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Abstract

We study the estimation of nonlinear models with cross-sectional data using two-step gen-

eralized estimating equations within the quasi-maximum likelihood estimation framework. To

improve efficiency, we propose a grouped estimator that accounts for potential spatial correlation

in the underlying innovations of nonlinear models. Under mild weak dependence assumptions,

we provide results on estimation consistency and asymptotic normality. Monte Carlo simula-

tions demonstrate the efficiency gain of our approach compared to various estimation methods.

Finally, we apply the proposed approach to examine the role of cultural distance in an extended
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our approach yields estimates with smaller standard errors and reinforces the hypothesis that
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1 Introduction

In empirical economics and social studies, there are many examples of discrete (noncontinuous) data

that exhibit spatial or cross-sectional correlations due to the "distance" in a space. This "distance"

can be geographical, economic, cultural, institutional, and so on. Arbia and Billé (2018) recently

summarize the existing literature on spatial discrete choice models. These nonlinear spatial models

are used to study the effect of nearby individuals due to various effects, such as spillover effect,

neighborhood effect, or peer effect. For example, the number of patents a firm receives can be

affected by other nearby firms (Bloom et al. (2013)); individual decision on whether to own stocks is

affected by the average stock market participation of the individual’s community (e.g., Brown et al.

(2008)); a student’s academic performance is affected by his or her roommate (e.g., Sacerdote (2001),

and Angrist (2014)).

Nonlinear models are more appropriate than linear models for discrete (noncontinuous) response

data because they better handle the data’s bounded nature and allow the partial effect of any ex-

planatory variable to vary (see, e.g., Chapter 17 in Wooldridge (2020)). There are many studies on

the theoretical properties of nonlinear spatial autoregressive models (see, e.g., Xu and Lee (2015a,b)),

wherein the dependent variable appears on the right-hand side of the equation. These models are also

popular in empirical research, as they can be used to model relationships between players in a game

(de Paula (2013)) and social interactions in a network context (Lee et al. (2010)). Moreover, in a

model with spatially correlated dependent variables, the spatial autocorrelation parameter allows for

assessing the direction and strength of the effect (e.g., Gagliardini et al. (2020) and Elhorst (2014)).

A comprehensive summary and more examples of spatial autoregressive (SAR) models can be found

in Arbia and Billé (2018), Arbia (2016), and Baltagi et al. (2016).

In contrast, our research focuses on the estimation of nonlinear models with spatial errors, where

spatial dependence is modeled between error terms (and explanatory variables) for different individ-

uals. On the one hand, researchers have a keen interest in understanding various econometric issues

for models with solely spatial errors. For example, Baltagi et al. (2003) study statistical testing

problems in panel models with only spatial error correlation, and Kapoor et al. (2007) investigate

consistent and efficient estimation for panels with only spatial error correlations. On the other hand,

there are also many empirical examples where models with spatial errors may be more appropriate

than spatial models like SAR. For instance, when the dependent variables are country-wise GDPs,
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it may not be intuitive to draw causal links directly among GDPs. Instead, it is more meaningful to

understand the spillover effect from other variables or unobserved characteristics/shocks. Another

example is when the dependent variable is the number of murders; it is difficult to explain the direct

interaction between murder counts across different counties. Instead, the underlying (unobserved)

correlated social and economic characteristics are more likely to determine these numbers, and it

makes more sense to study the spillover effect via a spatial error model. Spatial error models are also

useful when investigating spatial heterogeneity. When only a single observation for each region is

available, it is impossible to estimate the unobserved individual heterogeneous effects directly. One

way to tackle this issue, as is commonly done in the spatial literature, is to assume these effects

are similar to those of neighboring units and model them via spatially correlated errors (LeSage and

Pace (2009)). Thus, we shall focus exclusively on the nonlinear models without spatial lags. More

examples of spatial correlated error models can be found in Graham (2008) and Carrell et al. (2013).

There has been a sizable literature on models accounting for nonlinear spatially dependent errors.

Although the dependence structure of the underlying error is generally unknown in a spatial dataset,

many methods do not allow misspecifications that could lead to misleading results. For example, if

the joint distribution of the variables is misspecified, the maximum likelihood estimator (MLE) is

not consistent in general. One of the alternative methods is partial-maximum likelihood estimation

(PMLE), which only uses marginal distributions. Wang et al. (2013) use a bivariate Probit PMLE

to improve the estimation efficiency of a spatial error model. Their approach requires correctly

specifying the marginal distribution of the binary response variable conditional on the covariates

and distance measures (a distance measure is how one defines the distances between observations).

Another method is Quasi-Maximum likelihood estimation (QMLE). Using a density that belongs to

a linear exponential family (LEF), QMLE is consistent if we correctly specify the conditional mean,

while other features of the density can remain misspecified (Gourieroux et al. (1984)). Lee (2004)

derives asymptotic distributions of QMLE for SAR models without assuming normal distributions.

Different from QMLE and PMLE, we shall adopt a method that produces a consistent estimator

and allows moderate misspecification of the underlying dependence structure. Moreover, it has

favorable efficiency performance when we are exploiting some given information on the dependence

structure. In this paper, we adopt a generalized estimating equations (GEE) method for spatial

data sets. The GEE approach is one of the QMLE methods since it takes a specific form of the
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maximum likelihood score equation for a multivariate Gaussian distribution. It can be used to

account for serial correlation and thus can achieve more efficient estimators, and it is adopted to

estimate the parameters of a generalized linear model with a possible unknown correlation between

outcomes (Liang and Zeger (1986)). The spatial GEE method proposed in our paper further relaxes

distributional assumptions in the literature. We assume that the mean function is correctly specified,

and we choose a working variance-covariance matrix, which is defined as a pre-specified variance-

covariance matrix. It may not be the same as the true one since the true variance-covariance matrix

is generally unknown. Under mild regularity conditions, parameter estimates from the GEE are

consistent even if this working variance-covariance structure is misspecified.

Though the specification of the working variance-covariance matrix does not affect the consis-

tency, it does play a significant role in the efficiency of the estimator. We propose to work with data

with nature groups or some pre-given grouping information: Presumably, within the group there

exists stronger dependence, and between-group individuals are less related to each other. For exam-

ple, in our cultural distance applications, we group the data according to the natural geographical

information. While this group partition may make our model very similar to panel data, it is only

imposed on the error term to achieve estimation efficiency. Therefore, our model is of a very different

nature from the panel data model. As one may want to use techniques developed in panel data

such as the random effects method to achieve estimation efficiency, they are not directly applicable

to our model as there are only cross-section individuals in our model. How to model and estimate

the cross-sectional dependence is much more involved than for temporal dependence. As one of the

main contributions of this paper, we adapt the theories developed in Jenish and Prucha (2009, 2012)

for our analysis. Furthermore, we also examine the conditions under which efficiency gains can be

achieved. Following the intuition of a nonlinear weighted least square estimator, in Section 2.4, we

show by some nontrivial algebra that the extent of efficiency improvement depends on how closely

the working variance-covariance matrix approximates the true one. This means that the adopted

group structure should appropriately reflect the underlying dependence.

There are several studies applying grouping or blocking structures for estimating nonlinear GEE

models. Chaganty and Joe (2004), Lin and Clayton (2005), and Oman et al. (2007) use estimating

equations for the binary response model, assuming that blocks are independently chosen. Adeg-

boye et al. (2018) analyze spatial data by considering different correlation structures. Our setup is
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different from the research mentioned above: While their estimating equations focus on the corre-

lations of all individuals, our paper assumes near-epoch dependence (NED) among all observations

but applies group partition when estimating the parameters. The proposed method only picks up

within-group correlations while, admittedly, there are correlations between individuals belonging to

different groups. We use the QMLE that ignores correlations within groups as the initial estimator

for a two-step GEE and show the efficiency gain of this GEE estimator.

Our method extends the QMLE proposed in Lee (2004) to nonlinear cases, who discusses a SAR

model that includes a spatially lagged dependent variable as an additional right-hand side regressor.

Our technique partly overlaps with the method in Xu and Lee (2015a). While they investigate a Tobit

model with a spatially lagged dependent variable as an additional regressor, we cover a more general

class of models, including those for count data with Poisson regression. Moreover, we theoretically

show the consistency of our GEE approach within the QMLE framework in a spatial data setting.

To derive the asymptotics for the GEE estimator, we use a uniform law of large numbers (ULLN)

and a central limit theorem (CLT). Our theoretical development is different from Conley (1999)

and Jenish and Prucha (2009, 2012), who derive the asymptotics for GMM estimators of spatial

processes and for mixing or NED spatial processes respectively. While their hyper assumptions are

directly imposed on the outcome variables, ours are imposed on the latent innovations. Moreover,

it is important to acknowledge that GEE can be perceived as a specific instance of Z-estimation,

as highlighted in Chapter 5 of Van der Vaart (2000). Our investigation has been conducted to

understand how the near-epoch dependence property of the underlying processes contributes to the

proof of the estimator’s asymptotic properties. Finally, we provide a consistency proof of a proposed

semiparametric estimator for the variance-covariance matrix.

To summarize, we contribute to the literature in four aspects. First, we develop a simple GEE

method for a general class of nonlinear models, which uses less distributional assumptions by only

specifying the conditional mean for spatially dependent data. The proposed technique simply groups

data and imposes weights to adjust for the group-wise dependence, and we model the spatial corre-

lation in the underlying innovations rather than in the dependent variable. Second, we focus on the

aspects of the efficiency gain with grouped data, in addition to the consistency of the estimation.

Further, we provide a condition on the working variance-covariance matrix which ensures efficiency

gains over QMLE. Third, we prove the asymptotic properties of our method by applying a ULLN
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and a CLT to the spatial GEE estimator. Finally, we show in the simulation study that the proposed

GEE method using spatial correlation has considerable efficiency gain for two types of data: count

and binary response, and it is robust to moderate group misspecification.

The paper is organized as follows. In Section 2, the GEE methodology under the spatial data

context is proposed. Section 3 looks in detail at a Poisson model and a Negative Binomial II model

for count data with a multiplicative spatial error term, and we further study a Probit model for

binary response data with spatial correlation in the latent error term. In Section 4, a series of

assumptions are given, under which we establish theorems on consistency and asymptotic normality

of the spatial GEE estimator, and provide a consistent estimator for its variance-covariance matrix.

Section 5 contains Monte Carlo simulation results that compare the efficiency of different estimation

methods for the nonlinear models explored in the previous sections. Section 6 includes an application

to study an extended gravity equation on trade volume between China and its trade partners using

country-product level data. Section 7 concludes the paper. The proofs and other technical details

are provided in the supplementary materials.

2 Methodology

2.1 Notation and Definition

We first lay out the basic notations for our methodology. We delay important assumptions and

asymptotic results until Section 4.

Let θ ∈ Θ ⊂ Rp be the parameter of interest in the conditional mean, and γ ∈ Γ ⊂ Rq be the

nuisance variance parameter involved in the conditional variance. Θ×Γ is a compact set, and (θ0, γ0)

are the true parameter values. We shall note that θ involved in the conditional variance will also be

treated as a nuisance parameter. Let the group index be g ∈ {1, · · · , G}, and Lg be the number of

observations in group g. Lg can be different and bounded by a constant. For simplicity, we assume

Lg = L for all g. Notice that the group structure is only for error terms and the parameters of

interest are homogeneous across groups (see Graham (2008) for a similar setting). Otherwise, the

model could be estimated by group-wise analysis. Let dij denote the distance between observations

i and j , and let dgh denote the distance between group g and h.

