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Abstract

In a model with robots, automatable and non-automatable pro-
duction, we study robot-labour substitutions and show how they are
influenced by a country’s "innovation system". Substitution depends
on demand and production elasticities, the country’s innovation capa-
bilities and openness. Making use of World Economic Forum data we
estimate the relationship for thirteen countries and find that countries
with poor innovation capabilities substitute robots for workers much
more than countries with richer innovation capabilities, which might
complement them. Innovation capabilities play a bigger role in the
high-tech electronics sector than in other manufacturing and play a
limited role in non-manufacturing.
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1 Introduction

Recent advances in industrial robotics are making it possible to automate
many production processes, especially in manufacturing. The question about
their role in labour markets most frequently raised in the empirical literature
is whether the new technologies are taking jobs away from workers; more
formally, whether robots and human labour are substitutes or complements.
In this paper we analyze the impact of the introduction of robots on the
allocation of hours of work, in an economy which uses both automatable and
non-automatable production technologies; namely production technologies
with high and low robot-labour substitution elasticities.
In a theory section we develop a model of an open economy with a robot-

using sector, which produces its output with a nested production function
with two labour inputs, one a substitute and the other a complement to ro-
bots. We show that equilibrium allocations depend on several parameters,
with the elasticities of substitution between production inputs and the elas-
ticity of final demand playing a key role. A fall in the price of robots relative
to the price of labour could lead to either an increase or a decrease in overall
hours of work in the robot-using sector of the economy, depending on the
values taken by these parameters.
We then switch to multi-country empirical work and discuss the institu-

tions that are summarized in the country’s “national innovation system.”A
national innovation system is defined as a network of institutions, includ-
ing universities, industrial research units and other technical and scientific
establishments, whose activities and interactions affect the technological de-
velopment of an economy. It summarizes the “innovation capabilities”of a
country, and it includes the areas of the economy that affect searching, ex-
ploring and learning, which are all critical activities for the acquisition and
generation of knowledge.1

Robots are capital goods embodying a new “automation”technology that
might displace or complement labour, measured by hours of work. In our
empirical work we show that as in the pioneering work of North (1990), or the
more recent work by Acemoglu and Robinson (2012), the impact of robots
on hours depends on the institutional structure of the country, in this case its
innovation system. In estimates with data from thirteen industrial countries
over the period 2006-2016, we find that in contrast to earlier work, taking into
account the innovation system of a country gives precise results about the
impact of robots on hours of work. Countries that rank low in their national

1Different aspects of this institutional structure are discussed by Freeman (1987), Lund-
vall (1992), Nelson (1993), Nelson and Winter (2002), the European Commission (2018)
and the Organisation for Economic Cooperation and Development (OECD 1997 and 1999).
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innovation system substitute robots for human labour more than countries
that rank higher, which might increase hours when robots are introduced.
Access to international markets is an important channel through which these
effects take place. Countries with better innovation systems are better able
to use the robotics technology to increase their productivity relative to other
countries. This improves their trade balance and so they increase domestic
production to meet this additional demand.
Our model consists of a robot-using sector (essentially manufacturing)

and a labour intensive one that does not use robots (services). The driving
force for the introduction of more robots is the fall in their relative price,
which is widely documented and which we take as exogenous.2 An innova-
tion of our CES production function in manufacturing is that hours are of
two types. One type has high elasticity of substitution with robots, which
we call automatable, and intuitively associate with assembling goods, and a
second one has low elasticity of substitution, which we associate with manage-
ment, research, sales and robot maintenance. Our CES structure is nested,
such that the automatable part produces intermediate goods which are sub-
sequently combined with the second type of labour into final output. The
economy is closed by a second sector that has a simple linear technology
in labour only. Our nested production structure could be given a simpli-
fied task-based interpretation, with two types of tasks, the automatable one
that is characterized by a high elasticity of substitution between capital and
labour, and the non-automatable one that is characterized by a low elasticity
of substitution.
In the derivation of the impact of a lower robot price on hours, we find that

production and demand elasticities interact to produce the equilibrium net
effect. These are the elasticity of substitution between hours and robots in the
automatable part of production, which works against hours when robots are
introduced; the complementary elasticity in the non-automatable part, which
works to increase hours when the intermediate output of the automatable
part increases; and the overall price elasticity of the final demand for output,
which is made up of the domestic elasticity and the elasticity of demand for
imports and exports.
The link between the innovation capabilities of a country and these find-

ings is provided by a key assumption, which was motivated by the arguments
elaborated in the literature on national innovation systems.3 This is that
countries with better innovation capabilities invent new production meth-

2See for example, International Federation of Robotics (IFR 2017) and Graetz and
Michaels (2018). The underlying assumption is that the fall in the price of robots is due
to improvements in their production technology, which we do not include in the model.

3See the references in footnote 1
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ods, or make better use of the existing automation technologies, to achieve
a more productive combination of robots and labour. In the nested produc-
tion function this is represented by a higher TFP of the automatable part
of production in countries with better innovation systems, which is the only
part of production that employs robots.
To give more intuition to this assumption we can think of robots as generic

blueprints that are brought into production, and local expertise is adapting
them to use in the automatable part of production. A country with better
innovation capabilities, in the form of better research institutions and scien-
tific personnel, is able to develop a more productive combination of robots
and hours of work out of the blueprints than one with weaker innovation
capabilities.
With this assumption, the main result of our theoretical model is that

there are two channels through which the innovation system influences the
net robot-labour substitutions. The first channel holds in the closed as well as
the open economy. It is that if the domestic demand elasticity exceeds the low
elasticity of substitution between the intermediate output of the automat-
able part of production and the labour employed in the non-automatable
part, there are two opposing influences on overall hours in manufacturing:
a negative one that originates in the production technology of the automat-
able part and a positive one that originates in the complementarity between
hours in the non-automatable part and the intermediate output of the au-
tomatable part of production. The innovation in this result is that unlike
earlier derivations, for a (possible) positive impact on hours of work, the final
demand elasticity does not have to exceed the high elasticity of substitution
between robots and hours in the automatable part of production, but the low
one in the non-automatable part.4 We show that in countries with a more
advanced national innovation system the positive (complementary) effect on
hours is relatively stronger than the negative (substitutable) effect than it is
in countries with weaker systems. An intuition for this result is that because
of the higher productivity of the automatable part of production in countries
with a stronger innovation system, a given substitution of robots for labour
in the automatable part of production produces more intermediate output
in the country with the stronger system, and so increases the demand for
complementary labour by more.

4There is a large literature that derives results of the kind referred to here, associ-
ated with the structural transformation of economies that experience uneven technologi-
cal progress. Our model can be interpreted as one in which technological progress takes
place only in the sector producing robots, which are then used as inputs in some other
sectors. See for example Ngai and Pissarides (2007), Acemoglu and Guerrieri (2008) and
Herrendorf, Rogerson and Valentinyi (2014) for a survey.
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The second channel through which the innovation system influences the
substitutions is international trade. Because of the higher productivity of the
automatable part of production, countries with a more advanced innovation
system have a comparative advantage in international trade. When robots
are introduced their productivity rises by relatively more than the produc-
tivity of countries with weaker systems, lowering the relative international
price of their manufacturing goods and so raising the international demand
for their outputs. Domestic firms increase the number of hours of work to
meet this demand.5

We then turn to data and test our propositions about the role of the na-
tional innovation system in robot-hours substitutions. Our data are annual
observations for 2006-2016 from thirteen OECD countries, seven manufac-
turing sectors and three non-manufacturing sectors.6 The level at which we
do our empirical work is closest to the paper by Graetz and Michaels (2018),
but we focus on a different question. Graetz and Michaels focused on in-
dustrial productivity in a set of industries and countries comparable to ours
(although for a much earlier time period). They examined the impact of
robots on productivity by regressing the difference between the 2007 and
1993 productivity levels on robot density (the ratio of robots to hours of
work measured in millions) and some other variables. They find a strong
impact of robots on productivity, something that our model requires, but
when they considered their impact on employment they found that robots
do not influence it, except for a small impact on low-skill workers. We use
annual observations, which give richer results for hours of work, and show
that taking into account the national innovation system ties down a statis-
tically strong impact of robots on employment that varies across countries
and sectors.
Making use of a similar data set, Carbonero, Ernst and Weber (2018) find

a small negative impact on hours in industrial sectors in developed countries
but a larger negative impact in emerging countries. Their findings can be
given an interpretation that is consistent with ours. Emerging countries on

5Matsuyama (2009) has derived the related result for a biased rise in sectoral pro-
ductivity. An increase in comparative advantage from biased technological progress has
a positive impact on employment in the sectors that experience the faster productivity
growth, which acts against the negative closed-economy effect when the domestic demand
elasticity is low.

6The thirteen countries are the United States and twelve European countries, Aus-
tria, Belgium, Chechia, Denmark, France, Finland, Germany, Italy, Netherlands, Spain,
Sweden, and the United Kingdom. The seven manufacturing sectors are electronics and
electrical goods, food and beverages, metals, plastics and chemicals, textiles, transport
equipment, and wood and paper, and the three non-manufacturing sectors are agriculture,
utilities and mining and quarrying.
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average have poorer innovation systems than industrial countries, so they
are more likely to use robots to substitute labour without complementary
job creation.7

We take country-industry data from the International Federation of Ro-
botics (IFR) and EU KLEMS to compute the number of robots per million
working hours. To compute our innovation index we extract from the World
Economic Forum’s Global Competitiveness Report (Schwab 2017 and ear-
lier versions) country-level measures of “innovation capacity.”Our index of
a country’s national innovation system is the simple average of the scores
for six indicators: the availability of scientists and engineers, collaborations
between universities and industry in R&D, government procurement of tech-
nology products, quality of scientific research institutions, company spending
on R&D and capacity for innovation. The individual scores are compiled by
the World Economic Forum from surveys of senior company executives.
In our tests we found that there are statistically significant differences

between the two “high-tech”sectors of electronics and electrical goods and
transport equipment, and the “low-tech” sectors that make up the rest of
our sample. The innovation system plays an important role in signing the
impact of robot density on hours in all manufacturing sectors, but much less
so in non-manufacturing. Its biggest impact is in electronics, which is not
surprising given the innovation activity in that sector. The introduction of
robots in that sector has a strong negative impact on hours in countries with
a poor innovation system, like Italy and Spain, but a strong positive impact
in countries with a strong innovation system, like Germany and the United
States. In transport equipment, which is by far the biggest user of robots,
there are stronger substitutions between labour and robots, but the national
innovation system still plays an important role; in countries with a strong
system the estimates are either not significantly different from zero or they are
weak positive. We also tested substitutions in three production sectors that
do not belong to manufacturing, agriculture, mining and utilities, which are
very small users of robots, and found that robots substitute hours regardless
of the innovation system of the country.
The rest of the paper is organized as follows. Section 2 describes our

model of two sectors, one that uses robots and one that does not. Section 3
defines the innovation system of a country and discusses the channels through
which it influences the equilibrium of the economy and the robot-labour

7Another set of studies consider the impact of robotics on employment across regions,
an issue that we do not address here. See Acemoglu and Restrepo (2020) for a study of the
impact of robots in US commuting zones and Chiacchio, Petropoulos and Pichler (2018)
for local labour markets in the European Union. Both sets of authors find large negative
effects on local employment.
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substitutions. In section 4 we discuss our data and in section 5 we show
our estimation results. In an Online Appendix we report further tests of our
empirical specification with a number of extensions and robustness tests. The
main results discussed in the Online Appendix are summarized in section 6,
and the overall results of the paper in section 7.

2 A two-sector model with robots and labour

The objective of this section is to solve an equilibrium model that can be used
to derive the connections between robots and hours of work. The literature
that calculates the number of jobs that robots could potentially replace usu-
ally lists tasks and examines whether robots have the capability of performing
these tasks. The econometric literature has mostly modelled the adoption
of robots as the profit-maximizing choice between humans and robots in the
performance of particular tasks.8 Our approach can be interpreted along
similar lines to the task-based approach, with labour performing two types
of tasks. One type has a high elasticity of substitution with labour, and
the other a low elasticity of substitution. The classification of tasks into two
types, rather than a continuum, enables us to write the technology facing the
robot-using firm as a nested CES production function, and use conventional
techniques to get the equilibrium solution.
We define the production function over hours of work and assume that

robots are the only capital good.9 Our formulation is consistent with two
well-known observations. First, a company that employs workers in activities
that can be automated through the adoption of robots, also employs workers
in activities that are complementary to the output of robots. The allocation
of hours of work to these two types of activities is a matter decided by profit-
maximizing criteria and parameter values.10 Second, in an economy-wide
model, the introduction of robots is not uniform across sectors, and this

8On the former, see the pioneering work of Frey and Osborne (2017) and the many
studies that followed, e.g., McKinsey Global Institute (2017), Nedelkoska, and Quintini
(2018) and Josten and Lordan (2020). On empirical modelling see Acemoglu and Restrepo
(2020) and Graetz and Michaels (2018). A notable early exception using more conventional
techniques to study the substitutions between labour and capital is Zeira (1998).

