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Abstract
We present a novel response surface method for global optimisation of an expensive
and noisy (black-box) objective function, where error bounds on the deviation of the
observed noisy function values from their true counterparts are available. The method
is based on Gutmann’s well-established RBFmethod for minimising an expensive and
deterministic objective function, which has become popular both from a theoretical
and practical perspective. To construct suitable radial basis function approximants to
the objective function and to determine new sample points for successive evaluation
of the expensive noisy objective, the method uses a regularised least-squares criterion.
In particular, new points are defined by means of a target value, analogous to the orig-
inal RBF method. We provide essential convergence results, and provide a numerical
illustration of the method by means of a simple test problem.

Keywords Global optimisation · Expensive noisy objective function · Controlled
noise · Response surface methods · Radial basis functions · Approximation

Mathematics Subject Classification 90C26 · 90C30

1 Introduction

In this paper, we are concerned with solving problems of the form

min
x∈X

f (x), (1)
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whereX ⊂ R
d is a nonempty compact set, and f : X → R is a continuous potentially

nonconvex objective function that is expensive to evaluate.We assume that evaluations
of the objective function f are perturbed by noise, where the level of noise can be
controlled by means of pointwise error bounds. Specifically, given that some noisy
function values f̂ (xi ) are observed at the sample points xi ∈ X , i ∈ N, we will
consider two models for noise:

1. The errors between f̂ (xi ) to the true but unknown counterparts f (xi ) can be quan-
tified by

∣
∣ f (xi ) − f̂ (xi )

∣
∣ ≤ εi , i = 1, . . . , n, (2)

for some positive values εi . We denote this case as the case of fixed noise.
2. The error bounds can be improved during the course of an iteration, i.e. we consider

the x1, . . . , xn as iterates of an optimisation algorithm and presume error bounds
of the form

∣
∣ f (xi ) − f̂ (n)(xi )

∣
∣ ≤ ε

(n)
i , i = 1, . . . , n, (3)

for some positive errors ε
(n)
i . We denote this case as the case of iterative noise.

Iterative noise typically occurs if a function evaluation that computes f̂ (n)(xi ) uses,
e.g., a Monte Carlo simulation to evaluate some integral occurring in the definition
of the function f . Given sufficient computational budget, it is then possible to
improve a previously computed estimate f̂ (k)(xi ) in a later iteration n > k to a
hopefully better estimate f̂ (n)(xi ) by increasing the sample size of theMonte Carlo
simulation. In this paper, we will be concerned with vanishing iterative noise in
which the ε

(n)
i converge to zero for n → ∞ in some form.

To clarify terminology and avoid any confusion for the purpose of this paper, we define
noise to be any inaccuracy in the function evaluation of f . In view of problem (1), this
is then sometimes also referred to as minimising a noisy objective function f̂ on the
parameter space X , see, e.g., Kelley [23]. For notational convenience, from now on
we always write f̂ (n), where in the case of fixed noise we interpret this as f̂ (n) ≡ f̂ .
Similarly, we write ε

(n)
i for the error bound at the sample point xi , which in the case

of fixed noise simplifies to ε
(n)
i ≡ εi .

To effectively tackle the minimisation of a nonconvex and expensive (black-box)
objective function, response surface methods have been developed. Their basic idea
is to approximate the underlying objective function by a sequence of response surface
models, i.e. approximants to the function f , that guide the selection of new evaluation
points to eventually find a global optimum of the original function. To remain easy to
handle and cheap to evaluate, the response surface models are usually composed of
simple basis functions and fit to the unknown objective function at a limited number
of points, either through interpolation or some approximation scheme. Based on the
models, new evaluation points are then iteratively determined by some strategy, which
ideally balances between selecting points in unexplored regions of the domain to
improve the accuracy of the models there, i.e. a global search, and trusting the models
in regionswithmany function evaluations to find aminimum thereof, i.e. a local search.
In this way, the models are successively refined to capture the global behaviour of the
objective function as best as possible.
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Within the class of response surfacemethods, variousmethods can be distinguished,
see, e.g., Jones [20] or, more recently, Vu et al. [45] for a comparative survey, and
Forrester and Keane [7] for a more practical overview. Very generally, one may say
that there are threemainmethodologies according towhich traditional response surface
methods may be classified.