In this paper, we consider spatial processes located on an unevenly spaced lattice D ⊆ Rd for
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d ≥ 1. Moreover, DG denotes the lattice containing group locations, and each group location is

denoted as vectorizing the elements in Bg, where Bg is the associated set of locations within the

group g. Dn is defined similarly for each observation. Let the total number of groups be |DG| = G,

and the total number of observations is |Dn| = n. Let |U | denote the cardinality of a finite subset

U ⊆ D.

2.2 The Generalized Estimating Equations Methodology

We extend the GEE methodology in Liang and Zeger (1986) to the estimation of nonlinear spatial

data, using a two-step procedure that first estimates the working correlation matrix and then solves

the generalized estimating equations. In our approach, we divide spatially correlated cross-sectional

data into groups, allowing arbitrary strong dependence within each group but requiring the between-

group dependence to diminish (in the sense of α- mixing that will be defined in Section 4.2). We

assume that the division of groups is exogenous, that is, how groups are divided does not affect

outcomes once controlled for explanatory variables. The division of groups can be based on, for

example, geographical properties or researcher-defined economic and social relationships. There are

two extreme cases of group size. The first case is when the group size is one, where the resulting

estimators ignore all of the pairwise correlations. The second case is when the group size is n, which

means we are using all of the pairwise information. If the group size is not equal to one or n, we

have a "partial" estimator. By "partial", we mean that instead of using full information, we only use

the information within the same groups. Note that in our settings, the number of groups G → ∞,

while the group size L is assumed to be fixed. Similar settings are also maintained in many existing

studies, see e.g. Section 20.3.1 in Wooldridge (2010) and Wooldridge (2003). Moreover, these settings

are compatible with many applications. For example, the group can represent classrooms, schools,

families, or firms for which the number could be very large, and the group members are generally

fixed. In an empirical study investigating the impact of class size on student achievement by Carter

et al. (2017) (see also Krueger (1999)), there are 318 groups (classrooms) and the number of students

in each classroom is no more than 27.

Consider the following nonlinear model for the i-th observation yi:

yi = m
(
xi; θ0

)
+ ui, (1)
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where the dependent variable yi can be continuous or discrete, m (xi; θ0) is the conditional expectation

function, xi is a 1 × p row vector of independent variables which can be continuous, discrete, or a

combination, θ0 is the parameter of interest and ui is the unobserved error term.

The model for g-th group observations yg then could be written as

yg = m
(
xg; θ0

)
+ ug. (2)

where yg and ug are both L× 1 vectors, including all dependent variables and error terms in group

g, m (xg; θ0) (abbreviated as mg(θ0)) is an L× 1 vector of conditional mean functions, and xg is an

L× p matrix, including all independent variables in g-th group.

Note that for each individual in group g, xi is allowed to contain explanatory variables from

other individuals within the same group. To explain this with an example, we can write an explicit

expectation of observation i as

E (yi|xi) = m
(
xi; θ0

)
, (3)

where xi = [zi, z(−i)] for i = 1, 2, ..., n, and z(−i) is some weighted value of other group members’

explanatory variables, capturing the exogenous interaction/spillover effects among the independent

variables with different intensities/weights. We denote the conditional variance-covariance matrix of

yg as Wg
def= Cov(yg,yg|xg) = E(ygy⊤

g |xg) − E(yg|xg)E(yg|xg)⊤, which is unknown in most cases.

Usually, for the conditional mean function, θ0 ∈ Θ ⊂ Rp is the main parameter of interest. We can

parameterize the corresponding weight matrix Wg by Wg(θ, γ) with γ ∈ Γ ⊂ Rq and θ as (first-stage)

nuisance parameters, which are involved only in the estimation of the variance-covariance matrix.

The objective function for group g and the whole sample are given as follows:

qg(θ, γ) = (yg − mg(θ))⊤ W−1
g (θ, γ) (yg − mg(θ)) , (4)

QG(θ, γ) = G−1
G∑
g=1

qg(θ, γ). (5)

Note that the objective function of GEE only uses group-wise information. Considering that γ is a

nuisance parameter, the quasi-score equation for estimating θ is then defined as follows:

SG (θ, γ) = 1
G

∑
g

∇mg (θ)⊤ W−1
g (θ, γ) [yg − mg (θ)] , (6)
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where ∇mg (θ) is the gradient of mg (θ) with respect to θ. The above quasi-score equation is similar

to equation (6) in Liang and Zeger (1986). In this regard, the score function SG (θ, γ) is parameterized

by {θ, γ}, and the choice of θ and γ involved in W−1
g (θ, γ) would affect the estimation efficiency of θ0.

In practice, we obtain the first-step estimator {θ̌, γ̌}, and then estimate θ0 with W−1
g (θ̌, γ̌). Namely,

we consider the GEE estimator θ̂ that solves the following equation:

1
G

G∑
g=1

∇mg

(
θ̂
)⊤

W−1
g

(
θ̌, γ̌

) [
yg − mg

(
θ̂
)]

= 0. (7)

This equation is similar to the equation (7) in Liang and Zeger (1986), who solve θ given a pre-

estimator of the nuisance parameter. It is worth noting that we need some identification assumptions

(i.e. Assumption A.5 in Section 4.3) to ensure the existence and uniqueness of the solution.

We denote the population version of loss as Q∞(θ, γ) def= limG→∞ G−1∑
g Eqg(θ, γ) and S∞ (θ, γ) def=

limG→∞ESG (θ, γ). To make a difference between the first step plug-in nuisance parameter and the

parameter of interest, we rewrite the score into

SG
(
θ̌, γ̌, θ

)
= 1
G

∑
g

∇mg (θ)⊤ W−1
g

(
θ̌, γ̌

)
[yg − mg (θ)] .

Correspondingly, QG(θ̌, γ̌, θ) = G−1∑
g (yg − mg(θ))⊤ W−1

g

(
θ̌, γ̌

)
(yg − mg(θ)). Frequently, we re-

strict our attention to the exponential family, which embraces many distributions, such as the

Bernoulli, Poisson, and Gaussian distributions. Now, we link this estimation method with a QMLE

framework. We suppress the parameter γ for a moment. We assume that the probability density

function f (yg|xg; θ) is in the LEF (See details of the exponential family in Section S3 of the supple-

mentary materials). For instance, when there is only one observation for each group, i.e., we do not

account for the spatial covariance, a characterization of QMLE in LEF is by the following individual

score function:

si (θ) = ∇m (xi; θ)⊤ {yi −m (xi; θ)}/v (m (xi; θ)) , (8)

where ∇m (xi; θ) is the 1 × p gradient of the mean function and v (m (xi; θ)) is the conditional

variance function associated with the chosen LEF density. For Bernoulli distribution, we have

v (m (xi; θ)) = m (xi; θ) (1 −m (xi; θ)), and for Poisson distribution, v (m (xi; θ)) = m (xi; θ). Note

that consistent estimation of parameter θ0 could be obtained based on (8). While it accounts for
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potential heteroscedasticity, this estimator might not be the most efficient since it overlooks potential

cross-sectional correlations between observations.

Comparably, recall the score function for GEE can be written as

SG (θ, γ) = 1
G

∑
g

sg (θ, γ) = 1
G

∑
g

∇mg
⊤ (θ) W−1

g (θ, γ) [yg − mg (θ)] ,

where sg (θ, γ) = ∇mg
⊤ (θ) W−1

g (θ, γ) [yg − mg (θ)] is the p × 1 vector of the score for the group

g with W−1
g (θ, γ) accounting for group dependence. Accordingly, we denote the Hessian matrix as

HG (θ, γ) = ∇θSG (θ, γ), and hg (θ, γ) = ∇θsg (θ, γ) as the p × p matrix of Hessian for the group g.

we also define H∞ (θ, γ) = limG→∞E[HG (θ, γ, θ)].

2.3 The First-step Estimation of the Weight Matrix

In this subsection, we demonstrate one way to find an estimator for γ in Wg(θ, γ), which can be

written as

Wg(θ, γ) = V(xg; θ)1/2Ωg (γ) V(xg; θ)1/2, (9)

where Ωg (γ) is the L × L correlation matrix for the group g, and V(xg; θ) is the L × L diagonal

matrix that only contains variances of yg − mg(xg, θ0):

V(xg; θ) =



vg1 0 · · · 0

0 vg2
...

... . . . 0

0 ... 0 vgL



, (10)

where {g1, g2, . . . , gL} is a subset of {i}ni=1, indicating the members of the group g. The l-th element

on the diagonal is the variance vgl := Var(ygl|xgl) for l-th individual in the group g. ygl is the l-th
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element in the vector yg, and xgl is the l-th row in xg. Moreover, the correlation matrix is

Ωg (γ) =



1 πg12 · · · πg1L

πg21 1 ...

... . . . πg(L−1)L

πgL1 ... πgL(L−1) 1



. (11)

Let dglm be the distance between the l−th and the m−th observations in group g. An example of

a parametrization of the (l,m)-th element (with l ̸= m) of Ωg(γ) would be πglm = ρ
(
1 − ďglm

)
(see

e.g. Cressie (2015)) with γ ≡ ρ being the spatial correlation parameter subject to 0 ≤ ρ ≤ 1, and

0 ≤ ďglm ≤ 1 is the normalized dglm. This choice is feasible as it assumes a linear decaying rate of

spatial dependence.

Given a parametrization, we discuss the way to estimate γ. Let θ̌ be the first-step QMLE

estimator, ǔi = yi −m
(
xi; θ̌

)
be the first-step residual, and v̌i = v

(
m
(
xi; θ̌

))
be the fitted variance

of the individual i corresponding to the chosen LEF density. We also denote ři = ǔi/
√
v̌i as the

standardized residual. Recall that {g1, g2, ..gL} is a subset of {i}ni=1, indicating the members in the

group g. Let řg = (řg1 , řg2 , ..., řgL
)⊤. Then řgřg

⊤ is the estimated sample correlation matrix for the

group g. Let eg(θ̌) be a vector containing L(L − 1)/2 different elements of the lower (or upper)

triangle of řgřg
⊤, excluding the diagonal elements. Let zg(γ) be the vector containing the elements

in Ωg(γ) corresponding to the same entries of elements in řgřg
⊤. We can follow Prentice (1988), and

find a consistent estimator for γ by solving

γ̌ = argminγ∈Γ
∑
g

(eg(θ̌) − zg(γ))⊤(eg(θ̌) − zg(γ)). (12)

Remark 1. As will be shown in Theorem 1 in Section 4, our proposed GEE estimator of θ0 is always

consistent as long as the conditional mean is correctly specified, even when the underlying dependence

structure is misspecified or γ is not consistently estimated. The misspecification of the dependence

structure and the estimation of γ only affect the efficiency but not the consistency. In the following
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Section 2.4, we adopt an honest approach and provide conditions under which our estimator could

achieve efficiency gains over a QMLE estimator that does not consider any dependence, suggesting

that our proposed GEE method can accommodate a moderate misspecification of underlying depen-

dence structure. Inspired by the referees, to understand how close the specification is from the true

(unknown) structure, we may also employ some nonparametric/resampling methods (e.g. bootstrap)

to recover the true structure. The theoretical properties of these estimators are however unclear and

may rely on some stringent conditions, and we leave it as an interesting future research topic.

