
Computational and Applied Mathematics (2024) 43:363
https://doi.org/10.1007/s40314-024-02840-1

An inertial extragradient method for solving strongly
pseudomonotone equilibrium problems in Hilbert spaces

Le Thi Thanh Hai 1,2,3 · Duong Viet Thong 4 · Phan Tu Vuong5

Received: 27 February 2024 / Revised: 22 June 2024 / Accepted: 27 June 2024 /
Published online: 9 August 2024
© The Author(s) 2024

Abstract
In this work, we propose an inertial extragradient method for solving strongly pseudomono-
tone equilibrium problems utilizing a novel self-adaptive stepsize approach. We establish the
R-linear convergence rate of the proposed method without prior knowledge of the Lipschitz-
type constants associated with the bifunction. We also discuss the application of the obtained
results to variational inequality problems involving strongly pseudomonotone and Lipschitz
continuous mapping. Numerical examples are presented to illustrate the efficiency of the
proposed method.

Keywords Equilibrium problem · Inertial extragradient method · Strongly pseudomonotone
bifunction · R-linear rate.

Mathematics Subject Classification 47J20 · 49J40 · 49M30

1 Introduction

LetC be a nonempty closed and convex subset of a real Hilbert space H . Let f : H×H → R

be a bifunction with f (x, x) = 0 for all x ∈ C . The equilibrium problem of the bifunction
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f on C , denoted by EP( f ,C), is stated as follows:

Find x∗ ∈ C such that f (x∗, y) ≥ 0, ∀y ∈ C . (1)

Equilibrium problem is also called the Ky Fan inequality due to his contribution to this field
(Fan 1972).Mathematically, EP( f ,C) is a generalization of various importantmathematical
models including variational inequality problems, optimization problems and fixed point
problems, see (Blum and Oettli 1994; Konnov 2000, 2007; Muu and Oettli 1992; Quoc
and Muu 2012; Vuong and Strodiot 2020). EPs have been considered by many authors
in recent years, e.g., see (Combettes and Hirstoaga 2005; Hieu et al. 2018; Iusem et al.
2009; Lyashko et al. 2011; Lyashko and Semenov 2016; Moudafi 2003; Nguyen et al. 2014;
Strodiot et al. 2016; Tran et al. 2008; Vinh and Muu 2019; Vuong et al. 2015, 2012) and
the references therein. Some notable methods for EPs have been proposed such proximal
point methods (PPM) (Flam and Antipin 1997; Moudafi 1999), auxiliary problem principle
methods (Mastroeni 2000) and gap function method (Mastroeni 2003). For an excellent
collection of equilibrium modelling and applications, solutions existence as well as solution
methods for EPs, we refer the readers to a recent monograph (Bigi et al. 2019).

The PPM is often used for solvingmonotone EPs, inwhich a regularized equilibrium prob-
lem is formed at each iteration. This sub-problem is strongly monotone, hence the solution
is unique and can be computed more easily than solutions of the original problem. Solu-
tion approximations generated by the PPM will converge finitely or asymptotically to some
solution of the original EPs (Flam and Antipin 1997; Moudafi 1999).

For solving pseudomonotone EPs, a powerful algorithm is the extragradient methods
(EGM) studied originally by Korpelevich (1976) for variational inequalities and saddle point
problems. This algorithm was extended to EPs in Tran et al. (2008) where the equilibrium
bifunctions are pseudomonotone and satisfy a Lipschitz-type assumption. Under suitable
conditions imposed on parameters and bifunctions, the iterative sequences generated by
the EGM are proved to be convergent to some solution of EP( f ,C). In recent years, the
extragradient methods have received great attention from the many authors, see, e.g., Censor
et al. (2011); Nguyen et al. (2014); Vuong et al. (2015). The advantage of the extragradient
method (Vinh and Muu 2019) is that the sub-problems are easier to solve than the PPM.
Moreover, it can be applied to the more general class of bifunctions.

The main drawback of EGM is that the chosen step-size depends on the Lipschitz-type
constants of the bifunctions (Dang 2017; Lyashko et al. 2011; Lyashko and Semenov 2016;
Moudafi 1999). This fact can make some restrictions in applications because the Lipschitz-
type constants are often unknown or difficult to estimate. In this work, we propose a new
inertial extragradient method for solving strongly pseudo-monotone equilibrium problem.
Note that, an extragradient method with inertial effect for solving EPs can be found in Vinh
and Muu (2019) where the inertial parameters were chosen depending on the iteration gap
and a summable sequence. In addition, no convergence rate was obtained in Vinh and Muu
(2019).

The EGM variant proposed in this paper uses a new step-size rule which does not require
the knowledge of the Lipschitz-type constants of the bifunction as in Vinh and Muu (2019).
Moreover, the inertial parameter can be chosen independently to the iterations. Under suitable
conditions on the parameters, we establish the linear convergence of the iterations to the
unique solution of the EPs. As a consequence, we provide a linear convergence rate of a
modified extragradient method for solving variational inequality problems in Hilbert spaces.

