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Buruli ulcer (BU) is a skin-related neglected tropical disease caused by infection with

Mycobacterium ulcerans (M. ulcerans). Our research elucidates the evolution of BU

skin lesions, early detection and treatment of the BU-infected population. First, we

formulate a mathematical model that describes the formation of an ulcer, including the

space-time dynamics of M. ulcerans bacteria, mycolactone toxin, endothelial and stro-

mal skin cell densities. The skin cell death processes causing the large ulcers in BU are

ischaemia and direct cytotoxicity. Our results show that cell death occurs when either

direct cytotoxicity, ischaemia, or both are present, and we also illustrate the speed of

wound enlargement. Second, we develop an epidemiological model for the incidence, pro-

gression and treatment of BU. Our model shows the trend that populations in di�erent

compartments can take after being infected with BU. In our model results, an increase in

the transfer rates between categories of infection leads to a decrease in the proportion of

the population infected. Additionally, increasing the rate of transitioning to treatment

decreases the proportion of cases that progress to ulcerative categories. Third, we in-

vestigate the cost-e�ectiveness of introducing a rapid diagnostic test (RDT) for testing

BU from a healthcare provider perspective in Ghana. We develop a decision tree model

and compare the RDT with the polymerase chain reaction test (PCR). The main result

was the incremental cost-e�ectiveness ratio (ICER) of −$272.73 per disability-adjusted

life year (DALY) averted from using an RDT compared to a PCR. In the probabilistic

sensitivity analysis, most ICER pairs spread out in the southeast quadrant, where the

RDT was less costly and yielded fewer DALY. Finally, we develop an agent-based model

to explore the e�ects of introducing community health volunteers (CHV) in referring BU

patients for treatment. We compare the e�ect of either self-referral (SR) independently

or both SR and CHV in the early diagnosis and treatment of BU. Our results show that

using CHV in active case �nding leads to an increase in the detection of BU in early

categories, spearheading the early start of treatment and hence reducing disability.
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Chapter 1

Introduction

1.1 What is Buruli ulcer?

Buruli ulcer (BU) is a neglected tropical disease caused by infection with a bacteria

called Mycobacterium ulcerans (M. ulcerans) (WHO, 2018). It is a chronic, debilitating

disease that a�ects the skin and soft tissue (Asiedu et al., 2000). BU is the third most

common mycobacterial disease after tuberculosis and leprosy and has been reported in

33 countries globally. The most prevalent cases have been reported from west and central

Africa, Australia, and Japan (Yotsu et al., 2015). It is also highly probable that cases

are under-reported since many countries that are likely to have cases do not report to

WHO. Figure 1.1 shows annual reported BU cases from 2010 to 2021.

Figure 1.1: A plot showing reported BU cases globally from 2010 to 2021. The data

was obtained from the WHO website (WHO, 2022).

BU may a�ect people of all ages, but the highest number of cases occur in children aged

between 5 and 15 in West Africa (Van der Werf et al., 1989; Debacker et al., 2004). It

manifests as a painless itchy nodule, a plaque, or an oedematous lesion which eventually

1
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ulcerates within weeks with undermined edges (WHO, 2018). BU does not kill but

if not treated early can lead to functional limitation, permanent disability and social

stigmatization (Stienstra et al., 2002; Ellen et al., 2003; Johnson et al., 2005). According

to WHO, early diagnosis and treatment with antibiotics before ulceration are the quickest

remedies for the disease.

Figure 1.2: World map showing the geographical distribution of reported BU cases.

Image source: (WHO, 2018).

1.1.1 Mycobacterium ulcerans

To understand the dynamics of BU transmission and spread, an understanding of the

reservoirs of M.ulcerans is key. M.ulcerans is an environmental pathogen which could

explain why BU has been associated with places near slow-�owing water bodies, wetlands,

human-associated activities like dam construction, deforestation, farming and agriculture

(Barker, 1972; Portaels, 1989, 1995; Walsh et al., 2008; Bratschi et al., 2014; Maman et al.,

2018). Person-to-person transmissions of M.ulcerans are extremely rare (Merritt et al.,

2010; O'Brien et al., 2017).

The path of its transmission in humans is still an enigma, however, there have been two

hypotheses as to how BU is transmitted. One is that it is spread by the bite of an aquatic

bug and the other is that it is introduced into the body when the skin is injured through

interaction with an aquatic environment (Dhungel et al., 2021; Singh et al., 2018).

M.ulcerans is a slow growing mycobacterium that grows best at a low temperature of

(29 − 33◦C) and a low atmospheric oxygen concentration of 2.5% (Van der Werf et al.,

1999; George et al., 2000). This growth temperature of the mycobacterium is signi�cant

in limiting the infection to the cutaneous tissue where the bacteria is likely to encounter
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favourable growth temperatures (Merritt et al., 2010). M. ulcerans secretes a lipid toxin

known as mycolactone (George et al., 1999). The incubation period between infection of

M. ulcerans and clinical manifestation of BU is 1− 8 months (Trubiano et al., 2013).

1.1.2 Mycolactone toxin

The pathological features observed in BU are best explained by the presence of myco-

lactone (George et al., 1999; Stinear et al., 2004). Some of the e�ects of mycolactone on

the skin are described below.

In vitro studies have revealed that cells respond to mycolactone depending on the cell

type and stage of activation of the cell (Hong et al., 2008). When L929 �broblasts

were exposed to mycolactone, the resultant e�ect was cell detachment, cell round-o� and

arrest leading to cell death after 48− 72 hours (Hong et al., 2008).

Mycolactone fosters cell death apoptosis and tissue necrosis

In a study conducted by (George et al., 2000), mycolactone was injected into a guinea

pig's skin. After 8 days, destruction of lipid and fat cells and oedema were observed in

the area. In a study by (Dobos et al., 2001), exposure of an adipose cell to mycolactone

induced apoptosis and necrosis. In addition, mycolactone was shown to promote coagu-

lation necrosis (cell death caused by ischaemia) of subcutaneous tissue surrounding areas

of bacterial colonization (Sarfo et al., 2016).

Mycolactone leads to �brin deposition

Fibrin is one of the main components of blood clots. Ogbechi et al. (2015) found �brin

deposits in necrotic areas of BU lesions, whereas no �brin deposits were observed in nor-

mal healthy skin. Furthermore, mycolactone caused the depletion of Thrombomodulin

(TM), a protein that binds thrombin, regulates clot formation and is a cofactor in the

activation of protein C (Carter et al., 2013).

Mycolactone plays a key role in the immunosuppression and painlessness of BU lesions

causing patients to delay seeking treatment (En et al., 2008).

1.1.3 Manifestation of BU

The M.ulcerans infection is followed by the non-ulcerative form of the disease which

appears as a nodule, papule, plaque or oedematous form (Yotsu et al., 2015).

Lesions can occur on any part of the body but most observed cases are on the extremities.

WHO categorised the disease based on the size and severity of the lesions as (WHO et al.,

2012):

1. Category I, which appears as a single small lesion (32%),
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2. Category II, which appears in non-ulcerative and ulcerative plaque and oedematous

forms (35%).

3. Category III, which involves disseminated and mixed forms. Here ulcers spread

out to the bones (osteomyelitis) and to the joints (33%).

Figure 1.3 is an illustration of the manifestations of BU disease.

Figure 1.3: Manifestation of BU disease. The pre-ulceration forms are represented as

(A)-nodule, (B)-papule (C)- plaque. The ulcerative form is represented in (D): notice

the presence of oedema. The illustrated cases (A), (C) and (D) were obtained from the

WHO website (WHO, 2018). Case (B) was obtained from (Adu and Ampadu, 2015).
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1.1.4 Diagnosis and treatment

Early laboratory diagnosis of BU is a crucial step to avoid misdiagnosis and antibiotic

misuse (Sakyi et al., 2016). Some of the main methods used for laboratory con�rmation

include: microscopy for detecting bacteria, culture to isolate viable organisms, poly-

merase chain reaction (PCR) for detecting pathogen-speci�c DNA and histopathology

(Sakyi et al., 2016). WHO recommends at least two laboratory tests to con�rm the

disease.

The standard diagnostic method for detection for BU in most endemic countries is PCR

which is 100% accurate and is speci�c to M.ulcerans (Phillips et al., 2005). Microscopy

and culture have a low sensitivity while histopathology is rarely available in endemic areas

(Frimpong et al., 2019). Although PCR has been the recommended diagnostic tool, it is

expensive, performed in laboratories with sophisticated set-ups and unavailable to most

endemic places which are mainly rural areas (Stinear et al., 1999; Ablordey et al., 2012).

There has been a need for a �eld-friendly and rapid diagnostic tool (RDT) that would

bring diagnosis nearer to patients. This would lead to timely reception of results hence

quickening the start of treatment (Frimpong et al., 2019).

A molecular diagnostic tool called M.ulcerans recombinase polymerase ampli�cation

(Mu-RPA) has been proposed as an alternative to PCR. It yields readily readable results

within a short period (Ablordey et al., 2012). Mu-RPA has been applied in diagnosing

tuberculosis and proved e�ective (Boyle et al., 2014). For simplicity of terminologies in

this thesis, we will refer to the Mu-RPA as RDT. RDT has the following advantages:

i. RDT o�ers molecular diagnosis in �eldwork and at the point of care.

ii. RDT is more rapid o�ering readable results in < 20 minutes compared to PCR (2

hours).

iii. RDT is simpler to run: for example does not require sophisticated set-up compared

to PCR.

There is a need to assess the e�ectiveness of RDT and the impact of its usage on BU

patients.

Treatment of BU

The main treatment of BU before 2004 was surgical excision (Dega et al., 2002). This

was seen as e�ective but had been associated with high rates of recurrence, long hospital

stays and high treatment costs (Asiedu, Kingsley and Etuaful, Samuel, 1998; Kanga

et al., 2003). After several clinical studies, WHO recommended antimicrobial therapy

which included a combination of rifampicin and clarithomycin given orally for 8 weeks
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as the �rst line treatment (WHO et al., 2004). In some cases, surgery is still sometimes

preferred in Australia (O'Brien et al., 2019).

With early diagnosis, antimicrobial treatment administered daily for 56 days is e�ective

to sterilise the infection site of the disease in the majority of the cases (80%). However,

due to the painless nature of the disease, people tend to seek treatment when the ul-

cers are already advanced. In these advanced stages, treatment will require antibiotics,

surgery, skin-grafting accompanied with careful wound management and physiotherapy,

and even after intervention patients heal with some form of deformity (WHO, 2018).

There have been attempts to develop vaccines against M.ulcerans including strategies to

inhibit the e�ect of mycolactone. However, these developments have not yielded much

success so far (Watanabe et al., 2015). One of the research priorities recommended by

WHO is to focus on evaluation of shorter treatment for limited lesions (Pluschke and

Röltgen, 2019).

Community health volunteers (CHV)

Inclusion of health interventions for example, community involvements and training

health workers have been ways to educate and encourage early diagnosis and treatment.

Introducing CHV in referring BU cases was instrumental in improving the number of

BU cases reported (Vouking et al., 2013; Barogui et al., 2014; Vouking et al., 2014).

1.2 Thesis motivation

The need to demystify mechanisms behind wound growth and healing times in BU cou-

pled with the economic burden of BU treatment on impoverished endemic regions are

some of the motivations of this research (Kpeli and Yeboah-Manu, 2019). In addition to

the functional limitations that proceed with prolonged hospital stays which are evident

among BU survivors.

In the quest to understand BU disease, Ogbechi et al. (2018) explains the molecular

mechanisms driving skin cell death: for example, understanding how mycolactone stim-

ulates programmed cell death (apoptosis) and how chronic exposure to stress leads to

pathways which have been shown to drive M. ulcerans induced apoptosis. Ogbechi et al.

(2015) suggested that the cytotoxicity of mycolactone on the cell (the direct e�ect) and

mycolactone-dependent loss of coagulant control (the indirect e�ect) are the two possible

mechanisms that may contribute to tissue necrosis in BU.

These two mechanisms may collaborate to produce the cell death observed in BU. What

is not known is the contribution of each mechanism to cell death. This thesis aims to

investigate the mycolactone-dependent processes leading to cell death to elucidate the

pathogenesis of BU, what drives cell death, and to provide insights into controlling or

managing BU disease.
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In addition, there is still an urgent need to curb the number of cases that are diagnosed in

late stages (WHO, 2018). The painless nature of the disease causes people to report late

leading to chronic deep wounds that take a long period to heal. This work investigates

interventions that could be adopted to encourage early reporting and provide insights

which cannot easily be obtained otherwise by biological sciences or experimental studies

alone. The introduction of a RDT and community health volunteers (CHV) are two

interventions that this thesis analyses.

Mathematical and computational models represent a useful tool in BU disease modelling

in literature (Aidoo and Osei, 2007; Bonyah et al., 2014a,c,b; Nyabadza and Bonyah,

2015; Garchitorena et al., 2015; Assan et al., 2017) and provide some new mechanistic

insights. This thesis uses a di�erential equation model, compartmental model, decision

tree model and an agent-based model, to produce novel solutions and recommendations

for understanding BU disease.

The �rst mathematical model of this thesis describes Buruli ulcer lesion formation as

initiated by skin cell death processes. This model is motivated by the unresolved question

regarding the relative contribution of ischaemia and direct toxicity mechanisms in cell

death. Speci�cally, the model investigates the main mechanism by which cells die and the

speed of wound enlargement and demonstrates the growth ofM.ulcerans and mycolactone

in the skin.

The second model investigates the disease progression and treatment pathway of BU in

the population of endemic areas in Ghana. This model aims to elaborate on the possible

outcomes of populations as they transition from one disease state to another without

any intervention. This model accounts for the infected population the same way WHO

classi�ed them in categories depending on severity (WHO, 2018). This compartmental

model is unique in describing BU transmission in a way that has not been done by

previous models for example (Assan et al., 2017; Bonyah et al., 2014c; Nyabadza and

Bonyah, 2015; Bonyah et al., 2014b). Speci�cally, our model takes into consideration,

the disease progression and treatment pathway of BU in the population in a way that

exactly mimics the nature of the disease.

The third model accounts for the economic evaluation of the introduction of a RDT. It

investigates the costs and e�ects, cost-e�ectiveness analysis of the RDT compared to the

currently used PCR diagnostic test for BU. This model is motivated by studies (Frimpong

et al., 2019) who developed a new diagnostic tool with the potential for quick diagnosis

of BU at the point of care providing timely results to health workers. There is a need

to investigate its availability, a�ordability and sustainability given the limited resources

in most endemic countries. In this thesis, a decision-analytical model and probabilistic

sensitivity analysis are used to estimate the relative cost e�ectiveness of PCR and RDT

in the most endemic areas in Ghana. Results from this study can serve as a key element

to inform decision makers in public health policy.
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The fourth model investigates the role of CHV in referring BU patients for diagnosis and

treatment while still in early stages. This model compares the path of BU patients with

self-referral alone and with both self-referral and CHV. Speci�cally, this work uses an

agent-based model which is well known for capturing the complex interactions between

individuals and the environment (Macal, 2016; Macal and North, 2005). The goal of the

third and fourth models is to increase BU disease case detection rates in the early stages

and to the extent possible, to improve diagnosis and treatment rates.

This thesis is based upon a critical analysis of the available literature, aiming to un-

derstand BU disease. The research results in this work could be tested experimentally

and consequently, elucidate on some controversial �ndings, encourage future avenues

of research and contribute towards early diagnosis, treatment, prevention of severe BU

cases.

1.3 Research objectives

The main objective of this work was to develop mathematical models which describe

and advise on the dynamics of Buruli ulcer disease taking into consideration skin-cell

death mechanisms, BU disease progression and treatment pathway, cost-e�ectiveness of

diagnostic tests and the role of CHV in referring BU patients in early stages. The speci�c

objectives for each chapter are:

1. (i) To develop a mathematical model to describe the dynamics of ulcer formation

including mycolactone di�usion, M.ulcerans growth, decrease in cell densities

and increase in �brin deposition in the skin as time evolves.

(ii) To investigate the processes within the model that lead to cell death caused

by mycolactone di�usion in the skin.

(iii) To investigate how the ulcers progress when ischaemia or direct toxicity path-

ways are restrained.

2. (i) To develop an epidemiological model for the incidence, progression and treat-

ment of BU.

(ii) To brie�y describe the aetiology and epidemiology of Buruli ulcers as a ne-

glected tropical disease, and explore possible interventions for managing late-

category cases.

3. (i) To evaluate the cost-e�ectiveness of diagnosing BU with the proposed RDT

compared to the traditional PCR in Ghana.

(ii) To calculate the extent of disability caused by delayed treatment of BU using

disability-adjusted life years (DALY).

4. (i) To examine the impact of introducing CHV in referring BU patients for diag-

nosis and treatment in the early categories of BU disease.
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(ii) To use an agent-based model to analyse individual interactions between BU

patients and CHV.

1.4 Signi�cance of this study

This work is important in the future direction of the control and management of BU in

several ways:

It gives insights into the processes that lead to wound development as observed in BU.

This will help in the direction and current progress on BU treatment options such as

surgery.

The mathematical framework described in this thesis contributes to the bank of knowl-

edge for research and experimental analysis related to mathematical modelling for BU.

The results of this work could aid decision-making on resource allocation of health fa-

cilities. For example on the implementation of cost-friendly diagnostic tools for BU in

Ghana.

This work contributes to the existing literature on neglected tropical diseases. It creates

a platform for further work on such diseases.

1.5 Thesis overview

In Chapter 2, we review some previous studies done in modelling BU. The review high-

lights a mathematical model for tissue invasion observed in BU, BU transmission models,

and selected models for CEA and ABM for the spread of diseases (for example Malaria).

Chapter 3 presents a mathematical model that uses a system of coupled partial di�er-

ential equations to understand ulcer formation of BU lesions. Basic properties of the

model including parameter estimation are described, followed by numerical simulations

and sensitivity analysis of the model behaviour.

Chapter 4 presents a compartmental transmission model that was built based on an

SIT (susceptible, infected and treated) model to describe the pathway of BU patients in

di�erent stages of the disease. Numerical simulation results are presented and discussed.

Chapter 5, extends the compartmental model by incorporating the use of a RDT as

a health intervention. A decision tree model is constructed for BU and two diagnostic

approaches are compared. A cost-e�ectiveness analysis (CEA) of using a RDT compared

to a PCR for BU diagnosis in a rural health centre setting in Ghana is conducted.

Probabilistic sensitivity analysis is performed and the results are discussed.

Chapter 6 looks at the potential impact of CHV in the early diagnosis of BU disease. An

ABM is built to take into account the interaction of BU patients and CHV. Numerical

simulation results are presented and discussed.
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Chapter 7 presents concluding remarks and highlights future extensions of this study.



Chapter 2

Review of models of BU

Mathematical and epidemiology models have been used to transform research on diseases.

These models have been previously used to o�er insights on controlling and managing

diseases (Hollingsworth, 2009). They have been employed hand in hand with experimen-

tal studies to assist policy-makers in deciding which preventive and treatment measures

to implement.

The spectrum of mathematical models can vary from ordinary di�erential equations to

agent-based models (ABM), stochastic simulations composed of millions of individuals

(Riley, 2007). This variation depends on the type of disease modelled, spatial structure,

demographic arrangement, treatment procedures, what the study questions are and the

quantity and level of detail of data available (Grassly and Fraser, 2008).

Understanding the progression of BU is vital in the �ght to prevent severe cases. Math-

ematical models o�er an avenue to understand the transmission, control, management,

and treatment of BU. We explore the dynamics of the BU disease extending and modi-

fying existing models to produce plausible mathematical models motivated by available

new research.

In this chapter, we review previous modelling work on BU and other related diseases

and pointed out critical results on particular selected models. We review models for

tissue invasion in section 2.1, models for the spread of BU in section 2.2, models for cost

e�ectiveness analysis (CEA) in section 2.3 and ABM in section 2.4 respectively.

2.1 Modelling of tissue invasion in BU

Nyarko et al. (2017) developed a mathematical model that uses reaction-di�usion equa-

tions to describe the macroscopic e�ect of mycolactone di�usion on cell density (c),

extracellular matrix (ECM) density (ν), and M.ulcerans bacterial population (m). The

model focuses on making predictions about tissue degradation caused by mycolactone.

11
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The model was formulated based on assumptions thatM. ulcerans feeds on lipids from the

necrotic cell for further growth. In addition, M.ulcerans, cells and the ECM compete for

tissue space. Furthermore, the production of mycolactone depends onM.ulcerans density,

and the body responds against the toxin. They also assumed that ECM interaction with

mycolactone causes ECM degradation. When ECM �bres get in direct contact with

mycolactone, they are degraded and later re-create and re-construct themselves. Their

immediate neighbourhood in�uenced cell movement, which was modelled by haptotaxis

and chemotactic responses of cells.

These assumptions led to a system of PDEs as indicated in Equations (2.1) -(2.4) with

corresponding boundary and initial conditions. The system was non-dimensionalised and

numerical simulations were obtained. A �nite-di�erence method was used to discretize

the system.
∂m

∂t
= Dm∇m+ γζ(b)− λmm, (2.1)

∂b

∂t
= ∇(Db∇b)−∇(χ(c)b∇c) + λbb

(
1− a12

c

Kc
− a13

ν

Kν
− b

Kb

)
, (2.2)

∂ν

∂t
= −δνmν + λνν

(
1− a32

c

Kc
a31 −

b

Kb
− ν

Kν

)
, (2.3)

∂c

∂t
= ∇(Dc∇c)−∇(ρ(ν)c∇c)−∇(ψ(c,m)c∇m)− δccm+

λcc

(
1− a21

b

Kb
− a23

ν

Kν
− c

Kc

)
.

(2.4)
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Parameter Description

ψ(c,m) Function for the in�uence of chemotactic response

ρ(ν) Function for the in�uence of haptotactic response

δν Degradation rate of ECM �bers

δc Degradation rate of the cell

ζ(b) Production rate of mycolactone

γm Production rate of M.ulcerans

χ(c) Chemotactic response of the bacteria

λb Birth rate of M.ulcerans

λm Decay rate of of M.ulcerans

λc Production rate of c

λν Production rate of ECM �bers

Dm Di�usion coe�cient of mycolactone

Db Di�usion coe�cient of bacteria

Dc Di�usion coe�cient of the cell

Kb Carrying capacity of M.ulcerans

Kc Carrying capacity of the cell

Kν Carrying capacity of ECM �bers

a12 Competitive e�ect of c on b

a13 Competitive e�ect of ν on b

a21 Competitive e�ect of b on c

a23 Competitive e�ect of ν on c

a31 Competitive e�ect of b on ν

a32 Competitive e�ect of c on ν

Table 2.1: Description of parameters used in (Nyarko et al., 2017)'s model.

Their model results suggested that mycolactone degrades ECM, decreasing cell density

and creating space for the migration of M.ulcerans. This concept indicated that myco-

lactone di�uses further into the tissue space than M.ulcerans as time evolves, was said to

explain the di�culty in measuring excision margins during surgery. Their results con�rm

the toxicity of mycolactone to cells and its degrading e�ect on ECM.

However, the model included a decay term that accounts for the body's response against

the toxin. This phenomenon indicated that the body's immune system �ghts mycolac-

tone, which contradicts mycolactone's immunosuppressive nature (Goto et al., 2006). In

addition, most parameters lacked references or explanations for the choice of particular

values.

The main di�erence between our model in chapter 3 and (Nyarko et al., 2017)'s is the

inclusion of ischaemia as a possible pathway of skin cell death. Our model focuses on

the e�ect of mycolactone on skin cells and analyses how the two suggested pathways
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(ischaemia and direct toxicity of mycolactone) lead to cell death, which (Nyarko et al.,

2017)'s does not consider.

Nyarko et al. (2017) considered chemotaxis and haptotaxis processes in their model.

Chemotaxis involves cell movement in response to a chemorepellent or chemoattractant,

and haptotaxis, involves cells migration directionally along adhesive substrates like the

ECM (Stock and Baker, 2009; Carter, 1967; Rikitake and Takai, 2011).

The authors also incorporated the dynamics of ECM �bre concentration and degradation

into their model. By contrast, we focus on the inclusion of ischaemia as a possible

pathway of skin cell death using insights obtained by discussion with experts. Our

model focuses on the e�ect of mycolactone on skin cells, and explores the contribution

of ischaemia in leading to cell death, thereby paving the way for advancements in this

�eld.

Their model grouped all skin cells as of the same type. However, research has elucidated

how mycolactone a�ects di�erent cell types and di�erent cells are sensitive to di�erent

amounts of mycolcatone. For example, mycolactone in�uences the production of immune

cells, primary T-cells (Phillips et al., 2009), endothelial cells (Ogbechi et al., 2015), and

dendritic cells (Coutanceau et al., 2007). In this context, our model considered the e�ect

of mycolactone on endothelial cells and categorised all the other cells as stromal cells.

Nevertheless, the results obtained from this paper illuminate some critical points on the

role of M.ulcerans and mycolactone in tissue invasion in BU disease. We will extend

these concepts and apply them to our model in chapter 3.

2.2 Mathematical models for BU

In this section, we explore some epidemiological models that have analysed the interaction

of humans and the environment and how M.ulcerans infections lead to BU.

Aidoo and Osei (2007) proposed a SIR model for the transmission of BU incorporating

the role played by water bugs and levels of arsenic in the environment. The authors

considered the fact that arsenic-containing environments have been linked to the preva-

lence of M. ulcerans infection (Duker et al., 2004). This model is one of the earliest

mathematical models for BU describing the interrelations between humans, vectors and

arsenic-polluted water. The model equations were as follows:
dx

dt
= maby(1− x)− rx,

dy

dt
= a1x(1− y)− y(µ− α).

(2.5)
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Parameter Description

x Proportion of humans infected by M. ulcerans

y Proportion of water bugs infected byM. ulcerans

r Death rate of humans

a Bite frequency

b

a1 Rate of ingestion of M. ulcerans by water bugs

m Number of water bugs per human

α Relative arsenic concentration in water

µ Death rate of water bugs

Table 2.2: Description of variables and parameters used in (Aidoo and Osei, 2007)'s

model.

The higher the rate of ingestion of M.ulcerans by water bugs, the higher the rate of

its infectiousness. Their model described BU as a micro-parasitic disease in which host-

parasite interaction occurred within isolated environments. In their assumptions, humans

who contracted BU become immune to further attack. This assumption is incorrect since

being infected with BU does not infer immunity as there have been cases of relapse and

reinfection (Eddyani et al., 2015). They established the model equations describing the

proportion of humans infected by M. ulcerans and the proportion of water bugs.

Results from the model concluded that higher arsenic concentration in water caused

BU to thrive in the environment. Hence arsenic concentration is likely to in�uence the

transmission of BU. Aidoo and Osei (2007) suggested preventive measures for controlling

BU, like wearing protective garments while working outdoors and non-exposure to arsenic

environments.

Their model incorporated a key feature of associating arsenic environments with M.

ulcerans prevalence which has been previously studied (Duker et al., 2004). The model

focused on a few aspects of BU spread ignoring key features of BU.

Bonyah et al. (2014b) proposed a compartmental SIR model for transmission of M.

ulcerans to humans. The authors assumed that an infectious water bug bite in an

aquatic environment causes an infection in susceptible humans.

When susceptible water bugs feed on infected �sh, they get infected. Furthermore,

susceptible �sh get infected when they prey on infected water bugs. A set of non-linear

ordinary di�erential equations stated in Equations (2.6)- (2.13) describes the human, �sh

and water bug interactions populations
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dSH
dt

= θRH + µHNH − SH
(
βH

IV
NH
− µH

)
, (2.6)

dIH
dt

= βH
SHIV
NH

− IH(µH + γ), (2.7)

dRH
dt

= γIH −
(
µH + θ

)
RH , (2.8)

dSV
dt

= µV
(
NV − SV

)
− βV SV

(
IF
NV
− ηV

U

K

)
, (2.9)

dIV
dt

= βV SV

(
IF
NV
− ηV

U

K

)
− µV IV , (2.10)

dSF
dt

= µF (NF − SF )− βF
(
SF IV
NF

− ηF
SFU

K

)
, (2.11)

dIF
dt

= βF

(
SF IV
NF

− ηF
SFU

K

)
− µF IF , (2.12)

dU

dt
= σF IF − µEU, . (2.13)

where SH , SV and SF represent the susceptible human population, susceptible water

bugs and susceptible �sh, respectively. The terms IH , IV , IF and RH are the infected

human population, infected water bugs, infected �sh and recovered human population,

respectively. U represents the density of M.ulcerans.

Parameters βH , βV and βF represent the e�ective contact rates between the vector and

susceptible humans, the �sh and susceptible vectors, the susceptible �sh and M.ulcerans

respectively. Parameters µH , µV and µF represent the natural mortality rates of humans,

vectors and �sh, respectively. Parameters σF and σV represent the rate of shedding of

M.ulcerans into the environment by �sh or by water bugs, respectively. µE is the rate

which M.ulcerans is cleared from the environment. (Bonyah et al., 2014b) explained the

remaining parameters in detail.

They introduced controls on interventions like insecticide (u1(t)), mass education (u2(t))

and treatment (u3(t)). These controls focused on decreasing the exposure of susceptible

humans to infected water bugs, curbing the infection of water bugs and �shes, and

reducing the infection between the water bugs and the environment. The optimal control

strategy was applied, where one strategy was activated while the remaining two were set

to zero for a period of 100 days.

In their numerical simulation results, a combination of controls u1(t), u2(t) and u3(t)

was capable of helping reduce the number of infected humans, water bugs, small �shes

and M.ulcerans in the environment and reducing the number of BU infections.

The principal concept with (Bonyah et al., 2014b)'s model is the use of optimal control

theory to mitigate BU, an approach that had not been applied explicitly for BU before.
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Nyabadza and Bonyah (2015) extended the work of Bonyah et al. (2014b) by adding a

term σV IV to the environment compartment U in Equation (2.13). This term represented

the shedding of M. ulcerans into the environment by water bugs.

According to the sensitivity analysis results, parameters like the removal rate ofM.ulcerans

from the environment µE , the shedding rate of M.ulcerans in the environment by water

bugs σV , and by �sh σF greatly in�uenced the prevalence of BU in humans. For exam-

ple, the prevalence of human infections increased by 6% after an increase in σF by 0.01.

When the population of infected �sh that shed bacteria into the environment increases,

this leads to the growth of M.ulcerans.

After �tting the incidence data of BU cases in Ghana to the model, the resultant projec-

tions for the next 5 years showed a slight decrease in cases that remained constant after

1 year. In other words, if there is no implementation of policies to curb the cases, BU

cases will remain constant. Their model concluded that BU's management depends on

environmental management.

The fundamental observation from work by (Bonyah et al., 2014b) and (Nyabadza and

Bonyah, 2015) is the inclusion of interactions among �sh, water bugs and human popu-

lations in the transmission model. These interactions coincide with the suggested trans-

mission mode where aquatic insects are possible natural reservoirs for M.ulcerans.

The models focused on intervention strategies, for example, mass education and treat-

ment which concur with the Information, Education and Communication (IEC) (Clift,

1998) strategy. This strategy could contribute to the control of BU.

Bonyah et al. (2014a) developed a mathematical model for BU with saturated treat-

ment. The saturated treatment function modelled the lack of su�cient treatment facili-

ties amidst an increasing number of infected individuals. This model di�ers from that of

Bonyah et al. (2014b) by adding a treatment compartment and incorporating two modes

of transmission.

The two modes of BU transmission were either through direct contact withM.ulcerans in

the environment or through biting by water bugs. This work aimed to model the potential

in�uence of challenges linked with the treatment and management of BU. For example,

limited resources, delays in accessing treatment and inadequate medical facilities a�ect

the treatment of ulcers. The model analysis involved determining the steady states and

the basic reproduction number of BU (R0).

Results from their numerical simulations suggested that environmental management,

such as the elimination of M.ulcerans from the environment and reducing the shedding

of water bugs, in�uenced the eradication of BU. Their results suggested the inclusion of

concepts like social interventions for possible extensions of the model.
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Studies by Bonyah et al. (2014b,a) described the spread of BU with the inclusion of

environmental dynamics and control strategies. They present a good starting point

capturing a broader phenomena related to BU in Africa.

Bonyah et al. (2014c) developed an age-structured SIR model for BU in Ghana. The

authors assumed thatM.ulcerans was introduced into the water reservoirs by a disturbed

environment. They grouped the human population into three compartments; age and

population varied over time in each group.

These considerations led to a coupled system of hyperbolic PDEs for the population and

an ODE for M.ulcerans transmission. The �xed point theory was applied to prove the

existence and uniqueness of the solutions to the PDE system. Furthermore, the solution

to the PDE was calculated using the method of characteristics and R0 was determined.

Their simulation results showed a peak spread period of M. ulcerans, which reduced over

time. Bonyah et al. (2014c) concluded that the spread of M. ulcerans was in�uenced by

human behaviour and the recovery rate of untreated BU depended on a person's immu-

nity. Bonyah et al. (2014c) recommended consideration of treatment control strategies

in an age-structured Buruli ulcer model for improved understanding of BU.

One signi�cant feature of the work of Bonyah et al. (2014c) was the inclusion of age

as an independent variable. In many tropical and subtropical countries, children below

15 years are at a higher risk of contracting BU (Debacker et al., 2006; Jacobsen and

Padgett, 2010; WHO et al., 2012; Maman, Issaka and Tchacondo, Tchadjobo and Kere,

Abiba Banla and Piten, Ebekalisai and Beissner, Marcus and Kobara, Yiragnima and

Kossi, Komlan and Badziklou, Kossi and Wiedemann, Franz Xaver and Amekuse, Komi

and others, 2018).

Studies by Garchitorena et al. (2015) explored the relative contribution of two modes of

transmission of BU to humans in Akonolinga district, Cameroon. The authors considered

two suggested possible hypotheses: environmental or water bug transmission. They used

a SEITR compartmental model to illustrate the cycle of BU accounting for the two

transmission routes. In the model, a statistical model linked the presence of M.ulcerans

with BU incidence. When the contribution of the two routes was quanti�ed, it was

observed that the environmental transmission route described the temporal and spatial

patterns in the selected endemic areas better than the water bug transmission route.

Although research on the mode of transmission is still inconclusive, this work highlights

a key aspect in understanding the pathway in the spread of BU to humans.

Assan et al. (2017) proposed a deterministic model for BU transmission in �uctuating

environments. It included seasonal environmental variations which caused the disease

transmission pathways and M. ulcerans to also change periodically. In the model, they

established conditions for disease extinction and persistence. The time-averaged repro-

duction number [R0] was compared with the original basic reproduction number R0.
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In the numerical simulations, R0 was found to be slightly less than [R0]. This im-

plied inaccuracies in the number of infections predicted by [R0]. Assan et al. (2017)

recommended the inclusion of climatic and environmental changes in building realistic

mathematical models.

Other mathematical models of BU include "Mathematical modelling and stability anal-

ysis of Buruli ulcers in possum mammals" by (Chu et al., 2021), among others. This

paper is the one describing the situation in Australia.

Previous modelling has focused on the disease dynamics and natural history alongside

methods for prevention of BU in West Africa. We are instead more focused on its

treatment, aiming to evaluate the impact of faster detection of BU on the population.

Nevertheless, concepts from studies in (Aidoo and Osei, 2007; Bonyah et al., 2014a,c,b;

Nyabadza and Bonyah, 2015; Garchitorena et al., 2015; Assan et al., 2017; Chu et al.,

2021) inspired our modelling work in chapter 4. These models act as an initial step

towards understanding BU, showing ways various authors have modelled BU.

2.3 Models for cost e�ectiveness analysis

In this section we review some of the studies related to costs for BU treatment and

cost e�ectiveness analysis (CEA) models that inspired our work in chapter 5. Whilst

knowledge about the aetiology of BU has progressed, there is still need to investigate

the economic burden of BU so as to in�uence health care expenditure (Ackumey et al.,

2011).