9For intuition within the task-based approach, we can think of an hour of work as the
time needed to complete a task. The rest of the analysis would be virtually unaltered.
Capital other than robots could be introduced in a separate production nest but it would
complicate the analysis with no additional insights for the correlations between robots and
hours of work.
10See Lin (2011) and Acemoglu and Restrepo (2019). This was also noted in more

applied research, e.g., by the McKinsey Global Institute (2017), in reference to changes in
sectors such as banking.
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causes employment reallocations across sectors, which may have an impact
on robot-labour substitutions through price and wage affects.
To illustrate our first point, which is the new feature in our production

technology, consider a car manufacturer. There is a car production side,
which is capital intensive and employs robots and workers engaged in tasks
that can be automated, such as those on assembly lines. There is also a re-
search and administrative side, which consists of managers, research workers,
new model developers, sales people, drivers who test and demonstrate cars,
capital maintenance workers, real estate maintenance workers, and possibly
others. This side of the overall production is labour-intensive and comple-
mentary to the output of the production side. The elasticity of substitution
between workers and cars in this part of production is low, as the people
working here are engaged in improving car quality, improving the organiza-
tion of production, and when the output is done, take the cars to the market.
Our argument is that as robots displace workers in some parts of manu-

facturing production, new jobs are created in manufacturing itself, but other
jobs can also be created in the service sectors of the economy to take any
workers leaving manufacturing.
We consider a model of an open economy with two sectors in full employ-

ment equilibrium. Sector 1 produces a consumption good, which is tradable,
and has a technology that can use both labour and robots. Sector 2 uses
only labour as an input and produces a consumption good that is not trad-
able. Sector 2 is modelled as a labour intensive sector with linear technology,
which simplifies the equilibrium analysis. Sector 1 can be identified with
manufacturing, and sector 2 is the rest of the economy, which is dominated
by services. We derive the equilibrium of this economy under the assumption
that robots can be hired at a fixed and exogenous price ρ, expressed in wage
units. This price has been falling in the international economy because of
technological improvements in the production of robots and it is the driving
force of changes in our model.11

A firm in the robot-using sector has a two-part nested production struc-
ture. One part produces some intermediate output F by employing both
robots and labour, with some finite but large elasticity of substitution. We
call this the automatable part of production. A second higher-level part of
the overall production structure employs labour that is combined with the
intermediate goods produced by the automatable part to produce the final
output of the sector. We call this side of production the non-automatable
part. The elasticity of substitution between the automatable output F and
the labour employed in the non-automatable part of production is positive

11See International Federation of Robotics (2017) and Graetz and Michaels (2018).
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but low.
The automatable part has production function,

(1) F = V
[
αH1R

(s−1)/s + (1− α)R(s−1)/s
]s/(s−1)

,

where H1R are the hours supplied by human labour, R are the robots em-
ployed in the sector, V is a productivity parameter and α ∈ [0, 1], s > 0 are
parameters. F is intermediate output.
Parallel to this production activity, firms in the robot-using sector employ

labour in the non-automatable part of production, with production function,

(2) Y1 = A1

[
βH

(σ−1)/σ
1N + (1− β)F (σ−1)/σ

]σ/(σ−1)
.

Here Y1 is the output of sector 1, H1N are the hours of work employed in
the non-automatable part of production, β ∈ [0, 1] is a parameter and σ > 0
is the elasticity of substitution between the automatable part of production
and the non-automatable one. The parameter A1 is another productivity
parameter.
On the basis of our earlier discussion, we assume that σ < 1 and s >

σ; i.e., that the intermediate output produced in the automatable part of
production is complementary to the labour employed in the non-automatable
part, and that robots are a strong substitute for labour employed in the
automatable part of production. (We argue later that s > 1, although our
results will go through as long as s > σ.) The manufacturing firm chooses
its inputs, R,H1R and H1N subject to given prices of output p1 and prices of
factors, respectively ρW,W and W, to maximize profits.
We complete the description of the labour market by introducing the

labour intensive sector 2,

(3) Y2 = A2H2,

with obvious notation that parallels sector 1, and output price p2.
The demand side of the model is derived from the consumer maximization

problem,

max
c1,c∗1,c2

U (c) = ln
[
ωc̃

(ε−1)/ε
1 + (1− ω)c

(ε−1)/ε
2

]ε/(ε−1)
(4)

c̃1 =
[
ψc

(η−1)/η
1 + (1− ψ)c

∗(η−1)/η
1

]η/(η−1)
(5)

2∑
i=1

pici + p∗1c
∗
1 ≤ Y,(6)
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where c1 and c2 are the consumption levels of the domestic goods 1 and 2,
c∗1 is the consumption of imports and Y is aggregate income. We assume
0 < ω < 1 and 0 < ψ ≤ 1, allowing for the case of the closed economy when
ψ = 1. The elasticities ε and η are both positive, with η ≥ ε (see below for
more discussion). p1 and p2 are domestic prices and p∗1 is the exogenous price
of imports.
Although we do not model explicitly the foreign sector to derive an equi-

librium value for p∗1 or for the demand for exports, later in this section we
make some assumptions that enable us to treat foreign demands and prices
symmetrically to those of the domestic economy. Here we complete the de-
scription of the model by writing c∗∗1 for exports.
Labour markets clear subject to the resource constraint,

H1 +H2 ≤ 1, where(7)

H1 = H1R +H1N .(8)

Output markets clear according to

c1 + c∗∗1 ≤ Y1, c2 ≤ Y2(9)

Y = p1Y1 + p2Y2.(10)

Equation (9) says that domestic output is either consumed domestically or
exported, and equation (10) says that aggregate income is equal to the value
of domestic output.
Definition. Equilibrium is defined by an allocation for consumption

goods that satisfies the consumer maximization problem (4)-(6), a labour and
robot allocation that maximizes profit p1Y1− (H1R +H1N − ρR)W subject to
the resource constraint (7) and prices p1, p2 and W that satisfy the market
clearing conditions (9)-(10), for given production functions (1)-(3), exoge-
nous relative robot price ρ, demand for exports c∗∗1 and foreign price p∗1.

We state here the main results of the model for a given innovation system
and terms of trade in two Propositions, and collect all derivations and proofs
in the Appendix. Proposition 1 is proved by making use of the firm’s marginal
productivity conditions, so the consumption, import and export conditions
are not used in the proofs.

Proposition 1 Lower robot price raises robot density (R/H1) and output
per hour (Y1/H1) in sector 1 and lowers relative price (p1/p2).

The intuition behind these results is that lower robot price is equivalent to
a technological improvement that benefits the robot-using sector. The lower

11



robot price is due to technological improvements in the robot-producing sec-
tor, which is not modelled here, so it is an example of a technological im-
provement in an intermediate goods sector (the robots) that transfers to the
firms that use the intermediate good as an input. The results of Proposition
1 about output per hour have been the focus of the empirical work of Graetz
and Michaels (2018) and we will not test them further.
In order to derive results for the allocation of hours across the two sectors

we need to bring in the demand side. The relative prices derived in the proof
of Proposition 1 in the Appendix are given by:

p1
p2

=
A2

A1X1/(σ−1)(11)

X ≡ V σ−1qσ−1(1− β)σ + βσ(12)

q ≡
[
αs + (1− α)sρ1−s

]1/(s−1)
.(13)

In order to give some intuition to these results, letWpF be the implicit price
at which the firm producing Y1 could buy the intermediate output F (e.g.,
if it was produced by someone else). Then from the definition of F in (1)
and the optimal relative inputs derived in the Appendix, (24) and (25), we
derive that pF = 1/V q. So q is proportional to the inverse of the cost of F
to the firm. In parallel to this interpretation, X1/(σ−1) is proportional to the
inverse of the cost of producing the final output, which explains the reason
for the price ratio in (11). Since q′(ρ) < 0, and α and s are fixed technology
parameters, when convenient we could use q in place of ρ, with a rise in q
signifying a fall in robot price and consequently of the implicit cost of F to
the firm.
The MRS conditions derived from the consumption model in (4)-(6), yield

the demand-side solution for relative prices,

p1
p2

=
ω

1− ωψ
η/ε

(
p̃1
p1

)(η−ε)/ε(
c1
c2

)−1/ε
(14)

p̃1 =
[
ψηp1−η1 + (1− ψ)ηp∗1−η1

]1/(1−η)
.(15)

Equating the two relative price expressions, (11) and (14), and making use of
(9) and the production functions (see the Appendix for detailed derivations),
we obtain the relative employment levels,

H1

H2

=

(
ω

1− ω

)ε(
A1
A2

)ε−1
[V σ−1qσ−sαs(1− β)σ + βσ]X

ε−σ
σ−1

ψη
(
p̃1
p1

)η−ε(
1− c∗∗1

Y1

)−1
.(16)
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The full solution for the allocation of hours is given by (16) and the resource
constraint (7).
The top line of (16) gives the impact of the substitutions between the

automatable and non-automatable parts of production on the allocation of
hours. The same expression holds both in the open and the closed economy.
For β = 0 production is given by the automatable part A1F only, and the

top line of (16) becomes
(

ω
1−ω
)ε (A1V

A2

)ε−1
qε−sαs.

The second line of (16) shows the contribution of imports and exports
to the allocation of hours. The key endogenous variable here that influences
imports is the ratio of foreign to domestic manufacturing prices, p∗1/p1. From
(15) and the (empirical) assumption η > ε, a rise in p∗1/p1 raises H1/H2 :
the higher relative price makes imports more expensive and so consumption
switches to home manufacturing.
We model exports by treating them as imports of a similar foreign coun-

try. Higher p∗1/p1 makes this country’s exports cheaper internationally, raises
c∗∗1 /Y1, and so from the export contribution (1− c∗∗1 /Y1)

−1in (16) it raises
H1/H2. Let the elasticity by which H1/H2 rise be ξ > 0 (which may or may
not be constant). The contribution of international trade to the allocation
of hours is now simple to summarize, as it depends on the single ratio p∗1/p1
according to the three elasticities η, ε and ξ, the first being the elasticity of
substitution between imported and domestic manufacturing goods, the sec-
ond the elasticity of substitution between domestic manufacturing and service
goods and the third a price elasticity that summarizes the contribution of
exports to relative hours.
For p∗1/p1 we assume a function that reflects the result found in (11) and

treats domestic and foreign prices symmetrically. Since both traded goods
are produced by the domestic and foreign sector 1, relative prices are equal
to the inverse of productivities in this sector:

(17)
p∗1
p1

=
A1X

1/(σ−1)

A∗1X
∗1/(σ−1) .

This ratio is equal to 1 unless there are country-specific parameters in the
respective production functions. We discuss this issue in the next section.
In the closed economy ψ = 1 and c∗∗1 = 0, so the last two terms of (16)

are both unity and the solution for H1 contains only parameters. We can
show

Proposition 2 In the closed economy lower robot price raises hours of work
in the robot-using sector when the ratio (ε−σ)/(σ− s) exceeds a strictly pos-
itive constant K ≤ 1, which is monotonically decreasing in β. The maximum
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value K = 1 is obtained for β = 0, at which value the standard condition for
a positive impact on hours, ε > s, obtains.

The result is given by the differentiation of the first part of expression
(16) with respect to robot price, given the maintained assumption s > σ.
The net impact of a fall in robot price on hours in sector 1 is positive when,

(18)
ε− σ
s− σ ≥

V σ−1(1− β)σqσ−1 + βσ

V σ−1(1− β)σqσ−1 + βσα−sqs−1
≡ K,

with q defined in (13). Given the definition of q, α−sqs−1 ≥ 1 and so K ≤ 1
and ∂K/∂β ≤ 0. For β = 0 it follows trivially that K = 1.
The case β = 0 is the standard CES production function formulation of

capital-labour substitutions in the face of sectoral productivity growth (refer,
e.g., to the structural transformation literature, cited in footnote 4). In this
case, the inequality in (18) becomes ε ≥ s.
The dependence of K on β brings out the significance of the nested pro-

duction structure and the second type of labour input for our results. The
relatively larger the second type of labour is, as shown by a higher β, the
lower is the constant K, and the more likely is (18) to hold. To give intuition
to what is going on with the two-tier production structure, suppose there are
two types of firms, one producing the intermediate output F and the other
buying F and combining it with labour to produce final output. When the
cost of producing F falls, we know from standard results that employment
in the automatable part will increase if the elasticity of the demand for F
exceeds the elasticity of substitution between labour and capital (robots) in
the production of F. These are, respectively, σ and s, as the output of the
firm producing F is bought by the firm with elasticity of substitution σ. As
σ < s, the fall in the price of robots always reduces the demand for hours in
the automatable part of production.
For the firm producing final output, the fall in the price of F yields an in-

crease in the demand for hours if ε > σ, given that the demand elasticity for
final output is ε. If this is satisfied, demand for hours in the non-automatable
part of production increases, working against the fall in hours in the automat-
able part. Clearly, ε ≤ σ is a suffi cient condition for a fall in overall hours
when robot price falls.
Recall that this holds only in the closed economy. In the open economy

import and export effects introduce additional influences on hours alloca-
tions, provided the fall in the relative price of robots changes the terms of
trade p∗1/p1. In symmetric equilibrium, when all countries have identical pa-
rameters, the terms of trade do not change and there are no open economy
effects. We argue in the next section that different innovation systems across
countries produce asymmetries, and derive their impact on hours.
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3 The role of the national innovation system

The national innovation system of a country is a multi-dimensional concept
that depends on several properties of the research environment of the coun-
try.12 Our motivation for its use is as a way of measuring the country’s
innovation capabilities. It depends on the quality of the country’s human
capital (measured in a variety of ways by different indices and in the case of
our index by the availability of scientists and engineers), on collaborations
between companies and universities, on the facilities offered by governments,
and generally on the ease with which companies can engage in R&D. Other
measures of innovation systems, discussed in the Online Appendix, use re-
lated criteria to construct their index, but the numbers they come up with
(at least for the countries in our sample) are highly correlated with our own.
Overall, a higher index of innovation capabilities indicates a country with
better facilities for research, development and applications of new technolo-
gies. We make the key assumption:
Assumption. Countries with a better innovation system (equivalently,

stronger innovation capabilities) have higher-valued productivity parameter
V .
Assuming that A1, or A2, are also higher in a country with a better inno-

vation system might be a natural assumption to make but qualitatively they
have no influence on our results, or any new implications about the role of the
national innovation system on the relation between robot price and hours of
work. The motivation for focusing on V is that it is an index of productivity
in the sub-sector that uses the automation technology. A country with better
innovation capabilities is better at developing and adapting the automation
blueprints of the new technologies to the particular circumstances of its busi-
ness environment. In our model, any impact of the innovation system on
the relative productivities of the two domestic sectors, or of the country’s
international productivity comparisons, acts via V. Given the importance of
V in influencing the role of innovation capabilities in our model, we can refer
to it as the innovation capabilities index of the country.
Our focus in the empirical work is to estimate the elasticity by which a

fall in robot price (equivalently, a rise in robot density, given the result in
Proposition 1) changes hours of work in the robot using sector of the econ-
omy, and how this elasticity depends on the country’s innovation capabilities.
We study the influence of the productivity parameter V (our measure of in-
novation capabilities) on this elasticity in the closed and open economies with
reference to equation (16), which gives the equilibrium allocation of hours.

