⏞⏟⏟⏞
Flat wavefront

+
k0 r2

⊥
2R(z)⏞ ⏟⏟ ⏞

Quadratic term

− arctan
z

zR⏞ ⏟⏟ ⏞
Gouy phase

, (6.8)

where zR = k0 w2
0/2 is the Rayleigh length, R(z) = (w(z) zR)2/(w2

0 z) is the radius of
curvature and w(z) = w0

√︁
1 + (z/zR)2 is the beam waist. The electric field comprises

three phase terms: the primary contribution arising from the flat wavefront, a quadratic
term resulting from the amplitude distribution, and an additional term, known as the
Gouy phase, attributable to the transverse momentum term in the free-space propaga-
tor [107].
While we refer to Section 6.2 for the impact of a quadratic phase term on the interfer-
ometric phase, we analyze here the effect of the Gouy phase. For a Raman waist w0 ≥
5mm and λ = 780nm, the Rayleigh length zR ≥ 100m, hence the Gouy phase term
can be linearized ϕ ≈ −z/zR. The effective Raman phase ϕeff(t) = −(z1(t) − z2(t))/zR,
where zj(t) is the relative trajectory of an atom with respect to the j-th laser and we
assumed that the Rayleigh length is the same for the two beams. We compute the in-
terferometric phase using the sensitivity function formalism

∆Φ = − 2
zR

Å
−
∫︂ +∞

−∞
ha(t) fz(t) dt −

∫︂ +∞

−∞
w(t) γz(t) dt

ã
, (6.9)

where fz is the z component of the specific force vector fb
ib, γz is the z component of the

vector ωb
ib × vb

0, and ha(t) and w(t) are, respectively, the acceleration and angular rate
(Coriolis term) impulsive response functions. The factor of 2 arises from the two laser
fields composing the Raman pulse being fixed to the hosting vehicle. Consequently, the
relative motion of the atom with respect to them is the same.
The Gouy phase gives rise to a scale-factor error. For instance, in the case of a constant
specific force, the interferometric phase is given by ∆Φ = −2 fz T2/zR, corresponding
to a scale-factor error of ≤ 1ppb for a beam waist w0 ≥ 5mm. Therefore, for typical
values of the Raman beam waist, the effect of the Gouy phase is negligible with respect
to other error sources.
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6.1.1.2 Intensity noise

Let us analyze the impact of noise sources upon the momentum imparted to the atoms.
According to Eq. (6.4), both amplitude and phase spatial distributions in the transverse
plane affect the recoil kick. Following [65], it is possible to evaluate the effect of am-
plitude and phase noise upon the interferometric phase. From Eq. (6.4), we observe
that the amplitude noise has a dominant effect 1. Assuming for simplicity a Gaussian
auto-correlation function for the relative electric field amplitude Ā = A/ ⟨A⟩

RĀ(r⊥) = σ2
Ā exp

Ç
−

r2
⊥

L2
c

å
(6.10)

with Lc the coherence length, it is possible to compute the power spectral density
associated with the amplitude noise computing the Fourier transform of the auto-
correlation function SĀ(k⊥) = F{RĀ}. At this point, we compute the mean square
of the relative wave-vector correction ϵ = ∆k/k0 as

σ2
ϵ =

∫︂ +∞

−∞

Ç
−k2

⊥
2 k2

0

å2

SĀ(k⊥)⏞ ⏟⏟ ⏞
Sϵ(k⊥)

d2k⊥
(2 π)2 =

(︂σĪ
2

)︂2 8
(k0 Lc)4 , (6.11)

where we have expressed the relative amplitude noise as a function of the relative in-
tensity noise (i.e. σĀ = σĪ/2). The term Sϵ(k⊥) is the power spectral density of the
relative wave-vector correction.
Due to laser intensity noise, there exists an uncertainty in the value of the recoil mo-
mentum imparted to the atoms. This uncertainty increases as the local intensity or the
coherence length decreases. It should be noted that the effect described by Eq. (6.11) is
local, therefore for a cloud-averaging sensor, its contribution upon the uncertainty of
the scale-factor error is mitigated because atoms average over high- and low-intensity
spots during the thermal expansion [65, 108]. In contrast, for PSI sensors, this effect
should lead to noise in the spatial phase map, as no averaging is performed in the
transverse plane by the detection system.

Figure 6.1 displays the computed power spectral density of the spatial intensity noise
for our top-hat Raman beam with a diameter of 6mm. The inset shows the relative
noise profile along the horizontal axis, with an amplitude of approximately ±10%. To
mitigate edge effects, we process the data from the central portion of the beam. As
expected, the power spectral density of the relative intensity noise exhibits an expo-
nential decay. Peaks in the frequency range [40, 100] cm−1 are attributed to diffraction
induced by dust particles on the lens system. The fit of the power spectral density with

1The relative wave-vector correction noise scales linearly with respect to the amplitude noise, i.e.
σA/A, and quadratically with respect to the phase noise, i.e. σ2

ϕ.
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FIGURE 6.1: Power spectral density of the spatial intensity noise of our Raman beam.
The inset shows the portion of relative intensity noise considered for the analysis. Fit

of the power spectral density with a Gaussian function gives Lc = 110µm.

a Gaussian function reveals a coherence length of Lc = 110µm, corresponding to an
uncertainty in the relative wave-vector correction of σϵ ≈ 180ppb.

6.1.2 Collimation error effect

Raman light passes through a collimator before being injected into the vacuum cham-
ber. Collimation errors cause the beam to change its waist along the propagation axis,
thereby introducing distortion in the wavefront. Assuming for simplicity that the colli-
mation is achieved through a focusing lens with focal length f and numerical aperture
NA, using the ABCD matrix method we obtain the collimation angle error due to a
misfocus error ∆ f

∆θ = −∆ f
f

NA . (6.12)

The same method can be used to compute the properties of a Gaussian laser beam as
propagating along its axis. The complex curvature of the laser beam after the collimator
is given by [109]

Q2 =
A Q1 + B
C Q1 + D

(6.13)

where Q1 is the complex curvature before the optics and A, B, C, and D are the propa-
gation matrix elements. The radius of curvature at the j-th location, Rj, is proportional
to the real part of the complex curvature element, i.e. 1/Rj = Re{1/Qj}. Therefore, as-
suming a point source we compute the curvature of the laser beam after the collimator
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FIGURE 6.2: Simple collimation system formed by a focusing lens with focus f and
numerical aperture NA.

1
R(z)

=
∆θ/NA

(∆θ/NA)( f − z) − f
, (6.14)

where z is the longitudinal distance from the focusing length. We note that as ∆θ → 0,
the flat wavefront condition is recovered, i.e., 1/R(z) → 0. As the collimation error
∆θ or the longitudinal distance increases, the radius of curvature also increases accord-
ingly.

6.1.3 Optical elements

Optical elements are an unavoidable source of wavefront distortions. While the wave-
front distortions of incoming laser beams can be suppressed using a retro-reflecting
mirror arrangement, this does not eliminate the distortions induced by optical ele-
ments. These elements include glass windows, quarter-wave plates, and the retro-
reflecting mirror [20]. In many cases, to minimize the impact of wavefront distortions,
the number of optical elements is kept to a minimum by adopting design solutions that
involve placing the optics in a vacuum chamber , thus avoiding the distortions induced
by glass windows or air turbulence [106].
In the retro-reflecting configuration, the mirror is the most crucial element, as it repre-
sents the reference for measuring the relative atomic motion. Therefore, we analyze the
impact of thermoelastic effect and structural vibrations upon wavefront distortions.

6.1.3.1 Thermoelastic effects

Thermoelastic effects induce deformation of the optical elements and are a prominent
source of wavefront distortion. In order to evaluate their impact we assume that the
mirror can be modelled as an isotropic circular plate of radius R and thickness h, subject
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FIGURE 6.3: Longitudinal displacement in fraction of wavelength (λ = 780nm) in-
duced by a parabolic temperature distribution. Simulation parameters: substrate in
silica with thermal expansion coefficient α = 0.55ppm/K and Poisson ratio ν = 0.17,

T0 = 290K, β = 1/T0, R = 1.5cm, h = 6mm.

to an axisymmetric temperature profile T (r⊥) = T0
(︁
1 + β r̄m

⊥
)︁
. Following the method

reported in [110] we compute the vertical displacement for both simply supported (SS)
and clamped (CL) boundary conditions

w(r⊥) =

⎧⎨⎩ D R2

2 (1+ν)

î
(m+3−ν)

(m+2) (1 − r̄2
⊥) + 2 (1+ν)

(m+2)2 (1 − r̄m+2
⊥ )
ó

, for SS
D R2

(2+m)2

î
m
2 − (m+2)

2 r̄2
⊥ + r̄2+m

⊥

ó
, for CL ,

(6.15)

where r̄⊥ = r⊥/R is the dimensionless radial position, ν is the Poisson ratio, D =[︁
3 (1 + ν) α β T0

]︁
/h is the thermal bending stiffness, and α is the thermal expansion co-

efficient.
In Figure 6.3 we show the longitudinal displacement in fraction of wavelength of a plate
subject to a parabolic temperature distribution. As expected, the maximum displace-
ment in the clamped case is significantly smaller than the simply supported because
of higher bending stiffness induced by the constraints. The mirror’s deformation is
influenced by the temperature gradient, the substrate material, and its geometric fea-
tures. For the geometric parameters assumed in Figure 6.3 and material properties in
Ref. [111], the peak-to-valley deformation is ∼ λ/20 for the simply supported case and
∼ λ/150 for the clamped case.

Time fluctuations of the environment temperature T0 or of the radial temperature gra-
dient induce variations in the wavefront distortion and are a source of bias instability.
Referring to the simply supported case, for r⊥ ≪ R the mirror deformation can be de-
scribed by a parabolic function w(r⊥) ≈ A − B r2

⊥, where A is a constant offset, and
B = D (m + 3 − ν)/ [2 (1 + ν) (m + 2)]. Assuming that the atomic motion in the trans-
verse plane is induced by thermal expansion, the interferometric phase is expressed
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as ∆Φ = keffB v2
0 T2. For a cloud-averaging sensor and assuming a Gaussian veloc-

ity distribution with variance σv, we obtain a bias on the acceleration signal given by
Ba = 2B σ2

v . As an example, we calculate the bias induced by the coupling between
wavefront distortion and the motion of an expanding cloud of 85Rb atoms with a ve-
locity distribution corresponding to a temperature of 5µK. Under the same conditions
as those in Figure 6.3, the bias instability is ∼ 1.6ng for environment temperature fluc-
tuations of 10%.

6.1.3.2 Structural vibrations

External stochastic inputs can induce structural vibrations in the optical mirror, lead-
ing to deformation of the reflective surface and distortion of the wavefronts. When
modelling the mirror as an isotropic circular plate subject to axisymmetric boundary
conditions, the longitudinal displacement is a linear combination of n mode shapes
[112]

w(r̄⊥, t) =
+∞

∑
n=0

An

ï
Jn(Λmnr̄⊥) − Jn(Λmn)

In(Λmn)
In(Λmnr̄⊥)

ò
cos (n θ) exp (i ω t) (6.16)

where Jn(. . .) and In(. . .) are, respectively, the Bessel and modified Bessel functions of
first kind, Λmn is the m-th dimensionless natural frequency associated to the n-th shape
mode. The constants An and θ are, respectively, the amplitude of the vibrational mode
and the nodal line angle and are uniquely determined once the external input is known
(forced vibration problem).
The dimensionless natural frequencies can be computed by solving an eigenvalue prob-
lem for the associated boundary condition. In particular the solution of the following
equation

J0(Λmn) I1(Λmn) + I0(Λmn) J1(Λmn) =
2 Λmn

1 − ν
J0(Λmn) I0(Λmn) , (6.17)

leads to the determination of the natural frequencies for the simply supported case. For
the clamped case the equation to be solved is given by

J0(Λmn) I1(Λmn) + I0(Λmn) J1(Λmn) = 0 . (6.18)

The relation between the natural frequency (ωmn) and the dimensionless natural fre-
quency is given by

ωmn = Λ2
mn

Å
h
R

ã2
 

E
12 (1 − ν2) ρ h2 (6.19)
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FIGURE 6.4: Vibration transfer function in fraction of wavelength (λ = 780nm) in-
duced by a white noise acceleration noise. Simulation parameters: Sa = (2mg/

√
Hz)2,

quality factor Q = 1/(2 ζ) = 106.

with E Young modulus and ρ density of the material.
Because the low-frequency mode shapes carries the higher energy content we limit
our analysis to the first axisymmetric mode shape (m = n = 0). Numerical solution of
Eq. (6.17) and (6.18) in the case of a fused silica plate with the same geometric properties
of Figure 6.3 leads to ω00 ≈ 2π × 33kHz for the simply supported case and ω00 ≈
2π × 72kHz for the clamped case.
The vibration response of the mirror can be described by a Lorentzian-like function
centred in the natural frequency with a width that depends on the structural damping

|Hvib(ω)|2 =
Sa

(2 ζmn ωmn ω)2 + (ω2 − ω2
mn)2 (6.20)

where Sa is the white power spectral density associated to the external acceleration
noise and ζmn is the structural damping of the m-th natural frequency associated to the
n-th mode shape.
In Figure 6.4, we display the vibration response of the optical mirror corresponding to
the first axisymmetric mode shape for both the simply supported and clamped cases.
Due to the high quality factor (Q = 1/(2 ζ)) of bulk fused silica [113], the frequency
response is nearly flat at low frequencies and exhibits a narrow peak at the resonant
frequency. Even with a relatively large acceleration noise of 2mg/

√
Hz, the maximum

sensitivity at resonance corresponds to a distorted wavefront with a peak-to-valley am-
plitude less than λ/100. As acceleration noise predominantly affects low frequencies,
we calculate the root mean square (rms) value of the amplitude for the simply sup-
ported case in the range 0 ≤ f ≤ 10kHz to be σA0 ≈ λ/4500. Therefore, wavefront
distortions induced by structural vibrations are negligible for the usual materials and
geometric parameters of optical mirrors used in atom interferometry applications.
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6.2 Bias phase

Wavefront distortions couple with atomic motion in the plane orthogonal to the Raman
beam propagation axis, giving rise to a position-dependent phase. This phase primar-
ily leads to bias. The actual bias on the CAI sensor signal depends on the adopted
detection scheme. Therefore, we will report the impact of wavefront distortions for
both cloud-averaging and PSI sensors.

6.2.1 Cloud-averaging sensor

In cloud-averaging detection a photodiode collects the fluorescence emitted by a cloud
of atoms. Hence, the interferometric signal is obtained operating an effective integra-
tion over the entire phase-space.
Although the finite size of both the Raman and detection beams acts as a spatial filter,
limiting the impact of atoms belonging to higher velocity classes upon the bias phase
[105], we develop a simple analytical model that assumes the atomic cloud has a size
much smaller than the Raman and detection beam waists. This provides a quick quan-
titative estimate of how the cloud parameters affect the bias phase.
We analyze the impact of different wavefront distortions modelling them with Zernike
polynomials [114]. Assuming a constant velocity motion in the transverse plane, for
a given aberrated phase, ϕ(r⊥), we first compute the space-dependent interferometric
phase, ∆Φ(r⊥), and then we average over the cloud distribution, f (r⊥), to obtain its
average value, ⟨∆Φ⟩ =

∫︁ +∞
−∞ f (r⊥) ∆Φ(r⊥) d2r⊥.

In Table 6.1 we report the results for different Zernike polynomials Zm
n , up to the fourth

order (n ≤ 4). For each transverse direction, we assume that that the atomic trajectories
are of the type x(t) = x0 + v0 t, where v0 is distributed as a Gaussian with zero mean
and standard deviation σv. We observe that:

• The defocus, corresponding to an axisymmetric distortion with a constant curva-
ture, gives rise to a bias that depends only on the expansion rate of the cloud.

• Low-order non-axisymmetric aberrations do not give rise to a bias in the case of
isotropic expansion (σv,x = σv,y).

• Coma induces a bias that depends on the initial atomic position. Indeed, this
type of aberration could be used to align the center of the atomic cloud with the
centroid of the Raman beam, as experimentally demonstrated by Trimeche et al.
[115].

• For high-order aberrations, the bias no longer depends on T2 but on a combina-
tion of factors, including the time at which the first pulse occurs t1, the initial
position (x0, y0), the maximum radial distance R, and the expansion rate.
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TABLE 6.1: Bias induced by distorted wavefronts on a cloud-averaging CAI sensor.
The distorted wavefronts are modelled with Zernike polynomials Zm

n . For the j-th
aberration of order n, the parameter αj = k0 aw f /Rn, where k0 = 2π/λ is the laser
nominal wave-vector, R is maximum radial distance and aw f is the peak-to-valley am-

plitude of the aberrations in units of λ.

Aberration type Distorted phase ϕ Bias phase ⟨∆Φ⟩

Astigmatism y (Z−2
2 ) αA (2 x y) 0

Defocus (Z0
2) αD

[︁
2 (x2 + y2) − R2]︁ 4 αD T2 (σ2

v,x + σ2
v,y)

Astigmatism x (Z+2
2 ) αA (y2 − x2) 2 αA T2 (σ2

v,y − σ2
v,x)

Trefoil y (Z−3
3 ) αT (3 x y2 − x3) 6 αT T2 x0 (σ2

v,y − σ2
v,x)

Coma y (Z−1
3 ) αC [−2 x R2 + 3 x (x2 + y2)] 6 αC T2 x0 (σ2

v,y + 3 σ2
v,x)

Coma x (Z−1
3 ) αC [−2 y R2 + 3 y (x2 + y2)] 6 αC T2 y0 (σ2

v,x + 3 σ2
v,y)

Trefoil x (Z−3
3 ) αT (y3 − 3 y x2) 6 αT T2 y0 (σ2

v,y − σ2
v,x)

Tetrafoil y (Z−4
4 ) α2T (−4 x3 y + 4 x y3) 24 α2T T2 x0 y0 (σ2

v,y − σ2
v,x)

2nd astigmatism y (Z−2
4 ) α2A

(︁
−6 x y R2 + 8 x3 y + 8 x y3)︁ 48 α2A T2 x0 y0 (σ2

v,x + σ2
v,y)

Primary sph. (Z0
4) αPS

[︁
R4 − 6 (x2 + y2)2 − 6 R2 (x2 + y2)

]︁
12 αPS T2APS

(1)

2nd astigmatism x (Z+2
4 ) α2A

[︁
3 R2 (x2 − y2) − 4 (x4 + y4)

]︁
6 α2A T2A2A

(2)

Tetrafoil x (Z+4
4 ) α2T (x4 − 6 x2 y2 + y4) 6 α2T T2 (σ2

v,y − σ2
v,x) A2T

(3)

(1) APS = 3 η (σ4
v,x + σ4

v,y) + 2 η σ2
v,x σ2

v,y + σ2
v,x (6 x2

0 + 2 y2
0 − R2) + σ2

v,y (2 x2
0 + 6 y2

0 − R2)
(2) A2A = 4 η (σ4

v,y − σ4
v,x) + σ2

v,y (8 y2
0 − R2) − σ2

v,x (8 x2
0 − R2)

(3) A2T = 2 (x2
0 − y2

0) + η (σ2
v,x − σ2

v,y)
(4) η = 6 t1 (t1 + 2 T) + 7 T2

6.2.2 Point source interferometry sensor

Point source interferometry (PSI) enables spatial mapping of atomic populations by
imaging them onto a CCD. Consequently, it is possible to reconstruct the transverse
space-dependent phase map by appropriately combining different images [116]. The
PSI scheme does not average atomic populations in the transverse plane; hence, the
reconstruction of the distorted wavefronts is unambiguous because each aberration has
unique spatial features.



6.2. Bias phase 111

Complication in evaluating the interferometric phase map due to the aberrated wave-
front is represented by the finite size of the initial atomic cloud. Following the semi-
classical model developed by Hoth et al. [44], the probability density function describ-
ing how the atomic population at the output port of the interferometer is distributed in
space is given by the convolution of the initial space distribution, n0(r⊥), with an ideal
point source, nPS(r⊥). Using the semi-classical model, we compute analytic expressions
of the interferometric phase map for different aberrations. First, we derive the atomic
population distribution at the detection evaluating the convolution integral

n(r⊥, ϕL) =n0(r⊥) ⊛ nPS(r⊥, ϕL) . . .

=N (r⊥, σ0) ⊛N (r⊥, σPS) [P0 + C/2 cos
(︁
∆Φ(r⊥) + ϕL

)︁
] ,

(6.21)

where N (r⊥, σ) denotes a Gaussian distribution with zero mean and standard deviation
σ, and σ0 and σPS are, respectively, the standard deviation of the initial cloud and of the
ideal expanded point source. The term ϕL is a constant arbitrary offset induced by
the laser system, while the term ∆Φ(r⊥) contains the space-dependent interferometric
phase due to an angular rate acting along the y direction and the aberrated wavefront.
Second, we obtain the PSI phase map by combining four signals [116]

ΦPSI(r⊥) = arctan
ï

n(r⊥, π/2) − n(r⊥, 3π/2)
n(r⊥, π) − n(r⊥, 0)

ò
. (6.22)

In order to have analytic expressions that are easy to interpret, we assume that the
phase induced by the distorted wavefront is much smaller than the angular-rate’s con-
tribution. We report the results in Table 6.2 by modeling the wavefront aberrations as
Zernike polynomials and limiting our analysis to the third order.
We observe that:

• Due to blurred position-velocity correlations resulting from the finite size of the
initial cloud, the actual local phase map gradient is less than that in the ideal point
source case. This generalization extends the result obtained by Hoth et al. for a
constant gradient [44].

• For the ideal point source case (σ0 = 0), the reported expressions reduce to the
interferometric phase ∆Φ(x, y) computed from the distorted wavefront ϕ(x, y).

• In general, distorted wavefronts induce non-linearity in the phase map. However,
we note that couplings between the initial size of the cloud and aberrations give
rise to errors in the acceleration (phase offset of the phase map) and rotational
signal (phase gradient of the phase map).

The coupling between initial size of the cloud and wavefront distortions induces two
types of errors: a bias and a scale-factor non-linearity.
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TABLE 6.2: Bias phase map induced by distorted wavefronts on a PSI CAI sensor.
The distorted wavefronts are modelled with Zernike polynomials Zm

n . For the j-th
aberration of order n, the parameter αj = k0 aw f /Rn, where k0 = 2π/λ is the laser
nominal wave-number, R is maximum radial distance and aw f is the peak-to-valley
amplitude of the aberrations in units of λ. The initial phase-space atomic distribution
is assumed to be Gaussian with widths σ0 and σv. At detection the size of the cloud is

σf =
»

σ2
0 + (σv Tex)2.