2.3.1 Economic burden related to BU treatment

The studies in Drummond and Butler (2004), Pak et al. (2012),Amoakoh and Aikins

(2013) and Chukwu et al. (2017) evaluated the overall costs of diagnosis and treatment

of BU in Australia, Ghana, and Nigeria, respectively.

Drummond and Butler (2004) assessed costs of diagnosis, treatment and lost income of

BU patients in Australia. Pak et al. (2012) estimated the treatment cost of M.ulcerans

infection in the antibiotic era managed at Barwon health centre in Victoria, Australia,

from 1998 and 2006. They compared it with costs in the pre-antibiotic era in the neigh-

bouring region from 1991− 1998.

Amoakoh and Aikins (2013) estimated the household economic costs and the related

intangible costs su�ered by BU patients in Obom, Ga South, Ghana. Chukwu et al.

(2017) assessed the costs of BU care to patients from the start of illness, diagnosis and to

the end of treatment. The study was conducted among patients with BU in four states

in Nigeria between July and September 2015.
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These models in highlight the costs BU patients incur in order to attain recovery. This

information is crucial in estimating costs for BU diagnosis and treatment in our CEA

studies.

2.3.2 Cost e�ectiveness analysis

In this subsection, we review selected CEA studies for diseases like malaria, typhoid

and others, in di�erent countries. Of particular interest in this section are models that

performed CEA for a similar set of interventions to those we consider in chapter 5

speci�cally the evaluation of rapid diagnostic tests (RDTs) and can therefore provide a

framework that we can build on.

Shillcutt et al. (2008) performed a CEA of a RDT, presumptive treatment and �eld-

standard microscopy in various settings in sub-Saharan Africa where malaria is endemic.

In their model, they developed a decision tree that allows suspected malaria patients to

present to a health facility. The population proceed through diagnosis and treatment as

determined by the prevalence of malaria among patients, the patient's age, sensitivity

and speci�city of each unit diagnostic method.

At each decision tree node, the probability, cost and health outcome in terms of DALY

are determined. There after, the increment cost and e�ect of substituting one diagnostic

strategy for another are calculated. The authors performed a probabilistic sensitivity

analysis using Monte-Carlo simulations with 10, 000 generations of cost and health out-

comes from the uncertainty ranges for the input parameters.

Their results showed that the RDT was cost-e�ective compared to presumptive treat-

ment. Policy-makers can be at least 95% con�dent of these �ndings when the prevalence

levels of malaria are below 62% and 50% con�dent when malaria prevalence levels are

below 81%. More over, RDTs had a 50% chance of being cost-saving when malaria

prevalence levels are below 58%. When compared to microscopy, RDTs were more than

85% likely to be cost-e�ective across all prevalence levels.

Their study elucidates the importance of introducing RDT for malaria diagnosis in sub-

Saharan Africa. Their results paint a picture of RDT's expected accuracy under real-life

conditions.

(Hansen et al., 2015) undertook a CEA of a RDT for malaria diagnosis. They compared

the RDT with a diagnosis with microscopy and diagnosis by symptoms alone. The CEA

of malaria diagnosis was conducted from a health facility and society perspective in

regions in Afghanistan with di�erent transmission levels. The authors substituted RDT

with either clinical diagnosis or microscopy in the model and calculated the incremental

CEA at each substitution.
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A decision tree model was built with intervention arms in the three malaria diagnoses

for the low and moderate transmission regions.

In the model, they established costs, e�ects and probabilities at each decision tree node.

The e�ects considered were proper treatment of suspected malaria. Costs included;

health sector cost per service, including the cost of RDT, cost of treatment per ser-

vice, out-of-pocket expenditure, and consultation fee, among others. They conducted a

probabilistic sensitivity analysis to deal with uncertainty in parameter estimation.

The key results from their probabilistic analyses indicated that RDTs were more e�ective

than clinical diagnosis in the low transmission setting. For example, the proportion of

appropriately treated patients was 65.2% for RDT compared to presumptive diagnosis,

which was 12.5%. The societal cost for each patient who used a RDT was US$13.2 and

US$1.8 for presumptive diagnosis. This led to an additional cost of US$4.5 for every

appropriately treated patient.

The cost-e�ectiveness acceptability curves showed that the diagnosis with the RDT had

a high probability of being cost-e�ective in the low, moderate and high settings. The

RDT's cost-e�ectiveness remained even when the decision maker was willing to pay less

for each appropriately treated patient.

Their results indicated that the introduction of RDT was cost-e�ective in both the low

and moderate malaria transmission settings. They concluded that RDT intervention

provided value for money regarding the accurate, appropriate treatment of febrile patients

in each setting.

Saito et al. (2018) conducted a study that evaluated the cost-e�ectiveness of employing

a RDT in diagnosing typhoid fever in a remote area in Cambodia. They constructed a

decision tree analytical model where the RDT and clinical diagnosis were compared with

a hypothetical 1000 children at each arm.

Costs included costs of diagnosis, treatment, and e�ects, including the number of cor-

rectly diagnosed cases and treatment successes.

For each 1000 children, the RDT detected 38.45 true-positives while clinical diagnosis

detected 32.59. Moreover, there were 3.61 more treatment successes for the RDT than

clinical diagnosis. On calculating the ICER, the incremental cost of the RDT compared

to clinical diagnosis was estimated at $5700.

A cost-e�ectiveness plane illustrated the results of the probabilistic sensitivity analysis.

Most of the cost-e�ect pairs lay in the northeast quadrant, indicating that using RDT

resulted in many treatment successes but proved more costly than clinical diagnosis.

Their results found that the RDT was more e�ective but costly compared to the baseline

scenario's clinical diagnosis.
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Momoh et al. (2021) formulated a model for BU transmission that incorporated three

intervention strategies. These strategies included spraying with insecticides, education

on the use of protective equipment and treatment of infected humans. The authors �rst

developed a SEIT compartmental model that involved interactions between humans and

water bugs in the environment leading to a system of non-linear di�erential equations.

The model analysis calculated equilibrium points, the basic reproductive number, global

stability and bifurcation analysis.

The authors focused on minimizing the number of exposed humans, infected humans and

the water bug population while keeping the cost of control strategies at a minimal level.

When the cost-e�ectiveness analysis was performed, their results indicated that a com-

bination of health education on the use of protective wear, treatment of infected humans

and insecticides was the most e�ective control strategy.

A vital feature of this model is the inclusion of CEA in intervention strategies. The

authors calculated the ICER with related costs and infections averted a�liated with

each intervention. However, their CEA was basic, excluding critical methodologies like

the ICER plane and sensitivity analysis of cost and e�ect parameters. Furthermore, the

authors considered just one cost and e�ect parameter, with no decision tree model.

The studies reviewed gave us helpful information on the model formulation of the CEA

work. The CEA for RDT were for di�erent diseases since, to our knowledge, no speci�c

CEA of RDT on BU diagnosis has been previously conducted.

The methods and hypotheses used in Shillcutt et al. (2008), Hansen et al. (2015), and

Saito et al. (2018) provide a framework for the analysis in chapter 5 that intends to

examine the cost-e�ectiveness of introducing a RDT for diagnosis and treatment of BU.

2.4 Review of previous Agent based models

In the past, ABMs have been a valuable tool for studying disease transmission dynamics.

ABMs allow the analysis of diseases for heterogeneous populations considering factors

like movement patterns, sex, age, and spatial and temporal changes in the model design

which are di�cult to incorporate into compartmental models (Kong et al., 2016).

ABMs are a type of computational simulation tool composed of agents that can interact

with each other and within their environment governed by a set of pre-de�ned rules.

ABMs are powerful for their ability to incorporate stochasticity, individuality and spatial

variation in the model formulation (Hackl and Dubernet, 2019).

A population-based behaviour emerges from interactions among di�erent agents in space

and time. In general, agent-based modelling is characterised by its bottom-up structure,

a micro-scale perspective, discrete-event considerations and non-intuitiveness (Macal and

North, 2005; Macal, 2016; Smith et al., 2018).
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Research in biological sciences that used ABMs include applications in cell behaviour

and interaction (Alber et al., 2003), modelling the spread of cancer (Preziosi, 2003), prey

and predator populations (Taylor et al., 2007), modelling the interactions of cells of the

adaptive immune system (Folcik et al., 2007).

Hence, we developed our model in chapter chapter 6 based on worked examples in Net-

Logo (Tisue and Wilensky, 1999), the epiDEM model (Epidemiology: Understanding

Disease Dynamics and Emergence through Modelling) (Yang and Wilensky, 2011), on

HIV model (Wilensky, 1997) and a malaria model (Smith et al., 2018).

The ABM we discuss in this thesis has taken inspiration from a combination of ideas

from the following studies.

Modu et al. (2020) used an ABM to model and analyse malaria transmission for hetero-

geneous populations. They employed a hybrid methodology that incorporates a mathe-

matical model and an ABM. In the mathematical model, they described the spread of

malaria based on mosquito and human populations. These descriptions were presented

in the form of a compartmental transmission model.

The authors described humans, mosquitoes, pathogens, and environmental agents in

the ABM. They employed climatic data from three malaria-prevalent cities of Benin

(Nigeria), Tripura (India) and Limpopo (South Africa). The two models were validated

against data on reported malaria cases in the three cities.

The model illustrated the relationship between reported malaria cases and the mean

temperature. Simulations were done using VenSim Eberlein and Peterson (1992) and

NetLogo (Tisue and Wilensky, 1999) for the mathematical modelling and ABM, respec-

tively. In the NetLogo simulation, the authors created the environment and set up the

agent procedure.

They compared the mathematical model and the ABM results with reported malaria

case data. Their results showed that the ABM was robust in predicting the season of

malaria and possible �uctuations.

The model discussed by Modu et al. (2020) acted as a sample model for building our

model. For example, the details and algorithms used gave us a �ow of what to include

in our ABM.

Yang and Wilensky (2011) developed a simulation tool called epiDEM, which mod-

elled the spread of an infectious disease in a closed population based on the Kermack-

McKendrick model. Agents represented individuals interacting with each other in the

environment according to pre-set rules. An individual had 5% probability of being ini-

tialized as infected. This model allowed users to engage in modelling epidemics in a

natural and individualistic manner.
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Individuals were allowed to wander around randomly. A susceptible person can be in-

fected when interacting with an infected person within the same vicinity.

Each agent had direct neighbours and surroundings on all eight neighbouring grid squares.

There is a chance for an infected person to recover after reaching the estimated recovery

time. An individual's recovery time was drawn out of a Gaussian distribution with a

mean of the average recovery time. The user sets the total population, the probability

of being infected, and the mean of the average recovery time.

Figure 2.1: A screen shot showing the interactive NetLogo interface for the epiDEM

simulation model. We observe sliders for the user, R0 values, the percentage of the

infected, recovered populations, infected and recovered rates.

Figure 2.1 illustrates how the infection and recovery rates vary over time. In these

graphs, the user observed the rate of change of the cumulative infected and recovered in

the population. In the Figure interface, the user keeps track of the changes in R0 and

the recovered population per tick.

Di�erent colours represent an individual's state of health. The colours white, red and

green represented the susceptible, infected, and recovered populations, respectively.

The set-up and go sliders allow the user to initiate the population and run the simula-

tion. Other sliders like the initial people, infection chance, recovery chance, and average

recovery time allow the user to set parameter values.

The epiDEM is a basic simulation tool that can be improved. Some of the key questions

that could be explored in the model were as follows:

What would be the e�ect of increasing the initial susceptible population to the rate of

disease spread? How do parameters like recovery chance, average recovery time and the

rate of infection in�uence the spread of the disease? What in�uences the shape of the
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cumulative infected and recovered graphs? How do parameters like the recovery chance

in�uence the shape of the graphs? What impact would assuming a population with

births, human mobility, and death imply on the model?

Our model in chapter 6 will focus on human movements and interactions between BU

patients and community health volunteers (CHV). We employ the same analogy for the

modelling and ideas from (Yang and Wilensky, 2011)'s epiDEM tool in work in chapter 6.

2.5 Summary

In Chapter 2, we have discussed a variety of models used to model BU and other diseases.

In section 2.1, we reviewed a model on tissue invasion in BU. In section 2.2, we reviewed

examples of previous models of BU transmission incorporating control strategies. In

section 2.3, we discussed models on cost-e�ectiveness. In section 2.4, we reviewed ABM.

In this thesis, modi�cations, questions to answer and observations from the existing

models are mentioned below:

� In the previous models, no account is given of the role or contribution of ischaemia

in in�uencing cell death observed in BU. An inclusion of ischaemia in modelling

cell death processes of BU will elucidate the pattern behind wound development.

� In the BU transmission dynamics, the speci�c categories of the infected population

as de�ned by WHO are not given much attention in the previous compartmental

models. If all the categories of the infected population and the compartments of the

treated population were considered, the model would give realistic dynamics on the

disease progression and treatment pathway. This feature would enable evaluation

of di�erent ways of promoting early diagnosis and treatment of BU.

� The aforementioned models of BU transmission need to put into consideration

the role and impact of the introduction of a RDT through CEA. There have been

models evaluating the economic burden of BU treatment, but none have considered

the possible costs and e�ects of an RDT so far. In addition to incorporating the

e�ects of seeking treatment late in terms of disability, for example, DALYs. The

question is whether the RDT is cost-e�ective, feasible and possible to implement.

� An ABM provides a new possible approach to modelling BU disease by considering

interactions between CHV and BU patients. Population heterogeneity is a char-

acteristic of human lifestyles. Using an agent-based computer simulation model

incorporates an element of individual variation that could be closer to reality.



Chapter 3

Modelling the formation of skin

ulcers observed in Buruli ulcer

disease

One of the clinical presentations of Buruli ulcer (BU) disease are deep wounds with

undermined edges on the skin (WHO et al., 2012). The pathological features observed

in BU are best explained by an exotoxin produced by Mycobacterium ulcerans called

mycolactone (George et al., 1999; Stinear et al., 2004). It is well established that exposure

of cells to mycolactone is cytotoxic and leads to their death (George et al., 2000; Sarfo

et al., 2016). This is due to its inference with normal cellular function, by disrupting

protein transport into the endoplasmic reticulum (Hall et al., 2014) leading to activation

of apoptotic pathways (Bieri et al., 2017; Ogbechi et al., 2018). Mycolactone has been

shown to bind directly to Sec61α, the major subunit of the Sec61 protein conducting

channel (Baron et al., 2016; Gérard et al., 2020) and inhibit its functions (McKenna

et al., 2016, 2017).

Other mechanisms may also feed into the coagulative necrosis that is commonly seen

in BU skin tissue by histopathology. This pattern of necrosis is usually associated with

ischaemia, where the tissue architecture is maintained despite the death of the constituent

cells. In line with this, �brin (the end product of the coagulation cascade) is widespread

in BU lesions, both as blood clots in capillaries and larger veins and deposited within

tissue (Connor et al., 1966; Ogbechi et al., 2015; Hsieh et al., 2022). Fibrin formation

can block the transportation of blood to the tissue, cutting o� the oxygen supply to cells

and explaining the coagulative necrosis seen.

Hence, two mechanisms may elucidate the process of cell death observed in BU disease

(Figure 3.1). Here we categorise them as direct cytotoxicity and ischeamia which are

explained in section 3.1.

26



Chapter 3 Modelling the formation of skin ulcers observed in Buruli ulcer disease 27

The work �ow of the chapter is as follows: in section 3.1, we explain what cell death pro-

cesses for BU are. In section 3.2, we construct a model for ulcer formation of BU lesions

obtaining a system of coupled partial di�erential equations. We non dimensionalise the

equations, initial and boundary conditions. We estimate the model parameters, variables

and their corresponding sources. In section 3.3, we carry out numerical simulations, �nd

the speed of the wound formation in section 3.4 and perform a sensitivity analysis of key

parameters in section 3.5. We conclude the chapter in section 3.6.

3.1 Direct and indirect mechanisms of mycolactone-dependent

cell death

Cell death due to direct cytotoxicity: Certain single amino acid substitutions of

Sec61α render those cells resistant to mycolactone-induced cell death (Baron et al., 2016;

Ogbechi et al., 2018; Zong et al., 2019; Gérard et al., 2020). Hence, the direct cytotoxicity

due to mycolactone is dependent on its action at the protein conducting channel. The

underlying mechanism involves the cytosolic build-up of mislocalised proteins, due to

disruption of protein transport into the endoplasmic reticulum (Hall et al., 2014). This

leads to activation of cellular stress pathways, ultimately leading to activation of caspase

pathways involved in apoptosis (Hall et al., 2014; Ogbechi et al., 2018).

Cell death due to ischaemia: While the formation of �brin in BU lesions is well-

established, the molecular mechanism driving it is less well understood. Recently it was

shown that mycolactone reduces the ability of endothelial cells to anticoagulate blood by

reducing the expression of a protein called thrombomodulin (TM) (Ogbechi et al., 2015).

One of the roles of TM is to accelerate the formation of the anticoagulant, activated

protein C (Esmon et al., 1982; Esmon, 1995) on the surface of endothelial cells that

line all blood vessels and form the capillaries. Hence it was proposed that depletion of

TM (which happens within 24 hours) initiates the loss of coagulant control hence causing

�brin deposition (Ogbechi et al., 2015). The depletion of TM depended on mycolactone's

action at Sec61, hence a wider endothelial dysfunction may likely also be induced.

In this chapter, we propose a mathematical model that analyses the formation of BU

lesions. We consider the dynamics of M. ulcerans growth, mycolactone production,

and the potential contribution of direct cytotoxicity versus ischaemia mechanisms. It

is possible that the direct and indirect e�ects of mycolactone collaborate leading to the

apoptosis and necrosis observed in BU lesions. Our study was conducted to investigate

these mycolactone-dependant mechanisms in order to unravel the pathogenesis of BU,

what drives cell death, and to provide insights on managing BU disease.
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Figure 3.1: A �ow chart illustrating the direct and indirect mechanisms of

mycolactone-dependent cell death processes in the skin exposed to mycolactone. Steps

for each mechanism were extracted from studies by (Ogbechi et al., 2015).

The skin tissue is made up of various cell types and the e�ect of mycolactone on these

cells has been studied (Sarfo et al., 2016). Endothelial cells line the blood vessels and

form capillaries. They regulate blood clotting (Van Hinsbergh, 2012) within blood vessels

in the absence of tissue damage and are highly sensitive to as little as 2 ng ml−1 of myco-

lactone (Ogbechi et al., 2015). Mycolactone disrupts the normal function of endothelial

cells by inhibiting its anticoagulant functions.

To simplify our model, we have classi�ed all other cells found within skin as �stromal

cells". Stromal cells are sensitive to mycolactone at a concentration of 125 ng ml−1 but

do not play a direct role in blood coagulation control. An illustration of the structured
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spatial arrangement of endothelial and stromal cells in the skin is illustrated in Figure

3.2.

3.2 Model formulation

We formulate a model that describes how the skin ulcer forms with time. We assume

the skin is made up of two types of cells: the endothelial and stromal cells with densities

ne(x, t) and ns(x, t) respectively, where x ∈ R2 is a spatial coordinate in the plane of the

skin and t ≥ 0 is time. Both types of cell are sensitive to mycolactone, but endothelial

cells have a higher sensitivity than stromal cells (Hall et al., 2014; Ogbechi et al., 2015).

We denote as u(x, t) and m(x, t) the density of bacteria and the local mycolactone con-

centration respectively. When the local concentration of mycolactone, m(x, t), exceeds

a certain threshold, skin cells die because of direct cytotoxicity of mycolactone and this

process takes 4 days. The stromal cell toxicity threshold (cs) is greater than that of

the endothelial cells (ce). Endothelial cells also die 1 day after mycolactone reaches ce

through ischaemia (lack of oxygen). Nearby stromal cells also die through ischaemia.

Mycolactone causes TM depletion from endothelial cells in culture within 1 day. This

would cause rapid formation of �brin and cell death due to absence of oxygen supply.

The precise rate at which these latter events take place in tissue or in culture are not

known, hence we have estimated that the whole process of ischaemic cell death takes 24

hours.

Figure 3.2: Illustration of capillaries, endothelial and stromal cells in the skin. En-

dothelial cells form the capillaries in a layer one cell thick. The capillaries lie in the

skin, and outside them are all the other skin cells which we call stromal cells in this

work.

3.2.1 Model assumptions and equations

We make the following assumptions:
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1. Skin cell distribution: In this model, we make the simplifying approximation

that on the scale of a BU wound we can treat the distribution of skin cells as spa-

tially mixed with a uniform 9 : 1 ratio of the number of stromal cells to endothelial

cells in a healthy skin. We also assume that when cells die, no new cells grow

within the time of ulceration. This is because the presence of mycolactone inhibits

the cell cycle (George et al., 2000) and its e�ects are irreversible (Hall et al., 2014;

Zong et al., 2019).

2. Skin cell death: Direct contact of mycolactone with skin cells leads to cell death.

This skin cell death is proportional to the skin cell density if mycolactone concen-

tration, m, is above threshold and zero otherwise:
∂ni
∂t

= −diniH(m− ci),

where i are the two cell types e and s and H(m− ci) is the Heaviside step function

that takes the value 0 for m ≤ ci and 1 for m > ci as follows:

H(m− ci) =

{
0 if m ≤ ci;

1 if m > ci.

Figure 3.3: Illustration of categories of BU disease in the skin. This Figure is a

cross section view of a papule, nodule and an ulcer that has penetrated deep into the

subcutaneous tissue. We observe undermined edges of the ulcer in the skin which is a

key characteristic of BU lesions. Image reproduced from (Van der Werf et al., 1999).

3. Cell death by ischaemia: When mycolactone is above the endothelial cell toxi-

city threshold ce, �brin accumulates in the capillaries causing cells to die. This is

represented as:
∂ni
∂t

= −dkH(m− ce)ni,

where dk is the rate of cell death caused by ischaemia. The appearance of skin cell

death is illustrated in Figure 3.3.

4. Di�usion: According to Fick's second law of di�usion, the �ux of a substance

is proportional to the concentration gradient of the substance. We use this law



Chapter 3 Modelling the formation of skin ulcers observed in Buruli ulcer disease 31

to predict how di�usion causes the concentration to change with time. This is

calculated as
∂ω

∂t
= D∇2ω,

where ω is a representation of the di�using substances which are the bacterial cell

density, u(x, t), and the mycolactone concentration, m(x, t). D is a representation

of di�usion coe�cients which are Du and Dm respectively. We shall model di�usion

for all the equations in this work in this same way.

5. Bacterial cell growth is proportional to bacterial cell density:
∂u

∂t
= λuu,

where λu is the constant net birth rate. We also include a density-dependent death

rate with parameter, Ku, which controls the bacterial population from growing

exponentially in time inde�nitely.
∂u

∂t
= λuu−Kuu

2,

where Kuu
2 is the term representing bacterial death. The quadratic form indicates

that the death rate is higher when the bacterial density is higher for example owing

to competition for resources.

6. Bacterial cell movement is modelled as a di�usion process:
∂u

∂t
= Du∇2u,

with a bacteria di�usion coe�cient Du.

7. Mycolactone is produced by bacterial cells at rate λm. We assume that the toxin

di�uses away from the colonisation area with di�usion coe�cient Dm

∂m

∂t
= λmu+Dm∇2m,

and decays at a rate Km

∂m

∂t
= λmu−Kmm +Dm∇2m.

8. Skin cell densities are initially uniform and non-zero: ne(x, 0) = ne0, ns(x, 0) = ns0

and mycolactone concentration is initially zero, m(x, 0) = 0. We introduce an

initial colony of bacteria u(x, 0) = u0.

The resultant equations from the assumptions represent the dynamics of bacterial cells,

mycolactone, endothelial cells and stromal cells for this system respectively.

∂u

∂t
= λuu+Du∇2u−Kuu

2, (3.1)

∂m

∂t
= λmu+Dm∇2m−Kmm, (3.2)

∂ne
∂t

= −
(
de + dk

)
neH(m− ce), (3.3)

∂ns
∂t

= −dsnsH(m− cs)− dknsH(m− ce). (3.4)
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3.2.2 Model variables and parameters

The variables and parameters used in the equations are listed in Table 3.1.

Variable Description

ne(x, t) Endothelial cell density

ns(x, t) Stromal cell density

u(x, t) Bacterial cell density

m(x, t) Mycolactone concentration

x Spatial variable (Distance)

t Time

Parameter Description

de Death rate by direct cytotoxicity for endothelial cells

ce Threshold value of mycolactone for cytotoxicity in endothelial cells

dk Death rate by ischaemia for all cells

ds Death rate by direct cytotoxicity for stromal cells

cs Threshold value of mycolactone for cytotoxicity in stromal cells

λu Constant net birth rate by which bacteria are produced

Du Di�usion coe�cient of bacteria

Ku Constant for density-dependent bacterial death rate

λm Constant rate at which mycolactone is produced by bacterial cells

Dm Di�usion coe�cient of mycolactone

Km Degradation rate for mycolactone

L Typical length scale of ulceration

σ Standard deviation of the initial Gaussian distribution of bacteria

µ Mean value of the initial Gaussian distribution of bacteria

Table 3.1: Description of variables and parameters used in the model.

3.2.3 Non-dimensionalization of equations, boundary and initial con-

ditions

The basic principle of non-dimensionalization is to rewrite the system of equations in

non-dimensional variables so as to simplify the e�ects of physical scale. We express the

equations in dimensionless variables by scaling as follows:

Let

u = U0ũ, m =M0m̃, ne = Añe, ns = Bñs, t = T0t̃, x = X0x̃. (3.5)

We transform the derivatives

∂

∂t
=
∂t̃

∂t

∂

∂t̃
=

1

T0

∂

∂t̃
, (3.6)

∂

∂x
=
∂x̃

∂x

∂

∂x̃
=

1

X0

∂

∂x̃
, (3.7)
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We substitute Equations (3.5), (3.6) and (3.7) into Equations (3.1) to (3.4) and we obtain;

∂ũ

∂t̃
= λuT0ũ+

DuT0
X2

0

∂2ũ

∂x̃2
−KuT0U0ũ

2, (3.8)

∂m̃

∂t̃
= λm

T0U0

M0
ũ+

DmT0
X2

0

∂2m̃

∂x̃2
−KmT0m̃, (3.9)

∂ñe

∂t̃
= −T0

(
de + dk

)
ñeH

(
m̃− ce

M0

)
, (3.10)

∂ñs

∂t̃
= −T0ñs

[
dsH

(
m̃− cs

M0

)
+ dkH

(
m̃− ce

M0

)]
. (3.11)

Now we choose scalings to make the equations as simple as possible. We did this by

equating the coe�cients of variables in Equations (3.8) - (3.11), to 1 as follows:

λuT0 = 1, T0 =
1

λu
, (3.12)

DuT0
X2

0

= 1, X0 =

√
Du

λu
, (3.13)

KuT0U0 = 1, U0 =
λu
Ku

, (3.14)

λmT0U0

M0
= 1, M0 =

λm
Ku

, (3.15)

We now have values for T0, X0, U0, M0. The di�usion coe�cient in Equation (3.9)

simpli�es to
DmT0
X2

0

=
DmT0
DuT0

=
Dm

Du
.

We group parameters Dm and Du such that

Dm

Du
= α, (3.16)

Similarly, we substitute for T0 =
1
λu

in KmT0 to obtain;

KmT0 =
Km

λu
We group parameters Km and λu such that

Km

λu
= β. (3.17)

We let
ce
M0

= c̃e,
cs
M0

= c̃s, δe =
de
λu
, δs =

ds
λu

and δk =
dk
λu
. (3.18)

We substitute T0, X0, U0, M0 and α, β, c̃e, c̃s, δe, δs, δk into Equations (3.8) - (3.11)

and drop the tildes for simplicity of notation. This rescaling gives Equations (3.19) to
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(3.22).

∂u

∂t
= u+∇2u− u2, (3.19)

∂m

∂t
= u+ α∇2m− βm, (3.20)

∂ne
∂t

= −
(
δe + δk

)
neH(m− ce), (3.21)

∂ns
∂t

= −δsnsH(m− cs)− δknsH(m− ce). (3.22)

which are the non-dimensionalized versions of Equations (3.1), (3.2), (3.3) and (3.4).

Non-dimensionalized boundary conditions

We assume that the wound propagates into healthy skin where there are no bacteria or

mycolactone. On an in�nite domain of healthy skin the boundary conditions for u and

m would be u(t, x)→ 0 as x→ ±∞ and m(t, x)→ 0 as x→ ±∞. We will approximate

these on a �nite domain [0, L̃] by

u(t, 0) = u(t, L̃) = 0, m(t, 0) = m(t, L̃) = 0, ∀ t ≥ 0. (3.23)

Non-dimensionalized initial conditions

We make the transformations for t, x, u, m, ne and ns and drop the tildes as before.

Initial conditions for the equations in the non-dimensionalized form now become:

u(0, x) = u0(x), m(0, x) = 0,

ne(0, x) = ne0, ns(0, x) = ns0. (3.24)

The endothelial cell density in the healthy skin was estimated to be 1.0 × 10−3 g.cm−3

and the density of stromal cells was estimated as 9 times the density of endothelial cells

(9ne) (Schugart et al., 2008). The total density of cells in healthy skin now becomes

ne + ns = 9.0× 10−3 + 1.0× 10−3 = 1.0× 10−2g.cm−3.

Then

ñe0 =
ne0
A

=
1.0× 10−3

1.0× 10−2
= 0.1, ñs0 =

ns0
A

=
9.0× 10−3

1.0× 10−2
= 0.9,

where we choose A to be the total density of skin cells in the healthy skin tissue. Then

the non-dimensionalized values for the initial conditions are as follows;

ne(0, x) = 1.0× 10−1, ns(0, x) = 9.0× 10−1,

where again we have dropped the tildes for convenience. And u0(x) was de�ned as;

u0(x) = ε exp−
(x−µ)2

2σ2 (3.25)

where ε = 1.0× 10−6, µ = 1 and σ = L
2 .

We now proceed to estimate the values of variables and parameters used in the model.
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3.2.4 Model parameters, values and source used

Some parameter values have been obtained from experimental data available in literature.

Other parameters are still di�cult to specify accurately so we have estimated them

based on similar observations cited in previous studies. Reasons for choosing particular

parameter values include:

(i) Bacteria are produced by binary �ssion and the doubling time of M. ulcerans was

estimated as 2 days (Cadapan et al., 2001; Zingue et al., 2018b). The rate of

increase of the bacterial population with time is proportional to the number of

bacteria at any moment in time:
du

dt
= λuu.

We re-arrange, separate variables and integrate both sides to obtain

u = u0e
λut.

For u to be doubled, u
u0

must be equal to 2, hence;
u

u0
= 2 = eλut1 where t1 is the time period for doubling.

Taking the natural log (ln) on both sides, we obtain;

λu =
ln 2

t1
, t1 = 2 days = 2× 24× 60× 60 seconds,

λu =
ln 2

48× 60× 60
,

λu = 4.011× 10−6s−1. (3.26)

(ii) The toxin production rate of mycolactone (λm): We estimated this based on ex-

perimental studies on mycolactone production by (Cadapan et al., 2001). From

Equation (3.2), neglecting di�usion and degradation rate:

dm

dt
= λmu.
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Figure 3.4: Illustration of mycolactone production as in Figure 5A of (Cadapan et al.,

2001) (left). Illustration of mycolactone production plotted using data estimated from

Figure 5A of (Cadapan et al., 2001)(right). We focused on day 27 (t1) and day 39 (t2)

with corresponding mycolactone concentrations of 0.4 mgL−1 and 1.0 mgL−1 respec-

tively.

We focused on the beginning of the growth phase of Figure 5A from (Cadapan et al.,

2001)'s work to estimate λm. We let m1 and m2 be mycolactone concentrations at

day 27 (t1) and day 39 (t2) respectively. We estimate the values for m1 and m2 to

be 0.4 mgL−1 and 1.0 mgL−1 from Figure 5A. We estimate the value for u to be

approximately between 10−2 and 0.5 gL−1. We have
dm

dt
≈ m2 −m1

t2 − t1
≈ λmu,

λm ≈
1

u

m2 −m1

t2 − t1
.

λm ≈
1

0.5
× 0.001− 0.0004

(39− 27)× 86400
gL−1 s−1, ≈ 1

10−2
× 0.001− 0.0004

(39− 27)× 86400
gL−1 s−1,

λm = 1.157× 10−9s−1, λm = 5.787× 10−8s−1. (3.27)

The values obtained in Equation (3.27) give us an idea on the order of magnitude

estimate that we can adopt for λm. Hence we choose

λm = 1.0× 10−8s−1. (3.28)

(iii) We estimate that endothelial cells die 1 day after mycolactone reaches the thresh-

old ce. Assuming that 90% of the cells die to ischaemia in a day, there would be

100%− 90% = 10% remaining alive. Applying the concept of half life, the rate of

decrease of skin cell density with time is proportional to the skin cell density at

any moment in time:

dne
dt

= −dkne.
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We re-arrange, separate variables and integrate both sides to obtain

ne = ne0e
−dkt

For ne to have decreased to 10% of its initial value, ne
ne0

must be equal to 1
10 , and

we have;
1

10
= e−dkτ where τ is the time period for decay.

Taking the natural log (ln) on both sides, we obtain;

dk =
ln 10

τ

dk =
ln 10

24× 60× 60
=

ln 10

86400

dk = 2.665× 10−5s−1 (3.29)

(iv) The rate constants de, ds and dk (death by direct toxicity for endothelial, stro-

mal cells and ischaemia respectively) are inversely proportional to the time for cell

death. The time for cell death by direct toxicity is 4 days compared to 1 day for

death by ischaemia hence

de = ds =
1

4
dk

=
1

4
× 2.665× 10−5

= 6.6625× 10−6s−1

(v) The di�usion coe�cient of a di�usible chemical is in the range 10−9 − 10−6 cm2

s−1 (Sherratt and Murray, 1990; Chaplain et al., 1995). In this work, we made

speci�c choices for the di�usion coe�cients to model the behaviour accurately.

For mycolactone, we opted for a di�usion coe�cient of 1.0 × 10−9 cm2 s−1. This

selection re�ects the passive di�usion of mycolactone across cell membranes and

its uptake into ER membranes, as indicated by (Aydin et al., 2019).

Similarly, we set the di�usion coe�cient for bacteria at 5.0×10−8 cm2 s−1, a value

derived from the research conducted by (Kim, 1996).

The choice of Dm = 1.0× 10−9 cm2 s−1 for mycolactone is informed by its estab-

lished passive di�usion mechanism through cell membranes and uptake into ER

membranes. We let this value be lower than Du.

When mycolactone di�uses more slowly than the bacteria, it suggests that mycolac-

tone di�usion will not be a major contributor to the dynamics of wound formation.

In Section 3.5 of our work, we explored the e�ects stemming from altering the ratio

of mycolactone's di�usion coe�cient to that of bacteria on the densities of skin cells.

This exploration enabled us to uncover valuable insights into how di�erent di�usion

coe�cients can in�uence the fall in skin cell densities.
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(vi) According to studies by (Hall et al., 2014; Ogbechi et al., 2015, 2018), the stromal

cell toxicity threshold is 125 ng/ml which is equivalent to 1.25× 10−7 g.ml−1 and

the endothelial cell toxicity threshold is 4 ng/ml which is equivalent to 4 × 10−9

g.ml−1.

(vii) We �nd the value of Km using experimental work by (Marsollier et al., 2007) which

suggests that
meqm

ueqm
= 2.0× 10−4, (3.30)

where ueqm and meqm are the equilibrium values for bacterial density and mycolac-

tone concentration in the spatially uniform case respectively. To evaluate Km, we

set the right hand side of Equation (3.2) and the spatial derivatives to zero, giving

Km =
ueqm
meqm

λm,

and substituting from Equation (3.30) and Equation (3.28), we obtain:

Km =
1.0× 10−8s−1

2.0× 10−4gml−1
= 5.0× 10−5s −1 gml−1.

