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C H E M I C A L  P H Y S I C S

Protein NMR assignment by isotope pattern recognition
Uluk Rasulov1, Harrison K. Wang2,3, Thibault Viennet4, Maxim A. Droemer5, Srđan Matosin2,3, 
Sebastian Schindler2,3, Zhen-Yu J. Sun2,3, Luca Mureddu6, Geerten W. Vuister6, Scott A. Robson2,3, 
Haribabu Arthanari2,3*, Ilya Kuprov1*

The current standard method for amino acid signal identification in protein NMR spectra is sequential assignment 
using triple-resonance experiments. Good software and elaborate heuristics exist, but the process remains labori-
ously manual. Machine learning does help, but its training databases need millions of samples that cover all relevant 
physics and every kind of instrumental artifact. In this communication, we offer a solution to this problem. We pro-
pose polyadic decompositions to store millions of simulated three-dimensional NMR spectra, on-the-fly generation 
of artifacts during training, a probabilistic way to incorporate prior and posterior information, and integration with 
the industry standard CcpNmr software framework. The resulting neural nets take [1H,13C] slices of mixed pyruvate–
labeled HNCA spectra (different CA signal shapes for different residue types) and return an amino acid probability 
table. In combination with primary sequence information, backbones of common proteins (GB1, MBP, and INMT) are 
rapidly assigned from just the HNCA spectrum.

INTRODUCTION
Nuclear magnetic resonance (NMR) spectroscopy detects magnetic 
moments associated with the total angular momentum (often loosely 
called “spin”) of the nuclear ground state (1, 2). In strong magnetic 
fields, nuclear spin transition frequencies are influenced by their 
chemical environment (3, 4); magnetic interactions between nuclei 
depend on chemical bonding and spatial proximity (5, 6). This is 
useful in structural biology; over 14,000 structures deposited in the 
Protein Data Bank (7, 8) were determined using NMR spectroscopy 
(9), and hundreds are added annually. NMR also provides informa-
tion on the local dynamics in biomolecules at all pertinent time 
scales (9, 10).

Protein structure determination with NMR relies on a number of 
specialized pulse sequences (9) and normally starts with signal identi-
fication (also called assignment) using triple-resonance experiments 
that correlate the signals of 1H, 15N, and 13C nuclei of the protein back-
bone (9). Such experiments are named after their magnetization trans-
fer paths (11): For example, HNCA moves the magnetization from 
the amide proton of the peptide bond to the nearby 15N nucleus, then 
onward to the two 13Cα nuclei up and down the amino acid chain, and 
then (for detection sensitivity reasons) back to the amide proton. Like-
wise, HN(CO)CA correlates amide 1H, amide 15N, and 13Cα but also 
requires the magnetization to pass through the carbonyl 13C spin on 
the way, so that it only travels to the previous 13Cα of the amino acid 
chain (12). When HN(CO)CA and HNCA spectra are overlaid, the 
forward direction can be distinguished from the backward one, and 
signals therefore assigned as originating from the current or the previ-
ous residue. By comparing 13Cα peak positions, longer stretches of se-
quentially connected amino acids may then be identified (13).

This process is notoriously labor intensive, in particular for large 
proteins where signal overlap and low sensitivity cause additional 
problems. Much effort was made over the years to improve (14, 15) 
and automate it (16–23). One recent development is to use simulated 
annealing in a pseudopotential built using Bayesian analysis of pre-
dicted and observed chemical shifts alongside chemical bonding 
information (24). Other recent work uses neural networks to iden-
tify, classify, and link NMR signals (25–27). Both classes of methods 
are impressively robust, even in the trenches of daily protein NMR 
practice, but both rely on signal location predicated on prior chemi-
cal information.

A further recent innovation is to make NMR signal shapes differ 
between amino acids by supplying isotopically patterned pyruvate 
during protein expression in genetically engineered bacteria (28). 
Because biosynthesis paths differ for the 20 natural amino acids 
(29), so do the isotope patterns in their NMR spectra. This radically 
simplifies signal assignment but still requires a human to look at the 
data and perform visual identification. An effective solution for au-
tomating image classification tasks is to use deep convolutional neu-
ral networks (30)—that is the subject of this paper.

Here, we report a protein backbone NMR signal assignment tool 
that uses deep neural networks to detect amino acid types using 
chemical shifts and pyruvate isotope-patterned HNCA signals. The 
main challenge was to create a training database with millions of care-
fully simulated isotope-patterned signals that include the full range of 
experimental conditions and also realistic instrumental artifacts, such 
as baseline distortions, phase distortions, and noise. With each high-
resolution HNCA spectrum taking gigabytes of storage, that is a dif-
ficult problem. Here, we advocate the use of polyadic decompositions 
(31) for storing simulated spectra and applying instrumental distor-
tions on the fly to each data batch that is requested by the stochastic 
gradient descent training algorithm (32).