Aberration type Distorted phase ϕ Bias phase map ΦPSI(x, y)

Astigmatism y (Z−2
2 ) αA (2 x y) 4 AA F2 x y

Defocus (Z0
2) αD

[︁
2 (x2 + y2) − R2]︁ 4 AD F [2 σ2

0 + . . .
F (x2 + y2) + F k2

ω,x σ4
0 ]

Astigmatism x (Z+2
2 ) αA (y2 − x2)

2 AA F2 [k2
ω,x σ4

0 + . . .
(y2 − x2)]

Trefoil y (Z−3
3 ) αT (3 x y2 − x3)

6 AT η F3 [3 k2
ω,x σ4

0 x + . . .
x (3 y2 − x2)]

Coma y (Z−1
3 ) αC [−2 x R2 + 3 x (x2 + y2)]

18 AC η F2 [F x (x2 + y2) + . . .
4 σ2

0 x − 3 k2
ω,x F σ4

0 x]

Coma x (Z−1
3 ) αC [−2 y R2 + 3 y (x2 + y2)]

18 AC η F2 [F y (x2 + y2) + . . .
4 σ2

0 y − k2
ω,x F σ4

0 y]

Trefoil x (Z−3
3 ) αT (y3 − 3 y x2)

6 AT η F3 [3 k2
ω,x σ4

0 y + . . .
y (y2 − 3 x2)]

(1) F = 1 − σ2
0/σ2

f
(2) kω,x = 2 keff T2 ωy/Tex
(3) Aj = αj (T/Tex)2

(4) η = (t1 + T)/Tex

Figure 6.5 illustrates the bias introduced by defocus and coma aberrations on the ac-
celeration and rotation signals, respectively. As expected, the bias diminishes with an
increasing ratio between the sizes of the final and initial clouds, σ0/σf . This reduction
is attributed to the fact that, for longer expansion times, position-velocity correlations
build up, approaching the ideal point source case in the limit σf /σ0 → ∞. As σf /σ0

increases, requirements on the flatness of the wavefronts can be relaxed. For compact
sensors, where the expansion time is constrained by the dimensions of the vacuum
chamber (for example, Ref. [117]), the defocus-induced bias on the acceleration signal
can reach magnitudes on the order of tenths of ng. Conversely, the bias induced by
coma aberration on the rotation signal remains below 1deg/h for σ0/σf > 1.7.
It is interesting to note that long-term drifts of the cloud size are a source of bias insta-
bility. For instance applying propagation error we can estimate the bias instability for
both the acceleration
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∆ f =

⃓⃓⃓⃓
⃓16 AD σ2

0 F2

SFa

⃓⃓⃓⃓
⃓ ∆σ0

σ0
, (6.23)

and the rotation signal

∆ω =

⃓⃓⃓⃓
⃓144 AC η σ2

0 F2 [1 − 2 (σ0/σf )2]
SFg

⃓⃓⃓⃓
⃓ ∆σ0

σ0
, (6.24)

where the term SFa = keff T2 and SFg = 2 keff T2/Tex are, respectively, the acceleration
and rotation signal scale-factors.
We report in Figure 6.5 the impact of long-term drifts in the size of the atomic cloud
on the long-term stability of the PSI sensor. With a 1% fluctuation in the initial cloud
size, the bias instability on the acceleration signal remains below 1ng for σf /σ0 ≥ 2. On
the other hand, achieving a bias instability of less than 1mdeg/h in a strategic-grade
gyroscope necessitates high-quality optics with a wavefront flatness better than λ/50
and an high expansion time, characterized by a ratio σf /σ0 ≥ 4.

The coupling between the initial size of the cloud and wavefront distortions introduces
errors such as anisoinertia bias and scale-factor non-linearity. In Figure 6.5, we present
the results for different ratios of σf /σ0 and wavefront peak-to-valley amplitudes. To
maintain anisoinertia bias below 1ng/deg/s in the acceleration signal and scale-factor
non-linearity below 2ppm in the rotational signal, a ratio of σf /σ0 ≥ 3 and a wavefront
flatness better than λ/30 are required.

6.3 Coupling with vibrational motion

Wavefront distortions are a noise source when coupled with platform vibrations in both
the longitudinal and transverse direction with respect to the Raman beam axis.
For instance in the case of a Gaussian beam, longitudinal vibrations affect the interfer-
ometer signal via the Gouy phase. For a white noise vibration noise, the Allan variance
of the accelerometer signal is given by

AVARa(τc) =
4 S2

a
τc

1
z2

R k2
eff

Å
2
3

Tc

T
− 1
ã

(6.25)

where τc is the cluster time, Tc is the cycling time, and S0
a is the linear vibration power

spectral density. Even in harsh environments characterized by an acceleration noise of
1mg/

√
Hz, the short-term sensitivity of the sensor is ∼ 0.007ng/

√
Hz for a beam waist

of 0.5mm, a cycling frequency of 1Hz and a free evolution time of T = 10ms. Therefore,
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FIGURE 6.5: Errors induced by defocus and coma aberrations on PSI sensor. Upper
panel: bias (panel (a)), bias instability (panel(b)) and anisoinertia bias (panel (c)) of the
acceleration signal. Lower panel: bias (panel (d)), bias instability (panel(e)) and scale-
factor non-linearity (panel (f)) of the rotational signal. The calculations have been

performed for fixed free-evolution time.

we can conclude that wavefront distortions in a Gaussian beam have a negligible effect
on interferometer performance when coupled with longitudinal vibrations.

The coupling of transverse vibrations with wavefront distortions depends on the aber-
ration type. For a quadratic aberration, such as defocus, the phase noise imparted by
the laser to the atomic wavefunction is given by

δϕ(t) ≈ 2 αD [2 r⊥(t) δr⊥(t)] , (6.26)

where r⊥(t) represents the mean motion of a mono-kinetic atom in the transverse plane
and we neglect high-order terms of the vibration-induced displacements δr⊥(t). As-
suming a uniform motion and infinitesimal pulses we obtain the vibration-induced
interferometric phase

∆Φ =4 αD {r0 [δ r⊥(0) − 2 δ r⊥(T) + δ r⊥(2 T)] + . . .

(2 v0 T) [δr⊥(2 T) − δr⊥(T)]} ,
(6.27)

where t = 0 coincides with the time at which the first pulse occurs.
In Eq. (6.27), we observe a first term dependent on the initial atomic position, which
affects the acceleration signal, and another term dependent on the initial velocity, affect-
ing the rotational signal. The mathematical form of the position and velocity-dependent
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terms resembles, respectively, the phase and Coriolis sensitivity functions in the limit
of infinitesimal pulses. Therefore, we can apply the sensitivity function formalism to
compute the Allan variance

AVAR∆Φ(τc) =
S0

a⊥ (4 αD T2)2

2 τc

ï
r2

0

Å
2
3

Tc

T
− 1
ã
+ . . .

(6 v0 T)2
Å

16
27

Tc

T
− 1
ãò

,
(6.28)

where S0
a⊥ is the power spectral density of the white noise transverse acceleration. As

expected, the longer the free-evolution time, the higher the noise induced by the trans-
verse vibrations.
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Chapter 7

Point-source interferometry

Cold-atom inertial (CAI) sensors based on point-source interferometry (PSI) exploit
the imaging of atomic population’s spatial distribution to infer angular rates and spe-
cific forces. Firstly demonstrated experimentally at Stanford within Kasevich’s group,
PSI was essentially developed as a detection technique allowing for multi-axial inertial
sensing with a single magneto-optic trap (MOT) [40].

The use of a single MOT and a charge-coupled device (CCD) greatly simplifies the sen-
sor architecture compared to dual-atom interferometers. In dual-atom interferometers,
two atomic clouds are launched in a counter-propagating arrangement to discriminate
the inertial phase shift induced by specific force from the phase shift induced by an-
gular rate. PSI leverages position-velocity correlations within an expanding atomic
cloud to deduce angular rates. Unlike specific forces that result in a phase offset, angu-
lar rates introduce a spatially varying phase that modulates the atomic populations in
the plane transverse to the Raman beam. Consequently, PSI enables the simultaneous
measurement of two angular rates in the plane orthogonal to the Raman beam and one
acceleration along the Raman beam axis.

Rotations of the Raman beam with respect to atomic trajectories imprint a phase on
the wavefunction that linearly depends on the initial velocity. Therefore, this results in
a linear phase variation across the imaged atomic population with a gradient propor-
tional to the applied angular rate. The measurement of a spatial gradient, as opposed
to a phase shift as in cloud-averaging sensors, presents three main advantages: first,
it circumvents the phase ambiguity problem, effectively extending the dynamic range;
second, by combining multiple images and scanning the phase offset, it becomes pos-
sible to determine the sign of the applied angular rate; third, the interference fringes
align with the direction of the applied angular rate, offering the potential for gyrocom-
passing operations.
Moreover, PSI enables the measurement of high-order phase distributions induced by
wavefront distortions, thus facilitating bias calibration in cloud-averaging CAI sensors.
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Given the evident advantages that PSI offers, this chapter investigates some of the error
sources with a specific focus on contrast decay mechanisms, scale-factor, and read-out
errors affecting the rotational signal. First, when coupled with a rotation, the initial
atomic distribution has a significant impact on PSI gyroscope contrast and scale-factor
error, as the phase distribution truly depends on the dynamics of the wavefunction
in phase-space. Second, the estimation of the rotation-induced phase gradient is not
a trivial problem, especially in the partial-fringe regime characterized by low angular
rates or in the presence of low signal-to-noise ratio (SNR). Third, the use of PSI sensor
for inertial navigation application requires the stabilization of its scale-factor, therefore
attention should be paied to this fundamental aspect.

The structure of the chapter is organized as follows:

1. We analyze the impact of the initial atomic distribution on the contrast decay and
scale-factor error. First, we explain the underlying physical mechanism using a
phase-space evolution model based on the Wigner function formalism. Second,
we analyze quantitatively the impact of system parameters on PSI performance.

2. We present a read-out protocol based on extended Kalman filter for the estimation
of the interferometric phase map from PSI images, analyze the impact of SNR and
wavefront aberrations on the estimated phase gradient.

3. We present a compensation protocol for stabilizing the PSI rotational scale factor,
which involves data-fusion with a classical inertial sensor. The protocol, based
on Kalman filtering, can be applied in real-time and estimates the PSI rotational
scale-factor tracking eventual drifts.

7.1 Effect of the initial atomic distribution

The initial atomic phase-space distribution plays a crucial role in the reduction of SNR
and introduces errors in the sensor’s scale-factor. Hoth et al. developed a semi-classical
model based on the assumption that atomic distributions can be described by classi-
cal probability density functions. The initial atomic spatial distribution, characterized
by a probability density function n0(r), expands due to thermal motion and interacts
with the laser diffraction gratings. At detection, a single atom will end up in a posi-
tion r + rPS, where rPS denotes the atomic displacement caused by thermal expansion.
Therefore, the probability density function describing the final atomic distribution is
given by the convolution of the initial cloud with the expanded one 1. For an initial

1We recall the following classical result of probability theory: given two probability density functions,
f (x) and g(y), the probability density function describing the sum of the two random variables, h(x + y),
is obtained by convoluting f (x) with g(y), i.e., h(x + y) = f (x) ⊛ g(y).
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Gaussian phase-space distribution, the convolution integral has an analytic solution,
and the final atomic distribution is given by [44]

n(r⊥) = N (r⊥, σf )
î
P0 + (C0/2) exp (− σ2

0 k2
ω F/2) cos (F kω · r⊥ + ∆Φoff)

ó
(7.1)

where N (. . .) is a normal distribution with standard deviation σf =
»

σ2
0 + σ2

PS, σ0 is
the standard deviation of the initial space distribution, σPS = σv Tex is the standard
deviation of the expanded cloud due to thermal motion (i.e., the ideal point source), P0

is the fringe offset, and C0 is the contrast in absence of angular rate. The term kω is the
spatial phase gradient induced by an angular rate in the case of ideal point source, F
is the scale-factor term that accounts for scale-factor dependency on the initial size of
the atomic cloud and ∆Φoff is the phase offset (e.g., acceleration-induced phase, laser
phase etc.).
The rotation-induced phase gradient can be generalized to the time-varying case using
the Coriolis sensitivity function

kω =
1

Tex

∫︂ +∞

−∞
−w(t)

Ä
kb × ωb

ib(t)
ä

dt , (7.2)

and for infinitesimal pulses we get

kω = −2 T
Tex

Ä
kb × ∆ψb

ib

ä
(7.3)

where Tex is the total expansion time, and ∆ψb
ib =

∫︁ 2 T
T ωb

ib(t) dt is the integrated angular
rate.
Eq. (7.3) has a strong physical interpretation: what a PSI gyroscope really measures is
not an angular rate, but the integrated angular rate, i.e., the so-called ‘delta-theta’. We
observe that in the case of a constant angular rate we recover the well-known expres-
sion for the phase gradient kω = −2 (T2/Tex) kb × ωb

ib.

7.1.1 Scale-factor error

The first effect of the initial space distribution is related to deviations of the rotational
scale-factor from the ideal point source case. For a Gaussian distribution the scale-
factor correction factor is given by

F = 1 −
Ç

σ0

σf

å2

. (7.4)
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(A) σ0 = 0.1mm (B) σ0 = 0.5mm

FIGURE 7.1: Simulated phase-space distribution of the upper ground state population
of 85Rb at the output port of a Mach-Zehnder interferometer for different initial cloud
sizes. The dashed green line, p/m = x/Tex, indicates the ideal point source limit.
Simulation parameters: initial Gaussian distribution, Tex = 20ms, T = 10µK, ω =

2deg/s.

We observe that for σ0 = 0, the correction factor is unitary and we recover the point
source phase gradient.
The physical origin of the scale-factor variation due to the finite size of the initial cloud
can be understood by examining the atomic population distribution in phase-space.
The time-evolution of the atomic phase-space distribution has been modelled using
Wigner function formalism (for more details refer to Appendix B).
Figure 7.1 shows the phase-space distributions of the upper ground state of 85Rb at the
output port of a Mach-Zehnder interferometer in the presence of an angular rate and for
two initial cloud dimensions. In the simulation we assume that the initial initial atomic
cloud has a Gaussian phase-space distribution with a position standard deviation σ0

and a momentum standard deviation σp =
√

kB T m. In both cases, we observe inter-
ference fringes due to the action of an external angular rate. The finite size of the initial
cloud blurs the momentum-position correlations, as illustrated by the ‘blobs’ around
the ideal point source limit, here represented by a dashed green line. For a fixed expan-
sion time, the smaller the initial cloud size, the more the blobs appear to stretch along
the point source limit line, and, therefore, the more the momentum-position correla-
tions build up. Since the PSI signal is obtained by marginalizing the phase-space distri-
bution along momentum space, blurred momentum-position correlations translate, for
a given position, into interference among different velocity classes. This interference
modifies the modulation of the PSI signal in real space and, therefore, the spatial phase
gradient. From this point of view, the factor F represents a sort of correlation factor.
While in the point source limit, momentum and position are perfectly correlated and
F = 1, in the case of a finite initial size, these correlations are not perfect, and F ≤ 1.
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Long-term drifts of the initial cloud size or of the expansion rate are sources of scale-
factor instability for the PSI gyroscope. Applying error propagation to Eq. (7.4) we
obtain

∆F
F

=

Ç
σ0

σf

å2 
4
Å

∆σ0

σ0

ã2
+

Å
∆T
T

ã2
, (7.5)

that implies fluctuations of the initial cloud size and temperature at ppm levels to guar-
antee scale-factor instability of the same order of magnitude. Achieving such a level of
control over the dimensions of the initial cloud is extremely challenging experimen-
tally; therefore, scale-factor instability represents a major issue for a PSI gyroscope.

Eq. (7.4) is valid only in the case the initial space distribution is Gaussian. For a general
distribution the correction factor F could be modified as follows

F = 1 −
Ç

σ0

σf

åµ

(7.6)

where the free parameters µ depends on the actual initial distribution. As an example,
we study the effect of the initial cloud shape, modelling it as a generalized Gaussian
distribution [118]

n0(r⊥) =
β

2(β+1)/β σ0 Γ(1/β)
exp

Ç
−0.5

⃓⃓⃓⃓
r⊥
σ0

⃓⃓⃓⃓βå
(7.7)

with β shape factor, and Γ(. . .) is the Gamma function. Note that the standard Gaussian
distribution correspond to the case β = 2.
For different values of β, we numerically evaluate the time evolution of the atomic dis-
tribution and extract the parameter F for various ratios of σf /σ0. Fitting the numerical
results with Eq. (7.6) enables the extraction of the parameter µ, as presented in Table
7.1. For a fixed initial width σ0, an initial distribution with higher tail values (e.g.,
β < 2) is characterized by greater scale-factor deviations from the ideal point source
case. This is intuitive as, in the frequency domain, the distribution has a lower cut-off
frequency, thereby modifying the Fourier transform of the ideal point source at angular
frequencies k⊥ = ±kω more significantly 2.

Nevertheless, in the high-expansion regime (σf ≫ σ0), the scale factor tends toward the
point source limit, i.e., F → 1. An increase in the expansion time leads to the rotation
and ‘stretching’ of the atomic distribution in phase-space. This stretching reduces the
spread in momentum for a given position and, consequently, diminishes the interfer-
ence of different velocity classes responsible for the scale-factor error.

2The Fourier transform of the ideal point source is characterized by three peaks: one at zero frequency
and the other two at k⊥ = ±kω .
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TABLE 7.1: Effect of the shape parameter, β, on the scale-factor error and contrast of
the PSI gyroscope. The scale-factor correction factor is modelled as F = 1 − (σ0/σf )µ.

The contrast decay is modelled as exp (− σ̄2
0 k2

ω F/2), with σ̄0 = ν σ0.

Shape parameter β S.F. parameter µ Contrast parameter ν

1.6 1.73 1.18
2 2 1

2.4 2.20 0.89

(A) Scale-factor variation (B) Contrast variation

FIGURE 7.2: Effect of the shape of the initial space distribution on the scale-factor and
contrast of a PSI gyroscope. We model the initial cloud as a generalized Gaussian
distribution described by the parameter β. The inset shows the correspondent space
distributions of the initial cloud for a fixed σ0. The dashed black lines indicate the

point source limit. Simulation parameters: ω = 1deg/s.

7.1.2 Contrast decay

The second effect related to the finite size of the initial cloud is the contrast decay in
the presence of an external angular rate. Referring again to Figure 7.1, we observe that
a higher value of the initial cloud size leads to blurred position-momentum correla-
tions. Therefore, averaging over different velocity classes results in a wash-out of the
rotation-induced fringes in real space. On the contrary, in the point source limit, posi-
tion and momentum are perfectly correlated or, in other words, there is a one-to-one
correspondence between position and momentum. Hence, for each position, there is
only the contribution carried by a single velocity class, and no wash-out of the interfer-
ence fringes occurs.

In order to take into account the effect of the shape of the initial cloud we model the
contrast decay as

C = C0 exp (− k2
ω σ̄2

0 F/2) (7.8)
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(A) Tex = 2 T (B) Tex = 5 T

FIGURE 7.3: Simulated phase-space distributions in high-expansion regime. The
dashed green line, p/m = x/Tex, indicates the ideal point source limit. Simulation
parameters: initial Gaussian distribution with σ0 = 0.5mm, Tex = 100ms, T = 10µK,

ω = 2deg/s.

where the scale-factor correction parameter F is given by Eq. (7.6), and σ̄0 = ν σ0 is the
initial size of an effective Gaussian distribution.
Modeling the initial cloud as a generalized Gaussian distribution, we determine the
free parameter ν by fitting the results of the numerical simulation with Eq. (7.8). The
retrieved values of ν are reported in Table 7.1. As expected, a distribution characterized
by higher tail values compared to the Gaussian distribution behaves like a Gaussian
distribution with an equivalent larger initial size.

In the case of contrast, what happens in the high-expansion regime is not trivial, and it
depends on how the cloud expansion is achieved. Figure 7.3 illustrates two scenarios
where the high-expansion regime is attained by either increasing or keeping constant
the free-evolution time, respectively. In the first case, the term F → 1, but the rotation-
induced wave-vector |kω| → ∞, leading to contrast decay. Physically, the longer the
free-evolution time, the greater the modulation of the distribution in momentum. This
high-frequency modulation results in a rapid wash-out of the fringes when the phase-
space distribution is marginalized. In the second case, an increase in the expansion
time while keeping the free-evolution time constant leads to F → 1 and |kω| → 0. Con-
sequently, C → C0, recovering the point source limit case. Physically, this is because,
for a fixed free-evolution time, the cloud expansion induces rotation and stretching of
the atomic distribution in phase-space, thereby reducing the spread in the momentum
direction for a given position. This reduction results in less interference between dif-
ferent velocity classes and less fringes wash-out when averaging over the momentum
distribution.
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7.2 Additional error sources

7.2.1 Spatial scale-factor variation

In Chapter 4, we discussed how the sensor scale-factor is influenced by the Rabi fre-
quency encountered by the atoms. In the presence of laser spatial inhomogeneity,
atoms undergo varying intensity levels, resulting in a spatial variation of the scale-
factor.
We compute the scale-factor error for the point source case, assuming a Gaussian in-
tensity profile, and that the distance traveled by the atoms during the interferometric
sequence is much smaller than the Raman beam waist. To the first order in τ/T, the
scale-factor error is given by

Fϵ(r⊥) ≈
ñÅ

−2 +
4
π

ãÅ
r⊥
wL

ã2
+

Å
−2 + π +

4
π

ãÅ
r⊥
wL

ã4ô τ

T
. (7.9)

For instance, assuming a laser beam waist of wL = 1 cm, τ/T = 0.1%, and Tex = 2 T,
the scale factor varies at most by 45 ppm over a radius of 3 mm. We observe that, for
a given free-evolution time, the spatial scale-factor error can be reduced by increasing
the expansion time.

7.2.2 Contrast decay due to imperfect wavepacket overlap

The rotation of the Raman beam during the pulse sequence determines a variation in
the momentum kick imparted to the center of mass of the atomic wavepackets travel-
ing along the upper and lower arm of the interferometer. As a consequence, the centers
of mass at the time of the final pulse are not perfectly overlapped in phase-space, re-
sulting in contrast decay.
For a Gaussian wavepacket, the contrast decay due to the imperfect wavepacket over-
lap is given by [43]

C = exp
ï
− 1

4 h̄2 ∆RT Σp ∆R
ò

(7.10)

where ∆R is the centre of mass’ space displacements at the time of the final pulse, and
Σp = diag(σ2

p,x, σ2
p,y, σ2

p,z) is the momentum covariance matrix associated to the atomic
wavepacket. The quantity h̄/σp,i has the units of a length and represents the extension
of the wavepacket.
The space displacement can be obtained solving the classical equations of motion of
the centres of mass traveling along the upper and lower arm of the interferometer. For
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a constant angular rate, we compute the space displacement at the final pulse up to the
third order in T

∆r ≈ 2 T2 ωb
ib × vr − 3T3

Ä
ωb

ib × ωb
ib × vr

ä
, (7.11)

Equation (7.11) generalizes the result reported in Ref. [42] and highlights that only to
the first order in ωb

ib, the contrast decay is determined by angular rates orthogonal to the
recoil velocity direction. However, for T < 10 ms, the T3 term is less than 0.02%/deg/s
of the T2 term, and therefore, negligible for a first approximation analysis.
Neglecting the T3 term in Eq.(7.11) we obtain

C = exp
Ä
−|kω|2 σ̄2

PS/4
ä

. (7.12)

where σ̄PS = σ̄v Tex is the size of an equivalent point-source characterized by a velocity
width σ̄v. We remark that the quantity σ̄v is not necessarily equal to the initial atomic
velocity width. Therefore, it is not proportional to the temperature of the atomic en-
semble. Instead, it depends on the velocity selection process operated by the Raman
diffraction on the atomic ensemble. Hence, σ̄v coincides with the wavepacket’s veloc-
ity width at the output port of the interferometer and is a function of both the initial
velocity distribution and the efficiency of the Raman pulses. The velocity selection re-
duces the wavepacket’s momentum width ensuring a higher de Broglie wavelength,
and, hence, a better overlap with less contrast decay [43].