This paper is organized as follows: in Sect. 2, we collect some definitions and prelimi-
nary results for further use. Section3 deals with analyzing the convergence of the proposed

123



An inertial extragradient… Page 3 of 18 363

algorithm. Finally, we discuss the applications to variational inequalities in Sect. 4, following
with some numerical examples in Sect. 5.

2 Preliminaries

LetC be a nonempty closed convex subset of H .We begin with some concepts of monotonic-
ity of a bifunction (BlumandOettli 1994;MuuandOettli 1992).Abifunction f : H×H → R

is said to be:
(i) strongly monotone on C if there exists a constant γ > 0 such that

f (x, y) + f (y, x) ≤ −γ ||x − y||2, ∀x, y ∈ C .

(ii) strongly pseudomonotone on C if there exists a constant γ > 0 such that

f (x, y) ≥ 0 �⇒ f (y, x) ≤ −γ ||x − y||2, ∀x, y ∈ C .

(iii) satisfied Lipschitz-type condition on C if there exist two positive constants c1, c2 such
that

f (x, y) + f (y, z) ≥ f (x, z) − c1||x − y||2 − c2||y − z||2, ∀x, y, z ∈ C .

From the definitions above, it is obvious that (i) �⇒ (ii).
The normal cone NC to C at a point x ∈ C is defined by

NC (x) = {w ∈ H : 〈w, x − y〉 ≥ 0,∀y ∈ C} .

For every x ∈ H , the metric projection PC (x) of x onto C is defined by

PC (x) = argmin {‖y − x‖ : y ∈ C} .

Since C is nonempty, closed and convex, PC (x) exists and is unique.
For each x, z ∈ H , by ∂ f (z, x), we denote the subdifferential of convex function f (z, ·) at
x , i.e.,

∂ f (z, x) := {u ∈ H : f (z, y) ≥ f (z, x) + 〈u, y − x〉,∀y ∈ H}.
In particular,

∂ f (z, z) = {u ∈ H : f (z, y) ≥ 〈u, y − z〉,∀y ∈ H}.
For proving the convergence of the algorithm, we need the following lemma.

Lemma 2.1 (Peypouquet 2015, Proposition 3.61) Let C be a nonempty closed convex subset
of H and g : H → R∪{+∞} be a proper, convex and lower semicontinuous function on H.
Assume either that g is continuous at some point of C, or that there is an interior point of C
where g is finite. Then, x∗ is a solution to the following convex problemmin {g(x) : x ∈ C} if
and only if 0 ∈ ∂g(x∗) + NC (x∗), where ∂g(·) denotes the subdifferential of g and NC (x∗)
is the normal cone of C at x∗.
Definition 2.1 (Ortega and Rheinboldt 1970) Let {xn} be a sequence in H .

(i) {xn} is said to converge R-linearly to x∗ with rate ρ ∈ [0, 1) if there is a constant c > 0
such that

‖xn − x∗‖ ≤ cρn ∀n ∈ N.

(ii) {xn} is said to converge Q-linearly to x∗ with rate ρ ∈ [0, 1) if
‖xn+1 − x∗‖ ≤ ρ‖xn − x∗‖ ∀n ∈ N.
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3 Convergence analysis

Now, we are in a position to present a modified version of inertial extragradient method in
Vinh and Muu (2019) for solving equilibrium problems.

Algorithm 3.1
Initialization. Let u0, u1 ∈ H, λ1 > 0, ρ ∈ [0, 1), μ ∈ (0, 1). Let {τn} be a nonnegative real
numbers sequence such that

∑∞
n=1 τn < +∞.

Step 1. Given the current iterates un−1 and un (n ≥ 1), compute
⎧
⎨

⎩

tn = un + ρ(un − un−1),

vn = argmin
y∈C

{λn f (tn, y) + 1
2 ||y − tn ||2}.

If vn = tn then stop and vn is a solution. Otherwise, go to Step 2.
Step 2. Compute

un+1 = argmin
y∈C

{λn f (vn, y) + 1

2
||y − tn ||2},

and

λn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min

{
μ

2

‖tn − vn‖2 + ‖un+1 − vn‖2
f (tn, un+1) − f (tn, vn) − f (vn, un+1)

, λn + τn

}

if f (tn, un+1) − f (tn, vn) − f (vn, un+1) > 0;
λn + τn otherwise.

(2)

Set n := n + 1 and return to Step 1.

Remark 3.1 The self-adaptive stepsizes {λn} chosen as in (2) is allowed to increase from
iteration to iteration showing that the self-adaptive stepsize in this work is different from the
studied self-adaptive stepsize in the literature (Hieu et al. 2018; Dang 2017; Muu and Quoc
2009; Tran et al. 2008; Vinh and Muu 2019). The initial stepsize λ1 chosen in (2) could be
arbitrary large allowing fast convergence from the beginning of the iterations. In particular,
(Vinh and Muu 2019, Algorithm 1) proposed an inertial extragradient method for solving
pseudo-monotone EPs with fixed stepsize and inertial parameters were chosen along the
course of iterations depending on a summable series, which were different from Algorithm
(3.1). In addition, the linear convergence rate was not investigated in (Vinh and Muu 2019).