The neural nets were interfaced with the industry standard CcpNmr 
software framework (33); they take [1H,13C] dimension portraits of 
HNCA signals and return amino acid probabilities, optionally tak-
ing into account prior and posterior information, for example, 
independently determined amino acid sequence. When the signal-
to-noise ratio (SNR) is high enough for signal shapes to be observable, 
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backbones of common proteins are rapidly assigned from just the 
HNCA spectrum.

MATERIALS AND METHODS
Pyruvate growth medium
Deuterated pyruvate bacterial growth medium was prepared as de-
scribed in (28). Briefly, 1.5 g of 2-13C-pyruvate and 1.5 g of 3-13C-pyruvate 
were dissolved in 1.0 liter of D2O and the pH was adjusted to 13 by 
using NaOD. The solution was stirred for 30 min at room tempera-
ture. The pH was then restored to 7 by adding 4.26 g of Na2HPO4, 
3.60 g of NaH2PO4 and 3.00 g of KH2PO4. To achieve the isotope 
labeling of nitrogen, 1.00 g of 15NH4Cl was added, followed by 0.25 g 
of MgSO4 and 1.00 ml of 0.10 M CaCl2 solution, 1.00 ml of ×1000 
trace metals mix, 100 μl of ×10,000 vitamin stock, and antibiotic (kana-
mycin). The media was filter sterilized using a 1-liter Corning filter.

Protein biosynthesis and NMR spectroscopy
Pyruvate-labeled proteins were prepared according to the protocol 
described in (28). Briefly, a single colony of Escherichia coli BL21(DE3) 
transformed with the respective plasmid was used to inoculate 10 ml 
of lysogeny broth in 100% D2O and grown overnight at 37°C. After 
pelleting, the cells were resuspended in 900 ml of deuterated pyruvate 
media and grown to an optical density at 600 nm between 0.4 and 0.6 
(taking 16 to 24 hours). After induction with 1 mM isopropyl-β-d-
thiogalactopyranoside, expression was carried out at 20°C for 24 hours. 
The cells were harvested by centrifugation at 4000g for 45 min.

GB1 protein
The GB1 cell pellet was sonicated in lysis buffer (50 mM tris-HCl, 
300 mM NaCl, and 10 mM imidazole, pH 8.0), and subjected to 
nickel affinity chromatography. After elution, GB1 was purified fur-
ther using size exclusion chromatography against NMR buffer (50 mM 
sodium phosphate and 50 mM NaCl, pH 6.5) and concentrated to 
1 mM for NMR experiments.

TROSY-HNCA spectra of [2H, 15N, (2-13C)  +  (3-13C)] mixed 
pyruvate–labeled GB1 were recorded as described in (28). The 
standard Bruker experiment (trhncagp2h3d2) was performed on 
a 750-MHz Bruker instrument with a TCI cryoprobe acquiring 1024 
complex points in the direct dimension and two-dimensional (2D) 
Poisson gap sampling of 2500 complex points from a 54 × 512 (15N × 
13C) point grid. Matched squared cosine bell window functions were 
used in all dimensions; nonuniform sampling reconstruction was 
performed with 400 iterations of iterative soft thresholding algo-
rithm implemented in hmsIST (34) and NMRPipe (35). The indirect 
dimensions were extended to 108 (15N) and 1024 (13C) points and 
zero-filled to 512 (15N) and 2048 (13C) points before the sparsely 
sampled Fourier transform. The direct frequency dimension was then 
truncated to 805 points corresponding to the region between 11.0 
and 5.5 parts per million (ppm) in 1H. The final sweep widths were 
6031 (13C), 2431 (15N), and 7883 Hz (1H), yielding a digital resolu-
tion of approximately 3 Hz for the 13C dimension.

MBP protein
MBP was lysed in 50 mM tris-HCl and 150 mM NaCl (pH 8.0) and 
purified by affinity chromatography using amylose beads. After elu-
tion in 50 mM tris-HCl and 10 mM maltose (pH 8.0), amide protons 
were back-exchanged in 10 mM Hepes and 1 mM EDTA (pH 6.5) 
supplemented with 1 M urea at 37°C for 24 hours. Size exclusion 

chromatography against NMR buffer (10 mM Hepes and 1 mM 
EDTA, pH 6.5) was then performed, MBP was concentrated to 
600 μM, and β-cyclodextrin was added to the sample to a final con-
centration of 2 mM.