The contrast loss de facto determines the upper bound of the maximum angular rate
detectable by a PSI gyroscope. Assuming that the upper bound of the sensor dynamic
range is equivalent to the angular rate that induces a 90% contrast decay compared to
the case with zero angular rate, we obtain, for a Gaussian wavepacket,

|kω, max| =
 

2 ln (10)
σ2

0 F + σ̄2
PS/2

. (7.13)

Figure 7.4 shows the ratio, η, between the maximum angular rate due to the initial
cloud size and the imperfect wavepacket overlap as a function of the free-evolution
time, T, and the time-of-flight, Td = Tex − 2T. The initial size of the cloud limits the
PSI dynamic range at low-expansion regimes in agreement with the experimental re-
sults in Ref. [44]. With an increase in the free-evolution time or time-of-flight, imper-
fect wavepacket overlap becomes the dominant limiting effect. In any case, the free-
evolution time is the primary limiting factor for the dynamic range of a PSI gyroscope.
For instance, assuming a temperature T = 5µK, a free-evolution time less than 10ms
is required to detect angular rates higher than 2deg/s. Therefore, a sensor operating in
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FIGURE 7.4: Ratio, η, between the maximum angular rate due to the initial cloud size
and the maximum angular rate due to the imperfect wavepacket overlap as function of
the free-evolution time and the flight-of-time after the interferometer pulse sequence.
The inset shows the maximum angular rate as function of the free-evolution time for
the case Td = 1ms. We neglect the Raman velocity selectivity. Simulation parameters:

temperature T = 5µK, initial size σ0 = 0.5mm.

a closed-loop configuration would be necessary to overcome contrast loss due to high
angular rates.

7.2.3 High-order phase shifts

Eq.(7.3) is obtained neglecting the higher-order terms in the variable ωb
ib. A solution

of the classical equation of motion in the rotating frame can be obtained in terms of a
power series rb

ba(t) = ∑∞
n=0 an tn, where the coefficients an can be computed via recur-

sive substitution starting from known initial conditions rb
ba(0) = ℓb, and ṙb

ba(0) = vb
0. For

constant specific force and angular rate, the relative atomic trajectory, up to the third
order in t, is given by
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(7.14)

where we indicated the vector product by means of the skew-symmetric matrix Ωb
ib.

Assuming infinitesimal resonant pulses we obtain the following interferometric phase
shift
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Therefore, the rotational signal of a PSI sensor is affected by a bias

∆kω =
3 T3

Tex
kb × ωb

ib × ωb
ib (7.16)

This error source represents a cross-coupling between angular rates in the longitudinal
and transverse direction to the Raman effective wave-vector. Assuming angular rates
with a magnitude of 1deg/s and a free-evolution time of 10ms, we obtain a bias of
0.94deg/h per axis.

In presence of angular accelerations, the derivative of the attitude angle is not equal
to the angular rate but is described by the so-called Bortz equation. To second order
accuracy, the Bortz equation can be approximated as [119]

ψ̇
b
ib ≈ ωb

ib +
1
2

αb
ib × ωb

ib , (7.17)

with αb
ib =

∫︁ t
−∞ ωb

ib(t′) dt′. The second term on the right hand side represents the
so-called ‘coning’ correction and accounts for non-commutativity of rotations due to
change in the direction of the vector ψb

ib during the interferometer pulse sequence. As-
suming a linearly varying angular rate, we compute the bias of the PSI gyro

∆kω = −2 T2

Tex
kb ×

ñ
3 T
2

ω̇b
ib +

7 T2

12

Ä
ωb

ib,0 × ω̇b
ib

äô
, (7.18)

where the first term on the right-hand side is due to the angular acceleration and the
second term represents the coning correction. For instance an angular rate of 1deg/s,
with a free-evolution time 10ms and an angular acceleration of 0.1deg/s2 gives rise to
an acceleration-induced bias of 5.4deg/h and a coning error of 0.4deg/h.

7.3 Read-out protocol

An angular rate orthogonal to the Raman beam propagation axis induces a spatial mod-
ulation of atomic populations, with a frequency proportional to the applied rotation.
Retrieving the spatial frequency by fitting a signal, as described by Eq. (7.1), to the
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atomic distribution is critical, especially in cases of low angular rates that result in less
than one fringe.
Several techniques have been developed to extract information in the low angular rate
regime. For instance, Sugarbaker et al. applied a large bias rotation to the Raman
retro-reflecting mirror to induce multiple fringes across the cloud [120] and retrieve
the unknown angular rate by parametric fitting. Chen et al. used principal component
analysis on multiple interferograms to reconstruct the spatial modulation [117]. NIST
developed a method, called ‘Simple, High dynamic range, and Efficient Extraction of
Phase map’ (SHEEP), in which four interferograms in quadrature were combined to
reconstruct the interferometer phase map [116].
The SHEEP method has demonstrated superior capabilities with respect to principal
component analysis in the low angular rate regime and requires a significantly lower
number of interferograms. However, it is based on the inverse tangent function, arctan,
which is periodic in the interval (−π, π] and requires additional unwrapping, noise fil-
tering, and phase-stitching operations [121].
Therefore, we propose a read-out protocol based on an extended Kalman filter (EKF),
that estimates the phase map using as measurements four interferograms in quadrature
and avoiding the use of the arctan function. The application of Kalman-based filters to
phase unwrapping is not new and has been previously proposed in several fields such
as digital holography and synthetic aperture radar applications [122, 123, 124].

7.3.1 Filter mathematical model

The EKF algorithm is based on two equations. A state-space model that estimates the
desired state and a measurement model that links the actual observation and the de-
sired state.
We write the state-space equation as

xk = A xk−1 + ηk−1 , (7.19)

with xk state vector evaluated at the k-th pixel location, and A the state transition ma-
trix, given by

xk =
Ä
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, (7.20a)
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where we denote Φ(j) as the j-th derivative of the phase distribution, and s as the square
of the final atomic distribution width σf . We assume that the phase map is described by
a second order polynomial in the generic direction ξ, however, in the case of high phase
variations, we can extend the model including more terms in the Taylor expansion. The
term η is the stochastic part of the state-space model and is assumed to be Gaussian
with covariance matrix Q.
The measurement model is given by

zk = h(xk) + νk , (7.21)

with zk the observations vector

zk = (IS IC s)T =
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ãT
. (7.22)

As usual the notation n(r⊥, ϕL) indicates the atomic distribution in the plane orthogonal
to the Raman propagation axis with a laser phase offset ϕL. The stochastic term ν is
assumed to be Gaussian with covariance matrix R.
The function h(. . .) is non linear as we assume that the observations are linked to the
state vector parameters via Eq. (7.1). Therefore we need to linearize the measurement
model computing at each estimation step the Jacobian

Hk =
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2πsk
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⎤⎥⎥⎥⎦ , (7.23)

with G(s) = exp [−r2
⊥/(2 s)].

7.3.2 Implementation

Beginning with an initial condition, the filter estimates, pixel-by-pixel, the size of the
final cloud, the contrast, the interferometric phase, its gradient, and curvature. We
assume as initial condition

x0 =
Ä

σ2
0 C0 arctan (IS/IC) 0 0

äT
(7.24)

with σ0 size of the initial atomic cloud and C0 = 0.5.
At each step the filter uses the measurement model to correct the a priori estimation
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FIGURE 7.5: Path-following strategy implemented in the EKF for the phase map esti-
mation.

given by the state-space model. The correction depends on the covariance matrix asso-
ciated to the estimation uncertainty, that is propagated as

Pk = A Pk−1 AT + Q , (7.25)

and on the covariance matrix associated to the measurement noise R. For an assigned
measurement noise, the quantities P0 and Q can be tuned to guarantee optimal con-
vergence of the filter. We found that the most critical parameter is the driving noise
of the state-space model, chosen to be a diagonal matrix Q = diag[σ2

s σ2
C 0 σ2

Φ(1) σ2
Φ(2)].

This choice results from assuming that the state vector terms are independent stochas-
tic variables. Moreover, setting σΦ = 0 allows for optimal tracking of a varying phase
without lag errors.

Once the quantity Φ is estimated for all the pixels, we determine the phase gradient and
phase curvature by fitting a second-order surface to the estimated phase map, instead
of relying on the output of the filter. This approach ensures robustness, as the filter’s
measurement model is directly dependent on the phase and not on the gradient and
curvature.

As the filter estimates the phase map pixel-by-pixel in a cascade sequential mode, cru-
cial aspects are represented by both the initial pixel and the path-following strategy.
In order to not add further complexity to the algorithm we implement a double path-
following strategy as shown in Figure 7.5.
We found better results in the phase gradient estimation when running the filter along
a ‘serpentine’ path that propagates in the direction orthogonal to the intended gradi-
ent to be estimated. Therefore, to estimate the horizontal (vertical) phase gradient we
adopt a serpentine path that advances column-by-column (row-by-row). This because
the starting point of each serpentine leg is characterized by the lowest SNR and, then,
the worst estimation.
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7.3.3 Simulation results

We run the EKF filter over a set of PSI images, adding pixel and shot-to-shot phase
noise. The pixel noise depends on the detection process and technical sources, such as
the CCD. The shot-to-shot phase noise depends, for instance, on laser phase noise in the
RF chain or linear vibrations. Moreover, we add non-linearities in the nominal phase
map in the form of second order wavefront distortions of the type ΦWF = αxx x2 +

αyy y2 + αxy x y.

Figure 7.6 shows an example of simulated measurements, IS and IC, and the Extended
Kalman Filter (EKF) phase estimate, assuming an input angular rate of 1deg/s directed
along the vertical direction. For comparison, we show the phase map computed via the
arctan function. The EKF filters out the noise and outputs a continuous, unwrapped
phase map. We observe that the estimated phase map differs from the true map by
an offset; this is because the phase at the initial pixel is estimated using the arctan
function. Nevertheless, the algorithm effectively tracks the phase gradient with a final
error of 350ppm. The residuals between the estimated and true phase maps reveal a
periodic structure that is attributed to the shot-to-shot phase noise, in agreement with
experimental results reported in Ref. [116].

Assuming a shot-to-shot phase variation, we can compute, in the hypothesis of small
perturbations, the PSI phase map at the j-th image

Φj ≈ ϕω + cos (2 ϕω)
δφj + δφj−2

2
(7.26)

where ϕω is the rotation induced phase, and δφj = φj − φj−1. Here, the quantity ϕj de-
notes the difference between the actual offset phase and the intended laser offset phase,
ϕL, at the j-th image. The shot-to-shot phase variation, δφ, introduces an error in the
PSI phase map, which contains a sinusoidal term with a spatial frequency twice that
of the rotation-induced term and an amplitude that depends on the phase noise. For
the parameters assumed in Figure 7.6, the input angular rate corresponds to a phase
gradient of kω ∼ 1.4rad/mm. According to the simple model of Eq. (7.26), in pres-
ence of phase noise, the phase gradient induces a modulation of wavelength ∼ 2.2mm,
consistent with the residuals shown in Figure 7.6.

Phase noise significantly impacts the performance of the EKF scheme. To assess the
filter’s performance, we conducted a Monte Carlo simulation, considering atom shot
noise and phase noise as noise sources. The phase noise is assumed to follow a Gaus-
sian distribution with a standard deviation of σϕ. Additionally, we introduced second-
order phase distortions corresponding to a peak-to-valley amplitude of λ/10 over a
circle with a radius of 1 cm.
Figure 7.7 presents the simulation results in terms of scale-factor error as a function of
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FIGURE 7.6: Noisy simulated PSI interferograms and EKF estimation. Panel (a): IS
signal. Panel (b): IC signal. Panel (c): phase map estimated with the arctan function.
Panel (d): phase map estimated by the EKF. Panel (e): true phase map. Panel (f):
residuals between the estimated phase map and the true phase map, subtracted by a
constant phase offset. Simulation parameters: pixel dimension 20µm,input angular

rate ω = 1deg/s, shot-to-shot phase noise σϕ = 100mrad.

the input angular rate. We observe that the scale-factor error remains nearly indepen-
dent of the angular rate value for ω < 0.3 deg/s and decreases rapidly as the magni-
tude of the angular rate increases. This behavior is expected, as the state observability
is enhanced with higher rotational-induced phase.
At low angular rates, the EKF tracking error is significantly affected by the phase noise.
This is due to the fact that we used the same filter tuning parameters for all three differ-
ent σϕ values considered. In real-world applications, the filter should be tuned based
on the appropriate sensor characteristics, or it could be tuned in an adaptive fashion to
account for variations in measurement noise during operating conditions [3].
The major source of phase noise is represented by linear vibrations in the Raman wave-
vector direction, and its impact increases with the free-evolution time. A possible solu-
tion to limit the impact of linear vibrations is to employ a scheme in which a classical
accelerometer is used to estimate the vibration-induced phase at each shot in a similar
fashion as done in cloud-averaging sensors [31].

Further improvements in phase map estimation could be achieved by using more ad-
vanced Kalman filtering algorithms, such as the unscented Kalman filter or particle
filter, which can remove possible errors introduced by the linearization of the mea-
surement model and non-Gaussian noise. Additionally, machine learning represents
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FIGURE 7.7: Performance of the EKF is evaluated in terms of scale-factor error for
various input angular rates and phase noise. We assume that the angular rate vector
forms an angle of θ = 20 deg with respect to the vertical axis. The shaded area repre-
sents the 1-σ bound, while the thick line denotes the average value over 50 samples.
Simulation parameters: pixel dimension 12µm, atom-shot noise corresponding to 106

atoms, quadratic phase distortion with a peak-to-valley amplitude of λ/10 over a 1 cm
circle, shot-to-shot phase noise.

another obvious alternative, particularly suitable when high non-linearities and low
signal-to-noise ratios prevent an accurate estimation of the interferometric phase map.

7.4 PSI scale-factor instability compensation

The long-term drift of the initial phase-space atomic distribution is the primary cause
of scale-factor instability in the PSI rotational signal.
Avinadav et al. proposed two techniques to stabilize the PSI scale-factor [14]. The first
is a contrast-based method relying on the analytical model expressed by Eq. (7.1). This
method utilizes the zero-rotation contrast and the effective size of the detected atomic
cloud as calibration parameters. The second method, independent of any assumed
model, involves applying an additional known rotation to calibrate the scale factor,
albeit at the cost of halving the sensor sampling frequency.

Following the approach of modeling-independent calibration, we develop a scale-factor
error compensation scheme based on data-fusion between a PSI sensor and a conven-
tional gyroscope (CG). A Kalman filter (KF) protocol is employed to track the PSI scale-
factor in real-time by exploiting two consecutive measurements. We anticipate that the
halving of the PSI sampling frequency does not pose a problem since the PSI is treated
as an aiding sensor that stabilizes the bias drift of the CG in a similar manner to what
has been proposed for cold-atom accelerometers [31].
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7.4.1 Filter mathematical model and implementation

The state vector and the state transition matrix are given, respectively by

xj =
Ä

FPSI
j ḞPSI

j

äT
, (7.27a)

A =

[︄
1 ∆t
0 1

]︄
, (7.27b)

where FPSI
j and ḞPSI

j are respectively the PSI scale-factor and its first derivative at the
j-th time instant, and ∆t is the duration of the filter update step. As usual, we assume
that the state vector is a random variable whose stochastic part is determined by the
covariance matrix Q.
The measurement model is given by

zj = FPSI
j , (7.28)

Therefore, at each time-step the filter estimates the state vector using the PSI scale-
factor as a measurement.
The compensation schemes through which the filter measures the PSI scale-factor is
represented in Figure 7.8 and it is resumed as follows:

1. Every two PSI shots, a piezo stage tilts the Raman retro-reflecting mirror by a

quantity opposite to the corresponding CG measurement, ΩCG
j =

Ä
ωCG

i, j ωCG
2, j

äT
,

plus a known bias rotation ΩT
j = (0 ωT)T.

2. Neglecting the bias and noise terms, the PSI output is given by the two-shot phase

gradient Kj = FPSI
j

Å
Ωj + ΩT − ΩCG

j

ã
, where Ωj is the vector containing the two-

shot true angular rates.

3. Assuming that the error terms in the CG measurements are small compared to
the true angular rate and to the known bias rotation, we can infer the PSI scale
factor as FPSI

j ≈ (k2,j − k1,j)/ωT, where ki,j is the i-th element of the vector Kj.

4. The measurement FPSI
j is given as input to the KF that filters out the noise and

tracks the time-varying PSI scale-factor.

The adopted solution of tilting the retro-reflecting mirror at every PSI shot by an amount
equal to the CG output is intended to render the compensation scheme independent of
vehicle rotational dynamics, ensuring the robustness of the compensation scheme with
respect to shot-to-shot variations in the true angular rate. Furthermore, this feedback
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FIGURE 7.8: Compensation scheme for the real-time estimation of the PSI rotational
scale-factor.

configuration enables PSI sensor operations in the high angular rate regime, where a
complete loss of contrast would otherwise make retrieving the interferometric signal
impossible. Another drawback is represented by the noise and stability of the piezo
stage, which directly affects the measurement of the PSI rotational scale-factor. Any
potential long-term drifts can be suppressed by alternating the sign of the applied bias
rotation, while achieving nrad precision would ensure noise levels comparable to those
of a navigation-grade CG [40].
The use of CG read-out as input for the mirror counter-rotation affects the measurement
of the PSI scale-factor by introducing CG-dependent errors. In particular, assuming
that the CG is affected by scale-factor error, bias and noise, we obtain

k2, j − k1, j = FPSI
j

î
ωT − FCG

ϵ

(︁
ω2, j − ω1, j

)︁
−
(︁
ωN, 2, j − ωN, 1, j

)︁ó
, (7.29)

where we assume that the bias and scale-factor variations of the CG occur at time-
scales longer than the PSI cycling period. While, strictly speaking, the measurement
of the PSI scale-factor is affected by the CG scale-factor error and noise, in practical
terms, the dominant error source is the CG noise3. Therefore, a low-noise CG, such as
a navigation-grade sensor, should be used in the compensation scheme.
We point out that in our modeling, we did not account for a potential misalignment
between the CG and PSI sensor sensitive axes. However, for misalignment errors up to
0.1 mrad and angular accelerations up to 0.1 deg/s2, the predominant source of error

3The amplitude of the noise of a navigation-grade CG is a few tenths of a degree per hour, while
even for a typical scale-factor error of 50ppm and angular accelerations of 0.1deg/s2, the error term in PSI
scale-factor measurement is only 18mdeg/h.
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is still represented by the CG noise.
An important aspect is represented by the feedback mechanism that translates the CG
read-out into the Raman mirror rotation. In the case of a high free-evolution period,
the low bandwidth of the PSI sensor introduces lag errors. Therefore, the rotation to
be imposed on the Raman mirror should be computed using the sensitivity function
formalism, similar to the approach taken with cold-atom accelerometers [30].

Finally, let us now make a few comments on the KF tuning parameters. The mea-
surement covariance matrix R depends on the noise level of the CG and PSI sensor,
and the precision of the piezo stage. The covariance matrix of the driving noise is as-
sumed to be Q = diag[0 σ2

Ḟ], where the tuning parameter σḞ is chosen such that it
minimizes the variance of the KF innovation. For simplicity, we choose as initial con-
dition x0 =

(︁
FPSI

0 0
)︁T, where FPSI

0 is the true value of the PSI scale-factor at the initial
time.

7.4.2 Simulation results

To test the compensation scheme, we generate synthetic data for both the CG and the
PSI sensor. The CG errors include white noise, with an rms value proportional to the
sensor’s angle random walk, bias and scale-factor instability, modeled as a first-order
Gauss-Markov process [125]. The PSI scale-factor instability is due to the variation
in the initial size of the atomic cloud and is modeled as a random walk process. We
assume a quite large drift of ∼ 6% per hour in the initial cloud size.
Synthetic data for a navigation-grade CG, characterized by an angle random walk of
5mdeg/

√
h, a bias instability of 10mdeg/h, and a scale-factor instability of 50ppm,

are generated at a sampling frequency of 200Hz. PSI data are generated at a realistic
sampling frequency of 1Hz; therefore, the update frequency of the KF is 0.5Hz.
We assume that the true angular rate oscillates around a mean value of 1deg/s with a
period of ∼ 30min, and that known bias rotation applied to the retro-reflecting mirror
is equivalent to an angular velocity of 4deg/s .

Figure 7.9 displays the results of the simulations. The KF effectively tracks the PSI
scale-factor error over a time span of 5h without introducing further instabilities, as
demonstrated by the moving average of the residuals between the filter estimate and
the ground truth. The histogram of the residuals is comparable to a normal distribution
with a standard deviation of 230ppm and a mean of 2ppm. For completeness, we com-
pare the angular rate tracking error with and without PSI scale-factor compensation.
The compensation scheme effectively stabilizes the PSI scale-factor, preventing errors
that could otherwise reach magnitudes as large as 0.5deg/s.

The stabilization of the rotational scale-factor is a necessary step towards integrating
the PSI sensor into strapdown inertial navigation systems. Although the tilting of the
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(A) KF tracking and tracking error (B) Tracking error histogram

(C) Angular rate error

FIGURE 7.9: Simulated KF performance. Panel (A): KF tracking of the PSI rotational
scale-factor error and tracking error. The thick blue line represents a 5min moving
average. Panel(B): Histogram of the scale-factor tracking error and relative fitting.
Panel (C): Angular rate error for the compensated and uncompensated PSI scale-factor
error. The inset shows the true angular rate. Simulation parameters: navigation-grade

CG with sampling frequency 200Hz, PSI sensor with sampling frequency 1Hz.

retro-reflecting mirror introduces errors that depend on the precision and accuracy of
the piezo-stage, it is necessary to overcome total contrast loss in high-dynamic envi-
ronments. We note that the presented scale-factor calibration scheme is based on a
‘loosely-coupled’ data-fusion architecture, in which an indirect quantity (i.e., the in-
ferred angular rate) is used in the measurement model. However, we could envision
a ‘tightly-coupled’ architecture that utilizes the PSI raw signal, i.e., the spatial atomic
population distribution, as a filter observable. In this way, additional errors due to
time-correlated noise are further suppressed, and fringe parameters are estimated in
real-time.
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Chapter 8

State detection and imaging system
errors

At the end of the interferometer pulse sequence, the presence of atoms in one of the
output ports is detected. The resulting interferometric signal is derived as a proba-
bility, determined by measuring the relative fraction of atoms occupying one of the
Mach-Zehnder states. This probabilistic nature sets the ultimate uncertainty on phase
estimation, and fluctuations in the number of detected atoms from shot to shot repre-
sent the performance limit of cold atom inertial (CAI) sensors [11].

Cloud-averaging and point source interferometry (PSI) are the two prevailing tech-
niques employed for read-out in light-pulse atom interferometry. Cloud-averaging in-
volves acquiring the signal by averaging the atomic probability distribution over space
using a photodetector or a charge-coupled device (CCD). Consequently, scanning of the
interferometric phase becomes necessary to extract the inertial measurement. In con-
trast, PSI directly captures the atomic distribution onto a CCD, enabling the extraction
and analysis of spatial features.