In order to establish the convergence of Algorithm 3.1, we assume that bifunction f : H ×
H → R satisfies the following conditions.

Condition 1
(A1) f is γ -strongly pseudomonotone on C .
(A2) f satisfies Lipschitz-type condition on H with two constants c1 and c2.
(A3) f (x, ·) is convex and lower semicontinuous on H for every fixed x ∈ H .

(A4) Either intC �= ∅ or f (x, ·) is continuous at some point in C for every x ∈ H .

Remark 3.2 From the condtions (A1) and (A2) we get f (x, x) = 0 for all x ∈ C . It is also
known that under Condition 1, the problemEP(f,C) has unique solution (Muu andQuy 2015).
It is easy to see that the uniqueness of solution is guaranteed by the strong pseudomonotonicity

123



An inertial extragradient… Page 5 of 18 363

of the bifunction f . For generic conditions of solution existence and their relaxations, we
refer the readers to an excellent survey (Bigi et al. 2013, Section 2). In particular, the most
simplest conditions for solution existence are: C is a bounded and convex set; f (x, ·) is
convex for each x ∈ C and f (·, y) is continuous for each y ∈ C .

Next, we will establish the convergence rate of Algorithm 3.1. We start with the following
lemmas which play an important role in proving the convergence of the proposed algorithm.

Lemma 3.1 (Yang 2020) Let Condition 1 be satisfied. Let {λn} be a sequence generated by
Algorithm 3.1. Then

lim
n→∞ λn = λ ∈

[

min

{
μ

2max{c1, c2} , λ1
}

, λ1 + τ

]

,

where τ = ∑∞
n=1 τn .

Lemma 3.2 For any λ > 0 and x, t ∈ H, let

z = argmin
y∈C

{

λ f (x, y) + 1

2
‖y − t‖2

}

, (3)

then

λ ( f (x, y) − f (x, z)) ≥ 〈t − z, y − z〉 ∀y ∈ C .

Proof Since z is the unique solution of the strongly convex minimization problem (3). The
optimality condition (Lemma 2.1) implies that there exists s ∈ ∂ f (x, z) such that

0 ∈ λs + z − t + NC (z),

Hence, by definition of this cone, we obtain that

〈t − z − λs, y − z〉 ≤ 0 ∀y ∈ C . (4)

On the other hand, since s ∈ ∂ f (x, z), we have

f (x, y) − f (x, z) ≥ 〈s, y − z〉 ∀y ∈ C . (5)

Combining (4) and (5), we obtain

λ ( f (x, y) − f (x, z)) ≥ 〈λs, y − z〉 ≥ 〈t − z, y − z〉 ∀y ∈ C .

Lemma 3.3 Let C be a nonempty, closed and convex subset of H and f : H × H → R

be a bifunction satisfying Condition 1. Let u be the unique solution of E P( f ,C). Then the
following inequality holds

‖un+1 − u‖2 ≤ ‖tn − u‖2 −
(

1 − μ
λn

λn+1

)

‖tn − vn‖2 −
(

1 − μ
λn

λn+1

)

‖un+1 − vn‖2

− 2λnγ ‖vn − u‖2. (6)

Proof From

un+1 = argmin
y∈C

{

λn f (vn, y) + 1

2
‖y − tn‖2

}

,
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by Lemma 3.2, we get

λn( f (vn, y) − f (vn, un+1)) ≥ 〈tn − un+1, y − un+1〉 ∀y ∈ C .

Substituting y := u ∈ C , we obtain

λn( f (vn, u) − f (vn, un+1)) ≥ 〈tn − un+1, u − un+1〉. (7)

Since u is the unique solution of EP( f ,C) and vn ∈ C , we have f (u, vn) ≥ 0. By the strong
pseudomonotonicity assumption of f , we obtain f (vn, u) ≤ −γ ‖vn − u‖2. It implies from
(7) that

−λn f (vn, un+1) ≥ 〈tn − un+1, u − un+1〉 − λn f (vn, u)

≥ 〈tn − un+1, u − un+1〉 + λnγ ‖vn − u‖2. (8)

Again, since

vn = argmin
y∈C

{

λn f (tn, y) + 1

2
||y − tn ||2

}

,

Lemma 3.2 implies

λn( f (tn, un+1) − f (tn, vn)) ≥ 〈tn − vn, un+1 − vn〉. (9)

Adding (8) and (9) we get

2λn( f (tn, un+1) − f (tn, vn) − f (vn, un+1))

≥ 2〈tn − vn, un+1 − vn〉 + 2〈tn − un+1, u − un+1〉 + 2λnγ ‖vn − u‖2
= (‖tn − vn‖2 + ‖un+1 − vn‖2 − ‖un+1 − tn‖2)+

+ (‖tn − un+1‖2 + ‖un+1 − u‖2 − ‖tn − u‖2) + 2λnγ ‖vn − u‖2
= ‖tn − vn‖2 + ‖un+1 − vn‖2 + ‖un+1 − u‖2 − ‖tn − u‖2 + 2λnγ ‖vn − u‖2.