12See the references in footnote 1 for more discussion.
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3.1 The closed economy

From (18) and Proposition 2 it is easy to show,

Proposition 3 For σ < 1, the constant K in Proposition 2 is lower in
countries with higher innovation index V, so a fall in robot price is more likely
to deliver a rise in overall hours of work in the robot-using sector, provided
ε > σ. For σ = 1 the innovation system has no impact on the response of
hours to the fall in robot price, and for σ > 1 hours fall by more in countries
with better innovation systems.

Differentiation of (18) with respect to V immediately demonstrates the
validity of this Proposition, given that α−sqs−1 ≥ 1.13

3.2 The open economy

The assumed differences in the productivity parameter V across countries
give rise to differences in country responses to the international fall in robot
price, despite the assumed symmetry between countries in all other dimen-
sions. Trade patterns will change, because of different responses of produc-
tivity and prices in countries with different innovation systems.
The channel through which the productivity parameters influence the

robot-hours substitution with trade is the relative price p∗1/p1. As we noted
earlier in this section, a higher p∗1/p1 reduces imports and raises exports, and
so it raises the production of manufacturing goods in the home economy,
with positive effects on hours of work.
The Appendix shows that the following Proposition holds,

Proposition 4 Consider two countries that trade, the “foreign” one char-
acterized by innovation capabilities V ∗ and the “domestic” one by V ≥ V ∗.
For σ 6= 1, a fall in the price of robots raises p∗1/p1, and so increases hours
in the traded sector. The reverse holds if V ≤ V ∗.

The results of this proposition are driven by productivity: countries with
a better innovation system are able to increase their manufacturing pro-
ductivity by more than other countries when robot price falls, and so they
become more competitive in international markets. The reason that their
productivity increases by more is that any given rise in q, caused by a fall in
robot price, has an amplified effect on the implicit cost of the intermediate
output F, because V and q impact the cost multiplicatively. Refer to the
discussion immediately following equations (11)-(13).
13In this expression the productivity parameters A1 and A2 are absent, which justifies

our claim that they can be ignored when discussing the role of a country’s innovation
system.
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3.3 Elasticities: what do we know?

We have identified three channels through which the innovation system in-
fluences the marginal impact of the introduction of more robots on hours
of work: the substitution between automatable and non-automatable hours,
which holds in both the closed and open economy, imports, and exports.
Quantitatively, each one is driven by one or more elasticities. The substitu-
tion between hours in the automatable and non-automatable parts is driven
by the difference ε − σ relative to the difference s − σ. For this channel to
have a large impact on hours requires a large ε compared with s. Imports are
driven by the elasticity difference η − ε, and exports by ξ.14
In the survey of estimates examined by Ngai and Pissarides (2008), a

plausible range for ε for the United States, in a two-sector model of services
and manufacturing, was found to be between 0 to 0.3. Similar results were
derived by Herrendorf et al. (2013) for value-added consumption bundles.
These estimates are derived from consumer demand equations or spending
shares, mainly for the United States, so they approximate the closed economy
values. We were also able to find just one estimate for the elasticity s, from
Cheng et al. (2021), who estimate substitution elasticities in the automatable
part of production for Chinese industries, and find an s between 3 and 4.5,
with a preferred point estimate of s = 3.8.
Results, however, could be different if we consider individual industries

or open economies. Worldwide, the closed economy result holds and robots,
like other productivity-enhancing technologies, reduce global manufacturing
employment. Individual manufacturing sectors might have a different expe-
rience, because of substitution possibilities across products which are either
used as final consumption goods or as intermediate goods. For example,
metal products can be substitutes for plastics, so the elasticity applying to
each separately is higher than the average for manufacturing as a whole.
Many electronic products are inputs into other industries, which will have a
higher elasticity of demand as there are competing factors.
In the open economy elasticities are generally higher because traded man-

ufacturing goods are close substitutes, e.g., German cars versus French cars.
Our sample consists of the United States, the United Kingdom and eleven
European Union countries, which trade substantially, so manufacturing ex-
ports and imports are high. Table 1 illustrates. Outside the United States,
exports of manufacturing goods range from 30.6% of manufacturing output

14Baldwin et al. (2021), in a paper that circulated after these sections were completed,
also discuss the role of elasticities in signing the direction of capital-labour substitutions.
Their model has the elasticities ε and s, but not σ or the innovation system, which play
a critical role here.
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in Italy to 53.0% for the Czech Republic, and imports from 24.8% in Italy to
50.3% in Denmark. Their sum exceeds 90% of output in five of the thirteen
countries in the sample.
Imbs andMejean (2010) estimate import and export elasticities for several

countries, ten of which are also included in our sample. In their benchmark
estimation, the only elasticity that is below one is for imports into Austria,
which is 0.7. For the other countries the range is 1.3 for Belgium to 2.8 for
Italy. Export elasticities ranged from 2.6 in Finland to 3.4 in Spain. It is
clear that with the openness of our economies and the high elasticity values
estimated for imports and exports, the biggest quantitative impact of the
innovation environment originates in imports and exports, and the bigger
the fraction of manufacturing output that is traded, the bigger this effect is
likely to be. For example, even for a large country like France, the demand
elasticity for imports is estimated to be 1.74, so if we use its import share
of 0.42 as weight, the contribution to the overall manufacturing elasticity
coming from imports is 0.73. This is substantially higher than the elasticity
of substitution between manufacturing and services estimated for the United
States. In addition, there is an impact from the high elasticity of demand for
exports. We conclude that existing evidence on trade elasticities is consistent
with a suffi ciently large influence of the innovation system on the impact of
robots on hours of work through this channel.
Our testing procedure for the differences in the impact of robots on hours

in different countries is to estimate the elasticity of hours with respect to
robot density (the ratio of robots in production to hours of work), and make
this elasticity dependent on two other factors, the country’s index of inno-
vation capabilities and its openness to trade. On the basis of the theoretical
discussion in the preceding section, we should expect a better innovation sys-
tem to have a positive influence on the impact of robots on hours of work,
whereas countries with more exposure to international trade should experi-
ence a bigger impact of robots on hours. But whether this impact is positive
or negative depends on the country’s innovation capabilities relative to those
of its trading partners. As our countries are highly productive advanced in-
dustrial countries and trade also with less innovative countries not in our
sample, we should expect the positive impact from international trade to
dominate over any negative effects, at least for the countries with a high in-
novation index. However, this is an empirical issue that can only be resolved
by the estimation.
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4 The data

For our innovation index, we used the innovation capabilities pillar (no. 12)
of the World Economic Forum’s Global Competitiveness Report, which has
been available in its current form since 2006.15 Up to the 2017-2018 Global
Competitiveness Report the innovation capabilities pillar was computed in
comparable format and it was the average of seven indicators: capacity for
innovation; quality of scientific research institutions; company spending on
R&D; university-industry collaboration in R&D; government procurement
of advanced technology products; the availability of scientists and engineers;
and patent applications (see Schwab 2017, p. 323). The main input to the
index is the annual Executive Opinion Survey, which records the opinions
of business leaders about the indicators that make up the index, except for
patent applications. The first six indicators derived from the Survey are
based on the subjective responses of the business people and expressed as
scores on a scale of 1—7, with 7 being the most favourable (for innovations)
outcome. Our index is the average of these six indicators.16 Table 2 gives
the country sample means for the index and some other country variables.
Since we measure the innovation system by “innovation capabilities,”hu-

man capital plays an important role in our analysis. Innovation activities,
such as R&D, are conducted by highly trained employees. It is not surpris-
ing therefore that there is a good correlation between our innovation index
and the human capital of a country. But a good innovation system requires
more than human capital. It also requires favourable policy, certain types
of human capital more than others and generally incentives to companies to
spend resources on R&D. This is reflected in the six pillars that make up our
innovation index and it is also the reason that we refer to it as the overall
innovation index rather than just an index of the quality of human capital.
We tested whether using a human capital index would give the same results
as our innovation index but results were much poorer both statistically and
in interpretation. Full results are given in the Online Appendix.17

15The Appendix gives more details on sources and the construction of variables.
16For patents the World Economic Forum takes the number of applications filed under

the Patent Cooperation Treaty (PCT) and normalizes it to a scale of 1-7 to align it with the
results of the Executive Opinion Survey. The way of counting patents, however, changed
during the years of the sample and it was not possible to go back and adjust the earlier
numbers on the basis of the new counting method. Partly because of this change, partly
because the patent indicator is based on a different collection method from the other six,
we did not include it in our index. We repeated all our regressions with the average value
for pillar 12 given by the World Economic Forum and results were comparable throughout,
with small changes in point estimates only.
17The human capital index that we used was the percentage of 25-64-year-olds with
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We use annual observations of the innovation index, although it is a slow-
changing index and there are no country reorderings during the sample pe-
riod. In the sample means in Table 2, three countries stand out as having
the lowest index values for innovation, Italy, Spain and the Czech Republic
(Czechia), with a gap between them and the rest. These are the only coun-
tries that we have outside North America and North-Western Europe. At the
more innovative end progression is smoother, although the next six countries
could be described as middling and the remaining four, Germany, Sweden,
Finland and the United States, as the innovation leaders. The mean value
of the index is 4.85, with France approximately in the middle, four other
countries below it and the remaining eight above it.
We measure a country’s openness to trade by the sum of manufacturing

imports and (gross) manufacturing exports, divided by the country’s total
manufacturing output. Our source for all three are the Input-Output tables,
WIOD database, November 2021 release. The sample means of openness for
each country are given by the sum of the first two columns in Table 1.
The source that we use for the number of productive robots in employ-

ment is the International Federation of Robotics (https://ifr.org), and the
source for the labour market variables is the 2019 update of EU KLEMS
(Stehrer et al. 2019). Our sample is 2006-2016, from the earliest year for
which we have complete data sets for industrial robots and the innovation in-
dex, to the most recent year of the EU KLEMS data. We focus on the seven
manufacturing sectors but we also include three non-manufacturing sectors
in some of the tests for comparisons. We have consistent data from thirteen
industrial countries with some missing observations, especially in the early
years. The list of countries and sectors, with sample means, are shown in
Tables 2 and 3.18

The IFR defines industrial robots as fully autonomous machines that can
be programmed to perform several manual tasks without human intervention.
These tasks include handling, welding, dispensing, processing, assembling
and dismantling. The data are collected from deliveries by the suppliers of
manufactured robots. They are adjusted by the IFR for depreciation by

tertiary education over our sample, 2006 — 2016, compiled by the OECD. See Online
Appendix, section 2.2.
18The three non-manufacturing sectors in Table 3 were the only ones with non-trivial

robot usage in our data. Their robot density is very small compared with manufacturing,
being about as small as 1% of robot density in the manufacturing sectors. Initially we also
included construction in our sample, which uses some robots, but results were poor. It is
a large sector, its average hours being about 70% of average manufacturing hours, but a
very small user of robots. Its average robot number in our sample is 0.16% of the average
number of manufacturing robots (one sixth of 1%). When included results were distorted
because the large number of hours and small number of robots made it an outlier.
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assuming that the average service life of a robot is 12 years and that there is
an immediate withdrawal of the robot after this time (IFR 2017).19

Our employment variable is hours of work in each sector and country.
The IFR uses the International Standard Industrial Classification (ISIC) for
industries, whereas EU KLEMS uses the General Industrial Classification of
Economic Activities (NACE). We matched the two sources by allocating the
original nineteen ISIC Rev.4 industries from the IFR to the NACE Rev.2
industries. We were able to match most sectors one for one but the data for
chemicals and rubber, and plastics and other non-metallic mineral products,
are not reported separately in the IFR dataset. We aggregated these indus-
tries in EU KLEMS, together with coke and refined petroleum products, into
the plastics and chemical products category. Finally, we excluded from our
analysis the residual categories “all other non-manufacturing sectors” and
“all unspecified sectors”. These categories account for about 15% of robot
deliveries.
There are large differences in robot density, both across countries and

across industries (Tables 2 and 3), with transport equipment being the biggest
user of robotic technologies. This partly explains the big robot density values
for Germany, France and Italy. But robot density is also high in Denmark
and Finland, which are not big producers of transport equipment. Non-
manufacturing sectors are very small users of robots when compared with
manufacturing.

