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Background: Somatic gene mutations can alter protein function, drive carcinogenesis and aid in 

the risk-adapted stratification of cancer patients. Splenic Marginal Zone Lymphoma (SMZL) is an 

indolent B-cell lymphoma comprising less than 2% of lymphoid neoplasms. Approximately 70% of 

patients develop a progressive disease requiring treatment whilst 30% of these will ultimately 

transform to a more aggressive lymphoma. There are currently no biomarkers recommended for 

establishing diagnosis, assessing prognosis, or determining the choice of therapy. This is in part 

due to superficial understanding of the molecular pathogenesis and heterogeneity of the disease.  

Aims: The main aim of this study is to construct a detailed characterisation of the genetic 

landscape of SMZL through the identification of somatic variants in unmatched tumour samples in 

the largest SMZL cohort to date and explore their clinical significance by integrating relevant 

clinical data. In conjunction to the analysis of somatic variants, an important part of this project 

also centres around the bioinformatics processing and optimisation of pipelines to obtain the best 

sequencing results.  

Methods: Tumour samples were sequenced using an amplicon-based approach consisting of 57 

target genes. Paired end reads were aligned using BWA-mem to the hg38 reference genome and 

LocatIt was used to merge duplicate reads using unique molecular identifiers. Afterward, GATK’s 

haplotype caller was used for variant calling and Annovar software for annotation. Variants were 

filtered using an unsupervised machine learning algorithm and validated in-silico using a genome 

viewer. Subsequently, variants were filtered once more to reduce likely germline variants. Finally, 

additional clinical and genetic data was integrated with the curated variant list to correlate 

genomic results with clinical outcomes. 

Results: In concordance with the literature NOTCH2 [13%], TP53 [12%] and KLF2 [12%] were 

found to be recurrently mutated among SMZL patients. As well as validating previous 

observations, key findings within this work included: 1) Genes KMT2D and CCND3 were found 

mutated in a much higher number of cases than was expected; 2) KLF2 and CCND3 harbour 



 

 

mutation hotspots which require functional validation but are predicted to affect protein 

function; 3) Evidence of somatic hypermutation (SHM) was found in the majority of cases, (only 

8% showed no evidence of SHM); 4) Deletions of 7q were associated to IGHV1-2*04 usage, KLF2 

and NOTCH2 mutations, short telomeres, and low levels of SHM; 5) Identification of two potential 

genomic subgroups, one group characterised by 7q deletions, KLF2 and NOTCH2 mutations and 

IGHV1-2*04 usage and a second group characterised by MYD88 mutations and mutated IGHV 

genes and; 6) Identification of telomere length and gains of 3q and 8q as new potential prognostic 

factors. 

Conclusion: This project collects the largest cohort of SMZL cases assessed to date imparting 

clarity to the genetic landscape of this cancer. The data supports distinct sub-groups of SMZL 

driven by IGHV usage and consistent genomic lesions. Additional studies across multiple discovery 

and validation cohorts, as well as prospective clinical trials are required to validate results, 

particularly disease outcomes.  
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 Introduction  

1.1 Cell development and regulation 

In general terms, cancer can be defined as an uncontrolled cell proliferation caused by changes in 

the DNA sequence as well as changes in gene expression. These changes lead to a population of 

cancerous cells that can invade other tissues and metastasize causing significant morbidity and 

death1. In theory, all cell types can become cancerous, so there are as many types of cancers as 

there are cell types in the human body. 

Understanding normal cell development and the control mechanisms of cell growth and 

proliferation is crucial in comprehending cancer development. The main objective of the cell cycle 

is to pass down genetic information from a mother cell to two identical daughter cells. The cell 

cycle begins with a growth phase (G1 phase), where cells begin to prepare for division by 

increasing in size and monitoring their environment for the presence of growth factors and 

mitogens. This initial growth phase is then followed by DNA replication (S phase). On occasion, 

some cells, such as normal liver cells, do not enter the S phase and instead fall into a non-

proliferative state called G0. G0 is a temporary withdrawal from the cell cycle but cells can be 

stimulated to go into S phase if needed. If the cells continue into DNA replication, another growth 

stage (G2 phase) will follow. Once cells are completely prepared to divide, they enter the shortest 

stage, mitosis (M phase). During mitosis, cells almost double their size and go through a nuclear 

division followed by a cytoplasmic division2 . 

To avoid uncontrolled cell growth and proliferation, cells rely on various molecular mechanisms to 

control these processes. One such mechanism is the regulatory phosphorylation of key protein 

and protein complexes in the cell cycle, which in turn act as checkpoints to determine whether 

the cell will continue onto the next stage. The phosphorylation reactions are carried out by 

kinases while the dephosphorylation by phosphatases. The main instigators of cell activity are the 

kinases, which themselves depend on another protein, cyclin, to become active. Hence, the 

protein complexes formed by kinases are known as cyclin-dependent protein kinases or Cdks2. 

Figure 1-1 illustrates a summary of the cell cycle including the major checkpoints in its regulation.  
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Figure 1-1. The cell cycle and its major regulatory checkpoints.The arrows show the direction in which the 
cycle progresses. The red bars represent the three major regulatory checkpoints. Figure created 
in bioRender.com. 

The cell cycle has three major checkpoints shown in Figure 1-1. In the G1/S phase checkpoint, Cdk 

inhibitor proteins, such as transforming growth factor–β (TGF-β), block entry to S phase by 

blocking the assembly or activity of the Cdk complexes needed. DNA damage can also prevent the 

progression from G1 to S phase3. Similarly, during the G2/M checkpoint, if DNA is damaged or DNA 

replication is incomplete, the cell inhibits the cell division cycle 25 (Cdc25) phosphatase required 

to activate the mitosis cyclin dependent kinases (M-Cdks)4. In the last major checkpoint, the M/G1 

checkpoint or spindle assembly checkpoint (SAC), chromosome segregation is delayed until all 

kinetochores are attached to microtubules5. In this last checkpoint, the cell inhibits the activation 

of the anaphase-promoting complex (APC), which tags the cyclins in the M-Cdks with 

proteasomes (ubiquitin) that in turn break down the cyclins and inactivates the M-Cdks, causing 

the cell to exit mitosis2. Other cycle controls include transcription regulators such as p53, which 

initiates the transcription gene for Cdk inhibitor protein p21. The protein p53 is activated when 

there is DNA damage, orchestrating a variety of DNA damage response mechanisms or if the 

damage is too great it initiates programmed cell death or apoptosis6. The cell also has means of 

regulating cell growth and apoptosis through extra-cellular signals such as survival factors 

(suppress apoptosis), mitogens (stimulate cell division) and growth factors2. Regardless of the 

cells’ tight control on proliferation, they can bypass one of its checkpoints and start proliferating 

in an uncontrolled manner, consequently, leading to cancer development. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/dna-replication
https://www.sciencedirect.com/topics/medicine-and-dentistry/dna-replication
https://www.sciencedirect.com/topics/medicine-and-dentistry/spindle-checkpoint
https://www.sciencedirect.com/topics/medicine-and-dentistry/chromosome-segregation
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1.2 Cancer development  

1.2.1 Hallmarks of cancer  

All cells in an organism are descendants of a progenitor cell that goes through consequent cell 

divisions, whether through mitosis in somatic cells or meiosis in germ cells. Throughout its 

lifespan, a cell can acquire sporadic DNA changes (variants) that eventually accumulate and 

propagate. Depending on the effect of the DNA change, this accumulation of acquired variants 

can lead to cancer development. On a molecular level, Hanahan and Weinberg7 postulate that 

normal cells acquire certain hallmark capabilities as they progressively evolve into a malignant 

state: 

Sustain proliferative signalling: This is probably the most distinctive trait of cancer, which is the 

ability of cancer cells to deregulate normal growth-promoting signals and proliferate without any 

limitation. 

Evade growth suppressors: Cancer cells can avoid programs that negatively regulate cell 

proliferation, usually by deregulation of tumour suppressing genes such as those that truncate the 

function of the TP53 and RB proteins (tumour suppressor proteins). 

Resist cell death: Programmed cell death or apoptosis is a vital component of various cell 

processes as a homeostatic mechanism. In tumours that transform into high-grade malignancies, 

apoptosis is attenuated, often triggered by insufficient survival factor signalling or hyperactive 

signalling from oncoproteins. 

Enable replicative mortality: Unlike normal cells, which have a limited number of growth and cell 

division cycles, cancer cells can evade this threshold and acquire unlimited replicative potential. 

Induce angiogenesis: For any cell to grow and develop, normal or cancerous, it must have enough 

sustenance (e.g. nutrients and oxygen) to continue to thrive. To have a constant intake of 

nutrients, cancer cells induce normally quiescent vasculature to sprout new vessels that aid their 

development. 

Activate invasion and metastasis: This refers to the ability of cells to alter genes that encode cell-

cell and cell-extracellular matrix interactions. This triggers an invasion-metastasis cascade 

allowing cancer cells to expand to other tissues. 
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1.2.2 Genomic variation in cancer cells 

In cancerous cells, changes in the DNA can be classified as either somatic or germline. Germline 

changes are those that are present in all cells of the individual originating via the germ cells from 

previous generations and are inherited. On the other hand, somatic changes are those that have 

been acquired during a person’s lifetime. Although many genomic studies focus solely on somatic 

variation, in some cases, germline variants may lead to an increased risk of developing cancer8–10 

and it might be pertinent to study these mutations as well. 

The origin of somatic variation depends on each cell, but these can have an intrinsic origin, such 

as errors in DNA repair, or an extrinsic/epigenetic origin such as exposure to mutagenic agents. 

Figure 1-2 illustrates the major DNA alterations that can arise within cancer genomes. The 

changes in the DNA may confer either a gain or loss of function in genes that usually encode 

proteins that stimulate cell division or inhibit cell differentiation and stop cell death. 

 

Figure 1-2. Major DNA alterations found within cancer genomes. This figure illustrates the six major DNA 
changes that can develop in cancer cells (copy number alterations, translocation, substitutions, 
insertions, deletions and methylation). These changes may arise as a result of external or internal 
factors such as exposure to different mutagenic sources, such as UV radiation, or errors in DNA 
repair or replication. 

Changes in the DNA of cancer cells typically happen within two classes of genes, oncogenes or 

tumour suppressor genes. Oncogenes are those whose overexpression can cause cells to develop 

into cancer cells3. These tend to need one copy of the mutated gene to drive the cell into a 

malignant state and are often juxtaposed with enhancer elements, most likely as a consequence 

of gene fusions. Gene fusions result from chromosomal rearrangements (translocations, 

inversions, deletions and amplifications) where a chimeric protein is formed or there is a 

deregulation of genes due to proximity of a novel promoter or enhancer region11. 
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Tumour-suppressor genes are those that in normal conditions will inhibit cancerous behaviour 

and whose inactivation drives the cell towards cancerous transformation by losing their function. 

Usually, both copies of the tumour suppressing gene need to be lost for cancer to develop, hence 

the DNA change will act in a recessive manner2. Tumour suppressor genes are further classified 

into gatekeeper and caretaker genes. Gatekeeper genes are those which regulate cell division, 

death/lifespan, while caretaker gens are those in charge of maintaining genetic stability or DNA 

repair12.  

1.2.3 Drivers of cancer 

Cancer development is characterised by the accumulation of somatic variation within a cell, 

however, not all changes will lead to oncogenesis. Somatic variants can be classified as a driver or 

passenger, according to their consequences. Driver mutations or variants are those that confer a 

survival advantage to the cell and therefore “drive” the cell into cancer development, while 

passengers are all of the other variants that do not give the cell a growth advantage8. The number 

of drivers present in each cancer differs according to the type of cancer and affected genes. 

Exposure to mutagens can also affect the number of drivers, such as smokers versus non-smokers 

in lung cancer13. Cancers with mutations affecting DNA repair genes are also likely to have a 

higher number of driver mutations14,15. However, saying that a variant will either confer a survival 

advantage or it will not, simplifies a very complex interaction between the tumour and its 

environment. The effects of driver mutations likely lie on a continuum16 and it is the different 

synergy between variants and many other factors that may provide a selective advantage. 

Furthermore, being able to identify which somatic variation will actually provide a selective 

advantage remains a difficult task17.  

1.3 Mature B-cell malignancies  

This project focuses on splenic marginal zone lymphoma (SMZL) a mature B-cell malignancy. 

Mature B-cell malignancies are a heterogeneous group of diseases often with a germinal centre 

origin (more details in section 1.3.1) that arise during different stages of B-cell differentiation18. 

There are more than 40 types of mature B cell lymphomas and according to Cancer Research UK, 

Non-Hodgkins lymphomas (NHLs) represent the sixth most common cancer in the UK. NHLs are a 

group of lymphomas that arise from lymphocytes all of which have a varied prognosis, therapy 

and goals of therapy19. Other leukemic variants such as chronic lymphocytic leukaemia (CLL) are 

also included in the mature B-cell classification since they derive from mature B-cells18. The 

specific lymphoma subtype reflects the stage of B-cell development in which the lymphoma 

originated and is the major basis for its classification. In general, these malignancies can also be 
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classified into low, intermediate, or high-grade lymphoma or leukaemia. These grades reflect the 

rate of growth, where a low-grade lymphoma is slow developing (chronic) while high-grade is 

considered aggressive20. 

1.3.1 B-cells and B-cell receptors 

B-cells are a type of lymphocyte in the immune system that synthesise immunoglobulin (Ig) and 

display it on the cell surface as a receptor (BCR). Each B-cell possesses a unique receptor and the 

diversity of these cells is such, that B-cells can recognise all foreign molecules or substances 

(antigens) in our environment. BCRs are encoded by several genes, which rearrange during the 

early stages of B-cell development. Each B-cell will have a particular BCR rearrangement with 

greater than 26 million potential BCR binding combinations21. This creates millions of unique 

receptors, in turn creating millions of B-cells, all with different specificities22. 

Immunoglobulins or BCRs are “Y” shaped proteins composed of two identical light chains (κ and λ) 

connected to two identical heavy chains by a disulphide bond. Clusters of genes encoding the light 

chains are located on chromosome 2 and 22 and clusters of genes encoding the heavy chain on 

chromosome 14. The cluster of light chain genes includes a series of variable (V), joining (J), and 

constant (C) genes. While the cluster of heavy chain genes includes the same as the light chain (V, 

J and C) as well as diversity genes (D)21. The function of the BCR is to recognise and bind to 

antigens via the variable regions exposed on the cell surface and activate the B-cell leading to 

clonal expansion and antibody production23. 

1.3.2 B-cell development  

As mentioned earlier, B-cell malignancies arise during various stages of B-cell differentiation, 

which in turn reflect the stages of immunoglobulin heavy and light chain rearrangement and 

surface expression that cell has gone through. B-cell development begins in the bone marrow 

where progenitor B-cells go through an Immunoglobulin gene rearrangement and develop into 

naive B-cells via pre-B-cells and immature B-cells (Figure 1-3). Before leaving the bone marrow, 

immature B-cells are tested for autoreactivity, and those that have no strong reactivity to self-

antigens are allowed to mature. Cells then leave the bone marrow and migrate to the spleen and 

other lymphoid tissues. Within the peripheral lymphoid tissue, B-cells are present in loose 

aggregates (primary follicles) or in well-defined proliferating foci called germinal centres (GC) 

consisting of a dark and light zone22. In the peripheral lymphoid tissue naive cells will mature into 

follicular (FO) or mature B-cells. If the mature B-cell encounters an antigen that fits it surface Ig 

receptors it will then go through a rapid proliferation to mature into antibody-secreting plasma 

cells and memory B-cells19 in the GC.  
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Figure 1-3. Overview of B-Cell differentiation. B-cell development begins in the bone marrow where 
progenitor B-cells go through an Ig gene rearrangement and develop into naive B-cells via pre-B-
cells and immature B-cells. In the peripheral lymphoid tissue, follicular B-cells will encounter an 
antigen that fits their surface Ig receptors and it will mature these into antibody-secreting plasma 
cells and memory B-cells. The cells undergo rapid proliferation in the germinal centre, where 
those cells that have mutations resulting in better binding to the epitope are stimulated to 
proliferate and dominate the immune response21. Figure created in BioRender.com. 

In an immune response, surface receptors play a key role in the activation of leukocytes, where 

the effectiveness of the interaction between the receptor (immunoglobulin) and ligand (antigen) 

will depend on the receptor's affinity for this ligand22. In mature B-cells, upon subsequent epitope 

(part of the antigen to which the receptor attaches) exposure, cells undergo extensive 

proliferation, somatic hypermutation, immunoglobulin isotype switching and antigen-affinity 

driven selection24. The early stages of the GC reaction are carried out in the dark zone where B-

cells will undergo rapid proliferation and accumulate small point DNA mutations in the Ig heavy 

and light chain variable region genes to change their affinity to the antigen, this is known as 

somatic hypermutation21. Cells that have mutations resulting in better binding are stimulated to 

proliferate and dominate the immune response. Afterwards, cells will migrate into the light zone 

where they can encounter one of three fates: apoptosis if BCR affinity is too low, re-entre the dark 

zone for further proliferation and somatic hypermutation, or exit the GC and differentiate into 

plasma or memory B cells. This selection process is called affinity maturation or antigen-affinity 

driven selection and is followed by an immunoglobulin isotype switch or class switch 

recombination (CSR). In CSR changes to the constant region of the heavy chain locus of the BCR 

are made. This switches the class of the BCR (e.g. IgM to IgA) allowing the cell to interact with 

different effector molecules without changing the affinity of the BCR. 

1.3.3 Splenic marginal zone B-cells 

When talking about B-cell differentiation, a population of B-cells often excluded from this 

discussion are marginal zone (MZ) B-cells. In humans, MZ B-cells are mostly found in the marginal 
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zone of the spleen, but can also be found circulating in the blood24,25. However, MZ B-cells are not 

the only cells present in the splenic MZ. The splenic MZ also contains macrophages, dendritic 

cells, granulocytes and even passing memory cells26 making the process of purifying and studying 

these cells difficult. 

MZ B-cells are at the boundary between the innate and adaptive immune system and are viewed 

as a population of cells capable of inducing antibody response to both T dependent and 

independent antigens. This notion is reinforced by their location, since they are located in a place 

highly exposed to antigens and can, therefore, respond quickly to blood-borne pathogens25,26. 

There are many unknows surrounding the development of MZ B-cells, but their diverse function 

could imply the existence of MZ B-cell subgroups which develop separately. Some researchers 

believe that MZ B-cells could be the result of IgM memory B-cells that have exited the germinal 

centre (GC) reaction before isotype switch, evidenced by their phenotype and the somatic 

mutations in the immunoglobulin genes found in those cells26–28. Others think that before 

immature naïve cells develop into mature naïve cells (follicular B-cells) there is a transition step 

where these cells will differentiate into either MZ B-cells or follicular B-cells promoted by BCR and 

NOTCH signalling 24. Descartoire et al. gave evidence of a NOTCH2 dependent MZ B-cell precursor 

in murine models, which favours the idea of a separate MZ B-cell lineage29. Furthermore, results 

from Weller et al. support the notion that MZ B-cells develop and mutate during the first years of 

life without being engaged in either a T-dependent or independent immune response30. 

1.4 Clinical phenotype of splenic marginal zone lymphoma (SMZL) 

The World Health Organization (WHO) classification of tumours of the hematopoietic and 

lymphoid tissues defines three marginal zone lymphoma (MZL) entities, splenic marginal zone 

lymphoma (SMZL), nodal MZL (NMZL) and extranodal MZL (ENMZL)31. In addition, a number of 

provisional entities are emerging; these include splenic diffuse red pulp lymphoma (SDRPL), hairy 

cell leukaemia-variant (HCLv) and clonal B-cell lymphocytosis of MZ origin (CBL-MZ), the latter of 

which is clonally related to SMZL in a proportion of cases32–35. SMZL is a rare, low grade lymphoma 

involving the spleen, bone marrow and peripheral blood (PB) that comprises less than 2% of 

lymphoid neoplasms. Patients present with abdominal discomfort, splenomegaly, anaemia, villous 

lymphocytes or incidentally due to abnormal blood count. Median age of diagnosis is 65 and 

patients exhibit a 10-year median survival time36,37. Whilst a significant proportion of patients will 

exhibit a more indolent disease course, approximately 70% will require treatment, 30% of those 

will develop aggressive symptoms, whilst 5-15% will have a disease that transforms to diffuse 

large b-cell lymphoma (DLBCL) with dismal survival38. Treatment options include splenectomy, 

chemotherapy, immunotherapy (anti-CD20 monoclonal antibody rituximab), or immunotherapy 
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combined with chemotherapy39,40. Some SMZL cases are associated with hepatitis C (HCV) 

infection, and regression can be achieved with antiviral therapy39. Diagnosis of SMZL can be 

established through a combination of lymphocyte morphology and flow cytometry, bone marrow 

biopsy and immunohistochemistry19,37. Unfortunately, several other mature B-cell tumours, have 

overlapping clinicopathological and immunophenotypic features with SMZL, making for a 

challenging accurate diagnosis. In some cases it can be difficult to distinguish SMZL from HCLv and 

SDRPL without the use of spleen histology38,40. Despite a large number of studies, mechanistic 

understanding behind unfavourable outcome and transformation is still unknown41 and treatment 

outcomes are variable with few prognostic markers that can aid in targeted treatment40. 

SMZL shares the CD27+IgM+IgD+ immunophenotype of human marginal zone B-cells as well as a 

similar somatic hypermutation status in the immunoglobulin heavy chain variable region (IGHV) 

genes19,28. According to the WHO classification, the normal SMZL counterpart is a B-cell of 

unknown differentiation stage and it suggests that SMZL could be a post germinal centre 

neoplasm, as approximately 50% of SMZL cases display IGHV gene somatic hypermutation19. 

Some studies have suggested that the other 50% which lack the IGHV gene somatic 

hypermutations may have a pre-germinal centre origin42,43. Figure 1-4 shows different types of B-

cell malignancies that can arise during B-cell development, keeping in mind that in SMZL the cell 

of origin is still under debate44. 



Chapter 1 

10 

 

Figure 1-4. Origin of different B-cell malignancies. This figure shows the stages of B-cell 
development after a cell has left the bone marrow and the different types of 
lymphomas and leukaemia that can arise from each stage. Although SMZL is shown 
to be a post-germinal centre neoplasms studies suggest that approximately half of 
the cases have a naïve pre-germinal centre origin. Reprinted by permission from 
Springer Nature Customer Service Centre GmbH: Springer Nature Methods in 
Molecular Biology. Origin and Pathogenesis of B Cell Lymphomas, Seifert M, 
Scholtysik R, Küppers R. Copyright © 2019. 

Whilst SMZL is still a relatively under-studied malignancy, several works published over the last 

decade or so have begun to unravel the intrinsic molecular defects present in these cells, and 

extrinsic cellular mechanisms that reflect micro-environmental and antigenic interactions (Figure 

1-5). Karyotype banding, fluorescence in situ hybridization (FISH) and comparative genomic 

hybridization arrays were the foundation of early SMZL studies45–48 and much more recently high 

throughput sequencing (HTS) has been applied to try and de-convolute the genetic landscape of 

the disease49–54. To understand the impact that the new sequencing technology has had in the 

characterisation of SMZL, the next section will give a historical overview of genomic technologies 

and in later chapters how these have aided in the discovery of frequently mutated genes and 

affected pathways in SMZL. 
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Figure 1-5. Timeline highlighting historical milestones in the understanding of SMZL. Figure by Jaramillo 
Oquendo et al55 licenced under CC BY 4.0. 

1.5 Historical overview of genomic technologies   

1.5.1 Karyotyping 

Before the development of high-throughput sequencing, karyotyping was the traditional way of 

analysing chromosomes. A karyotype (Figure 1-6) describes an individual’s chromosome 

constitution and in principle, it can be obtained from all tissues that contain mitoses. To 
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karyotype, a cell culture is obtained from different tissues, usually blood as it is the most 

convenient. Cells are stimulated into cell division and are grown in culture medium for 72 hours. 

Before cells are harvested, a drug with colchicine-like effect, usually colcemid, is added to prevent 

spindle formation and arrest the cells in prometaphase or metaphase. To obtain chromosomes 

spread in one plane, cells are fixed on a slide, where it is then air-dried and stained. For better 

identification of each chromosome, there are different banding methods which result in 

distinctive banding patterns for each chromosome56. G banding is the most common method. It 

involves a trypsin treatment to digest GC rich regions, followed by Giemsa staining. This will 

produce a light and dark staining pattern where the regions digested by the trypsin will appear 

pale57. Karyotyping is a whole-genome approach able to detect large structural changes, such as 

translocations, deletions or insertions, as well as aneuploidies. Unfortunately, the resolution of 

this approach is dependent on the visible bands, which contain approximately 5-10 x 106 

basepairs56. 

   

Figure 1-6. Representative human karyotype. Karyotypes obtained from metaphase cells displaying R 
banding. 

1.5.2 Fluorescence in situ hybridization (FISH) 

In the late 1980s, Pinkel et al. described a method of targeting certain chromosome sequences by 

hybridising metaphase spreads and interphase nuclei using fluorescently labelled DNA probes to 

detect the presence of complementary nucleic acid sequences (target sequences)58. This approach 

termed fluorescence in situ hybridisation (FISH) consists of five main steps: 1) DNA probes are 

prepared and labelled; 2) Metaphase chromosomes or interphase nuclei are prepared; 3) 

Denaturation of both probes and sample DNA; 4) In-situ hybridisation of the probes and sample 

and; 5) Fluorescent dye detection via ultraviolet light excitement of a fluorochrome, such as 

fluorescein-5-thiocyanate (FITC) or rhodamine56. Figure 1-7 provides an overview of FISH protocol. 
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Figure 1-7. Overview of FISH protocol. The sample is in the form of a metaphase spread where previously 
prepared probes are added. Subsequently, there is denaturation of both the probes and DNA so 
these can hybridise. Once the hybridisation is complete, samples are washed and visualized under 
a microscope. Probes will light up if they are present in the sample. Figure created in 
BionRender.com 

There are several types of probes all with different targets; these can be repetitive sequences, an 

entire chromosome, or unique sequences. This technique has a higher resolution than 

chromosome banding for the regions screened (gene level resolution), allowing a numerical 

representation of the region as well as involvement in translocations at all stages of the cell 

cycle56. Like karyotyping FISH helps determine structural changes (translocation, insertions, 

deletions) as well as aneuploidies but with a higher resolution (e.g. sub telomeric rearrangements, 

sub microscopic copy number variations, microdeletions/microduplications). However, FISH is not 

a whole genome approach and its disadvantages are that it can only detect known genetic 

aberrations and analysis is restricted to targeted regions. Both chromosome banding and FISH 

capture only a proportion of genetic variation in the genome as they do not capture changes at a 

nucleotide level. 

1.5.3 Comparative genomic hybridisation arrays 

Comparative genomic hybridisation (CGH) was developed to detect copy number alterations in 

solid tumours by comparing the DNA of a malignant cell to that of a normal cell. In the methods 

described by Kallioniemi et al. biotinylated total tumour DNA and digoxigenin-labelled normal 

genomic reference DNA are hybridised to normal metaphase spreads59. Once hybridised tumour 

DNA is detected with green-fluorescing fluorescein isothiocyanate (FITC)-avidin and normal DNA 

is detected with red-fluorescing rhodamine antidigoxinenin. The ratio of green to red is measured 

to quantify the abundance of the targeted sequences, where a high green to red ratio shows and 
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amplification and vice versa a high red to green ratio show deletions or chromosomal loss. A 

software then integrates the green and red fluorescence intensities to orthogonal strips on a 

chromosome axis to identify where the events are occurring59. However, like FISH and 

Karyotyping the resolution of CGHs are around 5-10 Mb. 

1.5.4 Sanger Sequencing  

In 1977 Sanger described a new method for determining nucleotide sequences in DNA using 

inhibitors to terminate replication of a template strand at one of the four bases (A, C, T or G)60. 

This method involved using a 2’,3’- dideoxynucleotide (ddNTP) instead of deoxinucleotide (dNTP) 

during DNA synthesis, since it has an inhibitory effect on DNA polymerase. What this means is 

that while the DNA polymerase is synthesizing the new strand, it will terminate when it needs to 

incorporate the ddNTPs, as they have no 3’ – hydroxyl group inhibiting further extension of the 

DNA chain. Four different reaction mixtures are made, each with a different ddNTP (ddATP, 

ddTTP, ddCTP, ddGTP), along with dNTPs, template strands (unknown DNA), DNA polymerase, 

and primers, where they go through various replication cycles. This creates different sized 

fragments each terminating where a ddNTP was incorporated. The reactions (four mixtures) are 

run in parallel on a gel to obtain a banding pattern that shows the distributions of the ddNTPs in 

the new DNA (Figure 1-8). This sequencing method became the stepping-stone in which 

subsequent sequencing methods are based upon. Today, Sanger sequencing is still used to 

confirm or validate variants, especially in repetitive and GC rich regions. 

 

Figure 1-8. Sanger sequencing. Single stranded DNA with the unknown sequence is added to four different 
mixtures each containing a different ddNTP, the remaining dNTPs, primers and DNA polymerase. 
The mixtures will go through various replication cycles where they will create different sized 
fragments. Each mixture is run on a gel to detect each fragment. Once the gel is run, the 
sequence can be analysed. The resulting sequence will in turn be the complementary sequence 
of the unknown fragment. Figure created in BioRender.com. 
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1.5.5 High throughput sequencing 

Since the development of Sanger sequencing, considered a ‘first generation’ technology, there 

have been major advances in the way sequencing is performed. Second generation sequencing 

often called next generation sequencing (NGS), allowed for the generation of millions of short 

reads (DNA sequence of fragments approximately 100 base pairs in length), at a fraction of the 

time and cost of Sanger sequencing61. NGS promised the identification of all genomic alterations, 

such as single nucleotide variants (SNV), insertions, deletions, copy number changes, and 

structural variations with a single method62. 

Illumina dominates the market of second-generation sequencing, with their sequencing by 

synthesis method. The sequencing by synthesis method is by far the most used, as it sequences 

millions of fragments in parallel by simultaneously identifying a DNA base while incorporating it 

into a nucleic acid chain63. It involves four basic steps: library preparation, cluster generation, 

sequencing, and data analysis (Figure 1-9). The library preparation is achieved by fragmenting the 

DNA or cDNA sample followed by specialized adapter ligation to both ends of the fragment (5’ and 

3’). Then, the library is inserted into a flow cell that has a lawn of complementary surface-bound 

oligos, where the adapters will attach. Priming occurs as the opposite end of a ligated fragment 

bends over and “bridges” to another complementary oligo on the surface. Repeated denaturation 

and extension cycles (similar to PCR) results in localized amplification of single molecules into 

millions of unique, clonal clusters across the flow cell. The 3’ ends are blocked to prevent 

unwanted priming. Subsequently, sequencing begins with sequential cycles of DNA synthesis 

where DNA polymerase incorporates fluorescently labelled deoxyribonucleotide triphosphates 

(dNTPs) modified with a 3’ block (reversible terminator) to avoid addition of more than one 

nucleotide per cycle. During each cycle, each nucleotide is identified by fluorophore excitation 

and the reversible terminator removed to continue the next cycle. When the sequencing is 

finished, the data is aligned to a reference genome, where it can be analysed to identify 

variations63  
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Figure 1-9. Illumina sequencing. 1. Library preparation. Genomic DNA is fragmented into small pieces 
followed by adapter ligation. 2. DNA bridge amplification. Library is inserted into flow cell where 
the adapters will attach. Priming occurs as the opposite end of a ligated fragment bends over and 
“bridges” to another complementary oligo on the surface. Repeated denaturation and extension 
cycles amplify the fragments and create clonal clusters across the flow cell. 3. Sequencing. 
Clusters are sequenced and during each cycle, each nucleotide is identified by fluorophore 
excitation and the reversible terminator removed to continue the next cycle. 4. Sequenced data 
is aligned to a reference genome and ready for further analysis. Figure created in BioRender.com. 

The sequencing by synthesis method has three main advantages over first generation 

technologies. First, the DNA polymerase will not terminate the synthesis of the new DNA strand 

when it incorporates the modified dNTPs but rather stop momentarily, emit the fluorescent signal 

and continue with synthesis after the reversible terminator is removed63; Therefore, sequencing 

output is directly detected without the need for electrophoresis64. Second, it produces thousand-

to-millions of sequencing reactions in parallel instead of hundreds, making it more cost and time 

effective. Lastly, second generation sequencing also allows for paired-end sequencing, which 
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involves sequencing both ends of the DNA fragment and then aligning them into paired reads to 

make a more accurate read alignment. Since the distance between the reads is known, paired end 

sequencing can be used to better detect insertions and deletions and map more precisely to 

highly repetitive regions. 

Although, NGS is a huge advance in the way DNA is processed and sequenced it is not without its 

issues. Its main limitation is the considerably shorter read length (~100bp) compared to first 

generation sequencing (~800bp). Although paired end reads are helpful in this aspect, it means 

that: 1) highly repetitive regions are challenging to map and therefore uninformative and 2) large 

structural variation is difficult to identify. A second limitation is the lower read quality per base. A 

high read depth (number of DNA fragments that cover a specific region of the target) 

compensates for the lower quality in this type of sequencing. However, obtaining high read depth 

can be costly and Sanger sequencing remains a good alternative to identify high confidence 

variants. 

The latest sequencing technology is referred to as third-generation sequencing, which generates 

long reads of over 10,000 base pairs in length65. The advantages of third-generation sequencing 

include improved analysis of structural variation and GC rich and repetitive regions of the 

genome. It also allows for a uniform coverage of the genome, as it is not as sensitive to GC 

content, and for a long-range characterisation of methylation patterns. Although third generation 

sequencing fills in the gaps that are left with second generation sequencing, this technology is still 

under development. This project does not make use of third generation technology; therefore, 

the next two sections will focus entirely on second generation (short read) sequencing. 

1.5.6 Whole genome sequencing as a discovery approach 

Whole genome sequencing (WGS), as the name implies, provides insight into the entire genome 

and it allows for an unbiased approach to finding targets of disease and identification of most 

genomic alterations. WGS is helpful when affected genes are unknown, when we want to 

interrogate non-coding regions of the genome or when we want to identify structural or copy 

number alterations. 

In cancer studies, WGS is limiting in terms of depth and is mostly used as a discovery approach, 

followed by targeted sequencing to further examine genes of interest at higher depths. 

Sequencing an entire genome at an accessible price was only possible after the development of 

NGS. However, the cost of sequencing an entire genome at very high read depths can be 

prohibitive, considering that a genome with a read depth between 30X-50X costs around $1,00066 
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to sequence. Although 30X might be a reasonable read depth, to get a better understanding of 

the sub-clonal diversity in a tumour, deep sequencing (depth >100X) is necessary. 

Furthermore, high throughput sequencing produces millions of reads in one sequencing run, 

resulting in vast amounts of data that need storing. Raw data from a single genome takes up 

approximately 200 GB of storage, equivalent to an average laptop’s hard drive67. This can become 

a limitation as the amount of computational processing power and storage needs to be 

considerably large to process a single genome, let alone multiple samples. 

1.5.7 Targeted Sequencing  

To balance the cost and read depth required to study tumours, targeted sequencing is used in 

conjunction to WGS. Targeted sequencing approaches focuses on a subset of genes or regions of 

interest to interrogate, that have known or suspected associations with the disease or phenotype 

under study68. The broadest panel is whole exome sequencing (WES), which involves the capture 

of fragmented genomic DNA that collectively cover all exonic or protein coding regions. This 

represents approximately 1% of the entire genome but it contains nearly 85% of known disease 

related variants in Mendelian loci69. This is a cost-effective alternative to WGS and like WGS, is 

often used as a discovery approach. 

Targeted gene panels can be customised to include as many or as few genes a study requires. The 

advantages of using targeted panels include: 1) assessing multiple genes across many samples in 

parallel; 2) time and costs associated with running multiple separate assays are reduced; 3) data 

set is smaller (~10 GB) and more manageable compared to WGS and; 4) high read depths (500–

1000× or higher) are more cost effective. 

1.6 Aims of research 

The development of high-throughput sequencing technologies has allowed researchers to 

catalogue the mutational landscape of human cancers at an unprecedented rate. This has given 

researchers insight into how mutations can alter protein function, drive carcinogenesis and aid in 

the risk stratification of patients. However, SMZL is often precluded from large international 

studies resulting in an incomplete catalogue of tumour associated genomic lesions and mutational 

processes. The main aim of this study is to construct a detailed characterisation of the genetic 

landscape of SMZL through the identification of somatic variants in unmatched tumour samples in 

the largest SMZL cohort assessed to date. In conjunction with the analysis of somatic variants, an 

important part of this project also centres around the bioinformatics processing and optimisation 

of pipelines to obtain the best sequencing results. The first chapters will focus on establishing the 
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best methods to process sequencing data, while the later sections will focus on the analysis of the 

sequencing results. The different parts of this study with its respective objectives are detailed 

below: 

Main objective: Construct a detailed characterisation of the genetic landscape of SMZL through 

the identification of somatic variants in tumour only SMZL samples. 

Systematic literature review: Create, annotate and filter previously identified SMZL variants to 

establish a high-quality up-to-date database. 

• Compile a list of variants from studies that have used NGS on SMZL tumours. 

• Refine the catalogue of somatic mutations in SMZL, resulting in a high quality, annotated, 

up-to-date database to facilitate further studies.  

• Add final list of variants to the bioinformatics pipeline. 

• Determine if a systematic approach will yield any new insights into pathways targeted in 

SMZL or into gaps in the area. 

• Make a critical analysis on the recurrent variants and or pathways targeted in SMZL. 

Bioinformatics pipeline: Learn and develop a panel of genomic computational tools for the 

analysis of genomic datasets.  

• Optimise bioinformatics pipeline to process tumour only SMZL samples to reduce or filter 

out false positives. 

• Ensure sensitivity for known true positives. 

• Compare different tools for variants calling and annotation.  

• Ensure the quality of samples and data is adequate. 

Filtering strategies: Develop and apply a filtering strategy to reduce the number of spurious calls 

present in the data set.  

• Extract additional information from recalibrated BAM files.  

• Develop a machine learning model using quality and sequencing information to 

cluster/classify variants into true variants or artefacts.  

• Apply machine learning model to SMZL samples. 

• Validate variants through inspection in a genomics viewer. 

• Exclude germline variation using in-silico predictive scores and databases of known 

germline variation. 

Analysis of NGS sequencing results:  Establish a biologically relevant list of somatic mutations 

within the SMZL cohort.  

• Establish recurrently mutated variants, genes, and pathways.  
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• Establish somatic interactions between genes. 

• Characterise in detail the presentation of the disease correlating phenotypes to clinical 

phenotypes. 

• Correlate genomic results with clinical outcomes. 
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 Systematic literature review of somatic 
mutations in splenic marginal zone 
lymphoma 

2.1 Synopsis 

This chapter interrogates the published literature to create a systematic literature review 

compiling all the somatic variants previously identified in splenic marginal zone lymphoma 

(SMZL). The collated variants are then used to create an up-to-date annotated database of 

published somatic mutations. This chapter takes a comprehensive look at previous SMZL studies 

to identify their strengths and weaknesses and identifies any gaps that could be addressed in 

subsequent sections. 

Carolina Jaramillo Oquendo performed the systematic literature review (search, study selection, 

and data extraction), compiled the database of somatic variants and analysed the results. Dr. 

Helen Parker was the second investigator who performed the search and study selection. Prof 

Sarah Ennis, Prof Jon Strefford and Dr Jane Gibson acted as main supervisors overseeing the 

review and provided guidance in the analysis and interpretation of the data. This chapter was 

published in Scientific Reports in 201970. 

2.2 Introduction 

The World Health Organization (WHO) classifies splenic marginal zone lymphoma (SMZL) as a 

rare, low grade lymphoma comprising less than 2% of lymphoid neoplasms. At the genomic level, 

SMZL remains relatively understudied, with only six studies49–54 undertaking a genome-wide 

approach to unravel the disease landscape, and only one study49 employing whole genome 

sequencing (limited to six cases without matched germline DNA). However, the few unbiased 

approaches have been useful in the discovery of some of the affected pathways and key genes, 

such as NOTCH2, KLF2 and TP53 which are supported by extensive genomic analysis and 

functional work49–51,54,71,72. Furthermore, the targeted studies that followed or that were 

performed in conjunction with whole genome (WGS) or whole exome (WES) sequencing were key 

in establishing the recurrence of those genes in SMZL. A panel of less prevalent mutations have 

also been reported targeting key biological pathways, though their prevalence is uncertain, and 

their importance remains opaque. 

A limited number of patients; the heterogeneous nature of the disease; and variable experimental 

and bioinformatic approaches add to the complexity of unravelling the genomic landscape of 

SMZL. Lack of tissue samples limit study sizes and most cases are analysed through re-sequencing 
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of targeted genes hypothesised to be relevant in SMZL, likely excluding genes in other pathways. 

Due to the rare nature of SMZL, this is a lymphoma that is poorly annotated in publicly accessible 

databases such as COSMIC11. Not only does COSMIC have limited entries on SMZL, but the way 

the data is organised makes it nearly impossible to separate SMZL from other marginal zone 

lymphomas. Additionally, not all published SMZL studies are found in COSMIC and only 2 KLF2 

mutations identified in SMZL are included. Furthermore, there is a low number of unbiased 

studies with lack of clarity of what overlap exists between them54. 

Prior to a comprehensive analysis of an SMZL cohort, curation of a full catalogue of published 

somatic mutations in SMZL was needed. This would identify the strengths and weakness of the 

data available as well as any gaps in the study of the disease. A systematic approach was 

therefore necessary, and a systematic literature review was performed compiling all the variants 

published to date with two main aims. The first aim was to determine if this approach would yield 

any new insights into pathways targeted in SMZL or into gaps in the area. The second aim was to 

refine the catalogue of somatic mutations in SMZL, resulting in a high quality, annotated, up-to-

date database to facilitate further studies.  

2.3 Methodology 

2.3.1 Search strategies and study selection 

Two independent investigators undertook the literature search in January 2019 using PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed) and Ovid (http://ovidsp.ovid.com) as the primary search 

engines according to the PRISMA-P\Preferred Reporting Items for Systematic Review and Meta-

analysis Protocol73. Keywords used included: “Splenic Marginal Zone Lymphoma”, “SMZL”, 

“Marginal Zone”, “genetics”, “sequencing” and “mutation”. Data collection was performed by 

both investigators before any further steps. Duplicate manuscripts were removed to begin 

screening of the title and abstracts for those that would be used in the full-text review. 

Manuscript titles were screened to include records that sequenced SMZL and/or other similar 

mature B-cell lymphomas and exclude those that performed analysis of cases by methods other 

than high throughput sequencing (HTS) or Sanger sequencing. Manuscript abstracts were 

reviewed to include only those that sequenced confirmed SMZL cases and exclude those that 

were not peer-reviewed journal articles (conference abstracts). The full-text manuscripts and 

supplementary data were evaluated and selected for inclusion if the study reported a full list of 

variants with appropriate sample and mapping details. Manuscripts describing the analysis of 

both paired and unpaired samples were accepted. The search was limited to studies written in 

English. The filtering stages and inclusion and exclusion criteria are shown in Figure 2-1. 
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Figure 2-1. Decision tree of manuscript selection for systematic literature review. Manuscripts went 
through a title selection, followed by an abstract and full text review. The inclusion and 
exclusion criteria are shown for each of the three steps. If at any point the reviewer was 
unsure, the manuscript would automatically pass to the next filtering stage to be reviewed in 
further detail.  

2.3.2 Data extraction 

Genomic information was extracted from both main manuscripts and supplementary material, 

where the final list of variants was assembled in an Excel document. The missing base pair 

location and reference/alternate allele information was completed using the hg19 assembly of 

Ensembl Variant Effect Predictor (VEP)74 using the mutated gene and protein or coding sequence 

change reported. It should be noted that for each variant, VEP outputs all possible effects of the 

nucleotide change in all possible transcripts. To overcome inconsistencies, three transcript tags 

(transcript support level, APRIS and GENCODE Basic) present in the VEP annotation were 

inspected to identify the highest quality and most relevant transcript to be used as well as 

references in the literature.  

Before the list of variants was processed, there was manual curation to exclude the following: 

1. Variants with an incompatible format. Variants with a file format that did not allow 

merging of the data easily into Excel and would mean manual imputation of large 

amounts of data. For example, in cases where a variant list is over 1000 variants, manual 

imputation is not feasible as this would likely introduce errors.  

2. Duplicate variants from the same sample. These were a result of studies, likely from the 

same research group, which reported variants from previously published cases. 

Identification of duplicates was based on sample ID and variant characteristics 
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(sequencing depth and VAF)50–52,54,71,75. These variants were flagged and included only 

once. 

3. Variants lacking information necessary to remap and annotate (location and 

reference/alternate allele).  

Once the list was populated and filtered, it was remapped from hg19 to the hg38 genome 

assembly with the NCBI remap tool (https://www.ncbi.nlm.nih.gov/genome/tools/remap). Finally, 

the remapped list of variants was annotated using the Annovar software v.2016Feb0176 adding a 

gene-based annotation to identify functional effects, frequency of the variant in specific 

databases, and scores that predict how mutations affect protein function (see section 5.3.2 for 

detailed description of databases and versions used in Annovar). Additional information found in 

the manuscripts and supplementary files was also added which included: the variant allele 

frequency (VAF), depth, confirmed somatic status (lack of variant in matched germline DNA), 

sequencing method by which somatic status was confirmed and sequencing approach. Preceding 

data analysis, the list was filtered to retain only those variants that were likely to be somatic 

mutations or likely drivers of disease. Variants that were filtered out were those that: a) fell 

within UTRs and intergenic regions; b) synonymous variants and; c) variants that had a frequency 

greater than 1% in databases of normal germline variation (The Genome Aggregation Database77, 

1000 Genomes Project78, NHLBI GO Exome Sequencing Project79, Exome Aggregation 

Consortium77). The final database was comprised of all the remaining variants and these were the 

focus of subsequent analysis. Within the final list, there was a subset of variants that originated 

from unbiased approaches (WGS and WES). This WGS/WES subset was looked at separately. 

Figure 2-2 summarises all the steps from data collation to the final variant list. 
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Figure 2-2. Flowchart of database compilation and variant filtering. The flowchart begins at the data collation 
step, where all variants from the published manuscripts and supplementary material were collated 
into a single list. This is followed by a manual curation step where duplicate samples were included 
only once and missing fields required for remapping filled in. Variants with not enough data were 
excluded and all remaining variants were remapped to the hg38 reference genome. Once 
remapped, variants were annotated using Annovar software. After annotation variants were 
filtered once more to enrich for somatic variants.  

  



Chapter 2 

26 

2.3.3 Data visualisation and analysis 

The WGS/WES subset was analysed first as an unbiased cohort. However, variants from WGS 

were excluded since the file format did not allow merging of the data easily into Excel and 

effectively only WES samples remained. Subsequently, all collected variants were compared 

across studies.  

To define the putative frequency of recurrently mutated genes, it was assumed that all genes 

were screened in all studies. However, for the twenty-one genes with the greatest cumulative 

number of variants, the number of assessed cases was ascertained individually. This was the only 

available approach, as the total number of genes analysed is not consistently or accurately 

reported across the targeted re-sequencing studies. This simplification, however, is likely to 

underestimate the prevalence of mutations in some genes. 

The final annotated variant list was used as input into R packages maftools80 and GenVisR81 to 

proceed with the data visualisation and analysis. The Discrete Independence Statistic Controlling 

for Observations with Varying Event Rates (DISCOVER)82 algorithm was used to test for co-

occurrence and mutual exclusivity between genes in the SMZL database. This independent test 

accounts for the overall alteration rates of each individual tumour by creating a background 

matrix, which is how tumour specific alteration rates are incorporated by the test. The 

background matrix is created with simple binary mutation matrix of m*n dimension where m is 

the number of genes and n the number of cases to get a genome wide view of each tumour. Of 

the 14 published SMZL studies, six that did not assess more than 100 genes were excluded from 

this analysis to reduce bias, leaving 240 patients from eight published studies to be assessed. 

2.4 Results 

2.4.1 Study selection and characteristics  

After collating and removing duplicate manuscripts, 625 unique manuscripts were kept of 1342 

initially identified (n=793 in PubMed, n=549 in Ovid). 584 manuscripts were discarded after title 

review and 70 manuscripts were discarded after abstract review. The full texts of the remaining 

41 manuscripts were carefully examined to ensure they met the inclusion criteria (Figure 2-1). 

Twenty-six records were excluded, as they did not report a list of variants (Figure 2-3). The 

remaining studies (n=14), to be included in the analysis, were split into three categories: 1) 

discovery; 2) confirmation/extension and; 3) comparison. Table 2-1 lists the manuscripts selected 

and provides a general overview of the methods and samples used in each one. In terms of 

unbiased discovery approaches, there was only a single WGS study and five studies that 
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implemented WES, which subsequently confirmed variants using targeted or Sanger 

sequencing49,51–54. The nine extension/confirmation studies were hypothesis based, targeting 

pathways identified in discovery cohorts or validation of recurrently mutated genes49,50,53,54,71,72,83–

85. Three studies sequenced SMZL cases and compared these to other B-cell lymphomas86–88. Lack 

of matched germline allowed only a fraction of the variants (25%) in the studies to be confirmed 

as somatic. Somatic status and method of confirmation are indicated in the final list of variants 

and on Table 2-1.  

 

Figure 2-3. Flowchart of manuscript selection and filtering. The figure goes through the search strategy, starting 
with the combination of search terms used in the databases. Numbers denote amount of records 
or manuscripts at each step. Once all entries were compiled into a single list, duplicate manuscripts 
were removed and those remaining were reviewed to identify those that would be used in the full 
text review. The number of manuscripts excluded and those that were kept are stated in each of 
the steps. Figure by Jaramillo Oquendo et al70 licenced under CC BY 4.0. 
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Table 2-1. Detailed characterisation of studies included in the SMZL database. Studies are listed in 
chronological order with a general overview of the methods and samples used in each one. 
Extended information on bioinformatics tools used in each study can be found in 
Supplementary Table 1. 

Study 

Methods Used 
M = Sequencing method  
C = Capture/chemistry  

S = Sequencing   
V = Validation 

Samples 
TO = Tissue origin  

MG = Matched germline, 
D = Diagnosis 

Rossi et al. (2011) 

PMID:21881048 

Extension / 
confirmation (n=101) 

M: Targeted (21 genes) 

C: PCR 

S: Sanger 

V: Comparison to matched normal 

TO: Not specified 

MG: Saliva (n=18) 

D: WHO classification and SMZL 
Working Party criteria 

Rossi et al. (2012) 

PMID: 22891273   

Discovery (n=8) 

Extension / 

confirmation (n=117) 

M: WES 

C: SureSelectXT Human Exon 
Capture 50Mb Kit (Agilent 
Technologies) 

S: HiSeq2000 (Illumina) - paired end 
2x100 bp read option 

V: Sanger 

TO: Frozen spleen biopsies of newly 
diagnosed, previously untreated 
patients. 

MG: Saliva or peripheral blood 
granulocytes (n=48) 

D: Spleen histology and confirmed 
by centralized pathological revision. 
All cases in discovery and screening 
panel lacked t(11;18) and t(14;18). 
All cases lacked BRAF p.V600E 
mutation 

M: Targeted (61 genes) 

C: PCR 

S: Sanger 

V: Candidate confirmed on both 
strands 

Yan et al. (2012) 

PMID: 22102703 

Extension / 

confirmation (n=57) 

M: Targeted (6 genes) 

C: PCR 

S: Sanger 

V: Candidate confirmed by at least 
two independent PCR. 

TO: Frozen tissue (n=23) and FFPE 
tissue (n=34) from spleen 

D: Histological assessment of 
spleen according to WHO 
classification. Analysis of micro 
dissected normal cells. 

Kiel et al. (2012) 

PMID:22891276 

Discovery (n=6) 

Extension / 

confirmation (n=93) 

M: WGS 

C: QIAamp DNA extraction kit 
(QIAGEN) 

S: not specified 

TO: Frozen tumour tissue 

MG: NA 

D: Reviewed independently by 
three haematopatologists 
according to WHO classification 
criteria. M: Targeted (NOTCH2) 

C: PCR 

S: Sanger 
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Study 

Methods Used 
M = Sequencing method  
C = Capture/chemistry  

S = Sequencing   
V = Validation 

Samples 
TO = Tissue origin  

MG = Matched germline, 
D = Diagnosis 

Parry et al. (2013) 

PMID:24349473 

Discovery (n=7) 

M: WES 

C: SureSelectXT Human Exon 
Capture 51Mb V4, 50Mb V3 Kit 
(Agilent Technologies) 

S: HiSeq (Illumina) 

V: Sanger 

TO: Spleen biopsies (n=5) and 
peripheral blood (n=2). Tissue 
CD19+ purified cells. 

MG: Saliva (n=7) 

D: Met criteria established my 
Matutes et al. 5/7 splenectomy 
with histology typical of SMZL, 
chromosomal aberrations targeting 
7q and IGHV-2*04 usage. 

Martinez et al. (2014) 

PMID:24296945 

Discovery (n=15) 

 Extension / 

confirmation (n=16) 
 

M: WES 

C: SureSelectXT Human Exon 
Capture 50Mb Kit ( 

Agilent Technologies) 

S: HiSeq2000 (Illumina) - paired end 
76 bp read option 

V: 454 Roche and Sanger 

TO: WES - Isolated CD19 cells from 
peripheral blood (n=10) and freshly 
frozen biopsies n=5). FFPE tissue 
(n=16). All samples taken before 
therapy. 

MG: Oral mucosa (n=13) and 
granulocytes (n=2). 

D: Reviewed independently by 
three haematopatologist according 
to WHO classification. 

  

M: Targeted (NOTCH2) 

C: PCR 

S: Sanger 

Parry et al. (2015) 

PMID:25779943 

Extension / 

confirmation (n=175) 

  

M: Targeted (768 genes) 

C: HaloPlex Target Enrichment 
System (Agilent Technologies) 

S: not specified 

V: Sanger   

TO: Peripheral blood (n=135), bone 
marrow (n=22), spleen (n=17), or 
lymph nodes (n=1). 

MG: Buccal cells or sorted T-cell 
(n=25) 

D: Met criteria established my 
Matutes et al. 

  

M: Targeted (NOTCH2) 

C: PCR 

S: Sanger 

Piva et al. (2015) 

PMID: 25283840 

Extension / 

confirmation (n=96) 

M: Targeted (KLF2) 

C: Repli-g Mini Kit (QIAGEN) & PCR 

S: ABI PRISM 3100 Genetic Analyzer 
(Applied Biosystems) & Genome 
Sequencer Junior instrument (454 
Life Sciences) 

TO: All samples obtained at 
diagnosis from the involved site. 

MG: Saliva or blood granulocytes 

D: All cases lacked the t(11;18) and 
the t(14;18) translocations, and the 
p.V600E BRAF mutation. 
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Study 

Methods Used 
M = Sequencing method  
C = Capture/chemistry  

S = Sequencing   
V = Validation 

Samples 
TO = Tissue origin  

MG = Matched germline, 
D = Diagnosis 

V: Candidate confirmed by at least 
two independent PCR. 

Peveling-Oberhag, et 

al. (2015) 

PMID:26498442 

Discovery (n=2) 

Extension / 

confirmation (n=24) 

  

  

M: WES 

C: SureSelectXT Human Exon 
Capture 50Mb Kit (Agilent 
Technologies) 

S: SOLiD4 Platform (Life 
Technologies) 

V: Comparison to matched normal 
and Sanger 

TO: WES - Splenic tissue (n=2), 
Fresh frozen tissue (n=8), FFPE 
tissue (n=16). 

MG: Not specified 

D: Morphological, cytochemical and 
immunophenotypic methods 
according to 2008 WHO 
classification. All cases were CD5-, 
CD10-, Bcl-6-, CD23-, with typical 
pattern of white pulp involvement. 

M: Targeted (10 genes) 

C: PCR PyroMark PCR kit 

S: PyroMark Q24 (QIAGEN) 

M: Targeted (NOTCH2 & SMYD) 

C: PCR 

S: Sanger 

Clipson et al. (2015) 

PMID:25428260 

Discovery (n=16) 

Extension / 

confirmation (n=96) 

M: WES 

C: SureSelectXT Human Exon 
Capture 50Mb Kit (Agilent 
Technologies) 

S: HiSeq2000 (Illumina) - paired end 
76 bp read option 

V: Sanger 

TO: Fresh frozen lymphoma tissue 
(n=77), Leukaemic peripheral blood 
(n=3), FFPE tissue (n=25). 

MG: non-neoplastic FFPE tissue 
(n=1), Buccal swap or non-involved 
peripheral blood (n=2) 

D: WHO classification 

  
M: Targeted (KLF2) 

C: PCR 

S: Sanger 

V: Candidate confirmed by at least 
two independent PCR. 

Spina et al. (2016) 

PMID:27335277 

Comparison (n=32) 

M: Targeted (504 genes) 

C: SeqCap EZ choice libraries 
(NimbleGen System) 

S: MiSeq Analyzer (Illumina) - 
paired end 2x250 bp read option 

TO: Fresh frozen spleen (n=39), Cell 
lines VL51, SSK-41 and KARPAS-
1718 (n=3). 

MG: Saliva or peripheral blood 
granulocytes (n=14) confirmed 
tumour free  by PCR 
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Study 

Methods Used 
M = Sequencing method  
C = Capture/chemistry  

S = Sequencing   
V = Validation 

Samples 
TO = Tissue origin  

MG = Matched germline, 
D = Diagnosis 

V: Sanger. Candidate confirmed by 
at least two independent PCR 

D: Confirmed by pathological 
revision of spleen histology, lack of 
clinical evidence of extra nodal or 
nodal disease, lacked cyclin D1 
expression, t(11;14) and t(14;18) 
translocations and BRAF p.V600E 
mutation. Harboured 7q deletion 
(305). Preferentially utilized the 
IGHV1-2*04 allele (24%) 

Campos-Martin et al. 

(2017) 

PMID:28522570 

Extension / 

confirmation (n=84) 

M: Targeted (NOTCH2 & KLF2) 

C: PCR 

S: Sanger 

TO: Not specified 

MG: NA 

D: According to WHO classification 
and Matutes et al. 

Jallades et al. (2017) 

PMID:28751561 

Comparison (n=46) 

M: Targeted (109 genes) 

C: Agilent enrichment method with 
biotinylated oligonucleotide probes 

S: HiSeq2000 (Illumina) - paired end 
76 bp read option 

TO: Spleen 

MG: NA 

D: According to WHO classification 
and other published studies. 

Pillonel et al. (2018) 

PMID:29556019 

Comparison (n=12) 

M: Targeted (146 genes) 

C: IonTorrent AmpliSeq HTS 
Lymphoma panel 

S: IonTorrent S5XL 

TO: Not specified 

MG: NA  

D: According to 2007 WHO 
classification. 
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2.4.2 Database collation 

All variants reported by the selected studies were collated into a single list for a total of 3529 

variants derived from 508 patient cases. Before annotation, the variant list was manually curated 

to exclude the following: 

1. WGS variants from the supplementary list of the Kiel et al. (2012) manuscript. The 

supplementary file had a PDF format, which did not allow for the merging of the data in 

Excel. For this set of variants, manual imputation was not feasible as there were over 

1000 variants. 

2. Duplicate variants (n=256) originating from the same patient cases.  

3. Variants (n=21) lacking information necessary to remap and annotate (location and 

reference/alternate allele). 