(viii) Similarly, we estimate the value of Ku by �rst calculating the equilibrium bacterial

density for a given equilibrium mycolactone concentration from Equation (3.30).

We choose meqm = 1.5× 10−7gml−1 which is a value slightly above the sensitivity

thresholds for the two cell types. This will enable us to observe the ulcer formation.

Thus

ueqm =
1.5× 10−7

2.0× 10−4
= 7.5× 10−4gml−1, (3.31)

Then setting u = ueqm in Equation (3.1) gives

Ku =
λu
ueqm

=
4.011× 10−6s−1

7.5× 10−4gml−1
,

Ku =5.348× 10−3s −1 g−1 ml−1,

where λu is the value in Equation (3.1) and ueqm was estimated in (3.31).

We choose meqm = 6.0× 10−9gml−1 which is a value slightly above the endothelial

sensitivity threshold. This will enable us to observe the ulcer formation. Thus

ueqm =
6.0× 10−9

2.0× 10−4
= 3.0× 10−5gml−1, (3.32)

Then setting u = ueqm in Equation (3.1) gives

Ku =
λu
ueqm

=
4.011× 10−6s−1

3.0× 10−5gml−1
,

Ku =1.337× 10−1s −1 g−1 ml−1,

where λu is the value in Equation (3.26) and ueqm was estimated in (3.32). We

have two Ku values where each value corresponds to an equilibrium value.

(ix) According to WHO et al. (2012), the length of the wound lesion in the ulceration

stage (WHO category three can extend to > 15 cm). We consider only wounds up

to 15 cm terminating the simulation when the wound reaches at 15 cm , the domain
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(representing the skin into which the wound is growing) is chosen as larger than

this so as to track wound growth. We select 30 cm as the domain size which is large

enough to prevent boundary e�ects and allow the boundary conditions Equation.

(3.23) to be applied.

Notation Dimensional value Source

λu 4.011× 10−6 s−1 Estimated in (i)

λm 1.0× 10−8 s−1 Estimated in (ii)

dk 2.665× 10−5s−1 Estimated in (iii)

ds 6.6656× 10−6 s−1 Estimated in (iv)

de 6.6656× 10−6 s−1 Estimated in (iv)

Dm 1.0× 10−9 cm 2 s−1 Estimated in (v)

Ku 5.348×10−3 s−1 g.ml Estimated in (viii)

Ku 1.337×10−1 s−1 g.ml Estimated in (viii)

Km 5.0× 10−5 s−1 Estimated in (vii)

ce 4.0× 10−9 g.ml−1 (Ogbechi et al., 2015)

cs 1.25× 10−7 g.ml−1 (Hall et al., 2014; Og-

bechi et al., 2015, 2018)

Du 5× 10−8 cm 2 s−1 (Kim, 1996)

L 30 cm Estimated in (ix)

Table 3.2: Parameter values used in the model

The non-dimensional parameter values were calculated as follows:

� The non-dimensional parameters, α and β were obtained by substituting values of

Dm, Du, Km and λu in Equations (3.16) and (3.17).

α =
Dm

Du
=

1.0× 10−9

5× 10−8
= 2.0× 10−2,

β =
Km

λu
=

5.0× 10−5

4.011× 10−6
= 12.46.

� Values for δe and δs were obtained by substituting values of de, ds and dk in

Equation (3.18).

δe =
de
λu

=
6.662× 10−6

4.011× 10−6
= 1.662, δs =

ds
λu

=
6.662× 10−6

4.011× 10−6
= 1.662,

δk =
dk
λu

=
2.665× 10−5

4.011× 10−6
= 6.637.

� The non-dimensional value of L is

L =
30

X0
, where X0 =

√
Du

λu
,

X0 =

√
5× 10−8cm 2 s−1

4.011× 10−6s−1
= 0.1116cm, L =

30cm

0.111cm
= 268.697.
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The non-dimensional values are indicated in Table 3.3.

Notation Description Value

α Ratio of the mycolactone to bacterial dif-

fusion coe�cients

2.0× 10−2

β Ratio of the mycolactone decay rate to

the bacterial growth rate

12.46

δe Ratio of death rate (endothelial cell) to

birth rate by which bacteria is produced

1.662

δs Ratio of death rate (stromal cell) to birth

rate by which bacteria is produced

1.662

δk Ratio of death rate by ischaemia to con-

stant net birth rate by which bacteria are

produced

6.637

L Length of the wound 268.697

Table 3.3: Non-dimensional parameters used in the model.

3.3 Numerical simulations

Equations (3.19), (3.20), (3.21) and (3.22) with corresponding initial and boundary condi-

tions were solved numerically using �nite di�erences and the �odeint� package in Python

3.6. This function solves a system of ODEs using LSODA from the FORTRAN library

odepack. It solves the initial value problem for sti� and non-sti� systems for �rst order

ODEs. It continuously monitors data so as to decide on which method to use (Jones

et al., 2014).

For Equations (3.19) and (3.20), we �rst replaced the second order derivative by the

central �nite di�erence approximation. The algebraic equation obtained was then solved

using the Python scipy �odeint� function. We approximated the second derivative in the

spatial dimension as
∂2u

∂x2
≈ u(x+ h)− 2u(x) + u(x− h)

h2

at each node. This leads to a set of coupled ODEs that we then solve as a system of

ODEs where h = l/(N − 1). N is the number of points in the discretization, and l is the

length of the domain. We choose our domain length l to be the typical length scale of

ulceration, L in order to capture the early stages of ulcer development.

3.3.1 Evolution of bacterial population and mycolactone concentration

After solving the system of equations in (3.19)- (3.22), we plot the solutions for bacterial

(3.19) and mycolactone concentrations (3.20). The equations were solved in a non-

dimensional form and plotted in a dimensional form.
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Figure 3.5: Evolution of bacteria population and production of mycolactone in a

given skin region over a period of 144 days from an initial Gaussian infection pro�le. In

(a) and (b), the maximum bacterial population density at 3.0× 10−5 g.cm−3 produces

mycolactone density of 6.0 × 10−9 g.cm−3. In (c) and (d), the maximum bacterial

population density at 7.0 × 10−4 g.cm−3 produces mycolactone density of 1.4 × 10−7

g.cm−3.

In Figure 3.5 of u and m with a Gaussian initial infection, we start with an initial

small amount of M. ulcerans bacteria which multiplies logarithmically. As time passes,

bacterial cells continue to double in amount every few days until it reaches a plateau.

Here the solution does not vary with change in time. We stop the simulation before the

bacteria reaches the edges of the wound.

Where M. ulcerans bacteria grow, they produce mycolactone toxin which also accumu-

lates in the same pattern as the bacteria. By setting the values of Ku as described in

(viii), we set mycolactone concentrations meqm as 6× 10−9 gml−1 and 1.5× 10−7 gml−1
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as the values of mycolactone when it has reached its plateau or stationary phase. These

values are slightly above the cell toxicity thresholds of the endothelial and stromal cells.

Mycolactone increases in the centre of the lesion and later di�uses across the lesion with

increase in time.

Spread of the lesion using a travelling wave solution

The equation for the bacterial population (Equation (3.1)) is similar to the Fisher KPP

equation (De Rijk et al., 2016). The Fisher KPP is used to describe the propagation

of biological populations in space. It combines the di�usion term with a logistic growth

term, expressed as:
∂u

∂t
= D

∂2u

∂t2
+ ru(1− u),

where D is the di�usion coe�cient, r is the intrinsic growth rate of the population and

u(x, t) represents the population density at position x and time t.

The analytical solution for the Fisher-KPP equation in the form of a travelling wave is

given as

u(x, t) =
1

1 + exp
(
x−ct√
4Dr

) ,
where c is the wave speed, determined by the balance between the growth and di�usion

terms and
√
(4Dr) is a di�usion-related term that in�uences the width of the wave.

We solved the bacteria population (Equation (3.19)) analytically and showed that there

exists a physically realistic solution when the wave speed c ≥ 2. We used the travelling

wave solution to understand the spread of ulcers over the skin.

This solution represents a propagating front where the population density increases from

0 to 3.0 × 10−5 as the wave advances in space as illustrated in Figure 3.6. The logistic

growth term ensures that the population saturates at u = 3.0 × 10−5 as it reaches a

stable equilibrium.
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Figure 3.6: Travelling wave solution of the bacterial population. The initial condition

is 0 everywhere except near x = 15 where the initial condition is a Gaussian curve of

mean and variance 1 and L/2 respectively.

In Figure 3.6, there exist two travelling waves, both starting near x = 15 cm, one going

to the right and another to the left. This solution approaches the equilibrium for the

bacterial population equilibrium at 3.0× 10−5 gml−1. With the travelling wave solution

we can observe how the lesion spreads out on the entire domain at di�erent times.

3.3.2 Death of skin cells in response to mycolactone

We illustrate the solutions to Equations (3.21) and (3.22) by plotting ne and ns respec-

tively.

Cell death when both ischaemia and direct toxicity are switched on

Figure 3.7 shows cell death when ischaemia and direct cytotoxicity is switched on. My-

colactone equilibrium values (meqm) are set to 6 × 10−9 gml−1 or 1.5 × 10−7 gml−1

respectively.
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Figure 3.7: Cell death when both ischaemia and direct cytotoxicity are

switched on. In the �rst row, meqm = 6× 10−9 gml−1 such that cs > meqm > ce, and

in the second row, meqm = 1.5× 10−7 gml−1 such that meqm > cs. In (a), we illustrate

how endothelial cells respond to the presence of mycolactone and, (b), the stromal cell

response to the presence of mycolactone.

In Figure 3.7, we observed a signi�cant and rapid reduction in skin cell densities. The

regions of healthy skin observed at the left and right edges are because mycolactone is

not above the cell threshold in those regions.
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Cell death by direct cytotoxicity only

In this subsection, we aim at capturing the individual e�ect of direct cytotoxicity on cell

death. In other words, we switch on cell death by direct cytotoxicity and switch o� cell

death by ischaemia. This means that the equations for cell death in (3.21) and (3.22)

will now become:
∂ne
∂t

= −δeneH(m− ce), (3.33)

∂ns
∂t

= −δsnsH(m− cs) (3.34)

Substitutions for the parameter values and initial conditions are made. Equation (3.33)

and (3.34) are solved using Python scipy �odeint� function to obtain Figure 3.8.
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Figure 3.8: Cell death by direct cytotoxicity: In the �rst row, meqm = 6× 10−9

gml−1, such that cs > meqm > ce. In the second row, meqm = 1.5× 10−7 gml−1, such

that meqm > cs > ce. In (a), we illustrate how endothelial cells respond to the presence

of mycolactone and (b), stromal cell response to the presence of mycolactone.

In the �rst row of Figure 3.8, no stromal cell death happening because the mycolactone

there is below the toxicity threshold for stromal cells that is (meqm < cs).

In the second row of Figure 3.8, we observe a fall in endothelial and stromal cell density

due to the presence of mycolactone. The regions of healthy skin observed at the left and

right edges in Figure 3.8 are because mycolactone is not above the threshold in those

regions.
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Cell death by ischaemia only

In this case, we switch on cell death by ischaemia and switch o� cell death by direct

cytotoxicity. Equations for cell death in (3.21) and (3.22) will now become:

∂ne
∂t

= −δkneH(m− ce), (3.35)

∂ns
∂t

= −δknsH(m− ce). (3.36)

Substitutions for parameter values and initial conditions are made. Equations (3.35) and

(3.36) are solved using Python scipy �odeint� function to obtain Figure 3.9.

Figure 3.9: Cell death by ischaemia: In the �rst row, meqm = 6 × 10−9 gml−1,

such that cs > meqm > ce. In the second row, meqm = 1.5 × 10−7 gml−1, such that

meqm > cs > ce. In (a), we illustrate how endothelial cells respond to the presence of

mycolactone and (b), stromal cell response to the presence of mycolactone.
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In Figure 3.9, we observed a signi�cant and rapid reduction in skin cell densities. The

regions of healthy skin observed at the left, and right edges are because mycolactone is

not above the cell threshold in those regions. The variation in cell density in the spatial

region is because mycolactone values are increasing until they exceed the toxicity thresh-

old across a given part of the domain. This variation shows how the wound gradually

develops.

Comparison between cell death by ischaemia and cell death by direct cyto-

toxicity for endothelial cells

To establish the distinction or di�erence between cell death by both direct cytotoxicity

(Figure 3.8), cell death by both ischaemia (Figure 3.9), cell death by both direct cyto-

toxicity and ischaemia (Figure 3.7), we visualise the comparison as indicated in Figure

3.10.
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Figure 3.10: In the left column, meqm = 6.0 × 10−9 gml−1 and in the right column,

meqm = 1.5 × 10−7 gml−1. This plot illustrates the variation in the endothelial cell

density after the exposure to mycolactone at chosen time points.

In the comparisons of the three scenarios, our focus was on the time when cell density

drops in the plots. The earliest drop in endothelial cell density for the three cases in
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Figure 3.10 happens at t = 12.19 days. This happens when meqm was set to 1.5× 10−7

gml−1 and both ischaemia and direct cytotoxicity operate at the same time.

When the meqm was set to 6 × 10−9 gml−1, the earliest drop in endothelial cell density

for the three cases in Figure 3.10 happens at t = 15.83 days when both ischaemia and

direct cytotoxicity operate at the same time.

From our simulation outcomes, cell death happened earliest when the mycolactone equi-

librium value was set to 1.5 × 10−7 gml−1 and both direct cytotoxicity and ischaemia

operate at the same time. And latest when the mycolactone equilibrium value was set

to 6.0× 10−9 gml−1 and with direct cytotoxicity only.

The reason for earlier cell death for meqm = 1.5×10−7 is that mycolactone surpasses the

toxicity threshold more quickly compared to when meqm = 6× 10−9 gml−1.

The key feature to observe in our results is how changes in mycolactone values relative to

skin cell toxicity thresholds can in�uence the process of cell death observed in BU. These

results a�rm what is already known on how high amounts of mycolactone combined with

the type of skin cell speed up cell death.

3.4 Speed of the wound lesion

In Figure 3.11, we capture the edge of the wound at each time point and plot it against

time. At the point where mycolactone is greater than the threshold, there is a sudden

fall in the cell density and there the wound starts at the centre extending out in both

directions. We observe the distance of the wound edges from the edge of the domain

reducing with increase in days. The speed of the wound is obtained by evaluating the

slope of the curve.

Wound Speed = Slope

[
Change in distance

Change in time

]
(3.37)

Equation 3.37 represents the ratio of how far the wound's edge has moved to the amount

of time it took for that movement to occur. It provides a basic representation of the rate

at which the wound is spreading over time.
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Figure 3.11: Illustration of wound movement against time: We pick up the

left side of wound expansion from the centre (x = 15 cm). We monitor how the

wound extends from the centre outwards. Our interest is when the cell density drops.

We note the positions in the simulation when the cell density drops and obtain the

corresponding distance (x value). We plot this distance versus the time with α and β

as (2.0× 10−2, 12.46) respectively. The slope of the curve is −0.07787.

The other parameter values used in the speed plots were obtained from Table 3.2.

Figure 3.11 represents the movement of the front of the wound as the density of the skin

cells decreases. The slope of this curve represents the wound speed: how fast the wound

is forming and the cell density is decreasing.

We set the number of time points in the simulation to 100 days to capture the wound's

formative phase, excluding boundary e�ects.

3.5 The e�ect of di�erent α and β combinations on the skin

cell densities

In this work, some of the parameters were estimated implying potential disparities be-

tween true and experimental values. We now investigate the dependence of model outputs

on parameter values. In this model, the most signi�cant parameters are α and β. α is

the ratio of the di�usion coe�cient of mycolactone (Dm) to that of bacteria (Du) and

β is the ratio of the degradation rate of mycolactone (Km) to the bacteria growth rate

(λu).

We analyse the e�ects of chosen parameters on the state variables. Speci�cally, we chose

to focus on the parameter combinations that remain after scaling model equations and
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also because we are interested in parameters that in�uence the growth of the BU wound

lesions.

We assign a range of values to α and β and observe how these values in�uence the speed

at which the wounds develop. We run the simulation at a discretization of N= 500. With

N= 500 we obtained an accurate numerical solution without the code running for long.

We run the simulation for several α and β combinations. At every α and β, we illustrate

the position at which the cell density decreases. We obtain the slope of the curve for the

speed. We set the number of time points in the simulation to 100 days and use the same

time points to calculate the speed.

Figure 3.12: Illustration of wound movement against time at selected α and β values.

Slopes for Figure 3.12A Slopes for Figure 3.12B

α β Slope (cm/day)

0.0002 12.46 −0.07787
2 12.46 −0.07805
20 12.46 −0.07847
200 12.46 −0.08141

α β Slope (cm/day)

0.02 0.1246 −0.07691
0.02 1.246 −0.07716
0.02 12.46 −0.07786
0.02 124.6 −0.07870

In Figure 3.12 (A), we vary α and keep β constant. And in Figure 3.12 (B), we vary β and

keep α constant. The slopes of selected α and β combinations in Tables 3.5 show the rate

of change of wound spread over time. We observe the combination (α, β) = (200, 12.46)

has the most negative slope corresponding to the fastest wound growth speed and the

combination (α, β) = (0.02, 1.246) has the least negative slope (corresponding to the

slowest wound growth).
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When β, the ratio of the degradation rate of mycolactone (Km) to the bacteria growth

rate (λu) was increased, mycolactone decays faster than the rate of bacteria growth.

This is because mycolactone equilibrium becomes very small which delays the initiation

of the wound. For example in Figure 3.12 (B), when β = 124.6, the �rst instance of

the wound was observed at approximately t = 20 compared to when β = 0.001246, the

wound spreads out earlier at approximately t = 4. We observe the wound expanding at

a slow pace gradually spreading linearly over the domain in days for β < 124.60.

The wound speed is not greatly in�uenced by the β parameter. In other words, β

parameter doesn't have a signi�cant impact on the rate of wound growth but instead

determines when the wound initiates or starts.

When the value of α is 200, we observe a signi�cant increase in the speed at which wounds

enlarge. This implies that a higher value of the mycolactone di�usion coe�cient relative

to that of the bacteria has a positive e�ect on the speed at which wounds enlarge. This

means when mycolactone di�uses faster than bacteria, BU lesions expand fast.

In other words, if mycolactone does not di�use faster than the bacteria, it will be stack

where the bacteria are. This means the wound never goes beyond where the bacteria

are. But if mycolactone di�uses faster, it can expand out ahead of where the bacteria

are and the wound can extend out ahead where of the bacteria are as well.

At the combination (α, β) = (200, 12.46), we observe the fastest movement of the edge

of the wound. The wound breaks out quickly and expands at a fast pace. This means

to mitigate the rate of wound enlargement in BU, we ought to decrease the ratio of the

di�usion coe�cient of mycolactone (Dm) to that of bacteria (Du) and also increase the

ratio of the degradation rate of mycolactone (Km) to the bacteria growth rate (λu).

3.6 Conclusion

In Chapter 3, we have formulated a mathematical model that describes Buruli ulcer lesion

formation. Using a set of assumptions, we established model equations, de�ned variables,

parameters and their corresponding initial and boundary conditions. We solved the

equations numerically, illustrated the numerical results for bacterial growth, mycolactone

concentration and skin cell density and showed how the lesions spread using a travelling

wave solution.

Our results con�rm the role mycolactone plays in the enlargement of BU lesions. These

results coincide with the very earliest observations of BU that led to the proposal of a

di�usible lipid toxin (Connor et al., 1966). The simulation plots show an exponential

increase in M. ulcerans bacteria leading to increases in mycolactone over time. This

pattern is in agreement with the pathology of Buruli ulcers. The simulation results also

illustrate mycolactone's varying e�ect on di�erent cell types.
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Our model presents the progress of skin cell death processes as a�ected by the presence

of mycolactone. We switched the two cell death mechanisms on and o� and analysed

the model's behaviour. We presented results for cell death by ischaemia alone, cell

death by direct toxicity alone and cell death by both ischaemia and direct cytotoxicity.

The simulation results re�ect that combining the two mechanisms leads to quicker skin

cell death than individual mechanisms. When analysed independently, skin cell death

through ischaemia was more rapid than through direct cytotoxicity.

Analysis of the impact of key parameters on the speed of wound growth led to the

following conclusions. The ratio of the di�usion coe�cient of mycolactone (Dm) to that

of bacteria (Du) more strongly in�uenced the speed at which the BU lesions enlarge

compared to the ratio of the degradation rate of mycolactone (Km) to the bacteria

growth rate (λu). The sensitivity analysis results indicate rapid wound enlargement

when mycolactone di�uses faster than M. ulcerans bacteria.

One of the model's limitations was the lack of su�cient data for parameter estimations.

We recommend data collection on parameters like the production rate of mycolactone

(λm), the degradation rate of mycolactone (Km) and the density-dependent bacterial

death rate (Ku). This will help in improving the estimated parameter values.

To simplify our model, we assumed that M. ulcerans density and mycolactone concentra-

tion would ultimately reach a level of equilibrium. This feature, however, may not be the

case in natural infections. In natural human infections, the growth of M. ulcerans and

the production of mycolactone goes on in�nitely and may not reach equilibrium unless

individuals start treatment.

Some estimated parameter values match what was found experimentally but not in hu-

mans. For example, estimation of the production rate of mycolactone and the doubling

rate of M. ulcerans parameters were based on an arti�cial system where bacteria could

grow where nutrients are (Cadapan et al., 2001).

In the future, with the availability of more information, we could explore how changing

these parameters to match what happens in people in�uences the model. For example,

a longer doubling time for M. ulcerans in tissue corresponds to a lower growth rate λu.

In addition, increasing the di�usion rate of mycolactone over that of the bacteria would

be in keeping with these observations. These changes might improve the model further,

making it more in keeping with what is seen in tissue.

The model discussed in this work contributes to understanding skin cell death processes

in Buruli ulcer formation. The ability to switch the mechanisms on and o� may not

be possible in reality, so this model can aid in understanding how the two mechanisms

collaborate to in�uence cell death.

Since there are still gaps in what is known about the disease, understanding how the

lesions observed in BU spread out over time may be instrumental in guiding clinicians
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and researchers to make predictions about skin tissue degradation caused byM. ulcerans.

This knowledge is important in assessing wounds' resection margins, which is key in BU

treatment. Consequently, our results could be important in making informed decisions

on surgical excision during surgery.



Chapter 4

Modelling the disease progression

and treatment pathway of Buruli

ulcer in Ghana

4.1 Introduction

A crucial step towards understanding Buruli ulcer disease is to identify the pattern from

infection to treatment and �nally recovery. Once an individual is infected, it takes a

period of 0− 6 months to manifest symptoms and these can worsen over several weeks.

Various mathematical models have been used to investigate BU disease transmission.

Some of these are in the form of compartmental models (Bonyah et al., 2014c; Aidoo

and Osei, 2007; Bonyah et al., 2014a; Nyabadza and Bonyah, 2015; Garchitorena et al.,

2015; Assan et al., 2017; Bonyah et al., 2014b).

The key question for most of these models has been to establish how the disease spreads

from the environment to humans. This involves characterising human and host pop-

ulations in compartments. A distinction between these models and our model is that

we divide the infected population into compartments according to the classi�cation of

BU severity de�ned by WHO (WHO, 2018). Rather than taking the infected popula-

tion as one whole, our model takes into consideration the three classi�cation categories

that de�ne the infection transitions from the incubation period to ulcer formation in BU

disease.

The rationale behind the modelling work in this chapter is

(i) To develop an epidemiological model for the incidence, progression and treatment

of BU.

56
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(ii) To build a compartmental model that will be used to predict the proportions of

BU infected population in early and late categories.

(iii) To establish and specify the contribution of key parameters in in�uencing BU

disease progression.

(iv) To use our model �ndings and provide insight on which control program to imple-

ment for the prevention of BU late category cases.

We develop a SIT (susceptible, infected and treated) compartmental transmission model

to explore the pathway of BU patients from infection to treatment. We calibrate a �exible

model that portrays the pattern BU patients go through when no additional case-�nding

intervention is applied.

The model consists of the total population residing in compartments and moving between

them over a given period. This movement of the population between compartments is

represented by a system of ordinary di�erential equations. These equations describe the

�ow in and out of all compartments as a function of time.

A quick guide to the model assumptions and equations are in Section 4.2 and model

analysis is presented in Section 4.3. Parameter estimation is found in Section 4.4, the

numerical simulation results and sensitivity analysis are presented in Section 4.5. We

conclude the chapter in Section 4.6.

4.2 Model formulation

Suppose the disease is such that the total human population can be grouped into three

distinct classes. We vary each class as a function of time, t: the susceptible, S(t), who

at risk of catching the disease; the infected, I(t), who have contracted the disease, and

the treated, T (t), who are undergoing treatment. S(t), I(t) and T (t) represent fractions

of the total population (N(t)). The total human population, N(t) is denoted by

N(t) = S(t) + I(t) + T (t) and
dN

dt
= 0.

The infected and treated population are further divided into four and three categories

respectively.

In formulating the model, we make assumptions of which some of them are supported by

evidence and are well accepted in literature on BU, while others are made for the sake

of simplicity or due to the absence of complete information.

The following assumptions are made:

� We assume a constant human population ignoring births, deaths and immigration

over the modelling time. An individual exits the susceptible compartment by be-

coming infected. This assumption is often made in epidemiological models when

focusing on short-term dynamics or speci�c outbreaks.
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� The human population can be infected withMycobacteruim ulcerans through being

randomly bitten by an infectious aquatic insect or contact with infected water.

� We assume that if an individual adheres to treatment prescribed and proper wound

care, treatment is 100% successful. This assumption is based on the e�ectiveness of

the prescribed treatment when perfectly adhered to, although real-world adherence

rates is likely to lower and impact the outcomes.

� These assumptions were made for the simplicity of the model.

� The model does not consider the dynamics of the aquatic insect population.

� Individuals cannot be infected while undergoing treatment.

� These assumptions were made speci�c to BU and were supported by Wynne et al.

(2018)'s work on BU reinfection.

� Individuals do not develop any immunity to BU infection and can be reinfected

as soon as treatment is completed.

� An individual's previous infection does not a�ect their susceptibility to an-

other infection.

Model variables and parameters

The variables and parameters stated in the equations are described in Tables 4.1 and 4.2

respectively. It is important to note that S, Ia, Ib, Ic, Id, Tb, Tc and Td are proportions

of the population rather than absolute numbers.

Variable Description

S Susceptible population

I Infected population

Ia Infected population in incubation period of the infection

Ib Infected population with a nodule or a plaque or oedema

Ic Infected population with wound ulcers

Id Infected population with wounds spread to the bone

T Population in treatment

Tb Population in treatment for nodule or a plaque or oedema

Tc Population in treatment for wound ulcers

Td Population in treatment for wound ulcers extending to the bone

t Time

Table 4.1: Description of variables used in the BU model.
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Parameter Description

β The rate of infecting the population with BU

δa Transfer rate from the incubation period to when signs of

BU manifest

δb Transfer rate of a nodule/plaque/oedema to a wound ulcer

δc Transfer rate of a wound ulcer to the bones/joint

γb Rate at which a BU patient with a nodule/papule/oedema

starts treatment

γc Rate at which a BU patient with a wound ulcer starts treat-

ment

γd Rate at which a BU patient with a wound ulcer extending

to the bones starts treatment

λb Rate at which a BU patient recovers with no disability fol-

lowing treatment for a nodule/paque/oedema

λc Rate at which a treated BU patient recovers with minor dis-

ability following treatment for an ulcer

λd Rate at which a treated BU patient recovers with major

disability following treatment for an ulcer that has extended

to the bone

Table 4.2: Description of parameters used in the BU model.

Susceptible population

Susceptible population become infected with BU and leave the compartment at a rate

given by β. Individuals return to the susceptible population after being treated with

antibiotics at a rate (λb), antibiotics plus minor surgeries (λc) and antibiotics plus major

surgeries (λd). For the rest of this chapter, we omit t dependence in N(t), S(t), I(t),

T (t) and write N , S, I, T for simplicity.

dS

dt
= λbTb + λcTc + λdTd − βS. (4.1)

where Tb, Tc and Td are populations in treatment for nodule or a plaque or oedema,

wound ulcers and wound ulcers extending to the bone respectively.

Infected population

We group the infected population into four categories. We let

� The infected population in the incubation period (the period between M.ulcerans

infection and when symptoms of BU �rst appear) be Ia.

� The infected population that manifests BU disease in clinical forms of a nodule,

papule or plaque and oedema be Ib.
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� The infected population that manifests BU disease as a wound ulcer be Ic.

� The infected population where the wound ulcers have extended to the bones be Id.

These populations are represented as Ia, Ib, Ic, Id in Figure 4.1. Transfer rates δa, δb, δc

describe the movement of the infected population from compartments Ia to Ib, Ib to Ic

and Ic to Id respectively.

Parameters γb, γc, γd describe the rate at which the infected population start treatment

hence moving from compartments Ib to Tb, Ic to Tc and Id to Td respectively. Populations

in compartment Ia do not start treatment since they are unaware of having BU and

symptoms are not yet evident.
dIa
dt

= βS − δaIa,

dIb
dt

= δaIa − Ib
(
δb + γb

)
,

dIc
dt

= δbIb − Ic
(
δc + γc

)
,

dId
dt

= δcIc − Idγd.

(4.2)

The infected population is now equivalent to

I = Ia + Ib + Ic + Id. (4.3)

Treated population

BU patients undergoing treatment are assumed to be in compartments Tb, Tc and Td.
dTb
dt

= γbIb − λbTb,

dTc
dt

= γcIc − λcTc,

dTd
dt

= γdId − λdTd.

(4.4)

The total population undergoing treatment is now equivalent to

T = Tb + Tc + Td. (4.5)

The progress of the individuals within susceptible, infected and treated compartments is

represented in Figure 4.1.



Chapter 4 Modelling the disease progression and treatment pathway of Buruli ulcer in

Ghana 61

Figure 4.1: Schematic representation of the susceptible, infected and treated popula-

tions.

It is important to note that S, Ia, Ib, Ic, Id, T , Tb, Tc and Td are proportions of the

population rather than absolute numbers. Now, the equations become:
dS

dt
= λbTb + λcTc + λdTd − βS,

dIa
dt

= βS − δaIa,

dIb
dt

= δaIa −
(
δb + γb

)
Ib,

dIc
dt

= δbIb −
(
δc + γc

)
Ic,

dId
dt

= δcIc − γdId,

dTb
dt

= γbIb − λbTb,

dTc
dt

= γcIc − λcTc,

dTd
dt

= γdId − λdTd.

(4.6)

4.2.1 Initial conditions

We are interested in non-negative solutions of S, I and T . In the susceptible, we assumed

that the disease is initialized at S(0) = S0 > 0. We assume that initially the whole

population is in the state Susceptible, and hence S0 = 1.

We start with 0 infected people since BU is not transmitted from person to person. Hence

we let Ia(0) = Ia0 = 0, Ib(0) = Ib0 = 0, Ic(0) = Ic0 = 0 and Id(0) = Id0 = 0. There
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is no treatment at time 0 hence we set the treated, T (0) = 0. Then Tb(0) = Tb0 = 0,

Tc(0) = Tc0 = 0 and Td(0) = Td0 = 0.

4.3 Model analysis

4.3.1 Positivity of solutions

We aim at making sure all the solutions to the SIT populations are non-negative and

remain non negative for all t > 0. We prove that using the following lemma.

Lemma 4.1. Given non-negative initial conditions; S0 ≥ 0, Ia0 ≥ 0, Ib0 ≥ 0, Ic0 ≥ 0,

Id0 ≥ 0, Tb0 ≥ 0, Tc0 ≥ 0 and Td0 ≥ 0, the solutions for the system of equations in (4.6)

remain non-negative ∀t > 0.

Proof. Let t̃ = sup{t > 0 : S0 ≥ 0, Ia0 ≥ 0, Ib0 ≥ 0, Ic0 ≥ 0, Id0 ≥ 0, Tb0 ≥ 0} where
t̃ ∈ [0, t].

Thus, t̃ ≥ 0. For S; ignoring other terms in Equation (4.1), focusing on the term with

S, we rewrite the susceptible equation and integrate to obtain
dS

dt̃
= −βS, S(t̃) = S(0) exp(−βt̃) ≥ 0.

For I; ignoring other terms in Equations (4.2) and focusing on the terms with Ia, Ib, Ic

and Id, we rewrite the infected equations and integrate to obtain
dIa

dt̃
= −δaIa, Ia(t̃) ≥ Ia(0) exp

(
− δat̃

)
≥ 0,

dIb

dt̃
= −

(
δb + γb

)
Ib, Ib(t̃) ≥ Ib(0) exp

(
− (δb + γb)t̃

)
≥ 0,

dIc

dt̃
= −

(
δc + γc

)
Ic, Ic(t̃) ≥ Ic(0) exp

(
− (δc + γc)t̃

)
≥ 0,

dId

dt̃
= −γdId, Id(t̃) ≥ Id(0) exp(−γdt̃) ≥ 0.

For T ; ignoring other terms in Equations (4.4) and focusing on the terms with Tb, Tc

and Td, we rewrite the treated equations and integrate to obtain
dTb

dt̃
= −λbTb, Tb(t̃) ≥ Tb(0) exp(−λbt̃) ≥ 0,

dTc

dt̃
= −λcTc, Tc(t̃) ≥ Tc(0) exp(−λct̃) ≥ 0,

dTd

dt̃
= −λdTd, Td(t̃) ≥ Td(0) exp(−λdt̃) ≥ 0.

All variables are positive for non-negative initial conditions. We deduce all solutions are

non-negative.

4.4 Parameter estimates

The parameters were estimated based on the assumptions about the disease and previous

literature available. In the estimation of transfer rates, we shall use weeks as our time

step.
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(I) Transfer rate from S to Ia

To estimate the transfer rate from S to Ia, we calculated the proportion of people

(labelled as Pg in Table 4.3) that are infected compared to the total population

per year from 2010 to 2020. To calculate that proportion, we use the number of

BU cases recorded per year (Kg) divided by the total population of Ghana for that

year (Mg). The values obtained are in a range of 1.0 × 10−5 and 1.0 × 10−6 per

year as shown in Table 4.3.

Picking parameters suitable for overall population would give β = 1.0 × 10−5 per

year which is approximately 1.0× 10−5/52 = 1.923× 10−7 week−1. This assumes

each infection lasts less than a year and people only get infected once a year at

most.

Year New

reported

cases (Kg)

Population

of Ghana

(Mg)

Proportion of infected

to the total Ghana

population (Pg =
Kg
Mg
)

2010 1048 24, 658, 823 4.2500× 10−5

2011 971 25, 261, 000 3.8438× 10−5

2012 632 25, 867, 000 2.4432× 10−5

2013 550 26, 479, 000 2.0771× 10−5

2014 443 27, 092, 000 1.6351× 10−5

2015 275 27, 849, 205 9.8746× 10−5

2016 371 28, 481, 945 1.3025× 10−5

2017 538 29, 121, 465 1.8474× 10−5

2018 630 29, 767, 102 2.1164× 10−5

2019 296 30, 417, 856 9.7311× 10−6

2020 127 31, 072, 940 4.0871× 10−6

Table 4.3: Ghana population 2010 to 2020 (Source: (Service et al., 2020)) and number

of new reported cases of BU in Ghana per year. Source: World Health Organisation

fact �le 2019 retrieved from (WHO, 2019).

(II) Transfer rates within I

Without diagnosis and treatment, individuals progress between compartments Ia,

Ib, Ic and Id. This evolution within compartments can take between 3 weeks and

1 year where the mean incubation period of BU is between 2 − 3 months (Zingue

et al., 2018a). During the incubation period, BU patients are not aware they have

the disease. In this work, we assumed an incubation period of 3 months roughly

13 weeks, resulting in a transition rate of 1
13 = 0.0769 week−1.