TROSY-HNCA spectra of [2H, 15N, (2-13C)  +  (3-13C)] mixed 
pyruvate–labeled MBP were recorded on a 900-MHz NMR instru-
ment equipped with a cryogenically cooled probe. A total of 1024 
complex points were acquired in the direct dimension; the indirect 
dimensions were nonuniformly sampled using the Poisson gap 
sine-weighted protocol (34), selecting 5216 of a matrix of 75 × 750 
(15N × 13C) complex data points. Non-uniform sampling (NUS) 
reconstruction and processing were performed as described for 
GB1 above. Final sweep widths were 12,626 (1H), 3375 (15N), and 
7243 Hz (13C).

SHP2 protein
SHP2 cell pellet was sonicated in lysis buffer [50 mM tris-HCl (pH 8.0), 
350 mM NaCl, 10 mM imidazole, 2 mM β-mercaptoethanol (BME), 
and 1 mM EDTA] and further purified by nickel affinity chromatog-
raphy. The eluted SHP2 underwent a size exclusion against SHP2 
NMR buffer [50 mM ADA (pH 6.5) and 2 mM TCEP]. Purified SHP2 
was concentrated to 300 μM for NMR experiments.

TROSY-HNCA spectra of [2H, 15N, (2-13C)  +  (3-13C)] mixed 
pyruvate–labeled SHP2 were recorded on a 800-MHz NMR instru-
ment equipped with a TCI-style cryogenically cooled probe. A total 
of 512 complex points were acquired in the direct dimension; the 
indirect dimensions were nonuniformly sampled using the Poisson 
gap sine-weighted protocol, selecting 1280 of a matrix of 40 × 320 
(15N  ×  13C) complex data points. The indirect dimensions were 
expanded to 80 (15N) and 768 (13C) points, then zero-filled to 160 
(15N) and 2048 (13C) points before applying the sparsely sampled 
Fourier transform. The direct frequency dimension was truncated to 
370 points to cover the region between 12.0 and 5.5 ppm in 1H. The 
final sweep widths were 6443 (13C), 2918 (15N), and 5211 Hz (1H), 
resulting in a digital resolution of approximately 3 Hz for the 13C 
dimension.

INMT protein
INMT pellet was resuspended in lysis buffer [1× phosphate-buffered 
saline (PBS), 2.5 mM BME, and 10 mM imidazole] supplemented 
with lysozyme, protease inhibitor, and benzonase. Cells were then 
lysed by sonication and the lysate was centrifuged at 30,000g for 
45 min. His-tagged protein was bound to Ni-NTA beads (Qiagen). The 
beads were washed with 100 ml of lysis buffer and protein was eluted 
with 40 ml of elution buffer (1 × PBS, 2.5 mM BME, and 300 mM 
imidazole). Protein was concentrated and further purified using a 
Superdex 200 16/600 column (Cytiva) into SEC buffer (1× PBS and 
1 mM TCEP). Protein was back-exchanged for 24  hours at room 
temperature in a buffer containing 1× PBS, 100 mM NaCl, 1 mM 
TCEP, and 0.5 M urea. The protein was further dialyzed for 24 hours 
at 4°C in a dialysis buffer (1× PBS, 100 mM NaCl, and 1 mM TCEP). 
Protein was buffer exchanged into NMR buffer (1× PBS and 1 mM 
TCEP) and concentrated to a final concentration of 600 μM for 
NMR experiments.

The TROSY-HNCA spectrum of [2H, 15N, (2-13C)  +  (3-13C)] 
mixed pyruvate–labeled INMT was recorded on a Bruker 700-MHz 
instrument equipped with a TCI cryoprobe. The spectrum was ac-
quired using the standard sequence (trhncafpsiwg2h3d) from Bruker. 
A total of 1024 complex points were acquired in the direct dimension; 
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the indirect dimensions were nonuniformly sampled using the Poisson 
gap sine-weighted protocol [34], selecting 4608 of a matrix of 96 × 600 
(15N × 13C) complex data points. NUS reconstruction and processing 
were performed as described above. Final sweep widths were 5630 
(13C), 2553 (15N), and 5682 Hz (1H).

NMR data acquisition methods and parameters described above 
are not a fixed requirement for the subsequent quantification using 
neural nets. Any applicable NMR experiment and parameter combi-
nation yielding a sufficient SNR is acceptable, so long as the training 
database generation process (described in the “Computational methods” 
section) reflects the experiment and the parameters.

Computational methods
Image classification networks (36) are typically trained by numerical 
regression against databases of either images and labels or images 
and probability tables (37). Each NMR signal is substantially an im-
age, and the well-developed workflow (38) may be used directly. The 
challenge is rather in creating a training database: The necessary 
amount of real experimental data will never be available.

Training database generation
The neural networks proposed in this work take 2D 1H-13C planes of 
3D HNCA NMR spectra of pyruvate labeled proteins and return, for 
each signal, the list of probabilities of the signal belonging to spe-
cific amino acids. This section describes the training database design.