5 Empirical model: Elasticity estimates

5.1 Motivation for the estimated equation and expected
signs

As we emphasized in section 3, our objective is to estimate the key elasticity
that connects hours of work and robots, and how it is influenced by the
country’s innovation system; not to do a structural estimation of the model.
The estimated elasticity is derived from (16), afterH2 is substituted out from
the resource constraint H1+H2 = 1, and robot price ρ (or its transformation
in q), is replaced by robot density, making use of the robot density formula
(28) of the Appendix. We have shown that a fall in ρ raises robot density,
R/H1; see Proposition 1.
The impact of robot price on hours of work and its dependence on the

innovation system and openness were derived in several steps in Propositions

19When countries calculate their own operational stock the IFR uses that figure instead.
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2, 3 and 4. As in previous work, the elasticity connecting hours and robot
density cannot be signed a priori, but mixed quantitative estimates exist in
the literature, as summarized in the Introduction. The predictions that can
be tested by estimating the elasticity based on the results of our model are (1)
a measure of the country’s innovation system has a positive influence on the
estimated elasticity between hours of work and robot density, reducing in ab-
solute value an estimated negative elasticity and raising a positive estimate,
and (2) a measure of the country’s openness also has a positive influence on
the estimated elasticity if the country has a better innovation system than
its trading partners, which is likely for at least the more innovative countries
in our sample.
We test these propositions by estimating the correlation between the log

of hours ln(H1) and log of density ln(R/H1) in the robot using sector of the
economy, and making the estimate conditional on measures of innovation and
trade. The estimated equation is,

lnHict = β1 ln(Rict/Hict) + β2 ln(Rict/Hict) ∗ Vct +

β3 ln(Rict/Hict) ∗ Tct + β0 + Zict + εict(19)

Hict is the number of annual hours worked in millions, Rict is the number
of robots in production, each distinguished by industry i, country c and
year t, Vct is the innovation index for each country and Tct is the openness
index. The vector Zict represents country, industry and year fixed effects,
although industry fixed effects turned out to be statistically insignificant and
IV estimation failed to converge when they were introduced.
The elasticity with which hours of work respond to an increase in robot

density, is (β1+β2Vct+β3Tct). Our model predictions are that the estimated
β2 should be positive and the estimated β3 might be positive or negative
depending on the country’s trading partners and their relative innovation
capabilities index. But given that our sample consists entirely of advanced
countries, we would expect the coeffi cient to be positive, as the countries out-
side the sample that they are trading with on average have lower innovation
indices than their own. The estimate for β1 is not restricted by the theory
but given the discussion around condition (18) we expect it to be negative.
We calculate these elasticities for each country at the country sample means
of Vct and Tct.
We estimate equation (19) for manufacturing and for the full sample that

includes the three non-manufacturing sectors listed in Table 3. We estimate
it with OLS as well as with instruments that deal with any endogeneity
bias in robot density. Our preferred instrument is robot density in Japan
over the sample period of our data (fully defined in the data section of the
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Appendix). The instrument is chosen to isolate the impact of technological
improvements in the manufacture of robots. We have chosen Japan as it is
suffi ciently removed from our sample of Europe and the United States, so
other common influences are remote, and it is a country with large robot
densities in manufacturing. Common influences on hours and robot density
might include macro conditions not picked up by the year dummies, responses
to natural disasters, or other events unconnected with technology.20 We also
carried out various other robustness tests in the Online Appendix, and briefly
summarized at the end of this section.

5.2 Estimates for aggregate manufacturing

Table 4 shows the results when all of manufacturing is aggregated into one.
Column 1 shows the elasticity estimate when both innovation capabilities
and international trade are excluded, column 2 introduces the impact of the
innovation environment and column 3 has the full estimate of interactions
with both innovation and trade. The last three columns repeat the estima-
tion with instrumental variables with our preferred instrument, log of robot
density in Japan, treating robot density as an endogenous variable. Our total
observations for manufacturing are 1001 (7 industries in 13 countries over 11
years) but 24 observations were dropped because they had no reliable data
on robots - reported as zero by the IFR.
We estimated the equations with a full set of country fixed effects, which

turned out to be significant, given the differences in size of our countries in our
sample. Because of the large differences in size between some countries, e.g.,
German hours are 21.5 times as many as Danish hours and 7.5 times as many
as Austrian hours, and United States hours are more than twice as many as
German hours, the country dummies that we entered to estimate the country
fixed effects completely dominated the statistics on statistical significance of
the whole set of estimates. To get a better idea of the significance of the
other estimates and the goodness of fit, we computed the F statistics and R2

from regressions that removed the impact of country dummies, by repeating
each regression estimate with dependent variable the log of hours net of the
estimated country fixed effects. In Table 4 and the other tables reporting the
regression results, the F statistics and the R2 are the ones computed after
we removed the country fixed effects.

20We also tested for robustness of the IV estimates with two other instruments, robots
in South Korea, another country with high robot density in its manufacturing, and the
global stock of robots. Results with the alternative instruments confirm our findings and
are discussed in the Online Appendix.
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The results show that both the innovation system and openness to foreign
trade make a statistically significant contribution in all regressions, with a
positive sign. Even after the removal of the country fixed effects, the F
statistics are well above their critical values and the Cragg-Donald Wald
and Kleibergen-Paap Wald F statistics show that our choice of instrument
is good.21 OLS and IV estimation tell a similar story.
Table 5 calculates the net elasticities at sample means from the OLS esti-

mates for four representative countries, Italy, a large country and big user of
robots with the lowest innovation index in our sample, Germany, the biggest
European economy, biggest user of robots, and strong exporter of manu-
facturing goods, Sweden, a smaller European country with high innovation
index and a large foreign trade sector, and the United States, the biggest
economy and top of the innovation index but one that trades much less than
the others.
First, we calculate the elasticities when only the innovation index is in-

cluded in the regression. The estimates show its strong influence on the net
elasticities, with the elasticity for Italy dropping to 0.026 with a large stan-
dard error, for Germany and Sweden rising to 0.21 and 0.22 respectively, and
for the United Sates rising further to 0.24, which is the highest in the sam-
ple when openness is ignored. When openness is introduced, the estimate for
Italy drops further, to a negative and statistically imprecise number, because
of the low openness index for that country. The German estimate remains
approximately the same, at 0.20, whereas the Swedish one rises to 0.24 and
United States one falls to 0.19, because of the relatively large trade flows of
the former and relatively smaller flows of the latter. Thus, when estimating
results for the whole of manufacturing, under the restriction that there are
no industry differences in elasticities, we find that although on average the
introduction of robots in our economies increases hours of work, in coun-
tries with low innovation capabilities and low openness index, the impact is
negative.

21We employ two key diagnostic statistics: the Cragg-Donald Wald statistic and the
Kleibergen-Paap Wald F statistic, to assess the strength of our instrumental variables.
The Cragg-Donald Wald statistic assumes identically and independently distributed er-
rors (i.i.d.). In our case the Kleibergen-Paap Wald F statistic is more appropriate because
of our use of robust standard errors. This statistic extends the Cragg-Donald statistic to
accommodate cases with non-i.i.d. errors, which can include heteroskedasticity, autocor-
relation, and clustered data (Olea and Plueger, 2013).
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5.3 Estimates for high-tech and low-tech manufactur-
ing

We tested for the aggregation of all manufacturing sectors into one and the
aggregation restrictions fail. We separated transport equipment and electron-
ics from the rest of manufacturing and obtained better results. Transport
equipment and electronics are defined by the OECD as high-tech and both
are heavy users of robots; electronics is a producer as well as user of robots
whereas transport equipment is by far the biggest user of robots. The other
five sectors are low-tech except for some elements of our chemicals sector,
which could not be separated out. We refer to their aggregate as low-tech.
We tested for equality of the estimated coeffi cients across the three indus-
trial groups, but equality was strongly rejected in the regressions with and
without the interactions with innovation and trade.22 With the three indus-
trial groups treated separately, both the significance of the F statistics and
the goodness of fit improve substantially across all regressions, although now
both tests for the validity of the instruments show some weaknesses. We
discuss alternative instruments in the Online Appendix. In terms of point
estimates, the IV estimation with our preferred instrument, log of robot den-
sity in Japan, gives results that are most comparable to the OLS estimates,
despite the weakening of the Cragg-Donald Wald F statistic and Kleibergen-
PaapWald F statistic in some cases. We continue discussing the implications
of the estimation results for net elasticities with reference to the OLS point
estimates.
Consider first results for the simple regression without taking into account

the innovation system of the country or trade. In column (1) of Table 6,
the impact of robot density on hours of work is negative for the transport
equipment industry and positive for electronics and the rest of manufacturing.
They are all statistically significant.
In column (4) we estimate the same equation using our preferred instru-

ment, robot density in Japan. The results of the IV regression for transport
equipment and non-tech sectors are similar to the OLS but for electronics
the estimate drops below its standard error.
In column (2) of Table 6 we show OLS estimates when the innovation

system is taken into account. The coeffi cient estimates have the expected
sign, with β1 negative and β2 positive for all industries. This indicates that
in countries with higher index value for innovation, the impact of robots on
hours of work is either weaker negative or positive. The point estimates bring

22In the regressions without interactions the relevant test statistic was F (2, 963) =
285.24, and in the one with interactions with V, it was F (4, 960) = 151.35.
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out more contrasts between the industrial sectors. We highlight two of these
differences, one for electronics and one for transport equipment.
In electronics the innovation system plays a more important role than in

other sectors, driving a bigger impact of robots on hours at both the weakest
and strongest countries. The difference in the net coeffi cient (β1 + β2Vic)
between the most innovative and the least innovative countries (United States
and Italy, respectively) is 0.612 for electronics but only 0.176 for transport
equipment and 0.179 for the non-tech industries. The contrast is even bigger
with the IV estimates. This is to be expected, as electronics is the most
research-driven industrial sector in manufacturing. It is also a producer of
new technologies, so it benefits more from a stronger innovation system.
In contrast to electronics, the transport equipment industry is not very

sensitive to the innovation system. This sector is an outlier in the use of
robots and indeed the possibility of assembling cars with robots was a major
impetus to the development of robot technology, so it is not surprising that
the large use of robots does not create as many new jobs in complementary
tasks. A favourable innovation system in the country still saves some jobs
from replacement by robots in this sector, but it does not yield net job
creation.
The instrumental variables estimation of the regression with the innova-

tion index is in column (5) of Table 6. Overall, the IV estimation confirms a
large role for the innovation index in determining the impact of robot density
on hours of work.
The impact of trade is shown in columns (3) and (6) of Table 6. The

innovation index estimates are robust to the introduction of trade in both
the OLS and IV regressions. Trade has a big influence on electronics in
the OLS regression, which drops when we use IV, but remains marginally
statistically significant. This contrasts with the low-tech sectors, whose im-
pact is enhanced more than in the OLS estimates. An unusual feature of
our estimates of the effect of trade is that the coeffi cient on openness in the
transport equipment sector is negative, although not precisely estimated, in-
dicating that countries that trade in this product are adversely affected by
more openness. This may be due to competition from Japan and Korea in
this sector, a claim that we cannot test but which is consistent with our model
prediction, given that those excluded countries are large users of robots and
exporters of cars.
Table 7 shows the net impacts in each of the three sectors for the four

representative countries that we used in Table 4 for the aggregate estimates.
For Italy, the lowest ranking country, the net coeffi cient is negative in the
electronics and transport equipment industries, but is positive and signifi-
cant in the low-tech sector. The latter result implies that in these sectors
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the introduction of robots raises hours of work in all countries, but with the
exception of chemicals, robot density in these sectors is very low, so their im-
pact on hours is quantitatively small. In the other two sectors, low-ranking
countries lose hours when robots are introduced and high-ranking countries
gain, although the net impact on hours depends also on openness to interna-
tional trade. From the OLS regressions in Table 6 we calculate that the point
at which the sign of the net impact of robot density on hours in electronics
switches from negative to positive is at Vct = 4.68, which is just below the
sample mean, whereas in transport equipment it is Vct = 5.03, which is just
above the mean value. Countries in the middle of the innovation capabilities
distribution, like France and the United Kingdom, would experience a trivial
impact of robots on hours of work. But Germany, Sweden and the United
States increase hours when robot density is increased, especially in electron-
ics and the low-tech sectors. The effect on electronics is largest in Sweden,
because of its openness and its high innovation capabilities index.

5.4 Estimates for non-manufacturing industries

Table 8 shows the results of estimation when we add three non-manufacturing
production sectors to the sample, agriculture, mining and quarrying, and
water supply, gas and electricity (utilities). These three sectors are small
users of robots and there are several zero entries for robot density in some
countries, which we classify as missing observations.23 We use a common
industry fixed effect for non-manufacturing, although the results are virtually
identical with a full set of manufacturing and non-manufacturing fixed effects.
We show only OLS results, as the instrumental variable estimates were not
very precise. The general message in the IV estimates about the role of
the innovation index was, however, the same as the one shown in the OLS
regression.
Hours of work in the non-manufacturing sectors are large, being more than

a third of manufacturing hours, and dominated by agriculture. Robot density
in agriculture is less than one-tenth of the least robotized manufacturing
sector, and there are several zero entries in the sample, which force us to
discard several observations from our manufacturing sectors as well. Despite
this, for manufacturing the results replicate the manufacturing results that
we obtained in Table 6. Our main finding is also replicated, namely that
both the innovation system of a country and its openness are important

23See also footnote 18. Zero entries indicate either very small numbers that are subject
to error or missing observations altogether, most likely also because of small numbers. We
lose 121 observations altogether, so the total number of observations used in the regressions
of Table 8 increase only by 308, instead of the full 429 of the three sectors.
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influences on the impact of robots on hours of work in both manufacturing
and non-manufacturing.
The result that we consistently get for non-manufacturing is that both

the innovation system and openness have a negative influence on the impact
of robots on hours. To understand the net impact of robot density on non-
manufacturing hours, the two effects have to be considered together. We
find that the net effect of robot density on hours of work in these sectors is
negative. For example, the net elasticity in Germany is −0.39 and in the
United States −0.32. The negative elasticities and the weak contribution of
the innovation system are not surprising, given the low research potential in
these sectors and their very limited use of robotic technologies.