2.4 Conditions for the Improvement

The efficiency gain comes from the fact that the proposed GEE method accounts for the spatial

dependence that QMLE or PMLE methods fail to (or are not flexible enough to) consider. The

limitation of QMLE can be due to the non-linearity of the model (the example in Section 3.1) or a

latent spatial error term (the example in Section 3.2).

In this section, we provide a condition on the relationship between the working variance-covariance

matrix and the true variance-covariance matrix, and this condition ensures efficiency improvement in

comparison to a QMLE estimator. Namely, if the working variance-covariance matrix is sufficiently

close to the true one, we can achieve an efficiency gain.

Recall that the parameter dimension of θ is p. Denote E(u2
i |x1:n) = v2

i where x1:n is an n × p

matrix of all the independent variables, and ∇m⊤ (a n×p matrix) denotes a stack form of ∇mg(θ0).

For simplicity, we suppress θ0 and write ∇mg(θ0) as ∇mg from now on. We also let W denote a block

diagonal matrix, where its g-th block element is Wg (an abbreviation of matrix Wg(θ0, γ0) defined

in the previous section). Ω−1 is a diagonal matrix, where its i-th element is v−2
i . We compare the

QMLE estimator θ̂ug with the proposed grouped estimator θ̂GEE. Denote the gradient of m (xi; θ0)

as ∇m (xi; θ0). The matrices involved in the variance of θ̂ug would be

ΣA :=
n∑
i=1

(∇m
(
xi; θ0

)
⊤v−2

i ∇m
(
xi; θ0

)
) = ∇m⊤Ω−1∇m,

and

ΣB :=
n∑
i=1

n∑
j=1

∇∇m
(
xi; θ0

)
⊤v−2

i E(uiuj|x1:n)v−2
j ∇m

(
xj; θ0

)
= ∇m⊤Ω−1V Ω−1∇m,
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where V denotes the true variance-covariance matrix, and its ij-th element is E(uiuj|x1:n).

Thus, the asymptotic variance-covariance matrix of θ̂ug is of the following form:

Avar(θ̂ug|x1:n) = Σ−1
A ΣBΣ−1

A .

As a comparison, the asymptotic variance of the grouped estimator (i.e. θ̂GEE) is characterized

by the following two matrices:

ΣG,A :=
∑
g

∇mg
⊤W−1

g ∇mg = ∇m⊤W−1∇m,

ΣG,B :=
∑
g

(∇mg
⊤W−1

g E(ugu⊤
g |x1:G)W−1

g ∇mg) = ∇m⊤W−1VW−1∇m.

where recall ug = yg − mg (θ0).

The conditional asymptotic variance of θ̂GEE is denoted as

Avar(θ̂|x1:G) = Σ−1
G,AΣG,BΣ−1

G,A.

A desirable condition is to ensure the positive definiteness of the matrix,

Σ−1
A ΣBΣ−1

A − Σ−1
G,AΣG,BΣ−1

G,A.

It shall be noted that if Wg is correctly specified, we have E(ugu⊤
g |xg) = Wg. Thus we have ΣG,B =∑

g ∇mg
⊤W−1

g ∇mg = ΣG,A. It follows that the above estimator attains the lower bound, i.e.,

Σ−1
G,AΣG,BΣ−1

G,A = Σ−1
G,A.

We assume that the true matrix can be expressed as V = W + δB, where δ is some small enough

positive constant and B is a symmetric matrix. This basically assumes that W is equal to the true

matrix V plus a perturbation. This corresponds to the case of moderate misspecification.

To understand the improvement in the variance of the GEE estimator, we express its variance as

Σ−1
G,AΣG,BΣ−1

G,A = (∇m⊤W−1∇m)−1 + δ(∇m⊤W−1∇m)−1(∇m⊤W−1BW−1∇m)(∇m⊤W−1∇m)−1.
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We shall see that the variance of the ungrouped QMLE estimator is

Σ−1
A ΣBΣ−1

A = (∇m⊤Ω−1∇m)−1(∇m⊤Ω−1WΩ−1∇m)(∇m⊤Ω−1∇m)−1

+ δ(∇m⊤Ω−1∇m)−1(∇m⊤Ω−1BΩ−1∇m)(∇m⊤Ω−1∇m)−1.

Now, we aim to find a condition such that Σ−1
A ΣBΣ−1

A − Σ−1
G,AΣG,BΣ−1

G,A is positive definite.

First, note that

(∇m⊤Ω−1∇m)−1(∇m⊤Ω−1WΩ−1∇m)(∇m⊤Ω−1∇m)−1 − (∇m⊤W−1∇m)−1

=(∇m⊤Ω−1∇m)−1(∇m⊤Ω−1W1/2)(I − W−1/2∇m(∇m⊤W−1∇m)−1

∇m⊤W−1/2)(W1/2Ω−1∇m)(∇m⊤Ω−1∇m)−1,

which is positive definite since (I − W−1/2∇m(∇m⊤W−1∇m)−1∇m⊤W−1/2) is an idempotent ma-

trix with eigenvalues being either 1 or 0. Let λmin(·) denote a minimum eigenvalue of a matrix, we

then have

λmin
(
(∇m⊤Ω−1∇m)−1(∇m⊤Ω−1WΩ−1∇m)(∇m⊤Ω−1∇m)−1 − (∇m⊤W−1∇m)−1

)
= c > 0,

where the inequality is due to the fact that Ω ̸= W.

Second, let

cmin = λmin
(
(∇m⊤Ω−1∇m)−1(∇m⊤Ω−1BΩ−1∇m)(∇m⊤Ω−1∇m)−1

− (∇m⊤W−1∇m)−1(∇m⊤W−1BW−1∇m)(∇m⊤W−1∇m)−1
)
.

Note that cmin can be either positive or negative.

By Weyl’s inequality, we have

λmin(Σ−1
A ΣBΣ−1

A − Σ−1
G,AΣG,BΣ−1

G,A) ≥ c+ δcmin.

Therefore, to ensure the superior property of our GEE estimator (i.e. Σ−1
A ΣBΣ−1

A −Σ−1
G,AΣG,BΣ−1

G,A

to be positive definite), we can set

δ|cmin| < c, (13)
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which corresponds to a moderate misspecification of the working variance-covariance matrix W.

3 Estimating Nonlinear Models with Spatial Error: Two

Examples

In this section, we give two examples to show how discrete data can contain the spatially correlated

error term and how to use a GEE procedure to estimate the nonlinear models. The first example is

for count data, and the second one is for binary response data.

3.1 Example 1: Count Data with a Multiplicative Spatial Error

A count variable is a variable that takes nonnegative integer values, such as the number of patents

applied for by a firm in a given year (e.g., Bloom et al. (2013)) and the number of children in the

family (e.g., Wooldridge (2010)).

3.1.1 Poisson Model

We first model the count data with a conditional Poisson density, f (y|x) = exp [−µ]µy/y!, where

y! = 1 · 2 · ... · (y − 1) · y and 0! = 1. Denote µ as the conditional mean of y. The Poisson QMLE

only requires the conditional mean to be correctly specified. A default assumption for the Poisson

distribution is that the mean is equal to the variance. Note that even if yi does not follow a Poisson

distribution, the QMLE approach will give a consistent estimator if the Poisson density function is

used with a correctly specified conditional mean (Gourieroux et al. (1984)). Furthermore, yi does

not even have to be a count variable.

A mean function commonly adopted in applied work is the exponential function:

E (yi|xi) = exp (xiβ0) . (14)

When spatial correlations exist, we can characterize the count data model with a multiplicative

spatial error. Silva and Tenreyro (2006) consider a Poisson QMLE-type model with multiplicative

error terms. They indicate that the OLS is inconsistent due to the multiplicative error. Now we
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study a similar model with spatial correlation, i.e.,

E (yi|xi, ξi) = ξi exp (xiβ0) , (15)

where ξi is the multiplicative spatial error term, and we assume the model is characterized by the

following features:

(1) {(xi, ξi), i = 1, 2, ..., n} is a mixing sequence on the sampling space Dn, with a mixing coefficient

α.

(2) E (yi|xi, ξi) = ξi exp (xiβ0) .

(3) For i ̸= j, yi and yj are independent conditional on xi,xj, ξi, and ξi.

(4) ξi has a conditional multivariate distribution, i.e., E (ξi|xi) = 1. Var (ξi|xi) = τ 2, and Cov(ξi, ξi|

xi,xj) = τ 2 · c (dij, ρ) , where c (dij, ρ) is the correlation function of ξi and ξi, and ρ is the

parameter.

To be more explicit, the log conditional mean is assumed to be

log E(yi|xi, ξi) = xiβ + log ξi. (16)

Also, we can write λi = exp(xiβ + log ξi). The assumed conditional probability mass function is

P(yi = y|ξi,x⊤
i ) = exp(−λi)λyi /y!. (17)

Under the above assumptions, we can integrate out ξi by using the law of iterated expectations,

E (yi|xi, Dn) = E (E (yi|xi, ξi) |xi, Dn) = exp (xiβ0) , (18)

where we suppress the condition on Dn in the last equality. The QMLE gives a consistent estimator

for the mean parameters, which solves

β̌QMLE = argmaxβ
n∑
i=1

li (β) =
n∑
i=1

yixiβ −
n∑
i=1

exp (xiβ) −
n∑
i=1

log (yi!) . (19)
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Its score function is
n∑
i=1

x⊤
i

[
yi − exp

(
xiβ̌QMLE

)]
= 0. (20)

Since the above estimator does not account for any heteroskedasticity or spatial correlation, a robust

estimator for the asymptotic variance of the QMLE estimator is provided as follows:

Âvar
(
β̌QMLE

)
=

[
n∑
i=1

exp
(
−xiβ̌QMLE

)
x⊤
i xi

]−1

(21)

n∑
i=1

n∑
j=1

k (dij) x⊤
i ǔiǔjxj

[
n∑
i=1

exp
(
−xiβ̌QMLE

)
x⊤
i xi

]−1

,

where k (dij) is a kernel function depending on the distance between observations i and j, and

ǔi = yi − exp
(
xiβ̌QMLE

)
.

