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Abstract. Current ILP systems that perform numerical reasoning, se-
lect the best hypothesis using exclusively the scored value of the cost
function. The cost function, by itself, cannot guarantee the goodness-of-
fit of the induced hypotheses in numerical domains. Consequently the
induced theory may not capture the overall structure of the underlying
process that generated data. This paper proposes a statistical-based cri-
terion for hypotheses acceptance, called model validation, that assess the
goodness-of-fit of the induced hypotheses in numerical domains.
We have found this extension essential to improve on results over ML
and statistical-based algorithms used in the empirical evaluation study.

1 Introduction

Current ILP approaches [1] to numerical domains usually carry out a search
through the hypothesis space looking for a minimal value of a cost function like
the Root Mean Square Error (RMSE). The RMSE is traditionally the hypothesis
evaluation method and the minimum coverage of an hypothesis is the only accep-
tance criterium used on those systems. Systems like TILDE [2], LAGRAMGE
[3], and FORS [4] are of that kind.

The minimisation of distance-based criteria like RMSE do not guarantee,
by itself, the goodness-of-fit of the induced hypothesis. Which means that even
hypotheses that score a small error on the training examples, may perform poorly
on test data not only due to the over fitting problem, but also due to the fact
that these hypotheses may not capture the overall structure of the underlying
process that generated data. Thus, one problem with the minimisation of RMSE
in noisy domains is that the models tend to be brittle, since the error is small
when covering a small number of examples. The end result is a large set of
clauses 1 to cover the complete set of examples, which is also a drawback on the
intelligibility of ILP induced models.

A technique to mitigate this problem is the inclusion of statistical tests for
model validation in the search process, namely as part of the hypothesis accep-
tance criterion of the ILP algorithm. Statistical tests may assess the correctness
1 In this paper terms hypothesis and clause are used interchangeably



of the functional part of a model, assure that no significant terms will be missing
and no systematic error or process drifting will exist. They may also check if the
error structure follows an assumed distribution like for example the Gaussian
distribution.

In this paper, we propose improvements on the numerical reasoning capabil-
ities of ILP systems by introducing a new step on the basic ILP cycle algorithm
that consists of an hypothesis acceptance criterium based on statistical tests for
model validation.

We have made the empirical evaluation of the proposal in datasets collected
from statistics and time series literature. For each dataset we compare our results
with the published ones. The experimental results show that an ILP system
extended with such procedures compares very well with statistical methods.

The rest of the paper is organised as follows. Section 2 identifies the steps
of a basic ILP algorithm that are subject to the improvements proposed in this
paper. The proposals for Model Validation are discussed in Section 3. Section 4
presents the experimental findings. Finally, in Section 5 we draw the conclusions.

2 Search Improvements

To establish a context for our proposals consider the main cycle of a general
purpose ILP system as depicted in Algorithm 1. In ILP, the search procedure
is usually an iterative greedy set-covering algorithm that finds the best clause
on each iteration and removes the covered examples. Each hypothesis generated
during the search is evaluated to determine their quality. A widely used approach
in numerical domains is to score a hypothesis by measuring its Mean Absolute
Error (MAE) or its RMSE. Algorithm 1 presents an overview of the procedure
and identifies the step (step 4) modified by our proposal.

Algorithm 1 Basic cycle of a greedy set-covering ILP algorithm
1: repeat
2: repeat
3: Synthesise an hypothesis
4: Accept a hypothesis (Model Validation)
5: Evaluate hypothesis (Model Selection)
6: Update best hypothesis
7: until Stopping Criterion satisfied
8: Remove explained examples
9: until “All” examples explained

Assume that the methodology for generating hypothesis considered in step
3 of algorithm 1 assures a complete search of the hypothesis space. We propose
an improvement to step 4 where an hypothesis is checked if it is a satisfactory
approximation of the underlying process that generated data, only hypotheses
that are not rejected on that step are evaluated on the Model Selection step.



The hypothesis evaluation method used on the Model Selection step (5) is the
RMSE, although any other method may be used for selecting the best hypothesis,
including score functions that are hypothesis complexity aware. The stopping
criterium is a predefined parameter that limits the maximum number of nodes
explored.

3 Model Validation

In most applications, the true nature of the model is unknown. It is therefore of
fundamental importance to assess the goodness-of-fit of each conjectured hypoth-
esis. This is performed in a step of the induction process called Model Validation.
Model Validation allows the system to check if the hypothesis is indeed a satis-
factory model of the data. This step is common in both Machine Learning and
Statistical Inference.

There are various ways of checking if a model is satisfactory. The most com-
mon approach is to examine the residuals. The residuals are the random process
formed from the differences between the observed and predicted values of a vari-
able. The behaviour of the residuals may be used to check the adequacy of the
fitted model as a consequence of the Wold’s theorem, defined as follows.

Theorem 1 (Wold’s Theorem). Any real-valued stationary process may be
decomposed into two different parts. The first is totally deterministic. The second
totally stochastic. The stochastic part of the process may be written as a sequence
of serially uncorrelated random variables z with zero mean and variance σ2. The
stationarity condition imply σ <∞, thus z is a White Noise (WN) process:

z ∼WN(0, σ) (1)

According to condition (1) of the Wold’s theorem, if the fitted model belongs
to the set of “correct” functional classes, the residuals should behave like a white
noise process with zero mean and constant variance. Hypotheses whose residuals
do not comply with condition (1) may be rejected using specific statistical tests
that check randomness. The Ljung-Box test [5] is one of such tests and the one
implemented in our system.