Post-annotation, the following variants were excluded: a) 195 UTR/intergenic variants; b) 201 

synonymous variants and; c) 39 variants with a frequency greater than 1% in known databases 

(Figure 2-4). The majority of the synonymous variants were reported by the Martinez study52 

(n=195), as the authors did not remove synonymous variants from the published list in their 

supplementary data. After variant filtering the resulting list contained 2817 variants, termed ‘full 

variant list’, with a subset of 1009 variants resulting from unbiased studies. This list from unbiased 

studies was meant to contain both WGS and WES, however, since the Kiel et al. data (the only 

WGS) was not included due to format issues, the list only included WES studies and is referred to 

as ‘WES variant list’. In the final 2817 list of variants, 568/2817 could be annotated with a COSMIC 

ID (duplicate variants from different cases were included). Figure 2-4 summarises the filtering 

criteria and the number of variants removed with each filter. 
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Figure 2-4. Flowchart of database compilation and variant filtering with results. The flowchart begins at the 
data collation step, where all the lists of variants from the published manuscripts and 
supplementary information were collated into a single list. Subsequent filtering strategies and 
data manipulation tools are described. Numbers in bold denote number of variants at each 
step. Figure by Jaramillo Oquendo et al70 licenced under CC BY 4.0. 

The final number of cases, variants, genes and confirmed somatic variants included in the final 

database list, as well as the WES subset, are detailed in Table 2-2 and Table 2-3 respectively. The 

final variant list was comprised of 2817 variants from all 14 studies. The Parry et al (2015), 

Martinez et al (2014) and Rossi et al (2012) studies contributed the highest number of variants 

accounting for around 73% of the total. 46% of the variants came from the Parry study, 17% of 

the variants from the Martinez study and 11% from the Rossi study. 711/2817 variants were 
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confirmed somatic variants where 37% came from the work by Rossi et al (2012). The breakdown 

of contributions to the database per paper is also detailed in tables Table 2-2 and Table 2-3. 

Table 2-2. SMZL database input.  Breakdown of the number of cases, variants, genes and confirmed somatic 
variants included in the database from each study. 

 Source samples variants genes 
validated 
somatic 

Campos-Martin, 2017 22 27 2 7 

Clipson et al, 2015 76 271 141 48 

Jallades et al, 2017 28 50 8 0 

Kiel et al, 2012 25 26 1 0 

Martinez et al, 2014 19 481 462 63 

Parry et al, 2013 7 169 158 169 

Parry et al, 2015 172 1283 425 73 

Peveling-Oberhag et al, 2015 2 21 20 21 

Pillonel et al, 2018 12 29 22 0 

Piva et al, 2015 19 22 1 14 

Rossi et al, 2011 17 17 4 9 

Rossi et al, 2012 83 303 200 266 

Spina et al, 2016 12 101 82 34 

Yan et al, 2012 14 17 3 7 

Total 508 2817 - 711 

Table 2-3. SMZL database WES subset. Breakdown of the number of cases, variants, genes and confirmed 
somatic variants included in the WES subset from each study. 

Source samples variants genes 
confirmed 

somatic 

Clipson et al, 2015 3 142 135 2 

Martinez et al, 2014 15 476 461 63 

Parry et al, 2013 7 169 158 169 

Peveling-Oberhag et al, 2015 2 21 20 21 

Rossi et al, 2012 8 201 190 201 

Total 35 1009 - 456 

For variants with depth and VAF data available, the VAF distribution of the confirmed somatic 

variants was compared to that of variants not validated as somatic. The distribution of the 

validated variants had two major peaks, at a VAF of around 15% and 30%, and a tail with a very 

small peak at around 90% (Figure 2-5). The distribution of the non-validated variants also had two 

big peaks; however, the peaks were much more separate at a VAF of around 10% and 50%. These 

results indicate potential germline variation in the non-validated variants considering the high 

density of variants with ~ 0.5 VAF. The distribution for both validated and non-validated variants 

was skewed to the right (Figure 2-5).  
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Figure 2-5. VAF distribution in validated and non-validated somatic variants in the SMZL database. The top 
(red/pink) distribution shows the non-validated variants, while the bottom (blue/green) shows 
the distribution of the VAF for the confirmed somatic variants. Both distributions are skewed 
right. Only variants that had depth and VAF data (n=2432) are shown here. 

2.4.3 Recurrently mutated genes in WES subset 

Overall, 35 unique samples were sequenced using WES across five different studies all with 

matched germline DNA, accounting for 1009 variants in the final variant list. Figure 2-6 displays 

the number of overlapping genes across the five WES studies, with limited concordance between 

all five (there was no single gene harbouring somatic mutations across all studies). This is to be 

expected given the small sample size. There were however three genes (AMOTL1, FAT4 and 

USH2A) mutated across three studies50–52. SPEN was the most frequently mutated gene, with five 

variants across four samples. Out of the five variants identified in SPEN three were confirmed 

somatic. FAT4, MYD88, NOTCH2, and TNFAIP3 all followed SPEN with four variants each.  
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Figure 2-6. Venn diagram of gene overlap in WES studies. The figure shows the common and unique genes 
reported in each study with no overlap between all five. Where there was an overlap of genes 
identified by more than three studies there are white circles to emphasise the number and name 
of genes found. Figure by Jaramillo Oquendo et al70 licenced under CC BY 4.0. 

2.4.4 Recurrently mutated genes in the full dataset 

Next, the full annotated list of 2817 variants was analysed. 711/2817 variants were confirmed 

somatic (Table 2-2), across 1239 genes. For future reference, the full list of variants obtained from 

this review will be referred to as SMZLrefDB. The number of variants per gene in the SMZLrefDB is 

represented as a Wordcloud in Figure 2-7, in which the font size reflects the prevalence of 

variants in each gene. A summary of the entire database can be seen in Figure 2-8. 

 

Figure 2-7. Wordcloud of gene symbols present in SMZLrefDB. The size of each gene symbol is proportional to 
the number of mutations in each gene (range: 1-123 mutations). NOTCH2 (n=123) and KLF2 
(n=121) had the highest number of mutations, followed by TNFAIP3 (n=75), TP53 (n=60) and 
MYD88 (n=43). Figure by Jaramillo Oquendo et al70 licenced under CC BY 4.0. 
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Most variants found in the SMZLrefDB were missense mutations (n=2126), followed by frameshift 

deletions (n=238) and stopgain or nonsense mutations (n=237). The majority were single 

nucleotide changes (n=2444), followed by deletions (n=256) and a very small number of insertions 

(n=90). C to T substitutions were the most common base change (Figure 2-8).  

 

Figure 2-8. Summary of SMZL variants in the SMZLrefDB (n=2817). A. Number of variants across the 
SMZLrefDB classified by function. B. Breakdown of variant type. Single nucleotide polymorphisms 
(SNP) are in purple, insertions (INS) in yellow and deletions (DEL) in green. C. Breakdown of 
nucleotide substitution. X-axis for all three figures show the number of variants within the 
cohort. 

Figure 2-9 expands on the twenty-one genes with the highest number of variants. The bar graph 

displays the mutational frequency (%) of each gene, ordered from high to low. Each gene 

(represented by a bar) is further annotated with the types of mutations present within it. The 

number of assessed cases in each gene is displayed in Supplementary Table 2.  

 

Figure 2-9. Mutation frequency (%) of the top 21 mutated genes. The graph displays the frequency of 
mutations (# mutated cases/ total # cases) in each gene as well as an overview of the type of 
mutations (missense, nonsense, frameshift and splicing). Genes are listed in descending order of 
most frequently mutated to least. Figure by Jaramillo Oquendo et al70 licenced under CC BY 4.0. 
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The three genes with the highest mutational frequency were, as expected, KLF2, NOTCH2 and 

TP53. KLF2 (21%), had the greatest mutational frequency with mutations that included missense 

[n=50], frameshifts [n=38], truncating [n=19], splicing [n=9] and non-frameshift [n=5]. KLF2 

mutations were found throughout the entire protein (Figure 2-10). KLF2 harboured a recurrent 

mutation (p.Q24X) found in 10 [1.7%, n=10/589] reported cases. This variant is not found in the 

COSMIC database but is predicted to be pathogenic with a CADD Phred score of 3589.  

Following KLF2, NOTCH2 had the second-highest mutational frequency with the majority of its 

mutations having a truncating effect [n =53], followed by frameshifts [n=44], then 

nonsynonymous [n=25], and a single non-frameshift, most of which cluster around exon 34 in the 

C-terminal PEST domain (Figure 2-10). A recurrent variant (p.R2400X) located in the PEST domain 

was present in 27 [4.5%, 27/602] reported cases and is found in the COSMIC database 

(COSV56682519) predicted to be deleterious with a CADD Phred score of 4489.  

TP53 (15%) and IGLL5 (14%), the third and fourth most frequently mutated genes respectively, 

harboured mostly nonsynonymous mutations and few truncating mutations. Mutations in TP53 

were enriched within the DNA binding domain (Figure 2-10) where the most recurrent variant 

(p.R141H) was present in three of the assessed cases. 28 of the 52 variants were annotated within 

the IARC TP53 database90.  

Lolliplots of other recurrently mutated genes (KMT2D, MYD88, SPEN, and TRAF3) are shown in 

Figure 2-11. 
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Figure 2-10. Lolliplot of KLF2, NOTCH2, TP53 and TNFAIP3. Linear proteins representing each gene with 
their respective domains. The height is representative of the number of variants reported (The 
y-axis is not the same proportion for all figures), and circle colour identifies the type of 
mutation. The transcript used for each protein is stated under the gene name and the colours 
of the domains were randomly assigned. Figure by Jaramillo Oquendo et al70 licenced under CC 
BY 4.0. 
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Figure 2-11. Lolliplot of KMT2D, MYD88, SPEN, and TRAF3. Linear protein representing each gene with their 
respective domains. The height is representative of the number of variants reported (The y-axis is 
not the same proportion for all figures), and circle colour identifies the type of mutation. The 
transcript used for each protein is stated under the gene name and the colours of the domains 
were randomly assigned. Figure by Jaramillo Oquendo et al70 licenced under CC BY 4.0. 

Other recurrently mutated genes included TNFAIP3, KMT2D, MYD88, TRAF3, SPEN, and CCND3. 

Mutations in TNFAIP3 and KMT2D were not clustered events but rather distributed throughout 

the entire protein (Figure 2-11). The p.L265P MYD88 variant accounted for 65% [28/43 mutations] 

of all MYD88 variants. This variant is pathogenic according to ClinVar91 and annotated in the 

COSMIC database (COSV57169334). The p.L265P MYD88 variant is in the toll/interleukin-1 

receptor homology (TIR) domain (Figure 2-11) and is recurrently mutated in several mature B-cell 

tumours92. Other recurrent MYD88 mutations included p.V217F, pM232T, and p.S219C present in 

six, four, and three cases respectively. The latter (p.S219C), along with the p.L265P variant, has 

been identified in a recently recognized entity, termed clonal B-cell lymphocytosis of MZ origin 
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(CBL-MZ)34,93, that can sometimes progress to SMZL94. The other two MYD88 mutations (p.V217F, 

pM232T) have been identified in both chronic lymphocytic leukaemia (CLL) and Diffuse large B-

cell lymphoma (DLBCL)11. CCND3 mutations in the C-Terminal domain were mutated in 18 cases 

(7%). These mutations have been identified in a panel of mature B-cell neoplasms, and most 

recently in patients with splenic diffuse red pulp small B-cell lymphoma (SDRPL), another entity 

difficult to differentiate from SMZL95. In IKBKB a recurrent variant (p.K169E) predicted to be 

deleterious with a CADD Phred score of 29.789,96 was identified in nine cases [1.8%, 9/510].  

2.4.5 Somatic interactions 

Using the DISCOVER algorithm with and false discovery rate (FDR) of 1% there were three 

pairwise combinations that were significantly mutually exclusive:  

1. KLF2 and IGLL5 (p<0.001) 
2. TP53 and NOTCH2 (p=0.002) 
3. TP53 and KLF2 (p=0.0045)  

While there was evidence of mutual exclusivity, this algorithm did not pick up any co-occurring 

events. Figure 2-12 shows the results of the DISCOVER test plotted on a heatmap. 

 
Figure 2-12. DISCOVER mutual exclusivity test results.A. Heat map displaying the corrected p-value for the 

gene pairs tested for mutual exclusivity in the DISCOVER algorithm. The plus sign (+) indicates 
correlations with a p-value < 0.05 and the asterisk (*) highlights those pairwise combinations 
with a p-value < 0.01. B Waterfall plot of mutations found in KLF2, NOTCH2, TP53 and IGLL5.  
Each column represents a sample, and each row a gene. Each column is coloured according to 
the mutation type present in the sample and grey if no mutations are present. Figure by Jaramillo 
Oquendo et al70 licenced under CC BY 4.0. 

2.5 Discussion  

Due to its rare nature, SMZL is not widely studied and has no entries in cancer databases such as 

The Cancer Genome Atlas (https://cancergenome.nih.gov/) or the International Cancer Genome 

Consortium (https://icgc.org/). The COSMIC database houses only 23% of all SMZL variants 

reported and does not include recent studies. To our knowledge, this is the first systematic review 
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of published SMZL genomic data, in this case, pooled from 14 studies. It fulfils an unmet need, as 

currently there are no other resources like it. Furthermore, unbiased genomic studies are limited 

and the available WGS or WES data fail to provide a complete detailed catalogue of somatic 

mutations. A systematic approach was the best option to begin to unravel the genomic landscape, 

providing confirmation of recurrently mutated genes and potentially highlighting genes that might 

not have been at the centre of SMZL studies due to power limitations in any single study.  

Several limitations were encountered pertaining to the experimental/analytical design and the 

lack of required information in published data. The first limitation encountered was the number 

of unbiased studies. Only five of the fourteen studies performed WGS or WES and the remaining 

studies (validation and comparison) introduced bias by employing targeted panels of genes 

hypothesised to be implicated in SMZL biology or related mature B-cell malignancies. The second 

limitation was that the number of assessed genes was not the same across studies. Some genes 

will present more mutations simply because they were the target of many panels, likely biasing 

estimation of mutational frequency compared to less frequently assessed genes. The third 

limitation was the evolving nature of NGS experimental and analytical pipelines. Each study design 

employed specific parameters and conditions as shown in Table 2-1 and further described in 

Supplementary Table 1, creating some difficulties in meaningfully combining certain variables and 

likely increasing discrepancies. Additionally, different approaches will have varied ability to detect 

mutations dependent on factors such as depth, GC content, variant allele frequency and tumour 

purity. A fourth limitation was the lack of matched germline tissue and absence of confirmed 

somatic status in some studies. As was shown in Figure 2-5, the distribution of VAF in the 

validated somatic variants against the non-validated variants differed between the two groups. 

The fact that there was a high density of variants with a VAF close to 50% in the non-validated 

group could indicate the presence of rare germline variation that is extremely difficult to filter 

without matched germline tissue. Although the VAF could have been used as a filter to eliminate 

potential rare germline variants, it was not done since not all studies published VAF data. This 

leads onto the final limitation which pertains to the quantity of information provided within the 

published manuscripts. Several manuscripts provided variant lists with detailed annotation, while 

others provided only high-level amino acid sequences. This meant that certain information such 

as chromosome start and allele information had to be inferred, increasing the variability of the 

data and possible errors. 

Regardless of these limitations, this review created a valuable dataset and resource to understand 

what has already been done and what possible future action is required. Variants from WES 

studies were analysed separately to have an unbiased assessment of the somatic pathways and 

genes affected. Unfortunately, WGS and WES are often limited by sample size and this is the case 
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in SMZL with the largest cohort comprised of only 15 patient samples. According to the ICGC, 500 

samples are needed to reliably detect genes that are somatically mutated in 3% of a tumour. For 

rarer tumours, they propose a two-tiered strategy to obtain comparable statistical power, 

processing a discovery (n=100) and a validation set (n=400). Both approaches may vary based on 

tumour heterogeneity, background mutation rate and sequencing depth. Considering the reduced 

sample size and lack of concordance between the five WES studies, it is clear that more unbiased 

genome-wide analysis is necessary.  

Having established the limitations of the dataset, the full set of variants was then analysed for 

further insights into SMZL biology. The review validated the importance of KLF2, NOTCH2 and 

TP53 in SMZL pathogenesis. NOTCH2 mutations targeted the C-terminal PEST domain necessary 

for the regulation of the intracellular domain (NICD)97, and consequent transcriptional regulation. 

Two distinct clusters of mutations were found in KLF2, one consisted mostly of missense 

mutations flanking the ZF1 domain involved in DNA recognition, and the second in the activation 

domain. Several of these mutations, particularly those in the zinc finger domain have been shown 

to hinder the ability of KLF2 to suppress NF-b induction by upstream signalling pathways54. TP53 

was recurrently mutated, supporting the critical role this gene plays in cancer and more 

specifically in SMZL. As is observed in other mature B-cell tumours, mutations in TP53 were 

clustered in the DNA binding domain, where they lead to protein dysfunction. This review also 

confirms the importance of genes that interact with the NF-κb pathway; with mutations in 

TNFAIP3 (13%), MYD88 (8%), TRAF3 (8%), CARD11 (5%), IKBKB (4%), and BIRC3 (4%). Most 

notable, TRAF3, which has not been considered a significant player in SMZL biology, was mutated 

across studies and warrants further study at the molecular and functional level.  

KMT2D was an unexpected gene to find at such a high mutational frequency occurring in 9% of 

SMZL cases. KMT2D is also targeted by recurrent mutations in follicular lymphoma (FL) and diffuse 

large B-cell lymphoma (DLBCL), where it functions as a tumour suppressor, promoting 

lymphomagenesis in murine models98. Another unexpected gene was IGLL5, where recurrent 

mutations have also been identified in CLL, linked to canonical activation induced-cytidine 

deaminase (AID) activity with a mutation pattern clustering around the transcription start site 

within the first intron99. AID induces clustered mutations in the immunoglobulin loci as well as 

some off-target regions, potentially an underlying cause of oncogenic mutations often seen in B-

cell malignancies100. IGLL5 is homologous to IGLL1, critical for B-cell development and hints at 

having biological importance in CLL99. In the pooled dataset, we found IGLL5 mutations in 31/222 

cases (14%). IGLL5 mutations have also been reported in other marginal zone (nodal and 

extranodal) and lympho-plasmacytic lymphomas88. Although we do not have sufficient sequencing 
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information (WGS) to determine the mutational signature underpinning IGLL5, it is likely similar to 

the situation in CLL, a consequence of off-target AID activity. 

The DISCOVER algorithm identified three pairs of genes (KLF2 and IGLL5, TP53 and NOTCH2, and 

TP53 and KLF2) which were significantly mutually exclusive, suggesting possible disease subtypes 

in SMZL. It was not possible to do any further correlations with these results as the individual 

phenotypes were not published with the manuscripts. 

2.6 Conclusion 

The database created here represents a critical community resource as currently SMZL tumours 

are not included in the IGCG and TCGA, and only 23% of reported SMZL variants are included in 

COSMIC. Moreover, evidence is provided that the study of SMZL genomics requires expansive 

unbiased whole-genome mutational analysis to fully unravel the somatic landscape of the disease. 

This systematic review confirms the importance of NOTCH2, KLF2 and TP53, and adds evidence to 

the importance of several other genes, such as TNFAIP3, TRAF3, and KMT2D, that will guide future 

molecular screening and functional experimentation and provides a resource for the 

interpretation of future genomic studies in SMZL.
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 Methodology  

3.1 Patient cohorts and sequencing of NGS libraries 

3.1.1 Jaramillo cohort  

Our primary cohort of 146 splenic marginal zone lymphoma samples, all meeting established 

diagnostic criteria37, were obtained from 11 international collaborating centres (Spain, Greece, 

Italy, France, Germany, Sweden and the United Kingdom). Tumour DNA was extracted from 

peripheral blood [n=97], spleen cells [n=13] or bone marrow [n=2] however, for some cases 

samples were sent as DNA and the material type from which they came from is unknown [n= 34]. 

Informed consent was obtained from all patients in accordance with the Helsinki declaration and 

regional research ethics. Prior to DNA extraction (DNeasy blood and tissue kit, Qiagen), the 

CD19+/CD45- SMZL cells were purified using the EasySep Human B Cell enrichment kit without 

CD43 depletion (StemCell Technologies). Tumour purity of greater than 80% was confirmed with 

fluorescence-activated cell sorter (FACS) analysis. 

Samples were analysed with a bespoke Agilent HaloPlex HS Target Enrichment system that 

enriched 383.74 kb of genomic DNA for 62 genes and genomic regions, designed with SureDesign 

(https://earray.chem.agilent.com/suredesign/). The gene design resulted in 98.95% in silico 

coverage of selected regions. 50 ng genomic DNA from each patient was digested using 16 

restriction enzymes. The restriction digests were hybridised to the HaloPlex Probe Capture 

Library, with an Indexing Primer Cassette, which incorporates Illumina sequencing motifs and 

barcoding indices into the targeted fragments. The biotinylated target DNA-HaloPlex probe 

hybrids were captured and target-enriched using PCR amplification before purification using 

AMPure XP beads (Beckman Coulter). Subsequent to quantification, samples with different indices 

were pooled, in preparation for sequencing. A final concentration of 1.8 pM of enriched target 

DNA, with a 1% PhiX spike as an internal control, was sequenced, using 150 bp paired end 

sequencing on the Illumina NextSeq. Dr. Helen Parker designed the HaloPlex enrichment kits and 

performed all wet laboratory work described. David Oscier reviewed the cases and confirmed 

SMZL diagnosis. 

Our primary cohort was sequenced in five batches throughout the span of two years (2017-2019). 

Within each batch, the SMZL samples [n=146] were sequenced alongside other B-cell 

malignancies which were also processed and used for development of the bioinformatic methods. 

32 samples were sequenced more than once due to low quality or because they had been taken 

at different timepoints or from different tissues. For those sequenced multiple times, results from 
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different sequencing runs were not combined and the most appropriate run or sample was 

chosen according to the following criteria: 

1. If samples came from the same patient, timepoint and tissue, the sample with the highest 

coverage was chosen. Details on how coverage was calculated can be found in section 

3.5.2. 

2. If samples came from the same patient but different timepoints, the first time point was 

chosen.  

3. If samples came from the same patient but different tissues, the most informative sample 

was used (spleen > bone marrow > peripheral blood > other). 

Table 3-1 details samples that were sequenced multiple times and whether they were used for 

analysis. Batch 2 was a particularly low-quality batch and samples within this batch [n=23] that 

had material available were re-sequenced as batch 4. Batch 4 had much higher quality than batch 

2, hence all samples in batch 4 were used for analysis unless otherwise stated in Table 3-1 

Table 3-1. Description of duplicate samples. Quality of sample is described by the mean target coverage and 
percentage of target bases that were covered at least 15x. 

Duplicates Sample ID Batch 
Mean 
target 

coverage 

% Target 
bases > 

15X 
Tissue 

Year of 
biopsy 

Included in 
analysis 

1 

L104_14 1 194 89 - - Excluded  

1_S1 2 197 89 - - Excluded 

1_S1 4 316 91 - - Kept 

2 
13_MUT 3 91 87 - - Excluded 

1_MUT 3 169 90 - - Kept 

3 
L049_09_30 1 237 91 Blood - Excluded 

L049_09_31 1 609 92 Spleen - Kept 

4 
L098_13_S59 1 367 91 Skin - Kept 

L098_13_S60 1 95 86 Skin - Excluded 

5 
XXI_S38 5 111   82 - - Excluded 

30_MUT 3 175 75 - - Kept 

6 
Pangalis_35 3 137 85 - - Excluded 

21_S12 1 352 90 - - Kept 

3.1.2 Parry cohort 

The Parry cohort consisted of 175 SMZL patients, from 8 centres across Europe, all meeting 

established diagnostic criteria37. DNA was extracted from peripheral blood [n=135], bone marrow 
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[n=22], spleen [n=17], or lymph nodes [n=1]. Mantle cell lymphoma (MCL), Splenic/leukaemia 

unclassifiable (SLLU) and splenic diffused red pup lymphoma (SDRL) cases were excluded using 

FISH, conventional cytogenetics, and splenic histopathology. Transformation events were 

diagnosed histologically. Although results from this cohort have already been published71, we 

applied new bioinformatics tools to update the results and it its integration was key in adding 

power to our analysis. 

Similarly, for the Parry cohort samples were analysed with a bespoke HaloPlex Target Enrichment 

system (Agilent Technologies) that enriched 2.39 Mb of genomic DNA for the coding regions of 

768 genes, designed with SureDesign (https://earray.chem.agilent.com/suredesign/). The gene 

design resulted in 98.58% in silico coverage of selected regions. Library preparation was 

performed using the BRAVO automated liquid handling system (Agilent) according to the 

manufacturer’s instructions. 225 ng genomic DNA from each case was digested using eight 

restriction enzymes. The restriction digests were hybridised to the HaloPlex Probe Capture 

Library, with an Indexing Primer Cassette, which incorporates Illumina sequencing motifs and 

barcoding indices into the targeted fragments. The biotinylated target DNA-Haloplex probe 

hybrids were captured and target-enriched using PCR amplification before purification using 

AMPure XP beads (Beckman Coulter). Subsequent to quantification (Bioanalyser High Sensitivity 

DNA assay kit, Agilent) samples with different indices were pooled [n=22 per sequencing lane], in 

preparation for Illumina sequencing (HiSeq) of 100 bp paired end sequencing by collaborators at 

the University of Oxford High-Throughput Sequencing Centre.  

3.1.3 CLL4 cohort 

The CLL4 cohort is another previously published dataset101. However, unlike the Parry cohort, 

these samples belonged to chronic lymphocytic leukaemia patients and were used to determine 

the accuracy of our filtering strategy in 0. This cohort was comprised of 499 patient samples taken 

at randomisation, diagnosed with iwCLL guidelines. Samples were analysed using a TruSeq 

Custom Amplicon kit (Illumina, San Diego, CA, USA) that enriched 250 or 50 ng of DNA according 

to manufacturer’s instructions. Prepared libraries were taken forward for MiSeq sequencing, in 

maximum batch sizes of 20 per MiSEQ run. Dr. Stuart Blakemore conducted the DNA 

quantification, library preparation and sequencing with collaborators at the University of Oxford. 
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3.2 Targeted regions across cohorts 

3.2.1 Targeted regions within the Jaramillo and Parry cohorts 

For the Jaramillo cohort, libraries were prepared using two HaloPlex HS Target Enrichment kits (HS 

kit 1 and HS kit 2). Combined, the two kits consisted of 57 genes ( 

Figure 3-1), chosen due to their high mutation frequency in previous SMZL studies as well as other 

B-cell malignancies. 102 samples were run on HS kit 1 which consisted of 55 target genes. While 

44 samples were run on HS kit 2, consisting of 51 target genes. HS kit 2 was an update on HS Kit 1, 

where poorly mapped regions were removed, and other genes of interest included ( 

Figure 3-1). Dr. Helen Parker was responsible for the redesign of HaloPlex HS kits and detailed kit 

design can be found in Supplementary Table 3. The HaloPlex kit (historical kit) used in the Parry 

cohort targeted 768 genes, however samples were processed so results would include only those 

regions found in both HS kit 1 and HS kit 2. 

Figure 3-1 shows the overlap between HS kit 1 and HS kit 2 in the orange square. Genes in red 

font were those not targeted in the historical kit. 

 
Figure 3-1. Overview of genes targeted by HaloPlex HS enrichment kits. Kit 1 was the first HaloPlex HS kit 

used in for the Jaramillo cohort but was redesigned (kit 2) to remove poorly mapped regions and 
include other genes of interest. All genes except those in red were targeted by the historical 
HaloPlex kit (without UMBs) which was used to sequence the Parry cohort. 

3.2.2 HaloPlex HS vs HaloPlex 

HaloPlex HS (Agilent) is an amplicon-based capture kit that introduces a unique molecular barcode 

(UMB) to each DNA fragment. The molecular barcodes are used to merge PCR duplicates and 
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create a high-quality consensus read. This is useful in downstream processes since this higher 

quality data allows for higher confidence during variant calling. HaloPlex is the previous version of 

the HaloPlex HS capture kit and does not add UMBs to the library. This meant that for the 

historical HaloPlex kit, PCR duplicates could not be merged to create a consensus read.  

3.2.3 Targeted regions within the CLL4 cohort 

Libraries for the CLL4 cohort were prepared with a TruSeq panel that targeted 20 genes including: 

ATM, BIRC3, NOTCH1, SF3B1, TP53, MYD88, EGR2, NFKBIE, POT1, SAMHD1, BRAF, FBWW7, XPO1, 

CDH2, DDX3X, MED12, SETD2, RPS15, CTBP2, MGA, NBEAL2, KRAS, NRAS, HIST1H1E, ZFPM2. 

3.3 Overview of samples used throughout the project 

Samples were sequenced at different time points and therefore used at different stages 

throughout the project. Table 3-2 describes which samples were used in which process (i.e. 

bioinformatics pipeline development, analysis) and where they were used. 

Table 3-2. Breakdown of samples used per chapter and process  . Our primary cohort was sequenced in five 
batches throughout the span of two years (2017-2019). Within each batch, the SMZL samples 
[n=146] were sequenced alongside other B-cell malignancies which were also processed and 
used for development of the bioinformatic methods. Therefore, for the Jaramillo cohort, ‘all 
samples’ refers to the SMZL samples in addition to the other B-cell malignancies. 

 

3.4 Bioinformatics pipeline 

The bioinformatics pipeline in which the samples were processed had several iterations and 

changed throughout the project. Chapter 4 discusses in detail the steps involved in the 

bioinformatics pipeline as well as all the changes made for optimisation. 

Jaramillo cohort Parry cohort CLL4 cohort

PipelineV1 batch 1 & 2 - -

PipelineV2 batch 1 & 3 - -

PipelineV3 batch 1 & 4 - -

PipelineV4 batches 1 - 4 - -

PipelineV5 all samples all samples -

Quality control all samples all samples -

Analysis 146 (reviewed diagnosis) - -

Test set batch 1 - -

Validation - -
batch chosen at random 

(miseq16-005)

Run through model all samples all samples -

Filtering strategy 1 146 (reviewed diagnosis) all samples -

Filtering strategy 2 146 (reviewed diagnosis) all samples -

Transcript selection 146 (reviewed diagnosis) all samples -

Analysis 146 (reviewed diagnosis) all samples -

Chapter 8 -Integration of genomic results and 

clinical data of SMZL patients
Analysis 146 (reviewed diagnosis) all samples -

Chapter 6 - Machine learning to distinguish true 

somatic variants from noise in tumour only NGS

Chapter 7 - Next generation sequencing analysis 

of splenic marginal zone lymphoma patients

Samples used
Chapters

Chapter 4 - Optimisation of bioinformatics 

pipeline to process targeted next generation 

sequencing data

Process

Chapter 5 - Preliminary results of next 

generation sequencing analysis of splenic 

marginal zone lymphoma patients
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The bioinformatics pipeline as well as the quality assessments described in the following sections 

were all run on the University’s high-performance computing cluster IRIDIS4  

3.5 Quality assessment of NGS data 

3.5.1 FASTQ quality 

FASTQ files are the raw sequencing files used as input for the bioinformatics pipeline (for further 

details see section 4.2.1). FASTQ sequence quality was assessed using FASTQC software 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and merged with the MultiQC102 

tool. If samples were run in batches, each batch was assessed separately. 

3.5.2 Coverage 

Before data analysis, read quality metrics are assessed to make an informed decision on the 

downstream processing samples will require. Coverage refers to the number of reads that cover a 

specific base. Coverage statistics are examined to determine if there are enough bases covering a 

region to make confident calls and the abundance of poor-quality samples. Somatic variants may 

have very low variant allele frequencies (VAFs) and identification of these require higher read 

depth than germline variants for identification with high confidence. Read depth refers to the 

total number of usable reads or fragments from the sequencing machine. Using the binomial 

distribution, we calculated that a coverage of 30x is needed to identify variants with a VAF of 0.10 

with 95% confidence.  

Coverage statistics were calculated on a per-sample, per-gene, and per-region basis, using the 

BAM files, the regions BED file, and a reference file for gene annotation (hs38.fa) using GATK’s 

DepthOfCoverage v3.7 tool. The BED files were modified to remove alternative contigs not 

present in the reference files (hs38.fa). 

3.5.3 Percentage of similarity between samples 

Coding variants from a sample are compared against the coding variants of other samples with an 

in-house script. The script calculates the percentage of variants a pair of samples have in common 

and outputs a matrix with the percentage of similarity across all samples being compared. 

Samples that share many coding variants (high percentage of similarity), could be related, from 

the same patient or could indicate a large number of artefacts (which have been identified as 

variants) from the sequencing and processing. If there are no duplicate or related samples within 

a cohort a large percentage of similarity could also indicate cross contamination of samples. 
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3.5.4 Conversion of BED files between reference genomes  

BED files for all target enrichment kits were constructed using the hg19 reference genome and 

had to be converted to the hg38 reference for use in the DepthOfCoverage v3.7 tool. The BED files 

were therefore re-mapped from hg19 to hg38 using the NCBI Genome Remapping Service 

(https://www.ncbi.nlm.nih.gov/genome/tools/remap).  

3.5.5 Inspection of variants the Integrative Genomics Viewer (IGV) 

The Integrative Genomics Viewer (IGV) 103 was used to validate variant in-silico and the 

recalibrated BAM files were used as input for visualisation. To determine if a variant was real or 

an artefact the standard operating procedure for identifying somatic variants published by Barnell 

et al. was followed104. A summary of the SOP can be seen in Figure 3-2.  

 

Figure 3-2. Step-by-step of somatic variant refinement via manual review. 
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 Optimisation of bioinformatics pipeline to 
process targeted next generation sequencing 
data 

4.1 Synopsis 

This chapter describes the steps required to process raw sequencing data to obtain a list of 

variants. An initial bioinformatics pipeline is described, followed by the modifications applied to 

optimise it for processing tumour only SMZL samples. The final pipeline described in this chapter 

was used to process all samples in subsequent sections.  

The initial bioinformatics pipeline was developed by previous members of the Genomics 

Informatics group. Carolina Jaramillo Oquendo optimised the bioinformatics pipeline and this 

work was overseen by Dr. Jane Gibson. Prof Sarah Ennis, Prof Jon Strefford and Dr Jane Gibson 

acted as main supervisors and provided guidance in the analysis and interpretation of the data. 

4.2 Bioinformatics pipeline overview  

To analyse the ever-growing amount of high-throughput sequencing (HTS) data, computational 

tools and algorithms have been developed to aid our understanding of such complex information. 

In terms of analysis, each set of HTS data comes with its own challenges depending on what 

chemistry and what platform was used to sequence it. The processing or bioinformatics pipeline 

to analyse HTS data can be broken down into five stages: Raw data processing, mapping to 

reference, variant calling, annotation and filtering (Figure 4-1). Only after the raw data has gone 

through these steps can there be a meaningful analysis of the sequencing results.  

 

Figure 4-1. Data processing workflow for HTS data. Raw sequencing data must be aligned and mapped back 
to a reference sequence. Following alignment differences between the reference and the sample 
are identified during variant calling. Once differences (variants) have been identified they are 
annotated with additional information that can be useful in the analysis. Often the annotated list 
of variants is further filtered to eliminate false positives. 

4.2.1 Raw data processing 

After sequencing libraries are prepared, a sequencing instrument will determine the nucleotide 

bases for each fragment, generating millions of short sequences or reads. Output from the 

Raw data 
prossessing

Alignment & 
mapping

Variant 
calling 

Annotation Filtering
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sequencing instrument is converted into FASTQ files where each read is encoded by four lines that 

contain read information, the nucleotide sequence and base quality scores.  

Before analysis, FASTQ files (raw data) are checked to make sure the sequencing itself was done 

correctly. This quality control begins by looking at the base calling accuracy. Base calling accuracy 

is measured by the Phred quality score105 (Q score) which calculates the probability of a base 

being miscalled by the sequencing instrument and it is determined by the formula: 

𝑞 = 10 × log10 𝑝 

Where p is the estimated error probability for that base call. This means that a base call with a 

quality of 30 has a probability of 1/1000 of being incorrect or a 99.9% accuracy. These quality 

scores are subsequently used by the different algorithms to identify and exclude artefacts that 

may have been introduced along the sequencing process.  

FASTQ files are assessed to ensure that the data obtained from sequencing is of good quality. 

FASTQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is the most common tool 

to assess FASTQ quality, which can identify issues that come from sequencing itself or from the 

starting library. FASTQC software has several analysis modules which assess per base sequence 

quality, sequence content, GC content, sequence length distribution, duplicate sequences, and 

overrepresented sequences (adapters). 

4.2.2 Alignment to a reference genome 

After FASTQ quality assessment, reads are mapped to a reference genome. The construction of 

the human reference genome106 began over 20 years ago and although the project has now 

completed, refinement and maintenance of this resource is always under constant development 

(https://www.ncbi.nlm.nih.gov/grc). Currently, the latest major assembly of the human reference 

genome available is the hg38 assembly and it will be the reference used throughout this project. 

Since the introduction of HTS technology, there have been at least 70 mapping tools developed, 

such as Bowtie107, SOAP108, Burrows-Wheeler Alignment (BWA)109,110 and SHRiMP111. The tools 

essentially take a set of reads and aim to map or align them to a reference genome. This is not a 

simple computational task, as most reads will not have the exact sequence of the reference and 

there needs to be flexibility to allow alignments with mismatches (Figure 4-2). 
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Figure 4-2. Read mapping process. The input is a set of reads and reference genome. The middle row 
represents the results of mapping. The square zooms in on three reads aligned to different 
positions of the reference. 

For short read alignment, only a few of these tools are routinely used in the analysis of large 

datasets, mainly limited by the efficiency, in both time and space, of the different tools. This is 

why Bowtie and mappers that utilise the Burrows-Wheeler Alignment are among the most 

popular112. Alignment tools will output Sequence Alignment/Map format files (SAM), which store 

the sequencing data in tab-delimited ASCII columns (https://samtools.github.io/hts-

specs/SAMv1.pdf). Due to their size SAM files are compressed into BAM (binary sequencing 

alignment/map) files which tend to be the files used as input for many of the genomic analysis 

tools. 

4.2.3 Variant calling  

After alignment, the next step is variant identification or variant calling. This step identifies where 

the aligned reads differ from the reference and outputs a file in variant calling format (VCF). VCF 

files contain meta-information lines, a header line, and data lines each containing information 

about a specific location in the genome. The format also has the ability to contain genotype 

information on samples for each position113 as seen on Figure 4-3. 
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Figure 4-3. VCF file format. The lines that begin with a ‘#’ contain meta-information and subsequent lines 
represent a position in the genome in which a variant has been identified.  

As with alignment, there are many tools available for variant calling such as GATK Haplotype caller 

or Mutect2114, Platypus115, VarScan116,117, SAMtools118 and VarDict119 but the choice varies 

depending on the type of sample and sequencing method. More on choosing an appropriate 

variant caller can be found in section 4.4.5. 

4.2.4 Annotation of variants 

VCF files will contain a list of variants annotated with their location as well as base quality and 

other sequencing metrics. However, further annotation is needed to aid in the identification of 

pathogenic variants. Annovar76 is one of the most widely used annotation tools as it uses up-to-

date databases to functionally annotate genetic variants detected from diverse genomes 

(including human genome, as well as mouse, worm, fly, yeast and many others). Annovar 

annotates variants against a range of publicly available datasets to add further context and 

identify the type of variant, amino acid and protein change and affected gene. It also annotates 

predictive scores to determine if a variant is deleterious and compares the variants against 

databases of known germline or somatic variation such as gnomAD120 and COSMIC11. 

4.2.5 Filtering variants into a biologically relevant list 

Variant calling generates a lengthy list of all ‘variants’ found in a sample. If a sample is processed 

using whole genome sequencing, the number of variants called will likely be in the millions. 

Likewise, in a targeted panel, the resulting number of variants will vary, depending on the size of 

the panel, from tens to thousands of variants. This raw list could include somatic variants, 

germline variants, variants called in off-target regions or they could be sequencing artefacts, 

especially in somatic samples without matched germline tissue. Filtering is an important step in 

obtaining a relevant list of somatic variants with the least number of false positives. Therefore, 



Chapter 4 

57 

following annotation variants are filtered to prioritise results into a biologically significant list. 

More details on filtering strategies are discussed in section 5.3.2 and section 6.2. 

4.3 Challenges of identifying somatic mutations in unmatched tumour 
tissue 

The underlying biological processes that cancerous tissues undergo to become malignant is one of 

the factors that make identifying mutations in tumour tissue so complex. Tumour samples have a 

heterogeneous composition of cells, whereby a mutation may be present in all cells (fully clonal) 

or a subset (sub-clonal). This is problematic in terms of processing a sample, since this 

heterogeneity implies changing underlying assumptions in algorithms designed to call germline 

mutations. Germline mutations are expected to have 50% or 100% variant allele frequencies 

(VAF), while somatic mutations will have a much broader range of VAFs. When sequencing 

germline tissue, sequencing artefacts are filtered out based on the assumption that they have 

very low VAFs. However, since variants in somatic samples may also be present at very low 

frequencies, distinguishing between real low frequency sub-clonal variants and artefacts can be 

extremely challenging. Furthermore, while somatic variant callers are designed to identify somatic 

variants considering parameters such as tumour purity, ploidy and VAF among other factors, 

these are often designed to process matched normal-tumour pairs and are incompatible with 

unmatched tumour samples. This can be a problem as oftentimes tumour tissue is taken for 

clinical purposes, and matched germline tissue is not routinely collected alongside the tumour 

sample. Matched germline tissue is key not only for filtering out germline variation, but it is also 

helpful in excluding systematic errors in the bioinformatics pipeline. Systematic errors will appear 

both within the normal and tumour samples, and therefore if a variant shows evidence of being 

an artefact, we can use the germline to confirm its presence and to see if the same patterns or 

evidence are observed. Consequently, unmatched tumour HTS data will likely contain many false 

positives. Table 4-1 compares the requirements for the successful identification of both germline 

and somatic mutations and why it is more complex to identify somatic mutations compared to 

germline. 
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Table 4-1. Requirements for successful identification of mutations in germline and tumour tissue. 

 

To be able to process unmatched tumour samples and obtain optimal results from our sequencing 

data, having the appropriate tools and bioinformatics pipeline is key. This chapter aims to discuss 

the optimisation of a bioinformatics pipeline for unmatched SMZL tumour samples, sequenced 

using a targeted amplicon-based approach. 

4.4 Materials and Methods 

4.4.1 Samples 

Batches 1- 4 of the Jaramillo cohort were used for the pipeline development/optimisation. Once 

the final pipeline (pipelineV5) had been established, all batches in the Jaramillo cohort as well as 

all samples from the Parry cohort were run through pipelineV5 (Figure 4-4). 

 

Figure 4-4. Breakdown of samples (batches) used for pipeline development. Batches 1 and 2 of the 
Jaramillo cohort were used for the development of the first three iterations of the 
bioinformatics pipeline. After the final pipeline was established all samples in both the 
Jaramillo and Parry cohort were processed.  
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4.4.2 PipelineV1 - Baseline pipeline 

Due to availability of samples batch 1 (n=62) and 2 (n=54) were the first to be processed on a 

previously constructed pipeline for HaloPlex HS sequencing data. FASTQ files were run through 

FastQC for quality control and through SurecallTrimmer v3.5.1.46 to identify and remove adaptor 

sequences and trim low quality reads (qual < 20). SurecallTrimmer is part of the Agilent Genomics 

NextGen Toolkit (AGeNT) which provides adaptor trimming and duplicate read removal for 

HaloPlex HS data (Agilent). BWA-mem was used to align reads to the hg38 reference genome. 

Samtools v1.2.3118 converted resulting SAM files into BAMs. Picard v1.97 

(https://github.com/broadinstitute/picard) sorted and indexed BAMs. Duplicate reads were 

marked using LocatIt v3.5.1.46 and resulting BAMs were sorted and converted into FASTQs by 

Samtools and Picard respectively. LocatIt is also part of the Agilent Genomics NextGen Toolkit. 

Pear v1.97121 merges the paired end reads (FASTQ) to increase the length of the reads and 

improve alignment. The outputs from Pear were assembled and unassembled FASTQs which were 

then run through BWA-mem and aligned to the hg38 reference genome. BAMs were converted to 

SAM format (Samtools) and sorted by Picard. Picard merged the assembled and unassembled 

BAMs and the resulting merged BAM was run through GATKs Haplotype caller v3.7 which called 

variants via local re-assembly of haplotypes. Following variant calling the resulting VCF files were 

annotated using Annovar software (v2016Feb01). Figure 4-5 goes through the steps involved in 

the bioinformatics processing from raw FASTQ file to annotated variant list ready for 

prioritisation. This baseline pipeline is defined as pipelineV1.  
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Figure 4-5. Flow diagram of steps involved in the bioinformatics pipeline before optimisation.  Raw FASTQ 
files go through a quality control (yellow) before they are aligned to a reference genome (green) 
using BWA-mem. LocatIt marks duplicate reads using the unique molecular barcodes from the 
Haloplex HS enrichment kits (blue). Files are then converted into FASTQ format and paired end 
reads are merged with Pear. FASTQ files are aligned again using BWA-mem to the hg38 reference 
genome (green). GATK haplotype caller is used to call variants (pink) and Annovar to annotate 
with a range of public databases (orange). 
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4.4.3 PipelineV2 - Marking and merging duplicate reads 

One of the main causes of false positives in amplicon-based approaches is the presence of PCR 

duplicates. The unique molecular barcodes (UMBs) introduced by the HaloPlex HS kit allow for the 

merging and reduction of these PCR duplicates. LocatIt is an Agilent software created to process 

the UMB information of HaloPlex HS. This software can mark or merge UMB duplicates and was 

chosen to handle the UMBs in the pipeline. The LocatIt command line in pipelineV1 is shown in 

Box 4.1. 

 

The key input in this command line is the –D option, which only marks the duplicate reads. In the 

second version of the pipeline (pipelineV2), this option was removed, and the reads were marked 

and merged by the software. To evaluate the effect of changing the LocatIt option on the pipeline, 

the following analyses were made comparing pipelineV1 to V2: 

1. Comparison of the number of variants called per sample against the total FASTQ size 

2. Manual inspection of variants in a genome viewer (see section 3.5.5). 

3. Comparison of the number of reads at different stages of the pipeline (initial reads, after 

LocatIt and mapped reads). 

4. Comparison of percentage of variants shared by samples in pipelineV1 and V2 (see 

section 3.5.3). 

4.4.4 PipelineV3 – Removal of adaptors left by SurecallTrimmer 

SurecallTrimmer is an Agilent tool (https://www.agilent.com/en/download-agent-tool), which 

prior to alignment; processes read sequences to trim low-quality bases, removes adaptor 

sequences and mask enzyme footprints. Both pipelineV1 and pipelineV2 implement 

SurecallTrimmer prior to alignment.  

PipelineV2 reduced the false positives being called by pipelineV1, however, upon inspection in 

IGV there seemed to be a high number of variants found only at the end of reads. These variants 

seemed to be likely leftover from adaptors and therefore in addition to SurecallTrimmer, 

Box 4.1. LocatIt command line 

Java –Xmx19G – jar LocatIt –D –X [temp folder] –t [temp folder] –IB –OB –b [BED file] –o [output name] 

[input_BAM_file] [index_fastq_file]  

-D  Marks duplicates    Java –Xmx19G – jar Calls the software 
-IB  input is SAM/BAM format   -OB  output is SAM/BAM format 
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Cutadap113 was used to trim the first and last three bases of all reads. The reads were trimmed 

after they had been processed through LocatIt and Pear (see Figure 4-5). The addition of Cutadapt 

created the third version of the pipeline (pipelineV3). 

4.4.5 Variant caller comparison  

At first glance, a somatic caller is the obvious choice to process SMZL samples, but as the matched 

‘normal’ counterpart of the SMZL tumour samples was not provided, this created uncertainty as 

to which variant caller was most appropriate. Furthermore, samples were sequenced with a 

targeted approach and a variant caller aimed at amplicon specific data would be the most 

suitable. For our cohort of SMZL samples, the ideal variant caller should take into consideration 

the following data characteristics: 1) somatic samples; 2) unmatched samples; 3) amplicon-based 

approach.  

The Broad institute have developed a step-by-step workflow for processing HTS data called ‘The 

GATK Best Practices’, comprised of several workflows tailored to specific applications depending 

on the type of data/variation and technology used122. In germline detection of variants, GATKs 

best practice workflow is the ‘gold standard’, unfortunately, for unmatched somatic samples 

there is no best practices. Although the ‘GATK Best Practices’ recommends a tumour/normal pair 

to be run through the somatic caller Mutect2, there is no consensus as to what the best workflow 

for tumour only data is.  

Currently, only a single variant caller, Pisces123, meets the criteria for the SMZL data available. 

There have been various studies124–130 comparing the performance of variant callers in somatic 

samples, unfortunately, these benchmarking studies do not agree as to which approach is optimal 

and results are sometimes contradictory. Furthermore, most of the benchmarking 

studies124,125,127,128,131 apply matched tumour samples and there are few that look at tumour 

only129,130. Choosing the best variant caller was not an obvious choice, therefore the germline 

‘gold standard’ variant caller (GATK’s haplotype caller) was compared to Pisces, a somatic caller 

designed for somatic, tumour only, amplicon-based data.  

Sample 1_S1 was chosen to compare the variant callers as this sample was sequenced three 

times, once in batch 1, a second time with a new library in batch 2, and a third time where the 

library from batch 2 was re-sequenced in batch 4. This meant that there were three separate BAM 

files for this sample, which in theory should all have the same somatic mutations. Up to variant 

calling the samples were processed using pipelineV3. The recalibrated BAM files from each batch 

were run through both GATK haplotype caller132 and Pisces123 (variant calling tools). Once variants 

were called with each tool, the samples were run through Annovar resulting in six total annotated 
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files (Figure 4-6). In each run, the quality, variant allele frequency (VAF), depth, genotype quality 

and number of variants were compared. 

 

Figure 4-6. Summary of sample processing for variant caller comparison. Sample 1_S1/L104 was sequenced 
three times in batches 1, 2 and 4. The samples in the pink square were from the same library. In 
total two libraries were made, and one library was sequenced in two separate sequencing runs 
(batch 2 and batch 4). 

After annotation variants were filtered and validated in-silico using IGV (as described in section 

3.5.5). The filtering strategy for each caller is detailed below: 

GATK 

1. Include only exonic and or splicing 

variants 

2. Exclude variants found with a 

frequency > 1% in databases of known 

germline variation.  

3. Exclude variants adjacent to 

homopolymers (four or more identical 

consecutive bases) 

4. Validation in IGV 

Pisces 

1. Include only exonic and or splicing 

variants 

2. Exclude variants found with a 

frequency > 1% in databases of known 

germline variation.  

3. Exclude variants adjacent to 

homopolymers (four or more identical 

consecutive bases) 

4. Keep those with PASS flag 

5. Validation in IGV 

Pisces had an extra filter which added a PASS flag to any variant that was above a minimum 

threshold for depth (30), quality (30) and strand bias (-3.01). Detailed description of how each of 

the cut-offs are established can be found in the tools Github page 

(https://github.com/Illumina/Pisces/wiki). 
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4.4.6 PipelineV4 - Merging duplicate reads (LocatIt parameters) 

Marking and merging of duplicates in the pipeline are dependent upon LocatIt using a BED file 

with all possible start/stops pairs to identify each unique amplicon. However, when the number of 

unique amplicons covering a specific locus was tracked using an in-house script and inspected in 

IGV, it became apparent that not all duplicates were being merged correctly. Therefore, the 

LocatIt command line (Box 4.2) was modified a second time and rather than merging the 

duplicates using a BED file, the program learned all the possible start/stop combinations as it was 

reading the data (-I option). The application of this modification led to pipelineV4.  

 

4.4.7 PipelineV5 – Gap penalties 

While running the Parry cohort through pipelineV4, it came to light that it was not calling some 

deletions that had been previously identified. This led to modification of parameters in the 

alignment tool. The baseline pipeline had been using a gap open penalty of 65 and gap extension 

penalty of 7 in BWA-mem. Increasing the gap open penalty will make gaps in the alignment less 

frequent, while increasing the extension penalty will make the gaps shorter. However, the 

recommended values for the gap open penalty and gap extension penalty are 6 and 1 

respectively. Subsequently, pipelineV5 changed the gap open and extension penalties to the 

recommended values.  

4.5 Results and discussion 

4.5.1 Marking and merging duplicate reads 

FASTQ size and number of variants called in both pipelineV1 and V2 were compared to assess 

how the number of variants varied across the two pipelines. A successful pipeline should identify 

a similar number of variants across samples, especially if they were sequenced in the same batch. 

Panel A of Figure 4-7 shows plots of FASTQ size vs number of variants called in both pipelineV1. 

PipelineV1 calls a much higher number of variants in batch 2 (blue) compared to batch 1 (purple) 

and the coding variants in particular show a very pronounced difference between the two 

Box 4.2. LocatIt command line  

Java –Xmx19G – jar LocatIt –X [temp folder] –t [temp folder] –IB –OB –U –I –b [BED file] –o [output name] 

[input_BAM_file] [index_fastq_file]  

-D  Marks duplicates    Java –Xmx19G – jar Calls the software 
-IB  input is SAM/BAM format   -OB  output is SAM/BAM format 
-U unsorted BAM/SAM output (faster)  -I Incremental. Program learns all the possible start/stop 

combinations as it is reading the data. 
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batches. After inspection in IGV, it became clear that samples in batch 2 had more variants 

attributed to possible sequencing artefacts (PCR duplicates) that were not being removed 

compared to batch 1. After merging of duplicates, plots of FASTQ size vs number of variants called 

in pipelineV2 (panel C & D of Figure 4-7) showed a reduction in the variability in the number of 

variants called across samples as well as reduction of the batch effect seen in pipelineV1.  

 

Figure 4-7. FASTQ size vs variants called (pipelineV1 & pipelineV2). A. All variants called per sample [n=116] 
against FASTQ size for pipelineV1. B. All coding variants called per sample [n=116] against FASTQ 
size for pipelineV1. C. All variants called per sample [n=116] against FASTQ size for pipelineV2. D. 
All coding variants called per sample [n=116] against FASTQ size for pipelineV2. In pipelineV2 
duplicate reads were marked and merged rather than just marked. 

 The number of reads at different stages of the pipeline was also tracked to validate that LocatIt 

was merging the duplicate reads. The box and whisker plot in Figure 4-8 illustrates the number of 

reads at three different time points in the pipeline (before LocatIt, after LocatIt, and mapped 

reads). Figure 4-8 showed values were closer to the mean and had a much smaller range when 

duplicates were merged with locatIt.  
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Figure 4-8. Number of reads at different stages of the pipeline. A. Number of variants before merging of 
duplicate reads in batch 1 [n=62] and batch 2 [n=54]. B. Number of variants after merging of 
duplicate reads in batch 1 [n=62] and batch 2 [n=54]. 

 Figure 4-9 shows the histogram of percentage of similarity between samples. The histograms 

showed that the percentages tended to have a more normal distribution in pipelineV2 than they 

did in pipelineV1. Although this histogram imparts modest information, it is expected that the 

frequency of similarity between samples will have a normal distribution with a narrow peak, 

unless there are related samples, then a right tail is also expected.  
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Figure 4-9. Percentage of shared variants across samples in batches 1 and 2. A. Percentage of shared variants 
across samples run through pipeline V1. B. Percentage of shared variants across samples run 
through pipeline V2. 

The observations made in Figure 4-7, Figure 4-8 and Figure 4-9 provided evidence that pipelineV2 

was successful at reducing noise and as a result, marking and merging of duplicate reads was 

deemed an essential part of the pipeline. 

4.5.2 Variant caller comparison 

After tailoring the pipeline to remove as many artefacts as possible (merging duplicated reads and 

removing leftover adapters), variant calling became the next point of focus. It was crucial to 

determine which would be the most appropriate variant caller as these were tumour-only 

samples and had been processed with a germline variant caller in pipelineV1, V2 and V3. Table 

4-2 shows the results of the variant caller comparison between GATK and Pisces using sample 

1_S1 which had been sequenced in batches 1, 2 and 4. The top half of Table 4-2 displays the range 

of values of different metrics available (quality scores are not on the same scale). The bottom half 

of the table shows the number of variants that remain after each filtering step.  
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Table 4-2. Variant caller comparison between GATK and Pisces. Results of variant calling with GATK and 
Pisces using a single sample that was sequenced multiple times in batch 1, 2 and 3. The top half 
of the table shows the minimum and maximum values for the base quality score, variant allele 
frequency (VAF), depth and genotype quality. The second half shows step by step, the number of 
variants remaining when each of the filters is applied to obtain the final list of variants. Pisces had 
an additional filter which added a PASS flag to any variant that was above a minimum threshold 
for depth (30), quality (30) and strand bias (-3.01).  

 

The metrics of most interest were the minimum variant allele frequency (min VAF) and the 

number of true variants identified by each tool. Surprisingly, GATK was able to call variants with a 

VAF as low as 0.031, while Pisces was able to call variants with a VAF as low as 0.018. Pisces called 

all the variants that GATK called (100% overlap) but also called a significantly higher number than 

GATK in all three sequencing runs of sample 1_S1. Regardless of the number of variants called 

across each sample, the final number of likely somatic variants validated in IGV was always the 

same [n=3]. Pisces did not identify additional variants. Additionally, Pisces did not perform as well 

in terms of specificity. This was evidenced by the sample run in batch 2, that due to poorer data 

quality (many sequencing errors), Pisces called approximately ten times the number of variants 

than it did on the same sample in batch 1 and 4.  

Although GATK was not designed to call somatic variants and extreme VAFs, it performed well and 

was able to call all three likely somatic variants validated in IGV. This is likely due to the high 

depth that characterises the dataset (for further details see section 5.4.1). It is possible that with 

cleaner data containing fewer sequencing errors or better DNA quality, Pisces could outperform 

GATK. However, for this dataset, GATK appears to have superior power to call variants with low 

variant allele frequency while excluding a large number of artefacts. The lengthy list of variants 

Pisces outputs is time consuming to sort through manually, especially if there are over 1000 

variants per sample, leaving many opportunities to introduce error and bias. Furthermore, GATK 

batch 1 batch 2 batch 3 batch 1 batch 2 batch 3

Min quality 10 12 10 20 20 20

Max quality 25968 23230 43516 100 100 100

Min VAF 0.076 0.031 0.093 0.025 0.018 0.02

Max VAF 1 1 1 1 1 1

Min Depth 1 2 2 1 1 1

Max Depth 881 750 1227 880 1461 1239

Min GQ 1 2 2 0 0 0

Max GQ 99 99 99 99 99 99

Total # variants 462 753 485 1177 17361 1399

Only exonic and or splicing 63 85 53 233 7849 246

Exclude synonymous 31 54 27 149 6269 155

Exclude > 1% in database 13 36 9 131 6249 137

Exclude homopolymers 10 30 8 123 6165 130

Additional filter - - - 63 1344 56

Validated variants (IGV) 3 3 3 3 3 3

GATK Pisces
Sample 1_S1
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also includes extra quality metrics that Pisces lacks which could be useful in subsequent filtering 

strategies. Consequently, the ability to pick up true positives by both callers were the same, hence 

why GATK was chosen as the main variant caller.  

4.5.3 Final optimised bioinformatics pipeline (pipelineV5) 

After several iterations, the final pipeline optimised for the SMZL dataset was established (Figure 

4-10). FASTQ files were run through FastQC for quality control and through SurecallTrimmer 

v4.0.1 to identify and remove adaptor sequences and trim low quality reads (qual < 20). BWA-

mem was used to align reads to the hg38 reference genome using recommended default options. 