Moreover, a very specific aspect of the Poisson distribution is that we can write down the condi-

tional variances of y as

Var (yi|xi, Dn) = exp (xiβ0) + exp (2xiβ0) · τ 2. (22)

The conditional variance of yi given xi is a function of both the level and the quadratic of the

conditional mean. The conditional Poisson distribution is characterized by the equality between its

conditional variance and conditional mean, i.e., Var (yi|xi) = exp (xiβ0) . One can relax the variance

assumption to Var (yi|xi) = σ2 exp (xiβ0) with an overdispersion or underdispersion constant parame-

ter σ2. Obviously, there is an over-dispersion in (22) since exp (2xiβ0)·τ 2 ≥ 0, and the over-dispersion

parameter is 1 + exp (xiβ0) · τ 2, which is changing with xi. This variance structure does not coincide

with conditional Poisson distribution. Moreover, the conditional covariances can be written in the

following form:

Cov (yi, yj|xi,xj, Dn) = exp (xiβ0) exp (xjβ0) · τ 2 · c (dij, ρ) . (23)

In the group-level notation,

E (ygl|xg, DG) = exp (xglβ0) . (24)

Let Wg be the variance-covariance matrix for the group g evaluated at the true value β0, ρ. The
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variance of the l-th element in the group g is

vgl = exp (xglβ0)
(
1 + exp (xglβ0) · τ 2

)
, (25)

and the covariance of the lth and mth elements in group g is

rglm = exp (xglβ0) exp (xgmβ0) · τ 2 · c (dglm, ρ) . (26)

Here γ = (τ 2, ρ)⊤, and let γ̌ = (τ̌ 2, ρ̌)⊤ be an estimator for γ. Let β̌QMLE be the QMLE estimator in

the first step. Then the elements in Wg can be estimated as:

v̂gl = exp
(
xglβ̌QMLE

)
+ exp

(
2xglβ̌QMLE

)
· τ̌ 2, (27)

and

r̂glm = exp
(
xglβ̌QMLE

)
exp

(
xgmβ̌QMLE

)
· τ̌ 2 · c (dglm, ρ̌) , (28)

where dglm is the distance between the object l and m in the group g, and it corresponds to the

distance dij with the label i, j.

3.1.2 Negative Binomial II Model

Now we discuss the Negative Binomial Model for count data. Since the conditional variances and

covariances can be written in a specific form, we would consider the NegBin II model (NBII hereafter)

of Cameron and Trivedi (1986) as an appropriate choice. The NBII model can be derived from a

Poisson model with multiplicative error. With an exponential mean, we assume

yi|xi, ξi, εi, Dn ∼ Poisson [εiξi exp (xiβ0)] with ξi > 0, εi > 0,

where ξi follows from the condition (4) in Section 3.1.1, and εi follows from Gamma distribution with

the density:
ψ−ψ

Γ(ψ)
εψ−1
i exp(−εiψ), (29)

where E(εi) = 1, Var(εi) = 1/ψ, for ψ > 0, and Γ(·) is the gamma function. Moreover, we assume

that εis are independent of ξis and xis, and εis are i.i.d. We also assume that for i ̸= j, yi and yj are
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independent conditional on xi,xj, ξi, ξj, εi, and εj.

Under the above assumptions for the Poisson distribution, with the conditional mean as in (18)

and conditional variance similar to (22), yi|xi is shown to follow a negative binomial II distribu-

tion. The model implies overdispersion as well, and the amount of overdispersion increases with the

conditional mean,

Var (yi|xi, Dn) = exp (xiβ0)
(
1 + exp (xiβ0) · [τ 2/ψ + τ 2 + 1/ψ]

)
. (30)

The covariance function in equation (26) for l ̸= m stays the same. The pre-estimator β̌ and ψ̌ can

be obtained by a QMLE maximizing the likelihood function for the standard NBII model. See, e.g.,

Gourieroux et al. (1984). The estimation of τ will be discussed in the following sub-section.

3.1.3 GEE Estimation

In both cases, let θ̌ = β̌QMLE and γ̌ = (τ̌ , ρ̌) (γ̌ = (ψ̌, τ̌ , ρ̌) for the NBII case). Let xg be L × p, and

xgβ be L×1. Moreover, exp
(
xgβ

)
is a L×1 vector, where exp is applied elementwise to xgβ. Based

on the conditional distribution, the first-order condition for GEE is

∑
g

x⊤
g diag(exp

(
xgβ̂GEE

)
)W−1

g

(
γ̌, θ̌

) [
yg − exp

(
xgβ̂GEE

)]
= 0. (31)

β̂GEE is consistent and follows a normal distribution asymptotically by Theorem 1 and 2 in Sections 4.3

and 4.4. We will abbreviate W−1
g

(
γ̌, θ̌

)
to Ŵ−1

g in the following text. We denote µ̂g = exp
(
xgβ̂GEE

)
and ûg = yg−exp

(
xgβ̂GEE

)
. Following the spatial heteroscedasticity and autocorrelation (HAC) con-

sistent estimation literature (see e.g. Kelejian and Prucha (2007)), the asymptotic variance estimator

could be constructed as follows:

Âvar
(
β̂GEE

)
=

(∑
g

x⊤
g diag(µ̂g)Ŵ−1

g diag(µ̂g)xg
)−1

(32)(∑
g

∑
h

k(dgh)x⊤
g diag(µ̂g)Ŵ−1

g ûgû⊤
h Ŵ−1

h diag(µ̂h)xh
)

(∑
g

x⊤
g diag(µ̂g)Ŵ−1

g diag(µ̂g)xg
)−1

,

where k(dgh) is a kernel function depending on the distances between groups.
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The parameters, τ 2 and ρ, can be estimated using the Poisson QMLE residuals. Let ǔ2
i =[

yi − exp
(
xiβ̌QMLE

)]2
be the squared residuals from the Poisson QMLE. Based on equation (25), τ 2

(τ 2/ψ for the NBII case) can be estimated as the coefficient by regressing ǔ2
i − exp

(
xiβ̌QMLE

)
on

exp
(
2xiβ̌QMLE

)
. The estimation of ρ depends on the specific form of c (dij, ρ). We can impose, though

perhaps wrongfully, a structure on the true covariance. For example, suppose that the covariance

structure of ei and ej is exp
(
ρ
dij

)
− 1, then an estimator for ρ is

ρ̂ = argminρ
n∑
i=1

n∑
j=1

 ǔiǔj

exp
(
xiβ̌

)
exp

(
xjβ̌

) −
[
exp

(
ρ

dij

)
− 1

]
2

. (33)

Then Ŵg is obtained by plugging τ̂ 2 and ρ̂ back into the variance-covariance matrix. We can also

directly calculate ρ̂ as

ρ̂ = 1
n · (n− 1)

n∑
i=1

n∑
j ̸=i

log

 ǔiǔj

exp
(
xiβ̌

)
exp

(
xjβ̌

) + 1

 · dij

 . (34)

Then we can specify a GEE working correlation matrix to estimate (31).

3.2 Example 2: Binary Response Data with Spatial Correlation in the

Latent Error

We start from the Probit model:

yi = 1 [y∗
i > 0] , (35)

y∗
i = xiβ + ei, (36)

where y∗
i is an unobservable latent variable. Now let e = (e1, e2, ..., en)⊤ be the vector of latent

spatially correlated error. For example, Pinkse and Slade (1998) use the following assumption of e:

e = ρMwe + ε, (37)

where ε = (ε1, ε2, ..., εn) is a vector of independent standard normal distribution. Mw is an n × n

weighting matrix, where its diagonal elements are zeroes, and its off-diagonal element, for example
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Mw,ij with i ̸= j, is inversely proportional to the distances between location i and j. ρ is a spatial

correlation parameter. In this case, e can be written as a function of ε,

e = (I − ρMw)−1 ε. (38)

Thus the conditional expectation of e is zero. The variance-covariance matrix of e is

Var (e|x, Dn) = (I − ρMw)−1 (I − ρMw)−1⊤ . (39)

If we assume that e|x has a multivariate normal distribution with zero mean and a variance matrix

specified in (39), the conditional mean is correctly specified as follows:

E (yi|xi, Dn) = Φi (xiβ) , (40)

where Φi is the marginal normal distribution function with its variance being the i-th element of

the diagonal of (39). Let ϕi(·) denote the corresponding density function. Moreover, the conditional

variance function for a Bernoulli distribution as

Var (yi|xi, Dn) = Φi (xiβ) [1 − Φi (xiβ)] . (41)

Taking the Bernoulli QMLE as an example, which is obtained by maximizing the Probit log-

likelihood. The log-likelihood function for each observation is

li (β) =yi log Φi (xiβ) + (1 − yi) log [1 − Φi (xiβ)] . (42)
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Let ǔi = yi − Φi

(
xiβ̌

)
(for i = 1, 2, ..., n) be the residual from the QMLE estimation. At this stage,

an estimator for the asymptotic variance of β̌QMLE can be computed as follows:

Âvar
(
β̌QMLE

)
=

 n∑
i=1

ϕ2
i

(
xiβ̌QMLE

)
x⊤
i xi

Φi

(
xiβ̌

) [
1 − Φi

(
xiβ̌QMLE

)]
−1

(43)

 n∑
i=1

n∑
j=1

k (dij)
ϕi
(
xiβ̌QMLE

)
ϕi
(
xjβ̌QMLE

)
x⊤
i ǔiǔjxj

Φi

(
xiβ̌QMLE

) [
1 − Φi

(
xiβ̌QMLE

)]


 n∑
i=1

ϕ2
i

(
xiβ̌QMLE

)
x⊤
i xi

Φi

(
xiβ̌QMLE

) [
1 − Φi

(
xiβ̌QMLE

)]
−1

,

where k (dij) is the kernel weight function that depends on pairwise distances. This QMLE and its

robust variance-covariance estimator provide a legitimate way of estimating the spatial Probit model.

We use QMLE as a first-step estimator. An estimator for the working variance matrix for each

group is

v̌gl = Φgl

(
xglβ̌QMLE

) [
1 − Φgl

(
xglβ̌QMLE

)]
. (44)

Furthermore, we assume the working correlation function for l−th and m−th elements in group g is

πglm = C (dglm, ρ) . (45)

For example,

C (dglm, ρ) = ρ

dglm
or exp

(
−dglm

ρ

)
. (46)

Let ǔgl be the QMLE residual for l-th element in r-th group, and r̂gl = ǔgl/
√
v̌gl be the standardized

residual. Using the correlations within groups, one estimator of ρ is

ρ̂ = argminρ
∑
g

L∑
l=1

∑
m<l

[r̂glr̂gm − C (dglm, ρ)]2 , (47)

for l < m.

Define Φg(xgβ̂GEE) = (Φg1(xg1β̂GEE), . . . ,ΦgL(xgLβ̂GEE))′, and µ̂g = (ϕg1, . . . , ϕgL) with ϕgl =

ϕ(xglβ̂), l = 1, 2, . . . , L. Similarly, the second-step GEE estimator solves

∑
g

x⊤
g diag{ϕgl}Ŵ−1

g

(
yg − Φg

(
xgβ̂GEE

))
= 0. (48)
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β̂GEE is consistent and follows a normal distribution asymptotically by Theorems 1 and 2 of Sections

4.3 and 4.4. β̂GEE is consistent even for misspecified spatial correlation structure Ŵg. We could

again construct the spatial HAC-type variance estimator as follows

Âvar
(
β̂GEE

)
=

(∑
g

x⊤
g diag{µ̂g}Ŵ−1

g diag{µ̂g}xg
)−1

(49)(∑
g

∑
h

k(dgh)x⊤
g diag{µ̂g}Ŵ−1

g ûgû⊤
h Ŵ−1

h diag{µ̂g}xh
)

(∑
g

x⊤
g diag{µ̂g}Ŵ−1

g diag{µ̂g}xg
)−1

,

where k(dgh) is a kernel function that depends on the distances between groups.

4 Theorems

In this section, we present the assumptions and investigate the theoretical properties of our GEE

estimation. In Sections 4.1 and 4.2, we introduce some notations and definitions, while Sections 4.3

and 4.4 present the consistency and asymptotic normality of the GEE estimator in (7); Section 4.5

demonstrates the consistency of the estimation of the variance-covariance matrix of the proposed

GEE estimator.