Within weeks, BU lesions rapidly increase in diameter and depth, resulting in

oedematous plaques with ill-de�ned borders. The time it takes for the lesions to
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ulcerate (Ib to Ic) is 4 weeks, equivalent to a rate of 0.25 week−1 (WHO, 2018;

Portaels et al., 2001). We also estimate that it takes 6 weeks for an ulcer to extend

to the joints and bone (from Ic to Id), equivalent to a rate of 0.166 week−1.

The estimated values of δa, δb and δc become 0.0769 week−1, 0.25 week−1 and 0.166

week−1 respectively.

(III) Transfer rates from I to T

A patient moves out of compartment I by starting treatment. Early BU diagnosis

will lead to early treatment and late diagnosis will lead to delayed treatment. We

estimate γb, γc and γd by considering how long it takes an infected individual to

start treatment.

Ackumey et al. (2012) suggests that individuals should start medical treatment

within 1 month, equivalent to 4 weeks, after observing BU symptoms on the skin,

it is important to note that this assumption is unlikely to hold true in practice.

However, we make this simplifying assumption due to a lack of available data and

for simplicity. We will discuss the limitations of this assumption later. Hence,

we consider the average time that individuals with BU take to start treatment,

denoted as γ, as 4 weeks, equivalent to a rate of 0.25 week−1. We assume equal

values for γ across di�erent categories, such that γb = γc = γd = 0.25 week−1.

(IV) Transfer rates from T to S

According to (Agbenorku et al., 2012), treatment for a BU patient is antibiotics,

excision, skin grafting, release of contracture or a combination of more than one of

these treatments. These treatment options depend on the severity of the ulcer at

the time of seeking medical treatment. Transfer rates from T to S were estimated

by considering the duration of treatment.

Individuals with BU in pre-ulceration (WHO category 1) are treated with antibi-

otics for 8 weeks and this has been proved to be e�ective. We take the healing time

for category 1 ulcers (λb) as 8 weeks equivalent to λb =
1
8 = 0.125 week −1.

BU patients who start treatment when the ulcers are deep (WHO category 2)

have a median healing time of 30 weeks (95% CI 26 − 34 weeks) (Nienhuis et al.,

2010). Hence we will take the λc = 1
30 = 0.033 week −1. We shall consider the

healing time for WHO category 3 BU lesions as 52 weeks from that we estimated

λd =
1
52 = 0.0192 week −1.

The parameters values used in the equations are de�ned in Table 4.4.
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Parameter Value

(week −1)

Source

β 1.923×10−7 Estimated in (I)

δa 0.0769 Estimated in (II)

δb 0.25 Estimated in (II)

δc 0.166 Estimated in (II)

γb 0.25 Estimated in (III)

γc 0.25 Estimated in (III)

γd 0.25 Estimated in (III)

λb 0.125 Estimated in (IV)

λc 0.033 Estimated in (IV)

λd 0.0192 Estimated in (IV)

Table 4.4: Values of parameters used in the BU model for simulations and sensitivity

analysis.

4.5 Numerical simulations

In this section, we discuss numerical results of the system and perform a sensitivity

analysis for the model. We substitute for the parameter values and the initial conditions

into Equations (4.6) and integrate numerically using odeint solver in scipy-python (Jones

et al., 2014). We used weeks as the time step for the simulation because the transfer

rates within compartments were measured in weeks.

4.5.1 Plots for S, I and T

We illustrated the results for the system of equations obtained in Equation (4.6) in Figure

4.2.
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Figure 4.2: Plots showing susceptible, infected and treated populations obtained from

the model numerical solutions using parameter values in Table 4.2.
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Figure 4.2 represents the susceptible, infected and treated populations. The susceptible

population decreases slowly over time as the infected population in the incubation period

increases. Infected populations move from one infected compartment to another when

they stay infected for long periods.

The pattern of the populations in the model is dependent on the model parameter values

chosen. For parameters chosen, the susceptible and infected populations reach a steady

state after about 250 and 100 weeks respectively. The treated population (Tc and Td)

reaches a steady state after about 100 weeks while Tb reaches a steady state after about

200 weeks.

When S, I and T populations reach a steady state, we analyse the �nal prevalence rate

there since the solution is stable.

4.5.2 Estimating the prevalence of BU in selected endemic countries

in West Africa

Prevalence of BU tells us the extent of BU in a population in a particular period. It is

the proportion of the population who have BU. Prevalence of BU is represented as

=
Number of individuals infected with BU in the population at a particular time

Total Population
,

(4.7)

where the number of individuals infected with BU in the population at a particular time.

In the model, this is equivalent to the total infected population (I) in addition to the

population in treatment (T ). The total population of Ghana is represented as 1 since

the analysis is conducted using proportions. The rate of BU infection (β) for the most

endemic countries in West Africa is calculated based on available data regarding the

number of reported BU cases per year (WHO, 2018). We calculated for Ivory Coast,

Benin and Democratic Republic of Congo (DRC) as indicated in Table 4.5, Table 4.6

and Table 4.7 respectively. We substitute β in our model and run the simulation. We

make projections on the possible trend of BU prevalence using our model.
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Year New

reported

cases (Ki)

Population of

Ivory Coast

(Mi)

Proportion of newly

infected to the total

Ivory Coast population

(Pi =
Ki
Mi
)

2010 2533 20, 532, 944 1.2336× 10−4

2011 1659 21, 028, 652 7.8892× 10−5

2012 1386 21, 547, 188 6.4323× 10−5

2013 1039 22, 087, 506 4.7040× 10−5

2014 827 22, 647, 672 3.6515× 10−5

2015 549 23, 226, 148 2.3637× 10−5

2016 376 23, 822, 726 1.5783× 10−5

2017 344 24, 437, 475 1.4076× 10−5

2018 261 25, 069, 226 1.0411× 10−5

2019 251 25, 719, 554 9.7591× 10−6

2020 231 26, 378, 275 8.7572× 10−6

Table 4.5: Ivory Coast population 2010 to 2020 (Source: (UN, 2022c)) and number of

new reported cases of BU in Ivory Coast per year. Source: World Health Organisation

fact �le 2019 retrieved from (WHO, 2019). The rate of infection (β) for Ivory Coast

per year is 8.041 × 10−7 week −1 which was obtained by taking the average of values

in column Pi, divided by 52 weeks.
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Year New

reported

cases (Kb)

Population

of Benin

(Mb)

Proportion of newly

infected to the total

Benin population

(Pb =
Kb
Mb
)

2010 572 9, 199, 254 6.2178× 10−5

2011 492 9, 460, 829 5.2003× 10−5

2012 365 9, 729, 254 3.7515× 10−5

2013 378 10, 004, 594 3.7782× 10−5

2014 330 10, 286, 839 3.2079× 10−5

2015 311 10, 575, 962 2.9406× 10−5

2016 312 10, 872, 072 2.8697× 10−5

2017 267 11, 175, 192 2.3892× 10−5

2018 219 11, 485, 035 1.9068× 10−5

2019 240 11, 801, 151 2.0336× 10−5

2020 197 12, 123, 198 1.6249× 10−5

Table 4.6: Benin population 2010 to 2020 (Source: (UN, 2022a)) and number of new

reported cases of BU in Benin per year. Source: World Health Organisation fact �le

2019 retrieved from (WHO, 2019). The rate of infection (β) for Benin per year is

6.2797 × 10−7 week−1 which was obtained by taking the average of values in column

Pb, divided by 52 weeks.
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Year New

reported

cases (K)

Population

of DRC

(M)

Proportion of newly

infected to the total

DRC population

(Pd =
Kd
Md
)

2010 136 64, 563, 853 2.1064× 10−6

2011 209 66, 755, 151 3.0859× 10−6

2012 284 69, 020, 749 4.1147× 10−6

2013 214 71, 358, 804 2.9989× 10−6

2014 192 73, 767, 445 2.6027× 10−6

2015 234 76, 244, 532 3.0690× 10−6

2016 175 78, 789, 130 2.2211× 10−6

2017 120 81, 398, 765 1.4742× 10−6

2018 99 84, 068, 092 1.1776× 10−6

2019 41 86, 790, 568 4.7240× 10−7

2020 334 89, 561, 404 3.7292× 10−6

Table 4.7: DRC population 2010 to 2020 (Source: (UN, 2022b)) and number of new

reported cases of BU in DRC per year. Source: World Health Organisation fact �le 2019

retrieved from (WHO, 2019). The rate of infection (β) for DRC per year is 3.0099×10−8

week−1 which was obtained by taking the average of values in column Pd, divided by

52 weeks.
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Figure 4.3: The modelled prevalence of BU for DRC, Ghana, Benin and Ivory Coast

calculated using the corresponding β values as
(
3.0099 × 10−8 week−1, 1.923 × 10−7

week−1, 6.2797 × 10−7 week−1, 8.041 × 10−7 week−1
)
respectively. The prevalence

rates plotted were extracted at the steady state time t = 300 weeks.

Model results in Figure 4.3, show that countries with high rates of infection, β had high

prevalence of BU. The results indicate that an increase in β leads to an increase in BU

prevalence where as reduction in β reduces BU prevalence. Our model con�rms the trend

to expect when the rate of infection is increased.

4.5.3 Sensitivity analysis: e�ect of varying the transfer rates within I

(δ) on the infected population

In this subsection, we explore the impact of uncertainty in estimating the parameter value

(δ). We evaluate how δ in�uences the number of infected individuals at a speci�c time.

Our approach involves selecting key parameters and examining the e�ects of increasing

their values on the infected population.

We check the proportions of people in each compartment at a steady state. Thereafter,

we analyse how these proportions change when the transfer rates within I (δ) are varied.

These proportions are then compared to available data on the percentages of BU patients

in di�erent infected and treatment states.

We analyse how adjustments in the parameters; δa, δb and δc in�uence the model results.

With the exception of β (explained on Page 72), the values for all the other parameters

used in the simulation were taken from Table 4.4.

Our primary objective is to investigate the e�ect of picking up BU patients early and

how that can improve prevalence rates.
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In a study conducted by (Amofah et al., 2002), it was found that of individuals suspected

to have BU, 66.3% exhibited active lesions, corresponding to a prevalence of 20.7 per

100, 000. In our model, the infected population with active lesions is represented by the

sum of Ib, Ic, and Id. This relationship is expressed as;

Ib + Ic + Id + Tb + Tc + Td =
20.7

100000
, (4.8)

Figure 4.4: The green line illustrates the proportion of the infected BU population

at the steady state when parameters δa = 0.0769, and δb = δc are assigned values

[0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2]. The red line (Zδ) is the ratio calculated in Equa-

tion (4.8).

For this plot, β was increased from 10−5 to 10−7, calculated prevalence as Ib+Ic+Id+Tb+

Tc+Td and the range of δb and δc values changed to [0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2].

The step size between the δb and δc values indicated in Figure 4.4 was set to 0.025.

In the initial model run to produce Figure 4.2, WHO data was utilized for β at face

value. However, upon running the model to calculate prevalence, a β value of 10−7

resulted in prevalence values several orders of magnitude lower than those reported in

(Amofah et al., 2002).

The decision was then made to calibrate the model by adjusting the β value to align

with the prevalence reported in (Amofah et al., 2002). This calibration ensured that the

model produces prevalence �gures consistent with a more reliable study, addressing po-

tential discrepancies arising from under-reporting and the considerable variation evident

in Tables 4.3-4.6.



Chapter 4 Modelling the disease progression and treatment pathway of Buruli ulcer in

Ghana 73

In Figure 4.4, the green line representing the prevalence Ib + Ic + Id + Tb + Tc + Td

intersects with Zδ when δb = δc ≈ 0.1125.

To obtain the prevalence of 20.7 per 100, 000 using our model then the value of β must

be increased to 10−5, δb and δc must be ≈ 0.1125.

In the future, more recent data on BU incidence will be helpful in this estimation.

4.5.4 Model experimentation

We establish the in�uence of parameters on the number of infected individuals at a

particular time. We choose key parameters and investigate how increasing their values

a�ects the infected population.

In subsubsection 4.5.4.1 and subsubsection 4.5.4.2, we check the proportions of people

in each compartment at a steady state. Thereafter, we analyse how these proportions

change when the rate of starting treatment (γ) or transfer rates within I (δ) are varied.

We compare these proportions with the available data on the percentages of BU patients

in di�erent infected and treatment states.

4.5.4.1 E�ect of varying the rate of starting treatment (γ) on the infected

population

We ascertain the extent to which changes in the value for γ in�uence the model output.

We let γb = γc = γd and assign them a range of values. Thereafter, we observe how

the proportion of the infected BU population in the ulcerative category changes as these

values increase. This is illustrated in Figure 4.5.

In studies by (WHO, 2018), 70% of the BU patients who reported to hospital had lesions

in the ulcerative category. This implies that;

γcIc + γdId
γbIb + γcIc + γdId

=
70

100
. (4.9)

We �t data on the proportion of people in the infected stage to obtain Figure 4.5.
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Figure 4.5: The blue line illustrates the change in the proportion of the infected BU

population in the ulcerative category at the steady state when parameters γb = γc = γd

are assigned values [0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.5]. The orange line (Zγ) is the

ratio calculated in Equation (4.9).

Figure 4.5 depicts the ratio of ulcerative BU lesion cases to total BU cases for di�erent

γ values. Increasing the values of γ means that people seek treatment quicker hence

reducing the proportion of cases that progress to ulcerative categories. To have more

people picked up in early category of BU, we increase the value of γ which reduces the

ratio (Zγ).

In Figure 4.5, the blue line representing the ratio Ib : Ic + Id intersects with Zγ when

when γ ≈ 0.35. The blue line is an interpolation, based on a set of point values.

To obtain a ratio of 70 : 100 ulcerative BU lesion cases to total BU cases using our model

then the value of γ must be ≈ 0.35.

E�ect of using the rate of starting treatment (γ = 0.35) on the model
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Figure 4.6: Plots showing susceptible, infected and treated populations obtained from

the model numerical solutions using parameter values in Table 4.2 and γ = 0.11.

Figure 4.6 is a comparison of simulations when γ = 0.25 and when it is γ = 0.35. We

observe a decrease in the proportion of Td cases from 2.0× 10−6 to ≈ 1.4× 10−6 when γ

was increased from 0.25 to 0.35. From these results, we can deduce that when the rate of

starting treatment is increased, the proportion of the population in treatment for wound

ulcers extending to the bone (Td) decreases.
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4.5.4.2 E�ect of varying the rate of starting treatment (γb) on the infected

population

We analyse the e�ect of varying the rate of starting treatment (γb) on the infected

population.

Figure 4.7: This plot illustrates the change in the proportion of the infected BU pop-

ulation at the steady state when γb is assigned values [0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95]

while parameters (γc, γd) remain constant.

In Figure 4.7, an increase in the rate of seeking treatment in early stages (γb) leads to

reduction in the infected population. We observe a rapid decrease in number of infected

people (Id) in the late category compared to other categories.

4.6 Conclusion

In this chapter, we have presented a deterministic model that describes the disease pro-

gression and treatment pathway of BU in the population of the most endemic areas in

Ghana. We aimed at analysing BU progression in a way that mimics the nature of the

disease. The model was formulated and parameters for the model simulations were es-

timated. The steady state solution of the model was determined. Numerical results on

the behaviour of the model were illustrated.

Model results showed us the trend that populations in di�erent compartments can take.

We calculated the rate of infection for Ghana, DRC, Benin and Ivory Coast using data

from (WHO, 2019). We used our model to predict the prevalence of BU in those countries.

Our results showed that DRC has the lowest prevalence of 10−6 and Ivory Coast has the

highest of approximately 10−5. To control the number of people getting infected, it is

paramount to establish what in�uences the rate of infection (β). However, this maybe

di�cult to analyse due to the uncertainty on the accurate mode of transmission of BU.
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We performed a sensitivity analysis on the δ parameters of the model. We assigned the

transfer rates within the infected population (δ) to a range of values and observed how

this in�uenced the proportion of infected population. Results from our model showed

that as δ increases, the proportion of infected population also increases as observed in

Figure 4.4. This means people spend more time in the infected compartment before

starting treatment.

We analysed the e�ect the rate of starting treatment γ has on the infected population.

We compared this output with the data about the proportion of infected population

in Ghana. From our results, a high γ leads to a decrease in the proportion of infected

population. Also when γb was increased, we observed a signi�cant decrease in the number

of BU patients in the late category compared to other categories.

One limitation of our model is the assumption of uniform transfer rates from infection

to treatment across all BU categories. This simpli�cation was necessary due to limited

data and literature on this parameter. The values used in the model were derived from

the work of Ackumey et al. (2012), suggesting that individuals should begin medical

treatment within four weeks of observing BU symptoms on the skin. It is essential to

distinguish between seeking and starting treatment, as the latter involves various steps

such as diagnosis, waiting times, and resource accessibility, which can vary based on

infection severity and healthcare system capacity. Category I patients may exhibit lower

treatment-seeking rates; however, if they seek treatment, they require only antibiotics,

enabling a relatively prompt start. In contrast, Category III patients, necessitating

surgery and hospital admission, might face delays due to the limited availability of oper-

ating theatre facilities. Figure 4.7 illustrates the signi�cant impact of altering the transfer

rate (γb) on the proportion of the infected population. To enhance model accuracy and

relevance to real-world scenarios, we recommend comprehensive data collection on the

rate of treatment initiation (γ).

Another noteworthy limitation of our model is the assumption made during sensitivity

analysis, where we set the transfer rates δb = δc. It is essential to acknowledge that these

parameters are intrinsic properties of the disease and re�ect the natural course of BU if

left untreated. Consequently, in practice, they cannot be modi�ed.

In order to mitigate BU, we have to focus on creating avenues that encourage starting

treatment before the ulceration. In this way, BU patients take antibiotics for 8 weeks and

can recover without functional disabilities. From our model results this can be achieved

by increasing the transfer rate γb. We suggest the following ways of increasing this rate

as:

� Making it easy and accessible for people to test for BU whenever they suspect any

symptoms. In this case adopting the rapid diagnostic test (RDT) for point of care

testing would be a remedy.
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� Working with community health volunteers (CHV) for active case �nding of BU

patients. Introduction of CHV can be instrumental in fast tracking infected BU

population while in early categories.

Going forth, suppose we introduce the RDT in the compartmental model for example

between compartments Ib and Ic in Figure 4.1. How a�ordable would it be for policy

makers to implement? Speci�cally, what are the corresponding costs and e�ects of im-

plementing a RDT as a control strategy? In chapter 5, we will perform a comprehensive

study on this.

Suppose we allow CHV to spot the BU-infected population and refer them for treat-

ment. How will introducing CHV in active case �nding in�uence the early diagnosis

and treatment? This phenomenon implies that the infected can start treatment through

self-referral and CHV. In chapter 6, we investigate this using an agent-based model.

We recognise the fact that this model has limitations which include, lack of adequate

clinical data for model validation. For example the speci�c number of infected population

in each I compartment would be instrumental in making projections on BU infections.

There was also limited information on parameter values. Parameters like transfer rates

within the infected population and the rate of starting treatment could be in�uenced by

individual behaviour hence di�cult to estimate.



Chapter 5

Cost-e�ectiveness analysis of rapid

diagnostic test compared to

polymerase chain reaction in the

diagnosis and treatment of Buruli

ulcer in four endemic districts in

Ghana

5.1 Introduction

One of the research priorities of WHO on BU is the development of rapid diagnostic

tests (RDT) for accurate diagnosis of BU at the primary health care level (WHO et al.,

2018), (WHO et al., 2022). The most used standard laboratory method to con�rm BU

is the polymerase chain reaction test (PCR). Although PCR has been a recommended

diagnostic tool, it is expensive. It is performed in laboratories with sophisticated set-ups

and not readily available to most endemic places, mainly rural areas (Stinear et al., 1999;

Ablordey et al., 2012).

The model in this chapter is motivated by (Frimpong et al., 2019)'s work, which developed

a RDT with the potential for quick diagnosis of BU at the point of care, providing timely

results to health workers, in addition to being simpler to run and cost-friendly for endemic

countries.

We investigate the a�ordability of the RDT given the limited resources in most endemic

countries. To implement this, we shall conduct a cost-e�ectiveness analysis (CEA) of

79
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using the RDT for BU diagnosis in rural Ghana from a healthcare provider perspective.

The comparator is the PCR which is the current recommended clinical diagnostic test.

The model considers patients with suspected BU who attend a health clinic for diagnosis

and treatment. Unlike the SIT model in chapter 4, this model uses a slightly modi�ed

version of the WHO categories as de�ned in chapter 1, page 3. Patients with suspected

BU are either in category I (non-ulcerative lesions) or category II (ulcerative lesions).

These are equivalent to states Ib and Ic of the SIT model.

This chapter proceeds as follows; in section 5.2, we describe the model starting with

assumptions, construct a decision tree model in section 5.3 and in section 5.4, we establish

corresponding probabilities. We then calculate the costs and e�ects at each decision tree

node in section 5.5 and section 5.6. After that, we estimate the e�ects using DALY

and calculate the incremental cost-e�ectiveness in section 5.6. Finally, we perform the

probabilistic sensitivity analysis to cater for the uncertainty in parameter estimation in

section 5.8 and conclude the chapter in section 5.9.

5.2 Model description

We developed a decision tree model for BU where we compared two diagnostic ap-

proaches: the RDT and PCR based on previous models for malaria (Shillcutt et al.,

2008; Hansen et al., 2015, 2017) and typhoid fever (Saito et al., 2018). Ghana was se-

lected because it is a high-burden country for BU and also owing to the existence of data

to inform model parametrisation. An example of BU cases for the four endemic districts

of Amansie West, Asante Akim, A�gya Sekyere and Ga is illustrated in Table 5.1.

Endemic

area

Prevalence

per 100, 000

Cases Total

Population

Amansie West 150.8 474 162, 848

Asante Akim 131.5 265 312, 556

A�gya Sekyere 107.1 149 116, 322

Ga 87.7 1, 113 1, 104, 885

Table 5.1: Population in the four endemic districts in Ghana showing the highest

prevalence of BU (Amofah et al., 2002; Service et al., 2020).

5.2.1 Model assumptions

We make the following assumptions when designing the model

� No individual has been treated with antibiotics before visiting the health centre.

� An individual is assumed to have one disease and no co-infection.

� Healthcare workers adhere to test results and treatment procedures.
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� There is 100% availability of antibiotics.

� A time horizon of 52 weeks as the estimated average treatment time of a BU patient

with severe lesions (WHO et al., 2012).

� Individuals with category three BU (equivalent to state Id in the SIT model) will

not need a diagnostic test. The symptoms can be accurately identi�ed with clinical

diagnosis and treated immediately; hence we did not include that category in the

decision tree (van der Werf, 2018).

5.3 Decision analysis

We constructed a decision tree to illustrate intervention arms for each diagnostic tool

with pathways leading to treatment. Patients are diagnosed by either having BU or not,

as determined by their reference diagnosis using RDT and PCR. After the diagnostic test

result, a decision is made on which treatment to administer. We assume that when the

diagnostic test result is positive, antibiotics are prescribed as �rst-line treatment for 8

weeks or antibiotics plus surgery if the patient is in a late category of BU (Asiedu et al.,

2000). When the test is negative, we prescribe no medication.

Each decision tree branch had a probability, e�ect, cost of diagnosis and treatment

assigned to it. These parameters were estimated based on previous studies, and others

were estimated using the available data.

The expected costs and e�ects for the two tests (PCR and RDT) were then computed

by `rolling back' the decision tree displayed in Figure 5.1 along the branches. Thus, the

incremental cost per additional DALY of the alternative option could be compared.
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Figure 5.1: Decision tree model for the population that come for BU diagnosis and

treatment. At every decision tree branch, the corresponding probability (pi), cost and

DALY are illustrated. T1 and T2 represent antibiotic treatment and surgery respectively.

5.4 Estimation of probabilities

We test a proportion of the population with any form of BU symptoms like nodules,

plaques, oedema and skin lesions. We let α1 and α2 be the proportion of the population

who have BU at category 1 and category 2 at the time of testing respectively. Hence

1 − (α1 + α2) will be the proportion of the population who do not have BU. Without

treatment, the nodule or oedema will ulcerate within 4 − 6 weeks (Bolz et al., 2016).

Hence we can estimate the threshold time (period taken to move from category 1 to

category 2) in the range of 4− 6 weeks.

In a national study survey in Ghana carried out by Amofah et al. (2002), of the 6, 332

people suspected to have BU, 5, 619 of them had BU at di�erent categories. 48.5% of

the lesions were in the ulcerative category and 12.5% in the pre-ulcerative category.

From this data, we let the values of α1 and α2 be 12.5% and 48.5%, respectively. We

assume that the sensitivity and speci�city of the PCR and RDT are the same for both

categories.

� Let σp be the speci�city of the PCR test evaluated as

probability
[
negative PCR test

∣∣negative for BU]
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which we estimated as 100% (95% Con�dence Interval (CI) 69 − 100) (Phillips

et al., 2005).

� Let σr be the speci�city of the RDT evaluated as the

probability
[
negative RDT

∣∣negative for BU]
which we estimated as 100% (95% C1 84− 100) (Frimpong et al., 2019).

� Let ωp be the sensitivity of the PCR test evaluated as

probability
[
positive PCR test

∣∣positive for BU]
which has been estimated as 98% (95% CI 91− 100)(Phillips et al., 2005).

� Let ωr be the sensitivity of the RDT evaluated as

probability
[
positive RDT

∣∣positive for BU]
which has been estimated as 88% (95% CI 77− 95) (Frimpong et al., 2019).

� Let βp be the probability that PCR test results come back within a threshold time.

The turnaround time between transportation of samples and availability of PCR

results is approximately 2 weeks (Bretzel et al., 2011). Results from the PCR

return in weeks, so we choose the probability that the disease has not progressed

by the time the tests come back to be approximately 40%.

� Let βr be the probability that the RDT results come back within a threshold time.

Test results have a runtime of 15 minutes, so we set βr to be 100% (Frimpong

et al., 2019).

We calculate the probabilities using values for σp, σr, ωp and ωr in (a) to (l).

(a) Probability that a test done using a PCR is positive (p1) and the probability that

a test done using a PCR is negative (p2) .

p1 = probability[test positive with PCR] and p2 = probability[test negative with PCR]

p1 = ωp(α1 + α2) + (1− σp)(1− α1 − α2) and p2 = 1− p1,

p1 = 0.98(0.125 + 0.485) + (1− 1)(1− 0.125− 0.485),

p1 = 0.5978, p2 = 0.4022. (5.1)

(b) Probability that a test done using a RDT is positive (p3) and the probability that

a test done using a RDT is negative (p4) .

p3 = probability[test positive with RDT] and p4 = probability[test negative with RDT]

p3 = ωr(α1 + α2) + (1− σr)(1− α1 − α2) and p4 = 1− p3,

p3 = 0.88(0.125 + 0.485) + (1− 1)(1− 0.125− 0.485),

p3 = 0.5368, p4 = 0.4632. (5.2)
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(c) Probabilities on node 3 are de�ned as p5 + p6 + p7 = 1. The probability that the

positive result obtained using a PCR is false (p5), which is equivalent to probability

[false positive result with PCR].

p5 = probability [negative for BU
∣∣test positive with PCR],

=
probability

[
test positive with PCR

∣∣negative for BU]probability(negative for BU)
probability (test positive with PCR test)

,

=
(1− σp)(1− α1 − α2)

p1
=

(1− 1)(1− 0.125− 0.485)

0.5978
,

= 0.000. (5.3)

(d) The probability that the positive result obtained using a PCR is BU (a) in pre-

ulcerative categories (p6) or (b) in ulcerative categories (p7). Probabilities p6 and

p7 are the positive predictive values. We evaluate them as:

p6 = probability
[
category 1 positive PCR & not progressed

∣∣test positive with PCR
]
.

p7 = probability
[
category 2 with PCR or category 1 with PCR and progressed∣∣ test positive with PCR

]
, p6 + p7 = 1 − p5. Assume the same sensitivity for

category 1 and category 2 for BU patients.

p6 =
ωpα1βp
p1

=
(0.98× 0.125× 0.4)

0.5978
= 0.0819,

p7 = 1− p5 − p6 = 0.9181

(e) The probability that the negative result was obtained using a PCR: (a) is true

(p8) or (b) is false (p9). Probability (p8) is also the negative predictive value. We

estimate probabilities p8 and p9 as,

p8 = probability
[
negative for BU

∣∣test negative with PCR
]
,

=
σp(1− α1 − α2)

p2
=

1(1− 0.125− 0.485)

0.4022
= 0.9696, (5.4)

p9 = 1− p8 = 0.0304. (5.5)

(f) Probabilities on node 8 are de�ned as p10 + p11 + p12 = 1. The probability that

the positive result obtained using a RDT has BU: (a) in pre-ulcerative categories

(p10) or (b) in ulcerative categories (p11). We estimate the probabilities p10 and

p11 as follows:

p10 = probability
[
category 1 with RDT and not progressed

∣∣test negative with RDT
]

p10 =
ωrα1βr
p3

=
0.88× 0.125× 1

0.5368
= 0.204918, (5.6)

p11 =
ωrα2

p3
=

0.88× 0.485

0.5368
= 0.7950. (5.7)
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(g) We estimate the probability that the positive result obtained using a RDT is false

(p12) as

p12 = probability
[
negative for BU

∣∣test positive with RDT
]
,

=
probability

[
test positive with RDT

∣∣negative for BU]probability(negative for BU)
Probability (Test positive the RDT)

,

=
(1− σr)(1− α1 − α2)

p3
=

(1− 1)(1− 0.125− 0.485)

0.5368
,

= 0.0000. (5.8)

(h) Probability that the negative result obtained using a RDT is; (a) true (p13) and

(b) false (p14). Probability (p13) is also the negative predictive value. Probabilities

p13 and p14 are calculated as follows:

p13 = probability
[
negative for BU

∣∣negative with RDT
]
,

=
σr(1− α1 − α2)

p4
=

1(1− 0.125− 0.485)

0.4632
, (5.9)

p13 = 0.8419689, (5.10)

p14 = 1− p13 = 0.1580311. (5.11)

(i) The probability that a BU patient diagnosed using a PCR or RDT is treated with

antibiotics and fully recovers is p15 and p19, respectively. We estimate p15 and p19

relating to the rate of treatment completion from values found in the literature,

namely; 84.4% (Collinson et al., 2020) and 46% (Klis et al., 2014). Taking the

average of 84.4% and 46% we obtain 65.2%.

(j) The probability that a BU patient diagnosed using a PCR or RDT does not adhere

to treatment leading to delayed full recovery is p16 and p20, respectively. Using p15

and p19 we obtain p16 and p20 as 34.8% using the decision tree in Figure 5.1.

(k) Probability that a BU patient diagnosed using a PCR or RDT is treated with

antibiotics, and surgery recovers with minor disability (p17 and p21). The com-

bination of antibiotics and surgery was highly e�ective up to 80% (Cowan et al.,

2015). Hence we estimate p17 and p21 as 80%.

(l) Probability that a BU patient diagnosed using a PCR or RDT is treated with

antibiotics, and surgery recovers with major disability (p18 and p22). Using p17

and p21 we obtain p18 and p22 as 20% using the decision tree in Figure 5.1.
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Prob Parameter Value Source

p1 Probability that a test done using a PCR is positive 0.5978 Estimated in (a)

p2 Probability that a test done using a PCR is negative 0.4022 Estimated in (a)

p3 Probability that a test done using a RDT is positive 0.5368 Estimated in (b)

p4 Probability that a test done using a RDT is negative 0.4632 Estimated in (b)

p5 Probability that the positive result obtained using

a PCR is false

0.0000 Estimated in (c)

p6 Probability that the positive result obtained using

a PCR has BU in pre-ulcerative categories

0.0819 Estimated in (d)

p7 Probability that the positive result obtained using

a PCR has BU in ulcerative categories

0.9181 Estimated in (d)

p8 Probability that the negative result obtained using

a PCR is true

0.9696 Estimated in (e)

p9 Probability that the negative result obtained using

a PCR is false

0.0304 Estimated in (e)

p10 Probability that the positive result obtained using

a RDT has BU in pre-ulcerative categories

0.2049 Estimated in (f)

p11 Probability that the positive result obtained using

a RDT has BU in ulcerative categories

0.7940 Estimated in (f)

p12 Probability that the positive result obtained using

a RDT is false

0.0000 Estimated in (g)

p13 Probability that the negative result obtained using

a RDT is true

0.8419 Estimated in (h)

p14 Probability that the negative result obtained using

a RDT is false

0.1580 Estimated in (h)

p15 Probability that a BU patient diagnosed using a

PCR and is treated with antibiotics fully recovers

0.6520 Estimated in (i)

Table 5.2: Sensitivity and speci�city of diagnostic tests, probability estimates of treat-

ment success of BU disease.
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Prob Parameter Value Source

p16 Probability that a BU patient diagnosed using a

PCR does not adhere to treatment leading to de-

layed full recovery

0.3480 Estimated in (j)

p17 Probability that a BU patient diagnosed using a

PCR is treated with antibiotics and surgery recov-

ers with minor disability

0.8000 Estimated in (k)

p18 Probability that a BU patient diagnosed using a

PCR is treated with antibiotics and surgery recov-

ers with major disability

0.2000 Estimated in (l)

p19 Probability that a BU patient diagnosed using a

RDT and is treated with antibiotics fully recovers

0.6520 Estimated in (i)

p20 Probability that a BU patient diagnosed using a

RDT does not adhere to treatment leading to de-

layed full recovery

0.3480 Estimated in (j)

p21 Probability that a BU patient diagnosed using a

RDT is treated with antibiotics and surgery recov-

ers with minor disability

0.8000 Estimated in (k)

p22 Probability that a BU patient diagnosed using a

RDT is treated with antibiotics and surgery recov-

ers with major disability

0.2000 Estimated in (l)

Table 5.3: Sensitivity and speci�city of diagnostic tests, probability estimates of treat-

ment success of BU disease.

5.5 Estimation of costs

This section estimates the costs in decision tree 5.1. These costs include the cost of

RDT, the cost of PCR, the cost of �rst-line treatment, and the cost of minor and major

surgery.

Considering the limited information available on costs, such as the cost of RDT and

surgery, we made estimations based on the best available scenarios and data. Despite

the inherent uncertainty, potential variations in cost estimates for minor surgery and

RDT are unlikely to have a signi�cant impact on the overall outcome of the decision

tree calculations. Therefore, even if the estimates for these costs are under-estimations

or over-estimations, the ultimate decision tree outcomes remain una�ected.

We assume all the costs incurred during this period are due to BU. From a health system

perspective, we shall estimate these costs. We shall work with direct costs only, which

include costs for diagnosis and treatment. We convert all costs to 2019 United States
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dollars (USD) based on the US Bureau of Statistics from CPI In�ation Calculator (UBLS,

2020).

(I) Cost of the RDT (CostRDT): To estimate the price of the Buruli ulcer (BU) RDT,

we relied on the cost of a Malaria RDT as reported in (Ezennia et al., 2017). Since

there is no available information regarding the speci�c cost of an RDT for BU,

we used the cost of the Malaria RDT as a proxy. Malaria is currently one of the

leading infectious diseases in this context, with an RDT available.

The average cost of a Malaria RDT kit was US$0.15 (US$0.13−US$0.17) in 2017,

equivalent to US$0.16 (US$0.14−US$0.18) in 2019. According to (Bath et al.,

2020), the average retail price of a Malaria RDT in sub-Saharan Africa was US$0.33

in 2019. The global fund price list in 2022 is US$0.45 (US$0.25−US$0.65) which
is equivalent to US$0.4 (US$0.22−US$0.58) in 2019 (website, 2022a,b). We take

the unit costs of the RDT of US$0.16, US$0.33 and US$0.4 to obtain the average

unit cost of the RDT as US$0.29.