Samtools v1.2.3 converted SAM files into BAMs and Picard v2.8.3 sorted and indexed the BAMs. 

Duplicate reads were marked and merged using LocatIt v4.0.1 learning all possible start/stop 

combinations as it was reading the data rather than using the BED file. Resulting BAMs were 

sorted and converted into FASTQ by Samtools and Picard respectively. Pear v1.97 merged the 

paired end reads (FASTQs). The outputs from Pear were assembled and unassembled FASTQs 

which were then run through BWA-mem and aligned to the hg38 reference genome. BAMs were 

again converted to SAM format (Samtools) and sorted by Picard. Picard merged the assembled 

and unassembled BAMs and the resulting merged BAM was run through GATKs Haplotype caller 

(v3.7) which called variants via local re-assembly of haplotypes. The resulting VCF files were 

annotated using Annovar software (v2016Feb01) with the following databases: The Genome 

Aggregation Database77, 1000 Genomes Project78, NHLBI GO Exome Sequencing Project79, Exome 

Aggregation Consortium77, Kaviar, Haplotype consortium, dbsnf33a, ClinVar, COSMIC, nci60 and 

our own SMZL reference database (SMZLrefDB ). Breakdown of what the databases contain, and 

additional annotation can be found Supplementary Table 4. Figure 4-10 provides an overview of 

the final pipeline and modifications made to establish pipelineV5.  



Chapter 4 

70 

 

Figure 4-10. Flow chart of the steps involved in the bioinformatics pipeline after optimisation.  Raw FASTQ files 
go through a quality control (yellow) before they are aligned to a reference genome (green) using 
BWA-mem. LocatIt marks and merges duplicate reads using the unique molecular barcodes from 
the Haloplex HS enrichment kits (blue). Files are then converted into FASTQ format and paired end 
reads are merged with Pear. Cutadapt trims the first and last three bases of reads for additional 
quality control (yellow) and FASTQ files are aligned again using BWA-mem to the hg38 reference 
genome (green). GATK haplotype caller is used to call variants (pink) and Annovar to annotate with 
a range of public databases (orange) to end with a list of fully annotated variants ready for 
prioritisation. Blue circles identify in which iteration of the pipeline modifications were made.  
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4.6 Conclusion 

No bioinformatics pipeline is perfect and new tools or updated versions of the tools are being 

continuously released. However, at the time when this pipeline was established the latest 

versions of the tools were used and anyone using this pipeline is advised to check with the most 

current versions. Our final pipeline (pipeline V5) accounts for the unmatched nature of the data as 

well as the amplicon-based approach and it was modified to include the least number of false 

positives. 
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 Preliminary results of next generation 
sequencing analysis of splenic marginal zone 
lymphoma patients 

5.1 Synopsis 

This chapter focuses on the preliminary results obtained after processing the Jaramillo cohort 

through the final bioinformatics pipeline. Coverage across samples, genes, and regions is assessed 

and a brief overview of the variants called is given. This chapter provides the evidence and 

reasoning behind the filtering strategies developed in subsequent chapters prior to a meaningful 

analysis of the sequencing data. 

Dr. Helen Parker was responsible for the transfer and demultiplexing of the sequencing data to 

university servers. Carolina Jaramillo Oquendo processed and analysed the data under the 

supervision of Prof Sarah Ennis, Prof Jonathan Strefford and Dr. Jane Gibson. 

5.2 Introduction 

Unlike more prevalent mature B-cell malignancies, splenic marginal zone lymphoma (SMZL) is 

currently precluded from large international sequencing projects, resulting in an incomplete 

catalogue of tumour associated genomic lesions and mutational processes, drawn from a paucity 

of published genomic data49,50,85,51–54,71,72,83,84. We performed a systematic literature review 

(Chapter 2) that compiled all the next generation sequencing data publicly available to refine the 

catalogue of somatic mutations in SMZL and identify the strengths and weaknesses in the study of 

the disease70. This would act as a reference which we aimed to build upon by generating and 

analysing our own sequencing data. 

By sequencing the largest SMZL cohort to date we aimed to validate the recurrence of mutations 

within genes previously established as recurrently mutated such as KLF2, NOTCH2 and TP53 as 

well as mutations within NF-κB, marginal zone B-cell development, NOTCH, and cell cycle 

pathways. Furthermore, we wanted to use this cohort to gain insights into SMZL biology and 

establish how or if other molecular biomarkers and survival outcomes associated to these genetic 

mutations.  

After sequencing files (FASTQ) are run through a bioinformatics pipeline the raw variant list 

resulting from the pipeline needs to be filtered to exclude unwanted variants and sequencing 

artefacts (for more details see section 4.2.5). The filtering strategies will depend upon the quality 
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of the data, the type of sample (i.e. germline or somatic, matched, or unmatched), and the 

biology of the disease. Following the optimisation of the bioinformatics pipeline in Chapter 5 we 

now had the right tools available to process the sequencing data and begin the downstream 

filtering process. This chapter will aim to assess an initial filtering strategy and discuss preliminary 

sequencing results that will guide further filtering methods developed in subsequent chapters.  

5.3 Materials and Methods  

5.3.1 Samples 

146 tumour only SMZL samples, all meeting established diagnostic criteria37, were obtained from 

11 international collaborating centres. Samples were analysed with a bespoke Agilent Haloplex HS 

Target Enrichment system that enriched 383.74kb of genomic DNA for 59 genes and genomic 

regions, designed with SureDesign (for further details on this cohort refer to section 3.1.1).  

5.3.2 Bioinformatic processing and filtering of variants 

146 SMZL tumour samples were run through pipelineV5 on IRIDIS4 (see section 4.5.3). Once 

completed, all annotated tab-delimited files were formatted to add a column with sample ID and 

variant allele frequency (VAF).  

After variant calling and annotation, the identification of true somatic variants in unmatched 

samples requires a filtering strategy to exclude unwanted variants (germline and false positives). 

When a normal sample is not available for parallel sequencing comparison, germline variation can 

be excluded by identifying the frequency in which the mutation is found in databases of normal 

germline variation. If a variant is found at a high frequency in the general population, it is likely 

that the variant is in fact a germline mutation rather than somatic and so can be removed. This 

filtering strategy enriches the data for somatic mutations, but there is always risk that rarer 

germline variation not captured in the population databases persist within the data. Furthermore, 

many of the reference databases were constructed with sequencing data from studies in which 

most samples came from a population of European descent. For example, gnomAD includes ~60% 

European sequences and less than 10% from individuals of African ancestry133. Consequently, 

non-European germline variants are underrepresented in reference databases.  

Therefore, within our cohort, the annotated files were filtered to enrich for somatic mutations 

and exclude variants that were not of interest. This entailed exclusion of variants that had a 

frequency greater than 1% in any population in databases of known germline variation (see Table 

5-1).  
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Table 5-1. List of databases used to filter germline out variation.  Annotation was added through Annovar 
software to the VCF files. 

Database name (Annovar) Description 

AF Genome Aggregation Data (gnomAD) in ALL populations v2.1.1120. 

AF_popmax 
Genome Aggregation Data (gnomAD) v2.1.1. Maximum allele 
frequency across populations (excluding samples of Ashkenazi, 
Finnish, and indeterminate ancestry). 

AF_male 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency in male samples. 

AF_female 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency in female samples. 

AF_raw 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency in samples, before removing low-confidence genotypes. 

AF_afr 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency in samples of African-American ancestry. 

AF_sas 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency in samples of South Asian ancestry. 

AF_amr 
Genome Aggregation Data (gnomAD v2.1.1. Alternate allele 
frequency in samples of Latino ancestry. 

AF_eas 
Genome Aggregation Data (gnomAD v2.1.1. Alternate allele 
frequency in samples of East Asian ancestry. 

AF_nfe 
Genome Aggregation Data (gnomAD v2.1.1. Alternate allele 
frequency in samples of non-Finnish European ancestry. 

AF_fin 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency in samples of Finnish ancestry. 

AF_asj 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency in samples of Ashkenazi Jewish ancestry. 

AF_oth 

Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency in individuals that did not unambiguously cluster with the 
major populations (i.e. afr, ami, amr, asj, eas, fin, mid, nfe, sas) in a 
principal component analysis (PCA). 

AF_othnon_topmed_AF_popmax 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency only in samples that are not present in the Trans-Omics 
for Precision Medicine (TOPMed)- BRAVO release. 

non_neuro_AF_popmax 

Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency only in samples from individuals who were not 
ascertained for having a neurological condition in a neurological 
case/control study.  

non_cancer_AF_popmax 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency only in samples from individuals who were not 
ascertained for having cancer in a cancer study. 

controls_AF_popmax 
Genome Aggregation Data (gnomAD) v2.1.1. Alternate allele 
frequency from cases that did NOT come from common disease 
case/control studies. 
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Database name (Annovar) Description 

1000g2015aug_all 
Alternative allele frequency data in 1000 Genomes Project for 
autosomes in ALL populations. Based on 201508 collection v5b 
(based on 201305 alignment)78. 

esp6500siv2_all 
Alternative allele frequency in ALL subjects in the NHLBI-ESP project 
with 6500 exomes, including the indel calls and the chrY calls 
(http://evs.gs.washington.edu/EVS/) 

ExAC_ALL 
Exome Aggregation Consortium Data. v0.3 nonTCGA data ALL 
individuals. Version 0.3. Left normalization done77. 

ExAC_AFR 
Exome Aggregation Consortium Data. v0.3 nonTCGA data AFRICAN 
individuals. Version 0.3. Left normalization done. 

ExAC_AMR 
Exome Aggregation Consortium Data. v0.3 nonTCGA data AMERICAN 
individuals. version 0.3. Left normalization done. 

ExAC_EAS 
Exome Aggregation Consortium Data. v0.3 nonTCGA data EASTERN 
ASIAN individuals. version 0.3. Left normalization done. 

ExAC_FIN 
Exome Aggregation Consortium Data. v0.3 nonTCGA data FINNISH 
individuals. version 0.3. Left normalization done. 

ExAC_NFE 
Exome Aggregation Consortium Data. v0.3 nonTCGA data NON-
FINNISH EUROPEAN individuals. version 0.3. Left normalization 
done. 

ExAC_OTH 
Exome Aggregation Consortium Data. v0.3 nonTCGA data OTHER 
individuals. version 0.3. Left normalization done. 

ExAC_SAS 
Exome Aggregation Consortium Data. v0.3 nonTCGA data SOUTH 
ASIAN individuals. version 0.3. Left normalization done. 

Furthermore, variants with a depth less than 30x were excluded as this is the minimum depth 

required to identify variants with a VAF of 0.10 with 95% confidence. Variants that were not in 

target regions such as intronic and intergenic regions (with the exception of NOTCH1 and NOTCH2 

3’-UTRs and PAX non-coding variants) were also excluded.  

The NOTCH1 and NOTCH2 3’-UTRs were included in the amplicon design since these two genes 

are very similar in structure and function and both contain a PEST domain coded for in exon 34. In 

chronic lymphocytic leukaemia (CLL), NOTCH1 3’-UTR mutations result in a splicing event that 

removes the PEST domain, which impairs the degradation of the NOTCH intracellular domain 

(NICD), resulting in the constitutive activation of downstream signalling134. Based on their 

similarity and presence of recurrent truncating mutations within the NOTCH2 PEST domain in 

SMZL, it was hypothesised that the NOTCH2 3’UTR could also be a target of mutations. PAX5 non-

coding regions were included as recurrent mutations in enhancer non-coding regions in CLL have 

been associated to the altered expression of the gene134. Table 5-2 lists the criteria for exclusion 

and the reasoning behind it. 



Chapter 5 

77 

Table 5-2. Exclusion criteria to enrich for somatic variants after variant calling and annotation. The column on 
the left describes which variants and thresholds were used to filter out variants from the raw list. 
The column on the right details reason for their exclusion.  

Criteria for exclusion Reason 

Intronic or intergenic variants (except NOTCH1 and NOTCH2 3’UTRs 

and PAX non-coding) 

Not targets of study  

Variants present with a frequency > 1% in any population in databases 

of known germline variation 

Likely germline variation (SNPs) 

Variants with a total depth < 30 Low confidence  

After filtering, variants were validated in-silico using IGV as described in section 3.5.5 

5.3.3 Quality assessment 

Coverage was calculated per-sample, per-gene and per-region as described in section 3.5. 

5.3.4 Analysis of NGS data 

The annotated and filtered variant list collating the results of the 146 samples (Jaramillo cohort) 

was used as input into R package maftools80 to proceed with the data visualisation and analysis. 

The UCSC genome browser (http://genome-euro.ucsc.edu/index.html) was used to visualise 

mappability and percentage of GC across regions of the genome and to conduct a BLAT search of 

sequences. BLAT is a tool designed to quickly find sequences of 95% and greater similarity of 

length of 25 bases or more. 

The systematic literature review described in Chapter 2 generated a database (SMZLrefDB) of 

published variants in SMZL which became a valuable reference set when annotating the results 

from our cohort. To aid with variant analysis, the SMZLrefDB was compared to our cohort to 

validate pipeline results.  

5.4 Results 

5.4.1 Quality assessment - Coverage 

Per-sample: The mean coverage across target regions in all 146 SMZL samples was 305x, with a 

minimum of 18x and a maximum of 1107x. The mean target coverage for batches 1, 2, 3, 4, and 5 

were 355x, 190x, 156x, 638x, and 169x respectively. Figure 5-1 compares coverage against the 

number of variants called before any filtering, as well as how the coverage differed across 

batches. Results shown in Figure 5-1 were obtained using the results (Supplementary Table 5) of 

the per-samples script. 
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The coverage across samples was generally above 100x which is ideal in somatic samples as it will 

allow for higher confidence for identifying variants with VAFs as low as 0.10. Figure 5-1 also made 

it clear that some sequencing runs were more successful than others. We expect to call roughly 

the same number of variants across all samples regardless of the sequencing run, however batch 

3 called a lower number of variants [n=418 variants] compared to the mean number of variants 

called across all batches [n= 565 variants]. This is likely due to the low coverage in this batch. On 

the other hand, batch 2 called a much higher number of variants [n=838 variants] than other 

batches pointing to a potentially high number of false positives.  

 

Figure 5-1. Coverage across 146 SMZL samples. The scatterplot (top) shows coverage against number of 
variants called and are coloured by batches. The boxplot (bottom) shows the distribution of 
coverage across the five batches. The mean, median and range of coverage across target genes 
was 305x, 206x, and 18x-1107x respectively. 

Per-gene: The per-gene coverage, shown in . 

Table 5-3 identified U2AF1 as an outlier with a mean target coverage of 7x. This was identified 

initially with batches 1 and 2, but subsequent batches showed consistent results. U2AF1 was 

examined using the Integrative Genomics Viewer (IGV) to better visualise the low coverage. 
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Table 5-3. Per-gene coverage across the Jaramillo cohort.Table displays the mean target coverage for each 
gene in all five batches. Coverage was calculated using DepthOfCoverage tool. 

Gene Mean Batch 1 Batch 2 
Batch 3 
(kit 1) 

Batch 3 
(kit 2) 

Batch 4 Batch 5 

ARID1A 290.86 348.18 273.50 216.58 131.91 623.28 151.73 

ATM 292.18 299.92 260.95 268.98 137.81 648.29 137.09 

BCL10 390.93 312.88 272.66 305.53 - 672.63 - 

BCOR 132.82 - - - 138.8042 - 126.833846 

BIRC3 304.21 318.80 274.63 265.44 149.26 664.77 152.37 

BRAF 379.34 380.96 320.76 391.68 188.31 796.03 198.31 

CARD11 316.06 392.29 296.90 235.17 140.15 668.96 162.90 

CCND3 305.24 369.29 300.80 218.90 140.28 642.59 159.56 

CD79A 222.93 287.82 216.67 146.42 115.16 465.79 105.72 

CD79B 296.02 384.08 276.83 220.39 135.43 613.24 146.14 

CDH23 349.65 440.34 323.77 259.48 170.35 728.05 175.90 

CHD2 360.10 393.77 334.69 291.18 154.94 800.33 185.68 

CREBBP 326.44 390.23 304.48 242.12 145.29 702.42 174.09 

CXCR4 477.26 571.06 417.82 390.75 244.12 1009.92 229.90 

DCHS1 411.73 416.79 302.26 242.98 - 684.88 - 

DDX3X 260.09 286.19 233.91 196.16 148.74 551.38 144.15 

EGR2 347.87 409.08 339.77 223.95 172.55 756.29 185.56 

EZH2 333.18 356.55 306.13 292.95 149.48 730.10 163.87 

FBXW7 334.02 349.53 301.15 295.01 156.87 741.99 159.54 

FLNC 284.12 366.98 270.43 196.35 154.77 584.70 131.49 

ID3 313.12 369.82 299.18 211.07 160.89 677.37 160.39 

IDH2 544.21 709.59 507.04 396.44 221.88 1164.31 265.97 

IGLL5 393.11 361.80 274.21 302.14 - 634.30 - 

JAK3 340.78 419.57 313.15 257.45 172.74 712.32 169.44 

KDM2B 387.63 489.08 347.74 308.74 219.44 777.23 183.53 

KLF2 215.63 255.84 186.03 173.54 148.84 440.75 88.82 

KMT2D 363.07 477.56 351.28 241.56 175.54 748.32 184.13 

KRAS 317.34 338.78 288.13 292.05 152.02 691.43 141.62 

MAP2K1 343.15 386.18 307.75 296.22 166.14 737.37 165.27 

MAP3K14 377.92 481.96 343.79 291.54 180.57 785.45 184.18 

MAP3K6 438.39 445.55 319.37 266.75 - 721.88 - 

MED12 136.06 - - - 150.859 - 121.264231 

MYD88 362.32 435.81 348.01 245.06 173.66 784.54 186.82 

NFKBIE 260.15 321.51 248.11 170.19 140.83 548.32 131.95 

NOTCH1 276.32 334.60 245.99 207.16 175.10 569.38 125.70 

NOTCH2 351.90 421.75 323.96 275.07 145.96 756.17 188.52 

NRAS 328.50 330.62 286.96 303.75 175.50 710.61 163.58 

POT1 314.67 324.68 289.60 297.43 129.74 708.57 138.01 

PRKDC 353.66 385.85 317.84 316.30 160.62 768.27 173.06 

PTPRD 355.50 389.46 327.10 305.54 149.78 794.69 166.42 

RHOA 330.42 361.15 330.13 224.04 139.13 763.86 164.23 

RPS15 288.69 357.62 257.99 208.73 186.67 591.41 129.71 

SAMHD1 301.18 335.92 280.93 249.41 133.31 652.78 154.73 

SETD1B 353.29 368.87 263.24 211.67 - 569.38 - 

SETD2 341.08 372.51 310.48 276.77 161.85 758.71 166.14 

SF3B1 349.53 367.36 305.09 352.37 152.25 749.60 170.51 
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Gene Mean Batch 1 Batch 2 
Batch 3 
(kit 1) 

Batch 3 
(kit 2) 

Batch 4 Batch 5 

SPEN 363.99 437.34 338.75 272.65 166.38 783.83 185.00 

STAT3 292.61 340.69 298.39 191.79 95.96 672.88 155.97 

TCF3 254.40 304.94 240.18 174.80 148.58 533.23 124.65 

TET2 334.79 360.97 305.35 289.79 151.53 731.05 170.06 

TNFAIP3 375.17 437.65 345.52 303.87 170.06 804.16 189.76 

TNFRSF14 381.56 452.67 329.36 302.28 281.61 755.83 167.64 

TP53 279.59 348.89 274.27 190.13 116.10 606.00 142.18 

TRAF3 323.17 383.30 291.55 262.18 162.26 683.96 155.76 

U2AF1 7.74 4.54 7.08 2.84 - 16.52 - 

XPO1 262.64 245.75 227.31 239.75 116.79 606.61 139.65 

Visualisation of U2AF1 in IGV compared to TP53 in a sample chosen at random can be seen in 

Figure 5-2. A BLAT search of the U2AF1 gene sequence showed a 99% similarity with gene 

U2AF1L5, meaning the reads mapped equally well to both U2AF1 and U2AFL15. Due to the low 

mappability of this gene it was excluded from the second HaloPlex HS enrichment kit (HS kit 2). 

 

Figure 5-2. IGV view of U2AF1 and TP53 in sample 2_S1. The figure shows the reads across gene U2AF1 (top) 
mostly mapping to intronic regions and with very low coverage. TP53 is also shown (bottom) for 
comparison showing good coverage across the entire gene. 

Per-region: Results of the per-region coverage allowed the identification of amplicons that had 

low coverage. Table 5-4 lists the targeted regions that had less than 30x coverage and any 

observations as to why they had such low coverage. Unsurprisingly all the targeted regions or 

amplicons in U2AF1 were flagged, as well as amplicons in eight other genes (NOTCH2, RHOA, 

POT1, FLNC, ATM, TRAF3, TP53, and TCF3). For the most part such low coverage was explained by 

low mappability (< 1 UMAP score across amplicon) and a high GC content (> 60% GC content 
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across amplicon), particularly when the reads fell within intronic regions. UMAP score (0 -1) 

represents the probability a randomly selected 24-mer, which overlaps with a given position, is 

uniquely mappable.  

The per-region analysis also identified a low coverage region in POT1 (chr7:124870901-

124871051) that has a low GC content (mean GC content across amplicon: 32%) and good 

mappability (mean UMAP across amplicon: 1). In this case the reason for the low coverage could 

be attributed to deletions of this gene, as it falls within the 7q.31.33 arm which has been shown 

to be deleted in SMZL patients.  

Table 5-4. Targeted regions with less than 30x coverage across Jaramillo cohort. 

 

5.4.2 Analysis of NGS data 

The raw list of variants in the Jaramillo cohort consisted of 97,524 mutations across 59 genes in 

146 patients. After filtering (off-target mutations, those with a frequency higher than 1% in 

population databases and those with a depth < 30), the list consisted of 2,800 variants, averaging 

19 mutations per individual sample. Of the 2,800 total variants 474 had a COSMIC annotation and 

60 were previously reported in SMZL (SMZLrefDB). The five genes with the highest number of 

individuals with mutations in each gene were KMT2D (79%), FLNC (62%), CREBBP (55%), SETD1B 

(39%) and JAK3 (37%). Although all five genes were present in the SMZLrefDB, none were found in 

more than 6% of patients (Figure 5-3). 

Chr Start End Base pairs Gene Coverage Observations 

chr1 120029896 120029997 101 NOTCH2 0.00 Exon 2 - highly repetitive region

chr1 120051474 120051789 315 NOTCH2 0.14 Intronic region 

chr1 120054110 120054235 125 NOTCH2 17.52 Intronic region 

chr3 49360918 49361076 158 RHOA 15.37 Intronic region 

chr7 124870901 124871051 150 POT1 20.32 7q31.33 - good mappability

chr7 128857998 128858227 229 FLNC 27.46 7q32.1 - high GC content & limited mappability data

chr11 108347269 108347375 106 ATM 9.69 Exon 59 - 11q22.3 - good mappability

chr14 102777466 102777685 219 TRAF3 5.30 14q32.32 - high GC content

chr17 7666076 7666254 178 TP53 6.51 Intronic region 

chr19 1652290 1652615 325 TCF3 18.86 Exon 1 - high GC content

chr21 6484613 6486240 1627 U2AF1 2.00 All regions map equally to U2AF1L5

chr21 6486312 6488069 1757 U2AF1 7.29 All regions map equally to U2AF1L5

chr21 6489281 6496940 7659 U2AF1 3.15 All regions map equally to U2AF1L5

chr21 6499119 6499275 156 U2AF1 0.01 All regions map equally to U2AF1L5

chr21 43092946 43094573 1627 U2AF1 3.36 All regions map equally to U2AF1L5

chr21 43094645 43096400 1755 U2AF1 10.29 All regions map equally to U2AF1L5

chr21 43097612 43105262 7650 U2AF1 3.56 All regions map equally to U2AF1L5

chr21 43107441 43107597 156 U2AF1 0.00 All regions map equally to U2AF1L5
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Figure 5-3. Waterfall plot of unfiltered preliminary results (Jaramillo cohort) compared to SMZL database 
(SMZLrefDB). A. Top 10 frequently mutated genes in preliminary results [n=147]. B. Top 10 
frequently mutated genes in SMZL database compiled in the systematic review [n=508]. 

Most KMT2D mutations seemed likely false positives as not only did KMT2D have a high 

recurrence of mutations across patients, but these were multiple hits, meaning there was more 

than one mutation per patient. This warranted further inspection of KMT2D in IGV and the USCS 

Genome Browser. The three most recurrent mutations (p.774_836del, p.S1107R, and p.l3906Q) 

were reviewed in IGV, where it was clear that the location of these variants coincided with areas 

of low coverage that likely introduced bias in the variant calling (Figure 5-4). The location of 

variant p.774_836del (chr12:49051175-49051363) showed few reads were actually mapping back 

to this region compared to the adjacent reads. A BLAT search of the sequence surrounding the 

variant (chr12:49051175-49051363) indicated that this region had 100% identity with another 

region in chromosome 10. Inspection of variant p.S1107R showed a dip in coverage at this loci 

and surrounding regions (chr12:49,050,247-49,050,292), mostly due to high GC content (UCSC GC 

percent track not shown in figure). The last variant p.L3906Q, was located in a highly repetitive 

region (chr12:49,032,779-49,033,023) with low coverage, high number of mismatches across 

reads and variable mappability. 
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Figure 5-4. Visualisation of recurrent variant in KMT2D. A. IGV track. The figure shows a screenshot of IGV for 
the three most recurrent variants in KMT2D (p.S110R, p.744_836del and p.L3906Q). The red 
boxes surround the regions where the mutations are found. B. BLAT results. Displays three main 
hits for the region (chr12: 49051175-49051363) in which the p.744_836del is found. C. 
Mappability track. Displays multi read mappability for 24-mers of the repetitive region in exon 39 
(chr12:49,032,776-49,033,025). These tracks represent the probability that a randomly selected 
k-mer, which overlaps with a given position, is uniquely mappable. Probabilities are represented 
in blue where the bottom of the box is 0 and the top 1.  

Another indicator of potential false positives was the distribution of transition and transversions 

in our cohort (Figure 5-5). A transition is the interchange of a purine base for another purine base 

(A to G) or a pyrimidine base for another pyrimidine base (C to T). While a transversion, is the 

interchange of a purine base (A or G) for a pyrimidine base (C or T) or vice versa. Our SMZL cohort 

had an overabundance of T > G transversions where more than 50% of the mutations were of this 

nature. This was not in line with what was present in the SMZLrefDB database in which mutations 

with a T > G transversion made up less than 5% of the total number of mutations (Figure 5-5). 

Mutations in KMT2D alone made up more than 50% of the total number of mutations in this 

cohort; and of these mutations approximately 60% were T > G transversions. Further inspection of 

other genes frequently mutated genes showed that the distribution of transitions and 

transversions was biased towards those genes (KMT2D, FLNC and CREBBP) that harboured large 

number of mutations. Excluding KMT2D, FLNC and CREBBP from the analyses, the distribution of 

transitions and transversions became more consistent with the distribution in the SMZLrefDB 

database. This was suggestive that, although there were numerous artefacts that required 

cleaning, true mutations were also present in the data.  
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Figure 5-5. Distribution of transition and transversions across SMZLrefDB database and Jaramillo cohort. 
A. Distribution of transitions and transversions in Jaramillo cohort. The most frequent base 
change was T>G. B. Distribution of transitions and transversions in SMZLrefDB database. 
The most frequent base change was C>T. 

5.5 Discussion  

One of the aims of this project was to create a detailed characterisation of the mutational 

landscape of SMZL. The first step was the creation of a database (SMZLrefDB) to summarise 

known genes targeted by somatic mutations but more importantly to establish a point of 

reference to validate results from our own pipeline and cohort. A direct comparison between 

result of the SMZLrefDB and our cohort is not ideal since the SMZLrefDB was compiled from a 

heterogeneous set of unbiased WES and targeted studies, using different chemistries and 

different bioinformatics pipelines. Samples from our cohort were processed with HaloPlex HS (this 

chemistry had not been used previously in SMZL) and targeted only 57 genes. This meant a true 

comparison could only be made for the overlapping targeted genes and disregarding the different 

downstream processing each sample had. Furthermore, the number of mutations per sample vary 

depending if the sample was processed through WGS, WES or targeted sequencing. Despite these 

differences, the SMZLrefDB pointed to specific genes that we expected to find in SMZL patients 

(NOTCH2, KLF2, TP53, TNFAIP3, MYD88, KMT2D, TRAF3, CARD11, SPEN, IGLL5) at a frequency of 
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at least 5% and identified recurrent variants that were used as positive controls when 

interrogating variants called in our SMZL cases. The frequencies of the mutated genes within the 

SMZLrefDB provided an approximation of what was to be expected within our own cohort, and 

hence why the high recurrence of mutations within KMT2D, FLNC, CREBBP, JAK3 and SETD1B was 

the first indicator that a substantial fraction of the variants may in fact be artefacts.  

The SMZLrefDB also gave us an estimate of the expected distributions of transitions and 

tranversions, which upon comparison also provided more evidence of false positives. Our cohort 

had an overabundance of mutations with a T>C nucleotide change, which was not in line with 

expectations given by the SMZLrefDB. This could be explained by the fact that mutations in 

KMT2D alone made up more than 50% of the total number of mutations and 60% of these were 

T>G transversions. Consequently, the overall distribution of transitions and transversions were 

likely biased toward recurrent genes harbouring large numbers of mutations. If this bias was 

accounted for by excluding those genes, the signatures within our cohort looked more similar to 

those in the SMZLrefDB. This indicated that although there were numerous artefacts that 

required future scrutiny and cleaning, true mutations were likely present within the data. This was 

also evidenced by the 60 variants identified, that had been reported in previous studies.  

The lack of matched germline tissue was another obstacle in the identification of true somatic 

variants as there is no sure way of knowing whether a mutation is germline or somatic. The 

filtering strategy to enrich for somatic variants was limited in that rare germline variants might 

still be present in the data and there is the question of whether excluding germline variation 

potentially excludes variants that impact somatic events. Our approach of excluding variants 

which were present with a frequency greater than 1% in public databases was conservative. In 

future filtering strategies the cut-offs could be lower, so rather than 1% frequency using 0.01% 

and possibly using the variant allele frequency to exclude likely germline variants. 

5.6 Conclusion 

Preliminary sequencing results were promising in that variants that had been previously reported 

to be present in SMZL cases were found within our cohort. However, due the mounting evidence 

of large numbers of false positives it was decided that a detailed analysis of the NGS data was not 

going to be representative of SMZL biology. Evidence included individuals with high number of 

mutations within KMT2D (79%), FLNC (62%), CREBBP (55%), SETD1B (39%) and JAK3 (37%) all 

genes that although have been identified in SMZL patients before, their frequency was never 

greater than 6%. The high number of multiple hits (more than one variant in one patient) in 

KMT2D led to the identification of a highly repetitive region that was introducing artefacts in the 

variant calling. And the distribution T>C nucleotide changes, which was not in line with what we 
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had established in the reference database (SMZLrefDB). This led to the conclusion that we needed 

to develop a more sophisticated filtering strategy to reduce the noise without compromising 

sensitivity. Consequently, investigation of the genomic results will be discussed in later chapters 

once the data has undergone considerable curation.  
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 Machine learning to distinguish true somatic 
variants from noise in tumour only NGS 

6.1 Synopsis 

This chapter will discuss the development of an unsupervised machine learning model that tries 

to automate variant refinement of tumour only samples. The aim was to reduce the time and 

potential errors that could be introduced when validating hundreds of variants by manual review. 

The model will be applied to all batches of the Jaramillo cohort as well as an additional validation 

chronic lymphocytic leukaemia (CLL) cohort.  

Dr. Jane Gibson wrote the Jamp.sh script which was used to extract additional information from 

the BAM files. Carolina Jaramillo Oquendo prepared the sequencing data, assessed all the quality 

metrics for input into the model, processed and analysed the results under the supervision of Prof 

Sarah Ennis, Prof Jonathan Strefford and Dr. Jane Gibson. Dr. Helen Parker and Carolina Jaramillo 

Oquendo independently reviewed variants in IGV with input from Prof Jonathan Strefford on 

ambiguous calls. 

6.2 Introduction 

As outlined in section 4.1, identification of  somatic mutations in unmatched tumour samples is a 

computationally complex process. The lack of germline material results in a large number of false 

positives within the variant call files as was evidenced by the preliminary results shown in Chapter 

5. Filtering of false positives can be carried out through time-consuming in silico manual validation 

(see section 3.5.5), additional sequencing or both. Additional sequencing is not always ideal as it 

is costly, requires material that could be scarce, and Sanger sequencing for example does not pick 

up variants with very low VAFs (< 12%). In silico manual validation relies upon labour intensive 

visual assessment of the quality and quantity of variant support and is prone to human error and 

bias. Manually reviewing or re-sequencing a limited number of samples is a feasible task, but if 

the same is to be done with hundreds of patient samples, all with hundreds of variants each, this 

becomes impractical, costly, and a more sophisticated filtering strategy is necessary. 

6.3 Machine learning applied to unmatched somatic variant filtering 

Machine learning (ML) is a branch of artificial intelligence, interested in the development of tools 

(computer algorithms) to make sense of complex data135. It involves the use of this complex data 

to build statistical models for predicting and estimating an output based on one or more inputs136. 
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Most statistical methods used in ML can be classified as supervised or unsupervised. In supervised 

learning, for each observation (input) there is an associated response (output) and the idea is to 

fit a model that relates the response to the observation, with the aim of accurately predicting a 

response for future observations136. Unsupervised learning does not have an output or associated 

response for each observation, and instead the algorithms try to find complex patterns in the 

data. 

Application of ML is growing in popularity for medical applications and this is certainly the case for 

cancer genomics. Most applications of ML in cancer genomics have been focused on the creation 

of new variant callers137–140 and only three have been designed to identify somatic variants after 

variant calling137,141,142. A recent deep learning approach by Ainscough and colleagues created a 

ML model (DeepSVR) to automate somatic variant refinement142. The authors pointed out that 

manual review is often carried out as a final step after automated processing, but it is time-

consuming, costly, poorly standardized, and non-reproducible. The model was built using 440 

sample pairs (266 hematologic malignancies and 174 solid tumours) produced by whole genome, 

exome, or custom capture sequencing and was comprised of 41,000 variants from 21 studies. The 

work by Ainscough et al. showed that it was possible to automate somatic variant refinement as it 

accurately predicted somatic variants which were also confirmed by orthogonal validation142. The 

model constructed by Ainscough et al142 was very thorough, using over 70 features per variant. 

Application of this method to the SMZL samples would have been ideal, however, it could only be 

applied to matched tumour-normal samples. Mahadeo and colleagues developed an optimised 

tumour-only variant refinement strategy, however, this work focused on eliminating germline 

variation rather than false positive variants calls143. The most appropriate model constructed thus 

far that could be potentially applied to our data has been the supervised approach taken by Wu 

et. al who developed a random forest classifier to distinguish sequencing artefacts from true-

positives137. However, the model was constructed with training data aligned to the hg19 reference 

genome and the application to other data sets required two negative control BAMs.  

6.4 Aims 

Preliminary genomic results from the splenic marginal zone lymphoma cohort (Chapter 5) showed 

that the data required a more sophisticated variant filtering or refinement strategy as there was 

mounting evidence that many of the variants were false positives. Therefore, the aim was to 

develop an unsupervised machine learning model that identified true and false positive variants in 

NGS data from tumour only samples. An unsupervised approach was taken since developing a 

robust classifier requires a large, labelled dataset, ideally with orthogonal validation. However, 

raw data for such datasets is not easily available.  
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6.5 Materials and Methods 

6.5.1 Samples 

To develop the machine learning model, all samples from batch 1 [n=64] in the Jaramillo cohort 

were used as the test set and all other samples in the Jaramillo cohort (batches 2-5) were used for 

validation. A second independent validation set comprising of 20 CLL samples from the CLL4 

cohort were also used. Detailed description of the samples can be found in section 3.1. 

6.5.2 Data preparation 

Batch 1 was used as the test set to develop the machine learning model. For all variants in all 

samples of batch 1 an in-house script (Jamp.sh) written by Dr. Jane Gibson was used to extract 

additional quality metrics from the BAM files (sequence alignment data). The Jamp.sh script 

outputs a tab delimited file where each row represents a variant and columns include information 

about the reads covering that loci. Metrics extracted from the BAM files are described below: 

• Total number of amplicons covering a base. A high number of amplicons covering a base 

will give more confidence to determine if the call is real or not. 

• Number of mismatches per base pair across all reads covering a specific locus. If a variant 

is found within a read that has many mismatches to the reference this could indicate poor 

sequencing quality, especially if the reference reads also have many mismatches. 

• Number of reads, which have some softclipping in reference, alternate and other alleles 

at a specific locus. Softclipping occurs when either side of a read does not match well to 

the reference and only part of the read is actually aligned while the rest is ignored.  

After samples from batch 1 were run through the Jamp.sh script, the tab-delimited output was 

concatenated to the annotated variant list resulting from pipelineV5. The variant list was then 

filtered to enrich for somatic variants and exclude off target reads (intronic/intergenic) and low 

depth variants (depth < 30x) as detailed in section 5.3.2. After filtering, variants [n=1,361] were 

validated in silico by myself and Dr. Helen Parker using the IGV genome viewer. Review of variants 

in IGV was done independently by each reviewer and each variant was labelled TRUE or FALSE 

according to the criteria provided in the SOP described in section 3.5.5. Any discrepancies 

between labels assigned by Dr. Parker and myself were resolved by Professor Jonathan Strefford.  

6.5.3 Feature selection and clustering  

K-means is one of the best known unsupervised approaches to cluster data, which partitions the 

observations intro a pre-specified number of clusters136, using a set of features for each 
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observation. K-means clustering was performed on our data using R following feature selection 

detailed below.  

Feature selection: All available quality metrics [n=22] were considered for their potential value in 

the unsupervised clustering model. The list and description of all metrics available are listed in 

Supplementary Table 6. Assessment was performed manually where quality metrics were 

excluded for the following reasons:  

• Another version of the metric that was normalised was available (e.g. quality by depth 

rather than quality alone). 

• GATK haplotype caller did not output values for metric (e.g. Haplotype score). 

• An updated version of the metric was available (e.g. strand odds ratio rather than fisher’s 

exact test for strand bias). 

• Metrics that biased germline variants or could possibly split the data into germline 

clusters (e.g. maximum likelihood expectation for the allele counts). 

• Metrics that only accounted for either alternate or reference allele rather than both (e.g. 

mapping quality).  

This manual selection resulted in the use of ten metrics described in Table 6-1.  

Table 6-1 Model features selected for unsupervised clustering analysis.Features used in the clustering 
model, with a description of each metric and where each metric was obtained.  

 Feature Description Source 

Depth (DP) Number of reads covering base location GATK haplotype caller (vcf) 

MQRankSum Rank sum test for mapping qualities of REF 
vs ALT reads 

GATK haplotype caller (vcf) 

BaseQRankSum Rank sum test of REF vs ALT base quality 
scores 

GATK haplotype caller (vcf) 

ReadPosRankSum Rank sum test for relative positioning of REF 
vs ALT alleles within reads 

GATK haplotype caller (vcf) 

Strand Odds Ratio (SOR) Strand bias estimated by the symmetric 
odds ratio test. Determines if there is strand 
bias between forward and reverse strands 
for REF or ALT alleles 

GATK haplotype caller (vcf) 

Quality by depth (QD) Quality score normalised by read count GATK haplotype caller (vcf) 

Number of amplicons Total number of amplicons covering base Jamp.sh (BAM) 

Sum of per base 
mismatches 

Count of per base mismatches in reads 
containing REF, ALT and other alleles 

Jamp.sh (BAM) 

Sum of softclipped reads Sum of softclipped reads in base pair 
location 

Jamp.sh (BAM) 

Variant allele frequency 
(VAF) 

Frequency of variant allele in base location GATK haplotype caller (vcf) 
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Correlation between features was measured to ensure all ten features were independent using 

Spearman’s rank-order correlation. Once features were selected, variants with no values in any 

one of the features were excluded and reviewed independently. This often happened with 

deletions or insertions, where the metric was a rank sum test that takes into account alternate 

and reference reads. For example, if we want to calculate the BaseQRankSum of a deletion, where 

it compares the base quality scores of the alternate and reference alleles. Because it is a deletion 

there are physically no alternate alleles (with a base quality score) and hence the test cannot be 

performed. 

Features were scaled using the scale function in R (z-score) and the optimal number of clusters 

was determined using the average silhouette and elbow method. 

Principal component analysis (PCA): PCA was applied to the scaled features. PCA was performed 

to understand which features were driving the cluster separation or which features had the 

greatest impact on variance between the clusters. PCA was run in R using the prcomp command 

on the scaled data. Each variant was drawn on a biplot where the x-axis represented the first 

principal component (PC1) and the y-axis the second principal component (PC2). Variants were 

coloured according to k-means result (clustering) and annotated with the manual validation labels 

where available. 

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP): UMAP is a 

dimensionality reduction technique which was used in conjunction with the PCA plot to visualise 

clustering results. UMAP is an algorithm based in Riemannian geometry and algebraic topology 

that constructs a high dimensional graph representation of the data and then optimises a low-

dimensional graph trying to preserve the local structure of the data144,145. In the UMAP plots 

variants were coloured according to the k-means result (clustering) and annotated with the 

manual validation labels. UMAP unlike PCA allowed the visualisation of the variation of all 

features in two dimensions.  

Heatmap: Scaled data was visualised on a heatmap. Variants were ordered and annotated 

according to the manual validation labels, clustering results or both where available.  

A complete workflow of the model development can be seen in Figure 6-1.  
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Figure 6-1. ML model development workflow . Development of the clustering model begins by processing all 
samples through pipeline V5. The BAM files (intermediate files from the pipeline) were run 
through the Jamp.sh script to extract additional sequencing metrics. Subsequently the raw 
variant list with the additional quality metrics were validated in IGV and labelled TRUE or FALSE. 
This manual validation step of all variants was done only for the test (batch1) and validation (CLL) 
set. At this point all quality metrics available were assessed and those that would be used in the 
model were extracted. The data was formatted and scaled, and the optimal number of clusters 
was identified using the elbow and silhouette method. Once the optimal number of clusters was 
established the data was run through the k-means algorithm and the variants were annotated 
with their assigned cluster. PCA, UMAP and heatmaps were used to determined which were the 
TRUE and the FALSE cluster or clusters. 
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6.5.4 Batches 2-5 

The ML model was first implemented on batch 1 and subsequently on batches 2-5 of the Jaramillo 

cohort after evaluation of performance indicated high sensitivity and specificity. In order to 

inform whether the ML approach could be applied to the combined set of samples from batches 

2-5 or should be implemented once for each batch, the Kruskal-Wallis test was used to determine 

if the distribution of the ML model features was statistically different between batches. Results of 

the Kruskal-Wallis test can detect significant differences between any batch pair that could 

suggest binning would be inappropriate. Pairwise comparison using the Wilcoxon rank sum test 

was used to determine which batch pairs, if any, demonstrated significant differences in the 

distribution of the ten selected features (Figure 6-2).

 

Figure 6-2. Decision tree to determine how batches 2-5 will be run.Each feature was used as input into the 
Kruskal-Wallis test in R and it was compared across all batches. If any of the batches differed, 
then the Wilcoxon rank sum test was performed per feature per pair of batches i.e. VAF in batch 
2 against batch 3 then VAF in batch 2 against batch 4 and so on. 

Manual validation in IGV of all variants in batch 1 was performed to ensure the model was 

working. In batches 2-5 manual review of variants was only performed in a small subset to 

confirm correct identification of true and false clusters.  

6.5.5 Integration of ML model results to create a filtering strategy for unmatched NGS 
data 

After validation of the model it was then integrated into the analysis of the 146 SMZL cases. The 

ML model was used on all 146 SMZL samples in the Jaramillo cohort as a triage tool. After 

clustering, all variants were grouped into TRUE and FALSE clusters and these labels were then 

used to triage variants into three categories: high, medium, and low confidence variants. High 

confidence variants were those that fell within the TRUE cluster. Medium confidence variants 

were those that fell within a FALSE cluster but met one of the following criteria: 1) Variant was 

found in genes: KLF2, NOTCH2, NOCTH1 or TP53; 2) Variant was an insertion or deletion; 3). 

Variant was a stopgain or stoploss; 4) Variant had a quality greater than the median batch quality. 

Low confidence variants were all other variants in the FALSE clusters. High and medium 
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confidence variants were reviewed in IGV while low confidence variants were excluded from the 

analysis. Figure 6-3 illustrates this process. 

 

Figure 6-3. Flow diagram of filtering strategy to reduce false positives. After running the variants through the 
clustering model, these were grouped into TRUE and FALSE clusters. Variants were reviewed in 
IGV (using criteria given by Barnel et al.104) if they were considered high and medium confidence. 
High confidence variants were all variants that fell within the TRUE cluster. If variants did not fall 
within the TRUE cluster but they were: 1) Present in genes KLF2, NOTCH2, NOCTH1 or TP53; 2) If 
variants were insertions, deletions, stop gains or stop losses or; 3) If the quality of the variant was 
greater than the mean batch quality; they were considered medium confidence variants. All 
other variants in a FALSE cluster were not reviewed in IGV and not included in the analysis.   

Once variants were reviewed in IGV and true variants confirmed, the variant list was used as input 

for maftools in R to begin analysis of results.  

6.6 Results  

6.6.1 Feature selection 

Spearman’s rank order test was used to assess correlation between the available quality metrics. 

Results of the Spearman’s test indicated that there was a significant positive correlation between 

VAF and quality normalised by depth (QD), rs=0.89, p <0.001. These two features were expected 

to have high correlation since both are metrics that have been divided by the total depth. No 

other features showed high correlation between them, confirming that features or metrics were 

independent. Results of the Spearman correlation test are shown in Figure 6-4 for all features 

across all batches. 
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Figure 6-4 .Heatmap of Spearman correlation between features. A value of 0 (white) indicates there is no 
association between the features. A value close to 1 (red) indicates a positive association 
between features while a value close to -1 (blue) indicates a negative association between the 
features. 

6.6.2 Batch 1 (test set) 

PipelineV5 called 37,567 variants in all 62 samples (including non-SMZLs). After filtering, 1361 

variants were left for clustering. Figure 6-5 shows number of variants included (blue) and filtered 

out (red) during each step before input into model.  

 

Figure 6-5. Filtering workflow for Batch 1 before input into ML model. The boxes in blue display the number 
of variants left after each filtering step, while the red boxes display how many variants were 
discarded. 

The elbow and silhouette method both identified the optimal number of clusters as three. 

Clustering results (Figure 6-6.A) show cluster 3 (blue) contains most variants manually labelled as 

true, while most false variants were grouped into clusters 1 and 2. The UMAP shows discrepancies 

between manual validation labels and clusters produced by both k-means and by the UMAP. 
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Figure 6-6. Clustering results for 1361 variants identified in 62 individual tumours from batch 1. A. UMAP plot 
of clustering results for test set. Each point represents a variant annotated with the manual 
validation labels (false variants represented by a “+” and true by a “•”) and k-means clustering 
results. B. PCA plot of test set with loadings vectors. Each point represents a variant annotated 
according to clustering results (colour) and manual validation label (shape). Loading vectors for 
each feature which inform which features are driving the separation between clusters. The 
length of each vector shows the magnitude of the effect each feature has on the variance. 

Principal component analysis (panel B of Figure 6-6) identified VAF and quality by depth (QD) as 

the features with the greatest effect on variance between true and false clusters. While the 

softclipped and per base mismatches had the greatest effect on the variance across false sub-

groups. Panel B of Figure 6-6 shows the loading vectors for each feature illustrating which ones 

were driving the separation between clusters. Vector length corresponded to the magnitude of 

the effect each feature had on the variance (the longer the arrow, the higher the effect and vice 

versa). 
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Scaled features were plotted on a heatmap and annotated according to cluster and manual 

validation labels. The heatmap (Figure 6-7) supported PCA results showing high values of VAF and 

quality by depth (QD) in true variants, which separated them from the false clusters. This pattern 

can be used to identify the “true” cluster in other data sets run through the model. Other features 

were more variable between true and false clusters. However, in the test set, high values of per 

base mismatches and softclipped reads separated false variants into two clusters. 

 

Figure 6-7. Heatmap of scaled features for batch 1 (test set). The first column represents cluster 
assignment (colour as in the UMAP plot), the second manual curation labels (black = 
FALSE, turquoise = TRUE) and the remaining columns show the ten features in used in 
the model. Each row represents a single variant. 

The ML model accurately predicted 278/303 of the variants manually validated as true and 

975/1058 of the false variants in batch 1 (Table 6-2). This resulted in a sensitivity and specificity of 

92% (Table 6-3). 

Table 6-2 Confusion matrix for test set (batch 1). 

  truth 

  TRUE FALSE 

pred. 
TRUE 278 25 

FALSE 83 975 
 

Table 6-3 Statistics for test set (batch 1). 

Stat Value 

Accuracy  0.92 

Kappa 0.79 

Sensitivity 0.92 

Specificity 0.92 
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6.6.3 Overview of complete data set 

Results of the Kruskal-Wallis test confirmed that the distribution of the features was in fact 

significantly different across all batches (Table 6-4). 

Table 6-4 Results of Kruskal-Wallis test between five batches [n=4281 observations]. 

Kruskal-Wallis test 

Feature Chi-square p value 

BaseQRankSum 510.29 p < 0.001 

Depth 441.84 p < 0.001 

MQRankSum 47.07 p < 0.001 
QD 414.46 p < 0.001 

ReadPosRanksum 233.62 p < 0.001 
SOR 150.67 p < 0.001 

No amplicons 374.52 p < 0.001 

Sum pb mismatches 2057.1 p < 0.001 

Sum softclipped 277.94 p < 0.001 
VAF 791.98 p < 0.001 

The Wilcoxon rank sum test gave more granularity as to which batches showed a difference in 

distribution across each of the features. It identified batch 2 as the batch that differed most from 

all other batches as the majority of the pairwise comparisons (35/40) were significantly different 

(Figure 6-8). The Wilcoxon rank sum test also indicated that there was a significant difference 

between the depth in all batches except between batch pair 3 and 4. Therefore, each batch was 

run through the ML model separately to avoid introducing additional noise or bias. 

 

Figure 6-8. Pairwise comparison of features between batches. Values in green represent a significant 
difference between the pairs (p < 0.05) while orange no significant difference (p ≥ 0.05). 

Figure 6-9 illustrates the differences between the distributions of each feature across all five 

batches. Batch 2 is an outlier with respect to VAF and quality by depth (QD), the two features with 

the greatest effect on variance between false and true clusters, which were noticibly lower for 

batch 2 than the rest of the batches. BaseQRankSum distribution was similar across all batches 

with the exception of batch 2 which was notacibly lower. Batch 4 showed a higher mean depth 
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than other batches as well as a higher number of softclipped reads. The high number of 

softclipped reads could be linked to the higher depth as there will simply be more fragments 

within this batch.  

 

Figure 6-9. Feature distribution for batches 1-5 in the Jaramillo cohort. Each group of boxplots represents a 
feature (y-axis) and each box represents a batch. Boxplots illustrate the distributions of the 
features before clustering. 

The distribution of values in the ten features across all batches suggests that each batch is subject 

to its own type of noise and or sequencing artefacts.  

6.6.4 ML modelling data for individual batches 

The results of the model (agreement, sensitivity, and specificity) in the test set (batch 1) were 

sufficiently high and deemed an acceptable approach to apply on all the samples. Unlike the test 

set, all variants in batches 2-5 were not reviewed in IGV before clustering as this was done to 

ensure the model was working properly.  

Batches 2-5 were run separately through the ML model. Figure 6-10 details the number of 

samples and variants in each batch after annotation using pipelineV5 and subsequently the 

number of variants used as input for clustering. Batch 2 had a high number of variants per sample 

(48 variants/sample) compared to other batches (10, 14, and 12 variants per sample in batches 3, 

4, and 5 respectively).  
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Figure 6-10 Flow diagram detailing sample and variant number in all batches run through ML model. The blue 
boxes show the raw number of variants in each batch before filtering. The pink boxes show the 
number of variants that were used for input in ML model. Batches include the 146 SMZL cases 
and additional samples that were sequenced concurrently.  

The average silhouette method suggested 2, 5, 6 and 4 as the optimal number of clusters for 

batches 2, 3, 4 and 5 respectively. Results from the elbow method were ambiguous and therefore 

only the average silhouette method was used. Clustering results are shown in Figure 6-11 . 

A heatmap of the scaled features was created for all batches, annotated with clustering results 

and compared to the heatmap created for batch 1 (Figure 6-12). True clusters in batches 2-5 were 

identified as “true” using the patterns observed in batch 1, where VAF and quality had higher 

values (red) compared to other features. Additional validation in IGV of a small subset of variants 

[n=10 variants per cluster] was also used to consolidate which clusters belonged to true and false 

positives. Batch 2 contained two clusters where cluster 2 (blue/green) represented true variants 

and cluster 1 (red) false variants. In batch 3 the heatmap identified cluster 3 (green) as the “true” 

cluster and all others (1, 2, 4 and 5) as false. For batch 4 the heatmap identified cluster 6 

(purple/pink) as the “true” cluster and clusters 1, 2, 3, 4 and 5 as false. Lastly, in batch 5 the 

heatmap identified cluster 1 (red) as the “true” cluster and clusters 2, 3 and 4 as false.  
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Figure 6-11. PCA of clustering results for batches 2-5.  A. Batch 2: PCA results. B. Batch 2: PCA results with 
loading vectors. C. Batch 3: PCA results D. Batch 3: PCA results with loading vectors. E. Batch 4: 
PCA results. F. Batch 4: PCA results with loading vectors. G. Batch 5: PCA results. H. Batch 5: PCA 
results with loading vectors. Each point represents a variant and each variant is coloured 
according to clustering results. The plots with loading vectors illustrate which features are driving 
the separation between clusters. The length of each vector shows the magnitude of the effect 
each feature has on the variance. 
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Figure 6-12. Heatmaps of scaled features for batches 2-5. Each row represents a variant, first column 
represents cluster assignment and other columns values for each of the features. 

6.6.5 Validation cohort (CLL4 cohort - Truseq platform) 

To validate the results of the clustering model, an independent sequencing cohort was obtained 

and processed through the bioinformatics pipeline. This cohort was comprised of CLL samples 

that were prepared using a TruSeq Custom Amplicon kit and sequenced on a MiSeq system at the 

University of Oxford. The TruSeq kit targeted 20 genes and samples were sequenced in several 

batches (more details on this cohort can be found in section 3.1.3). The Kruskal-Wallis test was 

used to determine if the distribution of the ML model features was statistically different between 

batches and would determine if it was possible to process all batches together or if the clustering 

would have to be done by batch. The Kruskal Wallis test revealed that the distribution of the ten 

features was significantly different across the 25 CLL batches. This meant that samples could not 

be grouped together and clustered at once. Consequently, one batch (miseq16-005) was chosen 

at random and run through the clustering model for validation. The batch was comprised of 175 

variants 37 of which were validated true by either IGV or previous published work. The optimal 

number of clusters was 6 and results of clustering are shown in the PCA in Figure 6-13 and in the 

UMAP plot in Figure 6-14. The majority of the true variants appeared to group within the sixth 
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cluster (purple), unfortunately, the clustering did not work as well as in the Haloplex HS data with 

a specificity of 79% and a sensitivity of 70% (Table 6-6). 

 

Figure 6-13. PCA of clustering results for CLL4 validation batch. Each point represents a variant annotated 
according to clustering results (colour) and in silico validation label (shape). 
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Figure 6-14. UMAP of clustering results for CLL4 validation batch.  Each point represents a variant annotated 
with the manual validation labels (false variants represented by a “+” and true by a “•”) and k-
means clustering results. 

Table 6-5 Confusion matrix for validation batch. 

  truth 

  TRUE FALSE 

pred. 
TRUE 26 11 

FALSE 29 106 
 

Table 6-6 Statistics for validation batch. 

Stat Value 

Accuracy  0.77 

Kappa 0.41 

Sensitivity 0.70 

Specificity 0.79 
 

6.6.6 Genomic landscape in filtered results  

After successfully applying the ML model to all batches of the Jaramillo cohort and validating the 

results in an independent variant set, the ML model was integrated into the genomic analysis as a 

triage tool. This section will give a brief overview of the genomic results after integration of the 

model to evidence the effect it had on the sequencing data.  

We compared the ten most frequently mutated genes in the 146 SMZL patients before and after 

clustering. The waterfall plots shown on Figure 6-15 displays the ten most frequently mutated 

genes in the 146 SMZL patients before (panel A) and after (panel B) exclusion of false positives 

identified by the ML model. The waterfall plot in panel B was created after validation of variants 

in IGV and panel C (SMZLrefDB) is shown as reference. 
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Figure 6-15. Waterfall plots comparing genomic results before and after use of the ML model. A. Top 10 
frequently mutated genes in Jaramillo cohort [n=146] before processing with ML model. B. Top 
10 frequently mutated genes in Jaramillo cohort [n-146] after application of ML model. C. Top 10 
frequently mutated genes in SMZL dataset compiled in the systematic review [n=508]. Barplot on 
the top of each waterfall plot shows the number of variants per samples, while the barplot on 
the right displays the number of samples harbouring mutations in each gene. 

The most obvious difference between the data before and after exclusion of false positives was 

the reduction of missense mutations across the ten most frequently mutated genes. In KMT2D, 

although there was still a high number of mutations, the multiple hits across the majority patients 

was no longer there. Another notable difference was the removal of the NOTCH1 splicing variants 

(orange), although it is not obvious as NOTCH1 was no longer in the ten most mutated genes after 
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cleaning. Furthermore, the gene list in panel B of Figure 6-15 reflected more closely the genes 

previously identified as recurrently mutated in our systematic literature review (SMZLrefDB). The 

frequency (number of patients across cohort harbouring mutations/ total number of patients) of 

NOTCH2, KLF2, TNFAIP3, MYD88 and TRAF3, was much closer to previously observed frequencies 

after exclusion of artefacts. These results further validated our methods showing a much more 

coherent list of variants which could now be assessed in more detail. 

6.7 Discussion  

Manual validation of variants is a key component when analysing sequencing data from any type 

of tissue, especially when additional sequencing is not possible due to either cost or availability of 

materials. However, it is a labour-intensive job prone to human error and bias. This is especially 

true when thousands of variants need to be reviewed (a problem amplified in tumour only 

samples) and if perhaps the quality of the sequencing is not optimal. There are times when 

manual validation reviewers might not agree whether a variant is true or false, and they might 

even consider a variant true purely because it is often seen in a specific disease, potentially 

biasing the selection of known mutations when the quality of a variant is below average. 

Therefore, developing an objective and efficient method to identify true variants from noise in 

tumour only data was important, not only in terms of reducing the time needed to validate 

variants, but also to have a more systematic and unbiased approach to filtering out false positives. 

To fulfil this unmet need we developed an unsupervised machine learning model that can be used 

to identify true and false positive variants in tumour only amplicon data. The model uses ten 

metrics or features obtained from GATKs haplotype caller (BaseQRankSum, Depth, MQRankSum, 

QD, ReadPosRankSum, SOR and VAF) and the BAM file (No. of amplicons covering the loci, sum of 

per base mismatches in reads covering the loci, and sum of softclipped reads covering the loci). 