6 Summary of robustness tests

In the Online Appendix we report several robustness tests of the manufac-
turing regressions, giving detailed tables with the estimation results. These
are of two kinds, tests for the estimation procedure and tests for the choice
of some variables.
For estimation procedure we experimented with two alternative instru-

ments, robot density in the Republic of Korea from 2006 to 2016 and the
global stock of robots over the same period. Results were similar to the ones
that we obtained with our preferred instrument, robot density in Japan.
A second robustness test introduced a full set of industry dummies for the

seven manufacturing sectors, and with country dummies either individually
or interacted with time effects. None of our results changed because of these
alternative specifications.
In a final specification test we re-estimated the model by excluding Ger-

many, a large country and by some margin the biggest user of robots in its
manufacturing (see Table 2). Its exclusion made virtually no difference to
the estimated coeffi cients in Table 6.
In a second set of robustness tests we tested alternative specifications of

our key variables. There are two other widely-available measures of a coun-
try’s innovation capabilities, the Global Innovation Index and the Summary
Innovation Index of the European Innovation Scoreboard. Both indices are
highly correlated with our World Economic Forum index, and results did
not change when used in place of our index.
Human capital plays an important role in our innovation index and there

is a good correlation between our innovation index and the human capital of
a country. We tested whether our results are driven by human capital and
not by our innovation index, but results were much poorer when a human
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capital index was used in place (or in addition) to our innovation index.24

Next, we tested whether our results change when robot density is replaced
by the log of the number of robots. The main message of our results comes
through, in the sense that a good innovation system acts to mitigate, or
reverse, any negative impact of robots on hours of work.
Our final robustness test for robot density is a very stringent one that

breaks up the innovation index into its six components and runs the OLS
regression in column (3) of Table 6 again, with each replacing the national
innovation index. All indicators except for some estimated coeffi cients for
the availability of scientists and engineers give statistically significant results
that conform to the estimates of Table 6.

7 Conclusions

We have addressed the substitutions between hours of work and robots
that have been taking place in the manufacturing sectors (and some non-
manufacturing) in advanced industrial economies. Our argument is that to
understand the nature and extent of the substitutions we need to look beyond
the physical capabilities of robots and humans, and investigate how the in-
stitutional structure of the country influences the incentives that firms have.
We developed a model of a firm with two types of activities, one in which
robots and human labour are close substitutes, which we called automatable,
and one in which they are complementary to each other. We formalized it as
a nested CES production structure, in which the automatable set of activities
produces an intermediate good with both human labour and robots, which
is then converted into final output with complementary human labour. The
model can be given an interpretation that parallels a task-based approach
but with only two types tasks - one in which robots are strong substitutes
for human labour and one in which they are complements.
Firms choose hours of work and robots to produce the intermediate good

and another set of hours to convert the intermediate good to final output.
The institutional structure that influences their choices is the “innovation sys-
tem”of the country, which summarizes the country’s innovation capabilities.
We made the key assumption that a country with a better innovation sys-
tem is more productive in the automatable part of production, in which the
modern technology, in the form of robots, is employed. We have then shown
that in an equilibrium setting, the robot-using sector of a more innovative
country is more likely to increase hours of work, or reduce them by less, when
robots become relatively cheaper to employ than human labour. This works

24See footnote 17 for the definition and source of the human capital variable.
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through two channels, both of which, in our equilibrium setting, are driven
by relative prices. When the relative cost of employing robots falls, manu-
facturers in the country with the better innovation system are able to reduce
their relative price by more than in the country with the poorer innovation
system, because of their more productive automatable production. Domes-
tically, this increases by more the demand for their goods, which increases
the demand for non-automatable labour. (Automatable labour always falls
when the relative cost of employing robots falls.) The second channel is for-
eign trade. As relative prices of manufactures fall by more in the country
with a better innovation system, domestic demand switches from imported
goods to domestic goods and exports rise. The final outcome depends on
several elasticities, and in a discussion of elasticity estimates in the literature
we concluded that the stronger channel is foreign trade. The countries that
are at the most advantageous position to increase, or reduce by less, hours of
work when the relative cost of robots falls are therefore the ones that have a
large foreign trade sector and a strong innovation system.
In tests with annual data from seven manufacturing sectors over 2006-

16 we found strong evidence for these claims. Countries like Germany and
Sweden respond positively to an increase in robot density, driven by the fall
in the relative price of robots. France, Britain and other countries close to
the mean values of the innovation index are less responsive to the arrival of
robots, whereas Italy and the Czech Republic might reduce hours, because
of their poor innovation systems. The United States is closer to the German
responses, despite its small fraction of traded manufacturing output, because
of its strong innovation system.
We found that in electronics and electrical equipment, an important re-

search sector, the innovation environment plays a more important role than
in other sectors. In contrast, transport equipment, which is the biggest user
of robots, substitutes robots for hours more than other sectors do. We
also found substitutions between robots and hours of work in three non-
manufacturing production sectors, agriculture, mining and utilities. These
sectors are very small users of robots, they generally employ large numbers of
workers, and they are not strong innovation sectors. We found that virtually
all countries reduced hours in these sectors in response to robot introductions.
Our results point to the fact that it is not possible to use estimates from

one country to make inferences about robot-labour substitutions in another,
even if the countries are broadly similar. There are interactions between
robot-labour substitutions and other features of the economy which influence
the estimated elasticities. We have identified the country’s innovation system
and its openness but there could be others that future work might be able
to identify.
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8 Appendix

8.1 Derivations

The profit of the firm in sector 1 is

(20) Π = p1Y1 − ρWR−W (H1R +H1N),

with Y1 given by (2). The maximum satisfies the marginal productivity
conditions,

p1A1(1− β)

(
Y1
A1F

)1/σ
(1− α)V

(
F

V R

)1/s
= ρW,(21)

p1A1(1− β)

(
Y1
A1F

)1/σ
αV

(
F

V H1R

)1/s
= W,(22)

p1A1β

(
Y1

A1H1N

)1/σ
= W.(23)

Dividing (21) by (22) we get the robot density in the automatable part
of production,

(24)
R

H1R

=

(
1− α
αρ

)s
.

Dividing (22) by (23) we get,

(25)
H1N

H1R

= V 1−σ
(

β

1− β

)σ
α−sqs−σ,

with q defined by,

(26) q(ρ) ≡
[
αs + (1− α)sρ1−s

]1/(s−1)
, q′(ρ) < 0.

The function q(ρ) is a uniquely defined function of ρ, given the fixity of α and
s. Higher q (lower relative robot price) raises H1N/H1R under the restriction
s > σ. Higher V also raises the ratio H1N/H1R, under the restriction σ < 1.
Robot density in sector 1 is given by

(27)
R

H1

=
R

H1R

1

1 +H1N/H1R

,

or alternatively,

(28)
R

H1

=
(1− α)sα−sρ−s

1 + V 1−σβσ(1− β)−σα−sq(ρ)s−σ
.
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Proof of Proposition 1. Differentiation of (28) with respect to ρ, given
the definition of q(ρ), yields the result that lower ρ raises density R/H1. To
show that lower ρ raises hourly productivity, we make use of conditions (24)
and (25), to get,

F = α−sq(ρ)sV H1R,(29)

Y1 = A1H1Nβ
−σXσ/(σ−1),(30)

X ≡ V σ−1qσ−1(1− β)σ + βσ.(31)

Hourly productivity Y1/H1 is given by

(32)
Y1
H1

= A1
H1N

H1

β−σXσ/(σ−1),

with

(33)
H1N

H1

=
1

1 +H1R/H1N

.

which by differentiation with respect to ρ, given the expressions in (25), (26)
and (31) gives the results.
To derive the impact of ρ on relative prices we state the marginal produc-

tivity condition of firms in sector 2, which, by the linearity of the production
function is,

(34) p2A2 = W.

We divide (23) by (34), and then use (30) to substitute out Y1, to get

(35)
p1A1
p2A2

X1/(σ−1) = 1.

Differentiation of (35) with respect to ρ immediately yields the result.
This completes the proof of Proposition 1. We note that these results

were derived from the first-order conditions of the firm’s maximum, without
making use of the equilibrium conditions.
Derivation of equation (16). To derive (16) and complete the equilib-

rium we first derive the marginal rate of substitution between the two goods,
obtained from the consumer maximization,

c1
c∗1

=

(
ψ

1− ψ

)η (
p1
p∗1

)−η
(36)

c̃1
c2

=

(
ω

1− ω

)ε(
p̃1
p2

)−ε
(37)

p̃1 =
[
ψηp1−η1 + (1− ψ)ηp∗1−η1

]1/(1−η)
(38)
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From these we get,

c1
c2

=

(
c̃1
c1

)−1(
c̃1
c2

)
(39)

=

(
c̃1
c1

)−1(
ω

1− ω

)ε(
p̃1
p2

)−ε
(40)

=

(
ω

1− ω

)ε(
p1
p2

)−ε(
p̃1
p1

)−ε(
c̃1
c1

)−1
(41)

=

(
ω

1− ω

)ε(
p1
p2

)−ε
ψη
(
p̃1
p1

)η−ε
.(42)

From (35),

(43)
(
p1
p2

)−ε
=

(
A2
A1

)−ε
X

ε
σ−1 ,

and from (9), (30) and (3),

c1
c2

=
Y1 − c∗∗1
Y2

(44)

=
A1
A2

H1N

H2

βσX
σ
σ−1

(
1− c∗∗1

Y1

)
,(45)

which together yield,

(46)
H1N

H2

= AβσX
ε−σ
σ−1

(
p̃1
p1

)η−ε(
1− c∗∗1

Y1

)−1
Given now that

(47)
H1

H2

=
H1N

H2

(
1 +

H1R

H1N

)
,

equations (46), (47) and (25) deliver (16) of the text.
Proof of Proposition 2. Given the derivation of (16), demonstration

of this Proposition involves straightforward differentiation, as sketched out
in the text, and is not repeated here.
Proof of Proposition 4. To complete the proof we need to derive the

impact of a change in the price of robots on p∗1/p1. From (17),

p∗1
p1

=
A1X

1/(σ−1)

A∗1X
∗1/(σ−1)(48)

=
A1
A∗1

V σ−1qσ−1(1− β)σ + βσ

V ∗σ−1qσ−1(1− β)σ + βσ
.(49)
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Differentiation with respect to q shows that the sign of the derivative is the
same as the sign of

(50) (σ − 1)
(
V σ−1 − V ∗σ−1

)
,

which for V > V ∗ is positive for all values of σ 6= 1 (as we noted earlier, for
σ = 1, V has no impact on hours). This completes the proof.

8.2 Data: Definitions and sources

Hours of work —The total number of annual hours worked by all persons
engaged in production by industrial group, 2006-2016. Source: EU KLEMS,
2019 release, Stehrer (2019).
Innovation Index —The average of the first six indicators of Pillar 12

of the World Economic Forum Global Competitiveness Index, available on a
consistent basis for all countries in our sample in 2006-2016. See Schwab
(2017).
Instrumental variables —Robot density in Japan, annual observations

for 2006-2016. The total number of annual hours worked by industrial group
is available up to 2015. We impute the industry-level hours worked for the
year 2016 by making use of the average annual change of an industry’s hours
worked during the years 2006-2015. Sources: EU KLEMS, 2019 release, IFR
(2017).
Robots —The total number of robots by industrial group, annual ob-

servations for 2006-2016, as estimated by the International Federation of
Robotics. The IFR estimates the operational stock by assuming a service life
of 12 years followed by an immediate withdrawal from service. Source, IFR
(2017)
Robot density —The number of robots divided by hours of work in

millions. In the early years, a very small number of year-country-industry
entries show zero robots or an unexplained big jump, which we treat as
omitted variables.
Trade openness - Given by the sum of manufacturing imports and

exports divided by manufacturing output in million dollars. Manufacturing
imports, exports and output are obtained from the Input-Output Tables
(IOTs) of the OECD (2021), listed by country and year in million dollars.
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Table 1. Manufacturing trade flows, sample means, and price elasticities estimates.  

 

Country 

 

Imports percent 

Manufacturing 

Exports percent 

Manufacturing 

Import 

elasticities 

Export  

elasticities 

Austria 46.09 51.24 0.71 1.77 

Belgium  42.96  52.22  1.28 1.81 

Czechia  44.20  52.97     

Denmark  50.32  48.80     

Finland  30.81  44.32  2.41 1.62 

France  42.24  38.64  1.74 1.67 

Germany  26.83  41.39  1.34 1.67 

Italy  24.84  30.61  2.80 1.60 

Netherlands  34.73  49.81    

Spain  34.84  31.89  1.72 1.93 

Sweden  39.57  51.55  1.33 1.81 

UK  49.77  30.72  1.21 1.54 

USA  26.33  15.63  2.01 1.16 

         

Sources 

Exports of domestically produced manufacturing goods, gross, imports of manufacturing 

goods and manufacturing output, all from Input‐Output tables, WIOD database, November 

2021 release. OECD (2021).     