The underlying idea of Bayesian methods is to interpret the objective function f
as a realisation of a stochastic process F : X × Ω → R, (x, ω) �→ F(x, ω), on
some probability space (Ω,F ,P), such that upon observing f (x1), . . . , f (xn), the
conditional mean function sn(x) = EP[F(x)|F(x1) = f (x1), . . . , F(xn) = f (xn)]
and the variance function vn(x) = VarP(F(x)|F(x1) = f (x1), . . . , F(xn) = f (xn))
act as a response surface and a measure of the involved error to f , respectively.
In particular, if the underlying stochastic process is assumed to be Gaussian with
mean function EP[F(x)] and covariance function CovP(F(x), F(y)), x, y ∈ X , the
distributional properties imply that the conditional process is again Gaussian, allowing
for suitable expressions in closed form. As for determining new evaluation points, two
main strategies can essentially be distinguished in a Bayesian framework. The first
strategy, known as P-algorithm, dates back to Kushner [24, 25] and maximises the
probability of achieving a certain target function value below the current minimum of
the surface in order to find a new point. The second strategy has its origin in Mockus
et al. [27] and determines a new point by maximising the expected improvement over
the current best function value.

Similar to Bayesian methods, regression-based methods, which are commonly
referred to as Kriging [26], also assume f to be a realisation of a stochastic process
{F(x)}x∈X but use a linear regression to fit a response surface model. Specifically,
given the observations f (x1), . . . , f (xn), these methods derive a response surface sn
as the best linear unbiased predictor and the corresponding error vn as themean squared
error, see, e.g., Sacks et al. [35] for more details, thus leading to the same methods
as in the Bayesian methodology for the special case of a Gaussian process (see, e.g.,
Fowkes [8] for the equivalence), but otherwise different ones. Themost popularmethod
embeddedwithin a regression-basedmethodology is the Efficient Global Optimisation
(EGO) algorithm by Jones et al. [22], which specifies the covariance structure of the
stochastic process between sampled points by aGaussian correlation function andfinds
the next evaluation point by using the expected improvement criterion, as suggested
for Bayesian methods. Schonlau [40] observes that the latter criterion, being inde-
pendent of any parameter, may result in a search that overly emphasises local search
and suggests using a generalised expected improvement, which introduces an addi-
tional parameter that controls the balance between global versus local search. Another
related modification that allows to exogenously control local and global search by an
additional parameter is the weighted expected improvement, due to Sóbester et al.
[42]. The EGO approach to construct suitable response surfaces has also been used
by Villemonteix et al. [44] in their Informational Approach to Global Optimisation
(IAGO). However, instead of expected improvement, they use the conditional entropy
of a minimiser as a criterion to iteratively determine new evaluation points. Further
work allow for constraints [13], multiobjective problems [6], and parallelisation [46].

For methods that do not model the objective function by means of stochastic pro-
cesses, a general response surface technique for finding a new evaluation point is
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proposed by Jones [19]. It assumes the existence of a linear space of functions A,
which is left unspecified but admits a measure of ‘bumpiness’ σ(s) for its elements
s ∈ A. In any given iteration, once a response surface model has been fitted to a
set of function values f (x1), . . . , f (xn) through interpolation, a target value f ∗ is
then chosen which may be considered as a rough estimate of the global minimum
of f . By this choice, a new evaluation point xn+1 is then determined as the value of
y /∈ {x1, . . . , xn} such that the augmented response surface sy ∈ A minimises the
bumpiness σ(s) on A, subject to the interpolation conditions