4.1 Notations

We need ULLNs and CLTs for analyzing the properties of our proposed GEE estimator. While

theories for temporal dependence data have been well established in the literature (see e.g. Davidson

(2021), they are not suitable for our analysis since we are working with spatial data that lacks a

natural order. Using a distance measure defined based on the maximum metric, Jenish and Prucha

(2009) develop a ULLN and a CLT for α-mixing random fields on unevenly spaced lattices that allow

nonstationary processes with trending moments. However, the mixing property can fail for quite a

few reasons. Thus, we adopt the notion of NED as in Jenish and Prucha (2012) which refers to a

generalized class of random fields that is "closed with respect to infinite transformations".

Let Z = {Zn,i, i ∈ Dn, n ≥ 1} and ε = {εn,i, i ∈ Tn, n ≥ 1} be triangular arrays of random fields

defined on a probability space (Ωϵ,F , P ), where Tn is a larger lattice with Dn ⊆ Tn ⊆ D. D satisfies
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the following Assumption A.1. The cardinality of Dn and Tn satisfies lim
n→∞

|Dn| → ∞, lim
n→∞

|Tn| → ∞.

For i, j ∈ Rd, we consider a metric d(i, j) def= max1≤l≤d|jl − il| with the norm |i|∞ = max1≤l≤d|il|,

where il is the l-th component of i. The distance between any subsets U, V ∈ D is defined as

d(U, V ) = inf{d(i, j) : i ∈ U and j ∈ V }. For a vector (matrix) A, let |A|2 denote its L2−norm, and

|A|a return a vector (matrix) wherein each element is the absolute value of the corresponding element

in vector (matrix) A. For any random vector X, let ∥Xn,i∥p = (E |Xn,i|p)1/p denote its Lp-norm, given

that the absolute p-th moment exists. In the case of p = 2, we abbreviate ∥Xn,i∥2 as ∥Xn,i∥. Finally,

We let Fn,i(s) = σ(εn,j : j ∈ Dn, d(i, j) ≤ s) be the σ- field generated by random vectors εn,j located

within a distance of s from i.

4.2 Definitions

We start with definitions needed for the consistency and asymptotic normality of our estimator.

Definition 1. Let Z = {Zn,i, i ∈ Dn, n ≥ 1} and ε = {εn,i, i ∈ Dn, n ≥ 1} be random fields with

∥Zn,i∥p < ∞, p ≥ 1, where Dn ⊆ D, and its cardinality is |Dn| = n. Let {dn,i, i ∈ Dn, n ≥ 1} be an

array of finite positive constants. Then the random field Z is said to be Lp-near-epoch dependent on

the random field ε (Lp-NED on ε) if

∥Zn,i − E(Zn,i|Fn,i(s))∥p < dn,iφ(s)

holds for some sequence φ(s) ≥ 0 with lim
s→∞

φ(s) = 0, where φ(s) denotes the NED coefficient, and

dn,i is a NED scaling factor. Furthermore, if ψ(s) = s−µ for some µ > λ > 0, then Z is referred to

as Lp-NED on ε of size −λ. Moreover, if sup
n

sup
i∈Dn

dn,i < ∞, then Z is called uniformly Lp-NED on

ε.

We will present the L2-NED properties of a random field Z on some α-mixing random field ε.

The definition of the α-mixing coefficient employed in the paper is stated as follows.

Definition 2. Let A and B be two σ-algebras of F , and let

α(A ,B) = sup
A,B

(|P (A ∩B) − P (A)P (B)|A ∈ A , B ∈ B),

For U ⊆ Dn and V ⊆ Dn, let σn(U) = σ(εn,i, i ∈ U) (σn(V ) = σ(εn,i, i ∈ V )) and αn(U, V ) =
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α(σn(U), σn(V )). Then, the α-mixing coefficients for the random field ε are defined as:

α(u, v, h) = sup
n

sup
U,V

(αn(U, V ), |U | ≤ u, |V | ≤ v, d(U, V ) ≥ h).

where d(·, ·) is the distance measure based on the maximum metric.

Compared with the one applied in temporal analysis, the above-defined α-mixing also depends

on the size of the subsets, as given a fixed distance in random fields, it is natural to expect more

dependence between two larger sets than between two smaller sets. Moving forward, we will suppress

the dependence on n for a triangular array if there is no confusion in the context.

4.3 Consistency

In the following, we present assumptions needed for establishing asymptotic theories.

Assumption A.1 (Sampling point). The lattice D ⊆ Rd, d ≥ 1, is infinitely countable. The distance

d(i, j) between any two different individual units i and j in D is at least larger than a positive constant,

i.e., ∀i, j ∈ D : d(i, j) ≥ ρ0. W.l.o.g., we assume ρ0 > 1.

This is the basic assumption on the distance measure and the lattices. We do not consider infill

asymptotic framework and therefore we impose a minimum distance assumption between observa-

tions.

Assumption A.2 (Decay dependence). {yi} is L4- uniformly NED on the α- mixing random field

ε = {εi, i ∈ Dn}, where εi = (xi, ui) (ui’s are some underlying innovation processes). For the α-

mixing coefficient α, it holds that α(u, v, r) ≤ (u+ v)τ α̂(r) for a constant τ ≥ 0 and a function α̂(·)

that satisfies limr→∞ α̂(r) = 0 and ∑∞
r=1 r

d−1α̂(r) < ∞. The NED constant is denoted by dn,i, which

satisfies supn,i∈Tn
dn,i < ∞. The NED coefficient is denoted by ψ(s), which satisfies lims→∞ ψ(s) = 0,

and ∑∞
r=0 r

d−1ψ(r) < ∞.

Assumption A.3 (Parameter space). The parameter space Θ × Γ is a compact subset of Rp+q with

euclidean metric |.|2. qg (θ, γ), sg(θ, γ), and hg(θ, γ) defined in Section 2.2 are functions from Θ × Γ

to R1, Rp, and Rp2, respectively. These functions are measurable for each θ ∈ Θ and γ ∈ Γ, and are

Lipschitz continuous on Θ × Γ.
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From now on, we work with group-level asymptotics. We define the field ε̃ = {εg : g ∈ 1, · · · , G}

with grouped observations. First of all, suppose that Dn is divided into G blocks with ∪G
1 Bg =

Dn ⊂ Tn (recall that the group-level lattice is denoted as DG). Define the distance between two

groups, g and h, as d(g, h) = mini∈Bg ,j∈Bh
d(i, j). Then, the α-mixing coefficient between group

U = {g1, · · · , gL} and group V = {h1, · · · , hM} is thus α̃(u, v, r) = supL≤u,M≤v,d(U,V )≥r α(σ(U), σ(V )),

where d(U, V ) = minl∈1···L,m∈1,··· ,Md(gl, hm). As L is assumed to be fixed, the grouping observations

ε̃ will satisfy the mixing coefficients restrictions imposed in Assumption A.2. Moreover, since L is

the same for every group, we shall have α̃(u, v, r) = (uL+ vL)τ α̂(r).

Assumption A.4 (Moment assumptions). E supθ∈Θ |mg,i|r ≤ C1, E supθ∈Θ,γ∈Γ|wg,ij|r ≤ C2, E |yg,i|r ≤

C3, and E supθ∈Θ |∇θmg,i|r ≤ C4, where C1, C2, C3, and C4 are positive constants, and wg,ij, yg,i,

and mg,i are the element-wise components for W−1
g (θ, γ), yg, and mg(θ, γ). mg,i and wg,ij are con-

tinuously differentiable up to the third order derivatives, and their r-th moments (after taking the

supreme over the parameter space) are bounded up to the second order derivatives, with r > 4p′ and

p′ ≥ 1.

Remark 2. The moment conditions in Assumption A.4 are needed for establishing the ULLN to show

the consistency of our proposed estimator; see the proof for Lemma 1 in the supplementary material.

These conditions are primitive conditions and widely employed in the literature; see, e.g., Lemma 2.5

in Newey and McFadden (1994) or Assumption 3 in Newey and Powell (2003).

Assumption A.5 (Identifiability). The true parameter θ0 is the unique minimizer for the ob-

jective function in the sense that, for any ε > 0, there exists a positive number c0 such that

lim infG→∞ inf θ∈Θ:|θ−θ0|2≥εQG

(
θ̌, γ̌, θ

)
> c0 +Q∞

(
θ̌, γ̌, θ0

)
.

Assumption A.2 concerns the L2-NED property of data-generating processes. See Section S2 in the

supplementary material for detailed verification of the special cases. It should be noted that by Lya-

punov inequality, if {yi} is Lk-NED, it is also Ll-NED with the same coefficients, dn,i and ψ(s), for any

l ≤ k. In fact, as we work with the group-level asymptotics, we can also directly replace the assump-

tion by the NED property of yg on {εg}. This assumption also imposes the algebraic decaying rate of

an underlying process, and will not restrict the dependence within groups as we set the group size to be

fixed. Assumption A.3 contains the standard regularities assumptions. Assumption A.4 is a collection
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of moment conditions on the statistical objects involved in the estimation and also on each element of

Hessian matrices, ensuring the boundedness of the moments. Assumption A.5 is a condition on the

identification of our proposed estimator. It can be implied by the positive definiteness of W−1
g (θ, γ)

and the same identification assumption lim infG→∞ infθ∈Θ:|θ−θ0|2≥εQ
′
G(θ) > c0 + Q′

∞(θ) on Q′
G(θ) def=

1
|DG|

∑
g∈|DG| E [yg − mg (xg; θ)]⊤ [yg − mg (xg; θ)] and Q′

∞(θ) def= limG→∞Q
′
G(θ). It can be shown that

lim infG→∞ inf θ∈Θ:|θ−θ0|2≥εQG

(
θ̌, γ̌, θ

)
> λmin{W−1

g (θ̌, γ̌)}(c0 + Q′
∞(θ)), where λmin{W−1

g (θ̌, γ̌)} is

the minimum eigenvalue of the matrix W−1
g (θ̌, γ̌). When infθ∈Θ,γ∈Γλmin {W−1

g (θ, γ)} > c for c > 0,

Assumption A.5 is then satisfied with probability approaching one. Given these assumptions, we can

provide the consistency property of our estimation.

Theorem 1 (Consistency). Under Assumptions A.1-A.5, the proposed GEE estimator obtained by

solving equation (7) is consistent: |θ̂ − θ0|2
p−→ 0 as G → ∞.

Theorem 1 indicates that the consistency of θ̂ does not rely on the consistent estimation for γ in

the first step as long as the number of groups tends to infinity and the conditional mean function is

correctly specified. The proof is provided in Section S1.2 of the supplementary material.

4.4 Normality

To further establish the asymptotic normality of the estimate, we additionally impose the following

assumptions:

Assumption A.6 (Decaying dependence). The function α̂ satisfies ∑∞
r=1 r

(dτ∗+d)−1Lτ
∗
α̂δ/(2+δ)(r) <

∞ for δ > 0 and τ ∗ = δτ/(4 + 2δ).

Assumption A.7 (Nuisance plug-in). The limiting points of the nuisance parameters, θ∗ and γ∗,

lie in the interiors of Θ and Γ, respectively. Furthermore, we assume |γ̌ − γ∗|2 = Op(G−1/2) and

|θ̌ − θ∗|2 = Op(G−1/2).