Elasticity estimates from Imbs and Mejean (2010), tables 2 and 8.  

  



 

 
Table 2. Country means of key variables. 

 

Country  Innovation  Annual  Robot density 

 Index  Hours  manufacturing  Non‐manuf. 

  scale 1‐7  (millions)     

         

Italy  3.79  8,713  10.91  0.04 

Spain  3.92  5,421  9.21  0.10 

Czechia  4.24  2,003  2.31  0.04 

Austria  4.73  1,341  5.98  0.27 

France  4.81  5,820  11.06  0.24 

Belgium  4.96  886  7.56  0.09 

Netherlands  4.98  1,231  4.57  0.21 

Denmark  4.99  469  12.16  1.52 

UK  5.04  5,461  3.49  0.10 

Germany  5.28  10,115  14.30  0.04 

Sweden  5.36  1,045  8.57  0.45 

Finland  5.49  745  8.76  0.12 

USA  5.50  24,403  5.44  0.02 

 
Notes         

For the construction of the innovation index see text.   

Annual hours are the annual average of total hours worked in the sectors in the sample, 2006‐
2016. 

Robot density is the unweighted average of the annual ratio of robots in production to hours of 
work in millions, again for the sectors in the sample. 

In the calculation of sample means only observations for which a positive number of robots is 
reported are included.  

  



 

Table 3. Industry means of key variables. 
 

  Annual  Robot 

Industry  hours  density 

  (millions)   

    

Manufacturing    

Electronics  488  4.91 

Food and beverages  695  2.28 

Metals  768  5.9 

Plastics and chemicals  792  5.77 

Textiles  215  0.32 

Transport Equipment  523  32.65 

Wood and paper  349  1.3 

     

Non‐manufacturing     

Agriculture  1,045  0.03 

Utilities  293  0.04 

Mining and quarrying  66  0.26 

 
Notes         

Annual hours are the annual average of hours of work in each sector for all countries. 

Robot density is the unweighted average of the annual ratio of robots in production to hours 
of work (in millions) for all countries in the sample. 

In the calculation of sample means only observations for which a positive number of robots is 
reported are included.  

 
  



 

Table 4. Results for aggregate manufacturing  
 

  Dependent variable in all regressions: ln 𝐻௜௖௧  (log hours by country, 
industry, and year). 

  (1) OLS  (2) OLS  (3) OLS  (4) IV  (5) IV  (6) IV 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ    0.152  ‐0.445  ‐0.577  0.190  ‐0.596  ‐0.795 

  (0.010)  (0.065)  (0.072)  (0.018)  (0.079)  (0.084) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝑉𝑐𝑡    0.124  0.130    0.163  0.164 

    (0.013)  (0.013)    (0.017)  (0.016) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ  ∗ 𝑇௖௧       0.131      0.252 

      (0.047)      (0.065) 

Number of obs. 977  977  977  977  977  977 

F(11, 965)  21.92      12.76     

F(12,  964)   29.92      18.55   

F(13, 963)      30.67      18.66 

R2  0.22  0.28  0.29  0.21  0.26  0.27 

Cragg‐Donald Wald F 

statistic  

      977.8  489.4  252.1 

Kleibergen‐Paap Wald F 

statistic 

      685.9  342.5  118.7 

Notes             

Other controls: time and country dummies. The test statistics (F and R2) are for the significance of the 

estimated coefficients excluding country fixed effects. 

The instrument used is robot density in Japan over the period of the sample. Robust standard errors in 

parentheses. 

 

  



 

Table 5. Net elasticity estimates for aggregate manufacturing 

Italy     

no interactions  0.152 
(0.010) 

 

interactions with V only  0.026 
(0.017) 

 

Interactions with V and T  ‐0.010 
(0.018) 

 

Germany     

no interactions  0.152 
(0.010) 

 

interactions with V only  0.211 
(0.012) 

 

Interactions with V and T  0.201 
(0.011) 

 

Sweden     

no interactions  0.152 
(0.010) 

 

interactions with V only  0.220 
(0.012) 

 

Interactions with V and T  0.241 
(0.014) 

 

United States     

no interactions  0.152 
(0.010) 

 

interactions with V only  0.237 
(0.013) 

 

Interactions with V and T  0.194 
(0.019) 

 

 
Notes. Net estimates derived from the OLS estimates in Table 4. Robust standard 
errors in parentheses. 
  



 

Table 6. Results for manufacturing industries, disaggregated. 

 
 
  Dependent variable in all regressions:  ln𝐻௜௖௧ (log hours by country, 

industry, and year). 

  (1) OLS  (2) OLS  (3) OLS  (4) IV  (5) IV  (6) IV 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝛪ଵ  0.121  ‐1.677  ‐2.505  0.040  ‐2.724  ‐3.111 

  (0.025)  (0.239)  (0.210)  (0.042)  (0.376)  (0.356) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝛪2  ‐0.026  ‐0.518  ‐0.517  ‐0.027  ‐0.459  ‐0.462 

  (0.012)  (0.061)  (0.062)  (0.014)  (0.065)  (0.067) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ  ∗ 𝛪 ଷ   0.299  ‐0.209  ‐0.402  0.440  ‐0.478  ‐0.884 

  (0.011)  (0.062)  (0.062)  (0.022)  (0.102)  (0.114) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝐼1 ∗ 𝑉𝑐𝑡    0.358  0.429    0.551  0.577 

    (0.047)  (0.037)    (0.070)  (0.071) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଶ ∗ 𝑉௖௧     0.103  0.117    0.091  0.104 

    (0.014)  (0.015)    (0.014)  (0.015) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝐼3 ∗ 𝑉𝑐𝑡    0.105  0.118    0.191  0.187 

    (0.013)  (0.011)    (0.023)  (0.020) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝐼1 ∗ 𝑇𝑐𝑡      0.610      0.345 

          (0.104)      (0.177) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଶ ∗ 𝑇௖௧       ‐0.087      ‐0.071 

      (0.046)      (0.047) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝐼3 ∗ 𝑇𝑐𝑡      0.164      0.541 

      (0.052)      (0.103) 

Number of obs.  977  977  977  977  977  977 

F(13, 963)  68.42      57.98     

F(16,  960)    75.68      68.96   

F (19, 957)      84.90      68.17 

R2  0.51  0.56  0.58  0.39  0.41  0.40 

 

Cragg‐Donald Wald F 

statistic  

       

252.1 

 

86.1 

 

40.3 

Kleibergen‐Paap Wald F 

statistic 

      161.7  10.4  3.5 

Notes             

Subscript 1 denotes electronics,2 transport equipment, and 3 low‐tech industries. 
Other controls: year and country dummies. The test statistics (F and R2) are for the significance 

of the estimated coefficients excluding country fixed effects. 

The instrument used is robot density in Japan over the period of the sample. Robust 
standard errors in parenthesis. 

  



 

 
Table 7. Net elasticity estimates for three industrial groups	
	    

 electronics 
transport 
equipment 

other (low‐tech) 
sectors 

Italy    
no interactions 0.121 ‐0.026 0.299 

 (0.025) (0.012) (0.011) 
interactions with V only ‐0.321 ‐0.128 0.187 

 (0.068) (0.012) (0.016) 
Interactions with V and T ‐0.541 ‐0.123 0.136 

 (0.057) (0.012) (0.016) 
 
 
Germany    

no interactions 0.121 ‐0.026 0.299 

 (0.025) (0.012) (0.011) 
interactions with V only 0.213 0.025 0.344 

 (0.028) (0.016) (0.013) 
Interactions with V and T 0.177 0.040 0.334 

 (0.021) (0.016) (0.012) 
    
Sweden       

no interactions  0.121  ‐0.026  0.299 
  (0.025)  (0.012)  (0.011) 

interactions with V only  0.241  0.033  0.352 
  (0.029)  (0.017)  (0.013) 

Interactions with V and T  0.349  0.029  0.380 
  (0.035)  (0.017)  (0.014) 

 
 
United States       

no interactions  0.121  ‐0.026  0.299 
  (0.025)  (0.012)  (0.011) 

interactions with V only  0.290  0.047  0.366 
  (0.031)  (0.018)  (0.014) 

Interactions with V and T  0.108  0.088  0.316 
  (0.033)  (0.026)  (0.021) 
       

Notes. Net estimates derived from the OLS estimates in Table 6. Robust standard errors in 
parentheses. 
  



 

Table 8. Results for manufacturing and non‐manufacturing industries 
 

Subscript  1  denotes  electronics,  2  transport  equipment,  3  low‐tech 
industries, and 4 the non‐manufacturing sectors (agriculture, mining and 
quarrying and utilities). 
Other  controls:  year  and  country  dummies  and  a  non‐manufacturing 
dummy. Robust standard errors in parentheses. 
The  test  statistics  (F  and R2)  are  for  the  significance of  the  estimated 
coefficients excluding country fixed effects. 

  Dependent variable in all regressions: ln 𝐻௜௖௧ 
(log hours by country, industry, and year). 

  (1) OLS  (2) OLS  (3) OLS 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝛪ଵ  0.054  ‐1.810  ‐2.102 
  (0.024)  (0.185)  (0.186) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝛪ଶ  ‐0.033  ‐0.427  ‐0.339 
  (0.014)  (0.073)  (0.076) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ  ∗ 𝛪 ଷ   0.250  ‐0.135  ‐0.117 
  (0.012)  (0.065)  (0.071) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ  ∗ 𝛪 ସ   ‐0.362  ‐0.070  0.228 
  (0.037)  (0.152)  (0.190) 
lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଵ ∗ 𝑉௖௧    0.371  0.404 
    (0.035)  (0.033) 
lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଶ ∗ 𝑉௖௧    0.082  0.094 
    (0.017)  (0.019) 
lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଷ ∗ 𝑉௖௧    0.079  0.090 

    (0.014)  (0.013) 
lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ସ ∗ 𝑉௖௧    ‐0.061  ‐0.075 
    (0.031)  (0.032) 
lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଵ ∗ 𝑇௖௧      0.143 
          (0.098) 
lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଶ ∗ 𝑇௖௧      ‐0.187 
      (0.065) 
lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଷ ∗ 𝑇௖௧      ‐0.091 
      (0.059) 
lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ସ ∗ 𝑇௖௧      ‐0.318 
      (0.082) 

Number of obs.  1285  1285  1285 
F(15, 1269)  41.22     
F( 19,  1265)    46.88   
F(23,1261)      45.49 
R2  0.32  0.34  0.35 

Notes       



References 

Acemoglu, D. and P. Restrepo, “Robots and Jobs: Evidence from US Labor Markets,” Journal of 

PoliƟcal Economy 128 (2020), 2188‐2244. 

Acemoglu, D. and J. A. Robinson, Why NaƟons Fail: The Origins of Power, Prosperity, and Poverty 

(London: Crown Business, 2012). 

Acemoglu, D. and V. Guerrieri, “Capital Deepening and Nonbalanced Economic Growth,” Journal of 

PoliƟcal Economy 116 (2008), 467‐498. 

Baldwin, R., J. I. Haaland, and A. Venables, “Jobs and Technology in General Equilibrium: A Three 

ElasƟciƟes Approach,” CEPR Discussion Paper No. 15739, January 2021. 

Carbonero, F., E. Ernst, and E. Weber, “Robots Worldwide: The Impact of AutomaƟon on Employment 

and Trade,” ILO Working Paper No. 36, October 2018. 

Cheng, H., L. A. Drozd, R. Giri, M. Taschereau‐Dumouchel, and J. Xia, “The Future of Labor: 

AutomaƟon and the Labor Share in the Second Machine Age,” Federal Reserve Bank of 

Philadelphia Working Paper No. 21‐11, March 2021. 

Chiacchio, F., G. Petropoulos, and D. Pichler, “The Impact of Industrial Robots on EU Employment and 

Wages: A Local Labour Market Approach,” Bruegel Working Paper No. 2, April 2018.  

European Commission, Science, Research and InnovaƟon Performance of the EU. Strengthening the 

FoundaƟons for Europe's Future (Luxembourg: PublicaƟons Office of the European Union, 

2018). 

Freeman, C., Technology, Policy, and Economic Performance: Lessons from Japan (London: Pinter 

Publishers, 1987). 

Frey, C. B. and M. A. Osborne, “The Future of Employment: How SuscepƟble Are Jobs to 

ComputerisaƟon?” Technological ForecasƟng and Social Change 114 (2017), 254‐280. 

Graetz, G. and G. Michaels, “Robots at Work,” Review of Economics and StaƟsƟcs 100 (2018), 753‐

768. 



Herrendorf, B., R. Rogerson, and A. ValenƟnyi, “Growth and Structural TransformaƟon,” in P. Aghion 

and S. N. Durlauf, eds., Handbook of Economic Growth  (Amsterdam: Elsevier, 2014), 855‐

941. 

Imbs, J. and I. Mejean, “Trade ElasƟciƟes: A Final Report for the European Commission,” Economic 

Papers No 432, December 2010. 

InternaƟonal FederaƟon of RoboƟcs, World RoboƟcs Industrial Robots 2017 (Frankfurt: IFR, 2017) 

Josten, C. and G. Lordan, “Robots at Work: Automatable and Non‐Automatable Jobs,” in K. F. 