This implies that

‖un+1 − u‖2 ≤ ‖tn − u‖2 − ‖tn − vn‖2 − ‖un+1 − vn‖2 + 2λn( f (tn, un+1)

− f (tn, vn) − f (vn, un+1)) − 2λnγ ‖vn − u‖2. (10)

On the other hand, from the definition of the sequence λn we get

2( f (tn, un+1) − f (tn, vn) − f (vn, un+1)) ≤ μ

λn+1

(

‖tn − vn‖2 + ‖un+1 − vn‖2
)

.

(11)

Substituting (10) into (11) we obtain

‖un+1 − u‖2 ≤ ‖tn − u‖2 −
(

1 − μ
λn

λn+1

)

‖tn − vn‖2 −
(

1 − μ
λn

λn+1

)

‖un+1 − vn‖2

− 2λnγ ‖vn − u‖2.

In the following theorem we will show that the sequence {un} generated by Algorithm 3.1
converges strongly to the unique solution u with a R-linear rate.
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Theorem 3.1 Let C be a nonempty closed convex subset of H. Let f : H × H → R be a
bifunction satisfying Condition 1. Let θ ∈ (0, 1) be arbitrary and ρ be a real number such
that

0 ≤ ρ ≤ ωε

ωε + 2ω + ε
, (12)

where ω := 1 − min

{
(1 − μ)θ

4
,
γ λ

2

}

and ε := 1

2
(1 − μ)(1 − θ)θ . Then the sequence

{un} generated by Algorithm 3.1 converges in norm to the unique solution u of the problem
EP(f,C) with a R-linear rate.

Proof First, we show that there exists N1 ∈ N such that

‖un+1 − u‖2 ≤ω‖tn − u‖2 − ε‖un+1 − tn‖2 ∀n ≥ N1. (13)

Indeed, it follows from Lemma 3.1 that limn→∞ λn = λ > 0 and since μ < 1, there exists
N > 0 such that

(

1 − μ
λn

λn+1

)

> 0 ∀n ≥ N .

Thanks to (6) and θ ∈ (0, 1), we have for all n ≥ N that

‖un+1 − u‖2 ≤ ‖tn − u‖2 −
(

1 − μ
λn

λn+1

)

‖vn − tn‖2

−
(

1 − μ
λn

λn+1

)

(1 − θ)‖un+1 − vn‖2 − 2λnγ ‖vn − u‖2

= ‖tn − u‖2 −
(

1 − μ
λn

λn+1

)

θ‖vn − tn‖2

−
(

1 − μ
λn

λn+1

)

(1 − θ)

[

‖vn − tn‖2 + ‖un+1 − vn‖2
]

− 2λnγ ‖vn − u‖2

≤ ‖tn − u‖2 −
(

1 − μ
λn

λn+1

)

θ‖vn − tn‖2

− 1

2

(

1 − μ
λn

λn+1

)

(1 − θ)‖un+1 − tn‖2 − 2λnγ ‖vn − u‖2,
(14)

where we have used the Cauchy–Schwartz inequality in the last estimation. Moreover, we
get

lim
n→∞

1

2

(

1 − μ
λn

λn+1

)

(1 − θ) = 1

2
(1 − μ)(1 − θ) >

1

2
(1 − μ)(1 − θ)θ,

lim
n→∞

(

1 − μ
λn

λn+1

)

θ = (1 − μ)θ > 2min

{
(1 − μ)θ

4
,
γ λ

2

}

,

lim
n→∞ λnγ = λγ > min

{
(1 − μ)θ

4
,
γ λ

2

}

.

Using the definition of the limit, there exists N1 ∈ N and N1 ≥ N , such that for all n ≥ N1

1

2

(

1 − μ
λn

λn+1

)

(1 − θ) ≥ 1

2
(1 − μ)(1 − θ)θ,
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(

1 − μ
λn

λn+1

)

θ ≥ 2min

{
(1 − μ)θ

4
,
γ λ

2

}

,

and

λnγ ≥ min

{
(1 − μ)θ

4
,
γ λ

2

}

.

Using (14) we obtain for all n ≥ N1 that

‖un+1 − u‖2 ≤ ‖tn − u‖2 − 2min

{
(1 − μ)θ

4
,
γ λ

2

}

‖vn − tn‖2

− 1

2
(1 − μ)(1 − θ)θ‖un+1 − tn‖2

− 2min

{
(1 − μ)θ

4
,
γ λ

2

}

‖vn − u‖2

= ‖tn − u‖2 − 1

2
(1 − μ)(1 − θ)θ‖un+1 − tn‖2

− 2min

{
(1 − μ)θ

4
,
γ λ

2

}

(‖vn − tn‖2 + ‖vn − u‖2)

≤ ‖tn − u‖2 − 1

2
(1 − μ)(1 − θ)θ‖un+1 − tn‖2

− min

{
(1 − μ)θ

4
,
γ λ

2

}

‖tn − u‖2

=
(

1 − min

{
(1 − μ)θ

4
,
γ λ

2

})