The number of optimal clusters varied by batch; therefore, each sequencing batch was processed 

separately. The model’s sensitivity and specificity were 92% and had an agreement (kappa) of 

79% to the manual validation, with the caveat that the manual validation labels may have some 

errors. We aimed for the highest sensitivity as retaining false positives in the data is not ideal but 

preferable to exclusion of true variants. Filtering out false positives from a reduced pool of 

variants is less arduous and time consuming compared to identifying a true variant hidden 

amongst hundreds of false positives. In the test set, twenty-five variants manually validated true 

in IGV were labelled as false by the model. Upon further examination, discrepancies were seen on 

variants with lower average depth and VAF compared to other true variants. This set of variants, 

not included in the true cluster, was comprised of seven deletions and 18 single nucleotide 

variants (SNVs). Two of these twenty-five were splicing variants and eight were stopgain SNVs. 
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Reasons for the enrichment of stopgains is unknown and could be due to the biology of the 

disease. Consequently, all stopgains and stoplosses in our cohort were assessed in IGV regardless 

of cluster.  

The sensitivity and specificity of the model was over 20% lower in the validation cohort. The most 

likely cause being the enrichment kit used. The Truseq design did not allow for many overlapping 

amplicons covering the targeted regions and on average each variant was targeted by 2 amplicons 

compared to 4 in the Haloplex HS design. This will affect the calculation of some of the features by 

the variant caller. Features like ReadPosRankSum for example look at how many more alternate 

or reference alleles there are towards the end of a read and if we only have one amplicon, then 

the value for ReadPosRanksum might be inflated. This will cause the algorithm to cluster said 

variant with false positives since the end of a read tends to be of lesser quality. Although the 

model was not as successful in this platform it might be suitable for more random library designs 

with several overlapping probes or amplicons. It would be ideal to test this model in additional 

datasets perhaps exome or other capture kits to better understand generalisability, however that 

is beyond the current scope of this work.  

The model developed herein, like any other clustering technique, has its limitations that should be 

considered before being used. The first limitation is that this model is not as effective on indels as 

it is on SNVs. Perhaps because indels are more difficult to align and will likely have lower quality 

than SNVs. It is advised that indels be looked at independently and not included in the clustering. 

The second limitation is that this model could potentially miscall variants with low depth and 

variant allele frequencies (< 0.2) as these will have a lower number of supporting alternate reads 

leading to lower quality (calculated by variant caller) and perhaps be biased in the way they were 

captured during the library preparation. This is specially the case for genes with a high GC content 

However, if only poor-quality data is available for such genes (e.g. NOTCH1, NOTCH2 and KLF2) 

because of their high GC content they will inherently have less false positives due to less reads 

mapping to them and manual validation is more feasible. 

The aim of this model was to distinguish between true versus false positive variants in tumour 

only samples, and not to distinguish somatic versus germline. Although the data was filtered to 

enrich for somatic variants before clustering, there is a possibility that germline variants were still 

present in the data and cancer specific filters might need to be used downstream. In the test set, 

synonymous variants were included which make up 36% of the variants. Synonymous variants 

were included, as they have the potential to affect splicing, however, it might skew the model 

since they could also be rare germline variants. 
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Something else that should be considered is that different sequencing batches will have different 

types of noise and therefore each sequencing batch will need to be clustered separately, or batch 

effect should be corrected for. It is not known exactly why each batch differs when sequenced, 

but this could be due to technical errors during sequencing, differences in the reagents when 

inside the sequencing instrument, preparation of the libraries or the samples themselves. This is 

supported by the random forest model created by Wu and colleagues where batch effect was the 

third most important feature in their model137. It might be cumbersome to cluster each batch 

separately, but it does have an advantage. Supervised models are robust when they are trained 

on large numbers of the same type of data, however if the training data has a low variance and 

high bias the model is likely to underfit the data and vice versa if there is high variance and low 

bias it could potentially overfit the data and miss patterns within it146. This variance-bias balance 

might be difficult to calibrate in a supervised approach when accounting for batch effects. This 

was exemplified by the fact that it was thought the data might cluster into two groups: false 

positives and true variants; but this was not always the case. Therefore, an unsupervised 

approach allowed the identification of different types of noise within the data. 

With an unsupervised approach not only can batch effects be accounted for across features, but 

samples can be processed without the need for large training datasets relying on data collected 

elsewhere.  

6.8 Conclusion 

In summary, the unsupervised machine learning model clustered suspected true somatic variants 

separately from suspected false positives with high sensitivity and specificity, allowing for a more 

efficient way of filtering out false positive variant calls in unmatched tumour samples. This 

demonstrates that it is possible to automate unmatched somatic variant filtering with an 

unsupervised ML model, reducing time when manually curating variants and even reducing bias 

that could be introduced by a manual reviewer. Although the results of the model were not used 

as a hard filter, they provided excellent additional annotation that was used to triage variants into 

high and low confidence and to obtain a variant list that was in line with previous published 

studies. 
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 Next generation sequencing analysis of 
splenic marginal zone lymphoma patients 

7.1 Synopsis 

In this chapter, 57 genes are interrogated across a cohort of 321 SMZL patients (Jaramillo and 

Parry cohort) with no matched germline tissue. We report a list of putative somatic variants and 

those within frequently mutated genes are examined in detail. 

David Oscier performed the diagnosis of samples and provided clinical guidance. Dr. Helen Parker 

performed the design of the gene panels and performed the library preparation, sequencing of 

samples, and was responsible for the transfer and demultiplexing of the sequencing data to 

university servers. Carolina Jaramillo Oquendo ran the samples through the bioinformatics 

pipeline and the unsupervised machine learning model, followed by the interpretation of the NGS 

data. Prof Sarah Ennis, Prof Jonathan Strefford and Dr. Jane Gibson acted as supervisors 

overseeing the processing, analysis, and interpretation of the data.  

7.2 Introduction 

As mentioned in section 1.4 there are three separate clinicopathological marginal zone (MZ) 

lymphoma entities, splenic marginal zone lymphoma (SMZL), nodal MZL (NMZL) and extranodal 

(EMZL) as defined by the World Health Organisation (WHO)31. Additional provisional entities such 

as splenic diffuse red pulp lymphoma (SDRPL), hairy cell leukaemia-variant (HCL-v) and clonal B-

cell lymphocytosis of marginal zone origin (CBL-MZ) are emerging, the latter clonally related to 

SMZL32–34,147. SMZLs make up approximately 20% of MZLs and NMZLs comprise less than 10% of 

cases while EMZLs comprise around 60% of cases that occur at any extranodal sites148.  

The Diagnosis of SMZL relies on a combination of clinical features along with assessment of 

lymphocyte morphology and immunophenotype, bone marrow histology and 

immunohistochemistry. In the absence of splenic histology, the differential diagnosis of SMZL 

from common low-grade B-cell disorders such as chronic lymphocytic leukaemia (CLL), follicular 

lymphoma (FL), and mantle cell lymphoma (MCL) is usually straightforward but SMZL lacks a 

disease-specific immunophenotype and the distinction between SMZL and some cases of HCL-v, 

SDRPL and lymphoplasmacytic lymphoma (LPL) may be more difficult. With the lack of biomarkers 

for differential diagnosis, genomics has the potential to aid in the identification of disease specific 

gene mutations. However, SMZL and marginal zone lymphomas tend to be excluded from large 

international sequencing consortia, resulting in limited genomic data for these cancers.  
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The systematic literature review (Chapter 2) revealed that only six genome-wide studies have 

been conducted on only 35 patients. Kiel and colleagues were the only ones to employ WGS but 

were limited to six cases without matched germline DNA49. Five WES studies have been carried 

out on discovery cases, and subsequently targeted relevant genes in additional samples. To date, 

none of these studies have reported mutational signatures nor mechanisms, such as kataegis and 

chromothripsis149. Even the somatic mutational burden remains disputed, with a range of somatic 

mutations per patients between 9 and 82 (mean 25)50,51,54. This limited agreement is likely due to 

the low patient numbers, and experimental and computational differences in WGS/WES 

processing, but could also allude to disease heterogeneity and statistical power insufficient to 

catalogue the complete mutational landscape of the disease54,70. Targeted re-sequencing 

approaches have helped elucidate recurrently mutated genes, but these studies have often 

included only small numbers of matched germ-line material for analysis.  

Whilst we currently have only a limited picture of the somatic landscape of SMZL, several 

recurrently mutated genes have been identified, that are preferentially within physiologically 

important cellular processes, such as MZ B-cell maturation and migration, and cell cycle control 

(Figure 7-1). The three most important genes identified by the systematic review were KLF2, 

NOTCH2 and TP53. The review also confirmed the importance of genes that interact with the NF-

κB pathway such as TNFAIP3, MYD88, TRAF3, CARD11, IKBKB, and BIRC3 and brought forward two 

genes, TRAF3 and KMT2D, which had not been considered significant players in SMZL biology. 

Unfortunately, within our systematic literature review an in-depth analysis of the variants and 

their interactions was hindered by the experimental/analytical design and the lack of required 

information in published data. 
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Figure 7-1. Main pathways targeted by somatic mutations in SMZL. Recurrently mutated genes in SMZL 
preferentially target physiologically important pathways, including canonical and non-canonical 
NF-kB activation (through BCR, TLR and BAFF-R signalling), Notch signalling, chromatin 
remodelling and cell cycle control. Genes encoding proteins in grey have a mutational frequency 
greater than 10% within SMZL cohorts. Figure by Jaramillo Oquendo et al55 licenced under CC BY 
4.0. 

This chapter presents the results of targeted sequencing across 321 SMZL patients. The results 

shown here fulfil our main objective of constructing a detailed characterisation of the genetic 

landscape of SMZL through the identification of somatic variants in tumour only SMZL samples. It 

aims to impart more clarity on the mutational frequency of genes relevant in B-cell malignancies 

across a large SMZL cohort and allow a detailed look at the somatic interactions between these 

genes. 
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7.3 Materials and Methods  

7.3.1 Cohorts 

Jaramillo cohort: 146 tumour only SMZL samples, all meeting established diagnostic criteria37, 

were obtained from 11 international collaborating centres. peripheral blood [n=97], spleen cells 

[n=13] or bone marrow [n=2] however, for some cases samples were sent as DNA and the 

material type from which they came from is unknown [n= 34]. Samples were analysed with a 

bespoke Agilent Haloplex HS Target Enrichment system that enriched 383.74kb of genomic DNA 

for 59 genes and genomic regions, designed with SureDesign (for further details on this cohort 

refer to section 3.1.1).  

Parry cohort: 175 tumour only SMZL samples all meeting established diagnostic criteria37, were 

obtained from 8 centres across Europe. DNA was extracted from peripheral blood [n=135], bone 

marrow [n=22], spleen [n=17], or lymph nodes [n=1). Samples were analysed with a bespoke 

Haloplex Target Enrichment system (Agilent Technologies) that enriched 2.39Mb of genomic DNA 

for the coding regions of 768 genes, designed with SureDesign (for more details see section 

3.1.2).  

Our approach to integrating the data was first to analyse the new cohort (Jaramillo) and see how 

the results compared to those of the Parry cohort. Then both cohorts were combined and 

analysed together to increase the power of our analysis.  

7.3.2 Haloplex sequencing and bioinformatics pipeline 

The Jaramillo cohort was sequenced in five batches using 150 bp paired end sequencing on a 

Nextseq system (Illumina). The mean target coverage was 305x (range 18-1107). The parry cohort 

was also sequenced in batches (16-47 samples) using 100 bp paired end sequencing on an 

Illumina HiSeq2000. The mean target coverage was 238x (range 97-546). Coverage across the 

Jaramillo and Parry cohorts can be found in Supplementary Table 5.  

All samples (Jaramillo and Parry cohorts) were processed through pipelineV5 (see section 4.5.3). 

This consisted of aligning raw FASTQ reads to the reference genome (hg38) using BWA-mem, 

followed by variant calling using GATK haplotype caller and annotated using Annovar software. 

For detailed description of the bioinformatics pipeline refer to Chapter 4.  

7.3.3 Exclusion of false positives and likely germline variants 

After annotation, variants were filtered to enrich for somatic mutations and exclude those that 

were not of interest as described in section 5.3.2. This initial filter excluded intronic and intergenic 



Chapter 7 

113 

variants, variants with a frequency less than 1% in databases of known germline variation, and 

variants with a total depth less than 30. However, preliminary results (Chapter 5) showed these 

initial filters still left a large number of false positives within the dataset. This led to the 

development and use of the unsupervised machine learning model to help identify spurious calls 

(0). The results from the machine learning model were used as a triage tool to categorise variants 

intro high, medium, and low confidence. High and medium confidence variants were validated in 

IGV and all others were excluded from the analysis (For further details see section 6.5.5).  

A second filtering strategy was developed to exclude germline variation. To do this in-silico 

predictive scores (CADD phred score 89 and spliceAI150) were used to determine the likelihood of a 

variant being pathogenic. Alongside the CADD score the frequency of the variant in databases of 

known germline variation and the variant allele frequency (VAF) was also used. 

First, a cut-off value for the CADD score was required to filter out “benign” or “non-functional” 

variants. However, the authors of CADD recommend integrating the scores with other evidence 

and not using CADD as the sole piece of evidence, therefore, a consensus approach was taken. 

Variants were also annotated using the mutation significance cut-off151 (MSC) for both the Human 

gene Mutation Database (HGMD)152 and ClinVar91 with a 90% confidence interval. The MSC of a 

gene is defined as the lower limit of the confidence interval (90%, 95% or 99%) for the CADD score 

of all its high-quality mutations described as pathogenic in HGMD or ClinVar. Therefore, if a 

variant had a CADD score greater than or equal to the MSC cut-offs for either HGMD or Clinvar or 

if the CADD score was ≥ 15 it was kept. Furthermore, if any variant had a spliceAI score > 0.5 it 

was also included in the analysis. Synonymous variants were then filtered out and this list went 

onto the next stage of the filtering strategy. These steps are illustrated in blue in Figure 7-2. 

Variants had been filtered using the frequency in databases of known germline variation before 

clustering, however the preliminary data showed possible germline variants still present. 

Considering some of these databases might have some contamination a more nuanced approach 

was necessary and the variant allele frequency as well as the number of times the variant was 

found in our cohort was considered. 

A heterozygous germline variant has two alleles a and b. If the variant is sequenced, then the 

probability of calling or identifying either allele a or b can be modelled by the binomial 

distribution. We can find a confidence interval based on the number of experiments, or in this 

case the depth, to determine if the observed variant allele frequency (VAF) falls within this 

distribution. If the VAF does fall within the confidence interval, then there is a high likelihood that 

the variant could be a germline variant. Using the variant depth, the Clopper–Pearson method 

was used for calculating a confidence interval of 95% of the binomial distribution per variant. 
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Consequently, for the remaining variants, if any variant had a frequency in any the databases of 

known germline variation (see section 5.3.2) greater than 0.001 and they were present in two or 

more samples they were excluded. Or if the variant was present at a frequency > 0.001 in 

databases of known germline variation and the VAF of that variant fell within the 95% confidence 

interval of the binomial distribution for that depth it was also excluded. These steps are illustrated 

in purple in Figure 7-2. 

 

Figure 7-2. Flow diagram of filtering strategy to exclude germline variants.  First CADD scores were compared 
against the mutation significance cut-off (MSC) in either the Human gene Mutation Database 
(HGMD) or ClinVar and proceeded to the next step if the CADD score was greater than MSC cut-
off. If variants had a CADD score greater than 15 or a spliceAI score greater than 0.5 they also 
proceeded to the next step. Synonymous variants that did not meet any of cut-offs were 
excluded. The second step in the filtering process involved looking at the frequency of the variant 
in databases of known germline variation. If variants are found at frequencies greater than 0.001 
AND present in more than two samples OR fall within the confidence interval for the binomial 
distribution of their respective depth, they are excluded. 

7.3.4 Transcript selection 

To correctly visualise variants, it was important that all variants within a gene were described 

using the same transcript. Transcript flags can be used to identify the highest quality or most 
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relevant transcripts and were obtained using Emsembl153. Ensembl uses five flags to annotate 

genes: MANE select, Transcript support level (TSL), APRIS, GENCODE Basic, 5’ and 3’ incomplete. A 

transcript was chosen using two main flags MANE and TSL. A full description of these flags taken 

from the Ensembl page154 can be detailed below: 

MANE (Matched Annotation between NCBI and EBI) Select 

To determine the MANE Select transcript, Ensembl and NCBI independently identify 

which transcript we believe is the most biologically relevant. Where these match, the 

transcripts are labelled as MANE in both databases. The transcripts are absolutely 

identical in both databases, having matching splicing structure, sequence which matches 

the reference genome, 5' and 3' UTRs and start and end. 

Transcript support level 

The Transcript Support Level (TSL) is a method to highlight the well-supported and 

poorly-supported transcript models for users. The method relies on the primary data 

that can support full-length transcript structure: mRNA and EST alignments supplied by 

UCSC and Ensembl. 

Transcripts with a MANE flag were chosen and if the transcript did not have the MANE flag then 

the transcript with the highest support level (TSL) was used. Once the main transcripts were 

selected the variant list was ready to be analysed.  

Summary of the post processing steps to obtain the final variant list can be seen in Figure 7-3. 
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Figure 7-3. Flow diagram of filtering strategies to obtain final variant list . Samples from the Jaramillo and 
Parry cohort were run through the optimised bioinformatics pipeline (pipelineV5) before they 
began an extensive filtering process. The raw variant list that results from the pipeline was 
filtered to exclude variants that were not in targeted regions (i.e. introns/exons), those with a 
frequency less than 1% in databases of known germline variation, such as gnomAD and EXAC, 
and those with a depth less than 30x. Once variants go through this initial filtering they were 
clustered into groups, which determined if they were classed as low, medium, or high confidence 
variants. High and medium confidence variants were validated in IGV and all other variants 
excluded. After validation variants went through a second filtering strategy which used scores to 
predict deleteriousness as well as the variant allele frequency (VAF) and depth to exclude 
potential rare germline variation. Subsequently, all variants were annotated with the main 
transcript (MANE) and were then ready to be analysed. 

7.3.5 Data visualisation and analysis 

The final annotated variant list was used as input into R packages maftools and GenVisR for data 

visualisation. Cbioportal was used to visualise mutations overlaid on a linear protein (lolliplot) 
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representing each gene with its respective domains. To detect mutually exclusive or co-occurring 

set of genes a pairwise Fisher’s Exact test was performed in R. 

7.4 Results 

For this section, unless stated, results refer to the combined Jaramillo-Parry cohort. After 

clustering, 1031 variants were validated using IGV and these were then filtered leaving a total of 

633 variants ready for analysis [n=314/633 from the Parry cohort and n=319/633 from the 

Jaramillo cohort]. The 637 variants came from 261 out of the 321 assessed unique individuals and 

were found in 45 out of the 59 assessed genes. The complete list of variants can be found in 

Supplementary Table 7.  

Most variants were missense mutations [n=358], followed by frameshift indels [n=134] and 

stopgain mutations [n=102]. With lesser frequency, splicing [n=29], in-frame indels [n=9], and 

stoploss [n=1] were also present. The majority were single nucleotide changes [n=488], followed 

by deletions [n=118] and a small number of insertions [n=27]. C to T substitutions were the most 

common base change, which was in line with results from the systematic review (Figure 7-4).  

 

Figure 7-4. Variant summary in Jaramillo-Parry cohort. A. Break down of variant classification in the Jaramillo-
Parry cohort. B. Bar chart of variant type. Single nucleotide polymorphisms (SNP) are in purple, 
insertions (INS) in yellow and deletions (DEL) in green. C. Breakdown of nucleotide substitution. 
X-axis for all three figures show the number of variants within the cohort. 

7.4.1 Recurrently mutated genes 

In concordance with the literature NOTCH2 [13%], TP53 [12%] and KLF2 [12%] (Figure 7-5) 

harboured high mutational frequencies in the combined Jaramillo-Parry cohort. However, it was 

KMT2D [13%] which had the greatest mutational frequency with mutations in 43/321 patients. 

The Jaramillo cohort was plotted separately (Figure 7-6), giving similar results.  

To compare the results of the combined Jaramillo-Parry cohort against the Jaramillo only cohort 

Table 7-1 shows the rank, frequency of mutations and number of affected patients of the ten 

most frequently mutated genes in both the Parry cohort and the Jaramillo cohort.  
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Figure 7-5. Waterfall plot of all mutations found in Jaramillo-Parry cohort. Each column represents unique SMZL patients and each row represent a gene. The mutation burden is calculated 
as mutations in sample/coverage space∗1,000,000 where the coverage space is the theoretical coverage space of the exome reagent “SeqCap EZ Human Exome Library v2.0”. 
This will underestimate the mutation burden in genes where all exons were not targeted, however It was kept as this data was targeted using three different capture kits.  
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Figure 7-6. Waterfall plot of Jaramillo cohort. Each column represents unique SMZL patients and each row represent a gene. The mutation burden is calculated as 
mutations in sample/coverage space∗1,000,000 where the coverage space is the theoretical coverage space of the exome reagent “SeqCap EZ Human Exome Library 
v2.0”. This will underestimate the mutation burden in genes where all exons were not targeted, however It was kept as this data was targeted using three different 
capture kits. 



Chapter 7 

120 

Table 7-1. Rank of the 15 most frequently mutated genes in across the Jaramillo and Parry cohorts. 

Rank (most 
frequently mutated 

genes) 

Jaramillo cohort [n=146] Parry cohort [n=175] 

Gene (frequency in 
cohort %) 

Number of 
patients with 

mutations 

Gene (frequency in 
cohort %) 

Number of 
patients with 

mutations 

1 NOTCH2 (16.4%) 24 TP53 (14.2%) 25 

2 KMT2D (13.7%) 21 KMT2D (12.6%) 22 

3 KLF2 (13.0%) 19 KLF2 (11.4%) 20 

4 MYD88 (13.0%) 19 CCND3 (10.3%) 18 

5 CCND3 (11.6%) 17 NOTCH2 (9.7%) 17 

6 TNFAIP3 (10.3%) 15 ARID1A (7.4%) 13 

7 TRAF3 (9.5%) 14 CDH23 (7.4%) 13 

8 ATM (8.9%) 13 MYD88 (7.4%) 13 

9 TP53 (8.9%) 13 SPEN (7.4%) 13 

10 CDH23 (8.2%) 12 CREBBP (6.8%) 12 

11 BIRC3 (7.5%) 11 TNFAIP3 (6.8%) 12 

12 CREBBP (7.5%) 11 ATM (6.3%) 11 

13 NOTCH1 (6.8%) 10 PRKDC (6.3%) 11 

14 NFKBIE (4.7%) 7 MAP3K14 (5.2%) 9 

15 SETD1B (4.7%) 7 TRAF3 (4.5%) 8 

KMT2D as mentioned before, had the greatest mutational frequency with 43/321 affected 

samples (13.4%). Variants were distributed throughout the protein (Figure 7-7) with no obvious 

clustering pattern or recurrent hot-spot mutations. Most mutation in KMT2D were missense 

[n=23], then frameshift [n=11], stopgain [n=9] and splicing [n=4]. Two of the splicing mutations 

(p.L2061L and p.P2036P) were classified as synonymous by Annovar but splicing by spliceAI.  

KMT2D was closely followed by NOTCH2 with a mutational frequency of 12.8% [41/321 samples]. 

NOTCH2, had a similar number of stopgain [n=19] and frameshift [n=18] mutations, and a small 

number [n=6] of missense mutations. Most of the variants in NOTCH2 clustered around the end of 

the C-terminal PEST domain (Figure 7-7) and it is in this domain where recurrent variant p.P2303fs 

was identified in three patients. 

KLF2 followed with a mutational frequency of 12.1% [39/321 samples]. Most of its variants were 

missense [n=22], followed by stopgain [n=11], frameshift [n=8], non-frameshift [n=1], stoploss 

[n=1] and splicing [n=1]. Variants in KLF2 formed two distinct clusters, one at the start (first 50 

amino acids) of the linear protein and one at the end (last 100 amino acids). There were two 

recurrent variants in this gene, p.Q24X and p.H288Y/D, found in seven and six patients 

respectively. Neither one of these recurrent variants is found in COSMIC or in any of the 

databases of known germline variation.  
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TP53 had a mutational frequency of 11.5% [37/321 samples] but most of its variants were 

missense [n=26]. TP53 also had stopgain [n=6], frameshift [n=5] and splicing [n=4] mutations. One 

of the splicing variants p.E224E was classified as synonymous by Annovar but was re-classified as 

splicing by spliceAI. This splicing variant (p.E224E) is found in COSMIC (COSV52681634) and 

classed as likely pathogenic by ClinVar. Most mutations in TP53 fell within the within the DNA 

binding domain where 6/37 cases were found both mutated and deleted. 

 

Figure 7-7. Lolliplot of the five most mutated genes in the Jaramillo-Parry cohort. Each lolliplot illustrates a 
linear protein representing each gene with its respective domains. The height is representative of 
the number of variants reported (Y-axis differs per gene) and circle colours identify mutation 
type. The transcript used for each protein is found next to the gene name and the colours of the 
domains were randomly assigned by the tool. Drawn using cBioPortal155. 
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The fifth most recurrently mutated gene was CCND3 with a mutational frequency of 10.9% 

[35/321 samples]. Most variants within this gene were missense [n=22], followed by frameshift 

[n=12] and stopgain [n=3]. Variants in CCND3 clustered in exon 5 and there were two loci 

containing 40% of the variants. The first locus was on amino acid 284 where there were seven 

amino acid changes identified within ten patients. The seven different nucleotide changes found 

are described in Table 7-2. The second locus was on amino acid 271 where the variant p.R271fs 

was identified in five patients.  

 
Table 7-2. Recurrent mutation in gene CCND3 found in the Jaramillo-Parry cohort. Locations based on hg38 

reference genome.  

 chr start end ref alt AA change 
Type of 

mutation 
No. 

Patients 

Chr 6 41935956 41935969 
GTGACATCT
GTAGG 

- p.P284fs Frameshift 1 

Chr 6 41935965 41935968 GTAG - p.P284fs Frameshift 1 

Chr 6 41935967 41935967 - 
GGAGTGCT
GGTCTGGC
TGGGCTT 

p.P284fs Frameshift 1 

Chr 6 41935968 41935968 G T p.P284H Missense 1 

Chr 6 41935969 41935969 G C p.P284A Missense 1 

Chr 6 41935969 41935969 G A p.P284S Missense 4 

Chr 6 41935969 41935969 G T p.P284T Missense 1 

MYD88 had a mutational frequency of 10.0% [32/321 samples] within the combined Jaramillo-

Parry cohort. In the waterfall plot (Figure 7-5) it is easy to distinguish this gene as it is perhaps one 

of the few genes with exclusively missense mutations (green). Figure 7-8 shows a clear recurrent 

variant (p.L252P) found in 16 patients. Although variant p.L252P is labelled as a variant of 

uncertain significance in ClinVar, it is found in COSMIC (ICOSV57169334) and has a high CADD 

Phred score of 31. All other mutations within MYD88 cluster within the toll/interleukin-1 receptor 

homology (TIR) domain. TNFAIP3, CREBBP, ATM and CDH23 all have similar mutational 

frequencies of 8.4%, 7.5%, 7.1%, and 6.8% respectively. Mutations in these genes did not cluster 

within any particular region or domain. 
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Figure 7-8. Lolliplot of the six to ten most mutated genes in the Jaramillo-Parry cohort. Each lolliplot illustrates 
a linear protein representing each gene with its respective domains. The height is representative 
of the number of variants reported (Y-axis differs per gene) and circle colours identify mutation 
type. The transcript used for each protein is found next to the gene name and the colours of the 
domains were randomly assigned by the tool. Drawn using cBioPortal155. 

7.4.2 Variant allele frequency across genes 

The variant allele frequency (VAF) of all mutations was plotted against depth (Figure 7-9). Only 

24/637 variants had a VAF ≤ 0.12 perhaps highlighting the limitations of our data and 

bioinformatics processing (unmatched tumour data processed through a germline variant caller). 

There is also a noticeable high density of variants around 0.50 VAF which could be potential rare 

germline variants that were not excluded. 
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Figure 7-9. Variant allele frequency vs depth of all variants in the Jaramillo-Parry 
cohort. Each dot represents a single variant. Blue dots have a VAf > 12% 
whole red dots a VAF ≤ 12%. Minimum read depth is 30. 

The VAF distribution was plotted per gene for the 20 most frequently mutated genes (Figure 

7-10). For ATM, KLF2, KMT2D, MYD88 and NOTCH2 the VAF distribution was very similar all within 

a range of 0.10 and 0.75. While TP53, TNFAIP3 and CCND3 had variants with VAFs up to 1. CDH23 

seemed the most problematic since most of its variants were between 0.40 and 0.60 VAF.  

 
Figure 7-10. VAF distribution across the 20 most mutated genes in the combined Jaramillo-Parry cohort. 

7.4.3 Associations between genes 

Results of the Fisher’s Exact test to determine associations between genes showed many co-

occurring genes but no mutually exclusive interactions, likely due to the number of affected 
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samples (Figure 7-11). Most notably KLF2 and TNFAIP3 were the only pair to retain significance 

after Bonferroni correction (p < 0.001). Out of the 39 cases that had a KLF2 mutation, 28% [n=11] 

also harboured TNFAIP3 mutations. KLF2 mutations also co-occurred with mutations in KMT2D 

[n=10], TRAF3 [n=7], CARD11 [n=4], and SETD1B [n=3]. Interestingly KLF2 did not show a 

significant association with NOTCH2 even though 9 cases had co-occurring mutations, considering 

this is an association that has been reported in the literature. However, NOTCH2 did co-occur with 

KMT2D [n=10] and CARD11 [n=5] mutations. Another interesting gene was CCND3 which co-

occurred along TP53 [n=9], TET2 [n=4] and BIRC3 [n=6] mutations, these interactions though were 

mostly within the Jaramillo cohort (Figure 7-12). 

 

Figure 7-11. Results of Fisher's Exact test in combined Jaramillo-Parry cohort.  Figures only show co-
occurring interactions between genes (green), mutually exclusive interactions were not 
identified with the test. Only interactions with a p-value < 0.05 were coloured. * indicates 
significance after correction (p-value < 0.001). 

Separate associations tests were carried out for the Jaramillo and Parry cohort. Both showed the 

same KLF2 and TNFAIP3 interactions, however without retaining significance after correction 

(Figure 7-12). The Jaramillo cohort had six cases with co-occurring KLF2 and TNFAIP3 mutations 

and the Parry cohort had five. The two cohorts did not share any other co-occurring associations.  
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Figure 7-12. Results of Fishers exact test in Jaramillo and Parry cohorts. A. Somatic interactions within the 
Jaramillo cohort. B. Somatic interactions within the Parry cohort. Figures only show co-occurring 
interactions between genes, mutually exclusivity interactions were not identified with the test. 
Only interactions with a p-value < 0.05 were coloured and none retained their significance after 
correction. 

7.5 Discussion  

7.5.1 Filtering strategies 

One of the biggest tasks in this project was to find a way to process tumour only SMZL samples 

with the least number of false positives and likely germline variants. The application of the 

machine learning model to triage variants into low, medium, and high confidence variants aided 

in the exclusion of roughly 50% of false positives which did not have to be manually reviewed in 

IGV. However, after validation of the remaining variants in IGV, assessment of the functional 

impact showed some evidence of potential germline variant still present in the data. This included 

variants that had high frequency within the cohort, variants that were classified as benign or likely 

benign by ClinVar and variants that were present in databases of known germline variation. A 

good filtering strategy was therefore key in obtaining the most biologically relevant list, but it had 

to be done in a systematic way so as not bias the results. Initially this involved exclusion of 

variants found with a frequency greater than 1% in databases of known germline variation and 

using a CADD cut-off of 20. However, the authors of CADD advice against the use of a single 

universal cut-off value for two main reasons: 1. CADD is a continuous score and binarizing it would 

result in the loss of information and; 2. The cut-off value would depend on analysis of specific 

factors, like the severity of the phenotype, whether the variant is dominant or recessive and the 

time available for curation and wet lab follow up of the variants89. The authors pointed to two 
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methods that did use CADD scores with hard cut-offs; GAVIN156 and MSC151. After consideration 

the MSC was integrated into the analysis and was used along the CADD score for a consensus and 

gene specific approach.  

After using the CADD scores and MSC cut-offs to exclude likely benign variants, results continued 

to show evidence of potential rare germline variation (i.e. VAF close to 0.50, found in multiple 

samples, likely benign in ClinVar). This led to the use of the VAF and the binomial distribution to 

exclude variants, but this was done with caution since VAFs were not corrected for tumour purity 

and somatic variants may also have a VAF close to 0.50. To address this issue only those variants 

that were present at frequencies greater than 0.01% in the databases of germline variation were 

assessed in this way. We cannot guarantee that the final variant list is comprised of only somatic 

variants, however, we are confident that it is representative of the disease. We found recurrently 

mutated genes previously implicated in MZ development (KLF2, NOTCH2), genes targeting NF -κB 

signalling (MYD88, TNFAIP3, BIRC3, CARD11), cell cycle (TP53, CCND3, ATM) and epigenetic 

modifiers (KMT2D, CREBBP, ARID1A). Most of the aberrant genes and pathways had been 

previously identified and were briefly discussed in our systematic literature review in Chapter 2.  

7.5.2 Mutations targeting MZ B-cell development 

KLF2 belongs to the family of Kruppel-like transcription factors, a subfamily of the zinc-finger class 

of DNA binding transcriptional regulators157. Kruppel like transcription factors play a key role in 

diverse biological processes, including cell growth and differentiation, embryogenesis and 

tumorigenesis158. KLF2 directly binds to promoters regulating gene expression genes involved in 

cycle control, cell homing and NF-ĸB signalling54. In murine systems, loss of KLF2 drives the 

germinal cells to a MZ-like phenotype and preclusion of migration to the splenic MZ159–161, thereby 

preventing germinal centre B-cell responses to antigens in the MZ. Nuclear localization of the 

KLF2 protein and consequent DNA binding require three C-terminal highly conserved zinc finger 

domains and two nuclear localization sequences, respectively. Mutations in this gene were 

enriched within the highly conserved zinc finger domain regions as well as the activation domain. 

Mutations in the zinc finger domains consisted mostly of missense mutations, while those in the 

activation domain were mostly frameshift and stopgain. Studies have shown that missense 

substitutions within the nuclear localization sequences of KLF2 or within the highly conserved 

regions of the zinc finger domains truncates KLF2 function and hinders the ability of KLF2 to 

suppress NF-κB signalling pathways, key to marginal zone B-cell development26,54. Within the 

activation domain there is one variant (p.Q24X) that has been reported in several studies 

suggesting a mutation hotspot54,71,72,87. Although no functional evidence on this specific variant is 

available, it is very likely that due to its position on the first exon it would result in a truncated and 
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non-functional protein. Furthermore, this variant has a CADD Phred score of 36 indicating that it is 

predicted to be the 0.1% most deleterious substitutions you can do to the human genome. 

In murine models, and to a lesser extent in humans also, NOTCH2 plays a key role in MZ B-cell 

maturation and MZ retention162–165. NOTCH2 is a cell-surface receptor belonging to a family of 

evolutionarily conserved trans-membrane proteins. Notch pathways regulate cell proliferation, 

cell fate, differentiation, and cell death166. When a ligand binds to the extracellular domain of a 

Notch receptor, it initiates a cascade of proteolytic cleavages that lead to the detachment of the 

notch intracellular domain (NICD), which then moves into the nucleus to interact with target 

transcription factors166,167. In our cohort NOTCH2 mutations target the C-terminal PEST domain on 

exon 34, necessary for the regulation of the intracellular domain and consequent transcriptional 

regulation. Based on the location of variants in exon 34, mutations are predicted to either 

eliminate or truncate the PEST domain, predicted to prolong the half-life of NICD2 and therefore 

increase NOTCH2 expression168. In a recent study of NOTCH2 activation, Shanmugan and 

colleagues propose that in the case of SMZL, NOTCH2 mutations are not initiating events, but that 

the sustained signalling provided by these mutations provides a selective advantage in tumours 

that have already established themselves in a ligand-rich microenvironment169. This is supported 

by evidence in mice where those with activating Notch2 mutations in mature B-cells displayed 

expansion of the marginal zone but did not develop lymphoma170. Expression of the Notch 

intracellular domain 2 (NICD2) can be detected in SMZL cases and is a common feature of both 

NOTCH2 wild-type and mutated SMZLs169, similar to prior findings with NOTCH1 in CLL171, 

suggesting that Notch activation is a general feature of SMZL tumour cells. The work by 

Shanmugan and colleagues showed higher frequency of NICD2+ cells in mutated versus wild-type 

tumours and higher in the marginal zones of the white pulp. It is yet to be determined if enhanced 

NICD2 expression in wild-type tumours is explained fully by mutations in other Notch regulators, 

such as NOTCH1 (~5%) and SPEN (~5%)50,71, structural or copy number aberrations, or by the 

enrichment of NOTCH2 in the normal counterpart of SMZL.  

7.5.3 Mutations targeting NF-κB pathway 

NF-κB signalling plays an essential role in MZ B-cell development and differentiation172. When 

normal B lymphocytes respond to antigens, NF-κB signalling is activated, reprogramming cells to 

favour cell cycle progression, survival, cytokine secretion and inflammation173,174. NF-κB activation, 

through either the canonical or non-canonical pathway, is transient in normal cells and depends 

on external stimuli including ligands for the BCR and for the Toll-like receptors173, while 

termination of signalling is dependent on negative feedback mechanisms including re‐

accumulation of IκBα and induction of TNFAIP3(A20)174. Canonical activation of NF-κB signalling is 
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essential for marginal zone B-cell development and differentiation172 and it is a pathway 

commonly affected by genetic lesions in SMZL.  

Results from our approach identified recurrently mutated genes belonging to the NF-κB pathway, 

as well as upstream pathways connected to NF-κB activation173. Most notably TNFAIP3 (A20), a 

negative regulator of NF-κB signalling, was found mutated in 8% of cases. Other negative 

regulators that harboured mutations included TRAF3 (7%) and BIRC3 (5%). Both TRAF3 and BIRC3 

are part of the regulatory system that negatively regulates MAP3K14 (3%), a central activator of 

noncanonical signalling and another target of mutations in SMZL84. 

TNFAIP3 (A20) acts as a tumour suppressor since it brakes canonical NF-kB activation175–178. Within 

our cohort 31/39 TNFAIP3 variants were inactivating mutations (17 frameshift and 14 stopgain), 

where 2/31 were biallelic mutations and the rest monoallelic. Here TNFAIP3 may function in a 

haplo-insufficient manner since previous studies showed that both biallelic and monoallelic 

inactivation of TNFAIP3 can induce NF-kB activation179. It is also possible that some of the 

monoallelic mutations in our cohort are accompanied by deletion of the locus, which will be 

discussed in the next chapter.   

The majority of TRAF3 mutation (22/26) were also inactivating mutations (13 frameshift and 9 

stopgain). These mutations are predicted to truncate or eliminate the C-terminal MATH domain, 

required for MAP3K14 docking, necessary for BIRC3 degradation84. Like TRAF3, BIRC3 had mostly 

inactivating mutations (9 frameshift and 1 stopgain) predicted to eliminate or truncate the RING 

domain, necessary for ubiquitin-mediated proteasomal degradation of MAP3K14180. In the study 

by Rossi and colleagues SMZL primary cells with monoallelic TRAF3 inactivation showed NF-κB 

localization, MAP3K14 accumulation, and active NFKB2 (p52) processing, while those with BIRC3 

monoallelic inactivation displayed constitutive NF-κB activation, MAP3K14 accumulation, and 

active NFKB2 (p52) processing84. 

MAP3K14 (NIK) harboured mostly synonymous variants and one stopgain variant. 7/11 MAP3K14 

variants fell within the TRAF3 binding domain. This domain mediates the interaction with TRAF3 

which holds MAPK314 inactive in the TRAF2/3/cIAPs (cellular inhibitor of apoptosis protein 1 and 

2) complex181. 3/11 variants fell within the non-catalytic region domain (NRD), which allows 

protein binding to IKKα and p100181 and might have a different effect (downstream signalling 

activation) then those that fall within the TRAF3 binding domain. 

Activating mutations in positive regulators of NF-κB signalling were also found within our cohort, 

mainly in CARD11 (4%) and MYD88 (10%). CARD11 harboured mostly missense mutations [n=10] 

and two frameshift deletions. 8/12 variants were within the coiled-coil domain which interacts 
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with the proteins inhibitory domain (ID) keeping CARD11 inactive in the absence of antigen 

receptor engagement182. Studies have shown that mutations both within the ID and coiled-coil 

domain confer a gain of function phenotype182,183.  

Toll-like receptor (TLR) signalling plays a key role in SMZL biology, as cellular proliferation is driven 

by TLR activation. MYD88 is an adaptor protein essential for proper TLR signal transduction which 

has several structural domains including a death domain responsible for oligomerization and 

interactions with IRAK1-4, that together lead to activation of NF-κB. The toll/interleukin-1 

receptor homology (TIR) domain, at the proteins C-terminus, is responsible for the activation of 

downstream signalling. Within this cohort, MYD88 harbours a recurrent variant (p.L265P) in the 

toll/interleukin-1 receptor homology (TIR) domain. There is mounting evidence suggesting that 

this mutation is an oncogenic driver, considering its high mutation frequency in some entities 

such as Waldenström’s macroglobulinemia (WM) where up to 90% of patients harbour this 

mutation184.  

7.5.4 Mutations targeting epigenetic regulators 

Chromatin remodelling enzymes are dynamic modulators of cell identity and regulate B-cell 

differentiation and proliferation through recognition of a spectrum of specific biochemical marks 

on histone proteins and DNA; thereby modifying chromatin accessibility to transcription 

machinery proteins185.  

KMT2D also known as MLL2 belongs to a family of histone lysine methyltransferases that modifies 

lysine-4 of histone 3 (H3K4), and has an established tumour suppressor role in DLBCL and FL186–188. 

Loss of function of KMT2D can lead to the altered abundance and distribution of H3K27me3. This 

is because the polycomb repressor complex 2 (PRC2), a group of proteins that regulate chromatin 

compaction and gene expression, is unable to methylate H3K27 if H3K4 is trimethylated on the 

same histone tail189. KMT2D being the most recurrently mutated gene in the combined cohort 

was surprising since it has never been reported at such high frequencies in SMZL. Within the 

combined Jaramillo-Parry cohort 20/47 variants were inactivating mutations (11 frameshift and 9 

nonsense). In DLBCL and FL the majority of mutations within this gene are nonsense or frameshift 

events, and the nonsense mutations affect the C-terminal portion of the gene190. Figure 7-7 shows 

that KMT2D mutations are distributed across the protein and missense mutations do not cluster 

clearly at any point. It is difficult to establish how these nonsense mutations could affect the 

expression of the protein and it is plausible that many of the nonsense mutations could be rare 

germline variants, a possible explanation for the discrepancy between the observed and reported 

mutational frequency. This gene was particularly difficult to analyse since it is a large gene (55 

exons) with highly repetitive regions that were hard to map and therefore permissive of many 
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false positives. However, our filtering strategy was extremely thorough particularly in eliminating 

false positives. Another potential cause of the discrepancy between observed and reported 

mutations frequencies, could be that even though KMT2D has been shown to be mutated in SMZL 

before, it has not been the main target of most studies. 

CREBBP is a lysine acetyltransferase involved in the co-activation of many different transcriptional 

factors. It does this by acetylating histones at regulatory elements altering their charge and 

therefore loosening their associations with DNA making it more accessible to transcription 

factors.  Mutant CREBBP are deficient in acetylating BCL6 and p53. BCL6 is necessary for GC 

development and acetylation of BCL6 leads to inactivation of its transcriptional repressor 

function, while acetylation of p53 is necessary for its transcriptional activity191. 10/25 CREBBP 

mutations were inactivating (3 frameshift and 6 nonsense), there was a single non-frameshift 

deletion and splicing mutation and 14 missense mutations. In FL most missense mutations were 

observed within the KAT domain190, however in our cohort the missense mutations did not cluster 

in a particular locus or domain (Figure 7-8).   

ARID1A (BAF250a) is a component of SWI/SNF (SWItch/Sucrose Non-Fermentable) family of 

evolutionary conserved, multi-subunit chromatin remodelling complexes, found mutated in 

various cancers192. SWI/SNF regulates DNA accessibility to other proteins involved in replication 

and repair, allowing the activation or suppression of gene transcription185. Mutations inactivating 

ARID1A results in the loss of both the caretaker and gatekeeper function in cells193. Within our 

combined cohort 7/18 variants were inactivating (6 frameshift and 1 nonsense), the rest were 

missense mutations. Like KMT2D and CREBBP, missense mutations in ARID1A did not cluster 

around any specific locus or domain, making it difficult to predict the functional effect of these 

mutations.  

Inactivating somatic mutation in KMT2D and CREBBP truncate core epigenetic mechanisms that 

drive GC-derived lymphomas. It will be interesting to investigate the relationship between these 

mutations and any epigenetic fingerprint associated with the cell of origin in SMZL. 

7.5.5 Mutations targeting cell cycle control 

TP53 is one of the main SMZL associated genes implicated in cell cycle control, along with CCND3 

and ATM. However, the lack of germline material, make it difficult to confirm whether ATM 

mutations are truly somatic and should be looked at with caution. This is reinforced by the 

observed VAFs within ATM mutants being very close to 0.50. Most TP53 mutations fell within the 

DNA binding domain, attenuating, or eliminating its function as tumour suppressor, since mutant 

proteins lose the ability to activate canonical p53 target genes. Only three variants fell outside the 
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DNA binding domain (1 frameshift and 2 stopgain). These three variants would likely eliminate or 

truncate the tetramerization domain, critical for protein-protein interactions. Mutant p53 leads to 

uncontrolled cell proliferation and permissive accumulation of genomic mutations that may 

culminate in tumour growth194.  

CCND3 was another surprising gene, since the mutational frequency in our cohort was much 

higher than in published literature. CCND3 (Cyclin D3) is a D-type cyclin which regulates the 

progression of cells into the G1 phase of the cell cycle195 (see section 1.1). D-type cyclins (D1, D2, 

D3) assemble with cyclin-dependent kinases CDK4 and CDK6 and phosphorylate retinoblastoma 

proteins (RBs) leading to their degradation and convert cells from a G1-specific to an S-phase-

specific transcriptional mode195. In B-cells CCND3 is required for proliferative expansion of pre B-

cells and in GC B-cells it is required for GC development196,197. Mutations in CCND3 will pre-

dispose B-cells to acquire further somatic mutations or chromosomal re-arrangement which could 

then lead to tumour formation198. Studies have shown CCND3 to work in synergy with other 

factors to induce lymphomagenesis199,200. In our cohort 33/37 variants fell within the C-terminal 

PEST domain of CCND3, where 15 of the 33 variants were either frameshift or nonsense.  

Mutations within the PEST domain of CCND3, like those in NOTCH2, will stabilize the protein and 

promote cell proliferation201. 

7.6 Conclusions 

These results confirm the importance of NOTCH2, KLF2 and TP53 in SMZL, and validate our 

findings from the systematic literature review. We provide further evidence that KMT2D and 

CCND3 are a frequently mutated genes in this cancer and are found at much higher frequencies 

than previously observed in smaller cohorts. Recurrent variants in KLF2 and CCND3 also point to 

possible new mutation hotspots within these genes that will require functional validation. 

Furthermore, we validate the importance of NF-ĸB regulation in the disease considering a large 

percentage of samples harbour mutations within this pathway. 
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 Integration of genomic results and clinical 
data of SMZL patients 

8.1 Synopsis 

This chapter will focus on the integration of the genomic results from Chapter 7 to other 

molecular biomarkers, such as IGHV gene usage and mutations, telomere length, copy number 

alterations as well as clinical outcomes. 

David Oscier reviewed patient diagnoses and provided clinical guidance. Dr. Helen Parker collated 

all the clinical data from collaborating centres and performed the wet laboratory work including 

the telomere length assays. Dr. Dean Bryant processed the methylation data to obtain copy 

number status, plotted the copy number profiles and generated the text output containing the 

segment locations. Carolina Jaramillo Oquendo manually curated copy number calls, and these 

were validated by Dr. Helen Parker. Carolina Jaramillo Oquendo processed and analysed the data 

under the supervision of Prof Sarah Ennis, Prof Jonathan Strefford and Dr. Jane Gibson.  

8.2 Introduction 

8.2.1 Genomic alterations in SMZL 

Conventional chromosomal banding has shown that approximately 75% of SMZL cases display an 

abnormal karyotype, with 50% exhibiting a complex karyotype (defined as three or more 

cytogenetic aberrations). Structural chromosomal aberrations (75%) are more common than 

trisomy/monosomy events (25%), and gains are more prevalent than losses47. The most frequent 

cytogenetically visible aberrations are gain of 3q (20-30%) and 12q (20%) and deletions of 7q (30-

40%), less frequently 1q, 6q, 8q and 14q are targeted (Table 8-1). Roughly 10% of SMZL cases 

show evidence of translocations involving the immunoglobulin heavy chain genes at 14q32. These 

translocations remain relatively under-studied, but include the t(14;19)(q32;q13), 

t(6;14)(p21;q32), t(9;14)(p13;q32) and t(1;14)(q21;q32) which target the genes BCL3, CCND3, 

PAX5 and BCL9/MUC1, respectively47. Furthermore, SMZL lacks recurrent chromosome 

translocations and subsequent gene fusions that are typical in other lymphomas such as the 

t(14;18), t(11;18) and t(1;14) which affect BCL2, BIRC3/MALT1 and CCND1 genes respectively86. 
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Table 8-1. Summary of recurrent chromosomal aberrations in SMZL. Table reprinted from Jaramillo Oquendo 
et al55 licenced under CC BY 4.0. 

 Chromosome Frequency Target genes / Clinico-biological associations 

7q-  14% - 44%  Unknown target gene(s)  

High frequency in SMZL compared to other MZL45,202.  

Associated with unmutated IGHV genes, IGHV1-2*04 usage, 

and KLF2 and NOTCH2 somatic mutations42,47,71.   

17p-  5% - 32%  TP53 gene  

Associated with worse prognosis in univariate analysis47.   

6q-  8% - 24%  A fraction of cases include deletion of TNFAIP3 (negative regulator of 

NF-κB)  

8p-  4% - 15%  Associated with poor outcome in MZLs. No link with outcome in SMZL 

unless co-existing with deletion of 17p 202.  

13q-  5% - 18%  SMZL cases with this lesion showed a genetic profile consistent with 

SMZL diagnosis202 

14q-  3% - 10%  Linked to inferior prognosis but detected in the context of a complex 

karyotype47 

+3/3q+  15% - 34%  Two gained regions, one included BCL6 located at 3q27  

Associated with complex karyotypes  

Tend to occur in cases without del 7q   

3q gains have been associated with gains at 1q and 17q22-q25.3, del 

6q23.2-q24.1 (TNFAIP3) and del 6q25203 

+12/12q+  8% - 25%  Trisomy 12 & use of VH3 family variable gene segment were found 

significantly associated with worse OS in univariate analysis but lost 

significance in multivariate analysis45 

Associated with gain of chromosome 347 

+18/18q+  8% - 23%  Mutually exclusive to 7q deletions45 

Associated with gain of chromosome 347  

8q+  2% - 20%  Gains of 8q that include MYC gene locus were associated with poor 

clinical outcomes204  

8.2.2 Immunoglobulin genes 

Seminal immunogenetic studies have been performed on a myriad of mature B-cell neoplasms, 

including SMZL, where they have identified key features of the B-cell receptor immunoglobulin 

repertoire indicating that clonal B-cell selection by antigen/superantigens is an important feature 

of SMZL pathophysiology. Investigation of large SMZL cohorts has demonstrated bias usage of 

immunoglobulin heavy chain genes, namely enrichment of the IGHV1-02 (30%), IGHV4-34 (11%) 

and IGHV3-23 (9%) genes205,206. The majority of IGHV1-02 cases are IGHV1-02*04 which is striking 

given that this allele is considerably less frequent in other B-cell tumours205,206. Additionally, 

evidence of somatic hypermutation (SHM) is seen in the majority of IGHV1-02*04 SMZL cases 

(~95%) suggesting exposure to antigen is both important in progenitor tumour cell selection but 

also relevant to ongoing evolution207. 
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8.2.3 Clinical utility of molecular lesions 

Diagnosis of SMZL can be established through a combination of lymphocyte morphology and flow 

cytometry, bone marrow biopsy and immunohistochemistry19,37. Unfortunately, several mature B-

cell tumours, such as splenic diffuse red pulp lymphoma (SDRPL), have overlapping 

clinicopathological and immunophenotypic features with SMZL. Therefore, in a minority of cases 

it is difficult to diagnose SMZL in the absence of spleen histology38,40. Additionally, there are no 

recommended biomarkers to differentiate between similar lymphomas in established 

international guidelines40.  

Whilst SMZL is a slow growing lymphoma, approximately 70% of patients develop a progressive 

disease requiring treatment, where approximately 30% of these will ultimately transform to a 

more aggressive lymphoma38. Molecular lesions, such as IGHV status, NOTCH2 and KLF2 mutation, 

TP53 abnormalities and aberrant promoter methylation have been associated with poor 

outcomes in SMZL patients47,71,204, but like with diagnosis, none have been used or included in 

clinical prognostic models and are not recommended in international guidelines31,40.  

8.2.4 Aims 

The aim of this chapter was to explore and determine the clinical significance of somatically 

acquired genetic mutations within the Jaramillo-Parry cohort by integrating our sequencing data 

results with survival outcomes, copy number alterations and other molecular biomarkers. It also 

aimed to identify if there were any potential disease subgroups defined by the genomics of the 

disease.  

8.3 Materials and Methods 

8.3.1 Patients and samples 

For the Jaramillo [n=146] and Parry [n=175] cohorts, targeted sequencing results from Chapter 7 

were integrated with the clinical data available and unless otherwise stated, results shown are a 

combination of the two cohorts (termed ‘Jaramillo-Parry’ cohort). Table 8-2 describes the cohort 

of combined SMZL patients (Jaramillo-Parry) as well as a breakdown per cohort. As mentioned in 

chapter 2, samples [n=321] were obtained from different international centres. All samples met 

established diagnostic criteria and for the Jaramillo cohort a further validation by expert 

haematologist David Oscier was made. DNA was extracted from peripheral blood, spleen, bone 

marrow, skin and lymph nodes. Detailed description of each cohort can be found in methods 

section 3.1. 
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Table 8-2. Patient characteristics.Description of the combined Jaramillo-Parry cohort as well as a breakdown 
of the Jaramillo and Parry cohort. 

 

Due to need for multi-centre studies predicated on the scarcity of samples, collecting a cohort of 

patients with a homogenous treatment was very challenging. Furthermore it is important to note 

that the Parry cohort was older than the Jaramillo cohort (Figure 8-1) and had longer follow up 

time (Figure 8-2). 

Description Jaramillo-Parry Jaramillo Parry p value *

Number of patients SMZL diagnosis 321 (100%) 146 (100%) 175 (100%) -

Age at diagnosis Median (range) 69 years (36-90) 67 years (36-88) 70 years (37-90) 0.162 φ

Female 166 (52%) 76 (52%) 90 (51%)

Male 153 (48%) 70 (48%) 83 (49%)

Follow up time Median (range) 5.0 years (0-27) 4.85 years (0-23) 5.23 years (0-27) 0.241  φ

Dead 62 (22%) 17 (14%) 45 (27%)

Alive 225 (78%) 102 (86%) 123 (73%)

Treated (includes 

splenectomy)
213 (71%) 85 (67%) 128 (74%)

Untreated 85 (29%) 41 (33%) 44 (26%)

Yes 103 (40%) 47 (52%) 56 (34%)

No 151 (60%) 43 (48%) 108 (66%)

Yes 31 (19%) 10 (16%) 21 (18%)

No 143 (82%) 52 (84%) 91 (82%)

Time to first treatment Median (range) 0.26 years (0-22) 0.43 years (0-14) 0.16 years (0-22) 0.025  φ

Event (tranformation, 2nd 

treatment or death)
92 (45%) 28 (36%) 64 (51%)

No event 111 (55%) 50 (64%) 61 (49%)

IGHV1-2*04 38 (15%) 22 (18%) 16 (13%)

not IGHV1-2*04 207 (85%) 99 (82%) 108 (87%)

mutated (<98% GI) 139 (67%) 85 (76%) 54 (56%)

unmutated (≥98% GI) 69 (33%) 27 (24%) 42 (44%)

mutated (<97% GI) 117 ( 57%) 72 (65%) 45 (47%)

borderline (97-99% GI) 72 (35%) 34 (31%) 38 (40%)

unmutated (100% GI) 18 (8%) 5 (4%) 13 (13%)

Complex (3+) 56 (36%) 50 (36%) 6 (35%)

Simple (< 3) 98 (64%) 87 (64%) 11 (65%)

Del 7q status ψ del 7q 57 (24%) 38 (26%) 19 (21%)

Normal 178 (76%) 106 (74%) 72 (79%)

Aberrant 50 (16%) 19 (13%) 31 (18%)

Normal 271 (84%) 127 (87%) 144 (82%)

* Fisher exact 2-sided test unless otherwise stated 

φ Mann Whitney U test

 χ Chi square test

ψ Data generated rom either FISH, karyotype and or 450K & EPIC array data

Genomic complexity (data 

generated from 450K or EPIC 

array)

TP53 status (del 17p or tp53 

mutation) ψ

Status

Treatment

Splenectomy

Transformation to large cell 

lymphoma

Event free survival (EFS) status

IGHV repertoire

0.281

0.836

1

0.292

0.003

1.000

0.354

0.007

0.011 χ

0.236

0.013

0.042

Variable

Cohort characteristics

Chromosomal 

abnormalities

Clinical

IGHV genes

IGHV mutation status (2 groups)

IGHV mutation status (3 groups)

Gender
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Figure 8-1. Histogram of year of 1st treatment across Jaramillo and Parry cohorts. 

 

Figure 8-2. Histogram of follow up time across the Jaramillo and Parry cohort. 

Most patients in the Jaramillo-Parry cohort, where data was available [n=293], were either 

untreated [n=84] or had a splenectomy [n=75]. This was followed by the use of rituximab [n=39], 

combination of chemotherapy and rituximab [n=35], chemotherapy [n=34], and other 

combinations [n=60]. Figure 8-3 shows the percentage of patients that received each treatment 

per cohort. These figures were for first-line treatments. 
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Figure 8-3. Types of first treatment compared across the Jaramillo and Parry cohorts. 

First-line treatment across the two cohorts was heterogenous with a mixture of chemotherapy, 

splenectomy, and immunotherapy (rituximab). The main therapies for patients before the year 

2000 were splenectomy and chemotherapy. However, after rituximab was introduced for the 

treatment of SMZL in the mid-2000s it became a first line treatment, either on its own or in 

combination with other therapies40,208. In addition to a therapeutic intervention, splenectomy is 

often used in the differential diagnosis of SMZL, which will impact on the natural history of the 

disease post splenectomy. This is because splenectomy may improve splenomegaly (enlarged 

spleen) related symptoms and improve cytopenias (reduction in the number of mature blood 

cells). Studies in small cohorts have shown that approximately 90% of patients respond well to 

splenectomy and some may not require further therapy208. In a more recent study of 227 SMZL 

patients, splenectomy up front was associated with a favourable outcome209. Therefore, 

splenectomy was classified as a treatment type regardless of the clinical indication. Figure 8-4 

shows the types of first treatments plotted against the year of first treatment across patients in 

the combined Jaramillo-Parry cohort. The figure shows a clear shift in the way patients were 

treated after 2005, where rituximab monotherapy and rituximab combined with chemotherapy 

became the main choice of first-line therapy for patients that required treatment. 
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Figure 8-4. Histogram of type of 1st treatment plotted against year of 1st treatment across Jaramillo and 
Parry cohort. Chemo: chemotherapy, R: rituximab, S: splenectomy, RCHOP: rituximab, 
cyclophosphamide, doxorubicin, vincristine, prednisolone. 