Zimmermann, ed., Handbook of Labor, Human Resources and PopulaƟon Economics (Cham: 

Springer, 2020), 1‐24. 

Lin, J., “Technological AdaptaƟon, CiƟes, and New Work,” Review of Economics and StaƟsƟcs 93 

(2011), 554‐574. 

Lundvall, B.‐A., NaƟonal Systems of InnovaƟon: Towards a Theory of InnovaƟon and InteracƟve 

Learning (London: Pinter, 1992). 

Matsuyama, K., “Structural Change in an Interdependent World: A Global View of Manufacturing 

Decline,” Journal of the European Economic AssociaƟon 7 (2009), 478‐486. 

McKinsey Global InsƟtute, Jobs Lost Jobs Gained: Worker TransiƟons in a Time of AutomaƟon (San 

Francisco: McKinsey and Company, 2017). 

Nedelkoska, L. and G. QuinƟni, “AutomaƟon, Skills Use and Training,” OECD Social, Employment and 

MigraƟon Working Paper No. 202, March 2018. 

Nelson, R. R., NaƟonal InnovaƟon Systems: A ComparaƟve Analysis (New York: Oxford University 

Press, 1993). 

Nelson, R. R. and S.G. Winter, “EvoluƟonary Theorizing in Economics,” Journal of Economic 

PerspecƟves 16 (2002), 23‐46. 

Ngai, L. R. and C.A. Pissarides, “Structural Change in a MulƟsector Model of Growth,” American 

Economic Review 97 (2007), 429‐443. 



Ngai, L. R. and C.A. Pissarides, “Trends in Hours and Economic Growth,” Review of Economic 

Dynamics 11 (2008), 239‐256. 

North, D. C., InsƟtuƟons, InsƟtuƟonal Change and Economic Performance (Cambridge: University 

Press, 1990). 

OECD, NaƟonal InnovaƟon Systems (Paris: OECD, 1997) 

OECD, Managing NaƟonal InnovaƟon Systems (Paris: OECD, 1999) 

OECD, “Inter‐Country Input‐Output Tables,” 2021. Available online at hƩp://oe.cd/icio. 

Olea, J. L. M. and C. Pflueger, “A Robust Test for Weak Instruments,” Journal of Business and 

Economic StaƟsƟcs 3 (2013), 358‐369. 

Stehrer, R., A. Bykova, K. Jager, O. Reiter, and M. Schwarzhappel, Industry Level Growth and 

ProducƟvity Data with Special Focus on Intangible Assets: Report on Methodologies and Data 

ConstrucƟon for the EU KLEMS Release 2019 (Vienna: The Vienna InsƟtute for InternaƟonal 

Economic Studies, 2019). 

Schwab, K., The Global CompeƟƟveness Report 2017‐18 (Geneva: World Economic Forum, 2017).  

Zeira, J., “Workers, Machines, and Economic Growth,” The Quarterly Journal of Economics 113 

(1998), 1091‐1117. 



Online Appendix of
Productive Robots and Industrial

Employment:
The Role of National Innovation Systems

Chrystalla Kapetaniou
University of Southampton, Great Britain

Christopher A Pissarides
London School of Economics, Great Britain

and University of Cyprus, Cyprus

In this Online Appendix we report several robustness tests, to test the 
estimation procedure and choice of some variables that we used in the main 
regressions. We begin with the estimation method and sample and we follow 
with tests for alternative measures of innovation performance, using edu-
cation variables instead of our summary innovation index, rerun the main 
regression in levels of robots instead of robot density, and decomposing our 
innovation index into its six components and rerunning the regression for 
each separately.

1 Estimation procedure and sample

1.1 Alternative instruments and fixed effects
To further assess the robustness of our basic equation estimates and to ad-
dress a potential concern regarding the strength of the instrumental variable 
(IV) employed, which is identified in the analysis presented in Column 6 
of Table 6, we computed additional estimates using two alternative instru-
ments: the stock of robots in the Republic of Korea from 2006 to 2016, and 
the global stock of robots over the same period. The justification is similar 
to our preferred instrument of robots in Japan. Given that the Republic of 
Korea is recognized for having the biggest robot densities in manufacturing
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worldwide, the utilization of the first alternative instrument offers a relevant
measure of technological trends across industries. The Republic of Korea’s
distance from our sample regions, Europe and the United States, minimizes
the likelihood of experiencing common industrial shocks. The global stock
of robots, our second alternative instrument, reflects the supply and demand
dynamics in the robot market. An increase in the global stock indicates en-
hanced availability and potentially lower prices, which can be attributed to
economies of scale and technological progress. These factors are critical in
determining robot adoption and density in our sample.
Our findings, presented in Table A.1, reinforce the validity of these instru-

mental variables. The F statistics obtained exceed the commonly accepted
threshold of 10, as suggested by Staiger and Stock (1997), and exceed the
10% critical value identified in the weak instrument test proposed by Stock
and Yogo (2005). Moreover, the regression results across these instruments
are consistent with each other, further affi rming the point estimates in our
basic regression.
The results reported so far introduce time fixed effects but not industry

effects. We repeated the estimation with a full set of industry dummies for
the three sectors and obtained very similar results. These results should be
compared with the results in the third column of Table 6 in the main paper.
In the first three columns of Table A.2, we report the results with the three
industry dummies - electronics, transport equipment, and low-tech industries
- either individually or interacted with time effects. We also tested the case
in which country dummies are interacted with time effects, reported in the
third column of Table A.2, with virtually no change in the results.

1.2 Sample exclusions

With seven industrial sectors and thirteen countries, mostly small European
ones, it is possible that single important sectors or countries drive the re-
sults. Given our split of manufacturing into three groups, there are no single
important sectors between groups that might drive the results. But across
geographies, Germany is a large country and by some margin the biggest
user of robots in its manufacturing (see Table 2). We re-estimated our main
regression by excluding Germany in the last column of Table A.2, but this
made virtually no difference to the estimated coeffi cients in Table 6.
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2 Alternative measures of variables

2.1 Alternative measures of innovation performance

There are two other widely-available measures of a country’s innovation sys-
tem, the Global Innovation Index and the Summary Innovation Index of
the European Innovation Scoreboard. The Global Innovation Index has been
published since 2007 by Cornell University, INSEAD and the World Intel-
lectual Property Organization (WIPO) and is the average of scores in two
sub-indices, the Innovation Input Sub-Index and Innovation Output Sub-
Index (see the latest edition, Cornell University, INSEAD and WIPO, 2019,
especially Appendix 1). The innovation input sub-index consists of five pil-
lars which capture the country’s enabling environment for innovation. The
innovation output sub-index is the average of two pillars that capture the
outputs of the innovation activities within the country. The overall index is
the average of the two sub-indices. The five pillars of the input index are
the quality of institutions, human capital, infrastructure, market sophistica-
tion and business sophistication, and the two pillars of the output index are
knowledge and technology outputs and “creative”outputs. The data sources
are all secondary published sources, mostly by international organizations
such as the OECD and Eurostat.
The Summary Index of the European Commission Scoreboard is an un-

weighted average of several indicators (see European Commission, 2019).
Currently the number is 27, but in earlier years they were fewer. In the
years of our sample they were divided into three categories, enablers, in-
cluding factors like education standards and availability of venture capital,
firm activities, such as R&D and patent applications, and outputs, such as
employment in knowledge-intensive industries and exports of high-tech prod-
ucts. The data sources are again publications of international organizations
such as Eurostat, OECD and the United Nations. The index covers all mem-
bers of the European Union and in the early years of our sample it covered
the United States as well, although inclusion of the United States has now
been discontinued.
The simple correlation coeffi cient of our index with the Global Innovation

Index is 0.86 and with the European index (excluding the United States) 0.93.
The ranking of countries is also very close to each other in the three indices.
Not surprisingly, given the high correlation between the three indices, the
estimation results with the two new indices are very similar to the ones in
column 3 of Table 6. In the interests of space we do not report the estimated
regressions but give in Table A.3 only some key coeffi cients for the net effects.
Statistical significance for the point estimates is comparable to that for the
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regressions in Table 6.1

We give the net elasticity estimates for Italy, Germany and the United
States (for the WEF index that we used in the main text and theGlobal Inno-
vation Index), or Sweden for the European Union index, which in the absence
of the United States is the most innovative country. It is clear that with mi-
nor exceptions, our estimates can be replicated with alternative indices for
a country’s innovation system and they are not due to any peculiarities in
our index. The main difference between our index and the two alternatives is
that the latter two use data published by international organizations whereas
the source of data for our index is a survey of firms conducted by the World
Economic Forum.

2.2 Education performance

Our key innovation system variable is a summary statistic that captures the
network of institutions, including universities, industrial research units and
other technical and scientific establishments, whose activities and interac-
tions affect the technological development of an economy. As we pointed out
in the Introduction to the paper, it embodies the flow of knowledge among
individuals, organizations, and institutions. Human capital plays an impor-
tant role in the compilation of our index and the question that we investigate
here is whether a human capital variable for each country plays the same role
in our regressions as our innovation variable. In other words, whether we are
capturing the influence of something more than human capital in our inno-
vation index variable V .
We re-estimated the main regressions in Tables 4 and 6 by introducing

an annual human capital index for each country, defined as the percentage of
25-64 year-olds with tertiary education. The source is OECD (2022). In Ta-
ble A.4., we show that when the human capital index is added to the model,
the innovation index remains significant. When the innovation index is re-
placed by the human capital index, statistical significance levels drop. When
both the innovation index and the education index are entered together, the
coeffi cient on the innovation index remains positive and strong, whereas the
coeffi cient on the education index becomes negative and statistically insignif-
icant.
In Table A.5., we separated transport equipment and electronics from

the rest of the manufacturing sector. When the human capital index is in-
cluded in the regression, the innovation index consistently shows a significant

1The results shown are for the OLS estimate without industry fixed effects. Results
are very similar if instruments are used and if industry fixed effects are included.
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positive impact across all industries, whereas human capital displays a more
mixed and less consistent impact. As with aggregate manufacturing, when
the innovation index is substituted with the human capital index, the results
show a reduced level of significance. In electronics, the influence of educa-
tion becomes negative. Similarly, in the transport equipment sector, a higher
human capital index also has a negative impact, albeit less significant.

2.3 Level of robots

Next, we report the main regressions in Table 6 when robot density is re-
placed by the log of the number of robots. The results are in Table A.6.
The main message comes through in the sense that a good innovation sys-
tem acts to mitigate, or reverse, any negative impact of robots on hours of
work. This result is statistically significant in both the OLS estimate and the
IV estimate. But a difference in the point estimates that runs through all
regressions in Table A.6 is that the impact of robots on hours is not negative
and statistically significant even in the countries with the weakest innovation
systems. When estimated with the level of robots, our model implies less
substitution between robots and hours of work than when estimated with
robot density.

2.4 Decomposing the innovation index

Our final robustness test for robot density is a very stringent one that breaks
up the innovation index into its six components and runs the OLS regression
in column 3 of Table 6 again, with each replacing the national innovation
index. It is stringent because our innovation index might average out any
fluctuations in a single pillar, which will influence the estimation in this
decomposition. The coeffi cient estimates are in Table A.7.
All indicators except for some estimated coeffi cients for the availability

of scientists and engineers give statistically significant results that conform
to the estimates of Table 6. Two of the indicators, R&D spending and
government procurement of tech products, are flow concepts, whereas the
others are closer to institutional features, yet there is no discernible difference
between them in the estimation.

3 Data used in this Appendix only

Innovation Index —Two additional composite indicators were used in this
Appendix, the Global Innovation Index and the European Union Summary
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Innovation Index. The Global Innovation Index (GII) was first published
in 2007 by Cornell University, INSEAD and the World Intellectual Prop-
erty Organization. The Summary Innovation Index (SII), developed by the
European Commission, covers European countries only.
Instrumental Variables —Two additional instrumental variables were

used: the annual stock of robots in the Republic of Korea and the annual
global stock of robots, covering the period from 2006 to 2016. Source: IFR
(2017).
Human Capital Index —The Human Capital Index is the annual edu-

cation level of adults per country, defined as individuals with tertiary educa-
tion as a percentage of all individuals aged 25-64 from 2006 to 2016. Source:
OECD (2022).
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Table A.1. Alternative instruments for manufacturing industries	

Dependent variable in all regressions: ln𝐻௜௖௧, log hours by 
country, industry and year. 

(1) IV (2) IV (3) IV

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝛪ଵ  ‐3.111 ‐2.973 ‐3.102 

(0.356) (0.304) (0.318) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝛪ଶ  ‐0.462 ‐0.453 ‐0.462 

(0.067) (0.088) (0.074) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ  ∗ 𝛪 ଷ  ‐0.884 ‐0.470 ‐0.419 

(0.114) (0.055) (0.057) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଵ ∗ 𝑉௖௧   0.577 0.544 0.569 

(0.071) (0.058) (0.062) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଶ ∗ 𝑉௖௧   0.104 0.102 0.103 

(0.015) (0.019) (0.017) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଷ ∗ 𝑉௖௧   0.187 0.129 0.112 

(0.020) (0.011) (0.012) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଵ ∗ 𝑇௖௧   0.345 0.414 0.377 

(0.177) (0.172) (0.173) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଶ ∗ 𝑇௖௧   ‐0.071 ‐0.057 ‐0.065 

(0.047) (0.053) (0.049) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଷ ∗ 𝑇௖௧   0.541 0.288 0.334 

(0.103) (0.059) (0.058) 

Number of obs.  977  977  977 

F(19, 957)  68.17  81.07  85.99 

R2  0.40  0.53  0.52 

Cragg‐Donald Wald F 

statistic  

40.28  32.64  34.98 



 

Subscript 1 denotes electronics,2 transport equipment, and 3 low‐tech industries.  
 