sy(xi ) = f (xi ), i = 1, . . . , n,

sy(y) = f ∗,

and provided that, for any y ∈ X \{x1, . . . , xn}, the interpolant sy ∈ A is uniquely
defined. The most prominent response surface method that is based on Jones’ general
technique is suggested by Gutmann [10, 12] in form of the radial basis function (RBF)
method. As the name suggests, the method relies on the use of radial basis functions,
which not only ensures the uniqueness of interpolants under relatively mild conditions
on the location of the sample points, but also provides in a natural way a measure of
‘bumpiness’ in form of a semi-norm. The strategy for determining new evaluation
points is based on a mathematically sound mechanism, which facilitates establishing
convergence of the method and its close relation to the P-algorithm. On the practical
side, the method has proven to be a powerful tool and performs well on well-behaved
expensive optimisation problems, see, e.g., Björkman and Holmström [2], while the
noted slow convergence of themethod to a globalminimumofmore complex objective
functions has been addressed by Regis and Shoemaker [32], Holmström [14], and
Cassioli and Schoen [4], most notably. In addition, Costa and Nannicini [5] propose
a technique to speed up the practical convergence of Gutmann’s RBF method in case
noisy and less expensive function values are additionally available.

Finally, other works using radial basis functions to construct response surfaces in a
deterministic setup include, for instance, the investigation of the multiobjective case
[1, 29, 47] and the case of black-box constraints [28]. Also, there are approaches
which seemingly do not rely on any of the described underlying methodologies and
are thus designed to work with any kind of response surface model, see, e.g, Regis
and Shoemaker [30, 31, 33, 34] and Ji et al. [18].

Despite its importance in applications, the global optimisation of expensive objec-
tive functions in the presences of noise has attracted considerably less attention than
the equivalent optimisation without noise. Due to the underlying probabilistic frame-
work that is provided by Bayesian and regression-based methods, the fundamental
derivations of response surfaces and corresponding error measures, i.e. of the condi-
tional mean and variance functions as well as of the unbiased predictors and mean
squared errors, respectively, can be extended straightforwardly to noisy observations,
by adding randomly distributed error terms to the modelling stochastic process, see,
e.g., Schonlau [40]. Yet, the determination of new evaluation points poses a substantial
difficulty, which has been dealt with differently by a few authors. In their Sequential
Kriging Optimisation (SKO) method, Huang et al. [15] extend the EGO algorithm to
noisy objective function values, assuming that the involved random errors are i.i.d.
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normally distributed with constant variance. Correspondingly, the method relies on
the same Gaussian covariance structure of the EGO algorithm plus a variance term,
and to select new evaluation points, an augmented expected improvement criterion
is derived that calculates a scaled expected improvement over the response surface
value of the so-called effective best solution, instead of the current minimum function
value. A further extension to the expected improvement criterion that may be used in
a Bayesian/regression-based setup for noisy objective function values is suggested by
Gramacy and Lee [9], also known as the integrated expected conditional improvement.
Their main idea is to consider the expected improvement at a reference point, given
that the objective function has been sampled at a candidate point, i.e. the expected
conditional improvement, and find the next point as the maximiser of this criterion,
integrated by a suitable density function over all reference points. Finally, in Ville-
monteix et al. [44], the authors also show that their IAOG method for exact function
values can be extended to handle noisy observations. Specifically, they assume that
the errors in the observed function values are i.i.d. normally distributed with known
mean and variance, and estimate the conditional entropy criterion by simulating on
the noisy observed function values, instead of the true ones.