Pairwise Fisher’s Exact test was used to ensure the two cohorts were comparable from a 

therapeutic perspective (results shown in Table 8-3). The tests showed no significant differences 

between the distribution of treatments across the two cohorts.  

Table 8-3. Comparison of first-line treatments across Jaramillo and Parry cohort. 
A total of 293 patients had treatment data available. 

  

Treatment Jaramillo Parry p value*

chemo 10 24

other 117 142

R+chemo 15 20

other 112 146

RCHOP 4 2

other 123 164

rituximab 15 24

other 112 142

S+chemo 2 9

other 125 157

splenectomy 39 36

other 88 130

S + R/R+chemo/RCHOP 2 3

other 125 163

untreated 40 44

treated 87 122

* Fisher exact 2-sided test

1.0000

0.3640

0.0981

1.0000

0.4085

0.6035

0.1217

0.1047
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8.3.2 Copy number aberrations (CNAs) 

Samples [n=155] were processed using the Infinium Human Methylation 450 BeadChip [n=103] 

and Illumina Infinium Methylation EPIC BeadChip [n=52], according to manufacturer’s 

instructions, at the Genomics and Proteomics Core Facility of the DKFZ (Heidelberg, Germany). 

Data from methylation arrays was used by Dr. Dean Bryant as input to conumee package210 to 

obtain copy number status. Before input into conumee, raw data was processed through minfi211 

to create a Methylset object (object containing only methylated and unmethylated signals). In 

conumme the intensity values of methylated and unmethylated probes were combined and these 

were then normalised using a set of normal controls [n=10 samples for 450K, n=8 samples for 

EPIC]. The controls were a mix of copy neutral normal B-cells. Breakdown of B-cells used can be 

found in Table 8-4. Secondly, each sample was compared (linear regression) to the set of 

corresponding controls resulting in the log2 ratio of probe intensities for the query sample versus 

the controls. Thirdly, neighbouring probes were combined within predefined genomic bins and 

intensity values were corrected so that the copy-neutral state was zero. Subsequently, the 

genome was segmented into regions of the same copy-number state and results were plotted, 

per chromosome per sample. Text output was also generated containing the start and end of the 

segments identified and log ratios. These computationally assigned copy number calls were 

manually curated and identified by myself and Dr. Helen Parker. This process involved visual 

inspection of the copy number plots and determining if there was false segmentation, missing 

breakpoints and or incorrect copy number status. No specific thresholds for log ratios or size were 

set due to the variability of the data. Ideograms of the manually curated copy number calls from 

the conumee package were constructed in Rstudio using the package karyoploteR212. 

Table 8-4. Breakdown of B-cells used as controls for 450K and EPIC methylation arrays. 

450K array controls [n=10 samples] EPIC array controls [n=8 samples] 

• Non classed switched memory B-cells 

• Marginal zone B-cells 

• Classed switched memory B-cells 

• Non classed switched memory B-cells 

• Naïve B-cells 

• Mixed B-cells 

8.3.3 Principal component analysis 

105 samples were used for principal component analysis (PCA) to see if cases with certain 

genomic and other molecular features would cluster together in different groups. Since data for 

all samples across all features was required to run the PCA, this limited our analysis to those that 

had sufficient data across all features. Genes with mutations in more than 5% of samples (MYD88, 

BIRC3, TRAF3, KLF2, NOTCH2, CCND3 and TNFAIP3) and CNAs found in more than 5% of samples 
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(trisomy 3, trisomy 12, trisomy 18, gain 3q, gain 8q, gain 12q, del 1p, del 6q, del 7q and del 8p ) 

were included. Other features included in the PCA were telomere length, IGHV identity, TP53 

aberrations, and copy number count (genomic complexity). Samples without telomere length, 

percentage of IGHV identity and CNA data were excluded from the PCA. 

PCA was run in R using the prcomp command on the scaled data. Each sample was drawn on a 

biplot where the x-axis represented the first principal component (PC1) and the y-axis the second 

principal component (PC2).  

8.3.4 Telomere length (TL) 

Telomere length (TL) relative to a standard reference sample (K562 cell line DNA) was determined 

in 140 Samples by Dr. Helen Parker using monochrome multiplex PCR (MMQPCR). Absolute TL in 

kb was extrapolated, using linear regression, from 82 CLL cases with single telomere length 

analysis (STELA)213,214 data. The equation below was used to convert telomere length units (TLU) 

from MMQ-PCR to telomere size in kb: 

𝐸𝑆𝑇𝐸𝐿𝐴 [𝑘𝑏] = 1.626 + (0.4952 ∗  𝑀𝑀𝑄𝑃𝐶𝑅 [𝑇𝐿𝑈]) 

This equation was derived from the intercept and coefficient obtained by regressing STELA values 

on MMQ-PCR estimates. Description of the MMQPCR and STELA method as described by Strefford 

et al.215 can be found below: 

MMQPCR: DNA samples were analysed in triplicate in 96 well plates, alongside six serial 

dilutions of a reference DNA sample. PCR Amplification and measurement of SYBR green 

fluorescence was performed on LightCycler®480 real time PCR system (Roche). Raw 

fluorescence data for each sample and standard dilution was split into two sets of data 

points relating to the acquisition temperatures for the two targets (Alb and Tel) and the 

second derivative maximum cycle threshold (Ct) values were calculated for each of the 

two data sets using PCR miner. Linear regression of the Alb Ct and Tel Ct values for the 

standard DNA was used to generate separate standard curve equations for Alb and Tel 

in each run. Alb Ct and Tel Ct values for each of the test samples were applied to the 

respective standard curves to give Alb and Tel concentrations relative to the standard. 

Division of the telomere concentration by the Alb concentration gave the mean 

MMQPCR telomere length (MQTL) for each sample, relative to the standard, in telomere 

length units (TLU). 

STELA: Multiplexed PCR products from specific XpYp telomeric sequences were resolved 

and detected using gel electrophoresis and Southern hybridization, respectively. The 
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molecular weight of all DNA fragments, including control fragments of known sizes, 

were calculated using the Phoretix 1D quantifier (Nonlinear Dynamics). 

Recursive partitioning was used to identify cut-off values, based on percentiles, for telomere 

groups with the greatest prognostic power as previously described215. The hazards ratio for overall 

survival (OS) and progression free survival (PFS) was calculated between the cases with telomere 

length (TL) values below a set percentile or cut-off versus those with values equal to and above 

the cut-off (percentile). This was done for all percentiles with an increment of 5 until the 95th 

percentile. Results are shown in Table 8-5. OS is defined as time from diagnosis to death or date 

of last follow up for survivors. Progression free survival is defined as time from diagnosis to time 

to event, defined as second treatment, transformation, or death.  

Table 8-5. Recursive partitioning based on telomere length (TL) to establish cut off values with maximum 
prognostic power. The hazards ratio for OS and PFS is calculated between the cases with TL 
values below the cut-off versus those with values above the cut-off using a Cox proportional 
hazards model. This is done for all percentiles with an increment of 5 until the 95th percentile. 

 

The hazards ratio was plotted for both OS and PFS at each percentile. Using the values obtained a 

categorical variable was generated with three groups: short TL (<50 percentile), intermediate TL 

(50-75 percentile) and long TL (>75 percentile). The 50th percentile was chosen as the cut-off for 

short TL since more than half of the values below this threshold were significant according to the 

Cox proportional hazards model. For the long telomeres the 75th percentile was chosen as this 

was the cut-off when the HZ values dropped below 1 (Figure 8-5). Telomere length ranged from 

percentile cut-offs
Hazards 

ratio

95 % 

confidence 

interval

p value
Hazards 

ratio

95% 

confidence 

interval

p value

10 2.588 4.679 1.283-17.068 0.019 4.271 1.579-11.554 0.004

15 2.702 5.702 2.017-16.117 0.001 2.905 1.267-6.661 0.012

20 2.784 4.285 1.595-11.511 0.004 2.49 1.123-5.524 0.025

25 2.849 2.968 1.050-8.391 0.04 2.257 1.015-5.018 0.046

30 2.930 3.272 1.168-9.169 0.024 2.076 0.948-4.543 0.068

35 2.991 2.405 0.848-6.825 0.099 1.883 0.872-4.069 0.107

40 3.069 2.2671 0.929-7.676 0.068 1.782 0.839-3.381 0.139

45 3.114 2.808 0.954-8.343 0.063 1.646 0.766-3.538 0.201

50 3.218 3.321 1.046-10.537 0.042 1.605 0.742-3.469 0.229

55 3.318 2.642 0.836-8.344 0.098 1.343 0.622-2.903 0.453

60 3.406 1.876 0.587-6.000 0.289 1.107 0.502-2.440 0.802

65 3.553 2.473 0.679-8.743 0.172 1.33 0.579-3.056 0.502

70 3.719 1.678 0.456-6.182 0.436 1.231 0.509-2.976 0.654

75 3.896 1.207 0.329-4.427 0.776 0.918 0.380-2.216 0.849

80 4.213 0.946 9.258-3.464 0.933 0.844 0.334-2.133 0.72

85 4.342 0.857 0.189-3.886 0.841 0.703 0.239-2.069 0.522

90 4.870 1.119 0.144-8.692 0.914 1.202 0.280-5.169 0.805

95 5.774 0.452 0.058-3.525 0.448 21.955 0.004-117987 0.481

OS PFS
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2.34–3.20 kb (median: 2.86 kb) in the short group, 3.23–3.89 kb (median: 3.49 kb) in the 

intermediate group, and 3.89–7.57 kb (median: 4.68 kb) in the long group. 

 
Figure 8-5. Hazards ratio for overall survival (OS) and progression free survival (PFS) between cases with 

telomere length (TL) values below a set cut-off (percentile) versus those with values equal to and 
above the cut-off (percentile). 

8.3.5 Statistical analysis 

Statistical tests were performed using SPSS (v27) and Rstudio. Mann Whitney U-test (two 

variables) and Kruskal Wallis test (more than two variables) was used to test for differences 

between independent variables including telomere length across groups and IGHV identity to 

germline in transformed vs non transformed patients. Chi square test was used to test for 

association between categorical variables (i.e. transformation status across groups). Fisher’s exact 

test was used to look for significant (p < 0.05) associations between genetic and immunogenetic 

features. Bonferroni used for multiple-testing correction. Univariate survival analysis was 

performed by Kaplan-Meier and Cox regression analysis. Multivariate analysis, accounting for 

confounding factors, was performed using Cox proportional hazard analysis. The Cox proportional 

hazard analysis was performed using a backwards stepwise approach, which runs the model a 

number of times and each time or step the weakest correlated variable is removed. Overall 

survival (OS) was defined as time from diagnosis to death or data of last follow up (date) for 

survivors. Time to first treatment (TTFT) was defined as time from diagnosis to time to first 

treatment including splenectomy.
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8.4 Results 

8.4.1 Recurrent copy number alterations (CNAs) 

The methylation arrays (450K and EPIC arrays) allowed for the identification of copy number 

alterations within our cohort. This section will detail the recurrent copy number alterations 

(CNAs) found and in subsequent sections how these CNAs interact with other genetic 

abnormalities and the clinico-and biological features of these patients.  

Among the 154 SMZL cases with methylation array data, 129 cases had copy number alterations. 

The most frequent copy number alterations were 7q deletions [24.6%, n=37] followed by trisomy 

12 [24.0%, n=36] and gain of 3q [15.3%, n=23]. Figure 8-6 shows all the CNAs identified across 

chromosomes 1-22 and the percentage of affected samples in the most recurrent CNAs. Along 

with trisomy 12, trisomy 3 [8.6%, n=13] and 18 [8.0%, n=12] were the most recurrent trisomies. 

The most common gains were found in 3q [15%, n=23], 12q [8.0%, n=12] and 8q [6.0%, n=9]. 

While the most common deletions were 7q [25%, n=37], 8p [8.6%, n=13], 13q [9.3%, n=14], 6q 

[8.6%, n=13], 1q [7.3%, n=11] and 17p [8.0%, n=12]. 24.7% of cases [n=38] showed a single CNA, 

22.7% of cases [n=35] carried two alterations and 36.4% of cases [n=56] had three or more CNAs 

and were considered to have complex genomes.  
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Figure 8-6. Summary of copy number alterations (CNAs) from 450K and EPIC array data. Each chromosome is 
numbered with its corresponding ideogram from the p-arm (left) to the q-arm (right). Genes 
shown were those targeted by the HaloPlex gene panels. Trisomies are coloured light green, 
gains in dark green and losses in red. Bar graph on the bottom right side shows the percentage of 
affected samples among the most common CNAs. 
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Deletions in the long arm of chromosome 7 are common in SMZL and this was reflected within 

our cohort. The minimally deleted region was difficult to determine as there were two patients 

(L060_09 and 92568) with deletions that did not overlap but were very close together and 

depending on which one was included the MDR would shift slightly. Since the CNAs were obtained 

using methylation arrays rather than gold standard high-density SNP arrays or WGS the real 

breakpoints might not be optimally resolved. Profiles of chromosome 7 for patient L060_09 and 

92568 are shown in Figure 8-7.  

 

Figure 8-7. Deletion profiles of chromosome 7 for sample 92568 (top) and L060_09 (bottom) obtained from 
methylation arrays.  Red dots deviating to the bottom, from a normal copy number (0) indicate a 
deletion. 

To validate the deletions identified by the methylation arrays in patients L060_09 and 92568, the 

mean target coverage for all genes in sample L060_09 and 92568 was ascertained, normalised, 

and compared to a sample with no 7q deletions (L076). The results are shown in Figure 8-8, where 

the first boxplot shows the mean coverage of targeted genes in patient L060_09. POT1, a gene 

that fell within the 7q deleted region in sample L060 had much lower coverage in comparison to 

other genes. MYD88, KMT2D, and KDM2B were all genes that fell within gained regions 

(chromosome 3 and 12) and had higher coverage in relation to other genes. The boxplot for 

patient L060_09 also showed that DDX3X had relatively lower coverage, which was expected as 

this patient is male and gene DDX3X falls within chromosome X.  

Similarly, for patient 92568, FLNC was the gene that fell within the 7q MDR and it also showed 

lower coverage compared to other genes. In patient 92568, TNFAIP3 also fell within a deleted 

region showing good agreement between coverage and deletion status. In the patient with no 7q 

deletion the mean target coverage for both POT1 and FLNC was very close to the mean coverage 
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across all genes. Therefore, with methylation and coverage data it was decided that both 

deletions in patient L060_09 and 92568 had enough evidence supporting them and represented 

real losses.  

 

Figure 8-8. Mean target coverage (normalised) across all targeted genes in three patients (L060, L076 and 
92568). Red lines show the normalised mean target coverage for POT1 and orange lines the 
normalised mean target coverage for FLNC. POT1 and FLNC were genes that fell within the 
deleted regions identified in patient L060_09 and 92568 respectively. Patient L076 is shown for 
comparison and does not have a 7q deletion. Genes in blue fell within deleted regions and genes 
in green within gained regions. DDX3X is located on chromosome X and is therefore expected to 
have much lower coverage in males than in females. IDH2 was a gene with generally high 
coverage across all patients (mean depth: 544x), and similarly U2AF1 was a gene that showed 
low coverage across all patients (mean depth: 8x). 

This meant that two MDRs were identified in chromosome 7 rather than one. The MDR that 

identified in patient L060_09 was around 2,900 kb (chr7:124,200,000-127,100,000) which affected 

other 32 patients and deleted three genes (GPR37, POT1, GRM8). The MDR identified in patient 

92568 was approximately 1,752 kb (chr7:128,575,000-130327262), also affecting 32 other 

patients and included genes CALU, OPN1SW, CCDC136, FLNC, ATP6V1F, ATP6V1FNB, IRF5, 

TSPAN33, SMO, STRIP2, SMKR1, NRF1, UBE2H, ZC3HC1, KLHDC10, TMEM209, SSMEM1, CPA2, and 

CPA4. Figure 8-9 shows all the CNAs identified in chromosome 7 and zooms into the MDR regions. 
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Figure 8-9. CNVs across chromosome 7.Black rectangle zooms in around bands 7q31.32-7q33. The orange 
box highlights the minimally deleted regions (MDRs). The genes shown were those targeted by 
the HaloPlex gene panel.  

Comparison of the two newly identified MDRs to other MDRs identified in previous studies is 

shown in Figure 8-10. The MDR which included POT1 overlapped with an MDR identified by two 

studies in the early 2000s (purple)216,217. The second MDR which included FLNC overlapped with all 

previously identified regions including the most recently published in 2012 by Watkins and 

colleagues47,218. Both POT1 and FLNC were targeted by the gene panel, however, no cases with 

deletions in these genes had co-occurring mutations. 

 

Figure 8-10. Minimally deleted regions (MDRs) identified in chromosome 7. Two MDRs (yellow/orange bars) 
were identified using copy number calls from 450K and EPIC arrays. Previously identified MDRs 
are also shown in purple216,217, pink47 and salmon218. Genes shown are those affected by the 
MDRs within the Jaramillo-Parry cohort. 
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In the short arm of chromosome 8 there were 13 patients that shared two minimally deleted 

regions of approximately 7,300 kb (chr8:8,175,001-15,475,000) and 3,635 kb (chr8:21,825,001-

25,450,000). The first MDR includes 30 genes while the second MDR 40 genes (Figure 8-11). 

Putative targets of this deletion include the tumour necrosis factor receptor superfamily (TNFRSF) 

genes (TNFRSF10A, TNFRSF10B, TNFRSF10C, TNFRSF10D), DOK2 and BLK.  

 

Figure 8-11. CNVs across chromosome 8 and putative target genes A. Black rectangles show the minimally 
deleted region (MDR) shared by 13 patients. PRKDC was the only gene in chromosome 8 targeted 
by the HaloPlex gene panels B. List of genes within the MDRs.  

Chromosome 6 has a number of deletions in its long arm, however identification of the MDR was 

difficult since the breakpoints had several gaps (there is no way to tell if the gaps were due to the 

quality of the data, the distribution of the methylation probes or real deletions). Nevertheless, 

there were 12 patients which had deletions targeting TNFAIP3 (Figure 8-12), three of which also 

harboured mutations in that gene.  
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Figure 8-12. CNVs across chromosome 6. Black rectangle details bands 6q23.2 – 6q24.3 and the deletions 
identified in 12 patients targeting gene TNFAIP3.  

Chromosome 17 was also a recurrent target of deletions. A minimally deleted region of 

approximately 850 kb (chr17:7225000-8075000) was identified in 12 patients (Figure 8-13). The 

target of this region is gene tumour suppressor gene TP53 often deleted or mutated across 

different types of cancer. 

 

Figure 8-13. CNVs across chromosome 17.  Black rectangle details bands 17p.13.2 – 17p13.1. The minimally 
deleted region (MDR) shared by 12 patients is shown by the orange rectangle (chr17:7225000-
8075000) targeting tumour suppressor gene TP53. 
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In the long arm of chromosome 13 there was a small minimally deleted region of approximately 

750 kb (chr13:50,675,001-51,425,000) identified in 13 patients (Figure 8-14). Although small, the 

region includes genes DLEU1, DLEU7, RNASEH2B, FAM124A, SERPINE3 and INTS6. 

 

Figure 8-14. CNVs across chromosome 13. Black rectangle details bands 13q14.2 - 13q14.3. The minimally 
deleted region (MDR) shared by 13 patients is shown by orange rectangle. 

Figure 8-15 shows the MDR in the short arm of chromosome 1 shared by eight patients. In this 

case, the deleted region was approximately 500 kb (chr1:26,625,001-27,125,000) which included 

genes ARID1A, PIGV, ZDHHC18, SFN, GPN2, GPATCH3, NR0B2, NUDC, KDF1, TNRP1, TENT5B, and 

SLC9A1. ARID1A was targeted by the gene panel, but no patients showed concurrent deletion and 

mutation. 

 

Figure 8-15. CNVs across chromosome 1. Black rectangle details bands 1p36.12 – 1p35.2. The minimally 
deleted region (MDR) shared by 8 patients is shown by the orange rectangle.  
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8.4.2 IGHV repertoire and somatic hypermutation status 

207 patients had data on the mutational status of immunoglobulin heavy chain variable region 

(IGHV) genes. Cases ranged in homology from 47.90% to 100% and the mean and median were 

95.60% and 96.18% respectively (Figure 8-16).

 

Figure 8-16. Distribution of percentage of IGHV identity to germline.  The mean, median and range was 
95.60%, 96.18%, 47.90% - 100% respectively and the 25th, 50th and 75th percentile were 
93.40%, 96.18%, and 98.60% respectively. 

In CLL, IGHV status is an important prognostic factor and a 98% cut off is used to dichotomise 

patients. Those patients with ≥98% IGHV identity to the germline sequence are considered 

unmutated, while sequences with <98% IGHV identity are considered mutated. Based on the CLL 

cut-offs, within the Jaramillo-Parry cohort 33% of sequences [n=69] were classified as unmutated 

(≥98%) and 66% of sequences [n=139] as mutated (< 98% GI). However, within the unmutated 

group there were sequences that were 100% identical to the germline. To be able to study this 

sub-group of truly unmutated samples separately, samples were also classified according to the 

thresholds used by Bikos et al.205, whereby truly unmutated IGHV sequences were those with 

100% identity to the germline [9%, n=18], sequences with 97-99.9% gene identity were classified 

as borderline/minimally mutated [35%, n=72] and sequences with gene identity <97% were 

classified as significantly mutated [56%, n=117]. Figure 8-18 shows the number of samples in each 

cohort (Jaramillo and Parry) that fell within each of the categories in both the two and three 

group classification. 
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Figure 8-17. Somatic hypermutation within IGHV genes. A. Number of samples according to CLL classification 
of mutated (<98% identity) and unmutated (≥98% identity) IGHV genes B. Number of samples 
using Bikos et al. nomenclature. Truly unmutated samples had 100% identity to the germline, 
borderline/minimally mutated samples had sequences with 97-99.9% gene identity and 
significantly mutated sample had <97% gene identity to the germline. 

The IGHV gene repertoire varied across patients, but the most frequent genes identified were by 

far IGHV1-2*04 [15%, n=37], followed by IGHV 3-23*01 [6%, n=13], IGHV 3-23 [6%, n=12], IGHV 3-

30 [6%, n=12], IGHV 4-34 [6%, n=12], and IGHV 4-34*01 [6%, n=12]. Figure 8-18 shows the most 

frequent genes identified in the Jaramillo-Parry cohort. The list of less prominent genes (<5% 

frequency) can be found in Supplementary Table 8. 

 

Figure 8-18. Most frequent IGHV genes (> 5% frequency) present in Jaramillo and Parry cohorts. The most 
frequent genes identified were IGHV1-2*04 [15%, n=37], followed by IGHV 3-23*01 [6%, n=13], 
IGHV 3-23 [6%, n=12], IGHV 3-30 [6%, n=12], IGHV 4-34 [6%, n=12], and IGHV 4-34*01 [6%, 
n=12]. 

The IGHV1-2*04 gene represented 13% of all borderline mutated cases, but within the subgroup 

of IGHV1-2*04 rearrangements, 73% of sequences [n=37] were borderline/minimally mutated 

(97-99.9% GI). In the subgroup with IGHV3-23 rearrangements, 97% of sequences [n=12] were 

significantly mutated (<97% GI). Even within the IGHV3-23*01 most sequences [69%, n=9,] were 
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also significantly mutated. Most truly unmutated cases (100% GI) where observed in the IGHV4-

34*01 subgroup [30%, n=4] (Figure 8-19). 

 

Figure 8-19. Breakdown of somatic hypermutation across IGHV genes within Jaramillo-Parry 
cohort. Top figure shows breakdown using conventional cut-offs while bottom figure 
shows cut-offs proposed by Bikos et al. 

In the sections to follow the binary CLL cut-offs of mutated (<98% GI) and unmutated (≥98% GI) 

will be used to describe IGHV mutation status of the Jaramillo and Parry cohort unless otherwise 

stated. 

8.4.3 Telomere length associates with key genomic features 

A proportion of samples, mostly from the Jaramillo cohort, had telomere length data, determined 

by MMQPCR (Figure 8-20). This data was integrated with the genomic results to see if any 
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correlations could be made. Telomere length ranged from 2.384 kb to 7.568 kb. The mean and 

median telomere length were 3.52 kb and 3.21 kb respectively. 

 

Figure 8-20. Distribution of telomere length. The mean, median and range of telomeric range was 3.52, 
3.21, 2.384 - 7.568 respectively and the 25th, 50th and 75th percentile were 2.84, 3.21, and 3.89 
respectively. 

Patients with unmutated IGHV genes (≥ 98% GI) had significantly shorter telomeres that those 

with mutated IGHV genes (< 98% GI) (p=0.018). Figure 8-21 shows the distribution of telomere 

length across the two subgroups. Interestingly, when comparing telomere length across the three 

subgroups proposed by Bikos et al. (significantly mutated, borderline mutated, and truly 

unmutated) telomere length was lower in the borderline mutated group (97%-99.9% GI) and not 

the truly unmutated (100% GI).  

 

Figure 8-21. Distribution of telomere length (TL) across subgroups according to IGHV status. Left: TL 
distribution using conventional CLL cut-offs: Unmutated: those with 98% or more sequence 
identity to germline; mutated: those with less than 98% sequence identity to germline. Right: TL 
distribution across subgroups defined by Bikos et al. significantly mutated: <97% sequence 
identity to germline; borderline mutated: 97%-99.9% sequence identity to germline; truly 
unmutated: 100% sequence identity to germline.  
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The Kruskal-Wallis test showed a significant difference in the distribution of telomere length 

across IGHV status using both 2 and 3 groups. However, for the three subgroups it suggested a 

difference between at least one pair of groups but did not state which pair. Consequently, a 

pairwise comparison between truly unmutated, borderline mutated and significantly mutated was 

performed using the Dunn-Bonferroni approach (Table 8-6). The pairwise comparison showed 

that there was a significant difference in the distribution of the telomere length between 

borderline mutated and significantly mutated samples. While there was no significant difference 

the distribution of the telomere length between the truly unmutated group compared to the 

other two subgroups.  

Table 8-6. Pairwise comparison of telomere length across three IGHV status subgroups . Results 
of the Dunn-Bonferroni tests on each pair of groups. The tests show that the 
distribution of telomere length in the borderline mutated group is significantly 
different to the distribution of the significantly mutated. 

 

Patients with KLF2 mutations, 7q and 17p deletions showed significantly shorter telomere length 

than wild type (WT) patients. Samples characterised by genomic complexity, defined as having 

three or more CNAs (identified by methylation arrays), also had significantly lower telomere 

length than those with a simple genome (two or less CNAs). Lastly, patients with trisomy 3 

showed longer telomeres than WT patients (Figure 8-22).  
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Figure 8-22. Distribution of telomere length across relevant genomic abnormalities. p-values obtained using 
Mann-Whitney U-test. 

8.4.4 Genomic aberrations associate with clinically relevant biomarkers 

To determine if there were any significant interactions or associations between genes and other 

molecular biomarkers pairwise Fisher’s exact tests were carried out among the most recurrent 

genetic aberrations. Figure 8-23 shows the results of the pairwise associations among significantly 

mutated genes, genetic and immunogenetic features across the combined Jaramillo-Parry cohort. 

Mutual exclusivity is shown in pink, while co-occurring relationships are shown in green. Those 

that remained significant after Bonferroni correction are marked by an asterisk (*). Number in 

brackets details number of affected cases. The number of cases included in each pairwise test 

varied per variable as values for all variables were not available for all cases. A total of 1332 

pairwise comparisons were tested, where 73 were significant before correction and only 14 

remained significant after Bonferroni correction. Most significant interactions were co-occurring 

interactions.  
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Figure 8-23. Interactions between genomic and clinical features. Interactions were detected by pair-wise 
Fisher’s exact test. Co-occurrence is shown in gradients of green while mutual exclusivity in 
gradients of pink. Those with a p-value less than 0.05 are not shown and are coloured grey. 
Starred values are those that remain significant after Bonferroni correction. Number in brackets 
details number of affected cases. Total number of samples included in each test varied per 
variable as values for all variables were not available for all cases. 

7q deletions were associated with short telomere length (p=0.023), IGHV1-02*04 (p < 0.001), 

genomic complexity (p=0.011), gain of 12q (p=0.018), 1p deletion (p=0.018), as well as KLF2 (p < 

0.001), NOTCH2 (p=0.015), TNFAIP3 (p=0.019) and TRAF3 (p<0.001) mutations. Furthermore, 7q 

deletions were mutually exclusive to BIRC3 (p=0.036), MYD88 (p=0.015), trisomy 12 (p=0.004), 

and mutated IGHV genes (p=0.04).  

MYD88 has been previously reported as a mutually exclusive event and those observations are 

replicated here. The only significant association seen in MYDD88 (Figure 8-23) is with mutated 

(<98% GI) IGHV genes (p=0.011).  

The variable with the most associations was genomic complexity (3+ CNAs). Undoubtedly some of 

the significant associations with some of the CNAs such as deletions of 8p, 6q, and 1q and gain of 

8q were present because those variables are the ones that define genomic complexity. 

Furthermore, cases with genomic complexity were associated with short telomere length 
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(p=0.026) and TNFAIP3 mutations (p=0.008). Figure 8-23 shows TP53 mutations and 17p deletions 

as separate variables. In the figure only 17p deletions associated significantly (p=0.003) with 

genomic complexity. However, when combined TP53 abnormalities (17p deletion and TP53 

mutations) still showed a significant positive association to genomic complexity, albeit with a 

lower p-value (p=0.034). 

8.4.5 Genomic associations hint at potential disease subtypes 

Principal component analysis of the most frequent aberrations showed a clear pattern in terms of 

what patients were “grouped” together (Figure 8-24). On the left of the PCA plot we find cases 

that are characterised by long telomeres, high levels of SHM, trisomies and somatic mutations in 

MYD88 and BIRC3. While on the right of the PCA plot, cases were characterised by increasing copy 

number alterations, shorter telomeres, lower levels of SHM, gains of 8q, deletions of 7q, KLF2 and 

TNFAIP3 mutations.  

 

Figure 8-24. Principal component analysis of recurrent genomic aberrations and other molecular biomarkers.  
Telomere length, number of genomic aberrations, and IGHV identity to germline increases from 
left to right. 

Results of the PCA and pairwise comparison hint at the existence of two potential disease sub 

types, one characterised by MYD88 mutation and mutated IGHV genes, and a second group 

characterised by deletions of 7q, IGHV1-2*04 gene usage, and KLF2 mutations.  
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8.4.6 Transformation to a high-grade lymphoma is associated with genetic and 
immunogenetic features 

Transformation to a high-grade lymphoma is associated with resistance to treatment and poor 

survival. Therefore, we looked at a small subset of patients that had transformed [n=31] to see if 

transformation was associated with any specific feature. In our cohort TNFAIP3 mutations 

(p<0.001), IGHV1-2*04 genes (p=0.013), females (p=0.003) and cases with IGHV identity closer to 

germline (p=0.001) were all associated with transformation ( 

Figure 8-25).  

 
Figure 8-25. Comparison of transformed versus non transformed cases across genetic features. A. Number of 

patients with TNFAIP3 mutations across transformed and non-transformed cases B. Number of 
patients with IGHV1-2*04 genes across transformed and non-transformed cases C. Number of 
males and females across transformed and non-transformed cases D. Distribution of IGHV 
identity to germline across transformed and non-transformed cases.  

8.4.7 Clinical significance of mutations, genetics and immunogenetics 

While genomic data was available for all samples, clinical and immunogenetic data was sparse. 

Therefore, follow-up outcome data for overall survival (OS) was available for a maximum of 271 

patients and varied depending on the feature. In univariate survival analysis 11 features were 

associated with shorter overall survival: TP53 aberration (TP53 deletion and or mutation)[HR 

3.501, 95% CI 2.009-6.099, p<0.001], TP53 mutation [HR 3.068, 95% CI 1.698-5.545, p<0.001], 
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TNFAIP3 mutation [HR 2.544, 95% CI 1.206-5.366, p=0.014], MYD88 WT [HR 8.573, 95% CI 1.187-

61.923, p=0.033], 17p deletion [HR 4.043, 95% CI 1.574-10.386, p=0.004], 7q deletion [HR 2.687, 

95% CI 1.462-4.939, p=0.001], 1q deletion [HR 7.712, 95% CI 2.082-28.082, p=0.002], 6q deletion 

[HR 5.296, 95% CI 1.87-15.004, p=0.002], gain of 8q [HR 13.33, 95% CI 2.336-76.115, p=0.004], a 

genomic complexity (3+ CNAs) [HR 2.661, 95% CI 1.144-6.186, p=0.023], IGHV unmutated genes (< 

98% GI) [HR 2.789, 95% CI 1.563-4.978, p=0.001 ] and age at diagnosis [HR 1.104, 95% CI 1.069-

1.14, p<0.001]. It should be noted that 1q deletion, 6q deletion and gain of 8q all co-occur within 

a complex genome. Table 8-7 lists the 12 significant features in univariate survival analysis for OS, 

the median survival time for each feature and subgroup, and the hazards ratio. Kaplan Meier 

curves for the 11 features can be seen in Supplementary Figure 1 and Supplementary Figure 2. 

Table 8-7. Univariate survival analysis for overall survival (OS).  

 

The impact of the variables found to be significant for OS in univariate analysis were further 

assessed using a multivariate Cox proportional hazard analysis, to account for potential 

confounding variables. Due to the large number of variables, two multivariate models were made 

using a backwards stepwise approach. The first model integrated all the mutation data, with 

disease outcomes accounting for age and gender. This was done for two reasons: 1) To verify that 

there was no interactions within genes that could be missed by only using significant variables 

from the univariate analysis and; 2) There was mutation data for all samples which allowed for 

more patients to be included in the model and therefore have more power. The second model 

took the significant results from the first model (mutation data) and integrated them with the 

other variables that were significant in the univariate model also accounting for age and gender. 

Characteristic Sub-group
No. of 

patients

No. of 

events

Median 

survival time 

(years)

Kaplan 

Meier p-

value

Hazards Ratio 

(Cox 

proportional 

hazards)

Hazards Ratio 

confidence 

interval 95%

Cox 

proportional 

hazards p-value

TP53  aberration normal TP53 236 41 16.49

TP53 aberration 41 19 10.00

TP53  mutation unmutated 245 45 16.53

mutated 32 15 10.10

TNFAIP3  mutation unmutated 258 52 16.00

mutated 19 8 5.74

MYD88  mutation unmutated 247 59 15.20

mutated 30 1 -

Age ≤ 65 years 106 10 -

> 65 years 164 50 11.62

Genomic complexity complex (3+ CNAs) 41 10 10.11

simple (< 3 CNAs) 87 13 -

7q deletion normal 7q 154 30 16.35

del 7q 43 18 10.11

Gain 8q normal 122 21 15.14

gain 6 2 -

Del 17p normal 120 17 -

deletion 8 6 10.00

Del 1q normal 121 20 15.14

deletion 7 3 -

Del 6q normal 117 18 15.14

deletion 11 5 10.00
* tested as a continuous variable

2.082-28.082 0.002

5.296 1.87-15.004 0.002

0.002

p<0.001

0.001

13.333 2.336-76.115 0.004

4.043 1.574-10.386 0.004

7.712

2.6610.014

0.001 2.687 1.462-4.939

p<0.001

0.001

2.440 1.206-5.366

0.016-0.8430.117

0.011

0.010

p<0.001 1.104* 1.069-1.14*

1.698-5.545 p<0.001

0.014

0.033

p<0.001*

0.0231.44-6.186

p<0.001 3.501 2.009-6.099 p<0.001

p<0.001 3.068
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OS Model 1: A backward stepwise regression was carried out starting with 22 variables (TP53 

status, ARID1A, ATM, BIRC3, CARD11, CCND3, CDH23, CREBBP, FLNC, KLF2, KMT2D, MAP3K14, 

NOTCH1, NOTCH2, SETD2, SPEN, TNFAIP3, TRAF3, MYD88, PRKDC, age at diagnosis, and gender), 

consisting of 270 cases, where 60 presented an event (death). 18 variables were removed (19th 

iteration) leaving TP53 status, TNFAIP3 mutations, MYD88 mutations and age at diagnosis in the 

Cox proportional hazard analysis. All variables except MYD88 mutations retained significance and 

these were then used as input for model 2. 

OS Model 2: A backward stepwise regression was carried out starting with 11 variables (TP53 

status, TNFAIP3, age, gender, deletion of 7q, IGHV status, deletion of 6q, deletion of 1q, gain of 

8q, genomic complexity, and gain of 3q), consisting of 92 cases, where 18 presented and event 

(death). 8 variables were removed (9th iteration) and the final Cox proportional hazard model 

showed that TP53 status [HR, 4.85; 95% CI, 1.72-13.61], age at diagnosis [HR, 1.13; 95% CI, 1.06-

1.221] and gain of 8q [HR, 18.47; 95% CI, 2.73-124.97] all had significant impact on OS (Table 8-8). 

Table 8-8. Results of multivariate model for OS. Hazard ratio and p-value shown in the 7th and 6th column 
respectively. 

 

Similar to OS, follow-up outcome data for time to first treatment (TTFT) was available for a 

maximum of 278 patients. In univariate survival analysis 11 features were associated with 

reduced time to treatment: TNFAIP3 mutation [HR 1.811, 95% CI 1.134-2.893, p=0.013], KMT2D 

mutation [HR 1.636, 95% CI 1.100-2.435, p=0.015], TRAF3 mutation [HR 1.763, 95% CI 1.082-

2.874, p=0.023], NOTCH2 mutation [HR 1.818, 95% CI 1.255-2.697, p=0.003], KLF2 mutation [HR 

1.873, 95% CI 1.271-2.758, p=0.002], ARID1A mutation [HR 2.239, 95% CI 1.293-3.878, p=0.004], 

gender (females) [HR 1.692, 95% CI 1.270-2.253, p<0.001], IGHV status (unmutated) [HR 1.456, 

95% CI 0.994-2.133, p=0.054], IGHV1-2*04 genes [HR 2.533, 95% CI 1.637-3.917, p<0.001], 

telomere length [HR 0.741, 95% CI 0.557-0.987, p=0.04], and gain of 3q [HR 2.284, 95% CI 1.311-

3.98, p=0.004]. Table 8-9 lists the 11 significant features in univariate survival analysis for TTFT, 

the median survival time for each feature and subgroup, and the hazards ratio. Kaplan Meier 

curves for the 11 features can be seen in Supplementary Figure 3 and Supplementary Figure 4. 

95.0% CI for Exp(B)

Lower Upper

P53 status 1.58 0.53 8.96 1.00 0.003 4.84 1.72 13.61

Age at diagnosis 0.13 0.04 12.85 1.00 p<0.001 1.14 1.06 1.22

Gain 8q 2.92 0.98 8.94 1.00 0.003 18.48 2.73 124.96

Variable B SE Wald df Sig. Exp(B)
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Table 8-9. Univariate survival analysis for time to first treatment (TTFT).  Patients that have died were 
censored. 

  

The impact of the variables found to be significant for TTFT in univariate analysis were also 

assessed using a multivariate Cox proportional hazard analysis, to account for potential 

confounding variables. Just like with OS two multivariate models were made using a backwards 

stepwise approach. 

TTFT Model 1: A backward stepwise regression was carried out starting with 22 variables (TP53 

status, ARID1A, ATM, BIRC3, CARD11, CCND3, CDH23, CREBBP, FLNC, KLF2, KMT2D, MAP3K14, 

NOTCH1, NOTCH2, SETD2, SPEN, TNFAIP3, TRAF3, MYD88, PRKDC, age at diagnosis, and gender), 

consisting of 275 cases, where 192 presented an event (treated including splenectomy). 15 

variables were removed (16th iteration) leaving ARID1A mutations, CCND3 mutation, NOTCH2 

mutation, TNFAIP3 mutation, TRAF3 mutation, gender, and age at diagnosis in the Cox 

proportional hazards analysis. All variables except CCND3 and TRAF3 mutations retained 

significance and these were then used as input for model 2. 

TTFT Model 2: A backward stepwise regression was carried out starting with 9 variables (ARID1A, 

NOTCH2, TNFAIP3, IGHV status, IGHV1-2*04, gain of 3q, telomere length, age at diagnosis and 

gender), consisting of 88 cases, where 55 presented an event (treatment including splenectomy), 

9 variables were removed (7th iteration) and the final Cox proportional hazard model showed that 

gender [HR, 2.58; 95% CI, 1.46-4.57], gain of 3q [HR, 3.69; 95% CI, 1.91-7.13], and telomere length 

[HR, 0.68; 95% CI, 0.49-0.94] all had significant impact on TTFT (Table 8-10). 

Characteristic Sub-group
No. of 

patients

No. of 

events

Median 

survival time 

(years)

Kaplan 

Meier p-

value

Hazards Ratio 

(Cox 

proportional 

hazards)

Hazards Ratio 

confidence 

interval 95%

Cox 

proportional 

hazards p-value

TNFAIP3  mutation unmutated 256 174 1.40
mutated 22 20 0.40

KMT2D  mutation unmutated 243 165 1.80
mutated 35 29 0.19

TRAF3 mutation unmutated 258 176 1.40
mutated 20 18 0.31

NOTCH2  mutation unmutated 243 164 1.70
mutated 35 30 0.31

KLF2  mutation unmutated 243 163 1.80
mutated 35 31 0.26

ARID1A  mutation unmutated 261 180 1.30
mutated 17 14 0.07

Gender female 141 108 0.57
male 137 86 2.99

IGHV  status unmutated (≥ 98% GI) 58 43 1.30
mutated (<98% GI) 118 68 2.90

IGHV1-2*04 IGHV1-2*04 180 110 2.73
other 27 26 0.42

Telomere length (kb) short 54 41 0.80
intermediate 27 17 2.94
long 30 18 4.13

Gain 3q normal 113 73 2.70

gain 18 16 0.36

p<0.001

0.113

0.003

p<0.001

* tested as a continuous variable

φ Male used as reference for Cox regression

0.014

0.002

0.003

0.044

0.021

0.001

p<0.001

2.284 1.293-3.878 0.004

0.741* 0.557-0.987* 0.04*

0.004

1.692φ 1.270‐2.253φ p<0.001φ

0.676 0.461-0.992 0.045

1.818 1.255-2.697 0.003

1.873 1.271-2.758 0.002

1.811 1.134-2.893 0.013

1.636 1.100-2.435 0.015

2.533 1.637-3.917

2.239 1.293-3.878

1.763 1.082-2.874 0.023

0.011
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Table 8-10. Results of multivariate model for TTFT. Hazard ratio and p-value shown in the 7th and 6th column 
respectively  

 

8.5 Discussion 

Integration of somatically acquired mutations and other molecular biomarkers with disease 

outcomes is an important step in translating results from research into patient care. Having a 

granular understanding of the molecular drivers that underpin specific phenotypes and outcomes 

in SMZL will not only aid in the risk -adapted stratification of patients, it has the potential to steer 

prospective clinical trials to find novel therapies for these patients. Research over the last decade 

has begun to shed some light on the molecular pathogenesis of SMZL, but there are still many 

unanswered questions. The main aim of this chapter was to integrate somatic mutations with 

other molecular biomarkers as well as disease outcomes, to better characterise the disease and 

identify potential disease subgroups and risks factors associated with survival.  

Somatic copy number profiles were obtained using methylation arrays. However, determining 

precise segment cut-offs using methylation arrays has its limitations. Firstly, the fact that CpG 

dinucleotides are not uniformly distributed across the genome219, means coverage across the 

chromosomes will not be uniform. Secondly, identification of the start and end points of any CNA 

will vary depending on the number and quality of controls used. Lastly, outputs from the 

conumme package require extensive manual curation, potentially introducing error and or bias. 

However, even with these limitations, our results echoed what had already been found in 

previous SMZL cohorts adding confidence to our results. 

In line with previous studies45,47,71,202 deletions of the long arm of chromosome 7, trisomy 12 and 

gains of the long arm of chromosome 3 were the most recurrent CNAs within the cohort. Due to 

the high frequency of 7q deletions and the potential biological importance of this region in the 

pathogenesis of SMZL, researchers have attempted to identify the gene or genes targeted by it 

but results have only provided putative targets which require further study. Early investigations 

explored miRNA as potential targets of the 7q deletion. The first study led by by Ruiz-Ballesteros 

and colleagues measured miR-29a and miR-29b-1 expression (chosen due to their proximity to the 

7q ) in SMZL subgroups and other B-cell lymphomas220. They proposed miR-29a and miR-29b-1 as 

candidates for regulation of TCL1A, which had been found to be over-expressed in SMZL221. 

Subsequently, Watkins et al. showed a reduced expression of 7 miRNA (miR-593, miR-129, miR-

95.0% CI for Exp(B)

Lower Upper

Gain 3q 1.17 0.33 12.79 1.00 0.000 3.23 1.70 6.15

Telomere length (kb) -0.34 0.17 4.17 1.00 0.041 0.71 0.51 0.99

Gender 0.95 0.29 10.88 1.00 0.001 2.59 1.47 4.56

Variable B SE Wald df Sig. Exp(B)
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182, miR-96, miR-183, miR-335, miR-29a and miR-29b-1) in cases with 7q deletion222. The study by 

Watkins and colleagues also investigated DNA methylation profiles in a subset of cases in the 

context of 7q deletions where out of the 37 targeted genes, CPA4, OPN1SW, NAG8, LRRC4, CPA5, 

CPA2, TSGA13, CPA1, C7orf45 and NYD-SP18 consistently showed high levels of methylation but 

low gene expression218. More recently high throughput sequencing has been used to identify 

putative target genes that fall within the 7q deletion region, but the frequency of mutations 

within genes in this region remains low. Deep sequencing in four MZL-derived cell lines has 

identified four putative target genes (IRF5, TMEM209, CALU and ZC3HC1), however, results did 

not find any clear pathogenic mutations204. The study by Parry et al. also identified somatic 

mutations within the 7q MDR, but in isolated cases within genes CUL1, FLNC and EZH251,71. 

Within this work, two MDRs were identified in chromosome 7. The first MDR was located on band 

7q31.33 and was around 2,900 kb (chr7:124,200,000-127,100,000). The second MDR was located 

on band 7q32.2 and was approximately 1,752 kb (chr7:128,575,000-130327262). These two 

region fell within the 7q31.33-7q32.2 bands, aligning with previously identified 

MDRs47,216,217,223,224. Our gene panels only targeted two genes within these region (POT1 and FLNC) 

but no samples showed co-occurring deletions and mutations. There could be pathogenic 

mutations within other genes in this locus, but this is impossible to determine without WGS or 

WES. Other possible targets include microRNAs, or even genes (somewhere else in the genome) 

regulated by elements within this locus. It was interesting that POT1 fell within one of the MDRs, 

as it is a telomere protection gene. Inhibition of POT1 will result in telomere fragility, replication 

fork stalling, and genome instability225,226. In murine models, depletion of murine POT1a combined 

with p53 deficiency fuelled cancer progression in T-cell lymphomas225. Within our cohort 7 

patients had both deletion of POT1 and TP53 aberrations. 6/7 patients had follow-up clinical data 

and of those 4/6 patients transformed into large B-cell lymphoma. Though this is a small subset of 

patients, this interaction might give us more clues to the potential drivers underpinning 

transformation and targets of the 7q deletion.  

Although the role of the 7q deletion is still unclear, the results of this analysis have mirrored 

previous published work which have shown that deletion breakpoints at 7q are heterogeneous, 

with q21 the most proximal and q36 the most terminal breakpoints47,48,216,227–230. Deletions of 7q 

have been associated with unmutated IGHV genes, IGHV1-2*04 usage and KLF2 and NOTCH2 

mutations42,47,71, observations which have all been validated here. Furthermore, this work has 

provided new insights as 7q deletions were also associated with short telomere length, genomic 

complexity, TNFAIP3 and TRAF3 mutations but mutually exclusive to trisomy 12, MYD88 and 

BIRC3 mutations.  
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Unfortunately, there is still no clear target of the 7q deletion and future studies will require the 

integration of several omic technologies as well as a genome wide approach to fully comprehend 

the role of the 7q deletion in SMZL. Nonetheless, this alteration could serve as a potential 

diagnostic marker. 41,45,204,221,231Although deletion of 7q is not exclusive to SMZL, evidence suggests 

that SMZLs with 7q deletion combined with somatic mutations in KLF2 and NOTCH2 are highly 

specific for SMZL and could be used for differential diagnosis54,71,232. 

Trisomy 12 was the second most recurrent CNA found in 24% of patients. However, very little is 

known about its pathophysiology in SMZL. Not only has this aberration been reported at much 

lower frequencies (0-12%), there is conflicting evidence with regards to its prognostic 

impact45,47,233. Our results showed no impact on OS or TTFT and no significant associations with 

other genomic features. We did observe that patients with trisomy 12 do not tend to occur in 

those that have IGHV1-2*04 genes and those with 7q deletions. 

Recurrent gains of chromosome 3, 12 and 18 are common in marginal zone lymphomas (MZLs)75. 

However, gains of 3q are more frequent in SMZL than other MZLs75,202. In early studies it was 

thought that cases with gains of 3q were a separate cytogenetic subtype than those with 7q 

deletions46, however, we did not find them to be mutually exclusive. As for the biological 

importance of this gain, potential gene dosage effect and differential expression of genes has 

been suggested, considering genes in this region are important in neoplastic transformation234. 

The work by Rinaldi and colleagues did in fact show overexpression of different genes, including 

FOXP1, NFKBIZ, and BCL6 which might provide a survival advantage to neoplastic cells in all MZLs 

with gains of 3q202. In SMZL gains of 3q have been associated with genomic complexity47, an 

observation validated here. Furthermore, within this work this aberration was identified as an 

independent risk factor in TTFT. 

Deletion of 6q23-24 is a frequent abnormality in non-Hodgkin’s Lymphoma235,236. In Waldenström 

macroglobulinemia and chronic lymphocytic leukaemia for example, patients with 6q deletions 

are more likely to display features associated with worse prognosis237. For chromosome 6, a 

minimally deleted region was not established since 37% [n=10] of segments were smaller than 5 

Mb and did not overlap. However, region 6q23.3-q24.1 was a clear target of deletions, which 

included gene TNFAIP3. Additionally, 3/12 patients with deletions involving TNFAIP3 also 

harboured somatic mutations (1 biallelic and 2 mono allelic frameshift deletions). As outlined in 

the previous chapter TNFAIP3 is a negative regulator of NF-κB signalling and acts as a tumour 

suppressor by halting canonical NF-κB activation (for further details on the role of TNFAIP3 refer 

to section 7.5.3). Within this work there is evidence that this gene is a potential driver of SMZL, 

considering the significant enrichment of mutations within transformed cases and results of 
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univariate survival analyses. In a study by Boonstra et al. of 13 SMZL cases using cytogenetic 

analysis and comparative genomic hybridization (CGH) two cases were found to have deletions in 

6q where one of the patients went on to transform to large cell lymphoma235. This transformed 

patient however, showed deletion of 6q24 by array CGH which did not include TNFAIP3.  

Another potential driver could be found within chromosome 8. Two large MDRs were identified 

within the short arm of chromosome 8 with putative targets including TNFRSF10A, TNFRSF10B, 

DOK2 and BLK. TNFRSF10A and TNFRSF10B code for tumour necrosis factor-related apoptosis-

inducing ligand (TRIAL) receptors which are important regulators of B-cell selection and germinal 

centre homeostasis238. Interestingly, across all B-cell, it is the GC cells that express the highest 

levels of all TRAIL receptors239. DOK2 is a negative regulator of TLR/MYD88 signalling while BLK 

plays a role in B-cell receptor signalling and development240. Additionally, within our cohort it was 

found that gains of the long arm of chromosome 8 were associated with genomic complexity, loss 

of 8p and shorter overall survival. A potential target of this gain could be the MYC gene, 

frequently involved in human cacinogenesis241,242. MYC belongs to a family of transcription factors 

that bind to DNA in a non-specific manner243. It is a proto-oncogene, in charge of a multitude of 

cellular functions including cell cycle, cell growth and survival244. Unlike most proto-oncogenes 

which drive cells to a malignant state through somatic mutations, MYC drives transformation of 

cells via overexpression (gene amplification, chromosomal translocations or aberrant regulation 

of expression)245. The study by Fresquet et al. provides further evidence to the potential role of 

MYC in SMZL disease progression, where patients with gains of 8q (including the MYC locus) were 

associated with poor clinical outcomes204. 

Less common lesions affected chromosome 13 and chromosome 1. The MDR in chromosome 13 

although adjacent to, did not include well known MDR in CLL comprised by the DLEU2 gene, the 

MIR15A/MIR16-1 cluster, and the first exon of the DLEU1203, a locus which plays an important role 

in expansion of mature B-cells246. However, in ten patients the CLL MDR was deleted. In 

chromosome 1, the MDR included ARID1A, although with no concurrent somatic mutations. As 

mentioned in the previous chapter ARID1A is a component of the SWI/SNF chromatin remodelling 

complex, which regulates transcription via alteration of chromatin structure. Deletion of ARID1A 

could lead to the loss of both the caretaker and gatekeeper function in cells193 (for further details 

on the role of ARID1A refer to section 7.5.47.5.3). 

Immunoglobulin gene usage has been previously investigated in large SMZL cohorts and have 

shown strong repertoire bias in the immunoglobulin heavy chain genes, namely IGHV1-02, IGHV4-

34 and IGHV3-23205,206. By far the most frequent has been IGHV1-02 where the majority use the 

IGHV1-02*04 allele205–207. Our cohort validated previous observations, with most cases using the 
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IGHV1-02*04 gene. Cases with IGHV 1-2*04 genes were significantly associated with deletion of 

7q, KLF2 and NOTCH2 mutations but mutually exclusive to MYD88 mutations. Such a strong bias 

of the IGHV gene repertoire points to an antigen selection process in the pathogenesis of the 

disease. Results from this and previous studies54,71, along with preliminary DNA methylation and 

transcriptomic studies247,248, suggest cases with IGHV1-02*04 represent a distinct patient sub-

group, that is likely to emerge from a cell with a distinct ancestry and/or unique immune 

activation process followed by transformation, ongoing antigen exposure, with shared genomic 

lesions and poor survival71. 

The critical part that the BCR plays in SMZL is further emphasized by the presence of somatic 

hypermutations (SHM), as only 8% of assessed cases lacked evidence of SHM at the IGHV locus 

and might be considered truly unmutated. The remaining cases exhibited evidence of SHM at the 

IGHV locus, with 36% and 56% defined as borderline (97%-99.9% IGHV gene identity to germline) 

and significantly mutated (< 97% IGHV gene identity to germline), respectively. These percentages 

are all in line with previous work where roughly 12% of SMZL cases showed no evidence of SHM 

while 38% and 50% were defined as borderline and significantly mutated205,206. The low number of 

samples with truly unmutated genes adds evidence suggesting an antigen exposure in most SMZL 

cases. 

Whilst levels of SHM represent a critically important prognostic and predictive biomarker in 

CLL249,250, their clinical utility in SMZL is less established. In previous studies202,251 that used SHM 

cut-offs established for CLL in SMZL patients, there was no difference in progression-free and 

overall survival between mutated and unmutated IGHV cases. However, it is likely that SHM levels 

are disease specific and better cut-offs need to be established within SMZL. Within our cohort 

IGHV status (using CLL cut offs) did have an impact on OS, but only in univariate analysis. Patients 

that transformed were significantly associated with IGHV identity closer to germline and had an 

enrichment of borderline/minimally mutated IGHV genes. This is slightly different from previous 

observations by Parry and colleagues where the complete absence of SHM (truly unmutated), 

provided independent prognostic information, with truly unmutated cases exhibiting reduced 

time to treatment71. Our analysis included all cases from the Parry study and differences between 

our observations are likely due to sample size and updated clinical information for some patients.  

Another useful biomarker and predictor of survival in CLL that could potentially be used in SMZL is 

telomere length215. Telomeres play a key role in genome integrity, where in normal tissue, 

attrition of telomeres will lead to activation of senesce checkpoints, playing a tumour suppressing 

role252. Telomere attrition leads to uncapped chromosomes which will become unstable until they 

are capped252. This in turns leads to intra- and inter-chromosomal end fusions, the formation of 
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dicentric chromosomes with consequential breakage during anaphase, and genomic complexity, 

through the mechanisms of breakage-fusion-bridge formation253. The majority of human tumours 

exhibit eroded telomere length, compared to the corresponding normal tissue254. To date, 

preliminary telomere length analysis of SMZL has only been published in abstract form showing an 

enrichment of short telomeres in patients with progressive disease255. Our results validate these 

observations, where survival analysis showed telomere length had significant impact on time to 

first treatment. Similarly, cases with KLF2 mutations, 7q and 17p deletions and genomic 

complexity (all features associated with progressive disease) all showed significantly shorter 

telomeres than WT patients. Interestingly patients with trisomy 3 had significantly longer 

telomeres than those without the trisomy, suggesting a more benign disease course for these 

patients. 

The integration of the sequencing results with the additional molecular biomarkers and survival 

data available within our cohort suggest that there are at least two distinct molecular subgroups 

with distinct prognosis. This was first evidenced by the prevalence of certain CNAs. The 

prevalence of whole chromosome gains compared to the prevalence of gains of long arms, as is 

the case with chromosome 3 and 12, likely reflect different underlying mechanisms of 

lymphomagenesis202. In our case principal component analysis of the most recurrent 

abnormalities and other molecular biomarkers did associate cases with whole gain of 

chromosome 3, 12 and 18 separately than those with gains of 3q and or 8q. The second was co-

occurrence of 7q deletions (the most recurrent CNA), in cases with KLF2 mutations, NOTCH2 

mutations and IGHV1-2*04 genes. This subset of cases was mutually exclusive to MYD88 

mutations, showed low levels of SMH and short telomeres. PCA also grouped these cases much 

closer together and to features that we associated with poor outcomes. On the other hand, there 

is the subset characterised by MYD88 mutations, long telomeres, and high levels of SHM. These 

cases were mutually exclusive to IGHV1-2*04 genes and showed better prognosis. In the PCA 

these were grouped with trisomy 12 and trisomy 3, the latter characterised by long telomeres 

likely to have a more benign course of disease.  

8.6 Conclusions 

The work outline herein has improved our understanding of the biological basis of SMZL. We 

validated previous observations including: 1) Recurrent CNAs (with deletion of 7q being the most 

frequent); 2) A highly restricted IGHV gene repertoire, including selective usage of the IGHV1-

2*04 allele in 15% of cases; 3) Evidence of SHM in the majority of cases, (only 8% showed no 

evidence of SHM) and; 4) Association of IGHV1-2*04 to deletions of 7q, KLF2 and NOTCH2 

mutations, and low levels of SHM. We provided additional evidence supporting the prognostic 
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impact of TP53 aberrations, NOTCH2 mutations and age of diagnosis and identified telomere 

length and gains of 3q and 8q as new potential prognostic factors. Furthermore, integration of 

different molecular markers suggested two distinct molecular subgroups with potential 

prognostic significance.  Additional studies across multiple discovery and validation cohorts, as 

well as prospective clinical trials are required to validate results, particularly disease outcomes.  
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  Discussion and future directions 

9.1 Discussion 

9.1.1 Current state of play 

Advances in next generation sequencing (NGS) technologies have transformed our understanding 

of prevalent mature b-cell tumours proving their utility in the clinical application for more 

sensitive diagnoses and targeted treatments. Chronic lymphocytic leukaemia (CLL) is a great 

example, where outcomes have improved over recent years due to the risk-adapted patient 

stratification and impact of novel therapies underpinned by a deep understanding of the biology 

of the disease256,257. In CLL several thousand patients have been examined either with whole 

genome sequencing (WGS), whole exome sequencing (WES) and or targeted sequencing. This has 

allowed the identification of recurrent coding and non-coding mutations targeting key biological 

processes, description of mechanisms such as chromothripsis and kataegis, and identification of 

mutations leading to therapy resistance258–261. Furthermore, understanding of the epigenetic 

mechanisms that play a role in CLL have provided additional biological insights as DNA 

methylation has allowed the classification of patients into three groups exhibiting different 

clinico-biological features257,262. The most accepted and validated genomic prognostic model for 

CLL patients is the Dohner model, based on the presence of deletions of 17p, 11p, 13q and 

trisomy 12, which has evolved to include mutational data263,264. Additionally, a recent study from 

the randomised UK LRF CLL4 trial supported the use of targeted resequencing to elucidate the 

prognostic impact of gene mutations101.  