(II) Cost of PCR (CostPCR): A PCR requires health personnel to administer it, which

takes approximately 1 hour of sta� time. The unit cost per sample, including

sta� time, has been estimated as US$11.24 in 2011 (Yeboah-Manu et al., 2011),

equivalent to US$12.77 in 2019 for Ghana. We take $12.77 as the cost of one PCR.

Training and �xed costs associated with a PCR have not been included.

(III) First line treatment cost (Cost1): This includes the cost of antibiotics per dose

taken for 8 weeks. 150 mg of rifampin cost between US$0.59 − 1.01 (year 2020)

(checker, 2020) and 125 mg of clarithromycin cost US$2.72 (year 2020) (NHIS,

2020). Using the (UBLS, 2020) converter, 150 mg of rifampin cost lies in the

range of US$0.57 − 0.98 (year 2019) and 125 mg of clarithromycin cost US$2.64

(year 2019). In Ghana, the price of 1 box of antibiotics (12 doses) was US$5.10

(Expatistan, 2020).

(IV) Cost of false positive (Costx): We calculate the cost when the wrong treatment

is given. This is equivalent to �rst-line treatment administered to an individual,

which we estimated as US$5.10 in (III).

(V) Unit cost of surgery: These include the costs incurred by the health facility for

performing surgery on BU patients. The costs will be di�erent for minor and

major surgery. It includes the unit price of surgery multiplied by the number of

surgeries done.

In Ghana, the average cost of treating BU per patient was US $966.85, US$706.08

and US$658.74 in 1994, 1995 and 1996 respectively (Asiedu, Kingsley and Etuaful,

Samuel, 1998). We convert these costs to USD 2019, and an average is taken,

which becomes US$1, 307.01. Amofah et al. (2002) estimated the cost of surgery

as US$780 (year 2002) which is equivalent to US$1, 108.61 (year 2019). We use
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costs US$1, 307.01 and US$1, 108.61 to calculate the average cost of surgery as

US$1, 207.81 (year 2019) (Agbenorku et al., 2012; Asiedu, Kingsley and Etuaful,

Samuel, 1998; Amofah et al., 2002).

In the estimation of the cost of surgery, we relied on the average cost calculated

from previous data in the literature. However, we acknowledge that the exact

number of surgeries performed to derive this cost was unknown. To streamline

the estimation process, we assigned the unit cost of surgery as equivalent to the

previously calculated average cost.

(VI) Minor surgery (Cost2): According to (WHO et al., 2012), two surgeries for minor

surgery include surgical excision and skin grafting. The cost of this surgery will be

twice the unit cost of surgery which is US$2, 415.62.

(VII) Major surgery (Cost3): WHO recommends three surgeries for major surgery which

include surgical excision, skin grafting and contracture (WHO et al., 2012). The

cost of this surgery will be thrice the unit cost of surgery which is US$3, 623.3.

Cost parameter Value (US$) Source

Cost of RDT (CostRDT )

Unit cost per RDT kit 0.29 Estimated in (I)

Cost of PCR (CostPCR)

Unit cost per PCR 12.77 Estimated in (II)

First line treatment cost

Cost of Antibiotics per dose 0.425 Estimated in (III)

Total cost for �rst line treatment (Cost1) 5.10 Estimated in (III)

Secondary treatment cost

Unit cost per surgery 1, 207.80 Estimated in (V)

Minor surgery (Cost2) 2, 415.62 Estimated in (VI)

Major surgery (Cost3) 3, 623.43 Estimated in (VII)

Table 5.4: Cost parameters for the diagnostic tests and treatment.

5.6 Estimation of e�ects

We measure the e�ects of the diagnostic tests using disability-adjusted life years (DALY).

For each branch of the decision tree, we estimate the expected number of DALY lost

by an individual who follows that branch. As a result, a high number of DALY lost

suggests a worse outcome. DALY depends on the period of hospitalisation and the

extent of disability caused by the illness (disability weight-DW). We use the decision

tree to calculate the expected e�ects of the di�erent interventions.
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We calculate DALY as the sum of the years of life lost (YLL) due to premature death

in a population and the years lost due to disability (YLD) for people with BU (WHO,

2013). The YLL correspond to the number of deaths multiplied by the standard life

expectancy at the age at which death occurs (L). Since BU does not lead to death, L= 0

hence YLL= 0. YLD is determined by DW and the average duration a person lives with

a disability until death (Td). We include a detailed description of DALY in the literature

review in Chapter 2, Section 2.2 of the thesis.

YLD = DW× Td (5.12)

Td is equivalent to life expectancy at birth for Ghana, which is 64 years (Bank, 2022)

minus the average age at which a person gets infected with BU, which is 20 years (WHO,

2018). Hence Td = 64 years - 20 years = 44 years.

No speci�c DW is attributed to BU categories, so we estimate them using the best-related

situations with unique DW. DW values lie in the [0, 1] range where 0 represents perfect

health, and 1 represents death (GBoDC, 2017). We substitute in Equation (5.12) to

obtain the values for DALY as below.

DALY1: We calculate DALY when a test shows negative, yet a person has BU.

This means the individual does not receive BU treatment, and the disease pro-

gresses to the next categories. We relate this situation to DW for untreated

burns of the second degree (< 20%), which is 0.156 (WHO et al., 2008). So

YLD= 44× 0.156 = 6.864.

DALY2a: We calculate DALY if a person is successfully treated at category 1

with antibiotics. An individual was treated and healed successfully, so take YLD

= 0.000.

DALY2b: We calculate DALY if a person has not adhered to antibiotic treatment.

The disease progresses to a wound; hence, we relate this situation to DW for

open wounds, which is 0.108 (WHO et al., 2008). On calculating, we have YLD

= 44× 0.108 = 4.752.

DALY3: We calculate DALY when a BU patient has recovered with a minor

disability. We relate this situation to DW for treated burns of the second degree

(< 20%) which is 0.158 (WHO et al., 2008). So YLD = 44× 0.158 = 6.952.

DALY4: We calculate DALYs when a BU patient has recovered with a major

disability. We relate this situation to DW for treated burns of the third degree

(> 20% and 60%) which is 0.469 (WHO et al., 2008). Major disability is between

minor disability and before amputation. Hence we get YLD = 44×0.469 = 20.636.

DALYx: We calculate DALY when wrong treatment is given. Individuals will be

given BU treatment, yet they do not have the disease. This can lead to antibiotic
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resistance. There was no estimated DW for this condition in the global burden of

diseases. Hence we assume a DW of 0.000, leading to YLD = 0.000.

5.7 Incremental cost e�ectiveness ratio

The incremental cost-e�ectiveness ratio (ICER) of replacing PCR with RDT will be

obtained by calculating the total expected costs between RDT and PCR and dividing

by the di�erence in the total expected e�ects between the RDT and PCR at each node

of the decision tree. ICER represents the extra cost incurred to gain an extra health

outcome. This is represented as follows:

ICER =
CostRDT − CostPCR
E�ectRDT − E�ectPCR

. (5.13)

We graphically represent the di�erences in costs and e�ects using a cost-e�ectiveness

acceptability plane (CEAP). We divide the CEAP into four quadrants which we interpret

as follows (Jamison et al., 2006) :

North-east: interventions generate more e�ective health outcomes but more expen-

sive than comparator.

North-west: interventions generate less e�ective health outcomes but more expen-

sive than comparator.

South-east: interventions generate more e�ective health outcomes and less costly

than comparator.

South-west: interventions generate less e�ective health outcomes and less costly

than comparator.

We calculate the ICER and establish which quadrant the value lies in, and that will

guide us on which diagnostic test to adopt. To obtain the ICER in the decision tree,

we �rst calculate the expected e�ects and costs for the RDT and PCR at each node as

illustrated in Figure 5.2.
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Figure 5.2: Decision tree model indicating the expected costs and e�ects at each node

used in calculation of the ICER.

The terms e1, e2, e3, e4, e5 and c1, c2, c3, c4, c5 represent the expected e�ects and costs

for the PCR at nodes, 1, 2, 3, 4, 5 as represented in the decision tree respectively. The

terms e6, e7, e8, e9, e10 and c6, c7, c8, c9, c10 represent the expected e�ects and costs for

the RDT at nodes, 6, 7, 8, 9, 10 in the decision tree respectively. Note: We dropped the

dollar sign for costs during the calculations for ease of notation.

e1 = p15DALY2a + p16DALY2b, c1 = p15(Cost1 + CostPCR) + p16(Cost1 + CostPCR),

e2 = p17DALY3 + p18DALY4, c2 = p17(Cost2 + CostPCR) + p18(Cost2 + CostPCR),

e3 = p5DALYx + p6e1 + p7e2, c3 = p5(Costx + CostPCR) + p6c1 + p7c2,

e4 = p9DALY1, c4 = CostPCR + p9Cost2,

e5 = p1e3 + p2e4, c5 = p1c3 + p2c4,

e6 = p19DALY2a + p20DALY2b, c6 = (p19 + p20)(Cost1 + CostRDT),

e7 = p21DALY3 + p22DALY4, c7 = (p21 + p22)(Cost2 + CostRDT),

e8 = p12DALYx + p11e7 + p10e6, c8 = p12(Costx + CostRDT) + p11c7 + p10c6,

e9 = p14DALY1, c9 = p13(CostRDT) + p14(Cost2 + CostRDT),

e10 = p3e8 + p4e9, c10 = p3c8 + p4c9.
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ICER =
c10 − c5
−(e10 − e5)

=
1311.760− 1500.752

−(4.782− 5.475)

= −$272.734 per DALY averted. (5.14)

As discussed in Section 5.6, we estimate the expected DALYs incurred by an individual

following a particular branch of the tree; therefore, we reverse the sign of our e�ects

e5 and e10 in the calculation of the ICER so that a positive denominator in the ICER

calculation suggests that individuals who test with RDT have a better outcome than

those who are tested via a PCR.

Negative e�ects mean individuals who test with a RDT have fewer years living with a

disability than those who test with a PCR. When evaluating the ICER in Equation (5.14),

we adjusted negative to positive e�ects to capture the fact that low DALYs generate more

e�ective health outcomes.

An ICER of -272.734 was obtained to have one additional DALY averted. We include a

detailed calculation in the Appendix A. The incremental costs are negative and incre-

mental e�ects are positive, indicating the ICER lies in the southeast quadrant; hence,

the RDT is less costly and leads to fewer DALY incurred. In our model, negative e�ects

mean individuals who test with a RDT have fewer years (4.782) living with a disability

than those who test with a PCR (5.475). On the other hand, negative costs mean indi-

viduals who test with a RDT pay less (US$1311.76) compared to those who test with a

PCR (US$1500.752).

5.8 Probabilistic sensitivity analysis

We perform the probabilistic sensitivity analysis (PSA) to cater for the uncertainty that

arises from an estimation of parameters. We use the PSA to determine the sensitivity of

the ICER to changes in relevant parameter values. In the PSA, we will sample parameters

from a probability distribution that best describes the parameter instead of adopting its

median or mean (Briggs et al., 2006).

We used a uniform probability distribution for all the parameters. This distribution is a

suitable choice, allowing us to assign corresponding minimum and maximum values for

each parameter. In cases where the information on the range interval is unavailable, we

estimate the minimum and maximum values by ±K, where K is 10% of the parameter

value.

To establish the minimum and maximum values, we made the following assumptions:

(i) Probabilities of occurrences in the decision tree: We centre the uniform distribution

for these parameters on the estimated values, Ai. For σp, σr, ωp, ωr, βp and βr, we

use con�dence interval ranges as the minimum and maximum values. K values for

α1 and α2 are 0.0125 and 0.0485 respectively. Table 5.5 indicates these ranges .
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(ii) Costs in the decision tree: We take the minimum and maximum values for the

unit cost per RDT kit as [0.16, 0.58] estimated from (Ezennia et al., 2017; Bath

et al., 2020; website, 2022a,b). The unit cost per PCR kit, we take the minimum

and maximum values as [11.4929, 14.047] since K = 1.277. For �rst line treat-

ment, we take the minimum and maximum values as [0.57, 5.1] estimated from

(checker, 2020; NHIS, 2020; Expatistan, 2020; UBLS, 2020). The unit cost per

surgery lies between [1108.6, 1307.01] (Agbenorku et al., 2012; Asiedu, Kingsley

and Etuaful, Samuel, 1998; Amofah et al., 2002). We double this range for minor

surgery leading to [2217.22, 2614.02]. We triple this range for major surgery leading

to [3325.83, 3921.03]. This is because minor surgery and major surgery requires 2

and 3 surgeries respectively. Table 5.6 indicates these ranges.

(iii) DALYs in the decision tree: We estimate the the minimum and maximum value

to lie in the range of DALY±K. K values for each DALY are indicated in Table

5.7. For DALYs equivalent to 0, we estimate the minimum and maximum values

as [0, 0.5].

Parameter Value

(US$)

K-value Probability

distribution

Speci�city of PCR (σp) 1.0 - Uniform

(0.69,1.0)

Speci�city of RDT (σr) 1.0 - Uniform

(0.84,1.0)

Sensitivity of PCR (ωp) 0.98 - Uniform

(0.91,1.0)

Sensitivity of RDT (ωr) 0.88 - Uniform

(0.77,0.95)

Probability that PCR results come back

within threshold time (βp)

0.40 - Uniform

(0.30,0.90)

Probability that the RDT results come

back within threshold time (βr)

1.0 - Uniform

(0.90,1.0)

Proportion of the population who have BU

at category 1 at the time of testing (α1)

0.125 0.0125 Uniform

(0.1125,0.1375)

Proportion of the population who have BU

at category 2 at the time of testing (α2)

0.485 0.0485 Uniform

(0.4365,0.5335)

Table 5.5: Probability estimates of diagnosis and treatment of BU disease used in the

PSA. Uniform distribution: the �rst value represents the minimum, and the second is

the maximum. K is 10% of the parameter value. In (i), we explain the assumptions of

these estimates.
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Parameter Value

(US$)

K-value Probability

distribution

Unit cost per RDT kit (CostRDT) 0.16 - Uniform (0.16,0.58)

Unit cost per PCR test (CostPCR) 12.77 1.277 Uniform (12.77,13.27)

Cost for �rst line treatment (Cost1) 5.10 - Uniform (0.57,5.10)

Cost for false positive (Costx) 5.10 - Uniform (0.57,5.10)

Minor surgery (Cost2) 1704.18 - Uniform (2217.22,2614.02)

Major surgery (Cost2) 2556.27 - Uniform (2556.27,3578.9)

Table 5.6: Probability distributions for the cost parameters used in the PSA. Uniform

distribution: the �rst value represents the minimum, and the second is the maximum.

K is 10% of the parameter value. In (ii), we explain assumptions on these estimates.

Parameter Value

(US$)

K-value Probability

distribution

DALY1 6.864 0.6864 Uniform (6.1776,7.5504)

DALY2a 0.00 - Uniform (0.00,0.5)

DALY2b 4.752 0.4252 Uniform (4.2768,5.2272)

DALY3 6.952 0.6452 Uniform (6.2568,7.6472)

DALY4 20.636 2.0136 Uniform (18.5724,22.6996)

DALYx 0.00 - Uniform (0.00,0.5)

Table 5.7: Probability distributions for the DALYs used in the PSA. Uniform distri-

bution: the �rst value represents the minimum, and the second is the maximum. K is

10% of the parameter value. In (iii), we explain the assumptions of these estimates.

The variables were randomly sampled from the uniform probability distribution 10, 000

times. Each time, the variables took on a new value which resulted in 10, 000 speci�c

results compared to no sampling, which will give 1 �xed value for each variable and

will give us one set of results. Figure 5.3 represents the PSA results in an incremental

cost-e�ectiveness plane.
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Figure 5.3: Incremental cost-e�ectiveness plane from PSA for cost per DALY averted

by choosing RDT over PCR showing 10, 000 sampled cost e�ectiveness pairs. Each

point illustrates the cost and e�ect of one iteration where the value of each variable was

chosen randomly from within the uniform probability distribution.

In Figure 5.3, the x-axis measures the incremental number of DALYs averted when RDT

replaces PCR, and the y-axis measures incremental costs when RDT replaces PCR.

Costs considered include the unit cost of the diagnostic tests and cost of treatment;

e�ects considered were the number of DALYs averted.

In Figure 5.3, two quadrants of the cost-e�ectiveness plane are represented in this graph.

To decide which test is most cost-e�ective, we check which quadrant contains the high-

est number of ICER pairs. In Figure 5.3, almost all cost-e�ect pairs lie in the southeast

quadrant, showing the RDT as less costly and more e�ective than the PCR. The in-

cremental costs are negative, indicating that the costs of using RDT and treatment are

always lower than PCR. Incremental e�ects are positive, which suggests that using the

RDT leads to low DALYs hence few years spent with a disability. This means that if

RDT led to increased health outcomes (less DALYs), then RDT would be a feasible

intervention.

Overall, certain assumptions were made in our model formulation, such as anticipating

that the future cost of a diagnostic test for BU would be comparable to the current cost

of a Malaria RDT. Additionally, we assumed that the costs of minor and major surgeries

would be twice and thrice the unit cost, respectively, introducing a level of uncertainty

around these estimates.
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Despite the inherent uncertainty in cost estimates, the decision to opt for the RDT over

PCR remains favourable. The PSA demonstrates that the majority of points fall in the

southeast quadrant. Moreover, the BU RDT exhibits high sensitivity, a fact supported by

(Frimpong et al., 2019) which suggests that even if the surgery costs are overestimated,

the RDT would need to be signi�cantly more expensive than the malaria RDT to alter

the decision.

Considering these factors, the overall e�ectiveness of the RDT is robust, as evidenced

by the PSA results where almost all points lie in the southeast quadrant, indicating a

positive outcome.

5.9 Conclusion

In this chapter, we presented a comprehensive analysis of the costs and e�ects of the

two diagnostic tests as an intervention to encourage early diagnosis and treatment of

BU disease. A decision analysis model evaluated the probabilities, costs and e�ects of

adopting a RDT and a PCR. The economic evaluation was from the healthcare provider's

perspective using data from Ghana.

Our main result was the ICER of −$272.7342 per additional DALY averted from using

a RDT compared to a PCR. To test the robustness of the ICER results, we performed

a probabilistic sensitivity analysis around the parameter values used in our model. The

PSA resulted in a cost-e�ectiveness plane, which tells us the quadrant with the highest

number of cost-e�ect pairs. Results of the PSA showed the majority of the ICER pairs

spread out in the southeast quadrant, where the RDT is less costly and yields fewer

DALYs.

There have been several limitations in this study, which include the following:

Most importantly, there is a lack of detailed aggregate data on costs and e�ects: for

example, there were no disability weights on Buruli ulcers. We derived most of the cost

estimates from trial experiments in a particular region which may not represent the exact

situation when applied to a di�erent region, Ghana. Some data was outdated, yet BU

disease research has evolved over time.

In this study, we assumed that people start treatment after receiving test results. How-

ever, in most endemic African countries, BU can be correctly identi�ed with clinical

diagnosis. Most often, the health care practitioners base their decision on administering

treatment for the suspected BU patients. This means introducing a RDT could be vital

in reducing long waiting periods for the PCR results and avoiding unnecessary treatment

rather than preventing BU patients from getting to advanced stages.

We recommend continued careful evaluation of the RDT before implementation. Success

with the RDT in diseases like Malaria could mean that it may be adopted for BU in

most endemic areas.
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There is a need for studies on speci�c health states; for example, updating the disability

weights for BU would be essential for DALY calculations. An update on parameters like

standard treatment costs would be instrumental in calculating the ICER. The availability

of better data will improve the model's accuracy.

In this study, we considered one measure of e�ect, namely the DALY. We recommend the

inclusion of more e�ects like quality-adjusted life years, correctly diagnosed BU cases,

and treatment successes in a speci�c treatment period. Extending the model to capture

prevalence rates, for example, could investigate how the rapid diagnostic test would

perform in an area of low prevalence versus in high prevalence.

According to WHO, a recommended diagnostic tool should be a�ordable, sensitive, spe-

ci�c, user friendly, robust, equipment free and deliverable to the end user (ASSURED)

(Mabey et al., 2004). Our research elucidates how a�ordable the suggested RDT for

testing BU is, which is part of the ASSURED criteria.

With the ease and a�ordability that comes with testing using a RDT, it will encourage

health practitioners to prioritize following the appropriate procedure of testing �rst before

treatment as recommended by WHO.



Chapter 6

Modelling the potential impact of

community health volunteers in the

diagnosis and treatment of Buruli

ulcer

6.1 Introduction

One of the consequences of late diagnosis and treatment of BU is recovering with severe

disability and facing social stigma (Stienstra et al., 2002; Shina, 2011). This challenge

may be mitigated by implementing public health strategies that lead to early detection

of BU.

6.1.1 Community health volunteers and their roles

Community health volunteers (CHV) is a generic term for lay people who work outside

the formal health environment to assist local communities in accessing health facilities.

They may be semi-literate or illiterate but are often trained for particular tasks they are

to perform (Perry et al., 2014).

Roles of CHV include promoting healthy behaviours among populations, assisting in con-

ducting outreach and advocating for the community's health needs (Cherrington et al.,

2010).

The following selected studies cite evidence of the e�ectiveness of CHV in improving the

health of populations.

99
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In Davis et al. (2013)'s work, an evaluation of CHV involvement in a population of 1.1

million in rural Mozambique demonstrated a one-third decrease in the prevalence of child

under-nutrition.

According to Hall (2011), the possibility of exclusive breastfeeding was 5.6 times higher

in a community exposed to CHV compared to a group that was not. In addition, CHV

proved instrumental in identifying malnourished children in such communities and guided

mothers on positive nutrition (Wollinka et al., 1997).

According to WHO, of the 313 tasks identi�ed for HIV/AIDS management and control,

115 can be performed by CHV (Organization et al., 2008). Studies by (Apondi et al.,

2007; Behforouz et al., 2004; Wouters et al., 2009) found that the employment of CHV

in Uganda, Haiti and South Africa improved antiretroviral adherence and treatment

success.

The introduction of women's groups practising participatory learning and action led to

a 37% decrease in maternal mortality in India, Nepal, Bangladesh and Malawi (Prost

et al., 2013).

CHV were in�uential in delivering malaria-related services, for example, the distribu-

tion of insecticide-treated mosquito bed nets, community education, delivery of rapid

diagnostic tests, malaria prevention and diagnosis. Studies have indicated that CHV

can accurately read malaria test results, guide treatments and follow up using those test

outcomes (Counihan et al., 2012).

The ability of CHV to perform these tasks highlights their relevance, which is of particular

relevance to our model.

6.1.2 Role of CHV in BU disease

In some parts of West Africa, introducing CHV in referring BU cases was instrumental in

improving the number of BU cases reported (Vouking et al., 2013; Barogui et al., 2014;

Vouking et al., 2014).

Using CHV in active case �nding led to a 70% increase of detected category 1 BU cases

in a high endemic district in Ghana (Abass et al., 2015).

In another study by (Vouking et al., 2014) in the Ngoantet region, Cameroon, CHV

referred 95% of BU cases, and 91.5% of those suspected cases were con�rmed by health

personnel. In addition, (Barogui et al., 2014) indicated the existence of an essential link

of CHV in the management of BU in Benin.

Vouking et al. (2013) reviewed 17 studies on the impact of CHV on BU in sub-Saharan

Africa. The impact focused on BU cases referred, con�rmed, and identi�ed. This review

concluded that implementing CHV programmes may have a considerable impact on the

control of BU.
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The model we present in this chapter was inspired by (Vouking et al., 2014; Abass et al.,

2015; Vouking et al., 2013)'s work, where CHV were proposed and introduced as an

intervention to curb late category BU cases.

6.1.3 Agent based models

This research aims to develop an agent-based model (ABM) that incorporates the in-

teraction of BU patients with CHV in improving detection rates and reducing the time

between detection and starting treatment.

ABMs are computational simulation tools composed of agents interacting with each other

and within their environment governed by a set of pre-de�ned rules. They are powerful

for their ability to incorporate stochasticity, individuality and spatial variation in the

model formulation (Hackl and Dubernet, 2019).

This work uses human movements to model the diagnosis and treatment of BU since

BU does not have person-to-person transmissions. The bottom-up approach of ABMs

allows representation of each individual in the system, giving them rules that govern

their interactions (Macal, 2016).

A population-based behaviour emerges from interactions among di�erent agents in space

and time. In general, agent-based modelling is characterised by its bottom-up structure, a

micro-scale perspective and discrete-event considerations (Macal and North, 2005; Macal,

2016; Smith et al., 2018).

The emphasis on modelling the heterogeneity of agents across a population and the emer-

gence of an autonomous organization are two of the distinguishing features of agent-based

simulation compared to other simulation techniques such as discrete-event simulation,

and system dynamics (Macal and North, 2005).

The stochasticity of ABMs permits variation due to randomness and thus more accurately

mimics the transmission of BU.

Hence, we developed our model based on worked examples in NetLogo (Wilensky, 1999),

for example, the epiDEM (Epidemiology: Understanding Disease Dynamics and Emer-

gence through Modelling) (Yang and Wilensky, 2011). Studies done by (Wilensky, 1997;

Yang and Wilensky, 2011) were instrumental in the initial steps of the ABM. We adapted

and extended concepts from the introductory sample models in their NetLogo simulation

work.

This chapter is arranged as follows: Section 6.2 discusses the theoretical background of

the model. In Section 6.3, we describe elements of the model, for example, agents, their

environment and their relationships. In Section 6.4, we describe the model's processes

and schedule specifying the order they are executed in. Section 6.5, explains the model's

design concepts, including explaining how the concepts characterising the model were
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implemented. In Section 6.6, we describe the initialisation, input data and sub-models.

We explain the NetLogo simulation methodology in Section 6.7. Section 6.8 presents the

numerical simulations of the model. The conclusion is included in Section 6.9.

6.2 Model description

The model description follows the ODD (Overview, Design concepts, Details) protocol for

describing ABM (Grimm et al., 2006) updated in (Grimm et al., 2020). We customised

the elements of our model such that it adheres to the guidelines stated by (Grimm et al.,

2006, 2020). The model was implemented in a software platform called NetLogo (v.6.2.2)

(Wilensky, 1999) which is freely available.

The purpose of the model is to explore the e�ects of the introduction of CHV in referring

BU patients for treatment. In particular, it is designed to help us understand and

predict how interactions between BU patients and CHV can in�uence early diagnosis

and treatment of BU.

Precisely, we will:

(i) illustrate the individual interactions of BU patients with CHV;

(ii) observe BU disease progressions within the infected and treated population over a

period of 400 weeks;

(iii) compare and contrast the e�ect of either self-referral (SR) independently or both

SR and CHV in the early diagnosis and treatment of BU.

In this model, we assume that

v CHV do not contract BU while referring BU patients,

v a �xed population size, in this case, a closed population with no birth, migration

or death,

v direct contact of susceptible individuals with the environmental habitat of M. ul-

cerans bacteria leads to a BU infection,

v CHV are 100% e�ective in diagnosing infected BU patients,

v if an individual adheres to treatment prescribed and proper wound care, treatment

is 100% successful in removing the BU infection; although people in categories 2

and 3 will heal with some form of disability.

6.3 Entities, state variables and scales

In this section, we describe the structure of the model in terms of entities, state variables

and scales.
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6.3.1 Agents

The model contains two types of agents: (a) people in the general population and (b)

CHV. We classify the general population as susceptible (S), infected (I), treated (T ) and

recovered (R). The I, T and R populations are each grouped into 3 categories.

Agent Description Colour

Susceptible population Blue

Infected population in incubation period of the infec-

tion and category one of BU

Red

Infected population in category two of BU Green

Infected population in category three of BU Yellow

Population on antibiotic treatment Brown

Population on antibiotic treatment and minor surgery Magenta

Population on antibiotic treatment and major surgery Orange

Population who recovered with no disability Cyan

Population who recovered with minor disability Pink

Population who recovered with major disability Gray

CHV White

Table 6.1: Description of Agents-population and CHV.

We represent the population as mobile individuals with state variables for their location

and status.

Note: In this chapter, we will use hospitalTwo to mean people in treatment with an-

tibiotics and minor surgery, hospitalThree to mean people in treatment with antibiotics

and major surgery.

6.3.2 Spatial and temporal scales

Spatial scale:

We represent the area occupied by the total population using a 17 × 17 grid of square

cells. The environment represents the spatial distribution of agents in an area.

The model is two-dimensional, representing space as a collection of discrete units called

patches. An agent's location is de�ned by which spatial unit it is in. This model uses

a discrete square grid for spatial variables but allows agent locations to use continuous

space. If an individual and a CHV occupy the same patch, they are considered to be in

the same place and in contact with each other.
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Temporal scale:

One time step represents one week, and simulations run for 400 weeks. We set the

simulation to 400 weeks to match the time used in the compartmental model when it

reached equilibrium. In other words, it should allow time for observations to reach an

equilibrium.

6.3.3 Description of state variables

Variable name Type Description

susceptible? Boolean True if the person is in state susceptible, otherwise False

infection-length Real The current length of time since initial infection spent by an

individual with BU who is either incubating or in category 1.

infection-lengthTwo Real The current length of time an individual has spent in category

two

infected? Boolean True if the person is in state incubation period or state infected

in category 1, otherwise False

infectedTwo? Boolean True if the person is in state infectedTwo, otherwise False

infectedThree? Boolean True if the person is in state infectedThree, otherwise False?

hospitaltwo? Boolean True if the infected person is in state antibiotic and minor

surgery treatment, otherwise False

hospitalthree? Boolean True if the infected person is in state antibiotic and major

surgery treatment, otherwise False

antibiotics? Boolean True if the infected BU patient is in state antibiotic, otherwise

False

antibiotic-time Real The current length of time an infected BU patient has spent on

antibiotics treatment

hospital-time-two Real The current length of time an infected BU patient has spent on

antibiotic and minor surgery treatment.

hospital-time-three Real The current length of time an infected BU patient has spent on

antibiotic and major surgery treatment.

noDisability? Boolean True if a person is in state no disability, otherwise False

minorDisability? Boolean True if a person is in state minor disability, otherwise False

majorDisability? Boolean True if a person is in state major disability, otherwise False

Table 6.2: Description of the agent population and their state variables.

Table 6.2 describes state variables for each agent. Agents move between states depending

on infection length, their interactions with CHV, how soon they commence treatment

and recovery times.
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There are two categories of states: states relating to disability and states relating to

disease progression. A person starts the simulation with no disability, for example noDis-

ability? set to be true but may develop a minor or major disability following illness with

BU. At this point either minorDisability? or majorDisability? is set to be true. If a

person contracts BU again, their disability status will remain the same or worsen and

will not improve. A person can cycle through any of the disease states regardless of their

disability status.

6.3.3.1 Model parameter values

We describe model parameters used in the model and their units.

(A) BU-symptoms: the incubation period; the elapsed time from initial infection

until the development of symptoms. This period takes between 2 − 3 months; for

this model, we use 3 months, equivalent to 13 weeks (Zingue et al., 2018a).

(B) Threshold-timeone: the duration in category 1; the elapsed time from devel-

opment of symptoms until transition to category 2. The average threshold-timeone

was estimated to take approximately 4−6 weeks (WHO, 2018). We draw this value

from a random-exponential distribution around the average threshold-timeone.

(C) Threshold-time: the elapsed time from initial infection until the transition to

category 2. Threshold-time is therefore equal to BU-symptoms plus Threshold-

timeone.

(D) Threshold-timeTwo: the duration in category 2; the elapsed time from cat-

egory 2 until the transition to category 3. The average threshold-timetwo was esti-

mated to take approximately 4 weeks (WHO, 2018; Portaels et al., 2001). We draw

this value from a random-exponential distribution around the average threshold-

timetwo.

(E) SR probabilities: SR probabilities are the probabilities that individuals with BU

in categories 1, 2 and 3 will self-refer for treatment, respectively. WHO (2018)

showed that 70% of all BU cases were diagnosed after ulceration. To mimic this,

we let the SR probabilities for BU patients in categories 1, 2 and 3 be 10%, 20%

and 70%, respectively.

(F) Recovery-timeone: the elapsed time for an individual who has been on antibiotic

treatment until full recovery. The average recovery time one for treatment was

estimated to take approximately 8 weeks. We draw this value from a random-

exponential distribution around the average recovery time one.

(G) Recovery-time-two: the elapsed time for an individual who has been on antibi-

otic treatment and minor surgeries until full recovery. The average recovery-time-

two for treatment was estimated to take approximately 30 weeks. We draw this
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value from a random-exponential distribution around the average recovery-time-

two.

(H) Recovery-time-three: the elapsed time for an individual who has been on an-

tibiotic treatment and major surgeries until full recovery. This treatment was

estimated to take an average of 52 weeks. We draw this value from a random-

exponential distribution around the average recovery-time-three.

Name Baseline

value

Probability

distribution

Source

BU-symptoms 13.0 weeks - Estimated in (A)

Threshold-timeone 6.0 weeks Exponential Estimated in (B)

Threshold-timeTwo 4.0 weeks Exponential Estimated in (D)

Self-refer-prob-category1 10% - Estimated in (E)

Self-refer-prob-category2 20% - Estimated in (E)

Self-refer-prob-category3 70% - Estimated in (E)

Recovery-timeone 8 weeks Exponential Estimated in (F)

Recovery-timetwo 30 weeks Exponential Estimated in (G)

Recovery-timethree 52 weeks Exponential Estimated in (H)

Table 6.3: State constants used in the model. Population initialization parameters

used in the model.

6.3.3.2 Model variables

We describe variables used in the model.

(i) Infection-length: This is the period an individual has been infected with category

one BU. Proceeding to the next category depends on how long they stay infected.

(ii) Infection-lengthTwo: This is the period an individual has been infected with

category two BU.

(iii) Antibiotic-time: The time until recovery of an individual who is administered

antibiotics only.

(iv) Hospital-time-two: The time until recovery of an individual who is administered

antibiotic and minor surgery treatment.

(v) Hospital-time-three: The time until recovery of an individual who is adminis-

tered antibiotic and major surgery treatment.
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6.4 Process, overview and scheduling

In this section, we present an brief overview of elements executed by the model and the

order in which they are executed. We represented the processes and schedule using a

�ow chart in Figure 6.1 and the pseudo-code 1.

6.4.1 Processes:

We develop the model and the following processes are executed at each time step in

the same predetermined order. These processes are: infect-start, infect-two, infect-three,

self-referral, meet-chvs, recover, move-time-on and move. The population update their

state variables every time step over the whole simulation and change their status.

Figure 6.1: Illustration of di�erent states of the model to simulate the progress of

BU in a population. Parameters for transition within states are explained in detail in

6.3.3.1.

6.4.2 Schedule:

The �ow chart presents an outline of the sequence processes and the schedule of inter-

actions between the di�erent agents at each time step. We de�ne each process by the

following.

First, the time counter is updated at each time step. Then, the unit values of chosen

input parameters and the infection history are updated.

Next, we let agents move randomly across space. If they are uninfected and move into

the patch representing initial infection, they become infected and move to category 1. If
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they are already infected and enter the same patch as a CHV agent, the CHV will refer

them to treatment. The infected BU can also start treatment through self-referral.

Infected individuals proceed to commence treatment and can recover with either no dis-

ability or di�erent forms of disability. Some processes are only activated under particular

conditions; for example, the possibility of infection only starts after a human interacts

with the M. ulcerans habitat.

The �nal action executed at each time step is an update of model outputs. The graphical

interface outputs are re-drawn, and updated population information are written to an

output �le.

A detailed description of each of these processes and schedule is in subsection 6.6.3.
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Algorithm 1 SUMMARY OF WORK FLOW OF THE TOTAL POPULATION PRO-

CEDURES
1: procedure population and chv procedures

2: Let initial susceptible population be h and assign colour blue

3: Let the CHV population be k and assign colour white

4: Let m be a circle centred at the origin with a radius of 3 �lled with square grids

and assign colour gray to m.