1) The following fixed parameters were sourced from experimen-
tal spectra: magnet field, three frequency offsets, three sweep widths, 
three digitization point counts, window functions, zero-filling point 
count, and line width ranges in the three spectral dimensions. These 
parameters can vary between experimental datasets; they must be 
matched precisely because neural networks are not portable between 
different values.

2) The following parameters were sourced for each amino acid:
(a) 1H, 15N, and 13Cα chemical shift mean and standard devia-

tion (SD) over the BMRB database (39).
(b) 13Cα-13Cβ J-coupling mean and SD over the experimental 

datasets available from our previous work on this topic (28).
(c) Fraction 13Cβ mean and SD over the same datasets. The 

resulting distributions are summarized in Fig.  1, omitting glycine 
(easily identifiable because it lacks the 13Cβ carbon), proline (silent in 
HNCA spectra), and cysteine (not present in the test proteins).

It is important to note that the joint 5D parameter probability dis-
tributions overlap (Fig. 1, blue panels) for some amino acid pairs, 
for example, valine and isoleucine. On the basis of a pyruvate-labeled 
HNCA spectrum alone, it is therefore not possible (without some prior 
or posterior data) to distinguish those pairs with high confidence. 
However, for each signal, it is possible to rule some amino acids out.

3) A database of synthetic HNCA spectra was generated in the 
following way:

(a) A user-specified number of amino acid residues were con-
sidered. For each amino acid, chemical shifts, 13Cα-13Cβ J-coupling, 
and fraction 13Cβ were sampled randomly from the statistical distri-
butions described above.

(b) The noiseless spectrum was computed in a polyadic de-
composition form (31)

where s(k)
H
, s

(k)

CA
, s

(k)

N
 are Kronecker product components of the kth 

signal in the 3D NMR spectrum, modeled as Lorentzian functions 
convolved with the Fourier image of the same window function 
as the one applied to the experimental dataset. The maxima of 
the Lorentzian functions were placed at the three chemical shifts 
and the widths were sampled from the statistical distributions ob-
tained from a representative subset of the signals found in the ex-
perimental spectrum. In Eq. 1, the sum is over the amino acids, and S is 
the 3D HNCA spectrum with the naïve storage requirement of 
805 × 512 × 2048 × 16 = 13.5 GB per spectrum.

Polyadic terms for 1H and 15N dimensions of HNCA have a 
single peak per amino acid; in the 13C dimension, each amino acid 
signal was modeled as a linear combination of a 13Cα singlet (corre-
sponding to Cβ being 12C) and a 13Cα doublet (corresponding to Cβ 
being 13C) with a J-coupling sampled randomly from a statistical dis-
tribution obtained from a representative experimental dataset. The 
relative weights of the singlet and the doublet were also sampled ran-
domly from their known statistical distributions (28). To emulate 
residual experimental phase distortions, a zero-order phasing error 
(sampled randomly from [−π/20, +π/20] interval) was applied in 
each dimension.

Because individual signals in multidimensional NMR have 
a direct product structure (40), the decomposition in Eq. 1 is exact 
for a simulation, and the storage requirements of the right hand 
side of Eq. 1 are much lower than those of the left hand side. For 
N amino acid residues, N × (805 × 16 + 512 × 16 + 2048 × 16) 
bytes works out to a few megabytes for common proteins and drops 
below a megabyte when it is observed that individual subspectra 
are mostly zeroes and may be stored as sparse arrays. As a re-
sult, the storage problem for millions of simulated HNCA spectra 
is solved.

(c) On a single Nvidia Tesla A100 card, polyadic expansions of 
HNCA spectra were computed at a rate of about 50 per second and 
written to low-latency Intel Optane 905p storage as separate files, to-
gether with their ground truth data structures containing the identity 
of each amino acid and values of all parameters used in the genera-
tion of each signal. A Matlab datastore object was created to access 
millions of files during the later training process. The overall storage 
requirements were in the hundreds of gigabytes, small enough that 
the entire datastore could be cached in the memory of a contempo-
rary workstation.

(d) All postprocessing steps pertaining to the experimental 
data workflow (window functions, zero-filling, discretization pa-
rameters, etc.) were set to match the corresponding experimen-
tal data.

4) Databases of input-output data pairs for neural network train-
ing were generated from the polyadic representations of the HNCA 
spectra in the following way:

(a) For each signal, the ground truth probability vector was 
computed from the statistical distributions in Fig. 1. This vector, re-
porting the probability of the signal belonging to each of the 19 eli-
gible amino acids (proline is silent in HNCA), is the intended output 
of the neural net

S =

N
∑

k=1
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(b) Each 3D HNCA spectrum was sliced at the frequencies of 
each signal in the least crowded 15N dimension. From each 2D slice, 
[1H,13C] dimension “portraits” (Fig. 2) were extracted for each signal 
appearing in that slice. The frame of each portrait was randomly shifted 
to emulate a user clicking somewhere in the vicinity of the signal rather 
than at its exact location.