Define

ASG = 1
G

∑
g

E
[
∇mg

⊤
(
θ0
)

W−1
g (θ∗, γ∗) ugu⊤

g W−1
g (θ∗, γ∗) ∇mg

(
θ0
)]

+ 1
G

∑
g

∑
h,h̸=g

E
[
∇mg

⊤
(
θ0
)

W−1
g (θ∗, γ∗) ugu⊤

h W−1
h (θ∗, γ∗) ∇mh

(
θ0
)]
. (50)

and AS∞ = limG→∞ ASG. We then impose:
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Assumption A.8 (Variance-covariance matrix). There exist two positive constants, c′ and C ′, such

that c′ < λmin(E[∇mg
⊤(θ0) W−1

g (θ∗, γ∗)∇mg(θ0)]) < λmax(E[∇mg
⊤(θ0)W−1

g (θ∗, γ∗) (∇mg(θ0)] <

C ′. Furthermore, infG |DG|−1λmin(AS∞) > 0.

Assumption A.9 (Initial estimator and root assumption). It holds that SG
(
γ̌, θ̌, θ̂

)
= Op(1/

√
G).

Assumption A.6 is needed for establishing moment inequalities which are necessary for establishing

CLT; see also Assumption 10 in Xu and Lee (2015a). Assumption A.7 concerns the pre-estimation

of the nuisance parameters γ and θ; It shall be noted that in Assumption A.7, (θ∗, γ∗) can be

different from the true parameter (θ0, γ0), which will not affect the consistency of our estimator.

For more explanations, see the proof of Theorem 2 in the supplementary material. In Section S1.4

of the supplementary material, we also provide primitive conditions for verifying that the estimator

for γ̌, presented by (12) in Section 2, satisfies Assumption A.7. Assumption A.8 is a standard

regularity condition for nonlinear estimation. The assumption on score function in Assumption A.9

acknowledges the fact that for some nonlinear estimation equations, the existence of a solution might

not be a trivial issue; see Jacod and Sørensen (2018) for relevant discussions.

We define H∞ = limG→∞ E HG(θ∗, γ∗, θ0), where HG(θ∗, γ∗, θ0) is the Hessian matrix with respect

to θ0. Furthermore, define AV = AV (γ∗, θ∗, θ0) def= H⊤
∞AS∞H∞. It is not surprising to see in the

following Theorem 2 that our estimation is asymptotically normal, and the rate of convergence is
√
G.

Theorem 2. Under Assumptions A.1 - A.9, we have

√
GAV−1/2(θ̂ − θ0) ∼d N(0, Ip). (51)

4.5 Consistency of Variance-covariance Matrix Estimation

In this subsection, we propose a semiparametric estimator of the asymptotic variance in Theorem 2

and prove its consistency. The estimation is tailored to account for the spatial dependence of the

underlying process. This facilitates the statistical inference for the proposed estimator.
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First, we define

Â = 1
|DG|

∑
g

∇m̂⊤
g Ŵ−1

g ∇m̂g, (52)

B̂ = 1
|DG|

∑
g

∑
h̸=g

k(dgh)∇m̂⊤
g Ŵ−1

g ûgû⊤
h Ŵ−1

h ∇m̂⊤
h , (53)

where ∇m̂g ≡ ∇m̂g

(
θ̂
)
, Ŵg ≡ Ŵg(γ̌, θ̌), and ûg = yg − mg(θ̂) is an estimator for ug.

Following the spatial HAC literature (see, e.g., Kelejian and Prucha (2007)), we construct an

estimator for AV as

ÂV
(
γ̌, θ̌, θ̂

)
= |DG|

(∑
g

∇m̂⊤
g Ŵ−1

g ∇m̂g

)−1

∑
g

∑
h(̸=g)

∇m̂⊤
g Ŵ−1

g k (dgh) ûgû⊤
h Ŵ−1

h ∇m̂h


(∑

g

∇m̂⊤
g Ŵ−1

g ∇m̂g

)−1

= Â−1B̂Â−1, (54)

where k (dgh) is a kernel function depending on the distance between group g and h, i.e., dgh (which

is also denoted as d(g, h)), and a bandwidth parameter bg. As noted in Kelejian and Prucha (2007),

there are many choices for the kernel function, such as the rectangular kernel, Bartlett or triangular

kernel. In particular, without loss of generality, we can choose the Bartlett kernel function: k (dgh) =

1 − d(g, h)/bg for d(g, h) < bg, and k (dgh) = 0 for d(g, h) ≥ bg.

We now list assumptions that are needed for the consistent estimation of the variance-covariance

matrix.

Assumption B.1 (Residual property). ûg − ug = Cg∆g, where Cg is a L × p matrix, and ∆g is a

p× 1 dimensional vector. It holds that |Cg|2 = Op(1) and ||∆g|| = Op(G−1/2).

Assumption B.2 (Kernel assumption). The kernel function k(·) satisfies |k(dgh)−1| ≤ Ck|dgh/bg|ρk ,

where ρk > 0, dgh/bg ≤ 1, bg → 0, and Ck is a generic constant. It also holds that bd/q′
g |DG|−1 = O(1),

|DG|−1∑
g

∑
h |d(g, h)/bg|ρk = O(1), and b2d

g

∑∞
r=1 r

d−1ψ((r−bg)+) = O(G), where (r−bg)+ = max(r−

bg, 0), and recall that ψ(·) is the NED coefficient.

Assumption B.1 is an assumption for decomposing the difference between the residuals and the
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true error; a similar assumption is imposed by Kelejian and Prucha (2007). Assumption B.2 concerns

the properties of the kernel function, and also puts constraints on the spatial dependence coefficients

and the bandwidth parameter. In the following theorem, we demonstrate the consistency of the ÂV.

Theorem 3. Under Assumption A.1 - A.9 and B.1 - B.2, the variance-covariance estimator presented

in (54) is consistent, i.e., ÂV
(
γ̌, θ̌, θ̂

)
p−→ AV (γ∗, θ∗, θ0) .

5 Monte Carlo Simulations

In this section, we use Monte Carlo simulations to investigate the finite sample performance of

the proposed GEE approach and compare it to QMLE. By studying five different cases for count

data and binary response data, we show that the proposed GEE estimator not only has better

performance under various data-generating processes, but also is robust to moderate misspecification

of the working correlation matrix or the group structure. Our code has been uploaded to GitHub

(link: https://github.com/Uwe-xu/NonlinearGEE.)

5.1 Sampling Space

We sample 400 or 1600 observations on a linear lattice. The data are divided into groups of size 4,

with each group’s points being normally distributed, sharing the same mean and a variance of 0.1.

In the case where n = 400, the group means are represented by 100 equally spaced points in [0, 10],

while in the case where n = 1600, they are represented by 400 equally spaced points. The distance

dij between locations i and j is calculated as Euclidean distance on the real line.

5.2 Count Data

5.2.1 Data-Generating Process

For a spatial Poisson distribution, given the spatial correlation, the variances and covariances of the

count-dependent variable can be expressed in closed forms, as illustrated in equations (22) and (23).
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Consider the following spatial count data-generating process:

mi = ξi exp (β1xi,1 + β2xi,2) ,

β1 = β2 = 1,

xi,1, xi,2
i.i.d.∼ N (0, 1) ,

Yi ∼ Poisson (mi) ,

where ξi is a random variable independent of X with E(ξi) = 1. We consider two cases with different

types of spatial correlations of ξi. In the following, we describe the case-specific data-generating

processes and within-group correlation matrices. The corresponding variance-covariance matrix,

Wg, is defined in equation (9), and estimation procedures can be found in Section 3.

Case 1. ξi is simulated as a multivariate lognormal variable by exponentiating an underlying

multivariate normal distribution that has a marginal distribution N
(
−1

2 , 1
)

and a within-group

correlation matrix Ωg. For i ̸= j, we have Ωg,ij = ρ, i.e., the correlation matrix is exchangeable. We

let ρ = 0.1, 0.5, 0.8, and 1. The underlying normal distribution implies that ξi follows a multivariate

lognormal distribution with E (ξi) = 1. The group size equals four. The within-group correlation

matrix is

Ωg =



1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1



. (55)

Case 2. The setting is similar to Case 1: we have ξi ∼ logN(−1
2 , 1), and the group size is four.

However, the correlation between j-th and i-th elements is specified as corr(ξi, ξi) = ρ(1 − dij), i.e.,

it depends on both ρ and the spatial distance. The within-group correlation matrix is
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Ωg =



1 ρ(1 − d12) ρ(1 − d13) ρ(1 − d14)

ρ(1 − d21) 1 ρ(1 − d23) ρ(1 − d24)

ρ(1 − d31) ρ(1 − d32) 1 ρ(1 − d34)

ρ(1 − d41) ρ(1 − d42) ρ(1 − d43) 1



. (56)

5.2.2 Simulation results

Table 1 shows simulation results under Case 1 and Case 2, with two sample sizes: n ∈ {400, 1600}

and G ∈ {100, 400}. There are two estimators, Poisson QMLE and Poisson GEE. For the Poisson

GEE estimation, we divide the data into groups of four, sequentially grouping every four elements

from start to finish. Then, we employ the estimated working variance-covariance matrices (55) and

(56) in the GEE estimation for Cases 1 and 2, respectively. All the columns are based on 1000 Monte

Carlo replications. For each setting, Monte Carlo means and standard errors are computed.

In general, we can see that the Monte Carlo means are very close to the true values, suggesting

that in Case 1 and Case 2, both methods are asymptotically unbiased. Therefore, we can focus on the

comparison of standard errors. We use bold font to highlight estimates that have smaller standard

errors.

From Table 1, we see that the Poisson GEE methods perform considerably better than Poisson

QMLE methods in every case, sample size, and ρ. For example, in Case 1 and n = 400, the

improvements (in terms of the standard deviation) range from 28% (for β̂2 with ρ = 0.1) to 50% (for

β̂2 with ρ = 1); in Case 2 and n = 1600, the improvements range from 37% (for β̂1 with ρ = 0.1) to

66% (for β̂1 with ρ = 1).