According to the CAI sensor architecture, various state detection and imaging tech-
niques can be implemented to obtain the interferometric signal. The most widely
employed techniques include absorption imaging and fluorescence imaging, both of
which are destructive methods [126]. Absorption imaging exploits variations in the in-
tensity profile of the probe beam induced by the atomic distribution and represents the
standard for imaging cold and ultra-cold atoms. On the other hand, fluorescence imag-
ing allows the detection of atomic ensembles by means of the emission of scattered pho-
tons triggered by optical transitions. Far off-resonance methods, such as dark-ground
imaging [127] and phase contrast imaging [128], offer quasi non-destructive detection
and are widely used in the context of ultra-cold atoms where imaging low numbers of
atoms requires a high signal-to-noise ratio [129].
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Absorption imaging and fluorescence imaging are mostly used in atom interferometry
applications with thermal ensembles, where the high number of atoms and low optical
depths ensure robustness and easy experimental implementations [126]. For this rea-
son, we will focus on these two imaging methods in the remaining part of the chapter.

Regardless of the chosen method, atomic clouds are imaged through the detection of
emitted or missing photons. Fluctuations in the number of detected photons from shot
to shot introduce a further noise source in the retrieval of the inertial-induced phase.
Unlike atom shot noise, photon shot noise is classical and is not correlated to the prob-
abilistic nature of the quantum measurement.

As observed in previous chapters, angular rates orthogonal to the Raman effective
wave-vector induce a spatial modulation of the atomic distribution within the plane
containing the angular rate vector. The spatial frequency of the atomic distribution is
proportional to the applied angular rate, hence any distortions induced by the imag-
ing system directly affect the inertial measurement. Moreover, motion of the atoms
during the imaging causes blurring of the interferometric signal, further modifying the
detected spatial frequency.

At the end of the imaging process, the photons detected by the CCD are converted into
electrons, and the resulting signal undergoes amplification. This conversion and ampli-
fication process can introduce noise, which in turn leads to fluctuations in the effective
number of detected atoms. Additionally, it’s important to consider the finite number
of pixels in the CCD that samples the atomic distribution, as this limits the maximum
detectable spatial frequency and affects the uncertainty of the inertial measurement
estimation.

The structure of the chapter is organized as follows:

1. We examine the influence of atom and photon shot noise, elucidating their phys-
ical origins and their effects upon the performance of a CAI sensor.

2. We introduce absorption imaging highlighting the working principles, the rela-
tion between the detected signal and the atomic distribution, and noise perfor-
mance.

3. We describe fluorescence imaging with particular emphasis on the so-called “blue
fluorescence” detection in which two probe beams in a ladder scheme trigger
spontaneous emission of 420nm “blue” photons ensuring background-free im-
ages. We derive a multi-level atomic system in order to model the fluorescence
signal and extract requirements on the stability of the imaging laser beams.

4. We investigate the influence of aberrations and distortions in the imaging sys-
tem on the detected interferometric signal. This analysis encompasses the conse-
quences arising from the finite size of the atomic cloud along the imaging beam
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axis, as well as the misalignment between the CCD line-of-sight and the imaging
beam axis.

5. We present and quantify the impact of motion blur that occurs during the imaging
phase, resulting from factors such as the expansion of the atomic cloud, recoil
heating, linear displacements, and vibrations.

6. We analyze the impact of the CCD on the performance of a CAI sensor in terms
of finite number of pixels, non uniform response and noise.

8.1 Shot noise

8.1.1 Atom shot noise

The interferometric signal is obtained measuring the relative fraction of atoms in one of
the two output ports of the interferometer. Hence, the detection of a single atom in the
generic |j⟩ state can be considered as a Bernoulli experiment characterized by a certain
occurrence probability Pj. Assuming an ensemble of N total uncorrelated atoms, the
probability to detect Nj atoms is a binomial distribution

PNj =
N!

Nj!(N − Nj)!
P

Nj
j (1 − PJ)N−Nj , (8.1)

where the mean and the variance are, respectively, NPj and NPj(1 − Pj). If N → ∞, the
central limit theorem can be applied and the binomial tends to a Gaussian distribution
with same mean and same variance

PNj → exp

Ö
−

(︂
Pj −

Nj
N

)︂2

2 Pj(1−Pj)
N

è
, (8.2)

where we rearranged the terms in a more suitable way. From Eq. (8.2) two conclusions
can be drawn: first, the quantity Nj/N represents an unbiased estimator for Pj; second,
the uncertainty on Pj estimation is characterized by a standard deviation

σPj =

 
Pj(1 − Pj)

N
. (8.3)

This result represents the atom shot noise, or quantum projection noise, and sets the ul-
timate performance of an atom interferometer operating with uncorrelated atoms [68].
The 1/

√
N scaling, known as standard quantum limit, could be further improved using
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correlated atoms by means of squeezed states, thus approaching the 1/N Heisenberg
limit [130].

8.1.2 Photon shot noise

Atomic distributions are imaged by means of coherent laser radiations though photon
detection. The number of detected photons can be described by a Poisson distribu-
tion characterized by a standard deviation

√
NP, where NP is the average number of

detected photons. Fluctuations in the number of detected photons from shot to shot
constitute a noise source that, especially in the case of absorption imaging of atomic
clouds characterized by low density, could overcome the atom shot noise levels [126].

8.2 Absorption imaging

Absorption imaging has garnered significant utilization over the years in ultra-cold
atom imaging [131, 132], atomic clocks using ultra-narrow optical transitions [133], as
well as CAI sensor applications [14, 44].
The interferometric signal is retrieved measuring the light absorbed by the atomic en-
semble. In the paraxial approximation, the electric field propagating along the z-axis
and passing through a medium of susceptibility χ is given by (see Appendix C)

E(r⊥, z+) = exp
Å

i
k0

2

∫︂ z+

z−
χ (r⊥, z) dz

ã
E (r⊥, z−) , (8.4)

where k0 is the wave-number of the electric field and r⊥ defines the coordinates in the
plane orthogonal to the propagation axis. For a two-level system atom interacting with
a circularly polarized field, the susceptibility is given by [56]

χ(r⊥, z) =
σsc

k0

Ç
i − 2δ̄

1 + s + 4δ̄
2

å
n(r⊥, z) , (8.5)

with σsc = 6π/k2
0 is the resonant scattering cross-section, s = I/Is is the saturation

parameter (i.e. ratio between laser intensity and saturation intensity), δ̄ = δ/Γ is the
ratio between the laser detuning and the optical transition linewidth, and n(r⊥, z) is the
atomic density. Assuming that the variations of the amplitude of the incident electric
field in the transverse plane are negligible over the atomic cloud extension, we obtain
the value of the electric field after the medium as

E(r⊥, z+) = exp
(︁
−α(r⊥) + iβ(r⊥)

)︁
E (r⊥, z−) , (8.6)
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with α(r⊥) = (σsc n(r⊥)/2)/(1 + s + 4δ̄
2) attenuation factor, β(r⊥) = −2α(r⊥)δ̄ phase

factor, and n(r⊥) =
∫︁ z+

z−
n(r⊥, z)dz column density. Hence, the atomic ensemble modifies

both the amplitude and phase of the laser radiation.
In terms of intensity, the differential equation that describes the propagation of the light
through a medium is given by the Beer-Lambert law (see Appendix C)

∂I
∂z

= −k0 Im{χ(r⊥, z)}I , (8.7)

and integrating the above equation from z− and z+ we obtain

(1 + 4 δ̄
2) OD(r⊥) + s0

Ä
1 − e−OD(r⊥)

ä
= σsc n(r⊥) , (8.8)

where OD = − ln
(︁

Iobj/I0
)︁

is the optical depth, s0 = I0/Is, and we rename I− → I0

and I+ → Iobj, respectively, the intensity of the laser field before and after the atomic
medium, i.e. the object intended to be imaged. Eq. (8.8) shows that measurement of
the optical depth is needed in order to retrieve the spatial atomic distribution, and
that in general the relation between the two quantities is not linear. Solution of the
transcendental Eq. (8.8) can be obtained in terms of the Lambert W-function [134]

OD(r⊥) =
σsc n(r⊥) − s0

1 + 4 δ̄
2 +W

Ç
s0

1 + 4 δ̄
2 exp

Ç
s0 − σsc n(r⊥)

1 + 4 δ̄
2

åå
. (8.9)

This equation has a general validity regardless the atomic density value and the satu-
ration parameter. For weakly absorbing medium, Eq. (8.8) can be linearized

OD(r⊥) ≈ σsc n(r⊥)

1 + s0 + 4 δ̄
2 . (8.10)

On-resonance and for a weak probe beam intensity, OD(r⊥) ≈ σsc n(r⊥). Figure 8.1
shows the error in the estimation of the atomic density when using the linearized ex-
pression of Eq. (8.10) for different optical depths and saturation parameters. In light
pulse atom interferometry applications, it is common to detect clouds of N = 106

atoms with a size of 1-5mm. Consequently, the maximum optical density is in the
range 0.042-0.017 for s0 = 0.1, leading to errors below the 1% level in the estimation of
the atomic density when using the linearized expression of Eq. (8.10).

8.2.1 Laser noise requirements

In order to reconstruct the atomic distribution using absorption imaging, a minimum of
two images is necessary: one capturing the laser beam without the presence of atoms,
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FIGURE 8.1: Percentage error in the estimation of the atomic density when using the
linearized model of Eq. (8.10) instead of the complete model of Eq. (8.8), for different

saturation parameters and on-resonance (δ̄ = 0).

and another with the atoms included. Hence, any fluctuations in the laser intensity
or frequency leads to errors in the estimated column density. Assuming that the laser
intensity and frequency noise are uncorrelated and described by normal distributions
with standard deviations σI0 and σδ, the uncertainty of the optical depth is given by

σ2
OD =

Å
∂OD
∂I0

ã2

σ2
I0
+

Å
∂OD

∂δ̄

ã2

σ2
δ̄ +

1
2

Ç
∂2OD

∂δ̄
2

å2

σ4
δ̄ , (8.11)

where the second order term in δ̄ is dominant near resonance. In the case of Gaussian
atomic density, the optical depth uncertainty can be related to interferometric signal
uncertainty via Eq. (8.10)

σPj =

Ç
1 + s0 + 4δ̄

2

σsc

å Ç
2 π σ2

cl
N

å
σOD , (8.12)

where Pj is the probability to detect the atom in the |j⟩ state of the interferometer, and
σcl is the width of the atomic cloud. Using Eq. (8.11) we get

σ2
Pj
≈

P2
j

(1 + s0 + 4 δ̄
2)2

ñ
s2

0
σ2

I0

I2
0
+ 64 σ2

δ̄

Ç
δ̄

2
+

σ2
δ̄

2

åô
, (8.13)

where we neglected terms of order higher than o(1/δ4̄).
Figure 8.2 shows the requirements for laser intensity and frequency noise necessary to
achieve uncertainty of the interferometric signal at the atom shot noise level. In the low
saturation regime (s0 = 0.1) and close to resonance, a relative intensity noise σI0/I0 <

1% and a frequency noise σδ < 100kHz are required to achieve atom shot noise level
uncertainty. Unlike intensity noise, meeting the frequency noise requirement could be
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(A) Intensity noise requirement (B) Frequency noise requirement

FIGURE 8.2: Requirements for the laser noise parameters in order to achieve below
atom shot noise level uncertainty. Simulation parameters: total number of detected

atoms N = 106, interferometric signal Pj = 1/2.

challenging due to the necessity of employing laser systems with narrow linewidths
[135].

In the previous analysis a number of simplifications have been adopted. First, the Beer-
Lambert law describes the atomic response to the imaging beam as an ensemble of
uncorrelated single particles. In the context of light pulse atom interferometry oper-
ating with thermal clouds, this assumption is reasonable because the atomic density
is such that the absorption/emission of photons from nearby atoms can be neglected
[136]. Second, the decrease in the absorption signal due to atomic fluorescence has been
neglected because absorption signal prevails over fluorescence signal at low atomic
densities[127]. Third, a simple two-level system model has been assumed, thus ne-
glecting the multi-level structure due the hyperfine splitting. In reality, the presence
of multiple levels induces losses that determine a reduction of the effective scattering
cross-section and, hence, of the absorption imaging signal [137]. A further reduction of
the scattering cross-section is due to variations in the saturation intensity induced by
fluctuations of the laser polarisation and stray magnetic fields [131].

8.2.2 Photon shot noise requirement

The intensity of the imaged beam is proportional to the number of incident photons.
Therefore, the optical depth can be expressed as OD = − ln (NP, obj/NP, 0), where NP, obj

and NP, 0 are, respectively, the number of detected photons with and without the atomic
medium. Recalling that photon shot noise follows Poisson statistics, we can express the
optical depth uncertainty as

σOD =

 
1

NP, obj
+

1
NP, 0

, (8.14)
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and using the definition of optical depth, NP, 0 = NP, obj eOD, in combination with
Eq. (8.12), we obtain the uncertainty over the interferometric signal

σPj =

Ç
1 + s0 + 4δ̄

2

σsc

å Ç
2 π σ2

cl
N

å √
1 + e−OD√︁

NP, obj
. (8.15)

At this point we can compute number of photons that have to be detected in order to
achieve the atom shot noise limit. For an average probability Pj ≈ 1/2 the atom shot
noise is σPj = 1/(2

√
N), and

NP, obj ≥
Ç

1 + s0 + 4δ̄
2

σsc/2

å2
(2 π σ2

cl)
2

N

Ä
1 + e−OD

ä
. (8.16)

We observe that as the atomic density decreases, the number of photons needed to
reach the atom shot noise limit increases. Therefore, for atomic clouds characterized by
low atomic densities, we may need to detect a number of photons that exceeds the ca-
pability of the CCD. For a cloud of size σcl = 2.5mm containing N = 106 atoms of 85Rb
and imaged by a resonant pulse with a saturation parameter s0 = 0.1, we need to detect
NP, obj ≈ 1.7 × 1011 photons in order to achieve the atom shot noise limit. Assuming a
pixel well depth of 5 × 104 photons per pixel, the CCD must have a number of pixels
Npix ≥ 3.5 × 106 in the area covered by the atomic cloud. With a detection area equal
to a circle with radius 3 σcl , the pixel dimension should be dpix ≤ 7µm. The limit on
the maximum number of detectable photons imposed by the pixel well depth translates
into a constraint on the minimum number of pixels required. Therefore, achieving noise
performance below the atom shot noise limit could be challenging for cold-atom sen-
sors operating with absorption imaging because the number of required pixels could
be too high.

8.3 Fluorescence imaging

Fluorescence detection has proven to be the main detection technique in light-pulse
atom interferometry applications due to its simplicity of implementation and high
signal-to-noise ratio. Two main detection methods have been developed: sequential
detection and simultaneous detection.
In sequential detection, atomic states at the output port of the interferometer are not
separated in space, and their detection occurs one after the other through a temporal
sequence of three laser pulses tuned to different optical transitions [20]. Briefly, a first
pulse tuned to the cooling transition detects atoms in the upper ground state. Normal-
ization of the atomic populations is achieved by a second repump pulse followed by a
third cooling pulse.
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In contrast, simultaneous detection uses a relatively long pusher pulse, resonant with
one of the atomic states, to operate spatial separation between the two output ports of
the interferometer [138]. Subsequently, a repump pulse followed by a cooling pulse is
used to simultaneously image both atomic states. Detecting both output ports with a
single pulse allows for the rejection of common-mode noise, thereby relaxing the sta-
bility requirements of the lasers. However, the use of simultaneous detection in PSI
applications is limited by the contrast loss and blurring induced by the long pusher
pulse that deforms one of the two atomic clouds via recoil heating.
While fluorescence detection is the most common technique in cloud-averaging con-
figurations, absorption imaging is preferred for detecting the spatial distribution of
atomic populations. In conventional methods based on infrared transitions, the de-
tection beam shares the same wavelength as the fluorescence signal, and spurious
light scattered from surfaces results in extremely noisy images [139]. In this context,
background-free fluorescence detection represents a promising method for imaging
atomic ensembles, combining high-signal features with virtually zero background noise
[140].

8.3.1 Background-free fluorescence imaging

In background-free fluorescence detection, the fluorescence signal is at a different wave-
length compared to the detection beam. Consequently, by filtering the optical signal,
it is possible to isolate the atoms’ contribution from the background. For this rea-
son, achieving background-free imaging requires a multi-photon transition process that
pumps the atoms into an excited state characterized by a transition line different from
that of the pumping fields.
A step-wise two-photon ladder transition is necessary to achieve background-free flu-
orescence with 85Rb atoms. Referring to the fine structure depicted in Figure 8.3, a
first 780nm laser beam couples the 5S1/2 ground state with the 5P3/2 intermediate state.
Subsequently, a second 776nm laser couples the 5P3/2 state with the 5D5/2 state, where
a fraction of the atoms decay back emitting ‘red’ photons. Another fraction of atoms
decays to the 5S1/2 state via the 6P3/2 intermediate state, emitting ‘blue’ photons at
420nm.

In a similar manner to what we have done in the case of absorption imaging, we com-
pute the noise requirements of the imaging lasers to reach the atom shot noise level.
Due to the multi-level structure involved in the generation of blue photons, we de-
velop a numerical model based on optical Bloch equations (OBEs) to compute the fluo-
rescence signal.
The model accounts for the hyperfine structure, including the effect of losses in dark



148 Chapter 8. State detection and imaging system errors

5S1/2

5P3/2

5D5/2

780nm

776nm 5200nm

420nm

6P3/2

FIGURE 8.3: Laser scheme to generate 420nm photons in 85Rb. We represented only
the fine structure manifold for simplicity.

states, which are not negligible. In our analysis, we neglect the magnetic Zeeman sub-
structure and the Doppler broadening due to the relative velocity of the atoms with re-
spect to the laser frame. Additionally, we assume that the intensity experienced by the
atoms across the cloud is constant. Further details of the numerical model are provided
in Appendix D. Briefly, we integrate the optical Bloch equations (OBEs) over time and
calculate the number of blue scattered photons per atom as N420 =

∫︁ tp
0 Γ420 ρ6P3/2

(t) dt,
where Γ420 is the natural linewidth of the 5S1/2 → 6P3/2 transition, ρ6P3/2

is the over-
all atomic population in the 6P3/2 level, and tp is the pulse duration. Clearly, N420 is a
function of the laser parameters pL = [s780 s776 ∆780 ∆776]T, where sj and ∆j are, respec-
tively, the saturation parameter and the detuning of the j-th closed transition.
Requiring that the contribution of laser noise to the fluorescence signal be less than
or equal to the atom shot noise is equivalent to the condition (σF)σpL

≤ (σF)σN , where
F = N420 N represents the total blue fluorescence signal and N denotes the number of
detected atoms. Recalling that σN =

√
N [126], we compute the requirements on the

laser noise solving numerically the conditionÃÅ
∂N420

∂pL

ã2

σ2
pL

+
1
2

Ç
∂2N420

∂p2
L

å2

σ4
pL

≤ N420√
N

, (8.17)

where we assumed that the laser noise parameters are uncorrelated and follow a nor-
mal distribution.
Figure 8.4 displays the results of the numerical simulations for a pulse duration of
tp = 100µs and a total number of atoms N = 106. The plots depict isolines rep-
resenting the 1% relative intensity noise and the 5% normalized frequency noise, at
which performance at the atom shot noise level is achieved 1. These isolines delineate
boundaries in the parameter space within which atom shot noise level performance

1The intensity noise plot is obtained in resonant conditions, while the frequency noise plot is obtained
for fixed saturation parameters.
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(A) Intensity noise (B) Frequency noise

FIGURE 8.4: Requirements on the noise parameters of the detection laser system to
achieve atom shot noise limit for blue fluorescence imaging. We assume a pulse du-
ration of 100µs and a number of detected atoms N = 106. Panel (A): the isolines
represent the 1% relative intensity noise for the 780nm and 776nm lasers in resonant
conditions. Panel (B): the isoline represent the 5% normalized detuning noise for the

780nm and 776nm lasers for s780 = 0.15 and s776 = 10.

can be achieved with relative intensity noise higher than 1% and normalized frequency
noise higher than 5%. The 1% relative intensity noise bounds delineate an area cen-
tered at (12.4, 0.2) with dimensions 5.9 × 0.1. In contrast, the 5% normalized frequency
noise bounds (corresponding to σ∆776 = 21kHz, and σ∆780 = 300kHz) delineate an area
centered at (−0.2, 0.2) (corresponding to (86, 1200) kHz) with dimensions 0.92 × 0.20
(corresponding to 397 × 1200 kHz).
For the conditions analyzed, our analysis highlights two results: firstly, due to losses in
dark states, the maximum signal-to-noise ratio is achieved when the 780nm and 776nm
lasers are slightly blue-detuned and red-detuned, respectively. Secondly, achieving
atom shot noise level performance requires the use of a 776nm laser with a narrower
linewidth compared to the 780nm laser. This result was somewhat expected, as the
780nm transition is 14 times wider than the 776nm transition.

8.4 Imaging aberrations and distortions

Aberrations and distortions of the interferometric signal induced by imperfection of
the imaging system are inevitable. In this context, Fourier optics is a great theoretical
tool to analyse the impact of optical elements, reducing the problem to the formulation
of response functions in spatial frequency domain.
The light scattered by the object (i.e. the atomic distribution) can be described by a
scalar field uobj(r⊥, z), where z represents, as usual, the propagation axis and r⊥ the
coordinates in the transverse plane. The imaged field uimg(r⊥, z) is the result of the
action of the optical system on the object field
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ûimg(k⊥, k0) = Hsys(k⊥, k0) ûobj(k⊥, k0) , (8.18)

where the hat symbol indicates the Fourier transform, and Hsys(k⊥, k0) is the transfer
function that describes the optical system. The linearity in the frequency domain is a di-
rect consequence of the fact that the object, consisting of many point sources, is imaged
using a coherent light source. The resulting image is a superposition of the spherical
wavefronts originating from these point sources, and, therefore, the convolution be-
tween the object field and the optical system [141].
Most of the optical elements can be described by the combination of four fundamental
operators. In paraxial approximation [142]

1. Scaling operator −→ V[m]u(r⊥, z) = u(mr⊥, z).

2. Fourier transform operator −→ Fu(r⊥, z) =
∫︁ +∞
−∞ u(r⊥, z) e−ik⊥r⊥dk⊥.

3. Quadratic phase operator −→ Q[− 1
f ]u(r⊥, z) = exp

(︂
− ik0r2

⊥
2 f

)︂
u(r⊥, z).

4. Free-propagation operator −→ R[∆z]u(r⊥, z) = exp (ik0∆z)
iλ∆z exp

(︂
i k0r2

⊥
2∆z

)︂
⊛ u(r⊥, z) .

Each operator corresponds to distinct fundamental properties. The scaling operator
characterizes the magnification imparted by the optical system, while the quadratic
phase and free-propagation operators describe, respectively, the propagation through
a thin lens of focal length f and over a distance ∆z. Note that in absence of optical
elements, the object field acquires a quadratic phase due to free-space propagation.