‖tn − u‖2 − 1

2
(1 − μ)(1 − θ)θ‖un+1 − tn‖2

≤
(

1 − min

{
(1 − μ)θ

4
,
γ λ

2

})

‖tn − u‖2 − 1

2
(1 − μ)(1 − θ)θ‖un+1 − tn‖2

= ω‖tn − u‖2 − ε‖un+1 − tn‖2.
Next, we show that the sequence {un} converges strongly to the unique solution u of the
problem EP( f ,C). Indeed, we have

‖tn − u‖2 = ‖(1 + ρ)(un − u) − ρ(un−1 − u)‖2
= (1 + ρ)‖un − u‖2 − ρ‖un−1 − u‖2 + ρ(1 + ρ)‖un − un−1‖2

and

‖un+1 − tn‖2 = ‖un+1 − un − ρ(un − un−1)‖2
= ‖un+1 − un‖2 + ρ2‖un − un−1‖2 − 2ρ 〈un+1 − un, un − un−1〉
≥ ‖un+1 − un‖2 + ρ2‖un − un−1‖2 − 2ρ‖un+1 − un‖‖un − un−1‖
≥ ‖un+1 − un‖2 + ρ2‖un − un−1‖2 − ρ‖un+1 − un‖2 − ρ‖un − un−1‖2
= (1 − ρ)‖un+1 − un‖2 − ρ(1 − ρ)‖un − un−1‖2.

Combining these inequalities with (13) we obtain

‖un+1 − u‖2 ≤ ω(1 + ρ)‖un − u‖2 − ωρ‖un−1 − u‖2 + ωρ(1 + ρ)‖un − un−1‖2
− ε(1 − ρ)‖un+1 − un‖2 + ερ(1 − ρ)‖un − un−1‖2 ∀n ≥ N1,
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or equivalently

‖un+1 − u‖2 − ωρ‖un − u‖2 + ε(1 − ρ)‖un+1 − un‖2
≤ ω

[‖un − u‖2 − ρ‖un−1 − u‖2 + ε(1 − ρ)‖un − un−1‖2
]

− (ωε(1 − ρ) − ωρ(1 + ρ) − ερ(1 − ρ)) ‖un − un−1‖2 ∀n ≥ N1.

Setting


n := ‖un − u‖2 − ρ‖un−1 − u‖2 + ε(1 − ρ)‖un − un−1‖2,
since ω ∈ (0, 1), we can write


n+1 ≤ ‖un+1 − u‖2 − ωρ‖un − u‖2 + ε(1 − ρ)‖un+1 − un‖2
≤ ω
n − (ωε(1 − ρ) − ωρ(1 + ρ) − ερ(1 − ρ)) ‖un − un−1‖2 ∀n ≥ N1.

We show that

ωε(1 − ρ) − ωρ(1 + ρ) − ερ(1 − ρ) ≥ 0.

Indeed, from (12) we get ρ ∈ [0, 1), thus we obtain 1 + ρ ≤ 2 and ρ(1 − ρ) ≤ ρ, hence

ωε(1 − ρ) − ωρ(1 + ρ) − ερ(1 − ρ) ≥ ωε(1 − ρ) − 2ωρ − ερ

= ωε − ρ(ωε + 2ω + ε) ≥ 0.

Therefore


n+1 ≤ ω
n ∀n ≥ N1.

Next, we show that 
n ≥ 0 for all n. From (12) we deduce

ρ ≤ ωε

ωε + 2ω + ε
≤ ωε

wε + 2ω
= ε

2 + ε
,

which implies ρ ≤ ε(1−ρ)
2 . Using this fact, we obtain


n = (1 − ε(1 − ρ))‖un − u‖2 + ε(1 − ρ)
(‖un − u‖2 + ‖un − un−1‖2

) − ρ‖un−1 − u‖2

≥ (1 − ε(1 − ρ))‖un − u‖2 + ε(1 − ρ)

2
‖un−1 − u‖2 − ρ‖un−1 − u‖2

≥ (1 − ε(1 − ρ))‖un − u‖2 ≥ 0.

Hence


n+1 ≤ ω
n ≤ · · · ≤ ωn−N1+1
N1 .

‖un − u‖2 ≤ 
N1

ωN1−1 ωn,

which means that {un} converges R-linearly to u.

Remark 3.3 Using the similar technique in Vinh and Muu (2019); Yang (2020), one can
obtain the weak convergence of Algorithm 3.1 under conditions: f is pseudomonotone on
C ; f (·, y) is weakly upper semicontinuous on C , (A2), (A3), (A4) and the solution set
EP( f ,C) �= ∅. We omit the proof here.
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4 Application to variational inequalities

In this Section, we discuss the applications of the main result obtained in Sect. 3 for solving
variational inequality problems in Hilbert spaces. Let f (x, y) = 〈F(x), y − x〉, ∀x, y ∈ C ,
where F : H → H is a continuous mapping. Then the equilibrium problems (1) becomes
the variational inequality problem, i.e., find x∗ ∈ C such that

〈F(x∗), y − x∗〉 ≥ 0 ∀y ∈ C . (15)

The solution set of (15) is denoted by Sol(F,C). Moreover, we have

vn = argmin
y∈C

{λn f (tn, y) + 1

2
||y − tn ||2} = PC (tn − λn F(tn)).