5: Initialise agents in terms of their spatial positions in the environment

6: Let h and k populations move randomly

7: Infected :

8: if any of h people go through m then

9: set infected? true

10: assign colour red

11: end if

12: Infectedtwo:

13: if infection length exceeds threshold time then

14: set infectedtwo? true

15: assign colour green

16: end if

17: Infectedthree :

18: if infection-length-two exceeds threshold time two then

19: set infectedthree? true

20: assign colour yellow

21: end if

22: Self referral :

23: if infection-length exceeds BU-symptoms then

24: if infected and probability of self referral in category 1 > random �oat value

then

25: set antibiotics? true

26: assign colour brown

27: end if

28: if infectedtwo and probability of self referral in category 2 > random �oat

value then

29: set hospitaltwo? true

30: assign colour magenta

31: end if

32: if infectedthree and probability of self referral in category 3 > random �oat

value then

33: set hospitalthree? true

34: assign colour orange

35: end if

36: end if

37: end procedure



110
Chapter 6 Modelling the potential impact of community health volunteers in the

diagnosis and treatment of Buruli ulcer

Algorithm 2 SUMMARY OF WORK FLOW OF CHV PROCEDURES

38: Meet chv :

39: if infected and meet chvs then

40: set antibiotics? true

41: assign colour brown

42: end if

43: if infectedtwo and meet chvs then

44: set hospitaltwo? true

45: assign colour magenta

46: end if

47: if infectedthree and meet chvs then

48: set hospitalthree? true

49: assign colour orange

50: end if

51: Recover :

52: if antibiotics and antibiotic-time exceeds recovery-timeone then

53: set noDisability? true

54: assign colour cyan

55: set susceptible? true

56: set infected? false

57: end if

58: if hospitaltwo and hospital-time-two exceeds recovery-timetwo then

59: set minorDisability? true

60: assign colour pink

61: set susceptible? true

62: set infectedtwo? false

63: end if

64: if hospitallthree and hospital-time-three exceeds recovery-timethree then

65: set majorDisability? true

66: assign colour gray

67: set susceptible? true

68: set infectedthree? false

69: end if

70: Update iterations:

71: if (infected? or infectedtwo? or infectedthree?) then

72: infection-length ← infection-length +1

73: end if

74: if infectedtwo then

75: infection-lengthtwo ← infection-lengthtwo +1

76: end if

77: if antibiotics then

78: antibiotic-time ← antibiotic-time +1

79: end if
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Algorithm 3 SUMMARY OF WORK FLOW OF CHV PROCEDURES

80: if hospitalltwo then

81: hospital-time-two ← hospital-time-two +1

82: end if

83: if hospitallthree then

84: hospital-time-three ← hospital-time-three +1

85: end if

To maintain brevity in the pseudocode for the main algorithm, we selected the "infect-

edTwo" state to serve as a representative for other states, providing a detailed account

of all the procedures.

Algorithm 4 SUMMARY OF WORK FLOW OF THE INFECTEDTWO PROCE-

DURES
86: Infectedtwo:

87: if infection length exceeds threshold time then

88: set infectedtwo? true

89: set infected? false

90: set infection-lengthTwo= 0 . Reset elapsed time in BU state 2

91: set thresholdtimeTwo=random(exponential(4)) . Sample time to transition to

BU state 3 for this agent

92: assign colour green

93: end if

6.5 Design concepts

In this section, we use the design concepts of the ODD protocol (Grimm et al., 2006,

2020) to describe key characteristics of model. We focused on concepts that apply to

our model. The elements of the design concepts that characterise our model are basic

principle, interaction, stochasticity and observation.

6.5.1 Basic principle

The basic principle of this model is to illustrate how interactions between CHV and BU

patients in�uence treatment referral. The aim of the model is to estimate the reduction

in the number of people with a disability as a result of using CHVs. Understanding this

principle can be critical for developing policies to address BU treatment issues such as

the delayed start of BU treatment.
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6.5.2 Interaction

The model assumes direct interaction between BU patients and CHV. The CHV inter-

actions occur when CHVs meet infected people in the population. In self-referral (SR),

BU patients seek treatment without the involvement of CHV.

When the CHV occupies the same grid square as a BU patient, we observe both agents

as being on the same patch. This implies that both agents interacted, leading to the

referral of an infected BU individual.

6.5.3 Stochasticity

There are three key elements of stochasticity used in initializing the model and during the

simulation. Due to this stochasticity, each model run produces di�erent results. These

include:

(a) the probability of self-referral.

(b) randomness on how populations move between the grid squares.

(c) the time spent in each infection category. Threshold time and the agent's time to

recovery which in�uence disease progression periods were drawn from an exponen-

tial distribution for each infected person.

Here, by making the threshold and recovery times random, a patient's outcome is also

stochastic.

6.5.4 Observation

The graphical output on the NetLogo interface shows the parameters that can be ad-

justed. In every run of the model, data is collected on the number of agents who are

susceptible, infected, treated and recovered at each time step. Summary statistics of the

model output are saved at every time step.

6.5.5 Emergence, adaptation, learning, prediction, sensing and collec-

tives

Emergence, adaptation, learning, prediction, sensing and collectives were not represented

in this model.
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6.6 Details

6.6.1 Initialization

We set the initial population in the simulation to 1000, representing the entire area's

population. This value was chosen to provide a su�cient sample size while allowing a

suitable simulation period.

The CHV-to-population ratio is 100 : 1000, meaning there is 1 CHV for every 10 in-

dividuals. In the model's initial state, at t = 0 in a single simulation run, we use the

parameters listed in Table 6.3.3.1 on page 106.

To initialize the agents within the environment in terms of their spatial positions, we

employ the method [random-xcor random-ycor] during the simulation.

6.6.2 Input data

The model does not use input data to represent time-varying processes.

6.6.3 Submodels

We detail how the processes represented in Section 6.4 are simulated. These are repre-

sented as procedures and reporters in NetLogo. The corresponding parameters of the

model are explained in subsubsection 6.3.3.1.

6.6.3.1 Clock

To keep track of the time in the model. The time is determined as the modulus of ticks.

In this model, we represent time in weeks.

6.6.3.2 Move

Agents continuously move forward one step at a time and turns through a random

angle between 0◦ and 360◦. NetLogo implements this using procedures (fd 1) and

(rt random-float 360), respectively.

The step size used in the simulation tells us how an agent moves in each time step of the

simulation. This parameter determines how fast agents move in the simulation and in

this model, we set the step size to 1 and the initial domain size on which agents move is

(17× 17) grids.

In Section 6.8.3, we investigate the impact of altering both the domain size and step size

on the movement and interactions of agents in the simulation.
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The movement and interactions of agents in the simulation is in�uenced by the balance

between the domain size and the step size. For example by setting an appropriate

stepping distance relative to the domain size, we can control the scale and pace of the

simulation, ensuring that the agents' movements and interactions align with the dynamics

of BU.

6.6.3.3 Infection

Infection is in terms of infect-start, infect-two and infect-three procedures.

Infect-start: When the population interact with the habitat of M. ulcerans, an unin-

fected individual has a chance of contracting BU. The habitat of M. ulcerans is repre-

sented as a circle centred at the origin with a radius of 3 �lled with square grids.

Infect-two: When the infection length exceeds the threshold time, infected agents tran-

sition to a category two infection.

Infect-three: When the infection-lengthTwo exceeds the threshold timeTwo, agents

with category two BU infection transition to a category three infection.

6.6.3.4 Treatment

Access to treatment can be either through SR or by meeting CHV, who refer infected

individuals to treatment.

Self-referral: After being infected for a period called BU-symptoms, there is a proba-

bility that agents with:

� Category one BU infection will start antibiotic treatment only.

� Category two BU infection will get antibiotic treatment and minor surgery.

� Category three BU infection will get antibiotic treatment and major surgery.

Once in treatment, agents are no longer counted as infected, and their infection length(s)

are reset to zero. Once an agent has received treatment, they can become infected again.

However, their colour is now di�erent from their initial colour (blue as indicated in Figure

6.1 ) at the the start of the simulation. The change in color is because their disability stage

may change following treatment and can only worsen following a subsequent infection.

Meet-chvs: When infected people meet CHV, they are picked up and start treatment.

This can be antibiotic treatment and minor or major surgery, depending on what category

of BU infection they were at when they met the CHV.
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6.6.3.5 Recovery

A person in treatment will recover after reaching their recovery time. Each individual's

recovery time is sampled from an exponential distribution with a mean of the average

recovery time set by the user as indicated in Table 6.3.3.1.

If antibiotic-time exceeds the recovery timeone, hospital-time-two exceeds the recovery

timetwo, or hospital-time-three exceeds the recovery timethree, BU patients recover with

no disability, minor disability or major disability, respectively. Otherwise, the patient

continues on treatment for one more week and keeps the same disability state as they

had prior to this BU infection.

At the end of each time step, all global variables are updated. The counts and percentage

of susceptible, infected, treated and recovered agents are all calculated.

6.6.3.6 Update global variables

Considers the progress pattern of the population each week and updates the agent loca-

tions and states.

6.7 NetLogo Simulation

We created the NetLogo environment, and the set-up is presented in Figure 6.2. It has

three key components. First is the main environment, where all agents are spatially

distributed to mimic the arrangement of the human population. Secondly, frames for

plotting the simulation outputs as agents interact in the environment. Four plot frames

represent the susceptible, infected, treated and recovered populations plotted against

time. Lastly are buttons and sliders, which are used in interacting with the agents

through the calibration of model parameters and start or run.
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Figure 6.2: A screen-shot showing the interface of the ABM using NetLogo. The

interface includes sliders where global variables are varied, the set-up and go buttons

which start and execute the instructions from the user. These plots illustrate the data

generated by the model.

6.8 Model Experimentation and Results

We test the model with di�erent scenarios and observe how these changes a�ect or

in�uence the model outputs. We make changes to key parameters and observe the

resultant e�ects on the model. The parameters considered are: the initial population,

number of CHV; and the patch size representing the probability of aM. ulcerans infection.

We compare the output for each of these scenarios with the base case scenario (SR1 and

SR1CHV1). In Appendix B, we represent individual plots of the trends for each scenario

in subsections 6.8, illustrating the mean, maximum and minimum values of 10 model

runs.

Figure 6.4, Figure 6.5 and Figure 6.7, present time series plots showing people who are

currently susceptible (a), infected in category one (b), infected in category two (c), and

infected in category three (d); on antibiotics (e), receiving minor hospital treatment

(f), and major hospital treatment (g); and with no disability (h), minor disability (i)

and major disability (j). Note that these categories are not mutually exclusive, since

infected people may also be receiving treatment and plots (h) to (j) include people who

are currently susceptible, infected and/or undergoing treatment.
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In subsections 6.8.1, 6.8.2 and 6.8.3, we make changes on the baseline scenario and

observe the e�ect on the model.

6.8.1 When the rate of infection is increased

In this scenario, we enlarge the initial infection patch, as shown in Figure 6.3, to assess

its impact on the model's behaviour and output. This includes testing the model's

performance when this parameter is doubled.

The simulation area was set to 17× 17, maintaining a CHV population of 100, while the

initial infection patch was expanded from a radius of 3 to 6.

Figure 6.3: Size of patch representing initial infection: a green circle centred at the

origin with a radius of 3 (left) was increased to 6 (right). The circle is then �lled with

square grids.

In practice, this model, serving as a proof of concept, does not aim to provide a realistic

representation of a geographical area or the dynamics of infection. To illustrate, the

patch in the model symbolizes a speci�c habitat of M. ulcerans bacteria, resembling an

aquatic environment like a lake. The spatial units of grid squares correspond to the

typical size of a lake, delineating an infectious patch.

It is assumed that individuals become infected when interacting with the environment

where M. ulcerans bacteria reside, such as a lake. Although the exact route of infection

from the environment is unknown, for the purpose of this model, it is assumed that

any interaction of an individual with the environment leads to infection with a 100%

probability.

To give realistic values of the incidence rate β, the size of the infected patch would need

to be exceedingly small relative to the grid size. Additionally, achieving a more realistic

population distribution across the area would require incorporating spatial movements

based on actual data rather than at random.

We represent the case in subsection 6.8.1 as SR2 and SR2CHV2 indicating SR and CHV

when the rate of infection is increased respectively. SR2 and SR2CHV2 are compared
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with the base case scenario SR1 and SR1CHV1 and the results are illustrated in Figure

6.4.

Figure 6.4: The size of the patch representing the environment where M. ulcerans

bacteria resides is enlarged by increasing the radius of the patch from 3 to 6 square

grids, symbolizing an increase in the probability of infection. These plots illustrate data

as the average of 10 simulations from 10 model runs of the ABM. Individual plots for

each run are indicated in Figures B.3 and B.4 in appendix B.
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Fewer individuals progress to categories 2 and 3 and do not remain in the infected com-

partment for an extended period. This transition suggests a rapid transition to di�erent

categories. The limited cases in infectedTwo (c) and infectedThree (d) may be attributed

to people experiencing symptoms and promptly seeking treatment. In scenarios SR2 and

SR2CHV2, the initial surge in the infected population can be attributed to an increase

in initial infection patch set at 6.

We observed the highest number of individuals on antibiotics (e) and Hospitaltwo (f)

in scenario SR2CHV2. This observation could be due to the proactive identi�cation

and referral of cases by CHV. Furthermore, we noted a high number of Hospitalthree

(g) patients in scenarios SR2 and SR1, where only self-referral occurs, and treatment

initiation is delayed.

The entire population begins in a healthy state with no disabilities, and by the end of the

simulation, most individuals have recovered with major disabilities at some point. The

introduction of CHV interventions reveals that scenarios SR1CHV1 and SR2CHV2 have

the highest numbers of individuals with minor disabilities. In the case of major disabil-

ities, scenarios SR2 and SR1 have the highest numbers, likely due to delayed detection

of BU patients, resulting in major disabilities. The presence of CHV interventions leads

to a higher number of healthy individuals with no disabilities. The comparison results

indicate that the scenario with an initial infection patch size of 6 and only self-referral

results in the highest number of Hospitalthree (g) cases and major disabilities (j).

The substantial numbers of individuals recovering without disabilities and with minor

disabilities in the SR1CHV1 scenario emphasize the positive impact of CHV referrals,

enabling early diagnosis and treatment initiation. The scenario with an initial infection

patch size of 3, along with SR and CHV referrals, yields the highest number of individuals

recovering without disabilities and the lowest number with major disabilities which aligns

with our expectations.

The introduction of CHV interventions, which identify symptomatic individuals early,

plays a pivotal role in reducing major disabilities and o�ers more opportunities to control

the disease. We recommend further exploration of the implications of reducing the

infection site size and how it could a�ect the incidence of disabilities.

In real-world applications, expanding the initial infection patch size serves as a means

to simulate worst-case scenarios, such as those with a high prevalence of BU cases.

The �ndings presented in the �gures are crucial for illuminating potential worst-case

scenarios, can be used in understanding disease outbreaks, and gaining insights into

widespread BU infections. This information could be invaluable for e�ective planning

and making informed decisions for policy-makers.
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6.8.2 Varying the number of CHVs

In this scenario, we investigate the impact of varying the number of CHV on the SITR

populations in the simulation. We begin by reducing the number of CHVs from 100 to 80

and observe the resulting patterns. The initial population is set at 1000, the simulation

area is 17 × 17, and the ratio of CHV-to-population is 80 : 1000, indicating there are 8

CHVs for every 100 people.
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Figure 6.5: When the number of CHV is decreased from 100 to 80. (SR4 and

SR4CHV4): comparison with the base case scenario (SR1 and SR1CHV1). The data

illustrated is the average of 10 simulations from 10 model runs of the ABM. Individual

plots for each run are indicated in ?? in appendix B.

In Figure 6.5, we noted that reducing the number of CHVs to 80 did not result in

signi�cant di�erences compared to the scenario with 100 CHVs, with outcomes falling

between those observed with 100 CHVs and when only SR was in e�ect. Furthermore, it

became apparent that the presence of a higher number of CHVs was associated with an
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increased count of individuals recovering without disability, while concurrently decreasing

the populations of patients recovering with minor and major disabilities.

Now, we investigate the impact of changing CHV numbers from 20, 40, 60, 80, to 100

on the mean number of people who recover without disability, with minor disability, and

with major disability.

Figure 6.6: Varying the number of CHV: The mean number of people that

recover with a major, minor and no disability between 300 and 400 weeks for di�erent

numbers of CHV.

In Figure 6.6, as the number of CHVs increases, we observe a corresponding increase

in the number of individuals recovering without disability and a decrease in cases with

minor and major disabilities. These �ndings align with our expectations, highlighting

the crucial role of CHVs in reducing late-category cases and disabilities.

A recent study by Alo et al. (2022) emphasized the critical role of training CHVs in the

rapid detection of BU cases and their subsequent referral to hospitals. Alo et al. (2022)'s

research identi�ed a signi�cant increase in the number of cases detected and referred

post-intervention, underscoring the e�ectiveness of CHVs in this regard. They concluded

that integrating CHVs as an intervention, and further scaling up their training, could be

pivotal in the rapid detection and referral of BU cases. Policy makers should take note

of these �ndings and consider integrating and expanding the services of trained CHVs to

bolster early detection.

6.8.3 When the area of simulation is increased

In this scenario, we increase the domain size (area of simulation) from (17 × 17) grids

to (50× 50) grids and keeping the step size the same at 1. We observe and analyse the

resultant patterns of the SITR populations in the simulation.



Chapter 6 Modelling the potential impact of community health volunteers in the

diagnosis and treatment of Buruli ulcer 123

Figure 6.7: When the area of simulation is increased from (17× 17) grids to

(50 × 50) grids (SR5 and SR5CHV5): comparison with the base case scenario (SR1

and SR1CHV1). The data illustrated is the average of 10 simulations from 10 model

runs of the ABM. Individual plots for each run are indicated in B.5 and B.6 in appendix

B.

In Figure 6.7, when the area of simulation is increased, people are more spread out

within it. People are less likely to move into the infectious patch and so less likely to

become infected. In other words, a bigger area of simulation implies a lower probability

of crossing over the infection region leading to reduced infections.
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In contrast, when the step size is reduced from 1 to 0.5, and the domain size remained at

a (17×17) grids, we observed agents moving at a slower pace in each time step, covering

a smaller distance compared to the original step size of 1. The agents took a longer time

to traverse the entire domain and this increased the computation time of the simulation.

Reduction in the step distance impacts the spatial dynamics and movement behaviour

of agents in the model.

In the future, we recommend exploring di�erent combinations of domain sizes and step-

ping distances to better understand their interactions and e�ects on the simulation dy-

namics. This will address how the reduction in domain size a�ects the spatial resolution

and granularity of the model and how the stepping distance in�uences the di�usion

patterns and movement behaviour of agents.

6.9 Conclusion

In this chapter, we presented an agent-based model (ABM) that incorporated the in-

teraction of BU patients with community health volunteers (CHV) in improving early

diagnosis and treatment of BU. We illustrated the individual interactions of BU patients

with CHV, compared and contrasted the e�ect of either self-referral (SR) independently

or both SR and CHV. In addition, we observed BU disease progression within the infected

and treated population over a certain period.

We explored possible outcomes when we varied parameters like the rate of infection, the

initial population, area of simulation, the number of CHV and observed their e�ect on

BU progression. We compared each of these scenarios with the base case scenario and

tracked the patterns of infected and treated populations in a period of 400 weeks.

Our simulation results indicated the ABM with both SR and CHV had the highest

number of patients on antibiotics treatment in all scenarios. This led to more people

recovering with no disability and few individuals with minor and major disabilities.

With only self referral, we observed an increasing number of late category cases leading

to starting treatment late and consequently recovering with minor and major disabilities.

Our results do not di�er from what we expected: that is an introduction of CHV for

active case �nding of infected BU has a positive correlation with starting treatment early.

Results from our model shed light on the proportion of patients in each stage with or

without CHV. This information is important in predicting disease progression when there

is insu�cient data on BU cases by category. This model allowed the representation of

individual movements and interactions of populations over space.

6.9.1 Limitations

Limited information on CHV for BU, for example, the ratio of CHV to the area pop-

ulation was assumed and the absence of experimental data for model validation, posed



Chapter 6 Modelling the potential impact of community health volunteers in the

diagnosis and treatment of Buruli ulcer 125

challenges. The lack of data on BU cases that self-referred hindered comprehensive model

validation. Furthermore, our model's assumption of CHVs being 100% accurate at im-

mediately detecting BU upon encountering an infected patient might not always hold

true, especially considering that CHVs are in the process of clinical training and may not

be fully trained.

Our CHV model considered three infection categories, wherein we merged the incubation

period and category one. For improved model clarity, in the future, it may be bene�cial

to distinguish the incubation period and category one more explicitly.

We recommend collection of mobility data on movements of agents within a community,

as this could enhance our model's ability to track spatial elements. Furthermore, con-

ducting an updated review of the impact of CHV on BU would provide valuable insights

for future modelling.

In addition, several design concepts of the ABM, such as emergence, adaptation, sensing,

and learning, were not incorporated into our current model. Access to information that

in�uences these elements would contribute to model improvement.

The model can be customised to model introduction of CHV in other neglected tropical

diseases. This can be implemented by adjusting features of the infection, treatment and

recovery processes of the disease being modelled.

This model serves as a proof of concept and if integrated with clinical and behavioural

data, it has the potential to enhance parameter values for improved realism. With the

incorporation of clinical and behavioural data, this model could be utilized as a public

health tool enabling the analysis of diverse control programs, playing a crucial role in

preventing late-stage BU cases.
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Conclusion

The main objective of this work was to develop mathematical models which describe and

advise on the dynamics of Buruli ulcer disease. To tackle this, we focused on skin-cell

death mechanisms, BU disease progression and treatment pathway, the cost-e�ectiveness

of diagnostic tests and the role of community health volunteers (CHV) in referring BU

patients while the disease is still early categories.

7.1 Synthesis

This section presents a succinct overview of each chapter of this thesis.

In the �rst part of the thesis, speci�cally in chapter chapter 3, we investigated the contri-

bution of direct cytotoxicity and ischaemia in the skin cell death processes in BU disease.

We developed a mathematical model that described the dynamics of ulcer formation, in-

cluding mycolactone di�usion, M.ulcerans growth, decrease in cell densities and increase

in �brin deposition in the skin as time evolves. The novel aspect untangled by our model

is the contribution of either ischaemia or direct cytotoxicity pathways in ulcer formation

in BU. In addition, we analysed the speed of wound spread observed in BU.

Simulation results indicated that cell death happened earliest for system parameters cor-

responding to a higher mycolactone equilibrium concentration, and when both direct

cytotoxicity and ischaemia operate simultaneously, and the latest with a lower mycolac-

tone equilibrium value and direct cytotoxicity only. When analysed independently, skin

cell death through ischaemia was more rapid than direct cytotoxicity. Additionally, we

observed rapid wound enlargement when mycolactone di�used faster than M.ulcerans.

In chapter 4, chapter 5 and chapter 6, we focused on modelling BU disease progression

and treatment pathways.

In chapter 4, we developed an epidemiological model for the incidence, progression and

treatment of BU. We brie�y described the aetiology and epidemiology of BU as a ne-

glected tropical disease and explored possible interventions for reducing the number of

126
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late-category cases. We formulated a susceptible, infected, treated and recovered (SITR)

model that mimicked the natural history of BU. Our simulation illustrated the pattern

that the population susceptible to BU takes from infection to treatment and recovery.

We used our model to predict the prevalence of BU in Ghana, the Democratic Republic

of Congo (DRC), Benin and the Ivory Coast. DRC had the lowest prevalence of the

order of 10−6, and Ivory Coast had the highest prevalence of the order of 10−5.

Results from the sensitivity analysis indicated that when the transfer rates from one

infection category to another category were increased, the proportion of the population

infected also increased. In addition, a high rate of starting treatment led to a signi�cant

decrease in the number of late-category BU cases. To encourage early diagnosis and

treatment, we proposed interventions such as introducing a rapid diagnostic test (RDT)

and community health volunteers (CHV). We discussed these interventions in detail in

chapter 5 and chapter 6, respectively.

In chapter 5, we evaluated the cost-e�ectiveness of diagnosing BU with the proposed RDT

compared to the standard test using Polymerase chain reaction (PCR) in Ghana. We

calculated the extent of disability caused by delayed treatment of BU using disability-

adjusted life years (DALY). Using a decision tree analysis model, we established the

probabilities, costs and e�ects of adopting a RDT and a PCR.

The main result of this model was the incremental cost-e�ectiveness ratio (ICER) of

−$272.73 per additional DALY averted from using a RDT compared to a PCR. The

probabilistic sensitivity analysis showed that most ICER pairs spread out in the south

east quadrant, where the RDT is less costly and yields less DALYs.

In chapter 6, we examined the potential impact of introducing CHV in referring BU

patients for diagnosis and treatment in the early categories of the disease. We employed

an agent-based model (ABM) to analyse interactions between BU patients and CHV.

We compared and contrasted the e�ect of either self-referral (SR) independently or both

SR and CHV.

Simulation results showed that the ABM with both SR and CHV had fewer people that

proceeded to late categories of BU and the highest number of patients on antibiotic

treatment in all scenarios. This led to more people recovering with no disability and

few individuals with minor and major disabilities. In the case of only self-referral, we

observed an increasing number of late category cases leading to starting treatment late

and consequently recovering with minor and major disabilities. The results in chapter 6

assert what we expected that is an introduction of CHV for active case-�nding of infected

BU has a positive impact on the early start of treatment.



128 Chapter 7 Conclusion

7.2 Thesis contributions

Mathematical modelling o�ers an avenue for exploring complex biological systems. In

this research, we constructed four novel mathematical models that focused on skin cell

death processes in BU, BU progression and treatment pathway, the cost-e�ectiveness of

diagnostic tests and the role of CHV in referring BU patients in early stages, respectively.

The model discussed in chapter 3 gives insights into the processes that lead to wound

development as observed in BU. These results could help in the direction and current

progress on BU treatment options such as surgery.

Chapter 4 provides a simple model for understanding the transitions of populations from

infection to treatment and recovery after contracting BU. To the best of our knowledge,

this is the �rst time that BU has been modelled in this way, where the compartments

are divided to mimic the WHO classi�cation of BU disease (WHO et al., 2012).

The modelling work in chapter 4 provides a foundation for building more extensive models

for understanding BU disease. provided insight into the dynamics of BU progression and

treatment.

The results of the work in chapter 5 and chapter 6 could aid decision-making on resource

allocation of health facilities, for example, in terms of implementation of cost-friendly

diagnostic tools for BU in Ghana or adopting CHV for BU diagnosis and treatment.

One of the WHO's research priorities towards BU disease control is the development

of rapid diagnostic tests. Our work in chapter 5 is the �rst time, to the best of our

knowledge, that the cost-e�ectiveness analysis of rapid tests for BU has been carried

out. It provides crucial information on the a�ordability of the rapid tests for BU.

In addition, chapter 5 information on costs and e�ects adds to the bank of literature on

cost-e�ectiveness analysis models, which could be adopted for other neglected diseases

in the future.

The work in chapter 5 and chapter 6 could be instrumental in the planning to prevent

disability which is a critical feature in recovered BU populations. Our results concur

with WHO's recommendation for managing BU, in particular, rea�rming the need to

evaluate the e�ectiveness of the new rapid diagnostic tests and the role of community

involvement in the referral of BU-infected populations and BU disease management.

The mathematical frameworks described in this thesis contribute to the bank of knowl-

edge for research on BU. Models on cell death mechanisms, CEA of the RDT for BU,

and analysis of the impact of CHV in BU are an addition to knowledge on mathematical

modelling for BU.

This work contributes to the literature on neglected tropical diseases and can help stim-

ulate further work on such diseases.
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7.3 Limitations

In chapter 3, we faced limitations in parameter estimation due to insu�cient data. Some

key parameters, such as the production rate of mycolactone (λm), the degradation rate of

mycolactone (Km) and the density-dependent bacterial death rate (Ku) were estimated

based on assumptions. These assumptions, like the arti�cial system for bacterial growth,

may deviate from real-world scenarios, potentially impacting the accuracy of parameter

values.

In chapter 4, under parameter estimation, we made the simplifying assumption of uniform

transfer rates from infection to treatment (γ) across all BU categories. This simpli�cation

was necessary due to limited data and literature, but in reality, treatment initiation is

in�uenced by various factors like diagnosis, waiting times, healthcare accessibility, and

infection severity, making this a limitation.

In chapter 5, we relied on data for 1998 for cost estimation (Amofah et al., 2002), despite

the evolution of BU treatment costs and incidence. Limited literature and parameter

values forced us to use estimates from other diseases or experimental work, which may

not fully represent natural BU infections. Additionally, the data for cost-e�ectiveness

analysis, including cost and disability-adjusted life years, was limited.

In chapter 6, for model simplicity, we combined incubation period and category 1 into a

single state resulting into three infection categories. This simpli�cation was a limitation,

and future improvements could involve distinguishing the incubation period and category

1 more explicitly for better model clarity.

Furthermore, limited data on CHVs for BU, such as the assumed ratio of CHVs to the

area population, posed challenges. The absence of experimental data for model validation

and the assumption of CHVs being 100% accurate in detecting BU upon encountering

an infected patient also need to be considered carefully, as CHVs are still in the process

of clinical training and may not always be fully trained.

7.4 Future work

Future e�orts should be directed towards sourcing data for model �tting, for example, a

constant update of records on the number of BU patients in each compartment. There

is limited data on the infected population from the WHO website. However, we found

no comprehensive data on populations undergoing treatment and those who recovered.

There is also a need for updated data on costs for treatment of BU, disability-adjusted

life years, records on CHV and the BU patients they have referred. In addition, a com-

prehensive estimation of unknown parameters for models in each chapter would improve

the overall model outcomes. The availability of such data would be valuable in the

validation and formulation of the model.
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The models themselves could also be developed further to include more realistic detail.

For example, we recommend including other types of skin cells in the formulation of the

wound model and consideration of a realistic spatial arrangement of cells.

The work presented in these chapters elucidates the bene�ts of control strategies in min-

imising late-BU category cases. In the future, we could use mathematical models to

experiment with the e�ect of combined interventions. For example, we could explore the

e�ect of integrating strategies such as mass screening and treatment with mass commu-

nity education on BU infections.

This research demonstrates the potential role of mathematical modelling in answering

pertinent questions regarding Buruli ulcer disease. There is no doubt that mathematical

modelling will continue to play a critical role as we adopt an integrated approach to

managing neglected tropical skin diseases.



Appendix A

Chapter 5: calculation of costs and

e�ects

A.1 Calculation of costs (c) and e�ects (e) at each node

e1 = p15DALY2a + p16DALY2b, c1 = p15(Cost1 + CostPCR) + p16(Cost1 + CostPCR),

e2 = p17DALY3 + p18DALY4, c2 = p17(Cost2 + CostPCR) + p18(Cost2 + CostPCR),

e3 = p5DALYx + p6e1 + p7e2, c3 = p5(Costx + CostPCR) + p6c1 + p7c2,

e4 = p9DALY1, c4 = CostPCR + p9Cost2,

e5 = p1e3 + p2e4, c5 = p1c3 + p2c4,

e6 = p19DALY2a + p20DALY2b, c6 = (p19 + p20)(cost1 + CostRDT),

e7 = p21DALY3 + p22DALY4, c7 = (p21 + p22)(cost2 + CostRDT),

e8 = p12(DALYx) + p11e7 + p10e6, c8 = p12(Costx + CostRDT) + p11c7 + p10c6,

e9 = p14DALY1, c9 = p13(CostRDT) + p14(CostRDT + Cost2),

e10 = p3e8 + p4e9, c10 = p3c8 + p4c9.
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Outcome Costs E�ects

Nodes-PCR

Node 1 $17.870 1.653

Node 2 $2669.952 9.688

Node 3 $2452.568 9.030

Node 4 $86.043 0.193

Node 5 $1500.752 5.475

Nodes-RDT

Node 6 $5.39 1.653

Node 7 $2657.472 9.688

Node 8 $2114.012 8.042

Node 9 $382.033 1.005

Node 10 $1311.760 4.782

Incremental

cost or e�ect

−188.992 −0.692

ICER $272.734 $272.734

Table A.1: A summary of the expected costs and e�ects at every node evaluated from

the decision tree. We used these values to evaluate the ICER as (Cost of RDT - Cost

of PCR)/(E�ect of RDT - E�ect of PCR).