Other controls: time and country dummies. The test statistics (F and R2) are for the 
significance of the estimated coefficients excluding country fixed effects. 
 
The instrument used in Column (1) is robot density in Japan, in Column (2) stock of 
robots in Korea and in Column (3) the global stock of robots.  

  

Kleibergen‐Paap Wald F 

statistic 

3.54  41.25  55.32 

Notes       



 

Table A.2. Alternative specifications for manufacturing industries 
 
  Dependent variable in all regressions: ln𝐻௜௖௧, log hours 

by country, industry and year. 

  Industry   Interaction 
Industry and 

Year  

Interaction 
Country and 

Year  

Excl. 
Germany 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝛪ଵ   ‐2.199  ‐2.298  ‐2.680  ‐2.501 
  (0.181)  (0.193)  (0.251)  (0.222) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝛪ଶ   ‐0.418  ‐0.416  ‐0.570  ‐0.433 
  (0.054)  (0.055)  (0.074)  (0.064) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ  ∗ 𝛪 ଷ    -0.391 -0.387 -0.492 -0.392 
  (0.061) (0.061) (0.078) (0.062) 
ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଵ ∗ 𝑉௖௧   0.416 0.432 0.454 0.414 
  (0.031) (0.033) (0.044) (0.040) 
ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଶ ∗ 𝑉௖௧   0.134 0.133 0.126 0.080 
  (0.014) (0.014) (0.017) (0.014) 
ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଷ ∗ 𝑉௖௧   0.113 0.112 0.132 0.113 
  (0.011) (0.011) (0.015) (0.012) 
ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଵ ∗ 𝑇௖௧   0.522 0.530 0.693 0.663 
      (0.109) (0.108) (0.118) (0.099) 
ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଶ ∗ 𝑇௖௧   -0.009 -0.036 -0.069 -0.005 
  (0.045) (0.043) (0.054) (0.042) 
ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝐼ଷ ∗ 𝑇௖௧   0.171 0.174 0.203 0.175 
  (0.050) (0.050) (0.049) (0.050) 
Number of obs. 977  977  977  977 
F( 21,   955) 97.51       
F( 41,   935)   51.07     
F(151, 825)     15.52   
F(19, 880)       82.29 
R2 0.61  0.62  0.60  0.59 

Notes      
Subscript 1 denotes electronics,2 transport equipment, and 3 low‐tech industries. 
Other controls include year, country, and industry dummies in the 'Industry' column. For the 

'Interaction Industry and Year' column, country dummies and the interaction term of industry 

and  year  dummies  are  included.  In  the  'Interaction  Country  and  Year'  column,  country 

dummies and the interaction term of country and year dummies are accounted for. The 'Excl. 

Germany'  column  includes  year  and  country  dummies.  Robust  standard  errors  in 

parentheses. The test statistics (F and R2) are for the significance of the estimated coefficients 

excluding country fixed effects. 

   



 

 

 
 
 

 

Table A.3. Net coefficient estimates with alternative innovation indices. 

 Index  Italy  Germany  US/Sweden 

Electronics 
 
WEF  ‐0.541  0.177  0.108 

 GII  ‐0.436  0.145  0.139 
  EU  ‐0.296  0.277  0.451 

 
Transport 
Equipment  WEF  ‐0.123  0.040  0.088 

 GII  ‐0.131  0.028  0.089 
  EU  ‐0.076  0.068  0.077 

Non‐tech  WEF  0.136  0.334  0.316 

 GII  0.140  0.322  0.323 

  EU  0.213  0.377  0.420 

                 Notes 
The table shows the net coefficient estimated for the impact of robot density 
on hours of work. See Table 7 for details. The three innovation indices are 
the World Economic Forum (WEF, as in Table 7), Global Innovation Index (GII) 
and the European Union Summary Index (EU). 

 
 



 

Table A.4. Results for aggregate manufacturing with education 

 
 

Dependent variable in all regressions: ln𝐻௜௖௧ , log hours by country, 
industry and year. 

 
(1) OLS (2) OLS (3) OLS (4) OLS (5) OLS (6) OLS (7) OLS 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ    0.152 ‐0.445 0.011   ‐0.577 ‐0.117 ‐0.468 ‐0.582 
 

(0.010) (0.065) (0.029) (0.072) (0.052) (0.067) (0.072) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   
∗ 𝑉𝑐𝑡  

 
0.124 

 
0.130 

 
0.136 0.135 

  
(0.013) 

 
(0.013) 

 
(0.017) (0.016) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ  
∗ 𝑇௖௧   

   
0.131 0.136 

 
0.128 

    
(0.047) (0.049) 

 
(0.047) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ  
∗ 𝐸௖௧   

  
0.455 

 
0.524 ‐0.115 ‐0.044 

   
(0.093) 

 
(0.090) (0.113) (0.113) 

Number of obs. 977 977 977 977 977 977 977 

F(11, 965) 21.92 
      

F(12,  964) 
 

29.92 22.11 
    

F(13, 963) 
   

30.67 21.92 29.04 
 

F(14, 962) 
      

29.34 

R2 0.22 0.28 0.23 0.29 0.24 0.28 0.29 

Notes 
  

   
    

Other controls: time and country dummies. Robust standard errors in parentheses. The test 

statistics (F and R2) are for the significance of the estimated coefficients excluding country 

fixed effects.  
  



Table A.5. Results for manufacturing industries with education, disaggregated 

Dependent variable in all regressions: ln𝐻௜௖௧ , log hours by 
country, industry and year. 

(1) OLS (2) OLS (3) OLS (4) OLS (5) OLS (6) OLS (7) OLS

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ∗ 𝛪ଵ 0.121 ‐1.677 0.107 ‐2.505 ‐0.461 ‐2.006 ‐2.729 

(0.025) (0.239) (0.025) (0.210) (0.140) (0.275) (0.188) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝛪2 ‐0.026 ‐0.518 ‐0.001 ‐0.517 ‐0.079 ‐0.547 ‐0.547 

(0.012) (0.061) (0.084) (0.062) (0.053) (0.072) (0.074) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ  ∗ 𝛪 ଷ  0.299 ‐0.209 ‐0.087 ‐0.402 ‐0.054 ‐0.135 ‐0.312 

(0.011) (0.062) (0.034) (0.062) (0.051) (0.071) (0.068) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝐼1
∗ 𝑉𝑐𝑡 

0.358 0.429 0.519 0.563 

(0.047) (0.037) (0.073) (0.058) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ ∗ 𝐼ଶ
∗ 𝑉௖௧  

0.103 0.117 0.133 0.137 

(0.014) (0.015) (0.023) (0.022) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝐼3
∗ 𝑉𝑐𝑡 

0.105 0.118 0.065 0.067 

(0.013) (0.011) (0.021) (0.020) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝐼1
∗ 𝑇𝑐𝑡 

0.610 0.463 0.612 

(0.104) (0.103) (0.115) 

ln ሺ𝑅௜௖௧/𝐻௜௖௧ሻ ∗ 𝐼ଶ
∗ 𝑇௖௧  

‐0.087 ‐0.053 ‐0.061 

(0.046) (0.044) (0.045) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝐼3
∗ 𝑇𝑐𝑡 

0.164 0.167 0.171 

(0.052) (0.051) (0.053) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝐼1
∗ 𝐸𝑐𝑡 

0.382 0.701 ‐1.477 ‐1.240 



(0.261) (0.260) (0.404) (0.362) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝐼2
∗ 𝐸𝑐𝑡 

0.200 0.305 ‐0.381 ‐0.277 

(0.101) (0.101) (0.159) (0.151) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝐼3
∗ 𝐸𝑐𝑡 

0.621 0.718 0.385 0.488 

(0.088) (0.084) (0.150) (0.149) 

Number of obs. 977 977 977 977 977 977 977 

F(13, 963) 68.42 

F(16,  960) 75.68  61.78 

F (19, 957) 84.90 66.24 63.87 

F (22, 954)  77.78 

R2 0.51 0.56 0.52 0.58 0.54 0.57 0.60 

Notes 

  Subscript 1 denotes electronics, 2 transport equipment, and 3 low‐tech industries. 
Other controls: year and country dummies. Robust standard errors in parentheses. The test 

statistics  (F and R2) are for the significance of the estimated coefficients excluding country 

fixed effects.



 

Table A.6. Results for manufacturing industries, robots in levels 

 Dependent variable in all regressions: ln𝐻௜௖௧ , log hours 
by country, industry and year. 

 (1) OLS  (2) OLS  (3) IV  (4) IV 

ln(𝑅ict) ∗ 𝛪1     0.161  ‐0.300  0.243  ‐0.286 

 (0.009)  (0.038)  (0.013)  (0.039) 

ln(𝑅ict) ∗ 𝛪2     0.113  ‐0.160  0.172  ‐0.162 

 (0.006)  (0.018)  (0.009)  (0.018) 

ln(𝑅ict)∗ 𝛪 3     0.210  ‐0.055  0.290  ‐0.067 

 (0.006)  (0.015)  (0.011)  (0.015) 

ln(𝑅ict) ∗ 𝐼1 ∗ 𝑉ct  0.062   0.062 

  (0.006)   (0.007) 

ln(𝑅ict) ∗ 𝐼2 ∗ 𝑉ct  0.046   0.048 

  (0.003)   (0.003) 

ln(𝑅ict) ∗ 𝐼3 ∗ 𝑉ct  0.024   0.028 

  (0.003)   (0.003) 

ln(𝑅ict) ∗ 𝐼1 ∗ Tct   0.270    0.289 

   (0.021)    (0.023) 

ln(𝑅ict) ∗ 𝐼2 ∗ Tct   0.112    0.127 

   (0.013)    (0.014) 

ln(𝑅ict) ∗ 𝐼3 ∗ Tct    0.253    0.278 

   (0.012)    (0.015) 

Number of obs.  977 977 977 977 

F( 13,   963)  94.86  64.22  

F(19, 957)   163.96  113.32 

R2  0.51 0.67 0.44 0.66 

Cragg‐Donald Wald F 
statistic  

  274.74 150.29 

Kleibergen‐Paap Wald F 
statistic 

  249.08 109.83 

Notes 



Other  controls:  year  and  country  dummies.  Subscript  1 denotes  electronics,2 transport 
equipment, and 3 low‐tech industries. The instrument used is robots in Japan over the period 

of the sample. Robust standard errors in parentheses.  The test statistics (F and R2) are for the 

significance of the estimated coefficients excluding country fixed effects.



Table A.7. Components of the innovation index 

Dependent variable in all regressions: ln𝐻௜௖௧ , log hours by country, industry 
and year. 

Scientific  R&D  University  Government  Scientist 

Innovation  research  company  industry  Tech  Engineer 

Capacity  quality  spending  collaboration  procurement  available 

ln(𝑅ict/𝐻ict) ∗ 𝛪1 ‐2.198  ‐1.331  ‐1.975  ‐1.572  ‐1.740  ‐1.659 
(0.258)  (0.321)  (0.184)  (0.229)  (0.185)  (0.265) 

ln(𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡) ∗ 𝛪2 ‐0.518  ‐0.407  ‐0.399  ‐0.300  ‐0.405  ‐0.225 
(0.076)  (0.043)  (0.052)  (0.047)  (0.069)  (0.144) 

ln(𝑅ict/𝐻ict)∗ 𝛪 3 ‐0.381  ‐0.352  ‐0.251  ‐0.237  ‐0.169  ‐0.063 
(0.068)  (0.061)  (0.056)  (0.052)  (0.069)  (0.120) 

ln(𝑅ict/𝐻ct) ∗ 𝛪1 ∗ 𝑉ct 0.359  0.205  0.332  0.255  0.346  0.260 
(0.045)  (0.049)  (0.033)  (0.037)  (0.044)  (0.042) 

ln(𝑅ict/𝐻ict) ∗ 𝛪2 ∗ 𝑉ct 0.112  0.091  0.095  0.073  0.103  0.041 
(0.014)  (0.010)  (0.011)  (0.011)  (0.017)  (0.023) 

ln(𝑅ict/𝐻ict) ∗ 𝛪3 ∗ 𝑉ct 0.111  0.103  0.091  0.086  0.084  0.045 

(0.012)  (0.011)  (0.009)  (0.009)  (0.015)  (0.020) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝐼1 ∗ 𝑇𝑐𝑡  0.565  0.430  0.562  0.517  0.581  0.567 

(0.102)  (0.111)  (0.089)  (0.114)  (0.097)  (0.109) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝐼2 ∗ 𝑇𝑐𝑡 ‐0.091  ‐0.132  ‐0.095  ‐0.101  ‐0.030  ‐0.013 

(0.044)  (0.052)  (0.044)  (0.050)  (0.047)  (0.059) 

ln ሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ   ∗ 𝐼3 ∗ 𝑇𝑐𝑡  0.152  0.129  0.148  0.147  0.171  0.174 
(0.050)  (0.053)  (0.052)  (0.052)  (0.052)  (0.054) 

Number of obs. 977  977  977  977  977  977 
F( 19,   957) 81.29  74.53  83.41  74.83  78.49  62.59 
R2 0.58  0.56  0.59  0.57  0.56  0.53 

Notes 
The coefficients in this table were estimated with OLS regressions like the one in column (3) 
of Table 6, with each of the six components of the National Innovation Index replacing the 
aggregate index in turn. Robust standard errors in parentheses. 