8.4.1 Defocus and magnification

The atomic distribution is usually imaged by means of a system of two relay lenses.
Calling d1, d2, and d3, respectively, the distances between the object and the first lens,
the two lenses, and the last lens and the imaging plane

uimg(r⊥) = R[d3] Q[−1/ f2] R[d2] Q[−1/ f1] R[d1] uobj(r⊥) , (8.19)

with f1 and f2 are, respectively, the focal length of the first and second lens. Assuming
d2 = f1 + f2, and using algebra operator properties [142], we obtain

uimg(r⊥) = V[− f2/ f1] R[∆zde f ] uobj(r⊥) , (8.20)

with ∆zde f = d3 + d1 − ( f1 + f2). The first term in the right-hand-side of Eq. (8.20) in-
dicates that the image is a scaled inverted version of the object with a magnification
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CCD

FIGURE 8.5: Relay lens system used to image the atomic cloud onto a CCD.

m = − f2/ f1. When the absolute value of the magnification differs from one, the fre-
quency modulation of the imaged atomic distribution differs from the original, leading
to a scale-factor error in the angular rate signal of the PSI sensor. As a result, calibra-
tion becomes necessary. The second term in the right-hand-side of Eq. (8.20) indicates
that when the atomic cloud is out of focus, a quadratic phase proportional to ∆zde f

arises. Using the definition of free-propagation operator and assuming for simplicity
that f1 = f2, we obtain the imaged field in the frequency domain

ûimg(k⊥) = exp
(︁
ik0∆zde f

)︁
exp

Ç
−i

k2
⊥∆zde f

2k0

å
⏞ ⏟⏟ ⏞

Hde f (k⊥, ∆zde f )

ûobj(k⊥) , (8.21)

with Hde f (k⊥, ∆zde f ) the defocus transfer function.
Since the atomic distribution is proportional to the scattered field, we can express the
imaged column density as

n̂img(k⊥) = Hde f (k⊥, ∆zde f )n̂obj(k⊥) . (8.22)

By considering an initial Gaussian atomic distribution in phase-space, along with mod-
ulation of the atomic in the x direction caused by an angular rate, we are able to calcu-
late the PSI phase map as follows:

ΦPSI(x, y) = kω,xx

[︄
1 −

∆z2
de f

2 k2
0 σ6

f

Ä
2σ2

f + k2
ω,xσ4

f − x2 − y2
ä]︄

+ o(∆z3
de f ) , (8.23)
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with σf size of the atomic distribution in the transverse plane at the detection stage
and kω,x rotation-induced wave-vector. A defocus results in three distinct effects: scale-
factor error, scale-factor non-linearity, and spatial non-linearity within the phase map.
For λ = 780nm, σf = 3mm, ∆zde f = 1mm, and kω,x = 6000rad/m, the scale-factor and
scale-factor non linearity are, respectively, −0.4ppb and −30.8ppb.

8.4.2 Thickness effect

The lens system collects the light scattered by an object that has a finite extension along
the imaging axis. This induces a defocus effect even if the centroid of the object is
perfectly focused. The 3-D transfer function for a lens system with a finite numerical
aperture NA = sin θ is given by [143]

H3D( f⊥, fz) = Θ
Å
− f⊥ +

sin θ

λ
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δ

Ç
fzλ

4 sin2 θ
2

+
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4 sin2 θ
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f 2
⊥λ2

2 sin2 θ

å
, (8.24)

with fz spatial frequency along the imaging axis, f⊥ =
»

f 2
x + f 2

y spatial frequency in
the transverse plane, λ the wavelength of the scattered light, θ the maximum half-angle
of the cone of light entering or leaving the lens system, Θ(. . . ) and δ(. . . ), respectively,
the Heaviside and Dirac functions.
The light scattered by an object characterized by a Gaussian density distribution along
the z-axis with a standard deviation σz is given by

ûobj( f⊥, fz) ∝ exp
Ä
−2π2σ2

z f 2
z

ä
n̂obj( f⊥) . (8.25)

The imaged scalar field in real space can be obtained using the inverse Fourier trans-
form

uimg(r⊥, z) = F−1{H3D( f⊥, fz)ûobj( f⊥, fz)} ∝ F−1{Hthick( f⊥)n̂obj( f⊥)} , (8.26)

with
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(8.27)

and considering the leading term in f⊥, we obtain



8.4. Imaging aberrations and distortions 153

Hthick(k⊥) ≈ Ω̂ Θ(−|k⊥|+ k0NA) exp

Ç
−
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å
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where Ω̂ =
sin2 θ

2
4π is the fraction of solid angle intercepted by the lens system and

γ(Ω̂) = 1 − 2Ω̂
2
+ 4Ω̂

4
is a corrective factor for large numerical apertures. The Heav-

iside term in Eq. (8.28) represents the diffraction limit of a lens system with numerical
aperture NA, while the exponential term accounts for the blurring due to the thickness
of the atomic cloud along the imaging axis.
The maximum spatial frequency induced by an angular rate is three orders of magni-
tude smaller than the diffraction limit , hence we can consider the Heaviside function
equal to one. We compute the PSI phase map assuming a rotation-induced modulation
of the atomic distribution along the x-axis

ΦPSI(x, y) = kω,xx

[︄
1 − σ2

z

2 k2
0 γ(Ω̂) σ6

f

Ä
2 σ2

f + k2
ω,xσ4

f − x2 − y2
ä]︄

+ o(σ3
z ) . (8.29)

This result shows that an atomic cloud with a finite size along the imaging axis induces
a defocus error with an equivalent defocus length (∆zde f )eq = σzγ(Ω̂)−

1
2 . For λ =

780nm, σz = σf = 3mm, NA = 0.45, and kω,x = 6000rad/m, the scale-factor and
scale-factor non linearity are, respectively, −2ppb and −305ppb.

8.4.3 Misalignment of the CCD line-of-sight

Regardless of the technique used, the imaging process is equivalent to an effective in-
tegration of the atomic distribution along the CCD line-of-sight. A misalignment be-
tween the CCD line-of-sight and the Raman effective wave-vector can induce contrast
decays in the imaged atomic distribution when coupled with an angular rate [40].
Assuming an initial Gaussian phase-space distribution, the imaged atomic distribution
in the rotated CCD frame is

nimg(xr, yr, zr) =
1

(2 π)
3
2 σ3

f

exp

[︄
− x2

r + y2
r + z2

r

2σ2
f

]︄ ï
P0 +

C0

2
cos (kω,y yr)

ò
, (8.30)

with xr and yr axes orthogonal to CCD line-of-sight zr, σf size of the atomic cloud at
the detection stage kω,y rotation-induced phase gradient due to an angular rate. The
wave-vector kω,y is orthogonal to the Raman effective wave-vector acting along the z-
axis. Assuming a small misalignment θx ≪ 1 between the CCD line-of-sight and the
Raman effective wave-vector, and integrating along it leads to an interferometric signal
with contrast
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CCD LOS

FIGURE 8.6: Misalignment between the line-of-sight of the CCD (zr) and the Raman
effective wave-vector direction (z).

C = C0 exp(−k2
ω,y σ2

f θ2
x) . (8.31)

For kω,y = 6000rad/m, σf = 3mm and θx = 10mrad, the contrast of the imaged inter-
ferometric signal is ∼ 3% less than the case with no misalignment; hence, alignment at
a level better than 1mrad is necessary to achieve contrast decay of less than 1%.

8.4.4 Aberrations

Optical aberrations in imaging systems are due to the fact that the wavefront of the
scalar field describing light propagation is not spherical at the exit pupil [143, 144].
Aberrations can be due to defects and imperfections in the optics as well as to geometric
misalignment (e.g. object not in focus).
The transfer function that models optical aberrations is given by [144]

Hab(kx, ky) = exp
ï

i k0 W
Å

kx

k0
z,

ky

k0
z
ãò

(8.32)

with W(x, y) the aberration function that describes the deviation of the wavefront from
the ideal sphere in the transverse plane, z is the distance of the imaging plane from the
exit pupil, k0 is the wave-number associated to the light field. The aberration function
is commonly expressed as a series expansion in the form of Zernike polynomials.
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As an example we compute the effect of a tilt aberration over the imaged interferomet-
ric signal in presence of a rotation-induced modulation of the atomic density. The tilt
aberration function is given by

W(x, y) = αx
x
R
+ αy

y
R

, (8.33)

with αj the peak-to-valley deviation of the actual wavefront from the ideal spherical
one, in the generic j-th direction and in units of λ, and R maximum distance over which
the phase map is evaluated.
Given the tilt transfer function Htilt(kx, ky) = exp [i z (αxkx + αyky)/R], and a Gaussian
atomic distribution modulated in space along the x-axis by a rotation-induced wave-
vector kω,x, we compute the imaged atomic distribution

nimg(x, y) =
1

2πσ2
f

exp

[︄
−
(︁
x + αxz/R

)︁2
+
(︁
y + αyz/R

)︁2

2σ2
f

]︄
. . .ï

P0 +
C
2

cos
Å

kω,xx +
kω,xαxz

R

ãò
.

(8.34)

A tilt aberration has two effects: it causes an apparent shift of the centre of the atomic
cloud and induces an anisoinertia bias on the acceleration signal. For instance, assum-
ing kω,x = 6000rad/m, z = 5cm, R = 1cm, αx = λ/10, with λ = 780nm, a bias phase
shift of ∼ 2mrad is produced.

To provide comprehensive information, we present in Table 8.1 the transfer function
and the bias PSI phase map for optical aberrations modeled using Zernike polynomials
up to the third order. Assuming small aberrations, the bias phase map can be approx-
imated through a Taylor expansion. Consequently, we include in the Table only the
leading order from the series expansion. The defocus term is not reported in the Table
because it has been treated separately in the previous subsection.

8.4.5 Distortions

While optical aberrations are the result of imperfections in the optical system and oc-
cur, for example, when light rays passing through the system are not perfectly focused,
resulting in blurred image or loss of image sharpness, optical distortions result from
non-uniform magnification of an image across its field of view. Optical distortion man-
ifest as geometric distortions of an image. They can be caused, for instance, by the
shape of the system’s lens or by the curvature of the image plane.
Optical distortions can be described as geometric transformations of the object accord-
ing to [145]
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Aberration type Transfer function Bias phase map
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TABLE 8.1: Transfer function and bias phase map induced by optical aberrations
in the imaging system modelled as Zernike polynomials with Ac,x = −2 k2

0 R2 σ4
f +

3 z2(4σ2
f + k2

ω,xσ4
f − y2 − 3x2).

rimg = f (r) robj , (8.35)

with f (r) distortion function, that is usually modelled as a polynomial expansion. For
instance, the first order radial distortion is modelled by f (x, y) = 1 + a(x2 + y2), with
a > 0 in the case of barrel distortion and a < 0 in the case of pincushion distortion.

8.5 Motion blur effect

Relative motion between the atomic distribution and the imaging system results in
blurring effects with consequent loss of contrast and variations of the PSI phase map
with respect to the stationary case.

8.5.1 Cloud expansion

A first source of motion blur is represented by the expansion of the atomic cloud, which
can be attributed to either its finite velocity width or recoil heating. During the imaging
process an atom at an initial position r⊥ is displaced by a quantity ∆r⊥(t). As a con-
sequence, the final atomic distribution is given by the convolution between the initial
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distribution, nobj(r⊥), and the displacement one, ∆nobj(r⊥(t)). In reality, the imaging
system detects an average between the initial and final distribution given by

⟨nimg(r⊥)⟩ = 1
tdet

∫︂ tdet

0
nimg(r⊥, t)dt , (8.36)

with nimg(r⊥, t) = nobj(r⊥) ⊛ ∆nobj(r⊥(t)), and tdet total duration of the detection time.
Assuming as initial and displaced distributions, respectively, a Gaussian with standard
deviation σf modulated by a rotation-induced wave-vector, kω,⊥, and a Gaussian with
standard deviation ∆σ(t), we can compute the final distribution

nimg(r⊥, t) =
e
− r2

⊥
2 σ̄2

f (t)

2 π σ̄2
f (t)

ï
P0 +

C(t)
2

cos (F̄(t) kω,⊥ · r⊥)
ò

, (8.37)

with

σ̄2
f (t) = σ2

f + ∆σ2
f (t) ,

C(t) = C0 exp
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−

k2
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f (t)

2

)︄
,

F̄(t) = 1 −
∆σ2

f (t)

σ̄2
f (t)

.

(8.38)

The expansion of the atomic cloud during the imaging induces a contrast decay and
a reduction of the rotation-induced phase gradient. However, for detection times of
the order of hundreds of microseconds and angular rates of the order of thousands of
radians/meter the contrast decay is negligible and σ̄ f ≈ σf . Hence, cloud expansion
mainly affects the PSI phase map.

Two mechanisms, finite temperature associated with velocity width and recoil heat-
ing, govern the expansion of the atomic distribution. In the former case, the expansion
is characterized by ∆σ2

f (t) = ∆σ2
exp(t) = σ2

v t2, where σv represents the width of the
Maxwell-Boltzmann velocity distribution. In the latter case, the expansion can be cor-
related with the photon scattering rate. Specifically, atoms undergo a random walk due
to the recoil induced by spontaneous emission of photons when interacting with a res-
onant laser field [132].
Following [146], the mean square of the transverse velocity component due to photon
scattering is given by

∆σ2
v,H(t) =

2
3

v2
recNP(t) , (8.39)
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where the factor 2/3 accounts for the motion in the two direction x and y, vrec is the
recoil velocity and NP(t) is the number of scattered photons in the time t that can be
expressed in function of the scattering rate NP(t) =

∫︁ t
0 Rsc(t′)dt′. For a two-level system

atom Rsc =
Γ
2

s0

1+s0+4δ̄
2 , and therefore the increase in the size of the atomic cloud due to

recoil heating is given by

∆σ2
H(tp) =

Å∫︂ tp

0
∆σv,H(t)dt

ã2

=
8
27

Rsc v2
rec t3

p , (8.40)

with tp duration of the imaging pulse. Unlike the free-expansion case, the increase in
cloud width resulting from photon emission is proportional to the cube of the time,
providing clear evidence of the random walk process.
Combining Eqs. (8.37) and (8.36), and assuming negligible contrast decay, we obtain
the detected PSI phase map

ΦPSI(r⊥) = kω,⊥ · r⊥

[︄
1 − 1

σ2
f

Ç
∆σ2

exp(tdet)
3

+
∆σ2

H(tp)
4

å]︄
, (8.41)

where the 1/3 and 1/4 factors account for the average process of the imaging system.
The increase in cloud size due to free-expansion is dependent on the total detection
time tdet, whereas the expansion resulting from recoil heating depends only on the frac-
tion of detection time in which the laser is on.
Figure 8.7 shows the scale-factor error of the angular rate signal of a PSI sensor op-
erating with a cloud of 85Rb atoms with a size of σf = 3mm at the beginning of the
detection stage, and a temperature T = 10µK. Both the total scale-factor error and the
individual contributions resulting from free expansion and recoil heating are reported.
Specifically, for recoil heating, we examine the scattering of 780nm ‘red’ photons caused
by a resonant laser beam with a saturation parameter of s0 = 0.1. We consider both a
two-level system and a simple multi-level model that incorporates losses due to the hy-
perfine structure [126]. In the low saturation regime and for the given pulse lengths, as-
suming a two-level system results in an overestimation of the scale-factor error ≲ 17%
compared to the multi-level model.
The error model of Eq. (8.40) highlights the dependency of the scale-factor error on the
intensity and detuning of the imaging beam. Consequently, any drift in the laser inten-
sity and frequency induces a scale-factor instability. Assuming a two-level system atom
and applying error propagation we obtain a simple approximation for the gyroscope
scale-factor instability given by

σSF,g ≈ 2
27
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p
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, (8.42)
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(A) Scale-factor error (B) Scale-factor instability

FIGURE 8.7: Effect of the cloud expansion on the gyroscope scale-factor. Panel (A):
Scale-factor error of the angular rate signal induced by the expansion of the cloud
during the detection. The dashed magenta line assumes a two-level system, while the
continuous magenta line takes into account the losses due to the hyperfine structure.
Panel (B): Scale-factor instability due to intensity and frequency drift of the imaging
beam. The continuous curves represent the 1ppm isolines for s0 = 0.1 and different
pulse duration. The dashed magenta curve represents the 1ppm isoline for tp = 500µs

and saturation parameter s0 = 0.2.

where we neglected terms higher than 1/δ̄
4. Figure 8.7 shows the 1ppm scale-factor

instability isolines for pulse length tp = 300, 400, 500µs, saturation parameter s0 = 0.1,
resonant laser, and cloud dimension at the beginning of the detection σf = 3mm. As ex-
pected, the longer the pulse and the higher the beam intensity the more stringent is the
requirement on laser intensity and frequency stability in order to achieve scale-factor
instability below the 1ppm level. Hence, the imaging beam intensity and the pulse
duration is a trade-off between the scale-factor and photon shot noise requirement.

8.5.2 Mean motion

So far we analyzed blur due to cloud expansion. In this Subsection we are interested
in the effect of the mean motion of the atomic cloud during the imaging. Displacement
of the cloud in the plane orthogonal to the imaging axis determines blurring of the
detected atomic distribution.
Using the method of moments reported in Ref. [147], the mean motion blur transfer
function can be obtained as

Hmmb(k j) =
∞

∑
n=0

Å
1

tdet

∫︂ tdet

0
xn

j (t)dt
ã (−ik j)n

n!
, (8.43)

where xj(t) indicates the relative motion of the object with respect to the imaging sys-
tem in the transverse plane along the generic jth direction, k j is the associated spatial
angular frequency, tdet id the total detection time.
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Assuming a linear constant-velocity motion xj(t) = vj t, the transfer function can be
found to be [147]

Hmmb(k j) = sinc
Å

k j
vj tdet

2

ã
exp
Å
−i k j vj

tdet

2

ã
. (8.44)

For a Gaussian atomic distribution modulated by a rotation-induced phase gradient
along the same direction of the constant-velocity motion we obtain a PSI phase map

ΦPSI(xj) = kω,jxj

(︄
1 −

π2 v2
j t2

det

12 σ2
f

)︄
− kω,j vj
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2
+ o(v3

j ) . (8.45)

Motion in the transverse plane induces both a scale-factor error on the angular rate
signal and an anisoinertia bias on the acceleration signal. The induced error is maxi-
mum when the motion occurs along the same direction of the rotation-induced phase
gradient and zero when orthogonal to it.

8.5.3 Classical fringes

Interference patterns resulting from the scattering of the imaging beam due, for in-
stance, to the presence of dust on optical elements can further distort the detected
atomic distribution [132, 148]. In absorption imaging these classical fringes are com-
mon mode between the reference image and the image with the atoms and, resulting
in their cancellation. However, in presence of a relative motion in the transverse plane
due, for instance, to mechanical vibrations or air turbulence, the fringes may not com-
pletely cancel out, leading to errors. Nevertheless, fringe-removal algorithms can be
applied to reduce this source of error [148, 149]. On the other hand, classical fringes
do not affect background-free fluorescence imaging since the resulting signal is at a
different wavelength with respect to the probe beams.

8.6 CCD error sources

The CCD represents the final component in the imaging system chain and it impacts
the performance of a CAI sensor through two main mechanisms: the finite number of
pixels and noise sources.

8.6.1 Finite number of pixels

The CCD is an array of photosensitive elements, known as pixels, which acts as an
image sampler. As a result, the detected atomic distribution is discrete and generally
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depends on factors such as the size, shape, and number of pixels.
A reduced pixel count in an image leads to undersampling increasing the likelihood of
encountering aliasing artifacts, particularly when capturing or displaying high-frequency
details. Application of the Whittaker-Shannon sampling theorem leads to determina-
tion of the upper bound of the pixel dimension [144]

dpix,j ≤
1

2 f j,max
, (8.46)

where, f j,max is the maximum spatial frequency of the atomic distribution modulation
in the j-th direction and we assumed that the pixel pitch (i.e., the distance between the
centroid of two consecutive pixels) is equal to the pixel size. In the hypothesis of spatial
domain extending in the range −Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly, and maximum frequency
proportional to the maximum rotation-induced phase gradient, we obtain

Npix ≥ 4
π2 Lx Ly (kω,x)max(kω,y)max , (8.47)

with Npix the number of pixels required to sample the atomic distribution without sig-
nificant distortions. For instance, with Lx = Ly = 10mm, (kω,x)max = (kω,y)max =

6000rad/m, at least Npix = 1460 pixels are required, corresponding to a pixel size
dpix ≤ 260µm.
Nevertheless, shape and pixel size directly affect the imaged atomic distribution intro-
ducing distortions. For a rectangular pixel of dimension dpix,x and dpix,y, the transfer
function is given by [150]

Hpix(kx, ky) =
dpix,x dpix,y

∆pix,x ∆pix,y
sinc
Åkx dpix,x

2

ã
sinc
Åky dpix,y

2

ã
, (8.48)

with ∆pix,x and ∆pix,y, respectively, the pixel pitch in the x and y direction. We compute
the PSI phase map assuming a square pixel with pitch equal to the size and Gaussian
atomic distribution modulated by a rotation-induced phase gradient along the x direc-
tion

ΦPSI(x, y) = kω,xx

(︄
1 −

π2d2
pix

12σ2
f

)︄
+ o(d3

pix) . (8.49)

We observe that the finite resolution of the CCD introduces blurring in the PSI signal,
which leads to a scale-factor error in the gyroscope signal similar to the mean motion
in the transverse plane. To achieve a scale-factor error of less than 10ppm with an
atomic cloud of size σf = 3mm, a pixel dimension dpix ≤ 10µm is required. Hence, the
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constraint on pixel size imposed by the scale-factor error requirement is more stringent
than the Whittaker-Shannon criterion.

8.6.1.1 Fitting error

The detected angular rate and acceleration in CAI sensors with PSI read-out are ob-
tained by fitting the phase map with a plane. The angular rate and acceleration are
inferred, respectively, from the fitted phase gradient and offset.
Given a signal of the form

S(xj) = θ0 + θ1 xj + δSj , (8.50)

where θ0 and θ1 are the parameters that we want to estimate and δSj is the noise, it
is possible to compute the uncertainty of the least-square fitting of the signal with a
straight line as [151]

σ2
S(xj) =

σ2
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ï
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1
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x
(xj − x̄)2

ò
, (8.51)

with N number of data-points in which the signal S(xj) is known, σ is the standard de-
viation of the noise, here assumed as Gaussian, x̄ = 1

N ∑N
j=1 xj is the data-point average,

and σx the uncertainty on the data-point distribution. Assuming a uniform data-point
distribution in the interval [−L/2, L/2], we obtain

σ2
x =

(N2 − 1)∆x2

12
, (8.52)

with ∆x spacing between the xj points. Substitution of Eq. (8.52) in (8.51) and assuming
that N ≫ 1 leads to

σ2
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σ2

N
+

σ2

N3
12

∆x2 x2
j . (8.53)

Renaming N → Npix, σS → σpix and considering equal spacing between data-points,
i.e. ∆x = L/Npix we obtain
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Phase offset fitting uncertainty
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12
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j , (8.54)
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with Npix number of pixels, and σpix phase map noise at pixel level. Hence, the phase
offset and phase gradient fitting uncertainties are given respectively by

σθ0 =
σpix√︁
Npix

, (8.55)

σθ1 =

√
12
L

σpix√︁
Npix

, (8.56)

As expected, in the hypothesis of uncorrelated pixel noise, the phase offset and phase
gradient uncertainties scale as 1/

√︁
Npix.