Another observation is that with ρ increasing, the performance gaps between the two methods

become larger. For example, in Case 1 and n = 400, when ρ = 0.1 (weak spatial correlation),

the improvement for β̂1 is 1 − 0.1061/0.1486 ≈ 29%; when ρ = 1 (high spatial correlation), the

improvement for β̂1 increases to 1 − 0.08/0.1489 ≈ 44%. This is in line with our expectation since

the proposed GEE method is capable of accounting for the spatial correlation in the underlying

innovations. The stronger the correlation, the larger the improvement.
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Table
1:

M
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standard

deviations
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1
and

C
ase

2,averaged
over

1000
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n
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400,
G

=
100,

L
=

4
n

=
1600

,G
=

400,
L

=
4

C
ase

1
C

ase
2

C
ase

1
C

ase
2

Poisson
G

EE-Poisson
Poisson

G
EE-Poisson

Poisson
G

EE-Poisson
Poisson

G
EE-Poisson

ρ
=

1

β̂
1

1.0475
1.0067

1.0593
0.9994

0.9993
0.9956

1.0012
0.9959

s.d.(β̂
1 )

0.1489
0.0800

0.1494
0.0666

0.0804
0.0295

0.0805
0.0275

β̂
2

1.0465
1.0078

1.0557
1.0015

1.0007
0.9966

1.0037
0.9963

s.d.(β̂
2 )

0.1494
0.0750

0.1470
0.0696

0.0790
0.0295

0.0808
0.0283

ρ
=

0
.8

β̂
1

1.0408
0.9900

1.0620
0.9966

1.0019
0.9963

0.9827
0.9882

s.d.(β̂
1 )

0.1511
0.0955

0.1558
0.1025

0.0810
0.0414

0.0752
0.0386

β̂
2

1.0448
0.9886

1.0580
0.9925

1.0021
0.9923

0.9855
0.9904

s.d.(β̂
2 )

0.1596
0.0988

0.1536
0.0979

0.0759
0.0424

0.0739
0.0356

ρ
=

0
.5

β̂
1

1.0325
0.9893

1.0431
1.0062

0.9970
0.9968

1.0162
1.0058

s.d.(β̂
1 )

0.1509
0.1120

0.1397
0.1111

0.0752
0.0429

0.0747
0.0406

β̂
2

1.0375
0.9939

1.0344
1.0032

1.0012
0.9979

1.0172
1.0086

s.d.(β̂
2 )

0.1454
0.1123

0.1433
0.1067

0.0744
0.0424

0.0736
0.0447

ρ
=

0
.1

β̂
1

1.0225
1.0046

0.9567
0.9556

1.0013
0.9996

1.0007
0.9967

s.d.(β̂
1 )

0.1486
0.1061

0.1470
0.1125

0.0750
0.0453

0.0791
0.0468

β̂
2

1.0199
1.0036

0.9554
0.9494

0.9981
0.9968

1.0018
0.9999

s.d.(β̂
2 )

0.1439
0.1039

0.1455
0.1102

0.0800
0.0462

0.0761
0.0481

s.d.
stands

for
standard

deviations.

T
he

estim
ates

w
ith

sm
aller

standard
deviations

are
highlighted

in
bold

font.

33



5.3 Binary Response Data

5.3.1 Data-Generating Process and Misspecified Working Correlation Matrix

For the spatial Probit model, the correlations of the latent errors result in the correlations of the ob-

servable binary response variables. However, the correlations become different after transformation,

and the true correlation between two binary responses does not have a closed analytical form. This

provides a natural setting to test the robustness of the proposed GEE methods when the working

correlation matrix is moderately misspecified. Let us consider the following setting:

Case 3

yi = 1(y∗
i > 0), (57)

y∗
i = xiβ + ei, (58)

ui = yi − E(yi|xi) = yi − Φ(xiβ),

where the true parameter β = (β1, β2)T = (1, 1)T and xi ∼ N(0, I2); The marginal distribution

of ei is N(0, 1). With the group size L = 4, the correlation between i-th and j-th elements is

corr(ei, ej) = ρ(1 − dij) if they are in the same group, and 0 otherwise.

We specify the following conditional working correlation matrix for ui in group g:

Ωg =



1 c(1 − d12) c(1 − d13) c(1 − d14)

c(1 − d21) 1 c(1 − d23) c(1 − d24)

c(1 − d31) c(1 − d32) 1 c(1 − d34)

c(1 − d41) c(1 − d42) c(1 − d43) 1



. (59)

While Ωg might mimic the correlation structure of ei, it does not correctly specify that of ui. Namely,

the working correlation matrix is misspecified. The parameter c can be regarded as the coefficient of

the linear regression of the product of the group member ui and uj on their closeness (1 − dij). In

estimation, we replace ui with the plug-in ǔi := yi − Φ(xiβ̌QMLE).
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5.3.2 Simulation Results

Table 2: Means and MSEs for Case 3 averaged over 1000 samples

n = 400, G = 100, L = 4 n = 1600, G = 400, L = 4

Probit GEE-Probit Probit GEE-Probit

ρ = 1

β̂1 0.8880 0.8897 1.0046 1.0055

MSE(β̂1) 8.1876 7.4890 4.1530 3.3511

β̂2 0.8858 0.8874 1.0061 1.0067

MSE(β̂2) 8.5451 7.8048 4.4365 3.5446

ρ = 0.8

β̂1 0.9087 0.9099 0.9938 0.9950

MSE(β̂1) 6.7392 6.1236 3.9748 3.5374

β̂2 0.9047 0.9055 0.9960 0.9968

MSE(β̂2) 7.1594 6.6605 4.0776 3.5528

ρ = 0.5

β̂1 0.9372 0.9380 0.9831 0.9831

MSE(β̂1) 5.3103 5.0167 4.5959 4.3844

β̂2 0.9368 0.9372 0.9852 0.9853

MSE(β̂2) 5.2776 5.0261 4.1201 3.8726

ρ = 0.1

β̂1 0.9771 0.9774 0.9769 0.9776

MSE(β̂1) 4.4622 4.5111 4.7612 4.5880

β̂2 0.9671 0.9671 0.9768 0.9775

MSE(β̂2) 4.2051 4.3404 4.7526 4.5802

MSE stands for mean square errors.

The estimates with smaller MSE are highlighted in bold font.

Table 2 shows the simulation results of Case 3 with two sample sizes and group numbers: n ∈

{400, 1600} and G ∈ {100, 400}. The two estimators are Probit QMLE and Probit GEE. For the

Probit GEE approach, the grouping strategy is implemented in the same way as described in Section

5.2.2. All the columns are based on 1000 Monte Carlo replications. In general, we can see that for

Case 3, the estimation biases are in general larger than those in Case 1 and Case 2. Thus we choose

mean square errors (MSE) instead of standard deviations to measure the estimation performance.

We highlight the estimates with smaller MSE in bold font.

When the spatial correlation is comparatively large (ρ = 1, 0.8, and 0.5 in the latent model), the

Probit GEE performs better than Probit QMLE in every sample size. For example, for n = 400,

the improvements (in terms of MSE) range from 4.8% (for β2 with 0.5) to 8.7% (for β2 with ρ = 1);
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for n = 1600, the improvements range from 4.6% (for β2 with ρ = 0.5) to 19.3% (for β1 with

ρ = 1). Again, the improvement increases with the (latent) spatial correlation parameter ρ. When

the spatial correlation is very small and the sample size is relatively small (ρ = 0.1 in the latent

model and n = 400), Probit QMLE has smaller MSEs than Probit GEE.

In sum, we can conclude that the Probit GEE outperforms Probit QMLE in most cases. We

also note that in general, the improvements are smaller than those in count models. There are two

reasons: i) We use a moderately misspecified working correlation matrix (59), which only captures

a part of the spatial correlations in errors ui; ii) the transformation from the latent model (58) to

the observed model (57) attenuates the correlation. This explains the unexpected result for the case

of ρ = 0.1 and n = 400: The original spatial correlation in the latent model is weak, resulting in a

weaker correlation in the observed model. Furthermore, the small sample size makes the situation

worse. If we increase the sample size to 1600, Probit GEE becomes the best of the two methods

again.

5.4 Misspecified Group

In practice, the group structure can be misspecified, particularly if the data does not naturally

segregate into distinct groups. In this section, we will concentrate on the cases where the groups

defined in the estimation process do not align with the group structure inherent to the data-generating

processes.

In Case 4 and Case 5, we follow the model in Case 3

yi = 1 (y∗
i > 0)

y∗
i = xiβ0 + ei

ui = yi − Φ (xiβ0) ,

but the group sizes for the data-generating processes are L = 2 for Case 4 and L = 8 for Case

5. During the estimation, we continue to employ the same specifications of the working correlation

matrix as previously done in Case 3, implementing a group size of L = 4 (cf. Section 5.2.2). Under

this estimation strategy, the groups are misspecified in both cases. In Case 4, the groups specified

in the estimation are too coarse, leading to pairs of observations, which actually belong to different
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groups, being clustered into the same group. As a result, the proposed GEE method should become

less efficient since it estimates and plugs in many estimators of correlations that are zero, thereby

introducing additional estimation noises. In Case 5, the groups specified in the estimation are overly

granular, causing many pairs of observations, which inherently belong to the same group, to be

categorized into different groups. Consequently, their correlations are misspecified as 0.

Moreover, we want to emphasize that our estimation strategy in both Case 4 and Case 5 confronts

misspecification issues in both within-group structure and the group size. The former arises from the

latent model transformation, as discussed in Case 3 (following equation (59)).

5.4.1 Simulation Results

Table 3 presents the simulation results. In general, the proposed GEE method outperforms the

Probit-QMLE when the groups are moderately misspecified. We implemented 1,000 Monte Carlo

simulations across eight settings, estimating a total of 16 parameters (2 cases × 4 ρ’s× 2 methods).

In Case 4, of these 16 parameters, the Probit-GEE achieves smaller Monte-Carlo MSEs 12 times.

In contrast, the Probit-QMLE yields smaller MSEs only three times, two of which occur in the case

of ρ = 0.1. In this instance, the spatial correlation is minimal, rendering the Probit-QMLE nearly

optimal.

The results for Case 5 follow a similar pattern. Out of the estimation of 16 parameters, our

proposed method attains smaller Monte-Carlo MSEs 12 times, and the majority of scenarios where

the Probit-QMLE outperforms the Probit-GEE occur in the case of ρ = 0.1.

Overall, the simulation results support the implementation of the proposed GEE method.

6 An Empirical Application of the Role of Cultural Distance

in the Gravity Equation

The gravity equation has been widely used in international trade since Tinbergen (1962). In this

section, we extend the gravity equation by incorporating cultural distance (CD) between countries

and demonstrate how to use the proposed GEE method to estimate the extended gravity equation.
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6.1 Background and Notations

Anderson and Van Wincoop (2003) specify the gravity equation as:

Tij = α0Y
α1
i Y α2

j Dα3
ij ηij, (60)

where Tij is the trade flow between country i and country j; Tij is proportional to the product of

the two countries’ GDPs, denoted by Yi and Yj, and inversely proportional to their distance. Dij

broadly represents trade resistance, while ηij is a multiplicative stochastic error. In the literature, it

is traditional to take the natural logarithms of both sides of an equation and to include additional

control variables, represented by Zij. The resulting log-linearized equation is as follows:

log Tij = logα0 + α1 log Yi + α2 log Yj + α3 logDij + βZij + log ηij. (61)

A traditional estimation approach for (61) is to use ordinary least squares (OLS). However, log-

linearized models estimated by OLS can be highly misleading in the presence of heteroscedasticity.