(c) In addition to the phase distortion already introduced at 
the polyadic decomposition generation stage, a linearly tilted base-
line was added to each portrait, with a random vertical shift of up to 
±10% of the overall intensity and a random linear slope of up to 
±5% of the overall intensity across the portrait in both dimensions. 
Gaussian white noise, filtered through the same window function as 
the one used experimentally, was then added with the intensity ran-
domly chosen from zero to the intensity yielding the SNR ratio of 3. 
Further experiment- and sample-specific distortions and parameter 
distributions may be added at this stage to immunize the neural net-
work to their effects.

(d) Each of the resulting signal portraits was then concatenated 
with arrays of 1H and 13C axis ticks (placing them into the bottom row 
and the leftmost column, respectively), and 15N chemical shift was 
placed into the bottom left corner. This information improves neural 

network performance; it also permits apples-to-apples comparisons 
with statistical tools that use only the chemical shift information.

Several million signal portraits and the corresponding ground truth 
probability vectors were generated, a sufficient quantity to train a clas-
sifier net to convergence on the gradient norm.

Neural network architecture and training
A feed-forward classifier network was used with an image input 
layer followed by four hidden layers (no performance improvement 
with further layers) tapering down to output a 19-element vector of 
probabilities (Fig. 3). At each layer, the matrix-vector multiplication 
stage was followed by a batch normalization stage (41) and a softplus 
activation function (42). At the last layer, this activation function 
was followed by a normalization operation that enforces the physi-
cal requirement for the elements of the probability vector to sum up 
to 1. The training was performed using the default settings of the 
ADAM algorithm (32) implemented in the Deep Learning Toolbox 
of Matlab R2023b (43) running in single precision on NVidia Titan 
V and Tesla A100 GPUs until convergence on the gradient norm. 
The database is effectively infinite (44), and therefore the overtrain-
ing problem does not arise.

Fig. 1. Statistics of chemical shifts, J-couplings, and fraction 13Cβ used in the training database generation. (Top) Probability densities of amide proton (left), α-
carbon (center), and amide nitrogen (right) chemical shifts in aqueous solutions of proteins; Gaussian distribution approximations (here justified because no secondary 
structure information is sought) with the mean and the SD obtained from the BMRB database (8). (Center) Probability densities of 13Cα-13Cβ J-coupling (left) and fraction 
13Cβ (center); Gaussian distribution approximations with the mean and the standard deviations obtained from the data reported in our previous work (28). Overlap inte-
grals of the 5D distributions (three chemical shifts, 13Cα-13Cβ J-coupling, and fraction 13Cβ) are shown in the right. (Bottom) Groups of amino acids that may be distin-
guished with 95 (left), 80 (center), and 50% (right) probability. The matrices shown are symmetric reverse Cuthill-McKee permutations of the overlap matrix in the middle 
right panel, such that out-of-block overlaps are smaller than 5, 20, and 50% respectively.
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Depending on the magnet field, protein size, temperature, and 
other chemical and instrumental parameters, different instances of 
HNCA spectra can look very different; the problem of neural net-
work portability in this case has no good solution: A different net 
must be trained for each case. Thankfully, the time the network 
takes to train (hours) is much smaller than the time (days and 
weeks) that it saves at the signal assignment stage.

We use HNCA in this paper for convenience; it is the most sensi-
tive triple-resonance experiment in its class. Pyruvate line shapes 
can also be imprinted on HN(CO)CA, HNCACB, HNCO, and oth-
er pulse sequences for backbone assignment. In that case, a simple 
modification would be needed to the training set generation pro-
cess, reflecting the mechanics of those sequences and the labeling 
patterns that give rise to the peak shapes.

Integration with CcpNmr package
Integration with the industry standard CcpNmr package for protein 
NMR data analysis (33) was accomplished using Python glue scripts 
which exported experimental signal portraits as ASCII text files, 
called standalone neural network binary executables generated by 
Matlab, and then read the resulting probability vectors back in, also 
as ASCII files.

The probabilities were fed into the SequenceGraph module of 
CcpNmr AnalysisAssign, overwriting the original values sourced 
from chemical shift statistics. The standard AnalysisAssign workflow 
(33) could then proceed with the improved probabilities. Additional
information from other sources (for example, the known primary
amino acid sequence) was incorporated using Bayes’ theorem (45)

Here, P(A) is a probability returned by the neural network of the 
signal belonging to a particular amino acid A, and E is additional 
information. P(A∣E) is then the updated probability of A in light of 
that information. Probabilities of independent events were com-
bined multiplicatively. For example, when the amino acid sequence 
is known, sequential triad probabilities are

P(A ∣E) = P(A)
P(E ∣A)

P(E)
(3)

P(−A − B − C−) = P(A)P(B)P(C) (4)

Fig. 2. Examples of signal “portraits” extracted from synthetic HNCA spectra. Each portrait was stored alongside the ground truth probability vector, and augmented 
at training time with appropriately colored noise (right), instrumental distortions such as phase (left), and frame positioning shift (center). Polyadic decomposition math-
ematics described in the main text allows millions of such portraits to be generated on a contemporary GPU in a few hours.