We recall that the mapping F is δ-strongly pseudomonotone on C if there exists a constant
δ > 0 such that

〈F(x), y − x〉 ≥ 0 �⇒ 〈F(y), y − x〉 ≥ δ‖x − y‖2 ∀x, y ∈ C .

If F is L-Lipschitz continuous and strongly pseudomonotone, then the conditions (A1)-(A4)

hold for f with c1 = c2 = L

2
. Note that, under these assumption, Sol(F,C) is nonempty

and singleton (Kim et al. 2016). For solving variational inequality, we propose the following
algorithm.

Algorithm 4.1

Initialization. Let u0, u1 ∈ H, λ1 > 0, ρ ∈ [0, 1), μ ∈ (0, 1). Let {τn} be a nonnegative real
numbers sequence such that

∑∞
n=1 τn < +∞.

Step 1. Given the current iterates un−1 and un (n ≥ 1), compute
{
tn = un + ρ(un − un−1),

vn = PC (tn − λn F(tn)).

If vn = tn or F(tn) = 0 then the stop and tn is a solution of VI (15). Otherwise, go to Step 2.
Step 2. Compute

un+1 = PC (tn − λn F(vn)),

and

λn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min

{
μ

2

‖tn − vn‖2 + ‖un+1 − vn‖2
〈F(vn) − F(tn), un+1 − vn〉 , λn + τn

}

if 〈F(vn) − F(tn), un+1 − vn〉 > 0;
λn + τn otherwise.

Set n := n + 1 and return to Step 1.

The following result is a direct consequence of Theorem 3.1.

Theorem 4.1 Assume that F : H → H is L-Lipschitz continuous on H and δ-strongly
pseudomonotone on C. Let θ ∈ (0, 1) be arbitrary and ρ be a real number such that

0 ≤ ρ ≤ ωε

ωε + 2ω + ε
,
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where ω := 1−min

{
(1 − μ)θ

4
,
γ λ

2

}

and ε := 1

2
(1− μ)(1− θ)θ . Then the sequence {un}

generated by Algorithm 4.1 converges in norm to the unique solution u ∈ Sol(F,C) with a
R-linear rate.

Remark 4.1 As a consequence of Remark 3.3 we can also obtain the weak convergence of
Algorithm 4.1 under conditions: F is pseudomonotone on H ; F is L-Lipschitz continuous
on H ; F is sequentially weakly continuous on C and the solution set Sol(F,C) �= ∅.

5 Numerical Illustrations

In this section, we consider some numerical results to illustrate the linear convergence of
Algorithm 3.1 and compare its performance with the relaxed projection algorithm (Vuong
andStrodiot 2020) and the inertial extragradient algorithmproposed byVinh andMuu (2019).
The codes are implemented in MATLAB.

Example 1: The bifunction f of the equilibrium problem comes from the Cournot-Nash
equilibrium model considered by Quoc and Muu (2012). It is defined for each x, y ∈ R

5, by

f (x, y) = 〈Px + Qy + r , y − x〉
where r ∈ R

5, and P and Q are two square matrices of order 5 such that P −Q is symmetric
positive definite. It was proved by Quoc and Muu (2012) that the function f is strongly
pseudo-monotone with modulus γ = λmin(P − Q), the smallest eigenvalue of P − Q and
f satisfies the Lipschitz-type condition with modulus c1 = c2 = 1

2‖P − Q‖. As in Quoc
and Muu (2012), in our test, the vector r and the matrices P and Q are chosen as follows:

r =

⎡

⎢
⎢
⎢
⎢
⎣

1
− 2
− 1
2

− 1

⎤

⎥
⎥
⎥
⎥
⎦

; P =

⎡

⎢
⎢
⎢
⎢
⎣

3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎦

; Q =

⎡

⎢
⎢
⎢
⎢
⎣

1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

.

The constraint set of this problem is defined by

C =
{

x ∈ R
5 |

5∑

i=1

xi ≥ 0, −5 ≤ xi ≤ 5, i = 1, 2, 3, 4, 5

}

,

and its solution x∗ is given by

x∗ = (−0.725388, 0.803109, 0.72000,−0.866667, 0.200000)T .