Splenic marginal zone lymphoma (SMZL) is currently precluded for large international sequencing 

projects such as The Cancer Genome Atlas (TCGA), resulting in an incomplete catalogue of tumour 

associated genomic lesions for this rare cancer. There is lack of matched whole genome 

sequencing (WGS), as only Kiel et al.49 has reported WGS but without matched-germline material. 

Whole exome sequencing (WES) studies of SMZL are also limited, with only five studies being 

reported to date on 35 discovery cases70. There are few studies assessing copy number (CNA) and 

structural aberrations of large cohorts45,47,202 and targets of CNAs are mostly unknown, particularly 

targets of the deletion of the long arm of chromosome 745,204. In SMZL there are no genomic 

prognostic models like the Dohner model in CLL. The recommended model is the HPLL score 

proposed by the Splenic Marginal Zone Lymphoma Study Group based upon three factors: 1) 

Haemoglobin concentration; 2) Platelet count and; 3) Lactate dehydrogenase (LDH) level and 
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extrahilar lymphadenopathy40,265. Furthermore, there is poor definition of biological disease 

subgroups and although SMZL is an indolent lymphoma, there is a need for biomarkers to help 

define subtypes that progress into an aggressive disease. 

Most cancers are rarely characterised by a single mutation, however there are mutations found 

more frequently in specific cancers proving useful as diagnostic markers266. An example of this is 

the BRAF V600E variants in hairy cell leukaemia (HCL) where the diagnosis is based upon clinical 

and laboratory findings but the presence of this specific mutation is helpful in confirming 

diagnosis and is considered the causal genetic event267. Similarly, in Waldenström 

macroglobulinemia patients, although MYD88 L265P mutations are not wholly unique to these 

patients, this mutation is present in approximately 90% of cases268. With regards to the prognostic 

significance of mutations in mature B-cell malignancies, the evaluation of mutations is constantly 

evolving as new genes are being discovered and methods for evaluating their clinical significance 

are also developing. An example of this can be observed in two widely studied lymphomas, diffuse 

large B-cell lymphoma (DLBCL) and chronic lymphocytic leukaemia (CLL). In CLL mutations in 

NOTCH1, SF3B1, ATM, BIRC3 and TP53 have been recognised as mutations of potential clinical 

relevance by the World Health Organisation in their latest update31. Moreover, the presence of 

TP53 mutations or deletions of chromosome 17 encompassing TP53, impact choice of therapy as 

patients with these aberrations respond poorly to chemo(immuno)therapy but have improved 

clinical outcomes when treated with nonchemotherapeutic agents269. In DLBCL, a recent study 

which defined the landscape of 150 genetic drivers and integrated the results of mutational 

profiling, gene expression, CRISPR screens and clinical outcomes, developed a genomic risk model 

that outperformed current established methods: cell of origin, the International Prognostic Index 

comprising clinical variables, and dual MYC and BCL2 expression270. The genomic risk model was 

able to identify those patients that would benefit from standard therapy and potentially inform 

sensitivity to currently available therapies270. In SMZL, however, the picture is not as clear. Similar 

informative genomic risk models of SMZL are not available to inform tumour profiling and optimal 

therapeutic intervention. 

This project aimed to construct a detailed characterisation of the genomic landscape of SMZL 

through the identification of somatic variants in unmatched tumour samples across a panel of 

genes hypothesised to be of importance in SMZL and other mature B-cell malignancies. The 

cohort used represented the largest SMZL cohort assessed to date and enabled exploration of the 

clinical significance of genomic alterations by integrating relevant clinical data. In conjunction with 

the analysis of somatic variants, an important part of this project also centred around the 



Definitions and Abbreviations 

173 

bioinformatics processing and optimisation of a bioinformatics pipeline for tumour only samples 

as no gold standard or best practice for processing this type of data had been established 

previously.  

9.1.2 Considerations when sequencing and processing tumour only samples 

Tumour heterogeneity in cancer samples makes the bioinformatics processing more complex than 

for germline samples. This heterogeneity requires many of the algorithms used in germline tissue 

to be modified to successfully identify variants found at low frequencies in tumour samples. This 

project highlighted the importance of choosing the right tools to process the data particularly 

when it came to choosing a variant caller. For unmatched tumour samples, GATKs haplotype 

caller proved the best option as it removed at least 60% of false positives without compromising 

sensitivity. However, a more robust analysis comparing GATKs haplotypecaller to somatic variant 

callers is desirable, with data that has been orthogonally validated. Moreover, there is still a need 

for a gold standard pipeline for processing unmatched tumour samples. Ideally, all cancer 

genomic studies should be conducted in parallel with matching germline tissue, however, in rarer 

cancers such as SMZL, obtaining even the tumour samples can prove difficult and necessitate the 

methods developed in this thesis. 

Preliminary sequencing results investigated here identified a considerable burden of false positive 

variant calls that were not excluded with the initial filtering strategy. Due to the large number of 

samples and variants, additional sequencing was not feasible or cost effective. Manual review of 

sequencing data using the Integrative Genome viewer (IGV) represented the most accessible 

method for validating results, however this approach was highly time-consuming and could be 

subject to human error. Nevertheless, these validated data enabled the development of an 

unsupervised machine learning algorithm to automate the review of variants for digital 

stratification into true positives and false positives. The model demonstrated good performance 

particularly with libraries prepared using the Haloplex HS kits, compared to the TruSeq kits. We 

concluded that this was attributable to the amplicon design, as the Haloplex kits, despite being 

sequenced at lower depth, had more overlapping amplicons than the TruSeq design. Ultimately, 

the machine learning (ML) model was used as a triage tool rather than a strict filter as it required 

further fine-tuning to improve its sensitivity. The inclusion of the unique molecular identifiers also 

increased the confidence when identifying variants with lower depth, as the reads belonged to a 

unique biological molecule rather than a PCR duplicate. For future studies sequencing tumour 

only tissue, kits with unique molecular identifiers such as the HaploPlex HS kits represent a good 
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option for cleaner higher confidence data, as well as an amplicon design with as many overlapping 

amplicons as possible.  

9.1.3 Genomic landscape of SMZL 

Following application of the ML approach to filter noise sequencing data, a list of high-fidelity 

variants observed in SMZL tumours was available for analysis. Association with clinically relevant 

markers of patient outcome confirmed some of the key genomic signatures that had been 

previously implicated in SMZL. Mutations across a wide range of genes, for the most part, genes 

and pathways that had already been associated with SMZL were successfully identified55. Key 

pathways included marginal zone (MZ) B-cell development, NF-κB signalling, cell cycle control and 

epigenetic modifiers. Moreover, the prevalence of mutations within NOTCH2, KLF2, KMT2D, TP53 

and regulators of the NF-kB pathway (MYD88, TNFAIP3, TRAF3) were validated. The frequency of 

mutations in most genes was in line with what had been previously seen in published cohorts, 

with the exception of variant burden in CCND3 and KMT2D which were higher than expected. 

Furthermore, despite our targeted approach, the cohort size allowed us to identify new variants 

and two new mutation hotspots, one in KLF2 and another in CCND3. 

In the CCND3 gene 40% of variants were identified within a new gain-of-function mutation 

hotspot affecting the PEST domain. The mutation hotspot suggests a strong selection for these 

gain of functions variants that will increase the proliferative capacity of B-cells within the dark 

zone of the germinal centres196,198. Isolated mutations in CCND3, which lead to overexpression of 

cyclin D3, do not lead to a lymphoproliferative phenotype but they can in conjunction with other 

oncogenic factors (i.e. Burkitt’s lymphoma where it co-occurs with Myc-Igh translocations)198–200. 

CCND3 mutations have a high incidence in splenic diffuse red pulp lymphoma (SDRPL) and the 

presence of these mutations have even been suggested as a differential diagnostic marker 

between SMZL and SDRPL35,271 . However, the high prevalence of CCND3 in our data suggest that 

perhaps CCND3 mutations are not a good molecular marker to distinguish these entities. The high 

prevalence of mutations within CCND3 and KMT2D in the SMZL cohort also suggests a germinal 

centre origin. CCND3 plays a key role in the GC centre affinity maturation reactions and both 

CCND3 and KMT2D are frequently mutated within GC-derived lymphomas such as Burkitt’s 

lymphoma, follicular lymphomas (FL) and diffuse large B-cell lymphoma (DLBCL)196,272. Similarly, 

loss of function KMT2D mutations are characteristic of GC derived lymphomas such as FL and 

DLBCL186,273.  
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Findings detailed in Chapter 7, validated the importance of NF-ĸB dysregulation in SMZL tumours, 

a key target that could be useful in the development of new therapies. Currently there are five 

clinical trials274–278 assessing the utility of Bruton’s tyrosine kinase (BTK) and phosphoinositide 3-

kinase (PI3K) inhibitors. BTK is a component of the BCR signalling pathway and PI3K has a role in 

the BCR-mediated downstream activation of NF-κB279,280. However, participation in the trails was 

not based upon molecular biomarkers but on patients who were refractory to, or relapsed after, 

one or more prior therapies, usually including an anti-CD20 antibody55. 

The genomic analysis in this thesis was limited by the lack of germline tissue, and therefore only 

putative somatic variants can be put forward. The nature of the targeted approach also meant 

that there was a percentage of samples [19%, 61/321 patients] in which no putative somatic 

mutations were identified. It is likely that the gene panels are missing potential targets, and the 

lack of mutations could be attributed to the approach rather than the biology. These results 

highlight the need for more objective whole genome approaches in the study of SMZL especially 

with matched germline tissue. Furthermore, in the case of missense mutations, even with the use 

of predictive scores such as CADD, acquiring further evidence of their effect on proteins was 

difficult, and in key genes such as KLF2, CCND3, MYD88 and KMT2D, functional analyses are 

required to understand if and how these variations alter molecular pathways in SMZL. 

Methylation arrays allowed the identification of CNAs within a subset of samples and validated 

results from previously published cases. As expected, deletion of 7q was the most recurrent CNA 

and the minimally deleted region (MDR) identified was in concordance with other reported MDRs. 

Statistical analyses showed that, 7q deletions had no prognostic significance, however 7q 

deletions were found to be associated with a number of other biological features, most notably 

IGHV1-02*04 usage, KLF2 and NOTCH2 mutations, genomic complexity and short telomere length. 

Both NOTCH2 mutations and short telomere length were independent risk factors for time to first 

treatment. NOTCH2 had been previously associated with adverse clinical outcome49 while this is 

the first-time telomere length and its impact on survival have been assessed in SMZL. The results 

from our analysis show that as for CLL, short telomeres are associated with other poor prognostic 

clinical and genetic characteristics, translating to shorter survival for patients compared to those 

with longer telomeres281. Considering there are no established prognostic markers in SMZL, 

telomere length represents a viable candidate that could be used for risk stratification as well as 

monitoring of these patients. Moreover, the biological importance of other recurrent CNAs such 

as gain of 3q, 6q and 8q need to be explored further. Particularly patients with gains of 8q as this 

was found to be an independent risk factor for overall survival along with age and TP53 
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aberrations. As mentioned in section 8.5 the long arm of chromosome 8 harbours the proto-

oncogene c-MYC which could be a potential target of this gain. MYC tends to drive transformation 

through amplification245, however functional analyses are required to better understand how 

gains of 8q observed in SMZL correlate with amplification of the c-MYC gene.  

IGHV gene usage and somatic hypermutation (SHM) was another important biomarker examined 

in this study. In chronic lymphocytic leukaemia (CLL) SHM is a clinically relevant prognostic and 

predictive biomarker and it is implicated in defining the origin of the tumour249,250. According to 

the iwCLL guidelines269 CLL patients with unmutated genes (98% or more sequence homology to 

germline) show inferior outcome compared to those with mutated genes. Furthermore, those 

with mutated IGHV genes, particularly in combination with other favourable prognostic factors 

show excellent outcome following chemoimmunotherapy with fludarabine, cyclophosphamide 

and rituximab269. In SMZL, SHM may have similar implications and could provide clues towards the 

identification of the cell of origin which is still under debate. Moreover, very few cases showed no 

evidence of SHM, indicating that most cells probably do go through antigen exposure. In this 

study low levels of SHM were associated with worse overall survival but only in univariate 

analysis. This was further validated by transformed cases which had IGHV identity closer to 

germline than those that did not. Although the CLL cut-offs of mutated (<98% GI) and unmutated 

(≥98% GI) IGHV genes were somewhat arbitrary, our work does provide evidence of two distinct 

SMZL subtypes partly discriminated on the basis of IGHV mutational status. Cases with mutated 

IGHV genes were associated with MYD88 mutations, and both these markers were mutually 

exclusive of 7q deletions. These observations point to a possible utility of SHM in stratifying SMZL 

patients 

9.2 Future directions 

The work performed in this thesis has provided an in-depth look at the most frequently mutated 

genes, their somatic interactions and potential clinical utility across a targeted panel of genes. The 

current prognostic model for SMZL patients published by the European Society for Medical 

Oncology40 does not include molecular biomarkers but does acknowledge the potential utility of 

markers such as IGHV mutational status, NOTCH2 and KLF2 mutations, TP53 abnormalities and 

aberrant promoter methylation. Furthermore, the guidelines state that the model can aid in the 

discussion of treatment but is not validated as a tool to indicate treatment. We provide evidence 

of two potential genomic subgroups, one group characterised by 7q deletions, KLF2 and NOTCH2 

mutations and IGHV1-2*04 usage and a second group characterised by MYD88 mutations and 

mutated IGHV genes, with the latter group associated with better clinical outcomes. To improve 
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the current prognostic model and potentially include biomarkers implicated here, more clinical 

studies are required with treatment naïve patients and uniform treatment strategies with long 

follow up times and rich clinical data. This will require international collaboration to create high-

quality genomic datasets ideally with matched germline tissue.  

Methylation arrays like the ones used in this project are not optimised for precise identification of 

CNA breakpoints or structural variation (SVs). Experiments that use high-density arrays or WGS 

would provide a more granular view of not only the CNAs and SVs but would also give insights into 

the types of genomic complexity that define these patients. Genomic complexity points to a 

dysregulation of cell cycle control or DNA damage response pathways associated with poor 

survival in SMZL47 and other lymphomas282–284, including in the context of targeted therapies285,286. 

It would be interesting to compare targeted pathways in complex versus simple genomes and 

identify if there are any established driver behind genomic complexity, such as TP53 or ATM 

dysfunction, or if there are new drivers driving complexity in SMZL.  

This project did not assess aberrant promoter methylation in SMZL; however, the genomic results 

presented herein are to be integrated as part of a larger international study, focussing on the DNA 

methylation profiles in SMZL. This will build on the work developed by Arribas et al.247 where a 

subgroup of patients that showed high genome-wide promoter methylation (High-M) were 

associated with NOTCH2 mutations, 7q deletions, IGHV1-2 usage and inferior survival. This high-M 

group exhibited hypomethylation and high gene expression of genes involved in B-cell activation, 

NF-ĸB signalling and those encoding for components of the polycomb repressor complex 2 (PRC2). 

The aberrant methylation seems to play a role in the pathogenesis of the disease and the authors 

also provided evidence that treatment with demethylating agents could be useful in the 

treatment of High-M groups. The epigenetic study being carried out by a wider local collaborative 

team will aim to characterise the SMZL epigenome and compare it to other mature B-cell tumours 

and normal B-cells. This will help further define patient subgroups to improve differential 

diagnosis and provide insights into the cell or cells of origin.  

Another ongoing local project that will aid in the understanding of SMZL is the whole genome 

sequencing (WGS) of matched SMZL tumour samples. This will be only the second WGS study on 

SMZL and the first to use matched tissue. As stated earlier, the targeted approach limits our 

ability to discover new mutated genes and other potential genomic abnormalities. The current 

lack of matched-germline whole genome approaches precludes a meaningful analysis, not only of 

the somatic variation, but of the underpinning mutational signatures, the non-coding mutational 

landscape, the structural alterations, and regions of chromothripsis and kataegis. WGS has the 
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potential to identify a wide array of genomic alterations which could be used in prognostic models 

and to further understand the molecular pathogenesis of SMZL. Determining mutational 

signatures within the disease could also prove useful in trying to determine the cell origin and in 

helping to further delineate the two genomic subgroups identified within this work. 

In conclusion, the work outlined herein has improved our understanding of the biological basis of 

SMZL and the potential clinical implications with key findings being: 1) Genes KMT2D and CCND3 

were found mutated in a much higher number of cases than was expected; 2) KLF2 and CCND3 

harbour mutation hotspots which require functional validation but are predicted to affect protein 

function; 3) Evidence of SHM was found in the majority of cases, (only 8% showed no evidence of 

SHM); 4) Deletions of 7q were associated to IGHV1-2*04 usage, KLF2 and NOTCH2 mutations, 

short telomeres, and low levels of SHM; 5) Identification of two potential genomic subgroups, one 

group characterised by 7q deletions, KLF2 and NOTCH2 mutations and IGHV1-2*04 usage and a 

second group characterised by MYD88 mutations and mutated IGHV genes; 6) Validation of the 

prognostic impact of TP53 aberrations, NOTCH2 mutations and age of diagnosis and; 7) 

Identification of telomere length and gains of 3q and 8q as new potential prognostic factors. Most 

of these finding have a clear clinical utility, but ultimately there is still much work to do be done 

and a comprehensive multi-omic approach (genomics, transcriptomics, and epigenomics) will 

likely be the most successful in identifying patients for precision medicine (targeted treatments 

and clinical trials). Furthermore, the research community needs to continue to collaborate in 

collating all the resources and knowledge available to ultimately translate what we know about 

the molecular mechanisms on SMZL for direct patient benefit. 
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Supplementary materials 

Supplementary tables  

Supplementary Table 1.Bioinformatics approaches of studies included in the database. Studies are listed in 
chronological order. 

Study Bioinformatics Data Quality 

Rossi et al. (2011) 
PMID:21881048 

Extension / confirmation 

1. Database search to exclude SNPs.  

2. Variants present in matched germline excluded. 

3. Synonymous variants excluded. 

4. Recurrent variants excluded unless somatic origin 
confirmed. 

5. hg19 assembly 

NA 

Rossi et al. (2012) 
PMID: 22891273   

Discovery 

Extension / confirmation 

1. Aligned using BWA (v.0.5.0) with hg19 assembly. 

2. Confirmed somatic nonsynonymous tested in-silico using 
PolyPhen-2. 

3. Mutated genes verified for their presence in COSMIC and 
Cancer Gene Census database. 

* Mean depth 111x 

* At least 83% of target covered 
at 30x 

1. Automated and/or manual curation. 

2. Mutation Surveyor Version 3.97. 

3. Synonymous mutations, previously reported germline 
polymorphisms and changed in matched normal removed. 

4. Database search to exclude SNPs. 

* 99% Phred score ≥ 20 

* 96% Phred score ≥ 30 

Yan et al. (2012) 
PMID: 22102703 

Extension / confirmation 

1. Database search to exclude SNPs.  

2. hg19 assembly 
NA 

Kiel et al. (2012) 

PMID:22891276 

Discovery 

Extension / confirmation 

1. Mapping and variants calling using CGAtools v1.3.0. 

2. Downstream analysis with custom PERL processing 
routines. 

3. Database search to exclude SNPs. 

4. hg19 assembly 

* 97.6% genome coverage 

* 96.4% fully called exome 
coverage 

* median genomic sequencing 
depth > 80x in all samples 

Parry et al. (2013) 

PMID:24349473 

Discovery 

1. PCR duplicates and reads mapping to multiple locations 
removed. 

2. Variants called using Varscan 2.3.3 using 'somaticFilter' 
command to remove false positives.  

3. Annotated using Annovar software v2012Jun21. 

* Minimum depth 4 

* Minimum VAF 0.1 

* Mean depth 69x 

* Average of 82.2% of target 
sequences captured at 20x 
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4. Database search to exclude SNPs. 

5. hg19assembly 

Martinez et al. (2014) 

PMID:24296945 

Discovery 

1. Reads trimmed until base quality was > 10. 

2. Mapped with Genome Multitool and BFAST. 

3. PCR duplicates and reads mapping to multiple locations 
removed. 

4. SAMtools and RAMSES used to call variants. Annovar 
used for annotation and snpEff for effect prediction. 

5. Database search to exclude SNPs. 

6. hg19 assembly 

* Mean coverage 128.62x 

* Average of 90% of targeted 
bases captured at 15X 

Parry et al. (2015) 

PMID:25779943 

Extension / confirmation 

1. Independent analysis of variant by two different entities 

2. hg19 assembly 

* Mean depth 297x 

* Average of 85% of target 
bases captured at > 50x 

Piva et al. (2015) 

PMID: 25283840 

Extension / confirmation 

1. Automated and/or manual curation. 

2. Compared to corresponding germline using the Mutation 
Surveyor Version 3.97 software package (SoftGenetics). 

3. Synonymous mutations, previously reported germline 
polymorphisms and changed in matched normal removed. 

4. hg19 assembly 

NA 

Peveling-Oberhag, et al. 
(2015) 

PMID:26498442 

Discovery 

Extension / confirmation 

1. Mapping and variant calling using Bioscope v1.2. 

2. Annotation using NGS-SNP using EMSEMBLE v61 
database 

3. Intronic, UTR and synonymous mutations removed. 

4. Low quality SNPs filtered out (Bioscope mean quality). 

5. Manual review by two independent observers using 
integrative genomics viewer.  

6. hg19 assembly 

* Minimum coverage 20x 

* Minimum VAF 0.1 

Clipson et al. (2015) 

PMID:25428260 

Discovery 

Extension / confirmation 

1. Aligned using BWA algorithm (hg19 assembly). 

2. CaVEMan, Pindel and in-house algorithm used in variant 
calling. 

3. Post-processing filters applied to remove poor quality 
variants. 

4. Database search to exclude SNPs. 

NA 
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Spina et al. (2016) 

PMID:27335277 

Comparison 

1. Aligned using BWA v.0.6.2 software (hg19 assembly) 

2. Variants calling using GATK 

3. Non-synonymous variants considered if: 

• Absent from dbSNP 

• Absent in normal DNA 

• represented in at least 2 forward and reverse 
reads 

• VAF > 0.1 

* Mean depth 369x 

* Average of 92% of target 
bases captured at > 30x 

Campos-Martin et al. 
(2017) 

PMID:28522570 

Extension / confirmation 

NA NA 

Jallades et al. (2017) 

PMID:28751561 

Comparison 

1. Image analysis and variant calling using CASAVA1.8.2. 

2. Annotation using IntegraGen in house pipeline. 

3. Database search to exclude SNPs. 

4. hg19 assembly 

NA 

Pillonel et al. (2018) 

PMID:29556019 

Comparison 

1. Variant calling using plug-in v5.2 IonTorrent software 
suite. 

2. Annotation using IonReporter Software. 

3. Filters applied: 

• phred-based quality > 50 

• Strand bias ≤ 0.75 

• Reads supporting variants 

• ≥ 10 

• VAF > 0.05 

• Include only synonymous 

• exonic and splicing 

4. Database search to exclude SNPs. 

5. Manual review using integrative genomics viewer  

6. GRCh37 assembly 

* Mean depth 1400x 
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Supplementary Table 2. Assessed cases in 20 most mutated genes in SMZL database. Columns in green represent the number of cases across the 14 studies in which a specific gene 
(column 1) was assessed. The columns in orange, tally the total number of assessed cased and reports the number of mutations recorded for each gene to calculate the 
mutational frequency (number of mutated cases/ total number of assessed cases). 

Genes  
Rossi 
et.al, 
2011 

Rossi 
et.al, 
2012 

Yan et.al, 
2012 

Kiel et.al, 
2012* 

Parry 
et.al, 
2013 

Martinez 
et.al, 
2014 

Parry 
et.al, 
2015 

Pevelling 
et.al, 
2015 

Piva 
et.al, 
2015 

Clipson 
et.al, 
2015 

Spina 
et.al, 
2016 

Campos 
et.al, 
2017 

Jallades 
et.al, 
2017 

Pillonel 
et.al, 
2018 

# cases # mut 
Mut. 
Freq. 

NOTCH2 0 117 0 93 7 31 175 2 0 3 32 84 46 12 602 123 0.20 

KLF2 0 8 0 0 7 15 175 2 96 112 32 84 46 12 589 121 0.21 

TNFAIP3 101 117 57 0 7 15 175 2 0 3 32 0 46 12 567 75 0.13 

TP53 0 117 0 0 7 15 175 2 0 3 32 0 46 12 409 60 0.15 

MYD88 101 117 57 0 7 15 175 2 0 3 32 0 46 12 567 43 0.08 

TRAF3 101 117 0 0 7 15 175 2 0 3 - 0 46 12 478 36 0.08 

KMT2D 0 117 0 0 7 15 175 2 0 3 32 0 0 12 363 33 0.09 

IGLL5 0 8 0 0 7 15 175 2 0 3 - 0 0 12 222 31 0.14 

SPEN 0 117 0 0 7 15 175 2 0 3 32 0 46 12 409 31 0.08 

CARD11 101 117 57 0 7 15 175 2 0 3 32 0 0 12 521 27 0.05 

NOTCH1 0 117 0 0 7 15 175 2 0 3 32 0 46 12 409 24 0.06 

CCND3 0 8 0 0 7 15 175 2 0 3 - 0 46 12 268 18 0.07 

IKBKB 101 117 0 0 7 15 175 2 0 3 32 0 46 12 510 18 0.04 

BIRC3 101 8 0 0 7 15 175 2 0 3 - 0 46 12 369 17 0.05 

ATM 0 8 0 0 7 15 175 2 0 3 - 0 0 12 222 15 0.07 

CACNA1H 0 8 0 0 7 15 175 2 0 3 - 0 0 0 210 15 0.07 

CREBBP 0 8 0 0 7 15 175 2 0 3 32 0 46 12 300 15 0.05 

DNAH10 0 8 0 0 7 15 175 2 0 3 - 0 0 0 210 15 0.07 

FAT3 0 8 0 0 7 15 175 2 0 3 - 0 0 0 210 15 0.07 

FAT4 0 8 0 0 7 15 175 2 0 3 - 0 0 12 222 15 0.07 

PRKDC 0 8 0 0 7 15 175 2 0 3 - 0 0 0 210 15 0.07 
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Supplementary Table 3. Summary of HaploPlex HS kits used for library preparation. Genes targeted by 
HaloPlex HS Enrichment kits, location (interval) in the genome (hg19) and the number of regions 
or amplicons that were used for each gene or region. The genes highlighted in pink are those that 
differed between kits.  

Target gene 

SMZL kit-17005-1495007299 (Kit 1) B-cell kit v17005-1521455344 (kit 2) 

Interval Regions Interval Regions 

ARID1A chr1:27022512-27108611 21 chr1:27022512-27108611 21 

ATM chr11:108093200-108239839 64 chr11:108093200-108239839 64 

BCOR - - chrX:39909057-40036592 19 

BCL10 chr1:85731449-85743781 4 - - 

BIRC3 chr11:102188171-102210145 12 chr11:102188171-102210145 12 

BRAF_EX15 chr7:140453075-140453193 1 chr7:140453075-140453193 1 

CARD11 chr7:2945700-3083589 26 chr7:2945700-3083589 26 

CCND3 chr6:41902661-42018105 11 chr6:41902661-42018105 11 

CD79A chr19:42381180-42385449 4 chr19:42381180-42385449 4 

CD79B chr17:62006088-62009724 6 chr17:62006088-62009724 6 

CDH23 chr10:73156681-73575714 75 chr10:73156681-73575714 75 

CHD2 chr15:93426516-93571247 45 chr15:93426516-93571247 45 

CREBBP chr16:3775045-3930737 31 chr16:3775045-3930737 31 

CXCR4 chr2:136871909-136875745 3 chr2:136871909-136875745 3 

DCHS1 chr11:6642544-6677095 21 - - 

DDX3X chrX:41192551-41223735 21 chrX:41192551-41223735 21 

EGR2 chr10:64571746-64679670 10 chr10:64571746-64679670 10 

EZH2EX12 chr7:148513776-148513870 1 chr7:148513776-148513870 1 

EZH2EX16 chr7:148508717-148508812 1 chr7:148508717-148508812 1 

EZH2EX18 chr7:148506402-148506482 1 chr7:148506402-148506482 1 

FBXW7 chr4:153242400-153457263 15 chr4:153242400-153457263 15 

FLNC chr7:128470421-128499338 47 chr7:128470421-128499338 47 

ID3 chr1:23884399-23886295 3 chr1:23884399-23886295 3 

IDH2EX4 chr15:90631819-90631979 1 chr15:90631819-90631979 1 

IGLL5 chr22:23229949-23238297 3 - - 

JAK3 chr19:17935579-17958890 24 chr19:17935579-17958890 24 

KDM2B chr12:121866890-122018930 26 chr12:121866890-122018930 26 

KLF2 chr19:16435618-16438695 3 chr19:16435618-16438695 3 

KMT2D chr12:49412748-49453567 55 chr12:49412748-49453567 55 

KRAS chr12:25357713-25403880 7 chr12:25357713-25403880 7 
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Target gene 

SMZL kit-17005-1495007299 (Kit 1) B-cell kit v17005-1521455344 (kit 2) 

Interval Regions Interval Regions 

MAP2K1 chr15:66679145-66784660 12 chr15:66679145-66784660 12 

MAP3K14 chr17:43340475-43394440 16 chr17:43340475-43394440 16 

MAP3K6 chr1:27681659-27693393 27 - - 

MED12 - - chrX:70338395-70362314 45 

MYD88 chr3:38179959-38184523 4 chr3:38179959-38184523 4 

NFKBIE chr6:44225893-44233535 6 chr6:44225893-44233535 6 

NOTCH1EX13 chr9:139408961-139409154 1 - - 

NOTCH1EX26 chr9:139399125-139399556 1 chr9:139399125-139399556 1 

NOTCH1EX27 chr9:139397634-139397782 1 chr9:139397634-139397782 1 

NOTCH1EX28 chr9:139396724-139396940 1 chr9:139396724-139396940 1 

NOTCH1EX3 chr9:139418168-139418431 1 - - 

NOTCH1EX31 chr9:139395003-139395299 1 - - 

NOTCH1EX34_3'UT

R 

chr9:139388896-139392010 1 chr9:139388896-139392010 1 

NOTCH1EX4 chr9:139417301-139417640  1 - - 

NOTCH2 chr1:120454166-120612327 37 chr1:120454166-120612327 37 

NOTCH2EX34+UTR chr1:120457806-120458167 1 chr1:120454176-120459317 1 

NRAS chr1:115247075-115259525 7 chr1:115247075-115259525 7 

P53 chr17:7579838-7590856 2 chr17:7579838-7590856 2 

PAX5NONCODING chr9:37368940-37373593 1 chr9:37368940-37373593 1 

POT1 chr7:124462430-124570047 23 chr7:124462430-124570047 23 

PRKDC chr8:48685659-48872753 86 chr8:48685659-48872753 86 

PTPRD chr9:8314236-10612733 53 chr9:8314236-10612733 53 

RHOA chr3:49396559-49450441 10 chr3:49396559-49450441 10 

RPS15 chr19:1438348-1440593 1 chr19:1438348-1440593 1 

SAMHD1 chr20:35518622-35580256 17 chr20:35518622-35580256 17 

SETD1B chr12:122242075-122270572 17 - - 

SETD2 chr3:47057888-47205477 25 chr3:47057888-47205477 25 

SF3B1EX14 chr2:198267280-198267550 1 chr2:198267280-198267550 1 

SF3B1EX15 chr2:198266709-198266854 1 chr2:198266709-198266854 1 

SF3B1EX16 chr2:198266466-198266612 1 chr2:198266466-198266612 1 

SF3B1EX18 chr2:198265439-198265660 1 chr2:198265439-198265660 1 

SPEN chr1:16174349-16266965 16 chr1:16174349-16266965 16 
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Target gene 

SMZL kit-17005-1495007299 (Kit 1) B-cell kit v17005-1521455344 (kit 2) 

Interval Regions Interval Regions 

STAT3EX21 chr17:40474299-40474512 1 chr17:40474299-40474512 1 

TCF3 chr19:1609279-1652614 19 chr19:1609279-1652614 19 

TET2 chr4:106067022-106200983 13 chr4:106067022-106200983 13 

TNFAIP3 chr6:138188315-138204461 9 chr6:138188315-138204461 9 

TNFRSF14 chr1:2487068-2497071 6 chr1:2487068-2497071 6 

TP53 chr17:7565087-7590878 14 chr17:7565087-7590878 14 

TRAF3 chr14:103243803-103377847 15 chr14:103243803-103377847 15 

U2AF1 chr21:44513055-44527707 4 - - 

XPO1EX15 chr2:61719460-61719616 1 chr2:61719460-61719616 1 

XPO1EX16 chr2:61719170-61719333 1 chr2:61719170-61719333 1 
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Supplementary Table 4. List of annotations added to variants. 

Header Definition  

Chr Chromosome number (hg38) 

Start Position where variant starts (hg38) 

End Position where variant ends (hg38) 

Ref Reference allele 

Alt Alternative or mutant allele 

Func.refGene 
Regions (e.g., exonic, intronic, non-coding RNA)) that one variant hits 
according to RefGene 

Gene.refGene Gene name associated with variant according to RefGene 

GeneDetail.refGene 
Gene name, the transcript identifier and the sequence change in the 
corresponding transcript according to RefGene 

ExonicFunc.refGene 
Exonic variant function, e.g., nonsynonymous, synonymous, frameshift 
insertion according to RefGene 

AAChange.refGene 
Amino acid change according to RefGene e.g  
SAMD11:NM_152486:exon10:c.T1027C:p.W343R stands for gene name, 
Known RefSeq accession, region, cDNA level change, protein level change. 

avsnp144 dbSNP144 with allelic splitting and left-normalization 

gnomAD_genome_ALL 
Genome Aggregation Data in ALL populations. gnomAD genome 
collection (v2.0.1) 

gnomAD_genome_AFR 
Genome Aggregation Data in AFRICAN populations. gnomAD genome 
collection (v2.0.1) 

gnomAD_genome_AMR 
Genome Aggregation Data in AMERICAN populations. gnomAD genome 
collection (v2.0.1) 

gnomAD_genome_ASJ 
Genome Aggregation Data in ASHKENAZI JEW populations. gnomAD 
genome collection (v2.0.1) 

gnomAD_genome_EAS 
Genome Aggregation Data in EAST ASIAN populations. gnomAD genome 
collection (v2.0.1) 

gnomAD_genome_FIN 
Genome Aggregation Data in FINNISH populations. gnomAD genome 
collection (v2.0.1) 

gnomAD_genome_NFE 
Genome Aggregation Data in NON FINNISH populations. gnomAD 
genome collection (v2.0.1) 

gnomAD_genome_OTH 
Genome Aggregation Data in OTHER populations. gnomAD genome 
collection (v2.0.1) 

1000g2015aug_all 
Alternative allele frequency data in 1000 Genomes Project for autosomes 
in ALL populations. Based on 201508 collection v5b (based on 201305 
alignment) 

1000g2015aug_afr 
Alternative allele frequency data in 1000 Genomes Project for autosomes 
in AFRICAN population. Based on 201508 collection v5b (based on 
201305 alignment) 

1000g2015aug_amr 
Alternative allele frequency data in 1000 Genomes Project for autosomes 
in AD MIXED AMERICAN population. Based on 201508 collection v5b 
(based on 201305 alignment) 

1000g2015aug_sas 
Alternative allele frequency data in 1000 Genomes Project for autosomes 
in SOUTH ASIAN population. Based on 201508 collection v5b (based on 
201305 alignment) 

1000g2015aug_eur 
Alternative allele frequency data in 1000 Genomes Project for autosomes 
in EUROPEAN population. Based on 201508 collection v5b (based on 
201305 alignment) 
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Header Definition  

1000g2015aug_eas 
Alternative allele frequency data in 1000 Genomes Project for autosomes 
in EAST ASIAN population. Based on 201508 collection v5b (based on 
201305 alignment) 

esp6500siv2_all 
Alternative allele frequency in ALL subjects in the NHLBI-ESP project with 
6500 exomes, including the indel calls and the chrY calls 

esp6500siv2_ea 
Alternative allele frequency in EROPEAN AMERICAN subjects in the 
NHLBI-ESP project with 6500 exomes, including the indel calls and the 
chrY calls 

ExAC_ALL 
Exome Aggregation Consortium Data. v0.3 nonTCGA data ALL individuals. 
Version 0.3. Left normalization done. 

ExAC_AFR 
Exome Aggregation Consortium Data. v0.3 nonTCGA data AFRICAN 
individuals. Version 0.3. Left normalization done. 

ExAC_AMR 
Exome Aggregation Consortium Data. v0.3 nonTCGA data AMERICAN 
individuals. version 0.3. Left normalization done. 

ExAC_EAS 
Exome Aggregation Consortium Data. v0.3 nonTCGA data EASTERN 
ASIAN individuals. version 0.3. Left normalization done. 

ExAC_FIN 
Exome Aggregation Consortium Data. v0.3 nonTCGA data FINNISH 
individuals. version 0.3. Left normalization done. 

ExAC_NFE 
Exome Aggregation Consortium Data. v0.3 nonTCGA data NON-FINNISH 
EUROPEAN individuals. version 0.3. Left normalization done. 

ExAC_OTH 
Exome Aggregation Consortium Data. v0.3 nonTCGA data OTHER 
individuals. version 0.3. Left normalization done. 

ExAC_SAS 
Exome Aggregation Consortium Data. v0.3 nonTCGA data SOUTH ASIAN 
individuals. version 0.3. Left normalization done. 

esp6500siv2_aa 
Alternative allele frequency in AFRICAN AMERICAN subjects in the NHLBI-
ESP project with 6500 exomes, including the indel calls and the chrY calls 

cosmic70 
ID in the Catalogue of Somatic Mutations in Cancer. COSMIC database 
version 68 on WGS data.  

CLINSIG 
Clinical significance : 0 - unknown, 1 - untested, 2 - non-pathogenic, 3 - 
probable-non-pathogenic, 4 - probable-pathogenic, 5 - pathogenic, 6 - 
drug-response, 7 - histocompatibility, 255 - other 

CLNDBN Variant disease name 

CLNACC Variant accession and versions  

CLNDSDB Variant disease database name 

CLNDSDBID Variant disease database ID 

HRC_AF 
Haplotype reference consortium: Non-reference allele frequency across 
all HRC.r1 cohorts (AC/AN) 

HRC_AC 
Haplotype reference consortium: Non-reference allele count across all 
HRC.r1 cohorts 

HRC_AN 
Haplotype reference consortium: Non-reference allele number across all 
HRC.r1 cohorts 

HRC_non1000G_AF 
Haplotype reference consortium: Non-reference allele frequency across 
all HRC.r1 cohorts excluding 1000G samples 
(AC_EXCLUDING_1000G/AN_EXCLUDING_1000G) 

HRC_non1000G_AC 
Haplotype reference consortium: Non-reference allele count across all 
HRC.r1 cohorts excluding 1000G samples 

HRC_non1000G_AN 
Haplotype reference consortium: Non-reference allele number across all 
HRC.r1 cohorts excluding 1000G samples 

Kaviar_AF 
170 million Known VARiants from 13K genomes and 64K exomes in 34 
projects: Non-reference allele frequency across all cohorts (AC/AN) 

Kaviar_AC 
170 million Known VARiants from 13K genomes and 64K exomes in 34 
projects: Non-reference allele count across all cohorts 
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Header Definition  

Kaviar_AN 
170 million Known VARiants from 13K genomes and 64K exomes in 34 
projects: Non-reference allele number across all cohorts 

nci60 Human tumor cell line panel exome sequencing allele frequency data 

SIFT_score 
Score predicting whether an amino acid substitution affects protein 
function. Score ranges from 0.0 (deleterious) to 1.0 (tolerated). Scores 
from dbNSFP version 3.0a. 

SIFT_pred 
D: Deleterious (sift<=0.05); 
T: tolerated (sift>0.05) 

Polyphen2_HDIV_score 

Score predicting possible impact of an amino acid substitution on the 
structure and function of a human protein. Compiled from all damaging 
alleles with known effects on the molecular function causing human 
Mendelian diseases. This score represents the probability that a 
substitution is damaging. score ranges from 0.0 (tolerated) to 1.0 
(deleterious). Scores from dbNSFP version 3.0a. 

Polyphen2_HDIV_pred 
D: Probably damaging (pp2_hdiv≥0.957),  
P: Possibly damaging (0.453≤pp2_hdiv≤0.956),  
B: Benign (pp2_hdiv≤0.452) 

Polyphen2_HVAR_score 

Score predicting possible impact of an amino acid substitution on the 
structure and function of a human protein. consisted of all human 
disease-causing mutations from UniProtKB, together with common 
human nsSNPs (MAF>1%) without annotated involvement in disease, 
which were treated as non-damaging. This score represents the 
probability that a substitution is damaging. score ranges from 0.0 
(tolerated) to 1.0 (deleterious). Scores from dbNSFP version 3.0a. 

Polyphen2_HVAR_pred 
D: Probably damaging (pp2_hdiv≥0.957),  
P: Possibly damaging (0.453≤pp2_hdiv≤0.956),  
B: Benign (pp2_hdiv≤0.452) 

LRT_score 
Likelihood ratio test for significantly conserved amino acid positions 
within the human proteome. Scores from dbNSFP version 3.0a. 

LRT_pred 

D: Deleterious;  
N: Neutral; 
U: Unknown 
Lower scores are more deleterious 

MutationTaster_score 

MutationTaster employs a Bayes classifier to eventually predict the 
disease potential of an alteration. The Bayes classifier is fed with the 
outcome of all tests and the features of the alterations and calculates 
probabilities for the alteration to be either a disease mutation or a 
harmless polymorphism. For this prediction, the frequencies of all single 
features for known disease mutations/polymorphisms were studied in a 
large training set composed of >390,000 known disease mutations from 
HGMD Professional and >6,800,000 harmless SNPs and Indel 
polymorphisms from the 1000 Genomes Project (TGP). Scores from 
dbNSFP version 3.0a. 

MutationTaster_pred 

A: (""disease_causing_automatic"");  
D: (""disease_causing"");  
N: (""polymorphism [probably harmless]"");  
P: (""polymorphism_automatic[known to be harmless]" 
higher values are more deleterious" 

MutationAssessor_score 
This server predicts the functional impact of amino-acid substitutions in 
proteins, such as mutations discovered in cancer or missense 
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Header Definition  
polymorphisms. The functional impact is assessed based on evolutionary 
conservation of the affected amino acid in protein homologs. The method 
has been validated on a large set (60k) of disease associated (OMIM) and 
polymorphic variants. Scores from dbNSFP version 3.0a. 

MutationAssessor_pred 

H: high;  
M: medium;  
L: low;  
N: neutral.  
H/M means functional and L/N means non-functional higher values are 
more deleterious 

FATHMM_score 

Score predicting the functional effects of protein missense mutations by 
combining sequence conservation within hidden Markov models (HMMs), 
representing the alignment of homologous sequences and conserved 
protein domains, with "pathogenicity weights", representing the overall 
tolerance of the protein/domain to mutations. Scores from dbNSFP 
version 3.0a. 

FATHMM_pred 
D: Deleterious;  
T: Tolerated; 
lower values are more deleterious 

PROVEAN_score 
Score predicting whether an amino acid substitution or indel has an 
impact on the biological function of a protein. 

PROVEAN_pred 
D: Deleterious;  
N: Neutral 
higher values are more deleterious 

VEST3_score 
Machine learning method that predicts the functional significance of 
missense mutations based on the probability that they are pathogenic. 
Higher values are more deleterious. Scores from dbNSFP version 3.0a. 

CADD_raw 

Scores the deleteriousness of single nucleotide variants as well as 
insertion/deletions variants in the human genome. Raw scores come 
straight from the model, and are interpretable as the extent to which the 
annotation profile for a given variant suggests that the variant is likely to 
be "observed" (negative values) vs "simulated" (positive values). These 
values have no absolute unit of meaning and are incomparable across 
distinct annotation combinations, training sets, or model parameters. 
However, raw values do have relative meaning, with higher values 
indicating that a variant is more likely to be simulated (or "not observed") 
and therefore more likely to have deleterious effects. Scores from 
dbNSFP version 3.0a. 

CADD_phred 

Normalised CADD scores. For example, reference genome single 
nucleotide variants at the 10th-% of CADD scores are assigned to CADD-
10, top 1% to CADD-20, top 0.1% to CADD-30, etc. The results of this 
transformation are the "scaled" CADD scores. Scores from dbNSFP 
version 3.0a. 

DANN_score 
Deleterious Annotation of genetic variants using Neural Networks. Higher 
values are more deleterious. Scores from dbNSFP version 3.0a. 

fathmm-MKL_coding_score 
Predicting the effects of both coding and non-coding variants using 
nucleotide-based HMMs 

fathmm-MKL_coding_pred 
D: Deleterious ≥ 0.5 
T: Tolerated < 0.5 

MetaSVM_score 
Score to integrate nine deleteriousness prediction scores and maximum 
minor allele frequency for more accurate and comprehensive evaluation 
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Header Definition  
of deleteriousness of missense mutations using Support Vector Machine 
(SVM). Scores from dbNSFP version 3.0a. 

MetaSVM_pred 
D: Deleterious;  
T: Tolerated; 
higher scores are more deleterious 

MetaLR_score 

Score to integrate nine deleteriousness prediction scores and maximum 
minor allele frequency for more accurate and comprehensive evaluation 
of deleteriousness of missense mutations using Logistic Regression (LR). 
Scores from dbNSFP version 3.0a. 

MetaLR_pred 
D: Deleterious;  
T: Tolerated;  
higher scores are more deleterious 

integrated_fitCons_score 

Fitness consequences of functional annotation, integrates functional 
assays (such as ChIP-Seq) with selective pressure inferred using the 
INSIGHT method. The result is a score ρ in the range [0.0-1.0] that 
indicates the fraction of genomic positions evidencing a particular pattern 
(or "fingerprint") of functional assay results, that are under selective 
pressure. Higher scores are more deleterious. Scores from dbNSFP 
version 3.0a. 

GERP++_RS 

Identifies constrained elements in multiple alignments by quantifying 
substitution deficits. These deficits represent substitutions that would 
have occurred if the element were neutral DNA, but did not occur 
because the element has been under functional constraint. Thus, positive 
scores represent a substitution deficit (which would be expected for sites 
under selective constraint), while negative scores represent a substitution 
surplus. Higher scores are more deleterious. Scores from dbNSFP version 
3.0a. 

phyloP7way_vertebrate 
Phylogentic p-values calculated from a LRT, score-based test, GERP test 
Use 7 species. Higher scores are more deleterious. 

phyloP20way_mammalian 
Phylogenetic hidden Markov model (phylo-HMM) Use 20 species. Higher 
scores are more deleterious. 

phastCons7way_vertebrate 
Identifies evolutionarily conserved elements in a multiple alignment, 
given a phylogenetic tree. A phylogenetic hidden Markov model (phylo-
HMM) Use 7 species. Higher scores are more deleterious 

phastCons20way_mammalian 
Identifies evolutionarily conserved elements in a multiple alignment, 
given a phylogenetic tree. It is based on phylogenetic hidden Markov 
model (phylo-HMM). Higher scores are more deleterious. 

SiPhy_29way_logOdds 
Probablistic framework, HMM Use 29 species. Higher scores are more 
deleterious. Scores from dbNSFP version 3.0a. 

Interpro_domain 
One of a collection of amino acid sequences of identifiable features in 
known proteins that can be compared to unknown protein sequences. 
See InterPro at EMBL/EBI 

dbscSNV_ADA_SCORE These are ensemble scores, derived from the outputs of several machine 
learning algorithms.  Both are scaled from 0 and 1, and higher values 
indicate a greater probability that the variant will alter the splicing of the 
gene. The developers suggest using 0.6 as a threshold value for 
dichotomous effects. 

dbscSNV_RF_SCORE 

AAchange Amino acid change 

FuentesFalsePositive 
Genes found in Fuentes false positive list. (Detecting false positive signals 
in exome sequencing, 2013) 
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Supplementary Table 5. Detailed batch information. The mean target coverage was calculated using the 
DepthOfCoverage tool. Number of variants called refers to the raw number of variants in the 
annotated files before any filtering.  

Sequence 
batch 

Sample ID Diagnosis 
Included 
genomic 
analysis 

Target 
enrichment 

kit 

No. 
variants 
called 

Mean 
target 

coverage 

% 
bases 
> 15X 

1 2_S1 CBL-MZ NO HS kit 1 568 370.92 90.90 

1 3_S2 CBL-MZ NO HS kit 1 622 426.27 91.40 

1 4_S3 SMZL YES HS kit 1 579 517.63 91.60 

1 6_S4 CBL-MZ NO HS kit 1 650 365.17 91.50 

1 7_S5 CBL-MZ  NO HS kit 1 622 488.56 91.80 

1 8_S6 CBL-MZ NO HS kit 1 650 445.98 91.50 

1 9_S7 SMZL YES HS kit 1 569 293.72 89.60 

1 10_S8 SMZL YES HS kit 1 638 429.86 91.20 

1 12_S9 SMZL YES HS kit 1 462 378.68 83.80 

1 15_S10 CBL-MZ NO HS kit 1 659 413.45 91.50 

1 18_S11 CBL-MZ NO HS kit 1 574 467.51 91.20 

1 21_S12 SMZL YES HS kit 1 569 352.30 90.70 

1 22_S13 SMZL YES HS kit 1 565 296.47 89.60 

1 L37_S14 SMZL YES HS kit 1 600 228.24 91.00 

1 L40_S15 CLL NO HS kit 1 556 417.25 90.60 

1 4683_S16 SMZL YES HS kit 1 605 414.84 91.30 

1 9641_S17 SMZL YES HS kit 1 618 377.51 91.00 

1 11731_S18 SMZL YES HS kit 1 637 309.33 90.80 

1 12600_S19 SMZL YES HS kit 1 553 269.86 90.30 

1 12603_S20 SMZL YES HS kit 1 579 377.83 91.00 

1 L009_02 SMZL YES HS kit 1 648 322.51 91.00 

1 L011_03 SMZL YES HS kit 1 536 308.48 91.20 

1 L012_04 SMZL YES HS kit 1 685 383.03 91.60 

1 L017_06 SMZL YES HS kit 1 657 327.10 89.30 

1 L018_06 SMZL YES HS kit 1 615 331.58 91.50 

1 L019_06 SMZL YES HS kit 1 669 309.04 91.60 

1 L022_06 SMZL YES HS kit 1 613 149.51 90.60 

1 L023_07 SMZL YES HS kit 1 648 461.42 92.10 

1 L024_07 SMZL YES HS kit 1 642 428.08 91.90 

1 L025_07 SMZL YES HS kit 1 569 106.36 89.60 

1 L027_07 SMZL YES HS kit 1 557 304.71 91.00 

1 L029_07 SMZL YES HS kit 1 613 377.40 91.50 

1 L031_07 SMZL YES HS kit 1 658 453.04 91.30 

1 L034_08 SMZL YES HS kit 1 642 347.00 91.20 

1 L036_08 SMZL YES HS kit 1 557 401.24 91.40 

1 L037_08 SMZL YES HS kit 1 608 440.06 91.10 

1 L038_08 SMZL YES HS kit 1 606 356.72 91.40 

1 L043_08 SMZL YES HS kit 1 661 372.66 91.70 

1 L044_08 SMZL YES HS kit 1 607 354.63 91.30 

1 L048_09 SMZL YES HS kit 1 596 297.62 91.10 

1 L049_09_S30 SMZL NO HS kit 1 616 237.68 90.70 

1 L049_09_S31 SMZL YES HS kit 1 629 609.21 91.60 
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Sequence 
batch 

Sample ID Diagnosis 
Included 
genomic 
analysis 

Target 
enrichment 

kit 

No. 
variants 
called 

Mean 
target 

coverage 

% 
bases 
> 15X 

1 L050_09 unknown NO HS kit 1 623 370.92 91.30 

1 L051_09 SMZL YES HS kit 1 627 340.72 91.30 

1 L052_09 SMZL YES HS kit 1 540 260.77 90.40 

1 L060_09 SMZL YES HS kit 1 636 355.36 91.00 

1 L067_10 SMZL YES HS kit 1 613 458.00 91.20 

1 L069_10 SMZL YES HS kit 1 607 342.82 90.80 

1 L070_10 SMZL YES HS kit 1 636 437.95 91.60 

1 L071_10 SMZL YES HS kit 1 675 492.06 91.50 

1 L075_10 SMZL YES HS kit 1 554 524.28 91.50 

1 L076_10 SMZL YES HS kit 1 749 393.74 91.50 

1 L080_11 SMZL YES HS kit 1 639 395.29 91.30 

1 L082_11 SMZL YES HS kit 1 622 197.36 90.70 

1 L086_12 SMZL YES HS kit 1 626 280.62 90.00 

1 L088_12 SMZL YES HS kit 1 571 330.56 90.60 

1 L094_13 SMZL YES HS kit 1 579 321.79 90.60 

1 L096_13 SMZL YES HS kit 1 527 354.83 90.80 

1 L098_13_S59 SMZL YES HS kit 1 574 367.20 91.00 

1 L098_13_S60 SMZL NO HS kit 1 509 95.28 86.20 

1 L099_13 SMZL YES HS kit 1 685 360.54 91.00 

1 L104_14 SMZL NO HS kit 1 530 194.16 88.90 

2 11_S11 SMZL NO HS kit 1 802 345.12 91.50 

2 12_S12 CBL-MZ  NO HS kit 1 888 422.16 91.80 

2 19_S19 SMZL NO HS kit 1 858 294.73 91.20 

2 20_S20 SMZL NO HS kit 1 851 255.38 91.60 

2 21_S21 SMZL NO HS kit 1 871 249.74 91.60 

2 22_S22 unknown NO HS kit 1 859 337.86 92.20 

2 23_S23 unknown NO HS kit 1 897 224.14 91.70 

2 10_S10 SMZL NO HS kit 1 823 376.96 91.90 

2 1_S1 SMZL NO HS kit 1 813 197.18 89.80 

2 2_S2 SMZL NO HS kit 1 942 250.87 90.90 

2 3_S3 SMZL NO HS kit 1 851 316.42 90.90 

2 4_S4 SMZL YES HS kit 1 897 274.11 91.20 

2 5_S5 SMZL NO HS kit 1 873 369.56 91.70 

2 6_S6 SMZL NO HS kit 1 807 222.66 91.00 

2 7_S7 SMZL NO HS kit 1 792 368.47 92.00 

2 8_S8 SMZL NO HS kit 1 919 569.14 92.50 

2 9_S9 SMZL NO HS kit 1 768 379.35 91.90 

2 48_S48 SMZL NO HS kit 1 1042 286.18 92.00 

2 24_S24 SMZL NO HS kit 1 927 243.82 91.20 

2 25_S25 
possible 
SMZL NO 

HS kit 1 
905 294.63 91.60 

2 26_S26 not SMZL NO HS kit 1 854 289.03 91.40 

2 27_S27 SMZL YES HS kit 1 730 43.14 82.40 

2 28_S28 SMZL NO HS kit 1 929 127.43 86.80 

2 29_S29 SMZL YES HS kit 1 893 279.75 91.90 
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Sequence 
batch 