Fig. 3. Neural network classifier workflow. Signal portraits, such as those in Fig. 2, are 
extracted from the experimental data based on automatic or manual (mouse click 
around a signal) user input. The portraits, along with the three chemical shifts (1H, 13C, and 
15N) are fed into a tapering neural network that contains repeated triads of fully con-
nected (FC) and batch normalization (BN) layers with softplus activation functions. The 
final layer (yellow) performs output normalization to ensure that the probabilities sum up 
to 1. The probability table is returned to the AnalysisAssign module of CcpNmr package.
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The table of possibilities is then pruned to remove the triads that 
do not occur in the known sequence. The SequenceGraph module 
of AnalysisAssign would then highlight potential positions for 
assignment in the primary amino acid sequence, allowing for easy 
inspection and decision-making.

An important logistical question is sequence direction detection: 
there are two 13Cα signals per strip in the HNCA spectrum. For the 
neural network analysis, there is no difference; it still receives a por-
trait of each separate signal and returns amino acid type probabili-
ties. The fact that there may be two signals per strip does not change 
anything at that stage. Detecting sequence direction is not hard: the 
intensity of the (i − 1) signal is typically lower than (i) signal. When 
intensities are inconclusive, the sequential assignment process is run 
to the nearest proline or glycine (fig. S3) at which point an incorrect 
elongation direction would throw a clear contradiction between the 
expected and the observed signal shape. Alternatively, the usual 
practice of recording HN(CO)CA and indexing missing peaks may 
be used.

RESULTS AND DISCUSSION
Performance evaluation was performed using pyruvate-labeled 
HNCA spectra of GB1 (56 residues), MBP (370 residues, of which 
330 have visible NMR signals) and INMT (217 residues, of which 167 
have visible NMR signals). SHP2 was used as a pathological case to 
test neural network response to noisy and corrupted NMR signals. 
The assignment was done using CcpNmr AnalysisAssign 3.1.0 with 
the neural network integration described above.

Different hydrodynamic radii and different local mobility in 
GB1, INMT, and MBP yield different distributions of line widths in 
the HNCA spectra; different neural networks had to be trained. This 
was not in practice a disadvantage because the training process only 
takes hours.

B1 domain of protein G (GB1)
The HNCA assignment process, wherein NMR signals are matched 
to amino acid residues in the protein sequence, involves two types of 
information: (i) the amino acid type associated with each signal and 
(ii) the connectivity between 13Cα signal pairs. Combining this in-
formation yields residue-specific sequential assignment.

At the stage of identifying amino acid types for individual signals, 
only 13 of 56 (23%) are predicted correctly from chemical shift infor-
mation alone, which is the default method in CcpNmr AnalysisAs-
sign. The neural network gets 30 residues right (54%), more than 
doubling the success rate. The neural network also has the correct 
amino acid in top five probabilities in 48 (86%) residues, compared to 
31 (55%) from chemical shift statistics alone (Table 1 and Fig. 4, top).

For GB1, internal and sequential peaks within each 1H strip could 
be identified from HNCA data alone; this became more difficult for 
MBP (see the “Maltose binding protein” section), but the direction 
could still be deduced by matching connectivity and type predictions 
to the primary sequence. For larger proteins, the standard practice of 
recording HN(CO)CA and indexing missing peaks is recommended. 
Incidentally, theoretical line widths of 13Cα in deuterated proteins are 
well below 35 Hz even for 200-kDa proteins, so the range of potential 
applications for neural network type identification is reassuringly large.

Table 1. Summary of performance at each step of the assignment process for nonoverlapping signals in 1H-13C slices of GB1, MBP, and INMT HNCO 
spectra. 

Protein GB1 MBP INMT

Performance metric By chem. shifts By neur. network By chem. shifts By neur. network By chem. shifts By neur. network

Amino acid type 
match

13 of 56 (23%) 30 of 56 (54%) 87 of 330 (26%) 113 of 330 (34%) 36 of 156 (23%) 53 of 156 (34%)

n − 1 sequential 
match

12 of 56 (21%) 27 of 56 (48%) 76 of 330 (23%) 85 of 330 (26%) 38 of 156 (24%) 36 of 156 (23%)

Three-residue 
stretch, average 
number of matching 
positions when 
correct option 
highlighted