In this example, γ = λmin(P − Q) = 0.7192 and L = ‖P − Q‖, c1 = c2 = 1
2‖P − Q‖ =

1.45. The stopping condition is ErrorBound = ‖un+1 − un‖ ≤ 10−5.
For the projection type algorithms inVuong andStrodiot (2020),we chooseλ = 1.9∗γ /L2

with the non-relaxed parameter (α = 1, red curve in Fig. 1) and λ = γ /L2 with the over-
relaxed parameter (αmax = 1.014, black curve in Fig. 1). Moreover, the blue curve in Fig. 1
presents the inertial extragradient algorithm in Vinh and Muu (2019) with the stepsize λ =
1
2c2

, δ = 0.6 and εn = 1
n2

, n = 1, 2, ..... Figure1presents the comparisons of the performance

of these methods with u0 = u1 = (2, 1, 4,−1,−2)T and the stopping condition 10−5. It
is clear that Algorithm 3.1 (green curve in Fig. 1) outperforms the others thanks to the very
large initial stepsize (λ1 = 5000) and inertial effect even though it is quite small (ρ = 0.003).

123



363 Page 12 of 18 T. T. H. Le et al.

Fig. 1 Performance of different algorithms when u0 = u1 = (2, 1, 4,−1,−2)T

The sequence {τn} is chosen the same as {εn}. It is also noticed that the error estimates in
Algorithm 3.1 has some oscillation phenomenon, which is well understood in algorithms
with inertial effects for solving optimization problems. We believe that this is also the case
for algorithms with inertial effects for solving EPs.

Example 2: Similar to Krawczyk and Uryasev (2000); Quoc and Muu (2012), in this
example, we consider the problem of River basin pollution game. There are three players
j = 1, 2, 3 located along a river. Each agent is engaged in an economic activity (paper pulp
producing) at a chosen level x j , but the players must meet the environmental condition set
by a local authority. Pollutants may be expelled into the river, where they disperse. Two
monitoring stations are located along the river, at which the local authority has set maximum
pollutant concentration levels. The revenue and the expenditure for player j are

R j (x) = [a1 − a2(x1 + x2 + x3)]x j ,
and

Fj (x) = (b1 j + b2 j x j )x j ,

respectively, where the parameters a1 = 3.0, a2 = 0.01, b1 j = 0.1, 0.12, 0.15, and c2 j =
0.01, 0.05, 0.01 for j = 1, 2, 3, respectively. The profit of player j is

K j (x) = R j (x) − Fj (x).

The constraint on emission imposed by the local authority at location is

qi (x) =
3∑

j=1

u jvi j x j ≤ 100, i = 1, 2,
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Fig. 2 Performance of different algorithms when u0 = u1 = (0, 0, 0)T

where u j = 0.5, 0.25, 0.75, v1 j = 6.5, 5.0, 5.5 and v2 j = 4.583, 6.25, 3.75 for j = 1, 2, 3,
respectively. The level x j is nonnegative for j = 1, 2, 3. Players try to maximize their profit
K j (x) satisfying the condition qi (x) ≤ 100, i = 1, 2 and x ≥ 0.

This problem can be reformulated as the equilibrium problem, where

P =
⎡

⎣
a2 + b21 a2 a2

a2 a2 + b22 a2
a2 a2 a2 + b23

⎤

⎦ ; Q =
⎡

⎣
a2 + b21 0 0

0 a2 + b22 0
0 0 a2 + b23

⎤

⎦

and r =
⎡

⎣
b11 − a1
b12 − a1
b13 − a1

⎤

⎦ . Note that since P − Q is not positive definite, this linear equilibrium

problem is not strongly monotone. However, since P+Q and Q are positive definite, we can
choose matrix T = 0.1×diag(b21, b22, b23) such that this problem is equivalent to a strongly
monotone linear equilibrium problem as in Example 1 when P1 = P + T , Q1 = Q − T
and r1 = r (see Quoc and Muu (2012) for more details). For this choice, the corresponding
parameters are γ = λmin(P1 − Q1) = 0.019 and L = 1

2‖P1 − Q1‖ = 0.055. The other
parameters are similar to Example 1 except αmax = 1.5. We also compare the performance
of four algorithms with u0 = u1 = (0, 0, 0)T and the stopping condition ErrorBound=
‖un+1 − un‖ ≤ 10−5 in Fig. 2. Once again, Algorithm 3.1 demonstrates its effectiveness
thanks to the large initial stepsize (λ1 = 5000) and inertial effects.

Example 3: We continue with a very interesting model namely the Nash-Cournot
oligopolistic equilibriummodels of electricity markets introduced by Contreras et al. (2004).
This model was reformulated as a strongly monotone equilibrium problem in Muu and Quy
(2015); Quoc et al. (2012). Consider a Nash-Cournot oligopolistic equilibrium model aris-
ing in electricity markets with nc (nc = 3) generating companies and each company i
(i = 1, 2, 3) (com. #) possesses several generating units nci (gen. #). The quantities x and xc
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Table 1 The lower and upper
bounds of the power generation
of the generating unit and
companies (ng = 6)

com. # gen. # xgmin xgmax xcmin xcmax

1 1 0 80 0 80

2 2 0 80 0 130

2 3 0 50 0 130

3 4 0 55 0 125

3 5 0 30 0 125

3 6 0 40 0 125

Table 2 The parameters of the generating unit cost functions c j ( j = 1 . . . , 6)