8.6.2 Pixel cross-talk

In an ideal scenario, photo-electrons produced within the silicon material should re-
main confined within the designated pixel. However, due to thermal diffusion and the
presence of weak electric fields within the active region of a pixel, these signal electrons
tend to diffuse into adjacent pixels, resulting in undesired cross-talk [152]. The mod-
elling of this effect is complex and depends on the particular CCD architecture. For
a front-illuminated CCD, the cross-talk transfer function can be obtained modelling
charge diffusion in the silicon substrate [153, 154]

Hct(k) =
1 −

(︂
exp (−α d)

1+α L0 (1+k2 L2
0)−1/2

)︂
1 −
Ä

exp (−α d)
1+α L0

ä , (8.57)

with α absorption coefficient of the substrate, L0 the diffusion length, and d the CCD
depletion depth 2. A typical value for the diffusion length of electrons in silicon is
around of the order of tenths of microns, while the rotation induced wave-vector is
at most thousands of radians per meter. As a consequence, the term k2L2

0 ≪ 1 and
convolutions of the cross-talk transfer function with the atomic distribution at the end
of the interferometer sequence leads to the following PSI phase map

ΦPSI(x) = kω,xx

(︄
1 − α L3

0 /(exp (α d) − 1)
σ2

f

)︄
+ o(L4

0) , (8.58)

where we assumed a Gaussian atomic distribution modulated by a rotation induced
wave-vector along the x-axis. As expected, the cross-talk induces blurring of the atomic

2The depletion depth refers to the region near the surface of the CCD where the majority of the charge
carriers are depleted due to the applied voltage. This depletion region forms a potential barrier that
collects the generated charge carriers and prevents them from spreading to neighboring pixels.
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distribution with a consequent scale-factor error on the gyroscope signal proportional
to the diffusion length. The scale-factor error depends strongly on the absorption
coefficient which, for silicon, is a monotonic decreasing function of the light wave-
length - for instance, at λ = 780nm, the absorption coefficient at room temperatures
is α = 1030cm−1 [155]. Assuming a diffusion length L0 = 100µm and a cloud size
σf = 3mm, a thick layer with a depletion depth of d = 50µm would be required to
achieve a scale-factor error of ∼ 66ppm. In contrast, using blue-fluorescence signal
at λ = 420nm (α = 52700cm−1), a negligible scale-factor error would be produced
even for thin silicon layers with depletion depth below 10µm. The criticality of cross-
talk at near infrared wavelengths is strictly connected to the lower absorption. When
light penetrates deeper into the CCD material, it increases the probability of charge
carriers being generated outside the depletion region and, thus, spreading into adja-
cent pixels. However, increasing the depletion depth leads to higher diffusion lengths,
thus worsening electron diffusion. Consequently, there exists an optimal thickness that
maximizes absorption while minimizing the diffusion length.
The variations in temperature determine changes in the optical properties of silicon,
resulting in scale-factor drifts. Figure 8.8 shows the scale-factor error of the gyroscope
for various temperature variations ∆T when exposed to radiation with a wavelength
of λ = 780nm. In this analysis, a reference temperature T0 = 300µK is assumed, and
the absorption coefficient is modeled with a temperature dependent power law of the
type α(T ) = α(T0)(T /T0)b, where the coefficient b depends on the wavelength of the
radiation [155].
To limit scale-factor errors at near-infrared wavelengths caused by pixel cross-talk, a
possible solution is to adopt back-illuminated CCDs or insert an epitaxial layer above
the silicon substrate [154]. With a back-illuminated architecture, the incident light
passes directly through the silicon substrate, thereby avoiding reflections and scatter-
ing due to the metal electrode layer (i.e., pixel layer) and reducing the probability of
charge generation in neighboring pixels. Additionally, the electron flux in the silicon
substrate is lower compared to the front-illuminated architecture due to absorption in
the undepleted region, further reducing the likelihood of charge diffusion and pixel
cross-talk [153]. The addition of an epitaxial layer to front-illuminated CCDs mimics
the back-illumination process, leading to a reduction of the electron flux and, conse-
quently, of the effective diffusion length.

8.6.3 CCD noise

Three main noise sources can be distinguished in a CCD based to the level of illumina-
tion: read noise, shot noise and fixed pattern noise [152]. Read noise does not depend
on the illumination conditions and is generated by so-called dark currents as a result
of thermal charge generation. Shot noise, on the other hand, depends on the random
time of photon arrival at the photosensitive element and follows a N1/2

p scaling, where
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FIGURE 8.8: Effect of temperature variation on gyroscope scale-factor error due to
pixel cross-talk in front-illuminated CCD for two values of the depletion depth d. Sim-
ulation parameters: cloud size σf = 3mm, laser wave-length λ = 780nm, diffusion

length L0 = 100µm.

Np represents the average number of photons, due to Poisson statistics. As the illu-
mination levels increase, fixed pattern noise becomes the dominant noise source. This
noise is associated with variations in pixel sensitivity caused by fabrication defects and
exhibits a linear dependency on Np.
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Chapter 9

Performance analysis

In the previous chapters, we identified and analyzed some of the error sources that af-
fect cold-atom inertial sensors. In this chapter, we are interested in providing a summa,
linking the various error sources to sensor performance.
When it comes to inertial sensor performance, different metrics are available. Sen-
sor performance can be grouped into two macro-categories: short-term sensitivity and
long-term stability. Short-term sensitivity is related to high-frequency noise and is
mostly quantified by the noise power density. In the context of inertial sensors, it pri-
marily impacts short-term navigation errors and initial alignment. In contrast, long-
term stability pertains to the low-frequency drifts affecting medium and long-term
navigation, predominantly expressed in terms of scale-factor and bias instability [1].
Long-term stability is particularly critical in inertial sensing, directly influencing po-
sition accuracy and thus determining the grade and application scenarios of inertial
navigation systems [156, 6].
The performance of a cold-atom inertial sensor generally depends on system param-
eters, environmental conditions, and architecture. In this chapter, we will focus on
the performance of a cold-atom inertial sensor based on point-source interferometry
(PSI). This choice is due to the fact that the PSI configuration facilitates the automatic
discrimination of the interferometric phase shift induced by angular rates (rotational
signal) from the phase shift induced by specific forces (acceleration signal).
The inherent capability of PSI to detect the spatial phase distribution rather than an
‘integrated’ phase, and the fundamentally different nature of the rotational signal (em-
bedded in the phase gradient) and the acceleration signal (embedded in the phase off-
set), pose two challenges. The first challenge lies in the requirement of an ad hoc error
modeling for PSI, which often differs from conventional cold-atom sensors. The second
challenge is to understand how an error source affects both the rotational and acceler-
ation signals.
A comprehensive and detailed assessment of the performance of a cold-atom iner-
tial sensor strongly depends on the operating conditions and the particular choice of
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system parameters. In the same manner, the detailed evaluation of navigation per-
formance strongly depends on the application scenario, the type of adopted inertial
mechanization and the particular inertial sensor configuration. Extensive Monte Carlo
simulations are usually adopted and include a trajectory simulator, an inertial naviga-
tion system implementation and a sensor block error model [4]. Therefore, conducting
a detailed analysis relative to a specific case is beyond the scope of this chapter, as our
focus is on establishing general trends, limitations, and trade-offs.

In this chapter we limit our quantitative analysis to the performance of a cold-atom in-
ertial sensor using 85Rb as the designated atomic species. The projected sensor perfor-
mance is computed by means of a simple analytical model that summarizes the results
in previous chapters. Although interesting, we do not translate the sensor performance
to the navigation performance as we reserve this type of analysis for future investiga-
tions.

9.1 Inertial sensor performance

9.1.1 Short-term sensitivity

As reported in Chapter 8, the ultimate sensitivity of a cold-atom inertial sensor operat-
ing with thermally uncorrelated atoms is represented by the atom shot noise. Therefore,
we derive the expressions for the ultimate short-term sensitivity of the rotational and
acceleration signals.
The derivation of the shot-term sensitivity for the acceleration signal is straightforward.
From Eq. (8.55) we obtain

STSa =
σpix√︁
Npix

√
Tc

SFa
, (9.1)

where Tc is the sensor cycling period and SFa = keff T2 is the accelerometer scale-factor.
The derivation of the short-term sensitivity for the rotational signal involves a bit more
work. Starting from Eq. (8.56) we derive the single-axis sensitivity as

STSω =
σpix√︁
Npix

√
12
L

√
Tc

SFg
, (9.2)

with SFg = 2 keff T2/Tex the cold-atom gyroscope scale-factor. Assuming that the detec-
tion area includes 99.9% of the atoms, i.e. L = 6 σf ≈ 6 σv Tex, we get

STSω =

√
3

3
σpix√︁
Npix

√
Tc

2 keff σv T2 . (9.3)
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The quantity σpix represents the phase map noise at the pixel level and can be expressed
as a function of the interferometric signal uncertainty: σpix = 2 σPj/C, where C is the
fringe contrast [157]. For the atom shot noise, the uncertainty σPj depends on the num-
ber of detected atoms per pixel. Assuming for simplicity that the interferometric signal
is equal to the average value Pj ≈ 1/2, we obtain the ultimate short-term sensitivity for
the acceleration signal

STSa =
1

C
√

NA

√
Tc

keff T2 (9.4)

and for the rotational signal

STSω =

√
3

3 C
√

NA

√
Tc

2 keff σv T2 , (9.5)

with NA number of total detected atoms.
As expected, the short-term sensitivity of the PSI acceleration signal is equal to that
of cold-atom inertial sensors operating with cloud-averaging detection, since in both
cases the acceleration signal is determined by a phase offset [158].
Modulo a numeric factor of

√
3/3, the PSI rotational short-term sensitivity is similar

to that of cloud-launched gyroscopes, with the launch velocity being replaced by the
atomic velocity width. This reflects the inherent feature of the PSI scheme to exploit the
thermal expansion of the atomic cloud to infer rotations. We note that the dependence
on the atomic thermal velocity constitutes a fundamental limit for PSI gyroscopes. For
cloud temperatures a few micro-Kelvin, the velocity width is one to two orders of mag-
nitude lower than the launch velocity in cloud-launched gyroscopes [50, 15]. Therefore,
the ultimate short-term sensitivity of a PSI gyroscope is lower than that of atomic gy-
roscopes using conventional read-out schemes. Increasing the width of the thermal
velocity distribution or the free-evolution time to improve the short-term sensitivity
leads to rapid loss of contrast and consequent worsening of gyroscope performance.
For these reasons, the use of optimal control to design large momentum transfer pulse
sequences appears as a possible solution to improve the rotational short-term sensitiv-
ity [159].

The noise sources affecting short-term sensitivity can be categorized into two main
groups: those dependent on the free-evolution time and those independent of it. Noise
sources dependent on the free-evolution time are associated with the phase accumu-
lated by the atomic wave-function during the interferometric sequence. Examples in-
clude linear vibrations, pointing jitter, and magnetic field noise. Noise sources indepen-
dent of the free-evolution time arise during state detection and imaging, or are limited
to the duration of the Raman pulses. Examples of these include Raman intensity, phase
and frequency noise, as well as detection laser intensity and frequency fluctuations.
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TABLE 9.1: Raman and imaging laser noise requirements to achieve accelerometer
performance at the atom shot noise level. Simulation parameters: Raman pulse du-
ration τ = 5µs, Raman mirror distance 10cm, resonant imaging pulse with saturation

parameter s0 = 0.1.

Error source Requirement

Raman phase noise S0
ϕ < −116dB rad2/Hz

Raman frequency noise S0
f < 2.3 × 105Hz2/Hz

Raman intensity noise (S0
I/I2) < −109dB/Hz

Imaging frequency noise (σ∆)Abs. Im. < 100kHz
Imaging intensity noise (σI/I)Abs. Im. < 1.1%

We first present an analysis of noise sources independent of free-evolution period. In
Table 9.1, we outline the requirements that the Raman and imaging lasers must meet to
achieve performance at the atom shot noise level (NA = 106). The high-frequency noise
of the Raman laser is limited by the pulse duration and thus remains independent of the
interferometer’s free-evolution period. We utilize the sensitivity function formalism to
assess the requirements for Raman phase, frequency, and intensity noise (see Chapter
4). To evaluate the frequency requirement, we consider the case of a time delay between
the two Raman lines due to retro-reflection [64], assuming that the mirror is positioned
10cm from the atomic cloud. For the intensity noise, we consider the effect of one-
photon light-shift for circularly polarized beams, with a single photon detuning of ∆ =

3 GHz and pulse duration of τ = 5µs. Finally, we assess the imaging laser requirements
in terms of frequency and intensity noise for absorption imaging operating with weak
resonant pulses (see Chapter 8). Modern Raman and detection laser systems allow for
the realization of noise performance close to the shot noise limit [32, 61].

Figure 9.1 presents the computed short-term sensitivity for the PSI rotational and accel-
eration signals relative to several noise sources dependent on the free-evolution time,
assumed to be white for simplicity. We employ the sensitivity function formalism to
assess the short-term sensitivity of the rotational and acceleration signals, respectively,
in terms of angle random walk and noise spectral density (see Chapters 4 and 6). As a
benchmark, we include the atom shot noise limit corresponding to a number of atoms
NA = 106, cloud temperature T = 10µK, and cycling period Tc = 300ms, based on
experimental conditions outlined in Refs. [14, 116].

For the rotational short-term sensitivity, we evaluated the impact of pointing jitter on
the Raman axis and the coupling between wavefront distortions and vibrations trans-
verse to the Raman axis. The yellow shaded area corresponds to pointing noise in the
range 0.5− 5nrad/

√
Hz, while the green shaded area pertains to vibrational noise in the

range 10 − 100µg/
√

Hz coupled with a quadratic phase distortion characterized by a
peak-to-valley amplitude of λ/10. As expected, pointing jitter represents a critical noise
source for rotational short-term sensitivity as it directly affects the estimation of phase
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gradient. However, the short-term sensitivity decreases as the free-evolution time in-
creases due to the fact that the sensor bandwidth decreases with the free-evolution time,
thereby leading to the rejection of high-frequency noise. In contrast, the noise induced
by the coupling of transverse vibrations with phase distortions increases with the free-
evolution time because it manifests as a time-varying acceleration on the atomic trajec-
tories.

For short-term acceleration sensitivity, we assess the impact of transverse and longi-
tudinal vibrations, pointing jitter, magnetic noise, and gravity gradient. Longitudi-
nal vibrations and magnetic noise directly affect the acceleration signal, while point-
ing jitter and gravity gradient contribute indirectly by coupling with the initial atomic
position. The shaded areas represent different contributions: grey and blue denote
sensitivity due to longitudinal vibrations (0.1 − 1µg/

√
Hz) and magnetic noise (0.01 −

0.1mG/
√

Hz) respectively.
The contribution resulting from the coupling between quadratic phase distortion and
transverse vibrations, for the same system parameters as in the rotational case, is neg-
ligible with respect to the other noise sources. The yellow shaded area represents the
contribution of pointing jitter, with the same angular noise levels as in the rotational
case, along with a transverse offset of ℓ⊥ = 100µm. The red shaded area portrays
the influence of gravity gradient on acceleration sensitivity via longitudinal position
coupling. Our simulations incorporate the Earth’s mean field for gravity gradient cal-
culation [160], alongside longitudinal position noise ranging 10 − 100µm/

√
Hz.

The most critical noise source arises from longitudinal vibrations. Its mitigation neces-
sitates a closed-loop compensation scheme that leverages correlations between mea-
sured vibrations and random phase noise [30]. Magnetic noise and pointing jitter rep-
resent other critical noise sources. While the former can be rejected adopting alternative
pulse schemes [76] or limited using better shielding [161], the latter can be mitigated by
ensuring better alignment between the atomic cloud and the rotation axis of the Raman
mirror [162].

Figure 9.1 highlights a well-known trend in cold-atom inertial sensors based on light-
pulse atom interferometry: in an open-loop configuration, achieving navigation-grade
performance, represented by the dashed blue lines indicating upper and lower bounds,
requires free-evolution times exceeding 10ms and relatively benign environments. There-
fore, the free-evolution time represents a critical parameter that is a compromise be-
tween sensor signal-to-noise ratio and bandwidth. The presence of noise sources in
hostile environments effectively prevents the attainment of short-term performance
levels close to the lower boundary of the navigation-grade band [17, 39].

In our analysis we did not include the effect of the phase offset noise on rotational
signal. As shown in Chapter 7, phase offset noise affects phase gradient estimation
when using multiple images to reconstruct the interferometric phase map. However,
evaluating the effect of phase offset noise on PSI rotational signal strongly depends on
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FIGURE 9.1: Variation of the short-term sensitivity with the free-evolution time. Panel
(a): PSI rotational signal. Panel (b): PSI acceleration signal. The blue dashed lines

represent the upper and lower bounds for navigation-grade sensors.

the adopted read-out method and requires numerical simulations. Since longitudinal
vibrations represent the main source of phase offset noise, we expect that for a given
vibration noise amplitude, the impact of the phase offset upon the rotational signal
performance increases with the free-evolution time.

9.1.2 Accuracy

The accuracy of a cold-atom inertial sensor can be expressed in terms of bias and scale-
factor errors. A more accurate evaluation of the performance level would require com-
plex Monte Carlo simulations, in which the understanding of the impact of system pa-
rameters on a single performance can only be assessed through a lengthy exploration
of the parameter space. In contrast, we develop a simple analytical model that includes
some of the main error sources. This model, based on a combination of theoretical
tools such as the sensitivity function formalism and convolution integrals, allows for
the rapid estimation of the projected accuracy performance, highlighting the effect of
system parameters in a clear manner.

Table 9.2 reports the analytical error model for a Mach-Zehnder interferometer oper-
ating with conventional rectangular pulses and with flat wavefronts. We distinguish
the errors affecting the phase gradient from the errors affecting the phase offset. The
terms in the Table are obtained computing the atomic trajectories relative to the body
frame and their couplings with external error sources. The one- and two-photon light-
shifts terms are computed assuming that the waist of the Gaussian Raman beam is



9.1. Inertial sensor performance 173

TABLE 9.2: Error model for Mach-Zehnder interferometer operating with conven-
tional rectangular pulses and flat wavefronts. The z-axis coincides with the Raman

propagation axis.

Error source Phase gradient Phase offset
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b
ib

Magnetic gradient − 2 Kmg T3

Tex
ωb

ib,⊥ Kmg T2 (︁vz,0 +
vrec

2 − fz T
)︁

Magnetic force − 4 Km f T4

3 Tex
(kb × ωb

ib) 2
3 kz Km f T3 (︁vz,0 +

vrec
2 − fz T

)︁
Gravity gradient − 7 Γzz T4

6 Tex
(kb × ωb

ib) kz Γzz T2 [︁ℓz + (vz,0 +
vrec

2 ) T − 7
12 fz T2]︁

Refractive index 8 T2 δn
Tex

(kb × ωb
ib) −2 T δn kz (vz,0 + vrec − 2 fz T)

Atomic collisions − 2 T Kcol

Ä
1

σ(2T) −
1

σ(T)

ä
One-photon light-shift −KOPLS

w2
L

ℓb
⊥ −KOPLS

w2
L

F σ2
0

Two-photon light-shift KTPLS
4 β3
w2

L
ℓb
⊥ KTPLS

(︂
β1 − β3 +

β3
w2

L
4 F σ2

0

)︂
(1) Kmg = 4 π KQZ B0

∂B
∂z

(2) Km f =
h KQZ

m

Ä
∂B
∂z

ä2

(3) Kcol = (Kee + Kgg) N
2 (2 π)3/2σ2

0

(3) KOPLS = a1 δI (1−I0
1/I0

2 )
Ω0

exp
Ä
−2 |ℓb|2/w2

L

ä
(4) KTPLS = Ω0 exp

Ä
−4 |ℓb|2/w2

L

ä
much larger than the atomic cloud. Error modeling for Raman wavefront and imaging
distortions can be found in Chapters 6 and 8, respectively.

Each error source contributes in a manner dependent on multiple parameters. Since the
free-evolution time stands as one of the most crucial system parameters of a cold-atom
inertial sensor, we opt to examine how accuracy varies with the free-evolution time.

9.1.2.1 Bias

Figure 9.2 shows the bias for both the rotational and acceleration signals. For the cho-
sen working conditions 1, the dominant error terms are represented by the cross-axis
and maneuvering. Their contribution typically increases with the free-evolution time
as they are the result of high-order inertial terms. The gravity gradient term is negligi-
ble with respect the other error sources.
Regarding the contribution of the wavefront distortions, we adopt the model reported

1Relative to a single sensitive axis we assume: ωb
ib = 1deg/s, ω̇b

ib = 0.01deg/s2, f b
ib = 1g, ḟ b

ib =

0.01g/s, ℓb = 100µm, Tex = 4 T.
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in Table 6.2, with a peak-to-valley wavefront amplitude corresponding to λ/10 over a
radius of 1cm. In our analysis we only consider the terms directly affecting the phase
gradient and offset, without including high-order spatial terms that have an indirect ef-
fect and, therefore, depend on the specific read-out protocol (e.g., maximum likelihood
estimation, least square fitting, Kalman filtering, machine learning, etc.). The wave-
front term exhibits complex behavior due to the coupling between phase distortions
and the initial atomic phase-space distribution, which is nontrivial. As a general trend,
the longer the expansion time, the less the effect of the initial distribution on the error
term.
Two-photon light-shift (TPLS) represents a significant bias source affecting the acceler-
ation signal. For its evaluation, we assume a Raman beam characterized by a Gaussian
intensity distribution with a waist of wL = 10mm and a pulse duration of τ = 5µs.
Moreover, we assume that the Raman transition is Doppler-detuned by the free fall
motion due to gravity acceleration. The longer the free-evolution period, the lower the
bias, as TPLS primarily depends on the Doppler detuning induced by the initial pulse,
which is determined solely by its timing (we assume that the first pulse occurs 5ms
after the release of the cloud from the MOT).
A spatial variation of the magnetic field along the Raman axis determines a bias on the
acceleration signal due to the coupling with the atomic trajectories. The error induced
by the magnetic gradient, for which we assume a bias field B0 = 100mG and a gradi-
ent ∂B/∂z = 1.2mG/mm, is almost constant with the free-evolution time as it mainly
depends on the T2 term due to the initial and recoil velocity.
The atomic density affects the acceleration signal’s bias through two mechanisms: atomic
collisions and variations in the momentum imparted to the atomic wavepackets due
to the cloud’s refractive index. The bias decreases with the free-evolution time as a
consequence of the reduced atomic density resulting from the cloud’s expansion. In
the calculations, we assume a cloud of 106 atoms characterized by an initial size of
σ0 = 0.5mm and a temperature of T = 10µK.
Finally, we assess the impact of motion blur on the acceleration bias. This error source
arises from the displacement of the atomic cloud in a direction transverse to the imag-
ing axis during the detection pulse. In our calculations, we assume that the imaging
beam illuminates the atomic cloud for 200µs and that the relative velocity between the
center of mass of the atomic cloud and the CCD is 1mm/s. Since this error source is
independent of the free-evolution time, the induced bias decreases with T.

9.1.2.2 Scale-factor error

Figure 9.3 shows the scale-factor error for different error sources for both the accel-
eration and rotational signals. As expected, the dominant error source affecting the
rotational signal is the finite size of the initial atomic cloud. As the expansion time in-
creases, the scale-factor tends toward the point-source limit, and the error decreases.
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(A) Bias gyro (B) Bias accelerometer

FIGURE 9.2: Calculation of the fixed bias parameterized with respect to the free-
evolution time.

Nevertheless, even for high expansion times, the scale-factor error remains sufficiently
high to preclude the use of a PSI gyroscope as a sensor for inertial navigation. There-
fore, calibration of the rotational scale-factor is necessary.
Another important error source affecting the rotational scale-factor is represented by
the detection process, which includes optical distortions, misalignments, motion blur
induced by the relative displacement of the atomic cloud with respect to the CCD sys-
tem during the imaging process, and finite pixel size. Dominant error sources in the
detection process include blurring due to recoil heating and free-expansion, as well as
the sampling process operated by the discrete configuration of the CCD. Generally, the
scale-factor error decreases with the free-evolution time, as the detection process is in-
dependent of it.
Variation of the refractive index due to atomic density and misalignment of the effec-
tive Raman wave-vector 2 induce scale-factor errors below the 1ppm level.
In contrast, magnetic field gradients and wavefront distortions induce scale-factor er-
rors that increase with the free-evolution time. While k-reversal protocols can reject
the magnetic field gradient term [50], the wavefront term still persists. Specifically, the
phase distortions, such as coma and trefoil, induce a coupling between the initial cloud
size and the rotational phase gradient, resulting in scale-factor non-linearity.