5.08 6.12 9.33 9.30 6.67 7.78

Number of 3-residue 
stretches not 
highlighting the 
correct assignment

4 of 18 0 of 18 29 of 77 19 of 77 20 of 38 15 of 38

Four-residue stretch, 
average number of 
matching positions 
when correct option 
highlighted

3.86 3.53 7.88 8.07 7.30 8.05

Number of 4-residue 
stretches not 
highlighting the 
correct assignment

5 of 13 0 of 13 9 of 59 9 of 59 10 of 23 4 of 23
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After individual residues are connected into sequence fragments 
by HNCA signal position and shape matching, the fragments are 
matched to the known overall sequence: AnalysisAssign module 
of CcpNmr has a procedure wherein, for each selected set of sequen-
tially connected residues, the potential matches to the primary 
sequence are determined and highlighted to the user. Neural net-
works improve this process (Fig. 5) because more accurate identifica-
tion of isolated peaks means better matches to the primary sequence.

In combination with amino acid sequence information, 54 of 56 
amino acids of GB1 were assigned within minutes. The remaining 
two are the N- and the C-terminal residues; their signals are irregu-
lar because of the distinct relaxation properties arising from their 
rapid local motion.

The high SNR in the HNCA spectrum of GB1 makes it possible 
to apply the laborious manual fitting to each signal, and thereby to 
extract the 13Cβ fraction and the J-coupling. From that information, 
and from the statistics summarized in Fig. 1, it is then possible to 
calculate the amino acid probability vector manually. When proba-
bilities are calculated this way, 27 of 56 residues are predicted cor-
rectly, suggesting that the neural network (30 of 56) performs 
marginally better than a highly qualified human with unlimited 
time on their hands.

The high SNR in GB1 HNCA data (Fig. 6, top left) begs the ques-
tion of what would happen in less favorable cases. We have there-
fore looked at the deterioration in performance when the SNR is 

gradually lowered (Fig. 6 and Table 2). As the SNR decreased from 
112 to 7, the amino acid type match fraction drops from 54 to 23%; 
the latter figure is close to what is obtainable by using chemical shift 
statistics alone. The observed decrease in performance happens be-
cause the amino acid type specific shoulders in the 1H-13C slices of 
HNCA signals are no longer quantifiable at high noise levels. A reas-
suring observation is that neural networks fail gracefully at low SNR 
by apparently reverting to using chemical shift statistics alone. This 
also happens when the signal is corrupted (fig. S1) and when the 
digital resolution is insufficient for shoulder peak quantification 
(fig. S2).

Maltose binding protein
MBP is a 42 kDa protein with 370 amino acid residues, of which 330 
are observed in the pyruvate-labeled HNCA spectra. From chemical 
shift statistics alone, 87 residues (26%) have their type identified 
correctly; this rises to 113 (34%) when the neural network is used. 
Chemical shift statistics puts 52% of the correct amino acids into the 
top five probabilities, this rises to 73% with the neural network. (Table 1 
and Fig. 4, bottom).

With the amino acid sequence information combined with the 
neural network results, we could quickly assign 88% of the visible 
residues; training the neural network with the settings appropriate 
for MBP takes several hours. The remaining 12% were incorrectly 
assigned due to a combination of signal overlap, low-intensity sig-
nals, and unconnected residues (Fig. 7).

The reduced performance on MBP compared to GB1 has two 
reasons: the much lower SNR of the MBP spectra relative to the GB1 
spectra and the increased signal overlap, which the neural network 
cannot handle. Still, the network shows nearly 50% better perfor-
mance, compared to using chemical shifts alone, when it comes to 
amino acid type predictions for each peak.

SHP2 tyrosine phosphatase
SHP2 was designed to be an adverse (13Cα line widths averaging 
14 Hz; SNR = 25) case where the digital resolution was deliberately 
chosen to be insufficient for reliable shoulder peak classification in 
the 1H-13C slices of pyruvate-labeled HNCA (fig. S2). Interdomain 
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Fig. 4. Amino acid type identification accuracy using neural networks and 
chemical shift statistics. Neural networks put more correct amino acids into the 
top probability position on the list and also have more correct amino acids in the 
top five highest probabilities.

Fig. 5. Amino acid identification accuracy for a six-residue fragment in the 
MBP protein. One-letter amino acid abbreviations are used in the top line. (Top 
table) predictions using chemical shifts. (Bottom table) predictions using the neu-
ral network. Four out of six residues are predicted correctly by the neural network, 
compared to one out of six for predictions using only the chemical shift statistics.
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dynamics and rapid deterioration of the sample over the time the 
experiment is recorded are contributing factors to the poor SNR.

Just as it happened with the graduated noise experiment GB1, we 
have observed the neural network gracefully reverting to using 
chemical shift statistics and marginally outperforming it. Of the 540 
backbone residues, 290 internal residues were visible in the spectra. 
After excluding overlapped peaks and predicting the amino acid 
types for the remaining 220 signals, the neural network correctly 
identified 32% of them (61% in top five probabilities). This slightly 
outperforms CCPN predictions using chemical shift statistics alone 
(27 and 53% in top five probabilities).