gen. # α̂ j ($Mw2h) β̂ j ($/Mwh) γ̂ j ($/h) α̃ j ($/Mwh) β̃ j γ̃ j

1 0.0400 2.00 0.00 2.0000 1.0000 25.0000

2 0.0300 1.75 0.00 1.7500 1.0000 28.5714

3 0.1250 1.00 0.00 1.0000 1.0000 8.0000

4 0.0116 3.25 0.00 3.2500 1.0000 86.2069

5 0.0500 3.00 0.00 3.0000 1.0000 20.0000

6 0.0500 3.00 0.00 3.0000 1.0000 20.0000

are the power generation of a unit and a company, respectively. The lower and upper bounds
of the power generation of the generating units and companies are given in Table 1. The
parameters of the cost function are pointed out in Table 2.
The cost of a generating unit j ( j = 1, . . . , 6) is determined as follows

c j (x j ) = max{ĉ j (x j ), c̃ j (x j )}
where

ĉ j (x j ) = α̂ j

2
x2j + β̂ j x j + γ̂ j ,

c̃ j (x j ) = α̃ j x j + β̃ j

β̃ j + 1
γ̃

−1
β̃ j
j (x j )

β̃ j+1

β̃ j .

It turns out that the cost of the generating unit j does not depend on other generating units.
Let us denote ng by the number of generating units of all companies (i.e. ng = ∑nc

i=1 n
c
i )

and Ii by the index set of all generating units of the company i .
If the selling price of a unit of electricity is fixed at 378.4 − 2

∑ng
l=1 xl then the profit of the

company i that owns nci generating units will be defined by

fi (x) =
⎛

⎝378.4 − 2
ng∑

l=1

xl

⎞

⎠
∑

j∈Ii
x j −

∑

j∈Ii
c j (x j )

where (xgmin) j ≤ x j ≤ (xgmax ) j ( j = 1, . . . , ng).
For each i = 1, . . . , nc, let us define

ϕi (x, y) =
⎡

⎣378.4 − 2

⎛

⎝
∑

j /∈Ii
x j +

∑

j∈Ii
y j

⎞

⎠

⎤

⎦
∑

j∈Ii
y j −

∑

j∈Ii
c j (y j ).
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Fig. 3 Performance of different algorithms when u0 = u1 = (0, 0, 0, 0, 0, 0)T

The Nikaido-Isoda function is defined as

f (x, y) =
nc∑

i=1

[ϕi (x, x) − ϕi (x, y)] .

Since each company intends to maximize their profit, the oligopolistic equilibrium model of
electricity markets can be reformulated as an equilibrium problem of finding x∗ ∈ Cg such
that

f (x∗, y) ≥ 0, ∀y ∈ Cg

where Cg is the feasible set given by

Cg = {xg ∈ R
ng |(xgmin) j ≤ x j ≤ (xgmax ) j ( j = 1, . . . , ng)}.

To figure out the properties of the bifunction f , first let us introduce two vectors qi =
(qi1, q

i
2, . . . , q

i
ng )

T and q̄ i = (q̄ i1, . . . , q̄
i
ng )

T in which

qij =
{
1 i f j ∈ Ii
0 otherwise

and q̄ ij = 1− qij ( j = 1, . . . , ng). By (Quoc et al. 2012, Lemma 7), the equilibrium problem
being solved can be formulated as

x∗ ∈ Cg : f (x∗, y) = [(A + 1.5B) x + 0.5By + a]T (y − x) + c(y) − c(x) ∀y ∈ Cg,
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where the two matrices A, B, the vector a, and the cost function are identified as follows

A = 2
nc∑

i=1

q̄ i (qi )T , B = 2
nc∑

i=1

qi (qi )T

a = −378.4
nc∑

i=1

qi , c(x) =
nc∑

i=1

∑

j∈Ii
c j (x j ) =

ng∑

j=1

c j (x j ).

It is worth knowing that since c is a nonsmooth convex function and B is symmetric positive
semidefinite, f is continuous on Cg × Cg and f (x, ·) is convex but not smooth for all
x ∈ Cg . In addition, the function f is only monotone but it can be transformed equivalently
to a strongly monotone equilibrium problem by considering the following bifunction (see
(Muu and Quy 2015, Lemma 4)).

f1(x, y) = f (x, y) − 1

2
(y − x)T B(y − x).

We test the Algorithm 3.1 with u0 = u1 = (0, 0, 0, 0, 0, 0)T , the initial stepsize λ1 =
100, the stopping condition ErrorBound=‖un+1 − un‖ ≤ 10−3 and small inertial effect
(ρ = 0.003). For the other three algorithms, since the Lipschitz constants are not available,
we select a positive stepsize so that the algorithms converge. We choose λ = 0.02 for
the projection algorithm and λ = 0.03, α = 0.5 for the relaxed projection algorithm. The
inertial extragradient also uses the same stepsize with the relaxed projection. The sequences
{τn} and {εn} are similar to Example 1. The results are reported in Fig. 3. We realize that the
Algorithm 3.1 is still effective for this problem. We also notice that Algorithm 3.1 converges
even faster with larger inertial effect, for example ρ = 0.5, but in this case condition (12) is
not guaranteed.
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