9.1.3 Long-term stability

9.1.3.1 Bias instability

Figure 9.4 shows the bias instability in both the acceleration and rotational signals.
Light-shift errors, in the form of one-photon light-shift (OPLS) and two-photon light-
shift (TPLS), are significant error sources. OPLS is typically mitigated by adjusting

2In the calculation we assume a misalignment of 100µrad.
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FIGURE 9.3: Calculation of the scale-factor error parameterized with respect to the
free- evolution time.

(A) Bias instability gyro (B) Bias instability accelerometer

FIGURE 9.4: Calculation of the bias instability parameterized with respect to the free-
evolution time. The dashed blue lines indicate the upper and lower performance

bounds for navigation-grade sensors.

the intensities of the Raman beams. However, long-term intensity drifts contribute to
instability. We observe that displacements of the center of mass of the atomic cloud rel-
ative to the centroid of the Raman beam lead to errors in the rotational signal. For the
light-shift calculations, we assume a 1% relative intensity drift, circular polarization,
and a displacement of 100µm between the center of the atomic cloud and the centroid
of the Raman beam. Achieving strategic-grade performance is possible with long free-
evolution times.
Long-term drifts in the bias magnetic field and variations in the size of the initial cloud
(coupled with wavefront distortions) can lead to bias instability in the acceleration sig-
nal. Fluctuations in the initial cloud size at a 1% level and in the bias field of 1mG result
in an instability of a few nano-g.
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FIGURE 9.5: Calculation of the scale-factor instability parameterized with respect to
the free-evolution time.

9.1.3.2 Scale-factor instability

Figure 9.5 shows the effect of different error sources on scale-factor instability.
The most dominant source of instability in the rotational scale-factor is due to fluctua-
tions in the size and shape of the initial atomic cloud. Even fluctuations at the 1% level
could lead to scale-factor instability of hundreds of ppm. Therefore, stabilization of the
rotational scale-factor is necessary for inertial navigation.
Long-term drifts in the intensity of the Raman beam determine a variation in the area
spanned by the atomic wave-packets during the interferometric sequence, and thus,
a change in the sensor scale-factor. However, since the scale-factor error, to the first
order, is proportional to the ratio between pulse duration and the free-evolution time,
long free-evolution times are required to achieve scale-factor instability below the 1
ppm level for 1% intensity fluctuations.
Recoil heating during the detection process induces blurring in the imaging of the
atomic cloud and scale-factor errors. Therefore, long-term drifts in the intensity of
the imaging beam determine scale-factor instability. For a pulse duration of 200µm, a
1% intensity drift induces scale-factor instability below the 1 ppm level for long free-
evolution times.
Scale-factor instability due to fluctuations of the bias magnetic field and wavefront dis-
tortions is below the 1ppb level.
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Chapter 10

Conclusions and outlook

In this thesis, we conducted a theoretical analysis of some of the main error sources in
cold-atom inertial (CAI) sensors for navigation applications. Additional error sources
not considered in this thesis, mainly due to a lack of time, include, for instance, the
effects introduced by the response of Doppler and vibration compensation loops, the
impact of phase and frequency modulation schemes on sensor sensitivity, timing errors
in the interferometric and optical read-out, the finite spatial response of the imaging
laser, and the non-optimality of the algorithmic solution used to extract the inertial
phase from the interferometric signal under dynamic conditions.

Overall, the analysis aimed to establish relationships between system parameters and
sensor performance using a combination of methodologies and theoretical tools.

From this perspective, the sensitivity function formalism represents a powerful theoret-
ical tool that can describe the response of an atom interferometer to both deterministic
and stochastic inputs, in a manner understandable by system and navigation engineers.
We utilized this formalism, along with additional modeling, to provide, when possible,
closed-form expressions linking each specific error source to its corresponding perfor-
mance. We particularly focused on error sources arising from the laser-atom interaction
during the Raman pulse sequence and state detection and imaging, providing further
insights into CAI sensors based on point-source interferometry (PSI).

Our findings reveal that the projected performance of CAI sensors strongly depends
on its configuration and, in several cases, achieving a certain performance level is
a trade-off between opposite driving forces. For instance, a longer duration of the
free-evolution period improves short-term sensitivity for many error sources, but in-
duces loss in signal’s visibility; or, a longer Raman pulse enhances suppression of high-
frequency phase noise but leads to a higher velocity selectivity with reduced efficiency
of the Raman diffraction process. Moreover, the environment in which the CAI sen-
sor operates constitute another important element: vibrations, stray magnetic fields,



180 Chapter 10. Conclusions and outlook

signal’s loss and systematic errors due to the couplings between laser-atom interaction
and vehicle’s dynamics are all non-negligible error sources that require careful evalua-
tion.

The field deployment of CAI sensors in challenging and uncontrolled environments
often necessitates significant engineering efforts. Implementing complex control and
stabilization mechanisms is necessary to mitigate the impact of various error sources
on sensor performance. Hybridization and/or integration with aiding sensors, such as
conventional inertial measurement units, are frequently required. Moreover, despite
their reputation for providing absolute and accurate measurements, CAI sensors still
require error modelling and initial calibration [14, 16].
In this thesis, we presented several examples of these engineering efforts. For instance,
we demonstrated the use of optimal control to enhance stability and reduce system-
atic errors in CAI sensors due to inter-pulse laser intensity variations. Additionally, we
implemented a read-out scheme based on nonlinear Kalman filtering to efficiently ex-
tract phase information from interferograms of atomic populations. Furthermore, we
designed a protocol for stabilizing the rotational scale-factor of a CAI sensor based on
PSI, making it suitable for real-time applications.

Future works may involve assessing overall navigation performance by developing
a complex simulator that accurately models the interaction between vehicle and sen-
sor dynamics. A more refined error model, calibrated on experimental data, could be
adopted to effectively predict real-world scenarios. Additionally, the analysis could
be extended to include a comparative study of sensor performance using different
diffraction schemes (e.g., Raman double-diffraction, Bragg, single-photon transitions)
or atomic sources (e.g., Bose-Einstein condensates).
Another intriguing route could be the utilization of multi-objective optimization for
the design of CAI sensors. This approach is particularly appealing for systems where
opposing driving forces necessitate a trade-off optimum [163]. Therefore, integrating
quantum optimal control with the navigation requirements of CAI sensors for specific
mission profiles could offer an alternative approach to implementing quantum sensors
for navigation applications.
Finally, an open and intriguing question concerns how CAI sensors are used for nav-
igation applications. These sensors not only provide specific force and angular rate
measurements but also offer additional information, such as the orientation of grav-
ity and angular rate vectors with respect to the vehicle’s body frame. How can this
additional information be used to enhance free-inertial navigation? What navigation
mechanization is required? Are there any benefits with respect to conventional naviga-
tion schemes?

However, after all these considerations and questions, we arrive at the million-dollar
question: are CAI sensors suitable for high-accuracy autonomous navigation? The
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simple answer is: it depends. While CAI sensors have demonstrated exceptional ac-
curacy and stability in lab-based experiments, achieving the same level of performance
in real-world scenarios depends on various factors such as sensor architecture and con-
figuration, application type, and engineering efforts to mitigate technical and funda-
mental error sources. What is certain is that over the last decade, efforts and progress
toward realizing CAI sensors suitable for navigation applications have exponentially
increased. From hybridization with conventional sensors [16] to the use of optimal con-
trol [77] and the design of exotic and novel sensor configurations [164, 165], research
groups worldwide have been pushing the frontiers of quantum inertial sensing, seek-
ing solutions to both old and new challenges and striving to bring the much-desired
quantum advantage out of the lab. In our opinion, this opens up interesting and excit-
ing prospects for the future, as the realization of the quantum technology breakthrough
appears increasingly tangible.
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Appendix A

Response of Mach-Zehnder
interferometer

A.1 Phase sensitivity function

In this Appendix we show how to practically compute the phase response of a Mach-
Zehnder atom interferometer operating with rectangular Raman pulses.
The phase sensitivity function is defined as

gϕ(t) := lim
δϕ→0

∆Φ(t)
δϕ

=
2

C sin (∆Φ0)
g(t) , (A.1)

where ∆Φ0 is the offset laser phase indicating the interferometer’s working point, C is
the fringe contrast and g(t) is the sensitivity function

g(t) := lim
δϕ→0

δPj(t)
δϕ

. (A.2)

The quantity δPj is the perturbation of the |j⟩ state population at the output port of the
interferometer and it is defined as

δPj(t) = Pj(t) − Pj,u , (A.3)

where Pj(t) is the perturbed interferometric signal at the output port of the interfer-
ometer computed for a step phase perturbation δϕ(t) = δϕ Θ(t′ − t), and Pj.u is the
unperturbed interferometric signal computed for zero phase perturbation.

In the calculation of the phase sensitivity function we assume:
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• Flat wavefronts. We neglect phase aberrations introduced by optical elements or
due to the laser intensity inhomogeneity.

• Mono-kinetic atom. The sensitivity function formalism is not generalized to the
case of an atomic ensemble.

• Pulse-length errors. We neglect detuning errors introduced, for example, by the
atomic velocity distribution. Therefore, the sensitivity function describes the re-
sponse of a near-resonant atom.

• Interferometer operating at the maximum sensitivity point, i.e. ∆Φ0 = π/2.

A.1.1 Unperturbed interferometric signal

Let us compute the interferometric signal for a mono-kinetic atom subject to pulse-
length errors. Following [71], we can apply the Raman propagator to the atomic wave-
packets traveling along the arms of the interferometer.
Referring to Figure A.1, ABD and ACF represent spurious paths that do not contribute
to the interferometer signal. Indeed, the atomic wave-packets propagating along these
two paths accumulate a velocity-dependent phase that gives rise to a highly oscillatory
signal, which is suppressed when averaging over the thermal velocity distribution 1.
Therefore, only ABE and ACE paths contribute to interference and the interferometric
signal Pe is given by

Pe = |ce,ABE(t f ) + ce,ACE(t f )|2

= |ce,ABE(t f )|2 + |ce,ACE(t f )|2 + 2 Re{ce,ABE(t f )∗ ce,ACE(t f )} ,
(A.4)

where ce,xxx(t f ) is the amplitude to the upper hyperfine ground state evolving along the
path xxx at the end of the pulse sequence t f = 2 T + 4 τ.
The Raman propagator describing the evolution of the atomic wavefunction in the
near-resonant case is given by [166]

(︄
ce( t0 + τ)
cg(t0 + τ)

)︄
=

[︄
C∗ −i S∗

−i S C

]︄(︄
ce(t0)
cg( t0)

)︄
, (A.5)

with C = cos (θ/2) and S = sin (θ/2) ei ϕ, θ = Ω τ pulse area, and ϕ Raman phase.
Starting from the initial condition ce(0) = 0, cg(0) = 1 leads to

ce,ABE(t f ) = −i S∗
1 (−i S2) (−i S∗

3) , (A.6)

1Strictly speaking, this is true for thermal atomic ensembles. When dealing with Bose-Einstein con-
densates characterized by high de Broglie wavelengths extra care should be payed especially in the case
of short free-evolution times.
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FIGURE A.1: Recoil diagram of a Mach-Zehnder interferometer. The continuous and
dotted lines indicate, respectively, the main and spurious paths.

ce,ACE(t f ) = −C1 (−i S∗
2) C∗

3 , (A.7)

where Cj and Sj are the Raman propagator elements for the j-th pulse.
Inserting this two expressions in Eq. (A.4) we obtain the unperturbed interferometric
signal

Pe = P0 −
C
2

cos (∆Φ0) , (A.8)

with P0, C and ∆Φ0, respectively, fringe offset, contrast and phase offset

P0 =
1
2

[1 − cos (θ1) cos (θ2) cos (θ3)] , (A.9)

C = sin (θ1) sin2
Å

θ2

2

ã
sin (θ3) , (A.10)

∆Φ0 = ϕ1 − 2 ϕ2 + ϕ3 . (A.11)

If we choose ∆Φ0 = π/2 we obtain

Pe,u = P0 . (A.12)
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A.1.2 Perturbed interferometric signal

As a further step, we need to compute the perturbed interferometric signal due to an
infinitesimal laser phase step perturbation.

A.1.2.1 First Raman pulse

The phase step perturbation occurs during the first Raman pulse. In this case, we need
to split the Raman propagator into two parts: one before the phase jump and one after
the phase jump. Hence, the amplitude of the atomic upper state is given by

ce,ABE(t f ) = Ueg (−i S2) (−i S∗
3) , (A.13)

ce,ACE(t f ) = Uee (−i S∗
2) C∗

3 , (A.14)

where Ueg and Uee are the elements of the matrix

U1 =

[︄
Uee Ueg

Uge Ugg

]︄

=

[︄
cos
Ä

Ω1 (t−τ)
2

ä
−i e−i δϕ sin

Ä
Ω1 (t−τ)

2

ä
−i ei δϕ sin

Ä
Ω1 (t−τ)

2

ä
cos
Ä

Ω1 (t−τ)
2

ä ]︄
⏞ ⏟⏟ ⏞

After phase jump

[︄
cos
Ä

Ω1 t
2

ä
−i sin

Ä
Ω1 t

2

ä
−i sin

Ä
Ω1 t

2

ä
cos
Ä

Ω1 t
2

ä ]︄
⏞ ⏟⏟ ⏞

Before phase jump

,

(A.15)

and −i S∗
3 = −i e−i (δϕ+π/2) sin θ3 = −e−i δϕ sin θ3.

At this point we can compute the perturbed interferometric signal perturbation and the
perturbation

δPe(t) = −1
2

sin2
Å

θ2

2

ã
sin (θ3) sin (Ω1 t) δϕ , (A.16)

and the phase sensitivity function

gϕ(t) = −sin (Ω1 t)
sin θ1

. (A.17)
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FIGURE A.2: Mach-Zehnder pulse sequence with phase step perturbation occurring
during the first beam-splitter pulse.

A.1.2.2 Free evolution periods

The calculation of the phase sensitivity function during free evolution periods is easy.
Assuming that the phase jump occurs during the first free evolution period we write
the perturbed interferometric signal as

Pe = P0 +
C
2

sin
(︁
0 − 2 δϕ + δϕ

)︁
, (A.18)

where the sin function is due to ∆Φ0 = π/2. For an infinitesimal phase perturbation

Pe ≈ P0 − C
2

δϕ (A.19)

and, therefore,

gϕ(t) = −1 . (A.20)

The same reasoning applies to the case of phase jump arising during the second free
evolution period. The perturbed interferometric signal is

Pe = P0 +
C
2

sin
(︁
0 − 2 0 + δϕ

)︁
, (A.21)

and the phase sensitivity function is

gϕ(t) = 1 . (A.22)
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A.1.2.3 Other Raman pulses

In the same fashion we can compute the interferometric signal perturbation when the
phase jump occurs during the second pulse

δPe(t) =
1
2

sin (θ1) sin
Å

θ2

2

ã
sin (θ3) sin [Ω2 (t − T − 2 τ)] δϕ , (A.23)

and the third pulse

δPe(t) = −1
2

sin (θ1) sin2
Å

θ2

2

ã
sin [Ω3 (t − 2 T − 4 τ)] δϕ . (A.24)

Applying the definition of phase sensitivity function we finally obtain the expression
for the second

gϕ(t) =
sin [Ω2 (t − T − 2 τ)]

sin (θ2/2)
, (A.25)

and third pulse

gϕ(t) = −sin [Ω3 (t − 2 T − 4 τ)]
sin (θ3)

. (A.26)

A.2 Response to white noise

The response of the interferometer to a stochastic perturbation is given by the infinite
sum

AVAR∆Φ(τc) =
1
τc

+∞

∑
n=1

|Hξ(2 π n fc)|2 Sξ(2 π n fc) . (A.27)

where AVAR∆Φ is the Allan variance of the interferometric phase computed at the clus-
ter time τc, Hξ(2 π n fc) and Sξ(2 π n fc) are, respectively, the interferometer transfer
function and the perturbation power spectral density computed at an integer multiple
of the sensor cycling frequency fc.
The evaluation of the sum can be done analytically if we assume that the perturbation
is characterized by a white noise spectrum, i.e. Sξ(2 π n fc) = S0

ξ for all n. In this case
Eq. (A.28) can be written as

AVAR∆Φ(τc) =
S0

ξ

τc

+∞

∑
n=1

|Hξ,n|2 , (A.28)
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where the notation Hξ,n = Hξ(2 π n fc).
The sum over all the integer harmonics can be computed applying the Plancherel’s
theorem: given a periodic signal hξ(t) over an interval [−Tc/2, Tc/2], with Tc period,
the following identity is valid [167]

Tc

∫︂ Tc/2

−Tc/2
|hξ(t)|2 dt =

+∞

∑
n=−∞

|Hξ,n|2 , (A.29)

where Hξ,n is the Fourier transform of the periodic function hξ(t) computed at the n-th
harmonic, i.e. Hξ,n = F{hξ}ω=2 π n fc .
We can rewrite Eq. (A.29) as

Tc

∫︂ Tc/2

−Tc/2
|hξ(t)|2 dt = |Hξ,0|2 + 2

+∞

∑
n=1

|Hξ,n|2 , (A.30)

and get

+∞

∑
n=1

|Hξ,n|2 =
1
2

ñ
Tc

∫︂ Tc/2

−Tc/2
|hξ(t)|2 dt − |Hξ,0|2

ô
. (A.31)

Recalling that the zeroth harmonic is equal to the time integral of the function hξ(t), we
finally obtain the key result

AVAR∆Φ(τc) =
S0

ξ

2 τc

ñ
Tc

∫︂ Tc/2

−Tc/2
|hξ(t)|2 dt −

⃓⃓⃓⃓∫︂ +∞

−∞
hξ(t) dt

⃓⃓⃓⃓2ô
. (A.32)

The above expression allows for the calculation of the interferometer’s white noise re-
sponse given the sensitivity in time domain, hξ(t).
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Appendix B

Wavefunction evolution in Wigner
representation

In point-source atom interferometry (PSI), the spatial distribution of the atomic pop-
ulation at one of the output ports of the interferometer is measured. Therefore, sim-
ulations of the PSI signal require the reconstruction of the atomic distribution in real
space. One possible solution is to adopt a particle-based Monte Carlo technique, where
atoms are considered as particles with random initial positions and velocities subject
to the diffraction induced by the laser grating. However, this approach is computation-
ally expensive since the accuracy of the method is based on the number of particles. A
more interesting solution is to describe the wavefunction evolution using the Wigner
representation formalism.
Wigner function is a pseudo-probability density function that describes the wavefunc-
tion evolution in phase-space. therefore, marginalization of the Wigner function allows
for the reconstruction of the PSI output.

Wigner function is defined as Weyl transform of the density matrix operator [69]

W(x, p) :=
1

(2 π h̄)3

∫︂ +∞

−∞
exp

(︂
−i

p · y
h̄

)︂
⟨r+ | ρ | r−⟩ d3y , (B.1)

where r± = r ± y/2, and ρ = |ψ(r̂)⟩ ⟨ψ(r̂)|.
Since we are interested in the time-evolution of wavefunction we take the time deriva-
tive of the Eq. (B.1)

∂W
∂t

=
1

(2 π h̄)3

Å
1
ih̄

ã ∫︂ +∞

−∞
exp

(︂
−i

p · y
h̄

)︂
⟨r+ |H ρ − ρ H† | r−⟩ d3y , (B.2)

where H is the Hamiltonian operator that in general can be time-dependent.
Readjusting the bra-ket term in Eq. (B.2) leads to
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∂W
∂t

=
1

(2 π h̄)3

Å
1
ih̄

ã ∫︂ +∞

−∞
exp

(︂
−i

p · y
h̄

)︂ Ä
H(r+) − H†(r−)

ä
⟨r+ | ρ | r−⟩ d3y . (B.3)

Eq. (B.3) has a general validity and provides the time-evolution of the Wigner function
in phase space for a given Hamiltonian.

B.1 Free-evolution

The free-evolution Hamiltonian is given by

H =
p̂2

2 m
+ p̂ · (r̂ × ω) + V(r̂)

− h̄2

2m
∂2

∂r2 − ih̄
∂

∂r
· (r × ω) + V(r)

(B.4)

where V(r̂) is the potential and the kinetic energy term accounts for both translational
and rotational motion.
Now

∂

∂r+
=

∂r
∂r+

∂

∂r
+

∂y
∂r+

∂

∂y
=

1
2

∂

∂r
+

∂

∂y
∂

∂r−
=

∂r
∂r−

∂

∂r
+

∂y
∂r−

∂

∂y
=

1
2

∂

∂r
− ∂

∂y
,

(B.5)

and, therefore

∂2

∂r2
+

=

Å
1
2

∂

∂r
+

∂

∂y

ã2

∂2

∂r2
−

=

Å
1
2

∂

∂r
− ∂

∂y

ã2

,

(B.6)

from which we finally obtain,

∂2

∂r2
−
− ∂2

∂r2
+

= −2
∂2

∂r∂y
. (B.7)

Inserting the free-evolution Hamiltonian in Eq. (B.3) and using the previous relations
gives
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∂W
∂t

=
1

(2 π h̄)3

Å
1
ih̄

ã ∫︂ +∞

−∞
exp

(︂
−i

p · y
h̄

)︂ ï
− h̄2

m
∂2

∂r∂y
+ . . .

− ih̄
∂

∂r+
· (r+ × ω) − ih̄

∂

∂r−
· (r− × ω) + . . .

+ V(r+) − V(r−)
ò
⟨r+ | ρ | r−⟩ d3y .

(B.8)

The integral term that depends on the second derivative term can be rewritten as

A = − h̄2

2 m
∂

∂r

∫︂ +∞

−∞
exp

(︂
−i

p · y
h̄

)︂ ∂

∂y
⟨r + y/2 | ρ | r − y/2⟩ d3y . (B.9)

Integrating by parts and noting that the projection operator acting on the density matrix
is null at y = ±∞ leads to the following result

A = − h̄2

m
∂

∂r

î
i (2πh̄)3 (p/h̄) W(x, p)

ó
. (B.10)

The integral term that depends on the angular rate can be rewritten as

B =
∫︂ +∞

−∞
exp

(︂
−i

p · y
h̄

)︂
(−ih̄)

ï
∂

∂r
· (r × ω) +

∂

∂y
· (y × ω)

ò
⟨r + y/2 | ρ | r − y/2⟩ d3y .

(B.11)

Integration by parts leads to

B = (−ih̄) (2πh̄)3
ï
(r × ω)

∂W
∂r

+ (p × ω)
∂W
∂p

ò
, (B.12)

where we used the relations ∂/∂y = (i/h̄)p and y = (ih̄)(∂/∂p). At this point we can
write Eq. (B.8) as

∂W
∂t

+
p
m

· ∂W
∂r

+ (r × ω) · ∂W
∂r

+ (p × ω) · ∂W
∂p

+ Q = 0 , (B.13)

where

Q =
1

(2 π h̄)3

Å
1
ih̄

ã ∫︂ +∞

−∞
exp

(︂
−i

p · y
h̄

)︂ [︁
V(r + y/2) − V(r − y/2)

]︁
. . .