Relating to Jones’ general technique in the presence of noise, Žilinskas [51]
addresses the similarity between the P-algorithm and Gutmann’s RBF method and
shows that these techniques can be extended to noisy function values if appropriate
modifications aremade in both algorithms. In particular, he suggests to construct radial
basis function approximants for the latter by minimising the semi-norm such that the
residual sum of squares of an approximant to the noisy observations is proportional
to the variance of the involved additive noise, which is assumed to be constant and
known. New evaluation points may then be determined similar to Jones’ technique
by means of target values, i.e. by minimising the semi-norm of an augmented surface
such that it interpolates a chosen target value and such that the residual sum of squares
of the augmented surface to the noisy observations is proportional to the known vari-
ance. However, even though Žilinskas establishes the theoretical similarity between
the P-algorithm and the RBF method in a noisy setup, no explicit algorithm making
use of this result is proposed. Radial basis functions are also used in the algorithm
by Jakobsson et al. [17], called qualSolve, for the global optimisation of expensive
black-box functions subject to noise. Here, the authors construct response surfaces
by minimising the convex sum of the squared semi-norm of a radial basis function
approximant and the squared difference between its values at the sample points and the
noisy observations, where an additionally introduced parameter to balance between
both measures is estimated by cross validation. To select new evaluation points a qual-
ity function is maximised, which is calculated at each point by the minimum distance
to previously evaluated points andweighted by the response surface value at that point.
In particular, the weights are adjusted periodically in order to alternate between local
and global search of the method.

Finally, Shen and Shoemaker [41] build radial basis approximants to functions with
homoscedastic noise by minimising the weighted squared semi-norm and the sum of
squared differences between response surface values and observations. A new evalua-
tion point is then selected in each iteration from a set of randomly generated candidate
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points by a weighted score that balances between exploration and exploitation of the
parameter space.

Given above contributions, we present in this paper a novel RBF method for noisy
objective functions in which the level of noise can be controlled bymeans of pointwise
error bounds. The method is essentially based on Gutmann’s original RBF method
for deterministic objective functions and uses some of the ideas from Žilinskas [51]
to extending Gutmann’s method to a noisy setup. In establishing the method, we
address the construction of appropriate response surfaces and the determination of new
evaluationpoints once a surface has been constructed, as these are themain components
that require specification in order to deal with noisy function values. In particular,
since radial basis function interpolation is no longer feasible in the present situation,
we first consider common approaches for the approximation of a noisy function by
means of radial basis functions and briefly discuss their suitability for integration into a
response surface method. As regularised least-squares approximants explicitly seek to
balance between the bumpiness of the surface and the closeness to the data, where the
additional regularisation parameter may be set in accordance with the available error
bounds, they turn out to be particularly suited for our purposes. Moreover, the least-
squares criterion allows for a convenient adaption of Jones’ technique to determine
new evaluation points through target values, by analogy with Gutmann’s original
algorithm. In particular, this functionality also allows to establish convergence of the
method, where we show that the convergence properties of Gutmann’s deterministic
method are kept when the exact function values are replaced by corresponding noisy
values. As we will see, convergence can be achieved by updating the regularisation
parameter in a particular way, depending on the model of noise:

1. In the case of fixed noise, it is sufficient to ensure that the sequence of regularisation
parameters converges to zero quickly enough. As such, it suffices to choose these
parameters according to some exogenous sequence, at least for theoretical purposes.
This result follows from Theorem 2 (p. 22) together with Theorem 5 (p. 26).

2. In the case of iterative noise, if the noise vanishes fast enough, it is possible to
choose the regularisation parameter in each step in such a way that the bumpiness
of the approximant is as small as possible, thereby greatly simplifying the inner
optimisation step in which an augmented function based on this approximant is
minimised. This follows from Theorems 2, 3 (p. 22), and 5.

The remainder of this paper is organised as follows. In Sect. 2, we reviewGutmann’s
original RBF method to minimise a deterministic nonconvex objective function that
is expensive to evaluate. In Sect. 3, we briefly outline common approaches for radial
basis function approximation anddiscuss their suitability for integration into a response
surface method. Based on regularised least-squares approximants, we then present in
Sect. 4 a RBF method for minimising a noisy nonconvex and expensive objective
function, given that error bounds on the observed function values are available. In
Sect. 5, we establish the convergence of the method. In Sect. 6, we provide a numerical
illustration of the proposed RBF method by means of a simple test problem, while
Sect. 7 contains our conclusions.
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For ease of reference, we provide in Table 1 the most relevant variables and further
notations, together with their meaning.