ICER =
c10 − c5
e10 − e5

,

=
105.2202− 1344.422

1.397417− 9.768379
,

= $272.734 per DALY averted.
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Appendix B

Chapter 6: ABM plots for the SITR

B.1 When the initial infection starts with 3 square grids

Figure B.1: SR only (SR1): When the size of the patch representing initial

infection is set such that the radius of the circle is 3 square grids
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Figure B.2: SR and CHV (SR1CHV1): When the size of the patch repre-

senting initial infection is set such that the radius of the circle is 3 square

grids
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B.2 When the initial infection starts with 6 square grids

Figure B.3: SR only (SR2): When the size of the patch representing initial

infection is increased. The radius of the circle was increased from 3 to 6

square grids
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Figure B.4: SR and CHV (SR2CHV2): When the size of the patch repre-

senting initial infection is increased. The radius of the circle was increased

from 3 to 6 square grids
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B.3 When the area of simulation is increased

Figure B.5: SR only (SR5): When the area of simulation is increased from

17× 17 square grids to 50× 50 square grids.
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Figure B.6: SR and CHV (SR5CHV5): When the area of simulation is

increased from 17× 17 square grids to 50× 50 square grids.
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Codes used for the simulations

C.1 Python scripts for analysis for chapter 3

C.1.1 Code for M.ulcerans and mycolactone model

# Import necessary packages

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D, proj3d

import matplotlib.mlab as mlab

from matplotlib import rcParams

# Update the font size for the plot

rcParams.update ({"font.size":15})

# Set the total population size N

N = 500

# Define various parameter values

Dm = 1.0*10**(-9)

Du = 5.0*10**(-8)

Km = 5.0*10**(-5)

lambdau = 4.011*10**(-6)

de = 6.6625*10**(-6)

dk = 2.6625*10**(-5)

ds = 6.6625*10**(-6)

# Parameters for transformations

lambdam = 1.0*10**(-8)

#Two Ku for ce and cs

#Ku = 1.337*10**( -1)# For ce = 4.0*10**( -9)

Ku = 5.348*10**(-3) # For cs = 1.25*10**( -7)
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ce = 4.0*10**(-9)

cs = 1.25*10**(-7)

u1 = 1.0*10**(-6)

#Nondimensional transformations

To = (1/lambdau)

Xo = np.math.sqrt((Du/lambdau))

Uo = (lambdau/Ku)

Mo = (lambdam/Ku)

A = 0.01

B = 0.01

C1 = ce/Mo

C2 = cs/Mo

L = 30/Xo

deltae = (de/lambdau)

deltas = (ds/lambdau)

deltak = (dk/lambdau)

alpha = (Dm/Du)

beta = (Km/lambdau)

ne = 0.001

ns = 0.009

epsilon = u1/Uo

# Create a spatial grid

X, h = np.linspace(0, L, N, retstep=True)

# Define the model and equations

def model(es,t):

ba = es[:N]

My = es[N:2*N]

ne = es[2*N:3*N]

ns = es[3*N:]

dbadt = np.zeros_like(ba)

dMydt = np.zeros_like(My)

dnedt = np.zeros_like(ne)

dnsdt = np.zeros_like(ns)

# Calculate finite differences

D2ba = (ba[2:] + ba[:-2] - 2*ba[1:-1]) / h**2

D2My = (My[2:] + My[:-2] - 2*My[1:-1]) / h**2

# Define differential equations

dbadt[1:-1] = ba[1:-1] + D2ba - ba[1:-1]**2

dMydt[1:-1] = ba[1:-1] + alpha * D2My - beta * My[1:-1]

A1 = np.heaviside ((My -(C1)), 0)

A2 = np.heaviside ((My -(C2)), 0)

dnedt = (-deltas * ne * A1 ) - (deltak * ne * A1)

dnsdt = (-deltas * ns * A2 ) - (deltak * ns * A1)

return np.hstack ([dbadt , dMydt , dnedt , dnsdt ])
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# Set initial conditions

mu , sig = L/2, 0.5

u0= epsilon*np.exp(-np.power((X - mu)/sig , 2.)/2)

ba0 = u0 *np.ones_like(X)

My0 = 0.0 *np.ones_like(X)

ne0 = 0.1 *np.ones(N)

ns0 = 0.9 *np.ones(N)

initi = np.hstack ([ba0, My0, ne0, ns0])

# Stop the simulation before it reaches the wound edges

Nt = 37

# Define time and space grids

t = np.linspace(0, Nt , N)

x = np.linspace(0, L, N)

# Solve ODE using odeint

sols = odeint(model , initi , t, mxstep = 5000000)

usolution = Uo* (sols[:, :N])

msolution = Mo* (sols[:, N:2*N])

uso = A* (sols[:, 2*N:3*N])

umso = B* (sols[:, 3*N:4*N])

tdim = (t*To)/(24*60*60)

xdim = (x*Xo)

#Plotting here

#Used to establish the times for the travelling wave legend

fig , ax = plt.subplots ()

ax.set_xlabel('Time (Days)', fontsize=19, fontweight='bold')

ax.set_ylabel('Position of wound edge (cm)', fontsize=19, fontweight='

bold')

fontsize = 14

for tick in ax.xaxis.get_major_ticks ():

tick.label1.set_fontsize(fontsize)

tick.label1.set_fontweight('bold')

for tick in ax.yaxis.get_major_ticks ():

tick.label1.set_fontsize(fontsize)

tick.label1.set_fontweight('bold')

for m in range(len(tdim)):

plt.clf()

plt.plot(xdim , usolution[m], linewidth=5.0)

plt.rcParams["axes.labelweight"] = "bold"

plt.xlabel('Distance(cm)', fontsize=20, fontweight='bold')

plt.ylabel('Endothelial Cell density (gcm$ ^{-3}$)', fontsize=20,

fontweight='bold')

plt.title('t = {0}'.format(tdim[m]), fontsize=20, fontweight='bold')

plt.savefig('Tw__t {0:03d}.png'.format(m))#Both DT &Isch at M2 10^{ -7}

save the plots

# Plotting travelling wave solution
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# Create a plot to save multiple images

fig , ax = plt.subplots ()

plt.plot(xdim , usolution[1], label='$t$ = 0 ', linewidth=4.0)

plt.plot(xdim , usolution[50], label='$t$ = 10.69 ',linewidth=4.0)

plt.plot(xdim , usolution[65], label='$t$ = 13.90 ',linewidth=4.0)

plt.plot(xdim , usolution[100], label='$t$ = 21.39 ', linewidth=3.0)

plt.plot(xdim , usolution[150], label='$t$ = 32.09 ', linewidth=3.0)

plt.plot(xdim , usolution[200], label='$t$ = 42.79 ', linewidth=3.0)

plt.plot(xdim , usolution[250], label='$t$ = 53.49 ',linewidth=3.0)

plt.plot(xdim , usolution[300], label='$t$ = 64.18 ',linewidth=3.0)

plt.plot(xdim , usolution[350], label='$t$ = 74.88 ',linewidth=3.0)

plt.plot(xdim , usolution[400], label='$t$ = 85.58 ',linewidth=3.0)

plt.plot(xdim , usolution[450], label='$t$ = 96.28 ',linewidth=3.0)

plt.plot(xdim , usolution[499], label='$t$ = 106.76 ',linewidth=3.0)

plt.rcParams["font.weight"] = "bold"

plt.rcParams["axes.labelweight"] = "bold"

plt.xlabel('Distance(x) in cm', fontsize=20, fontweight='bold')

plt.ylabel('Bacteria Cell density \n in (gcm$ ^{-3}$)', fontsize=20,

fontweight='bold')

plt.title('Travelling wave solution for \n bacteria at various times',

rotation=0, fontsize=16, fontweight='bold')

legend = ax.legend(loc='best', bbox_to_anchor =(1, 1.1), fontsize='smaller

', title="Time in days" ,)

legend.get_frame ().set_facecolor('white')

# Plot 3D surface plots

SX , ST = np.meshgrid(xdim , tdim)

fig = plt.figure(figsize =(12, 6))

ax1 = fig.add_subplot(121, projection='3d')

W=ax1.plot_surface(SX, ST , usolution , cmap='jet', label='Model length ')

ax1.ticklabel_format(style='sci',scilimits =(0.001,0),axis='z')

ax1.zaxis.major.formatter._useMathText = True

plt.margins(0.0)

plt.setp(ax1.get_xticklabels (), rotation='vertical ', fontsize=14,

fontweight='bold')

plt.setp(ax1.get_yticklabels (), rotation='60', fontsize=14, fontweight='

bold')

plt.setp(ax1.get_zticklabels (), fontsize=14, fontweight='bold')

# First plot

ax1.tick_params(axis='x', pad=-6)

ax1.tick_params(axis='y', pad=-6)

ax1.xaxis.labelpad = 5

ax1.yaxis.labelpad = 5

ax1.zaxis.labelpad = 8

ax1.set_title('Bacteria cell density ', fontsize=22, fontweight='bold')

ax1.set_xlabel('Distance (cm)', fontsize=18, fontweight='bold')

ax1.set_ylabel('Time (Days)', fontsize=18, fontweight='bold')

ax1.set_zlabel('Bacteria (gml$ ^{-1}$)', fontsize=18, fontweight='bold')

ax1.view_init(elev=14, azim=-124)

bbar=plt.colorbar(W,format='%.0e',shrink=0.5, pad=0.0001)
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# Second plot

ax2 = fig.add_subplot(122, projection='3d')

Z=ax2.plot_surface(SX, ST , msolution , cmap='jet', label='Model')

ax2.ticklabel_format(style='sci',scilimits =(cs,0),axis='z')

ax2.zaxis.major.formatter._useMathText = True

plt.margins(0.0)

plt.setp(ax2.get_xticklabels (), rotation='vertical ', fontsize=14,

fontweight='bold')

plt.setp(ax2.get_yticklabels (), rotation='60', fontsize=14, fontweight='

bold')

plt.setp(ax2.get_zticklabels (), fontsize=14, fontweight='bold')

ax2.tick_params(axis='x', pad=-6)

ax2.tick_params(axis='y', pad=-6)

ax2.xaxis.labelpad = 5

ax2.yaxis.labelpad = 5

ax2.zaxis.labelpad = 8

ax2.set_title('Mycolactone concentration ', fontsize=22, fontweight='bold

')

ax2.set_xlabel('Distance (cm)', fontsize=18, fontweight='bold')

ax2.set_ylabel('Time (Days)', fontsize=18, fontweight='bold')

ax2.set_zlabel('Mycolactone (gml$ ^{-1}$)', fontsize=15, fontweight='bold

')

ax2.view_init(elev=14, azim=-124)

mbar=plt.colorbar(Z,format='%.0e',shrink=0.5, pad=0.0001)

plt.show()

Listing C.1: Code for M.ulcerans and mycolactone model

C.1.2 Code for endothelial and stromal cell density

# Import necessary packages

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D, proj3d

import matplotlib.mlab as mlab

from matplotlib import rcParams

# Update the font size for the plot

rcParams.update ({"font.size":15})

# Set the total population size N

N = 500

# Define various parameter values

Dm = 1.0*10**(-9)

Du = 5.0*10**(-8)

Km = 5.0*10**(-5)

lambdau = 4.011*10**(-6)
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de = 6.6625*10**(-6)

dk = 2.6625*10**(-5)

ds = 6.6625*10**(-6)

# Parameters for transformations

lambdam = 1.0*10**(-8)

#Ku = 1.337*10**( -1) # For ce = 6.0*10**( -9)

Ku = 5.348*10**(-3) # For cs = 1.5*10**( -7)

ce = 4.0*10**(-9)

cs = 1.25*10**(-7)

u1 = 1.0*10**(-6)

# Nondimensional transformations

To = (1/lambdau)

Xo = np.math.sqrt((Du/lambdau))

Uo = (lambdau/Ku)

Mo = (lambdam/Ku)

A = 0.01

B = 0.01

C1 = ce/Mo

C2 = cs/Mo

L = 30/Xo

deltae = (de/lambdau)

deltas = (ds/lambdau)

deltak = (dk/lambdau)

alpha = (Dm/Du)

beta = (Km/lambdau)

ne = 0.001 # Endothelial cell density

ns = 0.009 # Stromal cell density

epsilon = u1/Uo

# Create a spatial grid

X, h = np.linspace(0, L, N, retstep=True)

# Define the model and equations

def model(es,t):

ba = es[:N]

My = es[N:2*N]

ne = es[2*N:3*N]

ns = es[3*N:]

dbadt = np.zeros_like(ba)

dMydt = np.zeros_like(My)

dnedt = np.zeros_like(ne)

dnsdt = np.zeros_like(ns)

# Central finite differences

D2ba = (ba[2:] + ba[:-2] - 2*ba[1:-1]) / h**2

D2My = (My[2:] + My[:-2] - 2*My[1:-1]) / h**2

# Define differential equations

dbadt[1:-1] = ba[1:-1] + D2ba - ba[1:-1]**2
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dMydt[1:-1] = ba[1:-1] + alpha * D2My - beta * My[1:-1]

A1 = np.heaviside ((My -(C1)), 0)#endothelial

A2 = np.heaviside ((My -(C2)), 0)#stromal

dnedt = (-deltas * ne * A1 ) - (deltak * ne * A1) #All

dnsdt = (-deltas * ns * A2 ) - (deltak * ns * A1) #All

dnedt = (-deltas * ne * A1 ) # DT

dnsdt = (-deltas * ns * A2 ) # DT

dnedt = (-deltak * ne * A1 )#Isch only

dnsdt = (-deltak * ns * A1 )#Isch only

return np.hstack ([dbadt , dMydt , dnedt , dnsdt ])

# Set initial conditions

mu , sig = L/2, 0.5

u0= epsilon*np.exp(-np.power((X - mu)/sig , 2.)/2)

ba0 = u0 *np.ones_like(X)

My0 = 0.0 *np.ones_like(X)

ne0 = 0.1 *np.ones(N)

ns0 = 0.9 *np.ones(N)

initi = np.hstack ([ba0, My0, ne0, ns0])

# Stop the simulation before it reaches the wound edges

Nt = 37

# Define time and space grids

t = np.linspace(0, Nt , N) #Dimesionless time

x = np.linspace(0, L, N) #Dimesionless space

# Solve ODE using odeint

sols = odeint(model , initi , t, rtol = 10**(-1), mxstep = 500000)

usolution = Uo*(sols[:, :N])

msolution = Mo*(sols[:, N:2*N])

uso = A* (sols[:, 2*N:3*N])

umso = B* (sols[:, 3*N:4*N])

tdim = (t*To)/(24*60*60)

xdim = (x*Xo)

# Plot 3D surface plots

SX , ST = np.meshgrid(xdim , tdim)

fig = plt.figure(figsize =(12, 6))

# First plot

ax1 = fig.add_subplot(121, projection='3d')

W1= ax1.plot_surface(SX , ST , uso , cmap='jet')

ax1.ticklabel_format(style='sci',scilimits =(0.001,0),axis='z')

ax1.zaxis.major.formatter._useMathText = True

plt.margins(0.0)

plt.setp(ax1.get_xticklabels (), rotation='vertical ', fontsize=14,

fontweight='bold')

plt.setp(ax1.get_yticklabels (), rotation='60', fontsize=14, fontweight='

bold')

plt.setp(ax1.get_zticklabels (), fontsize=14, fontweight='bold')
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ax1.tick_params(axis='x', pad=-6)

ax1.tick_params(axis='y', pad=-6)

ax1.xaxis.labelpad = 8

ax1.yaxis.labelpad = 5

ax1.zaxis.labelpad = 8

ax1.set_title('Endothelial cell death', fontsize=22, fontweight='bold')

ax1.set_xlabel('Distance (cm)', fontsize=18, fontweight='bold')

ax1.set_ylabel('Time (Days)', fontsize=18, fontweight='bold')

ax1.set_zlabel('Endothelial density(gcm$ ^{-3}$)', fontsize=14,

fontweight='bold')

ax1.view_init(elev=14, azim=-124)

bbar=plt.colorbar(W1,format='%.0e',shrink=0.5, pad=0.0001)

# Second plot

ax2 = fig.add_subplot(122, projection='3d')

W2=ax2.plot_surface(SX, ST , umso , cmap='jet')

ax2.ticklabel_format(style='sci',scilimits =(0.009,0),axis='z')

ax2.zaxis.major.formatter._useMathText = True

plt.margins(0.0)

plt.setp(ax2.get_xticklabels (), rotation='vertical ', fontsize=14,

fontweight='bold')

plt.setp(ax2.get_yticklabels (), rotation='60', fontsize=14, fontweight='

bold')

plt.setp(ax2.get_zticklabels (), fontsize=14, fontweight='bold')

ax2.tick_params(axis='x', pad=-6)

ax2.tick_params(axis='y', pad=-6)

ax2.xaxis.labelpad = 9

ax2.yaxis.labelpad = 5

ax2.zaxis.labelpad = 5

ax2.set_title('Stromal cell death', fontsize=22, fontweight='bold')

ax2.set_xlabel('Distance (cm)', fontsize=18, fontweight='bold')

ax2.set_ylabel('Time (Days)', fontsize=18, fontweight='bold')

ax2.set_zlabel('Stromal density (gcm$ ^{-3}$)', fontsize=14, fontweight='

bold')

ax2.view_init(elev=14, azim=-124)

bbar=plt.colorbar(W2,format='%.0e',shrink=0.5, pad=0.0001)

plt.tight_layout ()

# Create a new figure , set labels for the x and y axes with specified

font size and weight.

fig , ax = plt.subplots ()

ax.set_xlabel('Time (Days)', fontsize=19, fontweight='bold')

ax.set_ylabel('Position of wound edge (cm)', fontsize=19, fontweight='

bold')

fontsize = 14

# Customize tick labels for x & y axes.

for tick in ax.xaxis.get_major_ticks ():

tick.label1.set_fontsize(fontsize)

tick.label1.set_fontweight('bold')
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for tick in ax.yaxis.get_major_ticks ():

tick.label1.set_fontsize(fontsize)

tick.label1.set_fontweight('bold')

# Loop through different time steps for creating and saving plots

for j in range(len(tdim)):

plt.clf()

plt.plot(xdim , uso[j], linewidth=5.0)

plt.ticklabel_format(style='sci',scilimits =(0.001,0),axis='z')

plt.rcParams["font.weight"] = "bold"

plt.rcParams["axes.labelweight"] = "bold"

plt.xlabel('Distance(cm)', fontsize=20, fontweight='bold')

plt.ylabel('Endothelial Cell density (gcm$ ^{-3}$)', fontsize=20,

fontweight='bold')

plt.title('t = {0}'.format(tdim[j]), fontsize=20, fontweight='bold')

# Save different versions of the same plot with varying file names.

plt.savefig('QA__t {0:03d}.png'.format(j))#Both DT &Isch at M1

10^{ -9}

plt.savefig('QAm__t {0:03d}.png'.format(j))#Both DT &Isch at M2

10^{ -7}

plt.savefig('QDTM1__t {0:03d}.png'.format(j))#DT M1 10^{ -9}

plt.savefig('QDTM2__t {0:03d}.png'.format(j))#DTM2 10^{ -7}

plt.savefig('QIsM1__t {0:03d}.png'.format(j))#Is m1 10^{ -9}

plt.savefig('QIsM2__t {0:03d}.png'.format(j))#Is m2 10^{ -7}

# Create a new figure and axes for plotting the variation in density

fig , ax = plt.subplots ()

# Plot the variation in density for M1 = 6*10**( -9)

plt.plot(xdim , uso[0], label='$t$ = 0 ', linewidth=3.0)

plt.plot(xdim , uso[57],label='$t$ = 12.19 ', linewidth=3.0)

plt.plot(xdim , uso[74], label='$t$ = 15.83 ', linewidth=3.0)

plt.plot(xdim , uso[100], label='$t$ = 21.39 ', linewidth=3.0)

plt.plot(xdim , uso[150], label='$t$ = 32.09 ', linewidth=3.0)

plt.plot(xdim , uso[200], label='$t$ = 42.79 ', linewidth=3.0)

plt.plot(xdim , uso[250], label='$t$ = 53.49 ', linewidth=3.0)

plt.plot(xdim , uso[300], label='$t$ = 64.18 ', linewidth=3.0)

plt.plot(xdim , uso[350], label='$t$ = 74.88 ', linewidth=3.0)

plt.plot(xdim , uso[400], label='$t$ = 85.58 ', linewidth=3.0)

plt.plot(xdim , uso[499], label='$t$ = 106.76 ', linewidth=3.0)

# Set labels and formatting for the plot

plt.ticklabel_format(style='sci',scilimits =(0.001,0),axis='z')

plt.rcParams["font.weight"] = "bold"

plt.rcParams["axes.labelweight"] = "bold"

plt.xlabel('Distance(cm)', fontsize=20, fontweight='bold')

plt.ylabel('Endothelial Cell \n density (gcm$ ^{-3}$)', fontsize=20,

fontweight='bold')
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# Create a new figure and axes for plotting the variation in density for

M2 = 1.5*10**( -7)

fig , ax = plt.subplots ()

# Plot the variation in density for M2 = 1.5*10**( -7)

plt.plot(xdim , uso[0], label='$t$ = 0 ',linewidth=3.0)

plt.plot(xdim , uso[57],label='$t$ = 12.19 ', linewidth=3.0)

plt.plot(xdim , uso[74], label='$t$ = 15.83 ', linewidth=3.0)

plt.plot(xdim , uso[100],label='$t$ = 21.39 ', linewidth=3.0)

plt.plot(xdim , uso[150],label='$t$ = 32.09 ', linewidth=3.0)

plt.plot(xdim , uso[200],label='$t$ = 42.79 ', linewidth=3.0)

plt.plot(xdim , uso[250], label='$t$ = 53.49 ',linewidth=3.0)

plt.plot(xdim , uso[300], label='$t$ = 64.18 ',linewidth=3.0)

plt.plot(xdim , uso[350], label='$t$ = 74.88 ',linewidth=3.0)

plt.plot(xdim , uso[400], label='$t$ = 85.58 ',linewidth=3.0)

plt.plot(xdim , uso[499], label='$t$ = 106.76 ',linewidth=3.0)

# Set labels and formatting for the plot

plt.ticklabel_format(style='sci',scilimits =(0.001,0),axis='z')

plt.rcParams["font.weight"] = "bold"

plt.rcParams["axes.labelweight"] = "bold"

plt.xlabel('Distance(cm)', fontsize=20, fontweight='bold')

plt.ylabel('Endothelial Cell \n density (gcm$ ^{-3}$)', fontsize=20,

fontweight='bold')

Listing C.2: Code for endothelial and stromal cell density

C.1.3 Code for the speed of the wound spread

# Import necessary packages

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.mlab as mlab

from matplotlib import rcParams

# Update the font size for the plot

rcParams.update ({"font.size":15})

# Set the total population size N

N = 500

# Define various parameter values

Dm = 1.0*10**(-9)

Du = 5.0*10**(-8)

Km = 5.0*10**(-5)

lambdau = 4.011*10**(-6)

de = 6.6625*10**(-6)

dk = 2.6625*10**(-5)

ds = 6.6625*10**(-6)
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# Parameters for transformations

lambdam = 1.0*10**(-8)

# Ku = 1.337*10**( -1)# For ce = 4.0*10**( -9)

Ku = 5.348*10**(-3) # For cs = 1.5*10**( -7)

ce = 4.0*10**(-9)

cs = 1.25*10**(-7)

u1 = 1.0*10**(-6)

# Nondimensional transformations

To = (1/lambdau)

Xo = np.math.sqrt((Du/lambdau))

Uo = (lambdau/Ku)

Mo = (lambdam/Ku)

A = 0.01

B = 0.01

C1 = ce/Mo

C2 = cs/Mo

L = 30/Xo

deltae = (de/lambdau)

deltas = (ds/lambdau)

deltak = (dk/lambdau)

# Different alpha values

alpha , beta = 0.0002, 12.46

alpha , beta = 0.02, 12.46

alpha , beta = 0.2, 12.46

alpha , beta = 2, 12.46

alpha , beta = 20, 12.46

alpha , beta = 200, 12.46

alpha , beta = 2000, 12.46

# Change beta values

alpha , beta = 0.02, 12.46

alpha , beta = 0.02, 1.246

alpha , beta = 0.02, 0.1246

alpha , beta = 0.02, 0.01246

alpha , beta = 0.02, 0.001246

ne = 0.001 # Endothelial cell density

ns = 0.009 # Stromal cell density

epsilon = u1/Uo

# Create a spatial grid

X, h = np.linspace(0, L, N, retstep=True)

# Define the model and equations

def model(es,t):

ba = es[:N]

My = es[N:2*N]

ne = es[2*N:3*N]
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ns = es[3*N:]

dbadt = np.zeros_like(ba)

dMydt = np.zeros_like(My)

dnedt = np.zeros_like(ne)

dnsdt = np.zeros_like(ns)

# Calculate finite differences

D2ba = (ba[2:] + ba[:-2] - 2*ba[1:-1]) / h**2

D2My = (My[2:] + My[:-2] - 2*My[1:-1]) / h**2

# Define differential equations

dbadt[1:-1] = ba[1:-1] + D2ba - ba[1:-1]**2

dMydt[1:-1] = ba[1:-1] + alpha * D2My - beta * My[1:-1]

A1 = np.heaviside ((My -(C1)), 0) # Endothelial

A2 = np.heaviside ((My -(C2)), 0) # Stromal

dnedt = (-deltas * ne * A1 ) - (deltak * ne * A1)

dnsdt = (-deltas * ns * A2 ) - (deltak * ns * A1)

return np.hstack ([dbadt , dMydt , dnedt , dnsdt ])

# Set initial conditions

mu , sig = L/2, 0.5

u0= epsilon*np.exp(-np.power((X - mu)/sig , 2.)/2)

#initial conditions here

ba0 = u0 *np.ones_like(X)

My0 = 0.0 *np.ones_like(X)

ne0 = 0.1 *np.ones(N)

ns0 = 0.9 *np.ones(N)

initi = np.hstack ([ba0, My0, ne0, ns0])

# Stop the simulation before it reaches the wound edges

Nt = 37

# Dimensionless time and space

t = np.linspace(0, Nt , N)

x = np.linspace(0, L, N)

# Solve ODE using odeint

sols = odeint(model , initi , t, rtol = 10**(-1), mxstep = 500000)#

usolution = Uo*(sols[:, :N])

msolution = Mo*(sols[:, N:2*N])

uso = A* (sols[:, 2*N:3*N])

umso = B* (sols[:, 3*N:4*N])

# Calculate dimensionless time and space

tdim = (t*To)/(24*60*60)

xdim = (x*Xo)

SX , ST = np.meshgrid(xdim , tdim)

# Define a function to calculate the distance from the wound

def distwound ():
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lst = []

lst2 = []

for line in uso:

for k, elem in enumerate(line):

if elem!= ne:

lst.append(xdim[k])

lst2.append(tdim[k])

break

return(lst , lst2)

# Distance and time for different alpha and beta combinations

D1, T1 = distwound ()

D2, T2 = distwound ()

D3, T3 = distwound ()

D4, T4 = distwound ()

D5, T5 = distwound ()

D6, T6 = distwound ()

D7, T7 = distwound ()

D8, T8 = distwound ()

# Plot distance vs. time for different alpha and beta combinations

plt.plot((tdim[(N-len(D1)):N]), (D1[:len(D1)]), label='$\\alpha$ , $\\

beta$ = 0.02, 12.46 ', linewidth=3.0)

plt.plot((tdim[(N-len(D2)):N]), (D2[:len(D2)]), label='$\\alpha$ , $\\

beta$ = 0.002 , 12.46 ', linewidth=3.0)

plt.plot((tdim[(N-len(D3)):N]), (D3[:len(D3)]), label='$\\alpha$ , $\\

beta$ = 0.0002 , 12.46 ', linewidth=3.0)

plt.plot((tdim[(N-len(D4)):N]), (D4[:len(D4)]), label='$\\alpha$ , $\\

beta$ = 0.2, 12.46 ', linewidth=3.0)

plt.plot((tdim[(N-len(D5)):N]), (D5[:len(D5)]), label='$\\alpha$ , $\\

beta$ = 2, 12.46 ', linewidth=3.0)

plt.plot((tdim[(N-len(D6)):N]), (D6[:len(D6)]), label='$\\alpha$ , $\\

beta$ = 20, 12.46 ', linewidth=3.0)

plt.plot((tdim[(N-len(D7)):N]), (D7[:len(D7)]), label='$\\alpha$ , $\\

beta$ = 200, 12.46 ', linewidth=3.0)

plt.plot((tdim[(N-len(D8)):N]), (D8[:len(D8)]), label='$\\alpha$ , $\\

beta$ = 2000, 12.46 ', linewidth=3.0)

plt.title('Distance against time when \n $\\ alpha$ is varied and $\\beta

=12.46$', fontsize=18, fontweight='bold')

plt.ylabel('Distance (x value) \n corresponding to the \n fall of density

(cm)',

rotation=90, fontsize=18, fontweight='bold')

plt.xlabel('Time (Days)', fontsize=18, fontweight='bold')

legend = plt.legend(loc='best', bbox_to_anchor =(0.9, -0.2), fontsize='

medium ')

plt.grid()

plt.show()

# Calculate and store the slopes for the distance vs. time plots

slope1, intercept1 = np.polyfit ((tdim[N-len(D1):N]) ,(D1[:len(D1)]),1)
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slope2, intercept2 = np.polyfit ((tdim[N-len(D2):N]) ,(D2[:len(D2)]),1)

slope3, intercept3 = np.polyfit ((tdim[N-len(D3):N]) ,(D3[:len(D3)]),1)

slope4, intercept4 = np.polyfit ((tdim[N-len(D4):N]) ,(D4[:len(D4)]),1)

slope5, intercept5 = np.polyfit ((tdim[N-len(D5):N]) ,(D5[:len(D5)]),1)

slope6, intercept6 = np.polyfit ((tdim[N-len(D6):N]) ,(D6[:len(D6)]),1)

slope7, intercept7 = np.polyfit ((tdim[N-len(D7):N]) ,(D7[:len(D7)]),1)

slope8, intercept8 = np.polyfit ((tdim[N-len(D8):N]) ,(D8[:len(D8)]),1)

AllSlopes = (slope1, slope2, slope3, slope4, slope5, slope6,slope7, slope

8)

AllSlopes

# A's for the plot of when betas are changed , and alphas kept constant.

A1, T1 = distwound ()

A2, T2 = distwound ()

A3, T3 = distwound ()

A4, T4 = distwound ()

A5, T5 = distwound ()

A6, T6 = distwound ()

A7, T7 = distwound ()

A8, T8 = distwound ()

# Plot distance vs. time for different alpha values and varied beta

plt.plot((tdim[(N-len(A1)):N]), (A1[:len(A1)]), label='$\\alpha$ , $\\

beta$ = 0.02, 12.46 ', linewidth=3.0)

plt.plot((tdim[(N-len(A2)):N]), (A2[:len(A2)]), label='$\\alpha$ , $\\

beta$ = 0.02, 1.246 ', linewidth=3.0)

plt.plot((tdim[(N-len(A3)):N]), (A3[:len(A3)]), label='$\\alpha$ , $\\

beta$ = 0.02, 0.1246 ', linewidth=3.0)

plt.plot((tdim[(N-len(A4)):N]), (A4[:len(A4)]), label='$\\alpha$ , $\\

beta$ = 0.02, 0.01246 ', linewidth=3.0)

plt.plot((tdim[(N-len(A5)):N]), (A5[:len(A5)]), label='$\\alpha$ , $\\

beta$ = 0.02, 124.6 ', linewidth=3.0)

plt.plot((tdim[(N-len(A6)):N]), (A6[:len(A6)]), label='$\\alpha$ , $\\

beta$ = 0.02, 1246.0 ', linewidth=3.0)

plt.plot((tdim[(N-len(A7)):N]), (A7[:len(A7)]), label='$\\alpha$ , $\\

beta$ = 0.02, 12460 ', linewidth=3.0)

plt.plot((tdim[(N-len(A8)):N]), (A8[:len(A8)]), label='$\\alpha$ , $\\

beta$ = 0.02, 0.001246 ', linewidth=3.0)

#Plot here

plt.title('Distance against time when \n $\\alpha =0.02$ and $\\beta$ is

varied ', fontsize=18, fontweight='bold')

plt.ylabel('Distance (x value) \n corresponding to the \n fall of density

(cm)',

rotation=90, fontsize=18, fontweight='bold')

plt.xlabel('Time (Days)', fontsize=18, fontweight='bold')

legend = plt.legend(loc='best', bbox_to_anchor =(0.9, -0.2), fontsize='

medium ')

plt.grid()

plt.show()
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# Calculate and store the slopes for the distance vs. time plots

slope21, intercept21 = np.polyfit ((tdim[N-len(A1):N]) ,(A1[:len(A1)]),1)

slope22, intercept22 = np.polyfit ((tdim[N-len(A2):N]) ,(A2[:len(A2)]),1)

slope23, intercept23 = np.polyfit ((tdim[N-len(A3):N]) ,(A3[:len(A3)]),1)

slope24, intercept24 = np.polyfit ((tdim[N-len(A4):N]) ,(A4[:len(A4)]),1)

slope25, intercept25 = np.polyfit ((tdim[N-len(A5):N]) ,(A5[:len(A5)]),1)

slope26, intercept26 = np.polyfit ((tdim[N-len(A6):N]) ,(A6[:len(A6)]),1)

slope27, intercept27 = np.polyfit ((tdim[N-len(A7):N]) ,(A7[:len(A7)]),1)

slope28, intercept28 = np.polyfit ((tdim[N-len(A8):N]) ,(A8[:len(A8)]),1)

slopes2 = (slope21, slope22, slope23, slope24, slope25, slope28, slope26,

slope27)

slopes2

Listing C.3: Code for the speed of the wound spread

C.2 Python scripts for analysis in chapter 4

C.2.1 Code for the SITR model

#I used small letters for the subscripts for ease of notation. ie for

deltaa , I used deltaA , Tz for Td.

# Import necessary libraries

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from matplotlib import rcParams

# Update the font size for the plot

rcParams.update ({"font.size":15})

# Set initial parameters and variables

N = 1

# Time points for the simulation

t = np.linspace(0, 400, 80)

# Infection rate

beta = 1.923 * 10**-7

# Transition rates within I

deltaA = 0.0769

deltaB = 0.25

deltaC = 0.166

#Recovery rates from T to S

lambdaB = 0.125

lambdaC = 0.033

lambdaD = 0.0192

#Transition rates (gamma) from I to T
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gammaB = 0.25

gammaC = 0.25

gammaD = 0.25

# For re-runnining when delta = 0.11

# gammaB = gammaC = gammaD = 0.35

# Define the SIR model using differential equations

def sirmodel(E,t):

S = E[:N]

Ia = E[N:2*N]

Ib = E[2*N:3*N]

Ic = E[3*N:4*N]

Iz = E[4*N:5*N]

Tb = E[5*N:6*N]

Tc = E[6*N:7*N]

Tz = E[7*N:8*N]

# Define differential equations for each compartment

dSdt = lambdaB * Tb + lambdaC * Tc + lambdaD * Tz - beta*S

dIadt = beta*S - deltaA * Ia

dIbdt = deltaA * Ia - Ib *( deltaB + gammaB)

dIcdt = deltaB * Ib - Ic *( deltaC + gammaC)

dIzdt = deltaC * Ic - gammaD * Iz

dTbdt = gammaB * Ib - lambdaB *Tb

dTcdt = gammaC * Ic - lambdaC *Tc

dTzdt = gammaD * Iz - lambdaD *Tz

return np.hstack ([dSdt , dIadt , dIbdt , dIcdt , dIzdt , dTbdt , dTcdt ,

dTzdt])

# Set initial conditions

Ia0 = Ib0 = Ic0 = Iz0 = np.zeros(N)

Tb0 = Tc0 = Tz0 = np.zeros(N)

I0 = Ia0 + Ib0 + Ic0 + Iz0

T0 = Tb0 + Tc0 + Tz0

S0 = np.ones(N)

initi = np.hstack ([S0, Ia0, Ib0, Ic0, Iz0, Tb0, Tc0, Tz0])

# Extract different compartments from the solutions

sols = odeint(sirmodel ,initi ,t)

Ssols = sols[:, :N]

Iasols = sols[:, N:2*N]

Ibsols = sols[:, 2*N:3*N]

Icsols = sols[:, 3*N:4*N]

Izsols = sols[:, 4*N:5*N]

Tbsols = sols[:, 5*N:6*N]

Tcsols = sols[:, 6*N:7*N]

Tzsols = sols[:, 7*N:]

# Calculate maximum and minimum values for plotting

Smax = (max(Ssols[:,1]))

Smin = (min(Ssols[:,1]))
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Imax = max(max(Iasols[:,1]), max(Ibsols[:,1]), max(Icsols[:,1]), max(

Izsols[:,1]))

Imin = min(min(Iasols[:,1]), min(Ibsols[:,1]), min(Icsols[:,1]), min(

Izsols[:,1]))

Tmax = max(max(Tbsols[:,1]), max(Tcsols[:,1]), max(Tzsols[:,1]))

Tmin = min(min(Tbsols[:,1]), min(Tcsols[:,1]), min(Tzsols[:,1]))

# Create a plot

fig = plt.figure ()

ax = fig.add_subplot(111, axisbelow=True)

ax.ticklabel_format(useOffset=False)

# Plot different compartments with labels

ax.plot(t, (Ssols[:,1]), 'black', lw=2.5, label='S')

ax.ticklabel_format(style='sci',scilimits =(Smax ,Smin),axis='y')

#Infected

ax.ticklabel_format(style='sci',scilimits =(Imax ,Imin),axis='y')

ax.plot(t, (Iasols[:,1])/1,'orange ', lw=2.5, label='$I_{a}$')

ax.plot(t, (Ibsols[:,1])/1, 'blue', lw=2.5, label='$I_{b}$')

ax.plot(t, (Icsols[:,1])/1, 'red', lw=2.5, label='$I_{c}$')

ax.plot(t, (Izsols[:,1])/1, 'green', lw=2.5, label='$I_{d}$')

#Treated

ax.ticklabel_format(style='sci',scilimits =(Tmin ,Tmax),axis='y')

ax.plot(t, (Tbsols[:,1])/1, 'yellow ', lw=2.5, label='$T_{b}$')

ax.plot(t, (Tcsols[:,1])/1, 'greenyellow ', lw=2.5, label='$T_{c}$')

ax.plot(t, (Tzsols[:,1])/1, 'purple ', lw=2.5, label='$T_{d}$')

# Customize the plot with titles , labels , and legend

ax.set_title('Susceptible population ', fontsize=22)

ax.set_title('Infected population ', fontsize=22)

ax.set_title('Treated population ', fontsize=22)

ax.set_xlabel('Time (Weeks)', fontweight='bold')

ax.set_ylabel('Susceptible population (S)',fontweight='bold')

ax.set_ylabel('Infected proportion of \n the total population ',

fontweight='bold')

ax.set_ylabel('Treated proportion of \n the total population ',

fontweight='bold')

ax.grid(b=True , which='major ', c='#bbbbbb ', lw=1, ls='-')

legend = ax.legend ()

legend = ax.legend(loc='lower right', bbox_to_anchor =(1.0, 0.8),shadow=

True ,

fontsize='large',fontweight='bold')

legend = ax.legend(loc='upper right', bbox_to_anchor =(1.35, 1.0),

shadow=True , fontsize='x-large ')