The null hypothesis of the Ljung-Box test is a strict white noise process.
Thus, residuals are independent and identically distributed (i.i.d.). According to
the definition of statistical independence [5], residuals are incompressible. Mug-
gleton and Srinivasan [6], have also proposed to check noise incompressibility for
evaluating hypothesis significance but in the context of classification problems.

Other statistical tests may be incorporated to check our assumptions re-
garding error structure, like tests for normality. The use of residuals for model
assessment is a very general method which apply to many situations.

3.1 Relationship with Model Selection

The RMSE and hypothesis evaluation methods that are complexity aware do
not guarantee that the model fits data well. For example, a model may have



the smallest overall RMSE of the candidate set but its residuals may present
an increasing trend on the amplitude, or any other related curvature pattern
that indicates lack-of-fit of the hypothesis and non independence of residual
process. Thus, the Model Validation step introduced on the search process is
of fundamental importance to assess the goodness-of-fit before proceeding to
the choice of the best hypothesis because its scope is orthogonal to the model
selection criterium.

3.2 Limitations discussion

The usage of Model Validation tests to restrict the set of acceptable hypothesis
is supported by the White theorem [7], which briefly states that for a fixed set of
models and a battery of validation tests, as the sample size tends to infinity and
increasingly smaller test sizes are employed, the test battery will with probability
1 select the best model. The results of White theorem are asymptotic, which is
not enough to assure good results in the sample sizes typically used in machine
learning, nevertheless we have found good results in the empirical evaluation.

4 Experimental Evaluation

This section presents empirical evidence for the proposals made in this paper. We
compare our approach results against other methodologies including the same
ILP system without the modifications proposed in this paper.

4.1 Datasets

All experiments use the following datasets: Canada’s Industrial Production In-
dex [8]; USA Unemployment rate [9]; ECG of a patient with sleep apnea [10]
and; VBR Traffic of an MPEG video [11].

The datasets consist of facts that relate time with the output variable. The
time is expressed in discrete intervals and the output is a real-valued variable.

4.2 Benchmark models

This study illustrates the usage of an ILP system inducing switching models for
non-linear time series. We have compared the results with structural, seasonal,
linear and nonlinear time series models.

The theory induced by IndLog with model validation (denoted by IndLog∗) is
compared against the following models: IndLog without model validation; Auto-
Regressive Integrated Moving Average (ARIMA); Threshold Auto-Regressive
(TAR); Markov Switching Autoregressive (MSA); Autoregressive model with
multiple structural Changes (MSC); Self-Excited Threshold Auto-Regressive
(SETAR); Markov Switching regime dependent Intercepts Autoregressive pa-
rameters and (H)variances(MSIAH); Markov Switching regime dependent Means
and (H)variances (MSMH); Bivariate Auto-Regressive models (Bivariate AR)



and; Radial Basis Functions Networks with structure optimization (RBFN). A
detailed description of teh modesl may be found in the papers referenced in the
previous subsection (datasets).

4.3 Learned task description

We propose to learn a modified class of the TAR [5] model.
The main difference regarding the original TAR structure is that instead of

a single time delay value D, we have one D for each sub-region. The task to be
learned consists of estimating: (i) the number of parameters p of each AR sub-
model; (ii) The time delay D of each sub-model and; (iii) The thresholds that
bound each subregion Rm and Rm+1. The generated clauses (hypothesis) are of
the form: timeseries(T,X)← inInterval(Rm, T, D, Rm+1), armodel(T, P,X).

The ILP system Background Knowledge was provided with 12 AR(p) models,
p ranging from 1 to 12; three model archetypes consisting of two, three and
four amplitude intervals with 12 delay choices, D ranging from 1 to 12. The
interval amplitude is calculated dividing the peak-to-peak value of each series
by the number of intervals used in the archetype. We have configured the model
validation step with Ljung-Box test with a p-value set to 0.75 in all datasets.

4.4 Results Summary and Discussion

This Section presents the results obtained for each dataset of Subsection 4.1.
These datasets were studied in several papers, using different classes of models.
Thus, all datasets in Table 1 have an AR model that may be used as a reference
across datasets.

Table 1. Summary of results of the Relative RMSE of the ILP algorithm and other
benchmark models for the selected datasets

Algorithm Unempl Prod VBR ECG

IndLog∗ 0.92 0.87 0.94 0.85
IndLog 1.11 1.04 0.96 0.93
AR 1.04 0.98 0.94 0.97
SARIMA 1.00 1.00 - -
MSA 1.19 - - -
MSC - 1.00 - -
MSMH - 0.98 - -
MSIAH - 1.20 - -
SETAR - 1.19 - -
TAR 1.00 - 1.00 -
RBFN - - - 1.00
Bivariate AR 1.20 - - -

Benchmark 1.59E-1 4.44E-3 12.9E3 4.53



IndLog∗ consistently induced models with best forecasting performance in
the test sets of all datasets. This allows us to conclude that the proposed modifi-
cations to the basic ILP search process, makes an ILP system suited for learning
time-series models and discovering new model structures.

In all datasets, the ILP system was configured to allow the induction of the
TAR model proposed in the cited papers. However, all models induced by the
ILP system, used different D values in the constraint that selects each sub-region.
This is perhaps an indicator of the superior flexibility of this structure to capture
implicit seasonality and or complex switching behavior in those time series.

5 Conclusions

In this paper we presented preliminary results of using a statistical-based cri-
terium for hypotheses acceptance, which we designate model validation, that
assess the goodness-of-fit of the induced hypotheses in numerical domains.

Our proposals were incorporated in the IndLog [12] ILP system and evalu-
ated on time series modelling problems. The ILP results were better than other
statistics-based time series prediction methods. The ILP system discovered a new
switching model based on the possibility of varying the delay on the activation
rule of each sub-model of a TAR model.
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