Silva and Tenreyro (2006) discuss this situation and suggest using a nonlinear estimator which is

numerically equivalent to the pseudo Poisson MLE. Their approach is essentially a pooled Poisson

QMLE that does not account for any spatial correlation. In this section, we adopt nonlinear specifi-

cation to the gravity equation and further apply the proposed GEE approach using the product-level

trade data between China and the rest of the world in 2016. By including the culture distance

variable (logCDgl), we specify the conditional mean function of the trade volume as follows:

E (Tradeglk|Xgl) = exp(β0 + β1 logCDgl + β2 logGDPPCgl + β3 logDistgl

+β4Languagegl + β5Landlockgl), (62)

where g = 1, 2, ..., G index groups, and l = 1, 2, ..., Lg index the members in the group g, and k is

an index for products. Tradegl is the trade flow between China and the lth country in group g. We

study three types of the dependent variable of Tradegl: export, import, and total trade. The control

variables include the log of country gl’s GDP per capita (logGDPPCgl), the geographical distance

from China to country gl (logDistgl), an indicator as to whether country gl shares a common language

with China (Languagegl), and an indicator as to whether country gl is landlocked (Landlockgl).
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6.2 Data Source

The data on trade volume are from Trade Map (www.trademap.org). Per capital GDP is from Word

Development Indicators (WDI). Geographical distance, common language, and landlock are from the

French Centre d’Etudes Prospectives et d’Informations Internationales (CEPII). Cultural distance is

calculated based on the dataset of Hofstede Insights, which provides national culture scores for 103

countries or regions in the year 2016. Due to missing data, our final sample contains pairwise trade

data between China and 95 other countries across 97 products, resulting in a sample size of 9215

observations.

In particular, the cultural distance measure, CDgl, is calculated using six different national culture

scores: power distance, individualism versus collectivism, masculinity versus femininity, uncertainty

avoidance, long-term versus short-term normative orientation, and indulgence versus restraint. We

refer to Hofstede et al. (2010) for more details about the calculation of cultural distance.

6.3 Estimation Strategies

In Section 6.4.1 below, we apply OLS, Poisson QMLE, and Poisson GEE to the aforementioned

dataset and compare their performance. The Poisson QMLE is implemented as the one suggested

by Silva and Tenreyro (2006). In the OLS approach, we estimate a model that is the log-linearized

version of (62):

log Tradeglk = β0 + β1 log(CDgl) + β2 log (GDPPCgl) + β3 log(Distgl)

+β4Languagegl + β5Landlockgl + ugl.

For the proposed GEE approach, a group structure has to be chosen for constructing the working

variance-covariance matrix. Given the data is inherently divided into 97 groups by product, we use

these product types to define the groups in the following Section 6.4.1. Without further information to

differentiate products within each group, a natural choice for the within-group dependence structure

is the exchangeable correlation matrix; see equation (55) for an example.

Furthermore, as a robustness check, we apply the proposed GEE approach to country-level data

in the subsequent Section 6.4.2. The country-level data aggregates the trade volumes of 97 products

between a country and China into a single item, resulting in a sample of 95 countries. (As a result, we
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remove the group index k from the model (62).) In this separate analysis, we group the data based

on geographical locations. In a baseline setup, we divide countries into different groups according

to their continents. This natural strategy results in five major groups (w.r.t. five continents). In

the second grouping, we divide countries into groups, each containing six members. Specifically,

we group every six countries from the same continent together in the initial round. Then, if there

are remaining countries within a continent, we incorporate these leftovers with those from other

continents into the last group. Given the sample of 95 countries, the second strategy results in 16

groups. To test the robustness of our approach under different (possibly misspecified) within-group

dependence structures, we continue to use the exchangeable correlation matrix. It is worth noting

that the proposed GEE approach can deliver decent performance even when the working variance-

covariance matrix is moderately misspecified; see Section 2.4 and Sections 5.3 and 5.4 for theoretical

discussions and simulation evidence, respectively.

6.4 Estimation Results

6.4.1 Main Results at the Product Level

For comparison, we provide the OLS estimates of the log-linearized model in Table 4.

The log-linearized model suffers from two main problems. First, the dependent variable cannot

be log-transformed if it is zero. As a result, the sample size in each column in Table 4 has reduced

a lot, especially in the import column. Second, as mentioned in Silva and Tenreyro (2006), the log-

linearization can cause bias in parameter estimates if there is heteroskedasticity in the error term.

In comparison, the Poisson QMLE and Poisson GEE are less likely to be prone to these biases. The

pooled Poisson QMLE estimates, which do not account for any spatial correlation, are provided in

Table 5; the estimates from the proposed GEE approach are provided in Table 6.

Comparing Tables 5 and 6, we see that the Poisson GEE method generally reduces the standard

errors of parameter estimates. All estimation results confirm the negative effect of the cultural

distance on trade in the gravity equation, along with the negative effect of the geographical distance

and the positive effect of the GDP per capita. These estimates are all significant at the 1% level.

For the main explanatory variable, the cultural distance, the Poisson GEE estimated coefficients for

trade, export, and import are -0.381, -0.327, and -0.515. All of them are larger in absolute values

than the corresponding effects estimated with Poisson QMLE. Furthermore, all the standard errors
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Table 4: OLS estimates of the gravity equation

Trade Export Import

CD -0.432∗∗∗ -0.345∗∗∗ -0.557∗∗∗

s.e. (0.043) (0.043) (0.064)

logGDPPC 0.547∗∗∗ 0.398∗∗∗ 0.989∗∗∗

s.e. (0.028) (0.029) (0.045)

logDist -0.912∗∗∗ -0.993∗∗∗ -1.073∗∗∗

s.e. (0.069) (0.069) (0.097)

Language 0.109 0.439∗ -1.305∗∗∗

s.e. (0.177) (0.179) (0.269)

Landlock -2.130∗∗∗ -2.213∗∗∗ -1.095∗∗∗

s.e. (0.110) (0.111) (0.151)

constant 13.645∗∗∗ 15.090∗∗∗ 8.868∗∗∗

s.e. (0.680) (0.683) (0.942)

N 8513 8318 5737

s.e. stands for heteroskedasticity robust standard errors.

of the Poisson GEE estimates for the coefficients of the cultural distance are smaller than those of

Poisson QMLE. Overall, the Poisson GEEs’ results strengthen the hypothesis that cultural distance

has significant negative influences on international trade.

6.4.2 Additional Result at the Country Level

As a robust test, we apply our GEE estimates to country-level data using two different grouping

strategies detailed in Section 6.3. The estimation results presented by Table 7 show that for both

types of grouping, the proposed GEE approach continues to demonstrate the negative impacts of

both geographical distance and cultural distance on trade, as well as the positive effect of the GDP

per capita in the gravity equation. For the main explanatory variable, the cultural distance, the

Poisson GEE estimated coefficients for trade, export, and import in the first type of grouping are

−0.407, −0.346, and −0.519. Overall, the estimation results from country-level data under two alter-

native grouping strategies are comparable to those from product-level data, showing only moderate

differences in the coefficient magnitudes.
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Table 5: Poisson QMLE estimates of the gravity equation

Trade Export Import

logCD -0.378∗∗∗ -0.306∗∗∗ -0.493∗∗

s.e. (0.083) (0.059) (0.164)

logGDPPC 0.760∗∗∗ 0.699∗∗∗ 0.860∗∗∗

s.e. (0.093) (0.094) (0.148)

logDist -0.665∗∗∗ -0.609∗∗∗ -0.729∗∗∗

s.e. (0.157) (0.145) (0.211)

Language -0.522 0.030 -1.611∗

s.e. (0.445) (0.428) (0.711)

Landlock -1.832∗∗∗ -2.354∗∗∗ -1.439∗

s.e. (0.401) (0.274) (0.567)

constant 12.359∗∗∗ 11.769∗∗∗ 11.332∗∗∗

s.e. (1.781) (1.890) (2.357)

N 9215 9215 9215

s.e. stands for heteroskedasticity robust standard errors.

7 Conclusion and Further Work

We propose a GEE method to estimate nonlinear models in the presence of spatially dependent

innovations. To target applications with latent causal links, we focus on nonlinear models with spatial

errors. We suggest grouping the data to adjust for the dependence induced by the spatial errors,

with a grouped working variance-covariance matrix accounting for the within-group dependence. We

list a condition on the working variance-covariance matrix under which the proposed spatial GEE

estimator has the actual efficiency gain relative to the ungrouped QMLE estimator, and show that

the former does perform better than the latter in simulations for various data-generating processes.

The specific estimation procedures of the proposed method are given for the Probit binary model and

the Poisson count model, and the asymptotic properties and a consistent estimator of the variance-

covariance matrix of the proposed GEE estimator are provided. In the end, to illustrate the usage

of our method, we implement the proposed GEE method to the extended gravity equation with the

trade data between China and the rest of the world, and document the important role of the cultural

distance on international trade.
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Table 6: Poisson GEE estimates of the gravity equation

Trade Export Import

logCD -0.381∗∗∗ -0.327∗∗∗ -0.515∗∗∗

s.e. (0.054) (0.012) (0.130)

logGDPPC 0.766∗∗∗ 0.742∗∗∗ 0.895∗∗∗

s.e. (0.077) (0.069) (0.183)

logDist -0.667∗∗∗ -0.627∗∗∗ -0.738∗∗

s.e. (0.143) (0.093) (0.255)

Language -0.529 -0.004 -1.672∗∗

s.e. (0.303) (0.211) (0.526)

Landlock -1.848∗∗∗ -2.548∗∗∗ -1.500∗

s.e. (0.399) (0.189) (0.613)

constant 12.317∗∗∗ 11.450∗∗∗ 11.066∗∗∗

s.e. (1.802) (1.052) (3.352)

N 9215 9215 9215

s.e. stands for standard errors that are robust to model misspecification.

We suggest the following directions for further research. First, throughout the paper, we assume

that the group structure is exogenous. We do not consider the case where groups are endogenously

generated. One can investigate further how to model endogenous group accounting for a class of

general nonlinear models with spatial dependence. Second, although in many applications, such as

Section 6, natural grouped information is available to specify the working variance-covariance matrix,

there are cases where this information is not available. How to specify a group structure in the first

step within the current framework deserves further attention. Third, as pointed out by one of the

referees, extending the current method to models where the dependent variables are also spatially

correlated would also be an important and interesting future research topic.
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Table 7: Poisson GEE for country-level data

Trade Export Import Trade Export Import

Grouping 1 Grouping 1 Grouping 1 Grouping 2 Grouping 2 Grouping 2

logCD -0.407∗∗∗ -0.346∗∗∗ -0.519∗∗ -0.401∗∗ -0.305∗ -0.505∗

s.e. (0.109) (0.077) (0.162) (0.143) (0.120) (0.241)

logGDPPC 0.900∗∗ 0.840∗ 1.008∗∗∗ 0.776∗∗∗ 0.698∗∗ 0.869∗∗∗

s.e. (0.346) (0.424) (0.238) (0.230) (0.264) (0.237)

logDist -0.522∗ -0.521 -0.535∗∗ -0.644∗ -0.610∗ -0.719∗

s.e. (0.219) (0.266) (0.202) (0.290) (0.306) (0.283)

Language -0.897∗ -0.293 -2.045∗∗∗ -0.587 0.033 -1.646

s.e. (0.407) (0.383) (0.450) (0.461) (0.354) (1.015)

Landlock -1.198∗∗∗ -1.682∗∗∗ -1.003∗∗∗ -1.778∗∗∗ -2.358∗∗∗ -1.424∗∗

s.e. (0.291) (0.279) (0.258) (0.425) (0.534) (0.454)

constant 14.625∗∗ 14.402∗ 13.073∗∗∗ 16.663∗∗∗ 16.356∗∗ 15.763∗∗∗

s.e. (5.000) (6.230) (3.615) (4.390) (4.986) (3.838)

N 95 95 95 95 95 95

s.e. stands for standard errors that are robust to model misspecification.
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