Sample ID Diagnosis 
Included 
genomic 
analysis 

Target 
enrichment 

kit 

No. 
variants 
called 

Mean 
target 

coverage 

% 
bases 
> 15X 

2 30_S30 SMZL NO HS kit 1 898 310.74 91.30 

2 31_S31 SMZL YES HS kit 1 582 132.00 41.70 

2 49_S49 SMZL NO HS kit 1 790 219.72 91.10 

2 50_S50 SMZL NO HS kit 1 847 318.03 91.70 

2 32_S32 SMZL YES HS kit 1 854 124.03 90.20 

2 33_S33 SMZL YES HS kit 1 703 82.49 41.70 

2 34_S34 SMZL YES HS kit 1 868 139.88 90.40 

2 35_S35 SMZL YES HS kit 1 992 72.62 88.60 

2 36_S36 SMZL YES HS kit 1 960 293.43 92.00 

2 37_S37 SMZL NO HS kit 1 884 280.82 91.80 

2 38_S38 SMZL NO HS kit 1 945 531.59 92.20 

2 39_S39 SMZL YES HS kit 1 828 318.58 91.70 

2 51_S51 SMZL NO HS kit 1 862 411.41 92.00 

2 40_S40 SMZL YES HS kit 1 842 167.98 90.60 

2 52_S52 SMZL NO HS kit 1 853 126.39 89.70 

2 53_S53 SMZL NO HS kit 1 839 208.65 91.30 

2 41_S41 SMZL NO HS kit 1 882 259.03 91.30 

2 42_S42 CBL-MZ NO HS kit 1 914 286.56 91.70 

2 43_S43 CBL-MZ NO HS kit 1 931 238.01 90.80 

2 44_S44 CBL-MZ NO HS kit 1 881 404.46 92.10 

2 45_S45 SMZL YES HS kit 1 912 352.00 91.70 

2 54_S54 CBL-MZ NO HS kit 1 1033 286.25 91.90 

2 46_S46 SMZL NO HS kit 1 855 602.65 92.40 

2 47_S47 SMZL NO HS kit 1 926 349.12 91.40 

2 13_S13 not SMZL NO HS kit 1 940 362.71 92.20 

2 14_S14 not SMZL NO HS kit 1 839 259.86 91.60 

2 15_S15 not SMZL NO HS kit 1 890 240.94 91.70 

2 16_S16 not SMZL NO HS kit 1 892 300.57 91.80 

2 17_S17 not SMZL NO HS kit 1 821 241.77 91.40 

2 18_S18 not SMZL NO HS kit 1 852 296.32 91.90 

3 774_5 not SMZL NO HS kit 1 328 26.04 64.00 

3 Kalpadakis_11 not SMZL NO HS kit 1 549 493.51 89.60 

3 Pangalis_32 unknown NO HS kit 1 442 79.13 82.20 

3 Pangalis_35 SMZL NO HS kit 1 439 137.88 85.60 

3 Pangalis_37 unknown NO HS kit 1 506 153.59 86.30 

3 Kalpadakis_L17 SMZL YES HS kit 1 507 188.66 87.10 

3 Kalpadakis_L21 SMZL YES HS kit 1 382 73.18 80.20 

3 Kalpadakis_L34 CBL-MZ NO HS kit 1 493 129.71 85.50 

3 3065GMG_S35 unknown NO HS kit 1 437 56.1 77.80 

3 BA1033_S29 unknown NO HS kit 1 378 110.94 84.30 

3 BG1121_S30 unknown NO HS kit 1 466 133.65 85.80 

3 RC0438_S21 unknown NO HS kit 1 485 117.27 84.40 

3 RBH_5274 not SMZL NO HS kit 1 486 173.5 86.40 

3 RBH_5359 SMZL YES HS kit 1 469 112.11 85.60 
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Sequence 
batch 

Sample ID Diagnosis 
Included 
genomic 
analysis 

Target 
enrichment 

kit 

No. 
variants 
called 

Mean 
target 

coverage 

% 
bases 
> 15X 

3 P13445_S36 
possible 
SMZL NO 

HS kit 1 
543 147.39 86.40 

3 P11977_S37 CBL-MZ NO HS kit 1 519 117.4 85.20 

3 P13925_S47 
possible 
SMZL NO 

HS kit 1 
537 156.38 86.40 

3 P7176_S41 CBL-MZ NO HS kit 1 505 124.67 85.60 

3 P11669_S42 SMZL  YES HS kit 1 422 53.62 77.70 

3 PA0329_047 unknown NO HS kit 1 459 131.37 84.90 

3 013_313 unknown NO HS kit 1 488 455.11 88.10 

3 005_320 unknown NO HS kit 1 511 332.41 88.10 

3 3_S24 unknown NO HS kit 1 644 3173.37 91.90 

3 006_PtN3 unknown NO HS kit 1 444 144.83 85.80 

3 9_S25 unknown NO HS kit 1 613 810.86 90.40 

3 011_PGB unknown NO HS kit 1 458 176.66 85.40 

3 12_S33 unknown NO HS kit 1 578 928.32 91.00 

3 016_00036 unknown NO HS kit 1 436 100.16 83.00 

3 17_S28 unknown NO HS kit 1 333 36.94 72.50 

3 018_AAA unknown NO HS kit 1 487 242.51 88.40 

3 130_S53 not SMZL NO HS kit 1 424 69.59 81.00 

3 148_S16 not SMZL NO HS kit 1 452 89.28 82.60 

3 164_S1 not SMZL NO HS kit 1 515 380.31 89.20 

3 282_S38 not SMZL NO HS kit 1 422 101.64 82.80 

3 443_S10 not SMZL NO HS kit 1 447 117.89 84.70 

3 491_S11 SMZL  YES HS kit 1 444 70.83 80.10 

3 515_S2 not SMZL NO HS kit 1 400 619.93 83.20 

3 587_S17 not SMZL NO HS kit 1 426 59.66 78.70 

3 589_S39 not SMZL NO HS kit 1 385 48.96 76.00 

3 606_S12 SMZL YES HS kit 1 439 139.04 84.90 

3 617_S3 SMZL YES HS kit 1 396 32.15 70.00 

3 622_S54 SMZL YES HS kit 1 278 179.62 69.20 

3 623_S55 SMZL YES HS kit 1 506 446.52 89.50 

3 638_S13 not SMZL NO HS kit 1 511 375.36 89.20 

3 667_S14 
possible 
SMZL NO 

HS kit 1 
459 208.38 86.30 

3 673_S4 SMZL YES HS kit 1 488 186.34 87.80 

3 698_S15 not SMZL NO HS kit 1 421 78.6 82.30 

3 717_S18 NA NO HS kit 1 462 247.47 87.10 

3 726_S40 SMZL YES HS kit 1 437 70.28 80.80 

3 753_S5 SMZL YES HS kit 1 541 244.5 88.30 

3 773_S56 not SMZL NO HS kit 1 424 94.03 83.30 

3 779_S19 not SMZL NO HS kit 1 348 37.46 70.90 

3 785_S6 SMZL YES HS kit 1 515 153.3 86.60 

3 793_S7 SMZL YES HS kit 1 496 236.73 87.30 

3 836_S20 SMZL YES HS kit 1 353 70.75 77.40 

3 868_S8 SMZL YES HS kit 1 519 271.65 88.40 

3 875_S9 SMZL YES HS kit 1 414 84.4 80.60 
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enrichment 

kit 

No. 
variants 
called 

Mean 
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% 
bases 
> 15X 

3 1_MUT SMZL YES HS kit 2 455 169.85 90.00 

3 2_MUT SMZL YES HS kit 2 362 111.17 87.80 

3 3_MUT SMZL YES HS kit 2 331 33.59 68.60 

3 4_MUT SMZL YES HS kit 2 538 387.2 93.60 

3 5_MUT SMZL YES HS kit 2 507 309.27 93.40 

3 6_MUT SMZL YES HS kit 2 411 254.71 89.20 

3 7_MUT SMZL YES HS kit 2 339 57.75 80.50 

3 8_MUT SMZL YES HS kit 2 483 130.09 88.40 

3 9_MUT SMZL YES HS kit 2 402 87.43 84.00 

3 10_MUT SMZL YES HS kit 2 422 85.67 86.80 

3 11_MUT SMZL YES HS kit 2 282 26.53 60.80 

3 12_MUT SMZL YES HS kit 2 416 68.03 84.20 

3 13_MUT SMZL NO HS kit 2 433 91.15 87.20 

3 14_MUT SMZL YES HS kit 2 444 143.61 90.30 

3 15_MUT SMZL YES HS kit 2 411 81.34 86.30 

3 16_MUT SMZL YES HS kit 2 336 50.79 80.00 

3 17_MUT SMZL YES HS kit 2 530 544.52 95.20 

3 18_MUT SMZL YES HS kit 2 417 116.79 90.00 

3 19_MUT SMZL YES HS kit 2 468 185.44 91.90 

3 23_MUT SMZL YES HS kit 2 443 322.89 89.80 

3 25_MUT SMZL YES HS kit 2 425 295.56 86.60 

3 27_MUT SMZL YES HS kit 2 258 114.28 61.20 

3 30_MUT SMZL YES HS kit 2 368 175.3 75.80 

3 31_MUT SMZL YES HS kit 2 391 131.44 77.40 

3 33_MUT SMZL YES HS kit 2 299 51.96 60.10 

3 35_MUT SMZL YES HS kit 2 247 18.84 51.90 

4 11_S11 SMZL NO HS kit 1 580 742.53 92.10 

4 12_S12 CBL-MZ  NO HS kit 1 627 876.42 92.20 

4 19_S13 SMZL NO HS kit 1 595 581.14 91.90 

4 20_S14 SMZL NO HS kit 1 638 667.67 92.30 

4 10_S10 SMZL YES HS kit 1 626 832.2 92.60 

4 1_S1 SMZL YES HS kit 1 556 316.1 90.70 

4 2_S2 SMZL YES HS kit 1 658 410.37 91.50 

4 3_S3 SMZL YES HS kit 1 658 764.57 92.00 

4 5_S5 SMZL YES HS kit 1 614 824.22 92.20 

4 6_S6 SMZL YES HS kit 1 565 311.44 91.50 

4 7_S7 SMZL YES HS kit 1 561 769.91 92.70 

4 8_S8 SMZL YES HS kit 1 664 847.85 92.80 

4 9_S9 SMZL YES HS kit 1 600 930.01 92.70 

4 48_S42 SMZL YES HS kit 1 624 359.01 92.30 

4 24_S18 SMZL YES HS kit 1 630 633.71 92.20 

4 25_S19 
possible 
SMZL NO 

HS kit 1 
650 891.99 92.20 

4 28_S22 SMZL YES HS kit 1 532 173.41 88.30 

4 29_S23 SMZL NO HS kit 1 NA NA NA 
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4 30_S24 SMZL YES HS kit 1 594 824 92.00 

4 49_S43 SMZL YES HS kit 1 525 515.9 91.90 

4 50_S44 SMZL YES HS kit 1 655 655.53 92.10 

4 35_S29 SMZL NO HS kit 1 NA NA NA 

4 36_S30 SMZL NO HS kit 1 NA NA NA 

4 37_S31 SMZL YES HS kit 1 629 623.61 92.20 

4 38_S32 SMZL YES HS kit 1 660 1107.12 92.50 

4 51_S45 SMZL YES HS kit 1 609 876.78 92.50 

4 52_S46 SMZL YES HS kit 1 595 353.34 91.50 

4 53_S47 SMZL YES HS kit 1 621 342.36 91.90 

4 41_S35 SMZL YES HS kit 1 630 650.94 91.90 

4 42_S36 CBL-MZ NO HS kit 1 622 571.6 92.20 

4 43_S37 CBL-MZ NO HS kit 1 627 698.13 91.60 

4 44_S38 CBL-MZ NO HS kit 1 NA NA NA 

4 54_S48 CBL-MZ NO HS kit 1 670 568.84 92.40 

4 46_S40 SMZL YES HS kit 1 583 1017.06 92.60 

4 47_S41 SMZL YES HS kit 1 720 552.57 91.60 

5 1994_S37 SMZL YES HS kit 2 546 114.69 92.00 

5 1995_S36 SMZL NO HS kit 2 577 721 88.20 

5 30668_S2 not SMZL NO HS kit 2 615 100.17 93.80 

5 54764_S34 SMZL YES HS kit 2 588 317.32 95.60 

5 51640_S3 SMZL YES HS kit 2 523 84.56 92.60 

5 63721_S5 not SMZL NO HS kit 2 548 137.13 93.90 

5 11717_S31 unknown NO HS kit 2 502 138.71 94.50 

5 21562_S30 unknown NO HS kit 2 634 150.38 94.50 

5 8737_S26 unknown NO HS kit 2 555 74.35 91.80 

5 7875_S23 unknown NO HS kit 2 621 162.83 94.50 

5 11215_S28 unknown NO HS kit 2 561 108.68 93.50 

5 8260_S24 unknown NO HS kit 2 525 134.23 93.90 

5 13664_S32 unknown NO HS kit 2 562 165.35 94.60 

5 XXI_S38 SMZL NO HS kit 2 375 111.31 82.60 

5 XXIX_S39 SMZL YES HS kit 2 432 86.71 76.00 

5 H1558_S13 SMZL YES HS kit 2 539 150.3 94.50 

5 H3829_S19 SMZL YES HS kit 2 567 206.11 94.90 

5 H523_S21 SMZL YES HS kit 2 591 202.27 94.90 

5 H1701_S14 SMZL YES HS kit 2 506 158.26 94.00 

5 H2486_S18 SMZL YES HS kit 2 516 172.16 94.30 

5 H2247_S16 SMZL YES HS kit 2 528 172.38 94.50 

5 H2265_S17 SMZL YES HS kit 2 619 142.23 93.80 

5 H1954_S15 SMZL YES HS kit 2 515 125.32 91.70 

5 H4501_S20 SMZL YES HS kit 2 593 130.74 93.50 

5 783_S12 SMZL YES HS kit 2 533 109.39 92.70 

5 81389_S7 SMZL YES HS kit 2 455 105.13 93.60 

5 87936_S8 SMZL YES HS kit 2 660 561.32 96.70 
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enrichment 

kit 
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% 
bases 
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5 
93164_S10 

possible 
SMZL NO 

HS kit 2 
585 153.85 95.00 

5 92568_S9 SMZL YES HS kit 2 540 150.2 95.00 

5 75629_S6 SMZL YES HS kit 2 552 97.91 93.10 

5 7572_S1 SMZL YES HS kit 2 526 127.67 94.50 

5 7001_S22 unknown NO HS kit 2 621 233.96 95.20 

5 8443_S25 unknown NO HS kit 2 590 131.76 94.20 

5 9824_S27 unknown NO HS kit 2 879 96.5 93.30 

5 11313_S29 unknown NO HS kit 2 570 219.57 95.30 

5 15740_S33 unknown NO HS kit 2 610 179.3 95.20 

5 94234_S11 not SMZL NO HS kit 2 594 102.77 93.70 

5 55276_S4 not SMZL NO HS kit 2 554 90.89 93.50 

NA WTCHG_87813_02 SMZL YES historical  96 221.09 93.40 

NA 
WTCHG_90118_04 

possible 
SMZL YES 

historical  
108 289.54 92.80 

NA WTCHG_91609_11 SMZL YES historical  118 177.21 88.40 

NA WTCHG_90118_06 SMZL YES historical  132 249.31 93.50 

NA WTCHG_90060_58 SMZL YES historical  109 216.6 89.60 

NA WTCHG_87813_18 SMZL YES historical  115 171.01 93.20 

NA WTCHG_87813_25 SMZL YES historical  101 155.27 92.60 

NA WTCHG_90060_55 SMZL YES historical  111 258.04 89.10 

NA WTCHG_88504_42 SMZL YES historical  122 260.84 94.00 

NA 
WTCHG_90118_13 

possible 
SMZL YES 

historical  
107 249.14 94.60 

NA WTCHG_90060_60 SMZL YES historical  101 305.57 94.70 

NA 
WTCHG_88505_53 

possible 
SMZL YES 

historical  
113 216.35 92.80 

NA WTCHG_90060_62 SMZL YES historical  128 223.66 90.40 

NA WTCHG_75645_43 SMZL YES historical  111 149.52 92.40 

NA WTCHG_90119_47 SMZL YES historical  117 208.12 93.20 

NA WTCHG_90119_66 SMZL YES historical  108 290.55 94.10 

NA WTCHG_90119_71 SMZL YES historical  116 308.26 94.90 

NA WTCHG_75645_02 SMZL YES historical  102 288.03 94.50 

NA WTCHG_75645_03 SMZL YES historical  131 300.22 94.60 

NA WTCHG_75645_04 SMZL YES historical  125 268.58 95.20 

NA WTCHG_75645_05 SMZL YES historical  107 375.37 95.10 

NA WTCHG_75645_06 SMZL YES historical  130 273.49 93.90 

NA WTCHG_75645_07 SMZL YES historical  86 354.06 89.20 

NA WTCHG_75645_08 SMZL YES historical  109 284.59 95.50 

NA WTCHG_75645_26 SMZL YES historical  117 252.53 94.80 

NA WTCHG_75645_28 SMZL YES historical  123 319.87 94.40 

NA WTCHG_75645_29 SMZL YES historical  113 282.4 95.00 

NA WTCHG_75645_30 SMZL YES historical  115 272.11 92.90 

NA WTCHG_75645_32 SMZL YES historical  108 290.19 94.30 

NA WTCHG_75645_42 SMZL YES historical  99 196.3 93.40 

NA WTCHG_75645_44 SMZL YES historical  95 203.54 94.20 
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NA WTCHG_75645_56 SMZL YES historical  125 203.83 93.30 

NA WTCHG_75645_57 SMZL YES historical  119 161.39 93.00 

NA WTCHG_75645_58 SMZL YES historical  92 149.89 92.60 

NA WTCHG_75645_59 SMZL YES historical  103 236.16 94.10 

NA WTCHG_75645_60 SMZL YES historical  105 191.34 92.90 

NA WTCHG_75645_61 SMZL YES historical  100 182.63 77.20 

NA WTCHG_75645_62 SMZL YES historical  99 200.36 94.00 

NA WTCHG_76140_09 SMZL YES historical  104 197.72 93.60 

NA WTCHG_76140_10 SMZL YES historical  104 175.98 93.80 

NA WTCHG_76140_11 SMZL YES historical  90 221.49 93.50 

NA WTCHG_76140_12 SMZL YES historical  114 172.04 93.50 

NA WTCHG_76140_13 SMZL YES historical  112 184.73 93.90 

NA WTCHG_76140_14 SMZL YES historical  107 198.09 93.30 

NA WTCHG_76140_15 SMZL YES historical  125 204.13 93.70 

NA WTCHG_76140_16 SMZL YES historical  90 194.41 93.60 

NA WTCHG_76140_17 SMZL YES historical  109 199.62 94.70 

NA WTCHG_76140_18 SMZL YES historical  108 271.88 95.00 

NA WTCHG_76140_19 SMZL YES historical  89 258.62 94.90 

NA WTCHG_76140_20 SMZL YES historical  117 297.83 95.30 

NA WTCHG_76140_21 SMZL YES historical  99 245.61 94.70 

NA WTCHG_76140_22 SMZL YES historical  85 243.89 94.30 

NA WTCHG_76140_24 SMZL YES historical  97 223.21 93.80 

NA WTCHG_76140_33 SMZL YES historical  123 170.25 93.00 

NA WTCHG_76140_34 SMZL YES historical  90 138.87 69.00 

NA WTCHG_76140_35 SMZL YES historical  105 236.18 94.60 

NA WTCHG_76140_36 SMZL YES historical  102 179.67 93.60 

NA WTCHG_76140_37 SMZL YES historical  120 201.25 93.80 

NA WTCHG_76140_38 SMZL YES historical  91 182.38 93.60 

NA WTCHG_76140_39 SMZL YES historical  107 222.35 94.20 

NA WTCHG_76140_40 SMZL YES historical  118 148.98 92.60 

NA WTCHG_87813_03 SMZL YES historical  105 244.61 92.70 

NA WTCHG_87813_04 SMZL YES historical  103 179.74 92.30 

NA WTCHG_87813_05 SMZL YES historical  101 270.64 91.60 

NA WTCHG_87813_06 SMZL YES historical  111 300.45 93.80 

NA WTCHG_87813_08 SMZL YES historical  106 196.79 87.60 

NA WTCHG_87813_09 SMZL YES historical  98 226.2 93.30 

NA WTCHG_87813_13 SMZL YES historical  102 189.19 86.90 

NA WTCHG_87813_22 SMZL YES historical  118 215.54 93.00 

NA WTCHG_87813_24 SMZL YES historical  113 245.64 92.10 

NA WTCHG_87813_26 SMZL YES historical  124 268.31 94.10 

NA WTCHG_87814_46 SMZL YES historical  107 239.52 93.50 

NA WTCHG_87814_47 SMZL YES historical  109 294.14 95.70 

NA WTCHG_87814_48 SMZL YES historical  104 295.44 95.10 

NA WTCHG_88504_28 SMZL YES historical  108 219.72 93.40 

NA WTCHG_88504_31 SMZL YES historical  116 172.83 91.90 
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NA WTCHG_88504_33 SMZL YES historical  108 235.91 94.10 

NA WTCHG_88504_36 SMZL YES historical  93 214.8 93.60 

NA WTCHG_88504_38 SMZL YES historical  121 242.56 95.20 

NA WTCHG_88504_41 SMZL YES historical  101 240.27 92.90 

NA WTCHG_88504_45 SMZL YES historical  102 335.17 94.40 

NA WTCHG_88504_47 SMZL YES historical  112 274.5 93.50 

NA WTCHG_88504_50 SMZL YES historical  127 268.51 94.30 

NA WTCHG_88505_51 SMZL YES historical  99 189.22 92.00 

NA WTCHG_88505_52 SMZL YES historical  115 245.24 93.70 

NA WTCHG_88505_54 SMZL YES historical  111 186.2 92.50 

NA WTCHG_88505_55 SMZL YES historical  114 235.97 94.40 

NA WTCHG_88505_56 SMZL YES historical  120 235.91 92.90 

NA WTCHG_88505_57 SMZL YES historical  110 241.95 93.60 

NA WTCHG_88505_58 SMZL YES historical  95 206.55 96.00 

NA WTCHG_88505_59 SMZL YES historical  114 222.5 93.80 

NA WTCHG_88505_61 SMZL YES historical  125 269.8 94.40 

NA WTCHG_88505_64 SMZL YES historical  111 235.99 95.60 

NA WTCHG_88505_65 SMZL YES historical  99 225.16 95.70 

NA WTCHG_88505_66 SMZL YES historical  107 258.83 94.00 

NA WTCHG_88505_67 SMZL YES historical  110 209.79 95.60 

NA WTCHG_88505_68 SMZL YES historical  125 237.34 95.40 

NA WTCHG_88505_69 SMZL YES historical  104 308.99 94.40 

NA WTCHG_88505_70 SMZL YES historical  107 194.77 94.80 

NA WTCHG_88505_71 SMZL YES historical  101 265.51 95.10 

NA WTCHG_88505_72 SMZL YES historical  101 302.83 95.10 

NA WTCHG_88505_73 SMZL YES historical  114 215.01 92.30 

NA WTCHG_88505_74 SMZL YES historical  108 288.87 96.30 

NA WTCHG_90060_49 SMZL YES historical  113 298.54 95.90 

NA WTCHG_90060_50 SMZL YES historical  115 245.17 94.40 

NA WTCHG_90060_51 SMZL YES historical  99 196.07 94.70 

NA WTCHG_90060_52 SMZL YES historical  91 246.42 96.30 

NA WTCHG_90060_53 SMZL YES historical  103 344.31 96.40 

NA WTCHG_90060_54 SMZL YES historical  91 227.37 94.20 

NA WTCHG_90060_57 SMZL YES historical  115 246.12 95.70 

NA WTCHG_90060_59 SMZL YES historical  102 230.68 81.90 

NA WTCHG_90060_61 SMZL YES historical  111 172.51 92.40 

NA WTCHG_90060_63 SMZL YES historical  116 250.6 96.10 

NA WTCHG_90060_65 SMZL YES historical  113 319.01 94.60 

NA WTCHG_90060_66 SMZL YES historical  111 176.01 92.10 

NA WTCHG_90117_75 SMZL YES historical  110 191.05 95.10 

NA WTCHG_90117_77 SMZL YES historical  119 191.02 93.00 

NA WTCHG_90117_78 SMZL YES historical  106 268.22 93.70 

NA WTCHG_90117_79 SMZL YES historical  118 248.24 93.20 

NA WTCHG_90117_80 SMZL YES historical  108 203.39 92.20 

NA WTCHG_90117_82 SMZL YES historical  119 291.32 95.40 
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NA WTCHG_90117_84 SMZL YES historical  91 195.39 93.00 

NA WTCHG_90117_85 SMZL YES historical  108 198.78 92.10 

NA WTCHG_90117_86 SMZL YES historical  104 290.69 93.80 

NA WTCHG_90117_87 SMZL YES historical  125 220.78 95.70 

NA WTCHG_90117_88 SMZL YES historical  114 297.09 94.20 

NA WTCHG_90117_89 SMZL YES historical  105 202.7 92.00 

NA WTCHG_90117_90 SMZL YES historical  100 185.2 93.10 

NA WTCHG_90117_91 SMZL YES historical  114 193.07 94.70 

NA WTCHG_90117_92 SMZL YES historical  110 275.86 95.60 

NA WTCHG_90117_93 SMZL YES historical  111 368 94.10 

NA WTCHG_90117_94 SMZL YES historical  104 97.79 81.60 

NA WTCHG_90117_95 SMZL YES historical  108 244.72 92.90 

NA WTCHG_90117_96 SMZL YES historical  103 212.64 90.70 

NA WTCHG_90118_05 SMZL YES historical  102 243.84 93.30 

NA WTCHG_90118_07 SMZL YES historical  103 194.36 91.50 

NA WTCHG_90118_08 SMZL YES historical  113 245.85 92.70 

NA WTCHG_90118_16 SMZL YES historical  106 303.36 94.30 

NA WTCHG_90119_45 SMZL YES historical  117 276.47 94.50 

NA WTCHG_90119_46 SMZL YES historical  114 222.56 94.30 

NA WTCHG_90119_48 SMZL YES historical  112 255.39 94.10 

NA WTCHG_90119_49 SMZL YES historical  119 228.85 94.30 

NA WTCHG_90119_50 SMZL YES historical  115 252.23 94.90 

NA WTCHG_90119_51 SMZL YES historical  121 202.68 94.10 

NA WTCHG_90119_52 SMZL YES historical  108 233.19 95.90 

NA WTCHG_90119_53 SMZL YES historical  133 249.96 94.70 

NA WTCHG_90119_54 SMZL YES historical  101 224.01 94.00 

NA WTCHG_90119_55 SMZL YES historical  105 187.24 93.50 

NA WTCHG_90119_63 SMZL YES historical  107 272.18 94.30 

NA WTCHG_90119_64 SMZL YES historical  97 331.89 95.00 

NA WTCHG_90119_65 SMZL YES historical  97 325.93 94.80 

NA WTCHG_90119_67 SMZL YES historical  105 269.96 94.80 

NA WTCHG_90119_68 SMZL YES historical  97 282.87 91.10 

NA WTCHG_90119_69 SMZL YES historical  101 313.18 94.00 

NA WTCHG_90119_70 SMZL YES historical  107 452.25 85.70 

NA WTCHG_90119_72 SMZL YES historical  96 304.53 96.30 

NA WTCHG_91608_73 SMZL YES historical  110 262.46 94.30 

NA WTCHG_91608_74 SMZL YES historical  116 218.09 93.50 

NA WTCHG_91608_78 SMZL YES historical  88 198.83 93.40 

NA WTCHG_91608_79 SMZL YES historical  96 166.66 92.60 

NA WTCHG_91608_81 SMZL YES historical  92 176.75 92.90 

NA WTCHG_91608_82 SMZL YES historical  112 200.44 94.10 

NA WTCHG_91608_83 SMZL YES historical  104 164.31 92.90 

NA WTCHG_91608_91 SMZL YES historical  127 197.27 93.40 

NA WTCHG_91608_93 SMZL YES historical  92 276.92 94.10 

NA WTCHG_91608_95 SMZL YES historical  107 218.05 93.50 
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NA WTCHG_91608_96 SMZL YES historical  104 256.28 89.70 

NA WTCHG_91609_14 SMZL YES historical  101 151.1 91.10 

NA WTCHG_91609_76 SMZL YES historical  102 247.23 96.50 

NA WTCHG_91609_84 SMZL YES historical  105 265.95 95.10 

NA WTCHG_91609_89 SMZL YES historical  126 335.11 96.70 

NA WTCHG_91609_90 SMZL YES historical  108 170.26 92.50 

NA WTCHG_91609_91 SMZL YES historical  107 546.42 96.10 

NA WTCHG_91609_94 SMZL YES historical  118 166.67 92.90 

NA WTCHG_91609_96 SMZL YES historical  117 268.04 94.80 
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Supplementary Table 6. List of quality metrics assessed for input into machine learning model. 

Feature Definition Selected Comments 

QUAL Variant confidence  no QD the same score but normalised by depth 

INFO_BaseQRankSum 
Rank sum test of REF vs ALT base quality scores. Compares the base qualities 
of the data supporting the reference allele with those supporting the 
alternate allele.  

yes Ideal value is close to 0. 

INFO_ClippingRankSum 
Tests whether the data supporting the reference allele shows more or less 
base clipping (hard clips) than those supporting the alternate allele. 

no All values were 0 

INFO_DS Were any of the samples downsampled? no no values 

INFO_ExcessHet Phred-scaled p-value for exact test of excess heterozygosity. no no values 

INFO_FS 
Fisher's Exact Test to determine if there is strand bias between forward and 
reverse strands for the reference or alternate allele. 

no updated version SOR 

INFO_HaplotypeScore Consistency of the site with strictly two segregating haplotypes. no no values 

INFO_InbreedingCoeff Likelihood-based test for the inbreeding among samples. no no values 

INFO_MLEAC 
Maximum likelihood expectation (MLE) for the allele counts for each ALT 
allele 

no 
similar values across samples (binary). Biased towards 
germline. 

INFO_MLEAF 
Maximum likelihood expectation (MLE) for the allele frequency for each ALT 
allele 

no 
similar values across variants (binary). Biased towards 
germline. 

INFO_MQ Mapping quality no 
similar values across variants, MQRankSum takes into 
account 

INFO_MQRankSum Rank Sum Test for mapping qualities of REF versus ALT reads yes 
Takes into account the mapping quality of both the REF 
and ALT alleles. 
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Feature Definition Selected Comments 

INFO_QD Variant confidence normalized by unfiltered depth of variant samples (QD). yes 
Variants in regions with deep coverage can have 
artificially inflated QUAL scores. Normalisation gives 
more objective picture 

INFO_RAW_MQ Raw mapping quality  no no values 

INFO_ReadPosRankSum 
Rank Sum Test for relative positioning of REF versus ALT alleles within reads. 
Tests whether there is evidence of bias in the position of alleles within the 
reads that support them. 

yes   

INFO_SOR 
Determines if there is strand bias between forward and reverse strands for 
the reference or alternate allele. 

yes   

frac_depth_MQ20 Fraction of reads with a mapping quality of >=20 (0-1 no   

Number of amplicons Total number of amplicons covering base yes   

Sum of per base 
mismatches 

Count of per base mismatches in reads containing REF, ALT and other alleles yes   

Sum of softclipped reads Sum of softclipped reads in base pair location yes   

GT genotype no would divide groups into hom and het 

VAF Variant allele frequency yes   
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Supplementary Table 7. Complete list of variants identified in the Jaramillo-Parry cohort (n=321 patients). 

sample ID 
Chro
moso

me 

Start 
location 

End 
location 

Refer
ence 
allele 

Alter
nate 
allele 

Gene Function Transcript cDNA change 
Amino acid 

change 

WTCHG_76140_09 chr1 2556699 2556699 G A TNFRSF14 stopgain NM_003820 c.G35A p.W12X 

19_MUT chr1 2558389 2558389 T G TNFRSF14 
nonsynonymous 
SNV NM_003820 c.T225G p.C75W 

6_S6 chr1 15920926 15920926 T A SPEN stopgain NM_015001 c.T1692A p.Y564X 

WTCHG_76140_39 chr1 15922309 15922309 - T SPEN frameshift insertion NM_015001 
c.1810_1811ins
T p.Q604fs 

92568_S9 chr1 15928434 15928434 C T SPEN stopgain NM_015001 c.C2194T p.R732X 

WTCHG_90117_80 chr1 15928483 15928483 C T SPEN 
nonsynonymous 
SNV NM_015001 c.C2243T p.P748L 

WTCHG_87814_48 chr1 15928843 15928843 C T SPEN 
nonsynonymous 
SNV NM_015001 c.C2603T p.A868V 

WTCHG_75645_02 chr1 15929232 15929232 C T SPEN stopgain NM_015001 c.C2992T p.Q998X 

WTCHG_87813_18 chr1 15929233 15929233 A - SPEN frameshift deletion NM_015001 c.2993delA p.Q998fs 

WTCHG_90117_90 chr1 15929269 15929269 A T SPEN 
nonsynonymous 
SNV NM_015001 c.A3029T p.E1010V 

WTCHG_87813_24 chr1 15929398 15929398 A G SPEN 
nonsynonymous 
SNV NM_015001 c.A3158G p.K1053R 

WTCHG_75645_61 chr1 15929961 15929961 C T SPEN stopgain NM_015001 c.C3721T p.R1241X 

WTCHG_90119_70 chr1 15930040 15930040 G A SPEN 
nonsynonymous 
SNV NM_015001 c.G3800A p.G1267D 

31_S31 chr1 15930092 15930092 A - SPEN frameshift deletion NM_015001 c.3852delA p.V1284fs 

16_MUT chr1 15930708 15930708 A - SPEN frameshift deletion NM_015001 c.4468delA p.I1490fs 

WTCHG_91608_82 chr1 15931015 15931015 G T SPEN 
nonsynonymous 
SNV NM_015001 c.G4775T p.R1592L 

WTCHG_90060_61 chr1 15931419 15931419 C T SPEN stopgain NM_015001 c.C5179T p.Q1727X 

28_S22 chr1 15934646 15934647 AG - SPEN frameshift deletion NM_015001 
c.8406_8407de
l p.S2802fs 

45_S45 chr1 15934699 15934699 C T SPEN 
nonsynonymous 
SNV NM_015001 c.C8459T p.S2820L 

WTCHG_91608_73 chr1 15935271 15935271 C T SPEN stopgain NM_015001 c.C9031T p.R3011X 
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sample ID 
Chro
moso

me 

Start 
location 

End 
location 

Refer
ence 
allele 

Alter
nate 
allele 

Gene Function Transcript cDNA change 
Amino acid 

change 

WTCHG_90060_61 chr1 15937422 15937425 CTTC - SPEN frameshift deletion NM_015001 
c.10286_10289
del p.T3429fs 

WTCHG_76140_36 chr1 15937570 15937570 C G SPEN 
nonsynonymous 
SNV NM_015001 c.C10434G p.F3478L 

WTCHG_76140_36 chr1 15937570 15937570 C G SPEN 
nonsynonymous 
SNV NM_015001 c.C10434G p.F3478L 

L023_07 chr1 23558965 23558965 G A ID3 
nonsynonymous 
SNV NM_002167 c.C355T p.H119Y 

30_MUT chr1 23559237 23559237 G A ID3 
nonsynonymous 
SNV NM_002167 c.C190T p.L64F 

49_S43 chr1 23559362 23559362 A G ID3 
nonsynonymous 
SNV NM_002167 c.T65C p.L22P 

WTCHG_90119_52 chr1 26696857 26696857 C - ARID1A frameshift deletion NM_006015 c.454delC p.Q152fs 

WTCHG_90118_05 chr1 26697129 26697129 - GCG ARID1A 
nonframeshift 
insertion NM_006015 

c.726_727insG
CG p.G242delinsGA 

WTCHG_75645_60 chr1 26697208 26697208 C T ARID1A stopgain NM_006015 c.C805T p.Q269X 

WTCHG_75645_60 chr1 26697478 26697478 C T ARID1A 
nonsynonymous 
SNV NM_006015 c.C1075T p.H359Y 

WTCHG_76140_24 chr1 26761426 26761426 G A ARID1A 
nonsynonymous 
SNV NM_006015 c.G2204A p.S735N 

WTCHG_76140_21 chr1 26762217 26762217 C - ARID1A frameshift deletion NM_006015 c.2317delC p.P773fs 

50_S44 chr1 26762297 26762297 G - ARID1A frameshift deletion NM_006015 c.2397delG p.Q799fs 

WTCHG_87814_47 chr1 26763018 26763018 A G ARID1A 
nonsynonymous 
SNV NM_006015 c.A2465G p.N822S 

WTCHG_76140_34 chr1 26771150 26771150 C A ARID1A 
nonsynonymous 
SNV NM_006015 c.C3230A p.A1077E 

WTCHG_88505_61 chr1 26772529 26772529 A G ARID1A 
nonsynonymous 
SNV NM_006015 c.A3436G p.T1146A 

L018_06 chr1 26772541 26772541 A T ARID1A 
nonsynonymous 
SNV NM_006015 c.A3448T p.T1150S 

WTCHG_88504_31 chr1 26772633 26772633 G A ARID1A splicing NM_006015 c.3539+1G>A . 

WTCHG_87813_18 chr1 26774631 26774631 T - ARID1A frameshift deletion NM_006015 c.4404delT p.P1468fs 
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sample ID 
Chro
moso

me 

Start 
location 

End 
location 

Refer
ence 
allele 

Alter
nate 
allele 

Gene Function Transcript cDNA change 
Amino acid 

change 

WTCHG_90119_53 chr1 26779212 26779212 A G ARID1A 
nonsynonymous 
SNV NM_006015 c.A5314G p.K1772E 

WTCHG_88505_74 chr1 26779389 26779389 C G ARID1A 
nonsynonymous 
SNV NM_006015 c.C5491G p.L1831V 

33_MUT chr1 26779439 26779439 - G ARID1A frameshift insertion NM_006015 c.5542dupG p.G1847fs 

H523_S21 chr1 26780010 26780010 G A ARID1A 
nonsynonymous 
SNV NM_006015 c.G6112A p.D2038N 

622_S54 chr1 26780081 26780081 G C ARID1A 
nonsynonymous 
SNV NM_006015 c.G6183C p.L2061F 

1_MUT chr1 26780224 26780224 A G ARID1A 
nonsynonymous 
SNV NM_006015 c.A6326G p.N2109S 

WTCHG_76140_24 chr1 26780585 26780585 C A ARID1A 
nonsynonymous 
SNV NM_006015 c.C6687A p.D2229E 

WTCHG_90117_94 chr1 26780628 26780628 G T ARID1A 
nonsynonymous 
SNV NM_006015 c.G6730T p.V2244L 

9_S7 chr1 27359959 27359959 G C MAP3K6 
nonsynonymous 
SNV NM_004672 c.C2218G p.P740A 

40_S40 chr1 27364044 27364044 G A MAP3K6 
nonsynonymous 
SNV NM_004672 c.C737T p.A246V 

L071_10 chr1 27364354 27364354 G A MAP3K6 
nonsynonymous 
SNV NM_004672 c.C545T p.T182M 

L037_08 chr1 85267701 85267701 C A BCL10 stopgain NM_003921 c.G628T p.E210X 

4683_S16 chr1 85267857 85267857 C A BCL10 stopgain NM_003921 c.G472T p.G158X 

L096_13 chr1 85267867 85267867 G T BCL10 stopgain NM_003921 c.C462A p.Y154X 

37_S31 chr1 119915464 119915464 C A NOTCH2 stopgain NM_024408 c.G7258T p.E2420X 

WTCHG_90119_53 chr1 119915464 119915464 C A NOTCH2 stopgain NM_024408 c.G7258T p.E2420X 

L067_10 chr1 119915478 119915481 AGGT - NOTCH2 frameshift deletion NM_024408 
c.7241_7244de
l p.Y2414fs 

WTCHG_75645_59 chr1 119915480 119915480 G T NOTCH2 stopgain NM_024408 c.C7242A p.Y2414X 

2_S2 chr1 119915497 119915497 G A NOTCH2 stopgain NM_024408 c.C7225T p.Q2409X 

WTCHG_87813_18 chr1 119915524 119915524 G A NOTCH2 stopgain NM_024408 c.C7198T p.R2400X 

12_MUT chr1 119915546 119915546 A T NOTCH2 stopgain NM_024408 c.T7176A p.Y2392X 
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sample ID 
Chro
moso

me 

Start 
location 

End 
location 

Refer
ence 
allele 

Alter
nate 
allele 

Gene Function Transcript cDNA change 
Amino acid 

change 

WTCHG_90119_66 chr1 119915593 119915593 G A NOTCH2 
nonsynonymous 
SNV NM_024408 c.C7129T p.P2377S 

WTCHG_87813_05 chr1 119915623 119915623 G A NOTCH2 stopgain NM_024408 c.C7099T p.Q2367X 

31_MUT chr1 119915632 119915632 G A NOTCH2 stopgain NM_024408 c.C7090T p.Q2364X 

4683_S16 chr1 119915632 119915632 G A NOTCH2 stopgain NM_024408 c.C7090T p.Q2364X 

38_S32 chr1 119915635 119915641 
CGTC
CTG - NOTCH2 frameshift deletion NM_024408 

c.7081_7087de
l p.Q2361fs 

WTCHG_90060_60 chr1 119915641 119915641 G A NOTCH2 stopgain NM_024408 c.C7081T p.Q2361X 

H2265_S17 chr1 119915644 119915644 G A NOTCH2 stopgain NM_024408 c.C7078T p.Q2360X 

15_MUT chr1 119915701 119915701 G A NOTCH2 stopgain NM_024408 c.C7021T p.Q2341X 

WTCHG_75645_06 chr1 119915701 119915701 G A NOTCH2 stopgain NM_024408 c.C7021T p.Q2341X 

WTCHG_90117_77 chr1 119915749 119915749 G A NOTCH2 stopgain NM_024408 c.C6973T p.Q2325X 

WTCHG_90119_45 chr1 119915749 119915749 G A NOTCH2 stopgain NM_024408 c.C6973T p.Q2325X 

24_S18 chr1 119915802 119915803 AA - NOTCH2 frameshift deletion NM_024408 
c.6919_6920de
l p.F2307fs 

836_S20 chr1 119915811 119915814 ATGG - NOTCH2 frameshift deletion NM_024408 
c.6908_6911de
l p.P2303fs 

30_S24 chr1 119915812 119915812 - G NOTCH2 frameshift insertion NM_024408 c.6909dupC p.I2304fs 

WTCHG_90118_08 chr1 119915812 119915812 - G NOTCH2 frameshift insertion NM_024408 c.6909dupC p.I2304fs 

L017_06 chr1 119915813 119915813 G - NOTCH2 frameshift deletion NM_024408 c.6909delC p.P2303fs 

L025_07 chr1 119915813 119915813 G - NOTCH2 frameshift deletion NM_024408 c.6909delC p.P2303fs 

L075_10 chr1 119915813 119915816 
GGG
G - NOTCH2 frameshift deletion NM_024408 

c.6906_6909de
l p.P2302fs 

87936_S8 chr1 119915836 119915840 
TGGT
T - NOTCH2 frameshift deletion NM_024408 

c.6882_6886de
l p.I2294fs 

WTCHG_75645_03 chr1 119915848 119915848 - C NOTCH2 frameshift insertion NM_024408 c.6873dupG p.K2292fs 

9641_S17 chr1 119915851 119915855 
CTTC
A - NOTCH2 frameshift deletion NM_024408 

c.6867_6871de
l p.P2289fs 

53_S47 chr1 119915869 119915869 G - NOTCH2 frameshift deletion NM_024408 c.6853delC p.Q2285fs 

868_S8 chr1 119915869 119915869 G A NOTCH2 stopgain NM_024408 c.C6853T p.Q2285X 
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sample ID 
Chro
moso

me 

Start 
location 

End 
location 

Refer
ence 
allele 

Alter
nate 
allele 

Gene Function Transcript cDNA change 
Amino acid 

change 

WTCHG_90117_96 chr1 119915879 119915880 GC - NOTCH2 frameshift deletion NM_024408 
c.6842_6843de
l p.G2281fs 

WTCHG_90060_55 chr1 119915896 119915897 CA - NOTCH2 frameshift deletion NM_024408 
c.6825_6826de
l p.A2275fs 

WTCHG_90119_63 chr1 119915915 119915919 
ACCA
A - NOTCH2 frameshift deletion NM_024408 

c.6803_6807de
l p.F2268fs 

L076_10 chr1 119915964 119915964 C T NOTCH2 stopgain NM_024408 c.G6758A p.W2253X 

14_MUT chr1 119916288 119916288 G C NOTCH2 stopgain NM_024408 c.C6434G p.S2145X 

WTCHG_76140_09 chr1 119916295 119916295 C - NOTCH2 frameshift deletion NM_024408 c.6427delG p.E2143fs 

WTCHG_75645_08 chr1 119916325 119916325 T A NOTCH2 stopgain NM_024408 c.A6397T p.K2133X 

5_S5 chr1 119916408 119916408 C T NOTCH2 
nonsynonymous 
SNV NM_024408 c.G6314A p.R2105Q 

WTCHG_91608_93 chr1 119916505 119916515 

CTGG
AGG
GCTT - NOTCH2 frameshift deletion NM_024408 

c.6207_6217de
l p.P2069fs 

WTCHG_90119_66 chr1 119922671 119922671 T C NOTCH2 
nonsynonymous 
SNV NM_024408 c.A4967G p.Q1656R 

81389_S7 chr1 119925683 119925683 C A NOTCH2 
nonsynonymous 
SNV NM_024408 c.G4133T p.C1378F 

30_S24 chr1 119937325 119937325 T C NOTCH2 
nonsynonymous 
SNV NM_024408 c.A3479G p.H1160R 

35_MUT chr1 119941611 119941611 C G NOTCH2 
nonsynonymous 
SNV NM_024408 c.G2896C p.D966H 

WTCHG_88505_53 chr10 62813488 62813488 G T EGR2 
nonsynonymous 
SNV NM_000399 c.C1150A p.H384N 

L40_S15 chr10 62813710 62813710 - GGC EGR2 
nonframeshift 
insertion NM_000399 

c.927_928insG
CC p.Y310delinsAY 

L023_07 chr10 62814442 62814442 C T EGR2 
nonsynonymous 
SNV NM_000399 c.G196A p.G66R 

783_S12 chr10 62816070 62816070 C T EGR2 splicing . . . 

868_S8 chr10 71566884 71566884 G A CDH23 
nonsynonymous 
SNV NM_022124 c.G572A p.R191Q 
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sample ID 
Chro
moso

me 

Start 
location 

End 
location 

Refer
ence 
allele 

Alter
nate 
allele 

Gene Function Transcript cDNA change 
Amino acid 

change 

H1558_S13 chr10 71570868 71570868 A G CDH23 
nonsynonymous 
SNV NM_022124 c.A703G p.I235V 

WTCHG_90119_47 chr10 71615513 71615513 A G CDH23 
nonsynonymous 
SNV NM_022124 c.A842G p.N281S 

WTCHG_91608_83 chr10 71645903 71645903 G A CDH23 
nonsynonymous 
SNV NM_022124 c.G1213A p.V405I 

9_S7 chr10 71677461 71677461 C T CDH23 
nonsynonymous 
SNV NM_022124 c.C1520T p.S507L 

L067_10 chr10 71677461 71677461 C T CDH23 
nonsynonymous 
SNV NM_022124 c.C1520T p.S507L 

WTCHG_87814_48 chr10 71677461 71677461 C T CDH23 
nonsynonymous 
SNV NM_022124 c.C1520T p.S507L 

WTCHG_88504_36 chr10 71677613 71677613 G A CDH23 
nonsynonymous 
SNV NM_022124 c.G1672A p.V558M 

WTCHG_88505_52 chr10 71677613 71677613 G A CDH23 
nonsynonymous 
SNV NM_022124 c.G1672A p.V558M 

WTCHG_90117_82 chr10 71677613 71677613 G A CDH23 
nonsynonymous 
SNV NM_022124 c.G1672A p.V558M 

WTCHG_88505_51 chr10 71687692 71687692 G A CDH23 
nonsynonymous 
SNV NM_022124 c.G2032A p.V678I 

30_S24 chr10 71694233 71694233 C T CDH23 
nonsynonymous 
SNV NM_022124 c.C2263T p.H755Y 

L076_10 chr10 71705116 71705116 C T CDH23 
nonsynonymous 
SNV NM_022124 c.C2939T p.T980M 

3_MUT chr10 71707005 71707005 A T CDH23 
nonsynonymous 
SNV NM_022124 c.A3062T p.D1021V 

WTCHG_87813_05 chr10 71709109 71709109 G T CDH23 
nonsynonymous 
SNV NM_022124 c.G3118T p.D1040Y 

L076_10 chr10 71712698 71712698 C T CDH23 
nonsynonymous 
SNV NM_022124 c.C3254T p.T1085I 

2_MUT chr10 71741829 71741829 A T CDH23 
nonsynonymous 
SNV NM_022124 c.A4753T p.I1585F 
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sample ID 
Chro
moso

me 

Start 
location 

End 
location 

Refer
ence 
allele 

Alter
nate 
allele 

Gene Function Transcript cDNA change 
Amino acid 

change 

WTCHG_76140_16 chr10 71779307 71779307 C A CDH23 
nonsynonymous 
SNV NM_022124 c.C5228A p.T1743N 

WTCHG_75645_44 chr10 71779442 71779442 C T CDH23 
nonsynonymous 
SNV NM_022124 c.C5363T p.P1788L 

WTCHG_90119_65 chr10 71785652 71785652 C T CDH23 
nonsynonymous 
SNV NM_022124 c.C5734T p.R1912W 

H1701_S14 chr10 71807518 71807518 G A CDH23 
nonsynonymous 
SNV NM_022124 c.G8311A p.G2771S 

WTCHG_75645_07 chr10 71807518 71807518 G A CDH23 
nonsynonymous 
SNV NM_022124 c.G8311A p.G2771S 

24_S18 chr10 71811725 71811725 G T CDH23 
nonsynonymous 
SNV NM_022124 c.G9291T p.K3097N 

783_S12 chr10 71812003 71812003 A T CDH23 
nonsynonymous 
SNV NM_022124 c.A9368T p.Y3123F 

11731_S18 chr11 6626329 6626329 C T DCHS1 
nonsynonymous 
SNV NM_003737 c.G6416A p.R2139Q 

3_S3 chr11 6627067 6627067 C T DCHS1 
nonsynonymous 
SNV NM_003737 c.G5972A p.R1991H 

L096_13 chr11 6632813 6632813 G A DCHS1 
nonsynonymous 
SNV NM_003737 c.C2699T p.T900M 

L098_13_S59 chr11 6634216 6634216 G A DCHS1 
nonsynonymous 
SNV NM_003737 c.C1888T p.R630C 

L088_12 chr11 102321901 102321901 A G BIRC3 splicing . . . 

L051_09 chr11 102324687 102324687 G A BIRC3 
nonsynonymous 
SNV NM_001165 c.G178A p.V60M 

WTCHG_88505_52 chr11 102324852 102324852 - C BIRC3 frameshift insertion NM_001165 c.344dupC p.S115fs 

12603_S20 chr11 102331198 102331202 
AAGG
G - BIRC3 frameshift deletion NM_001165 

c.1281_1285de
l p.I427fs 

WTCHG_91608_95 chr11 102331208 102331211 GAGA - BIRC3 frameshift deletion NM_001165 
c.1291_1294de
l p.E431fs 

L022_06 chr11 102331218 102331218 G A BIRC3 
nonsynonymous 
SNV NM_001165 c.G1301A p.R434K 

617_S3 chr11 102331235 102331235 G T BIRC3 stopgain NM_001165 c.G1318T p.E440X 



Supplementary materials 

211 

sample ID 
Chro
moso

me 

Start 
location 

End 
location 

Refer
ence 
allele 

Alter
nate 
allele 

Gene Function Transcript cDNA change 
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12_S9 chr11 102336116 102336116 C T BIRC3 
nonsynonymous 
SNV NM_001165 c.C1475T p.A492V 

3_S3 chr11 102336926 102336926 C - BIRC3 frameshift deletion NM_001165 c.1639delC p.Q547fs 

6_MUT chr11 102336926 102336926 C - BIRC3 frameshift deletion NM_001165 c.1639delC p.Q547fs 

81389_S7 chr11 102336926 102336926 C - BIRC3 frameshift deletion NM_001165 c.1639delC p.Q547fs 

WTCHG_91609_91 chr11 102336931 102336934 GCGG - BIRC3 frameshift deletion NM_001165 
c.1644_1647de
l p.L548fs 

L048_09 chr11 102336945 102336948 AAGA - BIRC3 frameshift deletion NM_001165 
c.1658_1661de
l p.E553fs 

WTCHG_88505_72 chr11 102336984 102336984 C - BIRC3 frameshift deletion NM_001165 c.1697delC p.S566fs 

46_S40 chr11 102336990 102336990 T A BIRC3 
nonsynonymous 
SNV NM_001165 c.T1703A p.V568E 

3_S3 chr11 102337017 102337017 T A BIRC3 
nonsynonymous 
SNV NM_001165 c.T1730A p.V577E 

WTCHG_88505_52 chr11 102337083 102337083 T C BIRC3 
nonsynonymous 
SNV NM_001165 c.T1796C p.V599A 

WTCHG_91609_90 chr11 108235832 108235832 T G ATM stopgain NM_000051 c.T494G p.L165X 

WTCHG_88504_38 chr11 108244072 108244072 A C ATM 
nonsynonymous 
SNV NM_000051 c.A616C p.N206H 

WTCHG_90060_49 chr11 108249082 108249082 T - ATM frameshift deletion NM_000051 c.1215delT p.N405fs 

1_S1 chr11 108250748 108250751 CTAA - ATM frameshift deletion NM_000051 
c.1283_1286de
l p.P428fs 

92568_S9 chr11 108250840 108250840 C T ATM 
nonsynonymous 
SNV NM_000051 c.C1375T p.L459F 

WTCHG_91609_90 chr11 108251038 108251038 A - ATM frameshift deletion NM_000051 c.1573delA p.K525fs 

606_S12 chr11 108251956 108251956 T C ATM 
nonsynonymous 
SNV NM_000051 c.T1727C p.I576T 

2_MUT chr11 108256340 108256340 G A ATM synonymous SNV NM_000051 c.G2250A p.K750K 

WTCHG_90118_05 chr11 108259077 108259077 T G ATM splicing NM_000051 c.2466+2T>G . 

46_S40 chr11 108271292 108271292 A C ATM 
nonsynonymous 
SNV NM_000051 c.A2963C p.K988T 
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WTCHG_76140_15 chr11 108284405 108284405 G A ATM 
nonsynonymous 
SNV NM_000051 c.G3925A p.A1309T 

12603_S20 chr11 108289724 108289724 A - ATM frameshift deletion NM_000051 c.4359delA p.I1453fs 

WTCHG_88505_74 chr11 108289789 108289789 A G ATM 
nonsynonymous 
SNV NM_000051 c.A4424G p.Y1475C 

87936_S8 chr11 108301770 108301770 T G ATM 
nonsynonymous 
SNV NM_000051 c.T5300G p.F1767C 

WTCHG_90118_05 chr11 108301790 108301790 G A ATM splicing NM_000051 c.5319+1G>A . 

8_S8 chr11 108302901 108302901 G C ATM 
nonsynonymous 
SNV NM_000051 c.G5368C p.D1790H 

WTCHG_76140_37 chr11 108310255 108310255 C G ATM 
nonsynonymous 
SNV NM_000051 c.C5858G p.T1953R 

1_S1 chr11 108315872 108315872 A C ATM 
nonsynonymous 
SNV NM_000051 c.A6056C p.Y2019S 

L012_04 chr11 108326151 108326151 G A ATM 
nonsynonymous 
SNV NM_000051 c.G6901A p.A2301T 

L076_10 chr11 108327657 108327657 C G ATM 
nonsynonymous 
SNV NM_000051 c.C6988G p.L2330V 

L011_03 chr11 108329118 108329118 C G ATM 
nonsynonymous 
SNV NM_000051 c.C7187G p.T2396S 

WTCHG_90060_49 chr11 108329198 108329198 G A ATM 
nonsynonymous 
SNV NM_000051 c.G7267A p.E2423K 

WTCHG_91608_95 chr11 108330234 108330234 G A ATM 
nonsynonymous 
SNV NM_000051 c.G7328A p.R2443Q 

WTCHG_75645_56 chr11 108330381 108330381 T G ATM 
nonsynonymous 
SNV NM_000051 c.T7475G p.L2492R 

WTCHG_90117_79 chr11 108332902 108332902 T A ATM splicing NM_000051 c.7927+2T>A . 

WTCHG_76140_37 chr11 108333941 108333943 TGT - ATM 
nonframeshift 
deletion NM_000051 

c.7983_7985de
l p.2661_2662del 

3_MUT chr11 108335109 108335109 G T ATM 
nonsynonymous 
SNV NM_000051 c.G8151T p.K2717N 

2_MUT chr11 108345897 108345899 CTT - ATM 
nonframeshift 
deletion NM_000051 

c.8573_8575de
l p.2858_2859del 
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WTCHG_87813_08 chr11 108354869 108354869 G A ATM 
nonsynonymous 
SNV NM_000051 c.G8845A p.V2949I 

53_S47 chr11 108365415 108365415 - A ATM frameshift insertion NM_000051 c.9079dupA p.L3026fs 

16_MUT chr12 25225663 25225663 G C KRAS 
nonsynonymous 
SNV NM_004985 c.C401G p.A134G 

L080_11 chr12 25245314 25245314 A T KRAS 
nonsynonymous 
SNV NM_004985 c.T71A p.I24N 

WTCHG_90117_86 chr12 25245350 25245350 C A KRAS 
nonsynonymous 
SNV NM_004985 c.G35T p.G12V 

H523_S21 chr12 49022717 49022717 G A KMT2D 
nonsynonymous 
SNV NM_003482 c.C16211T p.S5404F 

WTCHG_88504_31 chr12 49022869 49022869 - 

TGGG
GCCT
GGG KMT2D frameshift insertion NM_003482 

c.16058_16059i
nsCCCAGGCCC
CA p.H5353fs 

23_MUT chr12 49024860 49024860 C T KMT2D 
nonsynonymous 
SNV NM_003482 c.G15871A p.E5291K 

WTCHG_90060_55 chr12 49024934 49024934 C T KMT2D 
nonsynonymous 
SNV NM_003482 c.G15797A p.R5266H 

H523_S21 chr12 49026337 49026337 T C KMT2D 
nonsynonymous 
SNV NM_003482 c.A15629G p.Y5210C 

WTCHG_76140_09 chr12 49026505 49026505 C T KMT2D 
nonsynonymous 
SNV NM_003482 c.G15461A p.R5154Q 

19_MUT chr12 49026748 49026748 - G KMT2D frameshift insertion NM_003482 c.15217dupC p.Q5073fs 

WTCHG_88505_57 chr12 49027151 49027151 C T KMT2D 
nonsynonymous 
SNV NM_003482 c.G14815A p.E4939K 

L098_13_S59 chr12 49027817 49027817 T G KMT2D 
nonsynonymous 
SNV NM_003482 c.A14629C p.S4877R 

WTCHG_87814_46 chr12 49028866 49028866 C A KMT2D 
nonsynonymous 
SNV NM_003482 c.G14344T p.V4782L 

WTCHG_88504_50 chr12 49029399 49029399 A G KMT2D splicing NM_003482 c.14075+2T>C . 

WTCHG_76140_38 chr12 49030660 49030660 C G KMT2D 
nonsynonymous 
SNV NM_003482 c.G13780C p.A4594P 
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21_S12 chr12 49030729 49030729 C T KMT2D 
nonsynonymous 
SNV NM_003482 c.G13711A p.A4571T 

30_MUT chr12 49031921 49031921 G A KMT2D stopgain NM_003482 c.C12784T p.Q4262X 

4683_S16 chr12 49032002 49032002 G A KMT2D stopgain NM_003482 c.C12703T p.Q4235X 

L40_S15 chr12 49032476 49032476 G A KMT2D 
nonsynonymous 
SNV NM_003482 c.C12229T p.L4077F 

Kalpadakis_L17 chr12 49033897 49033897 T G KMT2D 
nonsynonymous 
SNV NM_003482 c.A10808C p.Q3603P 

WTCHG_90119_66 chr12 49034446 49034446 G A KMT2D 
nonsynonymous 
SNV NM_003482 c.C10471T p.R3491C 

2_S2 chr12 49034911 49034911 T C KMT2D 
nonsynonymous 
SNV NM_003482 c.A10256G p.D3419G 

WTCHG_90118_08 chr12 49038267 49038267 T - KMT2D frameshift deletion NM_003482 c.9089delA p.N3030fs 

WTCHG_90119_52 chr12 49038626 49038629 ACTT - KMT2D frameshift deletion NM_003482 
c.8727_8730de
l p.V2909fs 

6_S6 chr12 49038924 49038925 TG - KMT2D frameshift deletion NM_003482 
c.8431_8432de
l p.Q2811fs 

8_MUT chr12 49039277 49039277 G A KMT2D stopgain NM_003482 c.C8311T p.R2771X 

22_S13 chr12 49039759 49039759 C T KMT2D 
nonsynonymous 
SNV NM_003482 c.G8011A p.G2671S 

WTCHG_87813_18 chr12 49039882 49039882 G - KMT2D frameshift deletion NM_003482 c.7888delC p.H2630fs 

38_S32 chr12 49040409 49040409 G A KMT2D 
nonsynonymous 
SNV NM_003482 c.C7361T p.P2454L 

39_S39 chr12 49041175 49041175 A - KMT2D frameshift deletion NM_003482 c.6595delT p.Y2199fs 

WTCHG_90117_96 chr12 49041262 49041262 G C KMT2D 
nonsynonymous 
SNV NM_003482 c.C6508G p.Q2170E 

WTCHG_75645_26 chr12 49041330 49041330 G A KMT2D 
nonsynonymous 
SNV NM_003482 c.C6440T p.A2147V 

H1954_S15 chr12 49041445 49041445 G A KMT2D stopgain NM_003482 c.C6325T p.Q2109X 

WTCHG_91609_91 chr12 49041517 49041517 T G KMT2D 
nonsynonymous 
SNV NM_003482 c.A6253C p.N2085H 

WTCHG_90119_63 chr12 49041917 49041917 C T KMT2D synonymous SNV NM_003482 c.G6183A p.L2061L 
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WTCHG_75645_28 chr12 49042090 49042090 T A KMT2D synonymous SNV NM_003482 c.A6108T p.P2036P 

WTCHG_76140_17 chr12 49044410 49044410 A C KMT2D stopgain NM_003482 c.T5076G p.Y1692X 

35_S35 chr12 49046064 49046064 C T KMT2D splicing NM_003482 c.4693+1G>A . 