2 Gutmann’s RBFmethod

Let us briefly describe Gutmann’s original RBF method [10, 12] for deterministic
objective functions, as this will provide us with the necessary tools to generalise this
method to the noisy case considered in this paper. The method relies on the general
technique by Jones [19], but specifically employs radial functions to construct response
surface interpolants of the generic form

s(x) =
n
∑

i=1

λiφ(‖x − xi‖2) + p(x), x ∈ R
d , (4)

where φ : [0,∞) → R is a fixed radial function, {λi }ni=1 are real coefficients,
{xi }ni=1 ⊂ R

d are distinct centre points, and p ∈ Pd
m is a polynomial from the linear

space of all real-valued polynomials of total degree at most m − 1 in d variables, with
Pd
0 = {0}. On the linear space of all functions of the form (4) on X , formally defined

by
Aφ,m(X ) := Fφ,m(X ) + Pd

m (5)

with

Fφ,m(X ) :=
{ n
∑

i=1

λiφ(‖· − xi‖2) : n ∈ N, λ ∈ R
n, {xi }ni=1 ⊂ X ,

n
∑

i=1

λi p(xi ) = 0, p ∈ Pd
m

}

,

a measure of ‘bumpiness’ is then given in a natural way by the semi-norm ‖·‖φ :=
〈 · , · 〉1/2φ , induced by the semi-inner product

〈s, u〉φ :=
n(s)
∑

i=1

λsi u(xsi ), (6)

for any two elements s, u ∈ Aφ,m(X ) with

s(x) =
n(s)
∑

i=1

λsi φ(‖x − xsi ‖2) + ps(x) and u(x) =
n(u)
∑

i=1

λui φ(‖x − xui ‖2) + pu(x).

The classical choices of radial basis functions φ, along with their minimal order
mφ guaranteeing conditional positive definiteness are given in Table 2, cf. [12], list-
ing (3.2). Inwhat follows,wewill also need the notion of conditionally positive definite
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Table 2 Common choices of radial basis functions, their shape parameter ζ > 0, smoothing parameter ν,
and the minimal order mφ

Radial basis function φ(r) Specification Minimal order mφ

Surface splines rν ν ∈ N, ν odd 
ν/2� + 1

rν log r ν ∈ N, ν even

Multiquadrics (r2 + ζ 2)ν ν > 0, ν /∈ N 
ν� + 1

Inverse multiquadrics (r2 + ζ 2)ν ν < 0 0

Gaussians e−ζr2 0

functions. Recall that a continuous radial function φ is conditionally positive definite
of order m if

∑n
i=1
∑n

j=1 λiλ jφ(‖xi − x j‖2) > 0 for any pairwise distinct points

x1, . . . , xn , n ∈ N, and any λ ∈ R
n\{0} satisfying∑n

i=1 λi p(xi ) = 0, p ∈ Pd
m . Since

a conditionally positive definite function of order m1 is also conditionally positive
definite of order m2 ≥ m1, particular interest is given to the smallest possible order
mφ ∈ N0 such that φ is conditionally positive definite.

In the following, let φ be a conditionally positive definite radial basis function of
order m, and let {p j }m̃j=1 be a basis of the space of polynomials Pd

m of degree at most
m − 1 with dimension m̃.