⟨r + y/2 | ρ | r − y/2⟩ d3y ,
(B.14)

is the potential dependent term.
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B.1.1 Semi-classical approximation

Eq. (B.13) describes the full quantum wavefunction evolution in the Wigner represen-
tation. However, under the semi-classical approximation, the full-quantum dynamics
can be simplified.
Let us start by assuming that the potential function can be expanded in Taylor series

V(r ± y/2) =
+∞

∑
n=0

1
n!

∂nV(r)
∂rn (±y/2)n (B.15)

and then

V(r + y/2) − V(r + y/2) =
+∞

∑
n=0

1
n!

∂nV(r)
∂rn (y/2 − y/2)n . (B.16)

The previous term is non zero only if n is odd, and we can set n = 2 ℓ+ 1. Therefore

V(r + y/2) − V(r + y/2) =
+∞

∑
ℓ=0

1
(2 ℓ+ 1)!

∂2 ℓ+1V(r)
∂r2 ℓ+1

1
22 ℓ y2 ℓ+1 (B.17)

and substitution in the term Q leads to

Q =
+∞

∑
ℓ=0

1
(2 ℓ+ 1)!

Å
− h̄

2

ã2 ℓ ∂2 ℓ+1V(r)
∂r2 ℓ+1

∂2 ℓ+1W
∂p2 ℓ+1 . (B.18)

Note that for a potential at most quadratic in space(ℓ = 0), the term Q becomes

Q =
∂V
∂r

∂W
∂p

(B.19)

and Eq. (B.13) reduces to the Liouville’s equation that describes the time-evolution of
a classical probability density function in phase-space. This is equivalent to say that
centre of mass of the atomic wavepacket follows classical trajectories as predicted by
the Ehrenfest theorem.
However, even if the potential is not a quadratic function of space, we can still neglect
the full quantum dynamics and assume that the time evolution of the center of mass of
the atomic wavepacket is governed by the classical equation of motion. This assump-
tion, known as the semi-classical approximation, is valid when the contribution of the
higher-order terms in the Taylor expansion of the potential are negligible compared to
that of the quadratic term.
The ratio between the potential’s third and second-order term is given by
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R =

1
3!

Ä
− h̄

2

ä2 ∂3V(r)
∂r3

∂3W
∂p3

∂V
∂r

∂W
∂p

. (B.20)

Assuming that the space and momentum variables can be normalized with respect to
characteristic quantities, i.e. r∗ = r/Lc and p∗ = p/pc, we obtain

R ∼ h̄2

24
1

p2
c L2

c
, (B.21)

where pc is the characteristic momentum associated to the atomic wavefunction evolu-
tion and Lc is the characteristic length associated to the spatial variations of the poten-
tial. The quantity h̄/pc has the dimensions of a length, and indicates the characteristic
length associated to the wavefunction evolution. Therefore we can set h̄/pc ∼ vrec T,
with vrec recoil velocity and T free-evolution time. If the spatial variations of the po-
tential are induced only by the inhomogeneity of the Earth’s gravitational field, we can
assume that Lc ∼ 3km [168]. Hence, for a free-evolution time of 10ms and 85Rb atoms,
we obtain R ∼ 1ppb. The third-order term is approximately nine orders of magnitude
lower than the second-order term. Therefore, for inertial navigation applications with
relatively short free-evolution times, it is reasonable to assume that the motion of the
center of mass of the atomic wavepackets is governed by classical equations of motion.

B.1.2 Liouville equation

Neglecting the high-order terms in the potential expansion leads to the Liouville equa-
tion

∂W
∂t

+
p
m

· ∂W
∂r

+ (r × ω) · ∂W
∂r

+ (p × ω) · ∂W
∂p

+
∂V
∂r

∂W
∂p

= 0 , (B.22)

and noting that

ṙ =
p
m

+ r × ω

ṗ =p × ω − ∂V
∂r

,
(B.23)

we obtain the Liouville equation in compact form

∂W
∂t

+
∂H
∂p

∂W
∂r

− ∂H
∂r

∂W
∂p

= 0 , (B.24)
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where we used the classical Hamilton equations ṙ = ∂H/∂p and ṗ = −∂H/∂r. Starting
from a known initial distribution in phase-space, W(r, p, t0), Eq. (B.24) can be solved
analytically

W(r, p, t) = W(R(r, p, t0 − t), P(r, p, t0 − t), t0) , (B.25)

where R(r, p, t) and P(r, p, t) represent the solution of the equations of motion at time
t with initial conditions R(t0) = r and P(t0) = p.
Eq. (B.25) allows for the time propagation of the atomic distribution in phase-space
space during the interferometer’s free-evolution periods.

B.2 Raman diffraction

We need now to derive the time-evolution of the Wigner distribution inside the Ra-
man pulse. Under the rotating-wave approximation and adiabatic elimination, the
two-photon Raman diffraction is described by a two-level system [166]

(︄
c(e, p + h̄keff, t0 + ∆t)

c(g, p, t0 + ∆t)

)︄
= e−i ΣAC ∆t

2

[︄
e−i δ12 ∆t

2 C∗ −i e−i δ12 ∆t
2 S∗

−i ei δ12 ∆t
2 S ei δ12 ∆t

2 C

]︄(︄
c(e, p + h̄keff, t0)

c(g, p, t0)

)︄
,

(B.26)

with |e⟩ and |g⟩, respectively, upper and lower hyperfine ground states, and

C = cos (ΩR ∆t/2) + i cos θ sin (ΩR ∆t/2)

S = sin θ sin (ΩR ∆t/2) ei(δ12 t0+ ϕeff)

ΩR =
»

Ω2
eff + (δ12 − δAC)2

sin θ = Ωeff/ΩR

cos θ = −(δ12 − δAC)/ΩR

ΣAC = ΩAC
e + ΩAC

g ,

(B.27)

where Ωeff is the effective Rabi frequency, ϕeff is the effective laser phase, δAC is the
differential AC Stark shift (or one-photon light-shift). ΣAC/2 is the average AC Stark
shift and δ12 is the two-photon detuning.

The Weyl transform of the density matrix is given by [69]

Wαβ =
1

(2 π)3

∫︂ +∞

−∞
exp (iq · r) c(α, p+) c∗(β, p−) d3q (B.28)
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where this time the shift has been operated on the momentum operator and p± =

p ± h̄q/2.
Substituting Eq. (B.26) in (B.28), we obtain the time-evolution for the populations

Wee(r, p, t0 + ∆t) = C∗C Wee(r, p, t0) + S∗S Wgg(r, p − h̄ keff, t0) + . . .

+ 2 Re{i C∗S e−i keff·r Weg(r, p − h̄ keff/2, t0)} ,
(B.29)

Wgg(r, p, t0 + ∆t) = S∗S Wee(r, p + h̄ keff, t0) + C∗C Wgg(r, p, t0) + . . .

− 2 Re{i C∗S e−i keff·r Weg(r, p + h̄ keff/2, t0)} ,
(B.30)

and the coherence terms

Weg(r, p, t0 + ∆t) = i C∗S∗e−i δ12 ∆t ei keff·r . . .[︁
Wee(r, p + h̄ keff/2, t0) − Wgg(r, p − h̄ keff/2, t0)

]︁
+ . . .

+ S∗S∗e−i δ12 ∆t e2 i keff·r Wge(r, p, t0) + C∗C∗e−i δ12 ∆tWeg(r, p, t0) ,
(B.31)

Wge = W∗
eg (B.32)

The equations above describe the time-evolution of the Wigner functions associated to
the upper and lower hyperfine ground states undergoing Raman transitions. They gen-
eralize the expression presented in Ref. [69], including both off-resonance and pulse-
length errors.
We explicitly note that the presented computational model could be used to study the
evolution of an atomic ensemble in phase-space, not only for rectangular pulses but
also for tailored pulses with piecewise laser phase and intensity control laws.

B.3 Interferometer simulation model

The Liouville equation and the Wigner function’ time-evolution during the Raman
pulses are the building blocks of our simulation model. The simulation of the evo-
lution of the atomic populations in phase-space during the interferometer sequence is
based on the following steps

1. The model receives in input an initial arbitrary distribution in phase-space. For
instance, we assume as initial condition Wgg(r, p, t0) = W0, and Wee = Weg =

Wge = 0.
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FIGURE B.1: Atomic population at the output port of the interferometer. Panel (a):
phase-space distribution. Panel (b): real-space marginal distribution. The continuous
line represents the full numeric solution of the Wigner model, while the black dots
represents the analytic solution. We assume initial Gaussian phase-space distribution,

resonant pulses, and constant angular rate and acceleration.

2. For assigned initial conditions and dynamics, we compute the classical trajecto-
ries R(r, p, t) and P(r, p, t). Therefore, the initial distribution is propagated in
time solving the Liouville equation.

3. The phase-space distribution undergoes the interferometer’s pulse sequence. The
model accounts for both pulse-length and off-resonance errors and accepts in in-
put an arbitrary laser intensity profile.

4. After a final free evolution period, the Wigner function is marginalized and the
spatial atomic distribution is obtained. This signal represents the output of a PSI
sensor.

In order to validate the interferometer model we compare the full numeric solution
with an analytic model developed by Hoth et al., [44], assuming an initial Gaussian
phase-space distribution, resonant pulses, constant angular rate and acceleration. The
Wigner model marginal agrees with the analytic solution as are reported in figure B.1.
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Appendix C

Electric field propagation

For a monochromatic light beam with wave-number k = 0 = 2 π/λ, the electric field
evolution is governed by the Helmholtz equation [169]

∇2 Ei(r) + k2
0 [1 + χ(r)] Ei(r) = 0 , (C.1)

with Ei i-th polarization component of the electric field, and χ(r) susceptibility of the
medium through which the light propagates.
The previous equation can be rewritten separating the axial from transverse variables
as

−∂2Ei

∂z2 =
î
∇2

⊥ + k2
0 (1 + χ(r))

ó
Ei , (C.2)

where z is the propagation axis of the electric field.
Assuming that the electric field propagates as a plane wave along the z axis, i.e. Ei(r) =
E(r⊥, z) exp (i k0 z), we get

−
ñ

∂2E(r⊥, z)
∂z2 + 2 i k0

∂E(r⊥, z)
∂z

− k2
0 E(r⊥, z)

ô
=
î
∇2

⊥ + k2
0 (1 + χ(r⊥, z))

ó
E(r⊥, z) .

(C.3)

For low divergent laser beams, the paraxial approximation (∂2/∂z2 ≪ ∂/∂z) is typically
valid. Therefore, the Helmholtz equation simplifies in

−2 i k0
∂E(r⊥, z)

∂z
=
î
∇2

⊥ + k2
0 χ(r⊥, z)

ó
E(r⊥, z) . (C.4)
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C.1 Free-space propagation

For an electric field that propagates in vacuum (χ(r⊥, z) = 0), we can find a general
solution of the Helmholtz equation in Fourier domain. By taking the Fourier transform
of Eq. (C.4) with respect to the transverse variables we obtain

∂Eˆ︁(k⊥, z)
∂z

=
i

2 k0

Ä
−k2

⊥Eˆ︁(k⊥, z)
ä

, (C.5)

and integrating the equation between z and z + ∆z we obtain

Eˆ︁(k⊥, z + ∆z) = exp

Ç
−

i k2
⊥ ∆z

2 k0

å
⏞ ⏟⏟ ⏞

H“ f (k⊥, ∆z)

Eˆ︁(k⊥, z) . (C.6)

The exponential operator, denoted as H“ f , propagates the electric field in free space and
is responsible for the emergence of a quadratic phase term.

C.2 Propagation through a medium

For an electric field propagating through a medium (χ(r⊥, z) ̸= 0), Eq. (C.4) has no
general solution. However, if we assume that the distance through which the electric
field propagates within the medium is small enough we can neglected the Laplacian-
dependent term and obtain

−2 i k0
∂E(r⊥, z)

∂z
= k2

0 χ(r⊥, z) E(r⊥, z) . (C.7)

Integrating between z and ∆z we get a general solution in the form

E(r⊥, z + ∆z) = exp
Å∫︂ z+∆z

z

i k0

2
χ(r⊥, z) dz′

ã
⏞ ⏟⏟ ⏞

Hm(r⊥, ∆z)

E(r⊥, z) , (C.8)

where the exponential operator Hm is analogous to the free space propagator intro-
duced in frequency domain.
Eq. (C.8) holds if the free space propagation is negligible, or, in other words, if the
phase factor k2

⊥ ∆z/(2 k0) ≪ 1. Therefore, the physical extension of the medium must
be smaller than a quantity, known as depth-of-field, that depends on the maximum
transverse frequency, i.e. ∆z ≪ 2 k0/k2

max. The depth-of-field practically limits the
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maximum size of the object that can be imaged by a monochromatic light beam. In
particular, the maximum transverse frequency could depend on

• The resolution of the imaging system (e.g. numerical aperture).

• The maximum significant frequency in the imaging plane (e.g. spatial modulation
induced by rotation in atomic distribution).

• The electric field wave-number k0
1 .

C.2.1 The Beer-Lambert law

Imaging systems detects light scattered or absorbed by atoms in the form of intensity.
Therefore, it is more useful to write the equation that describes the propagation of the
light radiation through the atomic medium in terms of intensity.
Given the relation between intensity and electric field I ∝ |E|2 = E∗ E, we can compute
the rate of change of the intensity as

∂I
∂z

∝ E∗ ∂E
∂z

+
∂E∗

∂z
E , (C.9)

and using Eq. (C.7) we get

E∗ ∂E
∂z

+
∂E∗

∂z
E =

Å
i k0

2
χ − i k0

2
χ∗
ã

E E∗ . (C.10)

Remembering that for a generic complex number c it is valid the following relation
Im{c} = (c − c∗)/(2 i), we finally obtain the so-called Beer-Lambert law

∂I(r⊥, z)
∂z

= −k0 Im{χ(r⊥, z)} I(r⊥, z) , (C.11)

that describes the intensity attenuation of a light beam passing through a medium char-
acterized by a susceptibility χ.

1This provides the ultimate limit for the maximum transverse frequency.
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Appendix D

Blue-fluorescence modelling

D.1 Optical Bloch equations

In this Appendix, we present the set of equations that describe the atomic dynamics
in a multi-level system. This forms the basis for the blue-fluorescence modelling, the
results of which are presented in Chapter 8.
The optical Bloch equations (OBE) for an atomic multi-level system can be written in
general form [170]

∂ρ

∂t
=

1
i h̄

[H, ρ]⏞ ⏟⏟ ⏞
Laser-atom

+∑
j,k

Γkj

ï
Ljk ρ L†

jk −
1
2

Ä
L†

jk Ljk ρ + ρ L†
jk Ljk

äò
⏞ ⏟⏟ ⏞

Spontaneous emissions

, (D.1)

where ρ is the density matrix operator, H is the Hamiltonian describing the laser-atom
interaction, Γkj is the decay rate for the generic transition |j⟩ → |k⟩, and Ljk = |k⟩ ⟨j| is
the jump operator 1.
The Hamiltonian in the rotating frame is given by [171]

H = ∑
j,k

h̄ ∆jk |k⟩ ⟨k|+
h̄
2
(︁
Ωjk |j⟩ ⟨k|+ Ωkj |k⟩ ⟨j|

)︁
(D.2)

,

where ∆jk = ωjk − ω0
jk is the detuning from the resonant |j⟩ → |k⟩ transition, and Ωjk is

the Rabi frequency expressing the coupling between the two states.
The spontaneous emission part can be simplified expanding the jump operators

1Clearly, it is valid the relation L†
jk = |j⟩ ⟨k|
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∑
jk

Γkj

ï
|j⟩ ⟨k| ρ |k⟩ ⟨j| − 1

2
(︁
|k⟩ ⟨j| |j⟩ ⟨k| ρ + ρ |k⟩ ⟨j| |j⟩ ⟨k|

)︁ò
, (D.3)

and noting that ⟨k| ρ |k⟩ = ρkk, and ⟨j| |j⟩ = 1, we obtain

∑
jk

Γkj

ï
|j⟩ ρkk ⟨j| − 1

2
(︁
|k⟩ ⟨k| ρ + ρ |k⟩ ⟨k|

)︁ò
. (D.4)

For an atomic multi-level structure the term Γkj = bjk Γ, where Γ is the fine structure
linewidth and bjk is the branching ratio that accounts for the hyperfine structure. The
branching ratio of the spontaneous decay associate to the transition |F⟩ → |F′⟩ is given
by [170]

bFF′ =
C2

FF′

∑
F

C2
FF′

(D.5)

where the coupling strength CFF′ is related to the Clebsch–Gordan coefficients, µ(. . .)
via the relation

C2
FF′ = ∑

mF

µ(F, mF; F′, m′
F)2 . (D.6)

The absolute value of the Clebsch–Gordan coefficient associated to the transition |F, mF⟩ →
|F′, m′

F⟩ is given by

µ(F, mF; F′, m′
F) =

√︁
(2 F′ + 1)(2 F + 1)(2 J + 1)

(︄
F′ 1 F
m′

F q −mF

)︄{︄
J J′ 1

F′ F I

}︄
(D.7)

where round and curly brackets denote, respectively, the Wigner 3-j and 6-j symbol.
The total nuclear angular momentum number within a single fine structure level is
given by I = max{F} − J. The upper state magnetic sub-level m′

F = mF + q, where
q = 0, ±1 indicates the polarization of the laser field. We observe that the sum of the
square of the Clebsch–Gordan coefficients over all the mF sub-levels does not depend
on the polarization parameter q: indeed, the term C2

FF′ has the same value for every q.
For this reason, we can compute the terms C2

FF′ setting q = 0.

Similarly, the Rabi frequency Ωjk for a multi-level system depends on the hyperfine
structure coupling via the coupling strengths. For the transition |F⟩ → |F⟩, the Rabi
frequency is [170]
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| ⟩𝑗𝑗

| ⟩𝑘𝑘

FIGURE D.1: Generic two-level system.

ΩFF′ =

 
C2

FF′ s
2

Γ , (D.8)

where s = I/Is is the saturation parameter and is given by the ratio between the
laser intensity and the saturation intensity. The saturation intensity for the circularly-
polarized cycling transition is given by [170]

Is =
π

3
h̄ ω

λ2 Γ . (D.9)

D.2 Blue-fluorescence for 85Rb

Background-free detection can be achieved in 85Rb via a two-photon ladder transition.
The 5S1/2 state is coupled with the 5D5/2 state via the intermediate 5P3/2 state using
780nm and 776nm lasers. From the 5D5/2 state, a fraction of atoms decays back to the
5S1/2 state via the 5P3/2 level, emitting ‘red’ photons. Another fraction of atoms decays
to the 5S1/2 state via the 6P3/2 level, emitting ‘blue’ photons at 420nm. Figure D.2 shows
the fine structure of 85Rb [172].

Table D.1 reports the fine structure parameters of the atomic transitions required for
achieving background-free imaging in 85Rb [173]. It is observed that the linewidth of
the 776nm transition is approximately 14 times smaller than that of the 780nm transi-
tion. Consequently, the 776nm transition is more susceptible to Doppler broadening
and necessitates a laser system with high spectral purity.
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FIGURE D.2: Two-photon ladder system used to generate background-free imaging in
85Rb. Energy levels are not to scale.

TABLE D.1: Fine-structure parameters of the 85Rb ladder system. The indicated satu-
ration intensity corresponds to the circularly-polarized cycling transition.

Transition Wavelength [nm] Saturation intensity [W/m2] Linewidth (Γ)

5S1/2 → 5P3/2 780 16.48 2π × 6.066MHz
5P3/2 → 5D5/2 776 1.2 2π × 0.431MHz
5D5/2 → 6P3/2 5200 0.0021 2π × 0.233MHz
6P3/2 → 5S1/2 420 10.3 2π × 0.583MHz

Tables D.2 and D.3 reports the coupling strengths and the branching ratios that charac-
terize the hyperfine structure of the involved transitions. We observe that the 5P3/2 and
the 6P3/2 states have the same hyperfine structure.

The blue-fluorescence modelling is based on the numerical resolution of the OBE, that
is written in the matrix form

ρ̇v = A ρv , (D.10)

where the ρv is a column vector obtained reshaping each row of the density matrix,
i.e. ρv =

[︁
ρ(1, :), ρ(2, :), . . . ρ(n, :)

]︁T, and the notation ρ(i, :) indicates the i-th row of the
density matrix.
The coupling matrix A depends on the saturation parameters of the 780nm and 776nm
transitions, s780 and s776, and on the detunings ∆780 and ∆776.
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TABLE D.2: Branching ratios and coupling strengths of the 5S1/2 → 5P3/2 (λ = 780nm)
and 6P3/2 → 5S1/2 (λ = 420nm) transitions in 85Rb. Here, F′ (F) denotes the hyperfine

structure level of the upper (lower) state.

FFF F′F′F′ C2
FF′C2
FF′C2
FF′ bFF′bFF′bFF′

2
1
2
3

1/2
35/54
14/27

1
7/9
4/9

3
2
3
4

5/27
35/54
3/2

2/9
5/9

1

TABLE D.3: Branching ratios and coupling strengths of the 5P3/2 → 5D5/2 (λ =

776nm) and 5D5/2 → 6P3/2 (λ = 5200nm) transitions in 85Rb. Here, F′ (F) denotes
the hyperfine structure level of the upper (lower) state.

FFF F′F′F′ C2
FF′C2
FF′C2
FF′ bFF′bFF′bFF′

1
0
1
2

2/9
7/15
14/45

1
7/10
7/25

2
1
2
3

1/5
2/3
4/5

3/10
3/5

18/35

3
2
3
4

2/15
7/10
3/2

3/25
9/20
3/4

4
3
4
5

1/18
1/2
22/9

1/28
1/4

1

We solve the OBE using the matrix exponential method by dividing the integration
domain in equal intervals of length ∆t, and computing at each time-step the quantity

ρv(t + ∆t) = exp (A ∆t) ρv(t) . (D.11)

The method can also be applied to the case of a time-variant system, where the satura-
tion and detuning parameters are described by piece-wise control laws.
Unlike rate equations, OBE account for possible coherent processes and can be used in
the strong coupling regime. However, this comes at the price of an increased number of
variables. The density matrix has dimensions of NxN, where N is the number of con-
sidered states. For the 85Rb case, we consider all the N = 16 hyperfine states involved
in the generation of the blue-fluorescence signal to account for losses in dark states.
Figure D.3 shows the results of the OBE solution in terms of the number of scattered
red and blue photons per atom. We compare the complete 16-state model with a simple
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(A) Scattered photons (B) Relative error

FIGURE D.3: Result of the multi-level atomic dynamics. Panel (A): Number of red and
blue scattered photons per atom. The continuous lines are the solutions of the com-
plete 16-level model, while the dashed lines are the steady-state solution of a simple
4-level model that does not account for losses in the dark states. Panel (B): relative er-
ror in the number of scattered atoms when using the simple 4-level model. Simulation
parameters: laser intensity parameters s780 = 0.1, s776 = 10, laser frequency parame-

ters ∆780 = ∆776 = 0.

4-states model that does not take into account losses in dark states due to the hyper-
fine structure. The error in the number of scattered red and blue photons is, respec-
tively, ∼ 32% and ∼ 24% for relatively modest laser intensity parameters (s780 = 0.1,
s776 = 10) and on-resonance (∆780 = ∆776 = 0). Therefore, the losses are not negligible,
and we need to consider the entire hyperfine structure.
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