Human INMT protein
The last protein we tested was a pyruvate labeled human INMT (271 
amino acid residues). With the help of an HN(CO)CA spectrum to 
disentangle (i) and (i − 1) peaks, long stretches of residues can be 
connected and assigned with the assistance of the neural network 
predictions. Of the 167 visible residues, 85% were assigned correctly 

(Fig. 8). The accuracy of the network was similar to MBP (Table 1). 
At the stage of identifying amino acid types for individual signals, 
the neural network predicted 34% accurately and 70% had the cor-
rect type in top five probabilities. This again outperforms the chem-
ical shift statistics alone (23% correct, 52% in top five probabilities).

OUTLOOK
Making HNCA signal shape differ between amino acids, by pyruvate 
labeling (28) or in some other way (46), is only a good idea if the labori-
ous job of identification and matching of each signal shape is automated, 
a clear case for using deep neural networks, which are famously good at 
image recognition. The biggest obstacle is training database generation; 
there will never be enough experimental NMR data available. Training 
databases must therefore be generated by high-fidelity simulations that 
take instrumental settings, artifacts, and noise into account.

The procedure described here works for any reasonable sample 
and experiment parameters so long as their values (e.g., digital 

SNR: 112
(original spectrum)

SNR: 11
(added noise: 0.075)

SNR: 9
(added noise: 0.100)

SNR: 7
(added noise: 0.125)

SNR: 42
(added noise: 0.025)

SNR: 23
(added noise: 0.050)

Fig. 6. SNR gradation example in the neural network inputs. The signal is a 1H-13C slice through the 15N HNCA peak of THR11 in GB1 protein with the indicated amounts 
of Gaussian white noise (unit SD relative to the signal intensity) added. Neural network performance statistics for these six levels of noise are given in Table 2.

Table 2. Neural network performance statistics across all visible signals in the HNCA spectrum of GB1 protein for the noise level gradation shown 
in Fig. 6. 

Added noise amplitude Mean SNR Neural network performance

Amino acid type match n − 1 sequential match

0.000 112 30 of 56 (54%) 27 of 56 (48%)

0.025 42 30 of 56 (54%) 25 of 56 (45%)

0.050 23 25 of 56 (45%) 18 of 56 (32%)

0.075 11 17 of 56 (30%) 15 of 56 (27%)

0.100 9 17 of 56 (30%) 13 of 56 (23%)

0.125 7 13 of 56 (23%) 10 of 56 (18%)
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resolution), types (e.g., window function), and ranges (e.g., line 
widths) are supplied to the training set generator and the peak 
shapes depend on the amino acid type. Although the network 
must be re-trained when these settings change, in practice this is 
not a problem because training takes only a few hours on com-
monly available FP32 capable GPUs, such as Nvidia Titan V: fast 
compared to the resulting time and labor savings in the assign-
ment process. A serious limitation is that the networks cannot 
handle signal overlap; the best course of action for overlapping 
signals is to fall back on the chemical shift statistics. At the mo-
ment, there is no reliable mechanism for identifying corrupted 
signals or signals with parameters falling outside the training da-
tabase: Out-of-distribution detection is a matter of ongoing re-
search in the artificial intelligence community.

The networks were interfaced with the CcpNmr software pack-
age (33) and tested on HNCA spectra of GB1 (6 kDa), INMT (29 kDa), 
and MBP (42 kDa) proteins. They return a table of amino acid type 
probabilities that is easy to combine with other prior or posterior 
information. From a single pyruvate-labeled HNCA spectrum, the 
whole of GB1 protein could be assigned within hours. The networks 
correctly identified the type of 54% of the residues, compared to 23% 
from chemical shifts alone using established methods. For MBP, of 
the 330 residues visible in the HNCA spectrum, 88% could be as-
signed with 34% of amino acid types identified correctly, com-
pared to 26% when only using chemical shift statistics. The proposed 
workflow is not restricted to HNCA or pyruvate labeling; it may 
be used in any NMR experiment that yields residue specific sig-
nal shapes.

In the long run, the biggest recurring problem in the automated 
analysis of scientific data is experimental database availability. At 
least in our hands, the number of NMR spectra recorded by human 
civilization over its entire history is insufficient to train even a basic 
substance identification network. However, powerful simulation 
tools have recently emerged that can reproduce magnetic resonance 
data down to instrumental artifacts (47). Predictably, many recent 
papers on artificial intelligence in NMR and EPR spectroscopy (48–
50) use fully or partially synthetic training databases.

Supplementary Materials
This PDF file includes:
Figs. S1 to S3
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