# Show the plot

plt.show()

Listing C.4: Code for the SITR model
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C.2.2 Code for the betas

# Import necessary packages

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from matplotlib import collections as matcoll

from matplotlib import rcParams

rcParams.update ({"font.size": 15})

N = 1

t = np.linspace(0, 400, 80)

def sirmodel(E, t, beta , deltaA , deltaB , deltaC , lambdaB , lambdaC ,

lambdaD , gammaB , gammaC , gammaD):

S = E[:N]

Ia = E[N:2*N]

Ib = E[2*N:3*N]

Ic = E[3*N:4*N]

Iz = E[4*N:5*N]

Tb = E[5*N:6*N]

Tc = E[6*N:7*N]

Tz = E[7*N:8*N]

dSdt = lambdaB * Tb + lambdaC * Tc + lambdaD * Tz - beta * S

dIadt = beta * S - deltaA * Ia

dIbdt = deltaA * Ia - Ib * (deltaB + gammaB)

dIcdt = deltaB * Ib - Ic * (deltaC + gammaC)

dIzdt = deltaC * Ic - gammaD * Iz

dTbdt = gammaB * Ib - lambdaB * Tb

dTcdt = gammaC * Ic - lambdaC * Tc

dTzdt = gammaD * Iz - lambdaD * Tz

return np.hstack ([dSdt , dIadt , dIbdt , dIcdt , dIzdt , dTbdt , dTcdt ,

dTzdt])

Ia0 = Ib0 = Ic0 = Iz0 = np.zeros(N)

Tb0 = Tc0 = Tz0 = np.zeros(N)

I0 = Ia0 + Ib0 + Ic0 + Iz0

T0 = Tb0 + Tc0 + Tz0

S0 = np.ones(N)

initi = np.hstack ([S0, Ia0, Ib0, Ic0, Iz0, Tb0, Tc0, Tz0])

beta = (3.0099 * 10**-8, 1.923 * 10**-7, 6.2798 * 10**-7, 8.0410 * 10**-7

)

deltaA = 0.0769

deltaB = 0.25

deltaC = 0.166
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lambdaB = 0.125

lambdaC = 0.033

lambdaD = 0.0192

gammaB = 0.25

gammaC = 0.25

gammaD = 0.25

TDD_t303 = []

for i in range(len(beta)):

sols = odeint(sirmodel , initi , t, args=(beta[i], deltaA , deltaB ,

deltaC , lambdaB , lambdaC , lambdaD , gammaB , gammaC , gammaD))

Ssols = sols[:, :N]

Iasols = sols[:, N:2*N]

Ibsols = sols[:, 2*N:3*N]

Icsols = sols[:, 3*N:4*N]

Izsols = sols[:, 4*N:5*N]

Tbsols = sols[:, 5*N:6*N]

Tcsols = sols[:, 6*N:7*N]

Tzsols = sols[:, 7*N:]

D1 = (Ibsols + Icsols + Izsols + Tbsols + Tcsols + Tzsols)

TDD_t303.append(D1[:, 1][60])

x = beta

y = TDD_t303

lines = []

for i in range(len(x)):

pair = [(x[i], 0), (x[i], y[i])]

lines.append(pair)

linecoll = matcoll.LineCollection(lines)

fig = plt.figure ()

ax = fig.add_subplot(111, axisbelow=True)

fig , ax = plt.subplots ()

ax.add_collection(linecoll)

colours = ['red', 'blue', 'green', 'gold']

plt.scatter(x, y, s=100, c=colours)

xz = ('DRC', 'Ghana ', 'Benin', 'Ivory Coast')

plt.xticks(x, xz , rotation=10, fontsize=14, fontweight='bold')

plt.ticklabel_format(axis="y", style="sci", scilimits =(0, 0))

plt.ylabel('Prevalence of BU', fontweight='bold')

plt.xlabel('Countries ', fontsize=18, fontweight='bold')

plt.xlim(1e-9, 8.5e-7)

plt.ylim(5e-9, 2.5e-5)

plt.grid()

plt.show()

Listing C.5: Code for a range of betas
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C.2.3 Code for the deltas

# Import necessary packages

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from matplotlib import rcParams

# Update the font size for the plot

rcParams.update ({"font.size": 15})

N = 1

t = np.linspace(0, 400, 80)

def sirmodel(E, t, beta , deltaA , deltaB , deltaC , lambdaB , lambdaC ,

lambdaD , gammaB , gammaC , gammaD):

S = E[0]

Ia = E[1]

Ib = E[2]

Ic = E[3]

Iz = E[4]

Tb = E[5]

Tc = E[6]

Tz = E[7]

dSdt = lambdaB * Tb + lambdaC * Tc + lambdaD * Tz - beta * S

dIadt = beta * S - deltaA * Ia

dIbdt = deltaA * Ia - Ib * (deltaB + gammaB)

dIcdt = deltaB * Ib - Ic * (deltaC + gammaC)

dIzdt = deltaC * Ic - gammaD * Iz

dTbdt = gammaB * Ib - lambdaB * Tb

dTcdt = gammaC * Ic - lambdaC * Tc

dTzdt = gammaD * Iz - lambdaD * Tz

return np.hstack ([dSdt , dIadt , dIbdt , dIcdt , dIzdt , dTbdt , dTcdt ,

dTzdt])

Ia0 = Ib0 = Ic0 = Iz0 = 0

Tb0 = Tc0 = Tz0 = 0

I0 = Ia0 + Ib0 + Ic0 + Iz0

T0 = Tb0 + Tc0 + Tz0

S0 = 1

initi = np.hstack ([S0, Ia0, Ib0, Ic0, Iz0, Tb0, Tc0, Tz0])

beta = 1.0 * 10**-5

deltaA = 0.0769

deltaB = deltaC = (0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2)

lambdaB = 0.125
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lambdaC = 0.033

lambdaD = 0.0192

gammaB = 0.25

gammaC = 0.25

gammaD = 0.25

IRatio = (20.7/100000) * np.ones(len(deltaB))

TDDD_t303 = []

for i in range(len(deltaB)):

sols = odeint(sirmodel , initi , t, args=(beta , deltaA , deltaB[i],

deltaC[i], lambdaB , lambdaC , lambdaD , gammaB , gammaC , gammaD))

Ssols = sols[:, 0]

Iasols = sols[:, 1]

Ibsols = sols[:, 2]

Icsols = sols[:, 3]

Izsols = sols[:, 4]

Tbsols = sols[:, 5]

Tcsols = sols[:, 6]

Tzsols = sols[:, 7]

D1 = (Ibsols + Icsols + Izsols + Tbsols + Tcsols + Tzsols)

TDDD_t303.append(D1[60])

fig = plt.figure ()

ax = fig.add_subplot(111, axisbelow=True)

deltaB_values = ('0.05', '0.075 ', '0.1', '0.125 ', '0.15', '0.175 ', '0.2')

plt.plot(deltaB , TDDD_t303, marker="o", linewidth=3.0, linestyle="-",

markersize=12, label=r'$\delta$ ', color='green')

plt.plot(deltaB , IRatio , linewidth=3.0, linestyle='dashed ', label= r'$Z_\

delta$ ', color='red')

plt.xticks(deltaB , deltaB_values)

plt.xticks(rotation=45)

plt.ticklabel_format(axis="y", style="sci", scilimits =(0, 0))

plt.ylabel('Proportion of the infected \n and treated population ',

fontweight='bold')

plt.xlabel(r'$\delta_b , \delta_c$ values ', fontsize=18, fontweight='bold'

)

legend = ax.legend ()

legend = ax.legend(loc='upper left', bbox_to_anchor =(0, 1), shadow=True ,

fontsize='smaller ')

plt.grid()

plt.show()

Listing C.6: Code for the Deltas

C.2.4 Code for the gammas
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# Import necessary packages

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from matplotlib import rcParams

# Update the font size for the plot

rcParams.update ({"font.size": 15})

# Set the total population size N

N = 1

t = np.linspace(0, 400, 80)

# Define the SIR model equations

def sirmodel(E, t, beta , deltaA , deltaB , deltaC , lambdaB , lambdaC ,

lambdaD , gammaB , gammaC , gammaD):

S = E[:N]

Ia = E[N:2*N]

Ib = E[2*N:3*N]

Ic = E[3*N:4*N]

Iz = E[4*N:5*N]

Tb = E[5*N:6*N]

Tc = E[6*N:7*N]

Tz = E[7*N:8*N]

dSdt = lambdaB * Tb + lambdaC * Tc + lambdaD * Tz - beta * S

dIadt = beta * S - deltaA * Ia

dIbdt = deltaA * Ia - Ib * (deltaB + gammaB)

dIcdt = deltaB * Ib - Ic * (deltaC + gammaC)

dIzdt = deltaC * Ic - gammaD * Iz

dTbdt = gammaB * Ib - lambdaB * Tb

dTcdt = gammaC * Ic - lambdaC * Tc

dTzdt = gammaD * Iz - lambdaD * Tz

return np.hstack ([dSdt , dIadt , dIbdt , dIcdt , dIzdt , dTbdt , dTcdt ,

dTzdt])

# Initial conditions for compartments

Ia0 = Ib0 = Ic0 = Iz0 = np.zeros(N)

Tb0 = Tc0 = Tz0 = np.zeros(N)

I0 = Ia0 + Ib0 + Ic0 + Iz0

T0 = Tb0 + Tc0 + Tz0

S0 = np.ones(N)

initi = np.hstack ([S0, Ia0, Ib0, Ic0, Iz0, Tb0, Tc0, Tz0])

# Define parameter values

beta = 1.923 * 10**-7

deltaA = 0.0769

deltaB = 0.25
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deltaC = 0.166

lambdaB = 0.125

lambdaC = 0.033

lambdaD = 0.0192

gammaB = gammaC = gammaD = (0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.5)

Ratio = (7/10) * np.ones(len(gammaD))

# Initialize a list to store results

TgAll_t303 = []

# Solve the SIR model for different gamma values

for i in range(len(gammaD)):

sols = odeint(sirmodel , initi , t, args=(beta , deltaA , deltaB , deltaC ,

lambdaB , lambdaC , lambdaD , gammaB[i], gammaC[i], gammaD[i]))

Ssols = sols[:, :N]

Iasols = sols[:, N:2*N]

Ibsols = sols[:, 2*N:3*N]

Icsols = sols[:, 3*N:4*N]

Izsols = sols[:, 4*N:5*N]

Tbsols = sols[:, 5*N:6*N]

Tcsols = sols[:, 6*N:7*N]

Tzsols = sols[:, 7*N:]

TD = (Icsols +Izsols)/Ibsols

TgAll_t303.append(TD[60])

# Create the plot

fig = plt.figure ()

ax = fig.add_subplot(111, axisbelow=True)

tggD = ('0.20', '0.25', '0.30', '0.35', '0.40', '0.45', '0.5')

plt.plot(gammaD , TgAll_t303, marker="o", linestyle='-', linewidth=3.0,

markersize=12, label= r'$\gamma$ ')

plt.plot(gammaD , Ratio , linewidth=3.0, linestyle='dashed ', label= r'$Z_\

gamma$ ')

plt.xticks(gammaD , tggD)

plt.xticks(rotation=45)

plt.ticklabel_format(axis="y", style="sci", scilimits =(0, 0))

plt.ylabel('Ratio of the ulcerative to \n total BU lesion cases',

fontweight='bold')

plt.xlabel(r'$\gamma$ values ', fontsize=18, fontweight='bold')

legend = ax.legend ()

legend = ax.legend(loc='upper right', bbox_to_anchor =(1.0, 1.0), shadow=

True , fontsize='smaller ')

plt.grid()

plt.show()

Listing C.7: Code for the gammas

C.2.5 Code for γb
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# Import necessary packages

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from matplotlib import rcParams

# Update the font size for the plot

rcParams.update ({"font.size": 15})

# Set the total population size N

N = 1

t = np.linspace(0, 400, 80)

# Define the SIR model equations

def sirmodel(E, t, beta , deltaA , deltaB , deltaC , lambdaB , lambdaC ,

lambdaD , gammaB , gammaC , gammaD):

# Define compartments

S = E[0]

Ia = E[1]

Ib = E[2]

Ic = E[3]

Iz = E[4]

Tb = E[5]

Tc = E[6]

Tz = E[7]

# Define differential equations for each compartment

dSdt = lambdaB * Tb + lambdaC * Tc + lambdaD * Tz - beta * S

dIadt = beta * S - deltaA * Ia

dIbdt = deltaA * Ia - Ib * (deltaB + gammaB)

dIcdt = deltaB * Ib - Ic * (deltaC + gammaC)

dIzdt = deltaC * Ic - gammaD * Iz

dTbdt = gammaB * Ib - lambdaB * Tb

dTcdt = gammaC * Ic - lambdaC * Tc

dTzdt = gammaD * Iz - lambdaD * Tz

return np.hstack ([dSdt , dIadt , dIbdt , dIcdt , dIzdt , dTbdt , dTcdt ,

dTzdt])

# Initial conditions for compartments

Ia0 = Ib0 = Ic0 = Iz0 = 0

Tb0 = Tc0 = Tz0 = 0

I0 = Ia0 + Ib0 + Ic0 + Iz0

T0 = Tb0 + Tc0 + Tz0

S0 = 1

initi = np.hstack ([S0, Ia0, Ib0, Ic0, Iz0, Tb0, Tc0, Tz0])

# Define various parameter values

beta = 1.923 * 10**-7

deltaA = 0.0769
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deltaB = 0.25

deltaC = 0.166

lambdaB = 0.125

lambdaC = 0.033

lambdaD = 0.0192

gammaB = (0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95)

gammaC = 0.25

gammaD = 0.25

# Initialize a list to store results

TDDD_t303b = [ ]

TDDD_t303c = [ ]

TDDD_t303z = [ ]

# Solve the SIR model for different gammaB values

for i in range((len(gammaB))):

sols = odeint(sirmodel , initi , t, args=(beta , deltaA , deltaB , deltaC ,

lambdaB , lambdaC , lambdaD , gammaB[i], gammaC , gammaD))

Ssols = sols[:, 0]

Iasols = sols[:, 1]

Ibsols = sols[:, 2]

Icsols = sols[:, 3]

Izsols = sols[:, 4]

Tbsols = sols[:, 5]

Tcsols = sols[:, 6]

Tzsols = sols[:, 7]

TDDD_t303b.append(Ibsols[78])

TDDD_t303c.append(Icsols[78])

TDDD_t303z.append(Izsols[78])

# Create the plot

fig = plt.figure ()

ax = fig.add_subplot(111, axisbelow=True)

tgDD = ('0.05', '0.2', '0.35', '0.5', '0.65', '0.8', '0.95')

plt.plot(gammaB , TDDD_t303b, marker="o", linewidth=3.0, linestyle="-",

markersize=12, label= r'$I_{b}$')

plt.plot(gammaB , TDDD_t303c, marker="o", linewidth=3.0, linestyle="-",

markersize=12, label= r'$I_{c}$')

plt.plot(gammaB , TDDD_t303z, marker="o", linewidth=3.0, linestyle="-",

markersize=12, label= r'$I_{d}$')

plt.xticks(gammaB , tgDD)

plt.xticks(rotation=45)

plt.ticklabel_format(axis="y", style="sci", scilimits =(0, 0))

plt.ylabel('Proportion of the \n infected population ', fontweight='bold')

plt.xlabel(r'$\gamma_b$ values ', fontsize=18, fontweight='bold')

legend = ax.legend ()

legend = ax.legend(loc='upper left', bbox_to_anchor =(0.8, 1), shadow=True

, fontsize='smaller ')

plt.grid()

plt.show()
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Listing C.8: Code for the γb

C.3 R scripts for chapter 5

C.3.1 Code for the probabilistic sensitivity analysis

# Set the scientific notation threshold

options(scipen = 999)

# Load required libraries

library(plyr)

library(ggplot2)

library(fitdistrplus)

library(mc2d)

library(scales)

# Set the number of simulations and willingness to pay

Num_Sim = 10000

WTP = 200

# Define a function to calculate probabilities

dTreeProbs <- function(sigma_p, sigma_r, omega_p, omega_r, beta_p, beta_r

, alpha_1, alpha_2, treatment_completion , minor_disability) {

p1 <- (omega_p*(alpha_1 + alpha_2)) + ((1 - sigma_p)*(1 - alpha_1 -

alpha_2))

p2 <- 1 - p1

p3 <- (omega_r*(alpha_1 + alpha_2)) + ((1 - sigma_r)*(1 - alpha_1 -

alpha_2))

p4 <- 1 - p3

p5 <- ((1 - sigma_p)*(1 - alpha_1 - alpha_2))/p1

p6 <- (omega_p * alpha_1 * beta_p)/p1

p7 <- 1 - p6 - p5

p8 <- (sigma_p*(1 - alpha_1 - alpha_2))/p2

p9 <- 1 - p8

p10 <- omega_r * alpha_1 * beta_r / p3

p12 <- ((1 - sigma_r)*(1 - alpha_1 - alpha_2))/p3

p11 <- 1 - p10 - p12

p13 <- (sigma_r*(1 - alpha_1 - alpha_2))/p4

p14 <- 1 - p13

p15 <- treatment_completion

p16 <- 1 - p15

p17 <- minor_disability

p18 <- 1 - p17

p19 <- treatment_completion

p20 <- 1 - p19

p21 <- minor_disability

p22 <- 1 - p21

probs <- c(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14,

p15, p16, p17, p18, p19, p20, p21, p22)

return(probs)
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}

# Set parameter values

sigma_p <- 1

sigma_r <- 1

omega_p <- 0.98

omega_r <- 0.88

beta_p <- 0.4

beta_r <- 1

alpha_1 <- 0.125

alpha_2 <- 0.485

treatment_completion <- 0.652

minor_disability <- 0.8

# Calculate probabilities

probs <- dTreeProbs(sigma_p, sigma_r, omega_p, omega_r, beta_p, beta_r,

alpha_1, alpha_2, treatment_completion , minor_disability)

# Define DALY values

D1 = 6.364

D2a = 0

D2b = 4.752

D3 = 6.952

D4 = 20.636

Dx = 0

dalys <- c(D1, D2a, D2b, D3, D4, Dx)

# Define cost values

Zr = 0.29

Zp = 12.77

Zx = 5.1

Z1 = 5.1

Z2 = 2415.62

Z3 = 3623.43

costs <- c(Zr, Zp, Zx , Z1, Z2, Z3)

# Define a function to calculate expected effects

dTreeEffects <- function(probs , dalys) {

e1 <- probs[15]*dalys[2] +probs[16]*dalys[3]

e2 <- probs[17]*dalys[4] + probs[18]*dalys[5]

e3 <- probs[5]*dalys[6] + probs[6]*e1 + probs[7]*e2

e4 <- probs[9]*dalys[1]

e5 <- probs[1]*e3 + probs[2]*e4

e6 <- probs[19]*dalys[2] + probs[20]*dalys[3]

e7 <- probs[21]*dalys[4]+ probs[22]*dalys[5]

e8 <- probs[12]*dalys[6] + probs[11]*e7 + probs[10]*e6

e9 <- probs[14]*dalys[1]

e10 <- probs[3]*e8 + probs[4]*e9

expEffects <- c(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10)

return(expEffects)

}
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expEffects <- dTreeEffects(probs , dalys)

# Define a function to calculate expected costs

dTreeCosts <- function(probs , costs){

c1 <- costs[2] + costs[4]

c2 <- probs[17]*(costs[5]+ costs[2]) + probs[18]*(costs[6]+ costs[2])

c3 <- probs[5]*costs[3] + probs[6]*c1 + probs[7]*c2

c4 <- costs[2] + probs[9]*costs[5]

c5 <- probs[1]*c3 + probs[2]*c4

c6 <- costs[1] + costs[4]

c7 <- probs[21] * (costs[1] + costs[5]) + probs[22] * (costs[1] + costs

[6])

c8 <- probs[10] * c6 + probs[11] * c7 + probs[12] * (costs[1] + costs[3

])

c9 <- costs[1] + probs[14] * costs[5]

c10 <- probs[3] * c8 + probs[4] * c9

expCosts <- c(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10)

return(expCosts)

}

expCosts = dTreeCosts(probs , costs)

# Calculate Incremental Cost -Effectiveness Ratio (ICER)

A = expCosts[10] - expCosts[5]

B = expEffects[10] - expEffects[5]

icer = A / B

icer

serial = c(seq(1,Num_Sim))

simdataX = as.data.frame(serial)

# Simulate data for sensitivity analysis

simdataX$sigma_p = runif(Num_Sim , min = 0.69, max = 1)

simdataX$sigma_r = runif(Num_Sim , min = 0.84, max = 1)

simdataX$omega_p = runif(Num_Sim , min = 0.91, max = 1)

simdataX$omega_r = runif(Num_Sim , min = 0.77, max = 0.95)

simdataX$beta_p = runif(Num_Sim , min = 0.3, max = 0.9)

simdataX$beta_r = runif(Num_Sim , min = 0.9, max = 1)

simdataX$alpha_1 = runif(Num_Sim , min = 0.1125, max = 0.1375)

simdataX$alpha_2 = runif(Num_Sim , min = 0.4365, max = 0.5335)

simdataX$treatment_completion = runif(Num_Sim , min = 0.46, max = 0.84)

simdataX$minor_disability = runif(Num_Sim , min = 0.72, max = 0.88)

simdataX$D1 = runif(Num_Sim , min = 6.1776, max = 7.5504)

simdataX$D2a = runif(Num_Sim , min = 0.000, max = 0.50)

simdataX$D2b = runif(Num_Sim , min = 4.2768, max = 5.2272)

simdataX$D3 = runif(Num_Sim , min = 6.2568, max = 7.6472)

simdataX$D4 = runif(Num_Sim , min = 18.5724, max = 22.6996)

simdataX$Dx = runif(Num_Sim , min = 0, max = 0.5)

simdataX$Zr = runif(Num_Sim , min = 0.16, max = 0.58)
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simdataX$Zp = runif(Num_Sim , min = 11.4929, max = 14.047)

simdataX$Zx = runif(Num_Sim , min = 0.57, max = 5.1)

simdataX$Z1 = runif(Num_Sim , min = 0.57, max = 5.1)

simdataX$Z2 = runif(Num_Sim , min = 2217.22, max = 2614.02)

simdataX$Z3 = runif(Num_Sim , min = 3325.83, max = 3921.03)

simdataX$A = numeric(Num_Sim)

simdataX$B = numeric(Num_Sim)

simdataX$ICER = numeric(Num_Sim)

for (i in 1:Num_Sim) {

simDALYS <- c(simdataX$D1[i], simdataX$D2a[i], simdataX$D2b[i],

simdataX$D3[i], simdataX$D4[i], simdataX$Dx[i])

simCosts <- c(simdataX$Zr[i], simdataX$Zp[i], simdataX$Zx[i], simdataX$

Z1[i], simdataX$Z2[i], simdataX$Z3[i])

simProbs <- dTreeProbs(simdataX$sigma_p[i], simdataX$sigma_r[i],

simdataX$omega_p[i], simdataX$omega_r[i], simdataX$beta_p[i], simdataX

$beta_r[i], simdataX$alpha_1[i], simdataX$alpha_2[i], simdataX$

treatment_completion[i], simdataX$minor_disability[i])

expEffects <- dTreeEffects(simProbs , simDALYS)

expCosts <- dTreeCosts(simProbs , simCosts)

simdataX$A[i] <- expCosts[10] - expCosts[5]

simdataX$B[i] <- expEffects[5] - expEffects[10]

simdataX$ICER[i] <- simdataX$A[i]/simdataX$B[i]

}

# Write the simulation data to a CSV file

write.csv(simdataX , "simdataX.csv")

# Calculate Cost -Effectiveness (CE) and create a CE column

simdataX$model = WTP * simdataX$B

simdataX$model_true = simdataX$model - simdataX$A

simdataX$CE = ifelse(test = simdataX$model_true > 0, yes = 1, no = 0 )

simdataX$CE_col = ifelse(test = simdataX$CE == 0, yes = 2, no = 3 )

table(simdataX$CE_col )

# Create a scatter plot of Incremental DALY averted vs. Incremental costs

df <- data.frame(simdataX$B, simdataX$A)

h <- 0

v <- 0

plot1 <- ggplot(df, aes(x=simdataX$B, y=simdataX$A)) + geom_point()

Z = coef(lm(simdataX$A ~ simdataX$B))

plot1 + geom_hline(aes(yintercept=h)) + geom_vline(aes(xintercept=v)) +

labs(x = "Incremental DALY averted", y = "Incremental costs") +

scale_y_continuous(labels=dollar_format(prefix="$")) +

geom_point(colour = "blue") + theme(text = element_text(size = 35))

Listing C.9: Code for the probabilistic sensitivity analysis
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C.4 NetLogo scripts for chapter 6

C.4.1 Code for SR and CHV

globals [

sink-patches

]

breed [popns popn]

breed [chvs chv]

popns-own [

; Individual attributes

noDisability?

minorDisability?

majorDisability?

infected?

infectedTwo?

infectedThree?

hospitaltwo?

hospitalthree?

antibiotics?

susceptible?

infection-length

infection-lengthTwo

antibiotic-time

hospital-time-two

hospital-time-three

threshold-timeone

threshold-timeTwo

recovery-timeone

recovery-timetwo

recovery-timethree

BU-symptoms

infectiousness

threshold-time

self-refer-prob-category1

self-refer-prob-category2

self-refer-prob-category3

nb-susceptible

nb-infected

nb-recovered

nb-infectedTwo

nb-infectedThree

nb-antibiotics

nb-hospitaltwo

nb-hospitalthree

nb-noDisability

nb-minorDisability

nb-majorDisability

]
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to setup

clear-all

setup-patches

setup-people

reset-ticks

end

to setup-patches

clear-all

let sink-patch-radius Size-of-the-patch

let sink-centre patch 0 0

set sink-patches [patches in-radius sink-patch-radius] of sink-centre

ask sink-patches [ set pcolor gray ]

end

; Set initial attributes for people

to setup-people

create-popns initial-people

[

setxy random-xcor random-ycor

set noDisability? true

set minorDisability? false

set majorDisability? false

set hospitaltwo? false

set hospitalthree? false

set antibiotics? false

set infected? false

set infectedTwo? false

set infectedThree? false

set susceptible? true

set shape "person"

set color blue

set infection-length 0

set infection-lengthTwo 0

set antibiotic-time 0

set hospital-time-two 0

set hospital-time-three 0

set BU-symptoms random-exponential average-time-BU-symptoms

set threshold-timeone random-exponential average-threshold-timeone

set threshold-timeTwo random-exponential average-threshold-timetwo

set recovery-timeone random-exponential average-recovery-timeone

set recovery-timetwo random-exponential average-recovery-timetwo

set recovery-timethree random-exponential average-recovery-timethree

set threshold-time BU-symptoms + threshold-timeone

set infectiousness average-infectiousness

set self-refer-prob-category1 average-self-refer-prob-category1

set self-refer-prob-category2 average-self-refer-prob-category2

set self-refer-prob-category3 average-self-refer-prob-category3

]
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create-chvs initial-chv

[

setxy random-xcor random-ycor

set shape "person"

set color white

]

end

to assign-color

if noDisability? [ set color cyan ]

if minorDisability? [ set color pink ]

if majorDisability? [ set color gray ]

if antibiotics? [ set color brown ]

if hospitaltwo? [ set color magenta ]

if hospitalthree? [ set color orange ]

if infected? [ set color red ]

if infectedTwo? [ set color green ]

if infectedThree? [ set color yellow ]

end

to go

ask popns[ assign-color]

ask popns[ infect_start]

ask popns with [ infected? ]

[ infect_two ]

ask popns with [ infectedTwo? ]

[ infect_three ]

ask popns [self-referral]

ask popns [meet-chvs]

ask popns [recover]

ask popns [move-time-on]

ask turtles [move]

ask popns [ clear-count ]

tick

end

to move

rt random-float 360

fd 1

end

; Define a function to reset count variables

to clear-count

set nb-susceptible initial-people

set nb-infected 0

set nb-infectedTwo 0

set nb-infectedThree 0

set nb-antibiotics 0

set nb-hospitaltwo 0

set nb-hospitalthree 0

set nb-noDisability initial-people

set nb-minorDisability 0
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set nb-majorDisability 0

end

; Handle the initial infection

to infect_start

let healthy (popns-on sink-patches) with [ susceptible? ]

ask healthy

[

set infected? true

set susceptible? false

set nb-infected (nb-infected + 1)

set nb-susceptible (nb-susceptible - 1)

]

end

; Handle the first category of infection

to infect_two

if infection-length > threshold-time

[

set infected? false

set infectedTwo? true

set nb-infectedTwo (nb-infectedTwo + 1)

set nb-infected (nb-infected - 1)

]

end

; Handle the second category of infection

to infect_three

if infection-lengthTwo > threshold-timeTwo

[

set infectedTwo? false

set infectedThree? true

set nb-infectedThree (nb-infectedThree + 1)

set nb-infectedTwo (nb-infectedTwo - 1)

]

end

; Handle self-referral to treatment or hospitals

to self-referral

if (infection-length > BU-symptoms)

[

if (infected? and random-float 100 < self-refer-prob-category1)

[

set antibiotics? true

set infected? false

set nb-antibiotics (nb-antibiotics + 1)

set nb-infected (nb-infected - 1)

]

if (infectedtwo? and random-float 100 < self-refer-prob-category2)

[
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set hospitaltwo? true

set infectedtwo? false

set nb-hospitaltwo (nb-hospitaltwo + 1)

set nb-infectedTwo (nb-infectedTwo - 1)

]

if (infectedthree? and random-float 100 < self-refer-prob-category3)

[

set hospitalthree? true

set infectedthree? false

set nb-hospitalthree (nb-hospitalthree + 1)

set nb-infectedThree (nb-infectedThree - 1)

]

]

end

; Handle interaction with CHVs

to meet-chvs

if any? other chvs-here

\textcolor{red }{[if infected? and (infection-length > BU-symptoms)}

[set antibiotics? true

set infected? false

set nb-antibiotics (nb-antibiotics + 1)

set nb-infected (nb-infected - 1)

set infection-length 0 ]

if infectedtwo?

[set hospitaltwo? true

set infectedtwo? false

set nb-hospitaltwo (nb-hospitaltwo + 1)

set nb-infectedTwo (nb-infectedTwo - 1)

set infection-length 0

set infection-lengthtwo 0 ]

if infectedthree?

[set hospitalthree? true

set infectedthree? false

set nb-hospitalthree (nb-hospitalthree + 1)

set infection-length 0

set infection-lengthtwo 0

set nb-infectedThree (nb-infectedThree - 1) ]

]

end

; Handle recovery from antibiotics or hospitalization

to recover

if antibiotics?

[

if antibiotic-time > recovery-timeone

[

set susceptible? true

set nb-susceptible (nb-susceptible + 1)

set antibiotics? false
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set nb-antibiotics (nb-antibiotics - 1)

set antibiotic-time 0

set threshold-timeone random-exponential average-threshold-timeone

set threshold-timeTwo random-exponential average-threshold-timetwo

set recovery-timeone random-exponential average-recovery-timeone

set recovery-timetwo random-exponential average-recovery-timetwo

set recovery-timethree random-exponential

average-recovery-timethree

set BU-symptoms random-exponential average-time-BU-symptoms

set threshold-time BU-symptoms + threshold-timeone

]

]

if hospitaltwo?

[

if hospital-time-two > recovery-timetwo

[

if not majordisability?

[ set minorDisability? true ]

set noDisability? false

set nb-noDisability (nb-noDisability - 1)

set susceptible? true

set nb-susceptible (nb-susceptible + 1)

set hospitaltwo? false

set nb-hospitaltwo (nb-hospitaltwo - 1)

set hospital-time-two 0

set threshold-timeone random-exponential

average-threshold-timeone

set threshold-timeTwo random-exponential

average-threshold-timetwo

set recovery-timeone random-exponential average-recovery-timeone

set recovery-timetwo random-exponential average-recovery-timetwo

set recovery-timethree random-exponential

average-recovery-timethree

set BU-symptoms random-exponential average-time-BU-symptoms

set threshold-time BU-symptoms + threshold-timeone

]

]

if hospitalthree?

[

if hospital-time-three > recovery-timethree

[

set majorDisability? true

set minorDisability? false

set noDisability? false

set nb-noDisability (nb-noDisability - 1)

set susceptible? true

set nb-susceptible (nb-susceptible + 1)

set hospitalthree? false

set nb-hospitalthree (nb-hospitalthree - 1)
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set hospital-time-three 0

set threshold-timeone random-exponential average-threshold-timeone

set threshold-timeTwo random-exponential average-threshold-timetwo

set recovery-timeone random-exponential average-recovery-timeone

set recovery-timetwo random-exponential average-recovery-timetwo

set recovery-timethree random-exponential

average-recovery-timethree

set BU-symptoms random-exponential average-time-BU-symptoms

set threshold-time BU-symptoms + threshold-timeone

]

]

end

to move-time-on

if (infected? or infectedtwo? or infectedthree?) [set infection-length

infection-length + 1 ]

if infectedtwo? [set infection-lengthtwo infection-lengthtwo + 1 ]

if antibiotics? [set antibiotic-time antibiotic-time + 1 ]

if hospitaltwo? [set hospital-time-two hospital-time-two + 1 ]

if hospitalthree? [set hospital-time-three hospital-time-three + 1]

end

Listing C.10: Code for SR and CHV

C.4.2 Pseudo R scripts used for reading output data for the Figures

in chapter 6

# Load necessary libraries

library(tidyverse)

# Remove all objects from the workspace

rm(list=ls())

# Load datasets for various scenarios

abm_dataq1 <- load_data("S1-spreadsheet.csv") # SR default 1

abm_datac1 <- load_data("SC1-spreadsheet.csv") # SR+CHV

abm_dataq2 <- load_data("S2-spreadsheet.csv") # SR increase grey area 2

abm_datac2 <- load_data("SC2-spreadsheet.csv") # SR+CHV increase grey

area

abm_dataq3 <- load_data("S3-spreadsheet.csv") # SR increase initial popn

abm_datac3 <- load_data("SC3-spreadsheet.csv") # SR+CHV increase

initial popn

abm_datac4 <- load_data("b80SC-spreadsheet.csv") # SR+CHV increase CHV

abm_dataq5 <- load_data("S5-spreadsheet.csv") # SR+CHV increase

simulation area

abm_datac5 <- load_data("SC5-spreadsheet.csv") # SR+CHV increase

simulation area

abm_datac6 <- load_data("SC66-spreadsheet.csv") # SR+CHV category 2&3

# Extract and rename columns

for each dataset:
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Rename columns by removing "count.popns.with..."

Extract columns related to "infected" and create a "weeks" column

Convert data from wide to long format

Add a "Dataset" column to classify the dataset

# Combine dataframes for comparison

abm_df1 <- rbind(abm_data111, abm_datac111) # SR1 and SR1&CHV1

abm_df12 <- rbind(abm_data111, abm_datac111, abm_data222, abm_datac222)

# SR1, SR1&CHV1, SR2, SR2&CHV2

abm_df13 <- rbind(abm_data111, abm_datac111, abm_data333, abm_datac333)

# SR1, SR1&CHV1, SR3, SR3&CHV3

abm_df14 <- rbind(abm_data111, abm_datac111, abm_datac444) # SR1,

SR1&CHV1, SR4&CHV4

abm_df15 <- rbind(abm_data111, abm_datac111, abm_data555, abm_datac555)

# SR1, SR1&CHV1, SR5, SR5&CHV5

abm_df16 <- rbind(abm_data111, abm_datac111, abm_datac666) # SR1,

SR1&CHV1, SR6&CHV6

# Create plots for comparison

for each dataframe:

Create a ggplot comparing "weeks" to "infected" for different

datasets

Customize colors and appearance

Display the plot

# Show or save the plots

Listing C.11: Pseudo R script used for reading output data for the Figures in chapter

6
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