WTCHG_90117_96 chr12 49046125 49046125 G A KMT2D stopgain NM_003482 c.C4633T p.Q1545X 

WTCHG_76140_15 chr12 49046172 49046172 C T KMT2D stopgain NM_003482 c.G4586A p.W1529X 

WTCHG_76140_09 chr12 49046648 49046648 G - KMT2D frameshift deletion NM_003482 c.4379delC p.P1460fs 

WTCHG_90117_90 chr12 49050395 49050395 A T KMT2D 
nonsynonymous 
SNV NM_003482 c.T3193A p.S1065T 

WTCHG_91608_73 chr12 49050521 49050521 G A KMT2D stopgain NM_003482 c.C3067T p.Q1023X 

H2247_S16 chr12 49050604 49050610 
GGCT
CAG - KMT2D frameshift deletion NM_003482 

c.2978_2984de
l p.P993fs 

7572_S1 chr12 49051551 49051551 G A KMT2D 
nonsynonymous 
SNV NM_003482 c.C2132T p.P711L 

L086_12 chr12 49051771 49051771 G C KMT2D 
nonsynonymous 
SNV NM_003482 c.C1912G p.P638A 

WTCHG_90119_50 chr12 49052166 49052166 G T KMT2D 
nonsynonymous 
SNV NM_003482 c.C1517A p.P506Q 

92568_S9 chr12 49052244 49052244 G - KMT2D frameshift deletion NM_003482 c.1439delC p.P480fs 

WTCHG_75645_07 chr12 49052961 49052961 G A KMT2D stopgain NM_003482 c.C1066T p.Q356X 

WTCHG_88505_57 chr12 49054063 49054063 G - KMT2D frameshift deletion NM_003482 c.588delC p.P196fs 

10_S10 chr12 121439961 121439961 T A KDM2B 
nonsynonymous 
SNV NM_032590 c.A3725T p.K1242M 

WTCHG_76140_35 chr12 121443768 121443768 C T KDM2B 
nonsynonymous 
SNV NM_032590 c.G2477A p.G826D 

WTCHG_90117_79 chr12 121453346 121453346 T C KDM2B splicing NM_032590 c.1735-2A>G . 

WTCHG_76140_12 chr12 121494647 121494647 C T KDM2B 
nonsynonymous 
SNV NM_032590 c.G1666A p.A556T 

WTCHG_88505_72 chr12 121509779 121509779 C T KDM2B 
nonsynonymous 
SNV NM_032590 c.G1435A p.E479K 

17_MUT chr12 121509784 121509784 G A KDM2B 
nonsynonymous 
SNV NM_032590 c.C1430T p.S477L 
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WTCHG_90060_61 chr12 121548981 121548981 T C KDM2B splicing NM_032590 c.581-2A>G . 

L071_10 chr12 121805997 121805997 A G SETD1B 
nonsynonymous 
SNV 

NM_00135334
5 c.A436G p.I146V 

L043_08 chr12 121810423 121810423 A G SETD1B 
nonsynonymous 
SNV 

NM_00135334
5 c.A1478G p.E493G 

L037_08 chr12 121810599 121810599 C T SETD1B 
nonsynonymous 
SNV 

NM_00135334
5 c.C1654T p.P552S 

L094_13 chr12 121814163 121814163 C G SETD1B 
nonsynonymous 
SNV 

NM_00135334
5 c.C1948G p.P650A 

22_S13 chr12 121814665 121814665 A G SETD1B 
nonsynonymous 
SNV 

NM_00135334
5 c.A2450G p.Y817C 

L37_S14 chr12 121822731 121822731 C T SETD1B synonymous SNV 
NM_00135334
5 c.C4152T p.G1384G 

L018_06 chr12 121822943 121822943 G A SETD1B 
nonsynonymous 
SNV 

NM_00135334
5 c.G4364A p.R1455H 

WTCHG_90119_72 chr14 102870257 102870257 - A TRAF3 frameshift insertion NM_145725 c.57dupA p.L19fs 

WTCHG_76140_24 chr14 102870421 102870421 G T TRAF3 stopgain NM_145725 c.G220T p.E74X 

H2486_S18 chr14 102871966 102871966 A - TRAF3 frameshift deletion NM_145725 c.295delA p.K99fs 

H3829_S19 chr14 102876356 102876356 A G TRAF3 splicing NM_145725 c.403-2A>G . 

L018_06 chr14 102886210 102886210 C - TRAF3 frameshift deletion NM_145725 c.592delC p.P198fs 

31_MUT chr14 102897275 102897278 GAAT - TRAF3 frameshift deletion NM_145725 c.834_837del p.Q278fs 

L018_06 chr14 102897280 102897280 A - TRAF3 frameshift deletion NM_145725 c.839delA p.E280fs 

491_S11 chr14 102897297 102897298 AA - TRAF3 frameshift deletion NM_145725 c.856_857del p.K286fs 

52_S46 chr14 102897369 102897369 C T TRAF3 stopgain NM_145725 c.C928T p.R310X 

WTCHG_88505_59 chr14 102897375 102897378 AATG - TRAF3 frameshift deletion NM_145725 c.934_937del p.N312fs 

25_MUT chr14 102897399 102897399 C T TRAF3 stopgain NM_145725 c.C958T p.Q320X 

WTCHG_76140_24 chr14 102897403 102897403 T A TRAF3 splicing NM_145725 c.960+2T>A . 

WTCHG_88505_59 chr14 102903263 102903266 AGAC - TRAF3 frameshift deletion NM_145725 c.969_972del p.I323fs 

WTCHG_76140_18 chr14 102903316 102903316 G A TRAF3 
nonsynonymous 
SNV NM_145725 c.G1022A p.R341Q 

WTCHG_75645_08 chr14 102903318 102903318 C T TRAF3 stopgain NM_145725 c.C1024T p.Q342X 
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22_S13 chr14 102905245 102905245 C T TRAF3 stopgain NM_145725 c.C1168T p.Q390X 

9_S7 chr14 102905250 102905253 GCTG - TRAF3 frameshift deletion NM_145725 
c.1173_1176de
l p.M391fs 

18_MUT chr14 102905336 102905336 G A TRAF3 stopgain NM_145725 c.G1259A p.W420X 

54764_S34 chr14 102905365 102905365 C T TRAF3 stopgain NM_145725 c.C1288T p.Q430X 

WTCHG_75645_06 chr14 102905405 102905405 A - TRAF3 frameshift deletion NM_145725 c.1328delA p.Q443fs 

L044_08 chr14 102905425 102905425 T - TRAF3 frameshift deletion NM_145725 c.1348delT p.F450fs 

H1558_S13 chr14 102905461 102905461 G A TRAF3 
nonsynonymous 
SNV NM_145725 c.G1384A p.G462R 

WTCHG_90060_60 chr14 102905497 102905497 T - TRAF3 frameshift deletion NM_145725 c.1420delT p.F474fs 

868_S8 chr14 102905551 102905551 C T TRAF3 stopgain NM_145725 c.C1474T p.Q492X 

WTCHG_75645_06 chr14 102905590 102905590 C T TRAF3 stopgain NM_145725 c.C1513T p.R505X 

WTCHG_90117_85 chr14 102905651 102905651 - TG TRAF3 frameshift insertion NM_145725 
c.1574_1575ins
TG p.T525fs 

L049_09_S31 chr15 66435105 66435105 T A MAP2K1 
nonsynonymous 
SNV NM_002755 c.T159A p.F53L 

WTCHG_76140_21 chr15 66435115 66435115 A G MAP2K1 
nonsynonymous 
SNV NM_002755 c.A169G p.K57E 

31_S31 chr15 66436825 66436825 C T MAP2K1 
nonsynonymous 
SNV NM_002755 c.C371T p.P124L 

4683_S16 chr15 66481793 66481793 G A MAP2K1 
nonsynonymous 
SNV NM_002755 c.G607A p.E203K 

50_S44 chr15 66481793 66481793 G A MAP2K1 
nonsynonymous 
SNV NM_002755 c.G607A p.E203K 

WTCHG_76140_34 chr15 92949027 92949027 C T CHD2 stopgain NM_001271 c.C1453T p.R485X 

WTCHG_91609_76 chr15 92967488 92967488 T G CHD2 
nonsynonymous 
SNV NM_001271 c.T2164G p.S722A 

WTCHG_90118_06 chr15 93020049 93020051 TGG - CHD2 
nonframeshift 
deletion NM_001271 

c.4944_4946de
l p.1648_1649del 

WTCHG_88504_42 chr15 93024673 93024673 C G CHD2 
nonsynonymous 
SNV NM_001271 c.C5455G p.P1819A 

WTCHG_76140_24 chr16 3728446 3728446 G A CREBBP stopgain NM_004380 c.C6601T p.Q2201X 
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WTCHG_91609_94 chr16 3728602 3728602 C T CREBBP 
nonsynonymous 
SNV NM_004380 c.G6445A p.V2149M 

23_MUT chr16 3729265 3729265 G A CREBBP stopgain NM_004380 c.C5782T p.Q1928X 

92568_S9 chr16 3729277 3729277 C T CREBBP 
nonsynonymous 
SNV NM_004380 c.G5770A p.V1924M 

WTCHG_87813_05 chr16 3731323 3731325 AGG - CREBBP 
nonframeshift 
deletion NM_004380 

c.5039_5041de
l p.1680_1681del 

6_S6 chr16 3736667 3736667 T A CREBBP 
nonsynonymous 
SNV NM_004380 c.A4543T p.I1515F 

WTCHG_90060_59 chr16 3738604 3738604 T C CREBBP 
nonsynonymous 
SNV NM_004380 c.A4349G p.Y1450C 

WTCHG_90060_61 chr16 3738604 3738604 T C CREBBP 
nonsynonymous 
SNV NM_004380 c.A4349G p.Y1450C 

H2247_S16 chr16 3738650 3738650 C T CREBBP 
nonsynonymous 
SNV NM_004380 c.G4303A p.D1435N 

WTCHG_87814_46 chr16 3739596 3739596 C T CREBBP 
nonsynonymous 
SNV NM_004380 c.G4262A p.C1421Y 

WTCHG_76140_20 chr16 3740454 3740454 G A CREBBP stopgain NM_004380 c.C4078T p.R1360X 

WTCHG_90119_55 chr16 3744942 3744942 A C CREBBP 
nonsynonymous 
SNV NM_004380 c.T3934G p.L1312V 

11_MUT chr16 3749638 3749647 

TAAG
GTAT
CA - CREBBP frameshift deletion NM_004380 

c.3816_3825de
l p.N1272fs 

WTCHG_90119_46 chr16 3757287 3757287 C T CREBBP splicing NM_004380 c.3698+1G>A . 

WTCHG_88504_33 chr16 3757813 3757813 C T CREBBP 
nonsynonymous 
SNV NM_004380 c.G3605A p.R1202H 

L080_11 chr16 3758897 3758897 A C CREBBP stopgain NM_004380 c.T3326G p.L1109X 

WTCHG_90119_47 chr16 3758916 3758916 G A CREBBP stopgain NM_004380 c.C3307T p.R1103X 

10_S10 chr16 3767881 3767881 G A CREBBP 
nonsynonymous 
SNV NM_004380 c.C3089T p.S1030F 

L080_11 chr16 3770719 3770719 G A CREBBP stopgain NM_004380 c.C2731T p.Q911X 
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875_S9 chr16 3770751 3770751 G A CREBBP 
nonsynonymous 
SNV NM_004380 c.C2699T p.T900I 

14_MUT chr16 3778119 3778119 G A CREBBP 
nonsynonymous 
SNV NM_004380 c.C2005T p.R669W 

50_S44 chr16 3780823 3780823 G A CREBBP 
nonsynonymous 
SNV NM_004380 c.C1732T p.P578S 

WTCHG_90119_46 chr16 3782764 3782764 G A CREBBP 
nonsynonymous 
SNV NM_004380 c.C1493T p.T498M 

WTCHG_76140_33 chr16 3793570 3793570 G - CREBBP frameshift deletion NM_004380 c.1032delC p.P344fs 

8_S8 chr16 3810755 3810755 - AC CREBBP frameshift insertion NM_004380 c.822_823insGT p.P275fs 

WTCHG_88505_68 chr17 7670682 7670682 C A TP53 stopgain NM_000546 c.G1027T p.E343X 

785_S6 chr17 7673579 7673579 G A TP53 stopgain NM_000546 c.C949T p.Q317X 

51_S45 chr17 7673700 7673700 C A TP53 splicing NM_000546 c.919+1G>T . 

WTCHG_88505_51 chr17 7673733 7673748 

TGAG
GCTC
CCCT
TTCT - TP53 frameshift deletion NM_000546 c.872_887del p.K291fs 

L038_08 chr17 7673767 7673767 C G TP53 
nonsynonymous 
SNV NM_000546 c.G853C p.E285Q 

11_MUT chr17 7673797 7673797 A - TP53 frameshift deletion NM_000546 c.823delT p.C275fs 

H1558_S13 chr17 7673800 7673800 C A TP53 
nonsynonymous 
SNV NM_000546 c.G820T p.V274F 

L027_07 chr17 7673802 7673802 C G TP53 
nonsynonymous 
SNV NM_000546 c.G818C p.R273P 

WTCHG_75645_43 chr17 7673824 7673824 C T TP53 
nonsynonymous 
SNV NM_000546 c.G796A p.G266R 

WTCHG_75645_59 chr17 7674220 7674220 C G TP53 
nonsynonymous 
SNV NM_000546 c.G743C p.R248P 

WTCHG_91608_78 chr17 7674220 7674220 C T TP53 
nonsynonymous 
SNV NM_000546 c.G743A p.R248Q 

H1558_S13 chr17 7674226 7674226 A - TP53 frameshift deletion NM_000546 c.737delT p.M246fs 
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WTCHG_88505_53 chr17 7674241 7674241 G A TP53 
nonsynonymous 
SNV NM_000546 c.C722T p.S241F 

31_MUT chr17 7674242 7674242 A G TP53 
nonsynonymous 
SNV NM_000546 c.T721C p.S241P 

WTCHG_88505_69 chr17 7674250 7674250 C T TP53 
nonsynonymous 
SNV NM_000546 c.G713A p.C238Y 

L075_10 chr17 7674256 7674256 T C TP53 
nonsynonymous 
SNV NM_000546 c.A707G p.Y236C 

WTCHG_87813_04 chr17 7674262 7674262 T C TP53 
nonsynonymous 
SNV NM_000546 c.A701G p.Y234C 

WTCHG_75645_02 chr17 7674858 7674858 C T TP53 splicing NM_000546 c.672+1G>A . 

H523_S21 chr17 7674859 7674859 C T TP53 synonymous SNV NM_000546 c.G672A p.E224E 

WTCHG_91608_96 chr17 7674890 7674890 T C TP53 
nonsynonymous 
SNV NM_000546 c.A641G p.H214R 

WTCHG_88505_57 chr17 7674894 7674894 G A TP53 stopgain NM_000546 c.C637T p.R213X 

12_S9 chr17 7674904 7674905 TC - TP53 frameshift deletion NM_000546 c.626_627del p.R209fs 

WTCHG_90060_50 chr17 7674904 7674905 TC - TP53 frameshift deletion NM_000546 c.626_627del p.R209fs 

WTCHG_90119_70 chr17 7674916 7674916 A C TP53 stopgain NM_000546 c.T615G p.Y205X 

WTCHG_91609_96 chr17 7674941 7674941 A C TP53 
nonsynonymous 
SNV NM_000546 c.T590G p.V197G 

WTCHG_88505_55 chr17 7674948 7674948 T A TP53 
nonsynonymous 
SNV NM_000546 c.A583T p.I195F 

WTCHG_88504_50 chr17 7674950 7674950 A C TP53 
nonsynonymous 
SNV NM_000546 c.T581G p.L194R 

6_MUT chr17 7674953 7674953 T C TP53 
nonsynonymous 
SNV NM_000546 c.A578G p.H193R 

WTCHG_88505_55 chr17 7674953 7674953 T C TP53 
nonsynonymous 
SNV NM_000546 c.A578G p.H193R 

WTCHG_76140_10 chr17 7674973 7674973 T A TP53 splicing NM_000546 c.560-2A>T . 

WTCHG_91608_95 chr17 7675066 7675066 G T TP53 stopgain NM_000546 c.C546A p.C182X 

WTCHG_91608_74 chr17 7675076 7675076 T C TP53 
nonsynonymous 
SNV NM_000546 c.A536G p.H179R 
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L031_07 chr17 7675088 7675088 C T TP53 
nonsynonymous 
SNV NM_000546 c.G524A p.R175H 

25_MUT chr17 7675100 7675100 T C TP53 
nonsynonymous 
SNV NM_000546 c.A512G p.E171G 

785_S6 chr17 7675124 7675124 T C TP53 
nonsynonymous 
SNV NM_000546 c.A488G p.Y163C 

WTCHG_87813_18 chr17 7675157 7675157 G A TP53 
nonsynonymous 
SNV NM_000546 c.C455T p.P152L 

WTCHG_87813_08 chr17 7675216 7675216 C A TP53 
nonsynonymous 
SNV NM_000546 c.G396T p.K132N 

WTCHG_90119_71 chr17 7675216 7675216 C A TP53 
nonsynonymous 
SNV NM_000546 c.G396T p.K132N 

WTCHG_90119_49 chr17 7675217 7675217 T G TP53 
nonsynonymous 
SNV NM_000546 c.A395C p.K132T 

WTCHG_90117_91 chr17 7675233 7675233 A T TP53 
nonsynonymous 
SNV NM_000546 c.T379A p.S127T 

WTCHG_88505_72 chr17 7676071 7676071 G A TP53 stopgain NM_000546 c.C298T p.Q100X 

WTCHG_90060_58 chr17 42322333 42322333 C G STAT3 
nonsynonymous 
SNV NM_139276 c.G2050C p.G684R 

92568_S9 chr17 45265203 45265203 C T MAP3K14 
nonsynonymous 
SNV NM_003954 c.G2639A p.R880Q 

WTCHG_91608_91 chr17 45266585 45266585 T C MAP3K14 
nonsynonymous 
SNV NM_003954 c.A2530G p.M844V 

WTCHG_88505_72 chr17 45267439 45267439 C T MAP3K14 
nonsynonymous 
SNV NM_003954 c.G2293A p.V765I 

WTCHG_91609_96 chr17 45271219 45271219 C A MAP3K14 
nonsynonymous 
SNV NM_003954 c.G1660T p.D554Y 

WTCHG_76140_14 chr17 45290495 45290495 G C MAP3K14 
nonsynonymous 
SNV NM_003954 c.C251G p.A84G 

21_S12 chr17 45290507 45290507 A G MAP3K14 
nonsynonymous 
SNV NM_003954 c.T239C p.I80T 

WTCHG_88504_47 chr17 45290507 45290507 A G MAP3K14 
nonsynonymous 
SNV NM_003954 c.T239C p.I80T 
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WTCHG_90060_59 chr17 45290546 45290546 G C MAP3K14 
nonsynonymous 
SNV NM_003954 c.C200G p.A67G 

WTCHG_90060_60 chr17 45290546 45290546 G C MAP3K14 
nonsynonymous 
SNV NM_003954 c.C200G p.A67G 

WTCHG_90119_54 chr17 45290546 45290546 G C MAP3K14 
nonsynonymous 
SNV NM_003954 c.C200G p.A67G 

WTCHG_76140_12 chr17 45290640 45290640 G A MAP3K14 stopgain NM_003954 c.C106T p.Q36X 

726_S40 chr17 63929438 63929438 T C CD79B 
nonsynonymous 
SNV NM_000626 c.A587G p.Y196C 

L051_09 chr17 63929438 63929438 T G CD79B 
nonsynonymous 
SNV NM_000626 c.A587C p.Y196S 

L052_09 chr17 63929476 63929476 C T CD79B splicing NM_000626 c.550-1G>A . 

WTCHG_91609_76 chr17 63929769 63929769 C T CD79B splicing NM_000626 c.549+1G>A . 

32_S32 chr19 1615471 1615471 G A TCF3 
nonsynonymous 
SNV NM_003200 c.C1636T p.R546W 

30_S24 chr19 1625666 1625666 G A TCF3 
nonsynonymous 
SNV NM_003200 c.C409T p.P137S 

WTCHG_76140_18 chr19 16324972 16324972 - CA KLF2 frameshift insertion NM_016270 c.49_50insCA p.P17fs 

22_S13 chr19 16324993 16324993 C T KLF2 stopgain NM_016270 c.C70T p.Q24X 

491_S11 chr19 16324993 16324993 C T KLF2 stopgain NM_016270 c.C70T p.Q24X 

51640_S3 chr19 16324993 16324993 C T KLF2 stopgain NM_016270 c.C70T p.Q24X 

836_S20 chr19 16324993 16324993 C T KLF2 stopgain NM_016270 c.C70T p.Q24X 

WTCHG_88504_31 chr19 16324993 16324993 C T KLF2 stopgain NM_016270 c.C70T p.Q24X 

WTCHG_90060_65 chr19 16324993 16324993 C T KLF2 stopgain NM_016270 c.C70T p.Q24X 

WTCHG_90119_67 chr19 16324993 16324993 C T KLF2 stopgain NM_016270 c.C70T p.Q24X 

WTCHG_90117_77 chr19 16325234 16325234 C - KLF2 frameshift deletion NM_016270 c.94delC p.P32fs 

WTCHG_91609_14 chr19 16325244 16325250 
GCGG
CAC - KLF2 frameshift deletion NM_016270 c.104_110del p.G35fs 

WTCHG_90060_53 chr19 16325261 16325267 
CTCA
ACA - KLF2 frameshift deletion NM_016270 c.121_127del p.L41fs 

WTCHG_90060_59 chr19 16325588 16325588 G - KLF2 frameshift deletion NM_016270 c.448delG p.E150fs 
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8_MUT chr19 16325768 16325768 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C628T p.H210Y 

WTCHG_90119_52 chr19 16325909 16325909 C G KLF2 
nonsynonymous 
SNV NM_016270 c.C769G p.P257A 

10_MUT chr19 16325932 16325932 G A KLF2 stopgain NM_016270 c.G792A p.W264X 

H2265_S17 chr19 16325961 16325961 G A KLF2 
nonsynonymous 
SNV NM_016270 c.G821A p.C274Y 

WTCHG_87813_25 chr19 16325961 16325961 G A KLF2 
nonsynonymous 
SNV NM_016270 c.G821A p.C274Y 

5_MUT chr19 16325973 16325973 G A KLF2 
nonsynonymous 
SNV NM_016270 c.G833A p.G278D 

WTCHG_90117_77 chr19 16325984 16325989 
ACCT
AC - KLF2 

nonframeshift 
deletion NM_016270 c.844_849del p.282_283del 

L043_08 chr19 16325987 16325987 T G KLF2 
nonsynonymous 
SNV NM_016270 c.T847G p.Y283D 

52_S46 chr19 16326000 16326000 C A KLF2 stopgain NM_016270 c.C860A p.S287X 

2_S2 chr19 16326002 16326002 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C862T p.H288Y 

21_S12 chr19 16326002 16326002 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C862T p.H288Y 

L076_10 chr19 16326002 16326002 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C862T p.H288Y 

L096_13 chr19 16326002 16326002 C G KLF2 
nonsynonymous 
SNV NM_016270 c.C862G p.H288D 

WTCHG_75645_06 chr19 16326002 16326002 C G KLF2 
nonsynonymous 
SNV NM_016270 c.C862G p.H288D 

WTCHG_90060_53 chr19 16326002 16326002 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C862T p.H288Y 

L011_03 chr19 16326011 16326011 G A KLF2 
nonsynonymous 
SNV NM_016270 c.G871A p.A291T 

WTCHG_76140_33 chr19 16326012 16326012 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C872T p.A291V 
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L018_06 chr19 16326026 16326026 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C886T p.H296Y 

WTCHG_90117_85 chr19 16326026 16326026 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C886T p.H296Y 

30_S24 chr19 16326032 16326032 G A KLF2 
nonsynonymous 
SNV NM_016270 c.G892A p.G298S 

WTCHG_90060_55 chr19 16326855 16326855 G - KLF2 splicing NM_016270 c.893-1G>- . 

WTCHG_87813_18 chr19 16326856 16326856 G A KLF2 
nonsynonymous 
SNV NM_016270 c.G893A p.G298D 

L031_07 chr19 16326860 16326860 - A KLF2 frameshift insertion NM_016270 c.898dupA p.E299fs 

WTCHG_75645_62 chr19 16326886 16326886 G T KLF2 
nonsynonymous 
SNV NM_016270 c.G923T p.G308V 

WTCHG_76140_37 chr19 16326910 16326910 C G KLF2 stopgain NM_016270 c.C947G p.S316X 

L076_10 chr19 16326932 16326932 C - KLF2 frameshift deletion NM_016270 c.969delC p.Y323fs 

WTCHG_90060_57 chr19 16326933 16326933 C T KLF2 stopgain NM_016270 c.C970T p.R324X 

WTCHG_87813_25 chr19 16326994 16326994 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C1031T p.S344F 

WTCHG_90060_65 chr19 16326996 16326996 G A KLF2 
nonsynonymous 
SNV NM_016270 c.G1033A p.D345N 

H2247_S16 chr19 16327006 16327009 CGCT - KLF2 frameshift deletion NM_016270 
c.1043_1046de
l p.A348fs 

WTCHG_90060_61 chr19 16327011 16327011 C T KLF2 
nonsynonymous 
SNV NM_016270 c.C1048T p.H350Y 

WTCHG_75645_07 chr19 16327029 16327029 T A KLF2 stoploss NM_016270 c.T1066A p.X356K 

WTCHG_90117_91 chr19 17830532 17830532 A G JAK3 
nonsynonymous 
SNV NM_000215 c.T3067C p.Y1023H 

10_S10 chr19 17832858 17832858 G A JAK3 
nonsynonymous 
SNV NM_000215 c.C2422T p.L808F 

WTCHG_90119_54 chr19 17837170 17837170 C T JAK3 
nonsynonymous 
SNV NM_000215 c.G1745A p.R582Q 

WTCHG_87814_47 chr19 17839584 17839584 C T JAK3 
nonsynonymous 
SNV NM_000215 c.G1334A p.R445Q 
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WTCHG_91608_73 chr19 17840288 17840288 T C JAK3 
nonsynonymous 
SNV NM_000215 c.A1196G p.Y399C 

L094_13 chr19 41879574 41879574 C A CD79A 
nonsynonymous 
SNV NM_001783 c.C419A p.T140N 

WTCHG_76140_12 chr2 136114915 136114915 G C CXCR4 stopgain NM_003467 c.C1013G p.S338X 

WTCHG_90119_48 chr2 136114922 136114922 C A CXCR4 stopgain NM_003467 c.G1006T p.G336X 

8_MUT chr2 136114928 136114928 G A CXCR4 stopgain NM_003467 c.C1000T p.R334X 

WTCHG_88505_54 chr2 136114928 136114928 G A CXCR4 stopgain NM_003467 c.C1000T p.R334X 

1_S1 chr2 136114953 136114953 - 
CTAG
ATC CXCR4 stopgain NM_003467 

c.974_975insG
ATCTAG 

p.S325_L326deli
nsRIX 

49_S43 chr2 136114964 136114964 - G CXCR4 frameshift insertion NM_003467 c.963dupC p.R322fs 

WTCHG_90119_48 chr2 136115453 136115453 C T CXCR4 
nonsynonymous 
SNV NM_003467 c.G475A p.G159S 

606_S12 chr22 22888063 22888063 A T IGLL5 stopgain 
NM_00117812
6 c.A10T p.K4X 

L048_09 chr22 22888123 22888123 T A IGLL5 
nonsynonymous 
SNV 

NM_00117812
6 c.T70A p.W24R 

L086_12 chr22 22888130 22888130 T C IGLL5 
nonsynonymous 
SNV 

NM_00117812
6 c.T77C p.L26P 

L40_S15 chr22 22888183 22888183 G T IGLL5 
nonsynonymous 
SNV 

NM_00117812
6 c.G130T p.A44S 

L086_12 chr22 22888188 22888192 
GCAA
A - IGLL5 frameshift deletion 

NM_00117812
6 c.135_139del p.P45fs 

WTCHG_91608_78 chr3 38140527 38140527 C T MYD88 synonymous SNV NM_002468 c.C603T p.G201G 

L044_08 chr3 38140534 38140534 G T MYD88 
nonsynonymous 
SNV NM_002468 c.G610T p.V204F 

WTCHG_76140_33 chr3 38140534 38140534 G T MYD88 
nonsynonymous 
SNV NM_002468 c.G610T p.V204F 

WTCHG_88505_56 chr3 38140534 38140534 G T MYD88 
nonsynonymous 
SNV NM_002468 c.G610T p.V204F 

17_MUT chr3 38140541 38140541 C G MYD88 
nonsynonymous 
SNV NM_002468 c.C617G p.S206C 
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5_S5 chr3 38140541 38140541 C G MYD88 
nonsynonymous 
SNV NM_002468 c.C617G p.S206C 

673_S4 chr3 38140541 38140541 C G MYD88 
nonsynonymous 
SNV NM_002468 c.C617G p.S206C 

L071_10 chr3 38140541 38140541 C G MYD88 
nonsynonymous 
SNV NM_002468 c.C617G p.S206C 

WTCHG_87813_03 chr3 38140541 38140541 C G MYD88 
nonsynonymous 
SNV NM_002468 c.C617G p.S206C 

WTCHG_90117_82 chr3 38140541 38140541 C G MYD88 
nonsynonymous 
SNV NM_002468 c.C617G p.S206C 

27_S27 chr3 38140544 38140544 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T620C p.I207T 

27_S27 chr3 38140566 38140566 G C MYD88 
nonsynonymous 
SNV NM_002468 c.G642C p.K214N 

47_S41 chr3 38140768 38140768 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T656C p.M219T 

L029_07 chr3 38140768 38140768 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T656C p.M219T 

WTCHG_88505_74 chr3 38140768 38140768 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T656C p.M219T 

4683_S16 chr3 38140801 38140801 G A MYD88 
nonsynonymous 
SNV NM_002468 c.G689A p.S230N 

L094_13 chr3 38140801 38140801 G A MYD88 
nonsynonymous 
SNV NM_002468 c.G689A p.S230N 

51_S45 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

793_S7 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

8_S8 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

875_S9 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 
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L019_06 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

L022_06 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

L023_07 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

L051_09 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

L099_13 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

WTCHG_75645_05 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

WTCHG_76140_17 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

WTCHG_76140_19 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

WTCHG_88504_28 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

WTCHG_90117_78 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

WTCHG_90117_79 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

WTCHG_91609_11 chr3 38141150 38141150 T C MYD88 
nonsynonymous 
SNV NM_002468 c.T755C p.L252P 

L049_09_S31 chr3 47017128 47017128 C T SETD2 
nonsynonymous 
SNV NM_014159 c.G7660A p.V2554I 

1_S1 chr3 47088112 47088112 C T SETD2 splicing NM_014159 c.5277+1G>A . 

1_S1 chr3 47097968 47097968 C - SETD2 frameshift deletion NM_014159 c.5129delG p.R1710fs 

785_S6 chr3 47103422 47103422 A T SETD2 
nonsynonymous 
SNV NM_014159 c.T4841A p.I1614K 

WTCHG_76140_12 chr3 47113921 47113924 GTGA - SETD2 frameshift deletion NM_014159 
c.4667_4670de
l p.L1556fs 
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WTCHG_87813_18 chr3 47120292 47120293 GG - SETD2 frameshift deletion NM_014159 
c.4343_4344de
l p.S1448fs 

11731_S18 chr3 47120299 47120299 C T SETD2 
nonsynonymous 
SNV NM_014159 c.G4337A p.G1446E 

L038_08 chr3 47120375 47120375 G A SETD2 
nonsynonymous 
SNV NM_014159 c.C4261T p.L1421F 

WTCHG_91609_11 chr3 47121842 47121842 C T SETD2 
nonsynonymous 
SNV NM_014159 c.G2794A p.V932I 

9641_S17 chr3 47122448 47122448 T C SETD2 
nonsynonymous 
SNV NM_014159 c.A2188G p.K730E 

WTCHG_90117_87 chr3 47123437 47123437 C T SETD2 
nonsynonymous 
SNV NM_014159 c.G1199A p.R400Q 

WTCHG_88505_61 chr3 47124488 47124488 C T SETD2 
nonsynonymous 
SNV NM_014159 c.G148A p.A50T 

WTCHG_75645_08 chr4 105234031 105234031 T C TET2 
nonsynonymous 
SNV 

NM_00112720
8 c.T89C p.L30P 

WTCHG_75645_62 chr4 105234952 105234952 A C TET2 
nonsynonymous 
SNV 

NM_00112720
8 c.A1010C p.E337A 

WTCHG_88504_45 chr4 105235321 105235321 C T TET2 
nonsynonymous 
SNV 

NM_00112720
8 c.C1379T p.S460F 

WTCHG_90117_96 chr4 105235928 105235928 C G TET2 
nonsynonymous 
SNV 

NM_00112720
8 c.C1986G p.F662L 

L075_10 chr4 105236572 105236572 A G TET2 
nonsynonymous 
SNV 

NM_00112720
8 c.A2630G p.D877G 

WTCHG_75645_60 chr4 105237039 105237039 A T TET2 stopgain 
NM_00112720
8 c.A3097T p.K1033X 

L043_08 chr4 105237181 105237181 C T TET2 
nonsynonymous 
SNV 

NM_00112720
8 c.C3239T p.A1080V 

3_S3 chr4 105259621 105259621 G A TET2 
nonsynonymous 
SNV 

NM_00112720
8 c.G3806A p.R1269K 

WTCHG_90119_49 chr4 105259628 105259628 C G TET2 
nonsynonymous 
SNV 

NM_00112720
8 c.C3813G p.C1271W 
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L022_06 chr4 152326166 152326166 T C FBXW7 
nonsynonymous 
SNV 

NM_00134979
8 c.A1484G p.H495R 

726_S40 chr4 152326215 152326215 G C FBXW7 
nonsynonymous 
SNV 

NM_00134979
8 c.C1435G p.R479G 

47_S41 chr4 152350051 152350051 T G FBXW7 
nonsynonymous 
SNV 

NM_00134979
8 c.A575C p.E192A 

WTCHG_75645_06 chr6 41935945 41935951 
GGTG
TAT - CCND3 frameshift deletion NM_001760 c.868_874del p.I290fs 

WTCHG_87813_02 chr6 41935950 41935950 A T CCND3 
nonsynonymous 
SNV NM_001760 c.T869A p.I290K 

WTCHG_88504_42 chr6 41935953 41935953 - CT CCND3 frameshift insertion NM_001760 
c.865_866insA
G p.A289fs 

12_S9 chr6 41935954 41935954 C G CCND3 
nonsynonymous 
SNV NM_001760 c.G865C p.A289P 

WTCHG_90119_49 chr6 41935954 41935954 C G CCND3 
nonsynonymous 
SNV NM_001760 c.G865C p.A289P 

WTCHG_91609_91 chr6 41935954 41935954 C G CCND3 
nonsynonymous 
SNV NM_001760 c.G865C p.A289P 

WTCHG_75645_30 chr6 41935955 41935956 TG - CCND3 frameshift deletion NM_001760 c.863_864del p.T288fs 

L088_12 chr6 41935956 41935969 

GTGA
CATC
TGTA
GG - CCND3 frameshift deletion NM_001760 c.850_863del p.P284fs 

27_MUT chr6 41935959 41935959 A T CCND3 
nonsynonymous 
SNV NM_001760 c.T860A p.V287D 

3_S3 chr6 41935959 41935959 A C CCND3 
nonsynonymous 
SNV NM_001760 c.T860G p.V287G 

45_S45 chr6 41935959 41935959 A C CCND3 
nonsynonymous 
SNV NM_001760 c.T860G p.V287G 

WTCHG_90119_71 chr6 41935965 41935968 GTAG - CCND3 frameshift deletion NM_001760 c.851_854del p.P284fs 

WTCHG_88505_70 chr6 41935967 41935967 - 

GGA
GTGC
TGGT CCND3 frameshift insertion NM_001760 

c.851_852insA
AGCCCAGCCAG
ACCAGCACTCC p.P284fs 
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CTGG
CTGG
GCTT 

L031_07 chr6 41935968 41935968 G T CCND3 
nonsynonymous 
SNV NM_001760 c.C851A p.P284H 

623_S55 chr6 41935969 41935969 G C CCND3 
nonsynonymous 
SNV NM_001760 c.C850G p.P284A 

9_S9 chr6 41935969 41935969 G A CCND3 
nonsynonymous 
SNV NM_001760 c.C850T p.P284S 

L099_13 chr6 41935969 41935969 G A CCND3 
nonsynonymous 
SNV NM_001760 c.C850T p.P284S 

WTCHG_87813_22 chr6 41935969 41935969 G A CCND3 
nonsynonymous 
SNV NM_001760 c.C850T p.P284S 

WTCHG_87813_25 chr6 41935969 41935969 G A CCND3 
nonsynonymous 
SNV NM_001760 c.C850T p.P284S 

WTCHG_88504_41 chr6 41935969 41935969 G T CCND3 
nonsynonymous 
SNV NM_001760 c.C850A p.P284T 

L043_08 chr6 41935971 41935971 G T CCND3 
nonsynonymous 
SNV NM_001760 c.C848A p.T283N 

L023_07 chr6 41935972 41935972 T C CCND3 
nonsynonymous 
SNV NM_001760 c.A847G p.T283A 

WTCHG_90060_66 chr6 41935972 41935972 T C CCND3 
nonsynonymous 
SNV NM_001760 c.A847G p.T283A 

5_MUT chr6 41935981 41935981 G A CCND3 stopgain NM_001760 c.C838T p.Q280X 

4_S3 chr6 41936007 41936007 - G CCND3 frameshift insertion NM_001760 c.811dupC p.R271fs 

H523_S21 chr6 41936007 41936007 - G CCND3 frameshift insertion NM_001760 c.811dupC p.R271fs 

WTCHG_87814_48 chr6 41936007 41936007 - G CCND3 frameshift insertion NM_001760 c.811dupC p.R271fs 

WTCHG_90118_08 chr6 41936007 41936007 - G CCND3 frameshift insertion NM_001760 c.811dupC p.R271fs 

WTCHG_75645_02 chr6 41936008 41936008 G - CCND3 frameshift deletion NM_001760 c.811delC p.R271fs 

46_S40 chr6 41936008 41936009 GG - CCND3 frameshift deletion NM_001760 c.810_811del p.P270fs 

L023_07 chr6 41936016 41936016 T C CCND3 
nonsynonymous 
SNV NM_001760 c.A803G p.K268R 
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L038_08 chr6 41936017 41936017 T A CCND3 stopgain NM_001760 c.A802T p.K268X 

WTCHG_91608_95 chr6 41936041 41936041 G A CCND3 stopgain NM_001760 c.C778T p.Q260X 

L075_10 chr6 41936656 41936656 G A CCND3 
nonsynonymous 
SNV NM_001760 c.C614T p.T205M 

WTCHG_76140_20 chr6 41941472 41941472 G C CCND3 
nonsynonymous 
SNV NM_001760 c.C178G p.L60V 

WTCHG_76140_20 chr6 41941511 41941511 A T CCND3 
nonsynonymous 
SNV NM_001760 c.T139A p.C47S 

WTCHG_87813_09 chr6 41941544 41941544 C T CCND3 
nonsynonymous 
SNV NM_001760 c.G106A p.E36K 

92568_S9 chr6 44260042 44260042 C T NFKBIE splicing NM_004556 c.1437+1G>A . 

WTCHG_91609_96 chr6 44260512 44260512 - G NFKBIE frameshift insertion NM_004556 c.1135dupC p.L379fs 

783_S12 chr6 44261697 44261697 A T NFKBIE 
nonsynonymous 
SNV NM_004556 c.T1037A p.L346Q 

10_MUT chr6 44262560 44262560 C T NFKBIE synonymous SNV NM_004556 c.G885A p.Q295Q 

10_MUT chr6 44265002 44265005 GTAA - NFKBIE frameshift deletion NM_004556 c.759_762del p.T253fs 

21_S12 chr6 44265002 44265005 GTAA - NFKBIE frameshift deletion NM_004556 c.759_762del p.T253fs 

30_MUT chr6 44265002 44265005 GTAA - NFKBIE frameshift deletion NM_004556 c.759_762del p.T253fs 

L036_08 chr6 44265002 44265005 GTAA - NFKBIE frameshift deletion NM_004556 c.759_762del p.T253fs 

L067_10 chr6 44265002 44265005 GTAA - NFKBIE frameshift deletion NM_004556 c.759_762del p.T253fs 

WTCHG_88505_68 chr6 44265002 44265005 GTAA - NFKBIE frameshift deletion NM_004556 c.759_762del p.T253fs 

WTCHG_90117_91 chr6 44265002 44265005 GTAA - NFKBIE frameshift deletion NM_004556 c.759_762del p.T253fs 

WTCHG_91609_96 chr6 44265002 44265005 GTAA - NFKBIE frameshift deletion NM_004556 c.759_762del p.T253fs 

WTCHG_90118_13 chr6 137871291 137871291 C - TNFAIP3 frameshift deletion 
NM_00127050
8 c.64delC p.R22fs 

WTCHG_87813_25 chr6 137871402 137871403 CA - TNFAIP3 frameshift deletion 
NM_00127050
8 c.175_176del p.Q59fs 

7572_S1 chr6 137871517 137871518 CG - TNFAIP3 frameshift deletion 
NM_00127050
8 c.290_291del p.T97fs 

WTCHG_88505_73 chr6 137871522 137871526 
GGTA
A - TNFAIP3 frameshift deletion 

NM_00127050
8 c.295_295del p.G99fs 
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51640_S3 chr6 137874877 137874877 C T TNFAIP3 stopgain 
NM_00127050
8 c.C328T p.Q110X 

WTCHG_87813_04 chr6 137874914 137874914 T C TNFAIP3 
nonsynonymous 
SNV 

NM_00127050
8 c.T365C p.L122P 

WTCHG_76140_18 chr6 137874948 137874949 AG - TNFAIP3 frameshift deletion 
NM_00127050
8 c.399_400del p.T133fs 

WTCHG_87813_25 chr6 137874950 137874951 AC - TNFAIP3 frameshift deletion 
NM_00127050
8 c.401_402del p.D134fs 

L031_07 chr6 137874976 137874976 C T TNFAIP3 stopgain 
NM_00127050
8 c.C427T p.Q143X 

10_MUT chr6 137874985 137874986 TC - TNFAIP3 frameshift deletion 
NM_00127050
8 c.436_437del p.S146fs 

WTCHG_88504_31 chr6 137874985 137874986 TC - TNFAIP3 frameshift deletion 
NM_00127050
8 c.436_437del p.S146fs 

WTCHG_90119_63 chr6 137875724 137875724 G T TNFAIP3 
nonsynonymous 
SNV 

NM_00127050
8 c.G523T p.A175S 

WTCHG_90119_63 chr6 137875725 137875725 C T TNFAIP3 
nonsynonymous 
SNV 

NM_00127050
8 c.C524T p.A175V 

WTCHG_87813_04 chr6 137876020 137876020 C G TNFAIP3 stopgain 
NM_00127050
8 c.C659G p.S220X 

WTCHG_88504_31 chr6 137876098 137876101 ACCC - TNFAIP3 frameshift deletion 
NM_00127050
8 c.737_740del p.Y246fs 

92568_S9 chr6 137876099 137876099 C - TNFAIP3 frameshift deletion 
NM_00127050
8 c.738delC p.Y246fs 

H2247_S16 chr6 137876128 137876128 - T TNFAIP3 frameshift insertion 
NM_00127050
8 c.768dupT p.H256fs 

L037_08 chr6 137877081 137877081 C T TNFAIP3 stopgain 
NM_00127050
8 c.C811T p.R271X 

WTCHG_75645_60 chr6 137877126 137877139 

TTAA
AAGT
TCAC
TT - TNFAIP3 frameshift deletion 

NM_00127050
8 c.856_869del p.L286fs 
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L096_13 chr6 137877180 137877180 A T TNFAIP3 stopgain 
NM_00127050
8 c.A910T p.K304X 

5_MUT chr6 137877221 137877221 G A TNFAIP3 stopgain 
NM_00127050
8 c.G951A p.W317X 

WTCHG_91608_73 chr6 137877221 137877221 G A TNFAIP3 stopgain 
NM_00127050
8 c.G951A p.W317X 

23_MUT chr6 137877235 137877239 
CTCA
T - TNFAIP3 frameshift deletion 

NM_00127050
8 c.965_969del p.T322fs 

L037_08 chr6 137877235 137877239 
CTCA
T - TNFAIP3 frameshift deletion 

NM_00127050
8 c.965_969del p.T322fs 

WTCHG_91608_73 chr6 137877235 137877239 
CTCA
T - TNFAIP3 frameshift deletion 

NM_00127050
8 c.965_969del p.T322fs 

WTCHG_90060_65 chr6 137878526 137878526 G T TNFAIP3 stopgain 
NM_00127050
8 c.G1081T p.E361X 

L096_13 chr6 137878668 137878668 C G TNFAIP3 stopgain 
NM_00127050
8 c.C1223G p.S408X 

WTCHG_90060_61 chr6 137878788 137878788 G A TNFAIP3 stopgain 
NM_00127050
8 c.G1343A p.W448X 

WTCHG_75645_60 chr6 137878859 137878859 G T TNFAIP3 stopgain 
NM_00127050
8 c.G1414T p.E472X 

WTCHG_90060_65 chr6 137878861 137878861 G - TNFAIP3 frameshift deletion 
NM_00127050
8 c.1416delG p.E472fs 

46_S40 chr6 137878941 137878941 A G TNFAIP3 
nonsynonymous 
SNV 

NM_00127050
8 c.A1496G p.H499R 

7572_S1 chr6 137879126 137879126 C T TNFAIP3 stopgain 
NM_00127050
8 c.C1681T p.Q561X 

WTCHG_90060_61 chr6 137879126 137879126 C T TNFAIP3 stopgain 
NM_00127050
8 c.C1681T p.Q561X 

3_S3 chr6 137879181 137879181 G A TNFAIP3 
nonsynonymous 
SNV 

NM_00127050
8 c.G1736A p.C579Y 

WTCHG_90060_63 chr6 137880200 137880200 T C TNFAIP3 
nonsynonymous 
SNV 

NM_00127050
8 c.T2036C p.I679T 
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17_MUT chr6 137880241 137880241 G C TNFAIP3 
nonsynonymous 
SNV 

NM_00127050
8 c.G2077C p.E693Q 

H523_S21 chr6 137881137 137881137 G T TNFAIP3 stopgain 
NM_00127050
8 c.G2191T p.E731X 

WTCHG_76140_18 chr6 137881213 137881213 - C TNFAIP3 frameshift insertion 
NM_00127050
8 c.2268dupC p.D756fs 

12600_S19 chr6 137881228 137881228 G A TNFAIP3 
nonsynonymous 
SNV 

NM_00127050
8 c.G2282A p.R761H 

WTCHG_91608_83 chr7 2913386 2913386 G A CARD11 
nonsynonymous 
SNV NM_032415 c.C2920T p.R974C 

L025_07 chr7 2928689 2928689 G A CARD11 
nonsynonymous 
SNV NM_032415 c.C1663T p.R555W 

L094_13 chr7 2934479 2934479 G A CARD11 
nonsynonymous 
SNV NM_032415 c.C1492T p.R498C 

H2247_S16 chr7 2937968 2937968 T C CARD11 
nonsynonymous 
SNV NM_032415 c.A1082G p.Y361C 

WTCHG_87813_05 chr7 2937972 2937972 T C CARD11 
nonsynonymous 
SNV NM_032415 c.A1078G p.M360V 

WTCHG_90119_53 chr7 2938686 2938686 C T CARD11 
nonsynonymous 
SNV NM_032415 c.G1010A p.R337Q 

WTCHG_75645_62 chr7 2939861 2939861 A G CARD11 
nonsynonymous 
SNV NM_032415 c.T752C p.L251P 

WTCHG_90060_57 chr7 2939910 2939912 GGT - CARD11 
nonframeshift 
deletion NM_032415 c.701_703del p.234_235del 

53_S47 chr7 2939913 2939918 
GCTT
TA - CARD11 

nonframeshift 
deletion NM_032415 c.695_700del p.232_234del 

WTCHG_87813_04 chr7 2944324 2944324 T C CARD11 
nonsynonymous 
SNV NM_032415 c.A572G p.N191S 

H1701_S14 chr7 2944528 2944528 C T CARD11 
nonsynonymous 
SNV NM_032415 c.G368A p.G123D 

WTCHG_87813_18 chr7 2947734 2947734 C T CARD11 
nonsynonymous 
SNV NM_032415 c.G61A p.A21T 
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836_S20 chr7 124824065 124824065 G A POT1 
nonsynonymous 
SNV NM_015450 c.C1802T p.P601L 

WTCHG_75645_30 chr7 124835294 124835294 G A POT1 
nonsynonymous 
SNV NM_015450 c.C1490T p.T497I 

WTCHG_87813_22 chr7 124851950 124851950 C T POT1 
nonsynonymous 
SNV NM_015450 c.G871A p.D291N 

L043_08 chr7 128835520 128835520 C A FLNC 
nonsynonymous 
SNV NM_001458 c.C547A p.R183S 

4683_S16 chr7 128838313 128838313 A G FLNC 
nonsynonymous 
SNV NM_001458 c.A1094G p.E365G 

WTCHG_87814_48 chr7 128838650 128838650 C T FLNC 
nonsynonymous 
SNV NM_001458 c.C1258T p.R420W 

WTCHG_90060_55 chr7 128841524 128841524 A C FLNC 
nonsynonymous 
SNV NM_001458 c.A2078C p.D693A 

L024_07 chr7 128842289 128842289 G A FLNC 
nonsynonymous 
SNV NM_001458 c.G2180A p.R727H 

WTCHG_76140_36 chr7 128844207 128844207 C A FLNC 
nonsynonymous 
SNV NM_001458 c.C3133A p.H1045N 

WTCHG_90060_60 chr7 128844253 128844253 C T FLNC 
nonsynonymous 
SNV NM_001458 c.C3179T p.P1060L 

WTCHG_88504_45 chr7 128844847 128844847 G A FLNC 
nonsynonymous 
SNV NM_001458 c.G3382A p.E1128K 

WTCHG_90119_69 chr7 128844965 128844965 G A FLNC 
nonsynonymous 
SNV NM_001458 c.G3500A p.R1167H 

28_S22 chr7 128845255 128845255 G A FLNC 
nonsynonymous 
SNV NM_001458 c.G3790A p.G1264S 

785_S6 chr7 128846428 128846428 G C FLNC 
nonsynonymous 
SNV NM_001458 c.G4092C p.L1364F 

WTCHG_88504_45 chr7 128848818 128848818 C G FLNC 
nonsynonymous 
SNV NM_001458 c.C4763G p.A1588G 

52_S46 chr7 128852998 128852998 G A FLNC 
nonsynonymous 
SNV NM_001458 c.G6175A p.V2059M 
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WTCHG_91608_95 chr7 128856555 128856555 C T FLNC 
nonsynonymous 
SNV NM_001458 c.C7289T p.A2430V 

WTCHG_90119_53 chr7 128857145 128857145 C A FLNC 
nonsynonymous 
SNV NM_001458 c.C7589A p.T2530N 

L069_10 chr7 140753332 140753332 T G BRAF 
nonsynonymous 
SNV NM_004333 c.A1803C p.K601N 

WTCHG_88505_73 chr7 140753332 140753332 T G BRAF 
nonsynonymous 
SNV NM_004333 c.A1803C p.K601N 

WTCHG_90117_91 chr7 148811636 148811636 A T EZH2 
nonsynonymous 
SNV NM_004456 c.T1936A p.Y646N 

5_S5 chr8 47777835 47777835 G A PRKDC 
nonsynonymous 
SNV NM_006904 c.C11893T p.R3965C 

WTCHG_76140_33 chr8 47778616 47778616 G A PRKDC 
nonsynonymous 
SNV NM_006904 c.C11696T p.A3899V 

28_S22 chr8 47782211 47782211 C T PRKDC 
nonsynonymous 
SNV NM_006904 c.G11440A p.D3814N 

WTCHG_90117_92 chr8 47834219 47834219 T C PRKDC 
nonsynonymous 
SNV NM_006904 c.A8129G p.D2710G 

2_S2 chr8 47836496 47836496 C T PRKDC 
nonsynonymous 
SNV NM_006904 c.G7793A p.R2598Q 

92568_S9 chr8 47840115 47840115 C T PRKDC 
nonsynonymous 
SNV NM_006904 c.G7355A p.R2452Q 

WTCHG_88504_36 chr8 47862474 47862474 A G PRKDC 
nonsynonymous 
SNV NM_006904 c.T5818C p.Y1940H 

46_S40 chr8 47877748 47877748 G T PRKDC 
nonsynonymous 
SNV NM_006904 c.C5339A p.S1780Y 

92568_S9 chr8 47879606 47879606 A T PRKDC 
nonsynonymous 
SNV NM_006904 c.T5120A p.L1707Q 

WTCHG_90119_69 chr8 47888567 47888567 C T PRKDC 
nonsynonymous 
SNV NM_006904 c.G4364A p.C1455Y 

WTCHG_90117_96 chr8 47888650 47888650 G C PRKDC 
nonsynonymous 
SNV NM_006904 c.C4281G p.S1427R 
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WTCHG_76140_10 chr8 47902794 47902794 T C PRKDC 
nonsynonymous 
SNV NM_006904 c.A3044G p.D1015G 

WTCHG_76140_13 chr8 47914015 47914015 C G PRKDC 
nonsynonymous 
SNV NM_006904 c.G2667C p.E889D 

WTCHG_76140_20 chr8 47914015 47914015 C G PRKDC 
nonsynonymous 
SNV NM_006904 c.G2667C p.E889D 

WTCHG_88505_72 chr8 47914032 47914032 C T PRKDC 
nonsynonymous 
SNV NM_006904 c.G2650A p.V884M 

WTCHG_75645_30 chr8 47930738 47930738 G A PRKDC 
nonsynonymous 
SNV NM_006904 c.C1826T p.A609V 

WTCHG_88505_56 chr8 47943975 47943975 T C PRKDC 
nonsynonymous 
SNV NM_006904 c.A776G p.Q259R 

18_MUT chr9 8404642 8404642 G C PTPRD 
nonsynonymous 
SNV NM_002839 c.C4105G p.Q1369E 

4_S3 chr9 8436641 8436641 A G PTPRD 
nonsynonymous 
SNV NM_002839 c.T4037C p.I1346T 

H1954_S15 chr9 8499772 8499772 G A PTPRD 
nonsynonymous 
SNV NM_002839 c.C2197T p.R733C 

41_S35 chr9 8528674 8528674 G A PTPRD 
nonsynonymous 
SNV NM_002839 c.C458T p.P153L 

H3829_S19 chr9 136495693 136495693 T C NOTCH1 UTR3 NM_017617 c.*378A>G . 

L076_10 chr9 136496133 136496133 C T NOTCH1 
nonsynonymous 
SNV NM_017617 c.G7606A p.V2536I 

10_S10 chr9 136496197 136496198 AG - NOTCH1 frameshift deletion NM_017617 
c.7541_7542de
l p.P2514fs 

51640_S3 chr9 136496197 136496198 AG - NOTCH1 frameshift deletion NM_017617 
c.7541_7542de
l p.P2514fs 

L024_07 chr9 136496197 136496198 AG - NOTCH1 frameshift deletion NM_017617 
c.7541_7542de
l p.P2514fs 

L031_07 chr9 136496197 136496198 AG - NOTCH1 frameshift deletion NM_017617 
c.7541_7542de
l p.P2514fs 

L096_13 chr9 136496197 136496198 AG - NOTCH1 frameshift deletion NM_017617 
c.7541_7542de
l p.P2514fs 
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WTCHG_90117_80 chr9 136496197 136496198 AG - NOTCH1 frameshift deletion NM_017617 
c.7541_7542de
l p.P2514fs 

2_MUT chr9 136496232 136496232 G A NOTCH1 stopgain NM_017617 c.C7507T p.Q2503X 

WTCHG_88505_59 chr9 136496264 136496264 G T NOTCH1 stopgain NM_017617 c.C7475A p.S2492X 

WTCHG_75645_28 chr9 136496307 136496310 CGGT - NOTCH1 frameshift deletion NM_017617 
c.7429_7432de
l p.T2477fs 

WTCHG_75645_08 chr9 136496547 136496547 G A NOTCH1 stopgain NM_017617 c.C7192T p.Q2398X 

11731_S18 chr9 136496913 136496913 G - NOTCH1 frameshift deletion NM_017617 c.6826delC p.L2276fs 

7_S7 chr9 136497455 136497455 C T NOTCH1 
nonsynonymous 
SNV NM_017617 c.G6284A p.R2095H 
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Supplementary Table 8. List of IGHV genes identified within the Jaramillo-Parry cohort. 

 

 

IGHV 3-15 IGHV1-8*01 IGHV3-72*01

IGHV 3-15*01 IGHV2-5*10 IGHV3-73

IGHV 3-15*07 IGHV3-07 IGHV3-74

IGHV 3-21*01 IGHV3-11*01 IGHV3-74*01

IGHV 3-23 IGHV3-15 IGHV3-9

IGHV 3-23*01 IGHV3-15*01 IGHV4-30*2

IGHV 3-23*05 IGHV3-15*07 IGHV4-30-4*01

IGHV 3-30*02 IGHV3-21 IGHV4-31

IGHV 3-30*03 IGHV3-21*03 IGHV4-34

IGHV 3-33*01 IGHV3-23 IGHV4-34*01

IGHV 3-48*02 IGHV3-23*01 IGHV4-34*02

IGHV 3-53 IGHV3-30 IGHV4-34*03

IGHV 3-64 IGHV3-30*01 IGHV4-39

IGHV 3-7*01 IGHV3-30*02 IGHV4-39*01

IGHV 3-7*03 IGHV3-30*03 IGHV4-4

IGHV 4-39 IGHV3-30*07 IGHV4-4*02

IGHV 4-39*01 IGHV3-30-3*01 IGHV4-59

IGHV 5-51*01 IGHV3-33 IGHV4-59*01

IGHV1-02 IGHV3-33*01 IGHV4-59*02

IGHV1-02*04 IGHV3-43 IGHV4-59*03

IGHV1-18 IGHV3-48 IGHV4-59*08

IGHV1-18*01 IGHV3-48*02 IGHV4-61

IGHV1-2 IGHV3-48*03 IGHV4-61*01

IGHV1-2*02 IGHV3-49 IGHV4-61*02

IGHV1-2*04 IGHV3-49*04 IGHV5-51

IGHV1-68*01 IGHV3-53 IGHV5-51*01

IGHV1-69 IGHV3-53*01 IGHV5-51*03

IGHV1-69*01 IGHV3-64 IGHV6-1

IGHV1-69*06 IGHV3-7 IGHV6-1*01

IGHV1-8 IGHV3-7*01

IGVH gene repertoire
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Supplementary figures 

 

Supplementary Figure 1. Kaplan Meier curves for overall survival for TP53 aberrations, age at diagnosis, 
genomic complexity, 7q deletion, 8q gain and 1q deletion. 
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Supplementary Figure 2. Kaplan Meier curves for overall survival for 6q deletion, 17p deletion, MYD88 
mutation, TNFAIP3 mutation, and TP53 mutation. 
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Supplementary Figure 3. Kaplan Meier curves for time to first treatment for gender, IGHV status, IGHV1-2*04 
status, telomere length, gain of 3q and ARID1A mutation.  
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Supplementary Figure 4. Kaplan Meier curves for time to first treatment KMT2D mutation, KLF2 mutation, 
NOTCH2 mutation, TNFAIP3 mutation, and TRAF3 mutation. 
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