Construction of response surface

Suppose we are in iteration n of the algorithm and can interpolate the data
(x1, f (x1)), . . . , (xn, f (xn)). To construct an interpolant sn ∈ Aφ,m(X ) of the
form (4), with Aφ,m(X ) defined as in (5), the corresponding coefficients are deter-
mined by solving

min
s∈Aφ,m (X )

‖s‖φ s.t. s(xi ) = f (xi ), i = 1, . . . , n, (7)

which reduces to solving the linear system (see Schaback [36])

(

Φ P
P� 0

)(

λ

c

)

=
(

F
0

)

, (8)

whereΦ ∈ R
n×n and P ∈ R

n×m̃ denote the interpolation and polynomial basis matrix
with entries Φi j = φ(‖xi − x j‖2), i, j = 1, . . . , n, and Pi j = p j (xi ), i = 1, . . . , n,
j = 1, . . . , m̃, respectively, λ ∈ R

n and c ∈ R
m̃ are the coefficient vectors, and

F = ( f (x1), . . . , f (xn))� stands for the vector of observed function values.
The unique solvability of the linear system (8) follows under the relatively mild

condition that the sample points x1, . . . , xn form a Pd
m-unisolvent set, i.e. if p ∈ Pd

m
and p(xi ) = 0, i = 1, . . . , n, then p ≡ 0, see, e.g., Wendland [49] for details.
Moreover, it is easy to verify that the linear system will remain uniquely solvable
upon the successive addition of new data points, provided that they are distinct from
previous ones.
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Determination of next evaluation point

Upon the construction of sn , the next evaluation point xn+1 is determined according
to Jones’ general technique. More precisely, for a given target value f ∗

n that will be
specified further below, the point xn+1 is given as the point y ∈ X \{x1, . . . , xn} such
that there is an augmented surface sy ∈ Aφ,m(X ) that solves

min
y∈X

s∈Aφ,m (X )

‖s‖φ s.t. s(xi ) = f (xi ), i = 1, . . . , n,

s(y) = f ∗
n .

(9)

To simplify problem (9), the optimal interpolant sy ∈ Aφ,m(X ), y ∈ X \{x1, . . . , xn},
satisfying the interpolation conditions in (9) can be rewritten as

sy(x) = sn(x) + [ f ∗
n − sn(y)

]

ln(y, x), x ∈ R
d , (10)

where ln(y, ·) ∈ Aφ,m(X ) is the optimal interpolant to

ln(y, xi ) = 0, i = 1, . . . , n,

ln(y, y) = 1.
(11)

In particular, the function ln(y, ·) can be expressed as

ln(y, x) =
n
∑

i=1

αi (y)φ(‖x − xi‖2) + β(y)φ(‖x − y‖2) +
m̃
∑

j=1

b j (y)p j (x), x ∈ R
d ,

whose coefficients α(y) = (α1(y), . . . , αn(y))� ∈ R
n , β(y) ∈ R, and b(y) =

(b1(y), . . . , bm̃(y))� ∈ R
m̃ solve the linear system

⎛

⎝

Φ un(y) P
un(y)� φ(0) π(y)�
P� π(y) 0

⎞

⎠

⎛

⎝

α(y)
β(y)
b(y)

⎞

⎠ =
⎛

⎝

0
1
0

⎞

⎠ , (12)

for the matrices Φ ∈ R
n×n and P ∈ R

n×m̃ , and the vectors un(y) := (φ(‖x1 −
y‖2), . . . , φ(‖xn − y‖2))� ∈ R

n and π(y) := (p1(y), . . . , pm̃(y))� ∈ R
m̃ . By

means of representation (10), the squared semi-norm of sy can then be simplified to

‖sy‖2φ = ‖sn‖2φ + 2
[

f ∗
n − sn(y)

]〈sn, ln(y, ·)〉φ + [ f ∗
n − sn(y)

]2‖ln(y, ·)‖2φ
= ‖sn‖2φ + β(y)

[

f ∗
n − sn(y)

]2
, (13)

using the definition of the semi-inner product (6) and the interpolation conditions (11).
Since‖sn‖φ is independent of y, Eq. (13) shows that the requiredminimisation of‖sy‖φ
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with respect to y boils down to minimising the nonnegative function

gn(y) := μn(y)
[

f ∗
n − sn(y)

]2
, y ∈ X \{x1, . . . , xn}, (14)

where the function μn : X \{x1, . . . , xn} → R is given by

μn(y) := ‖ln(y, ·)‖2φ = β(y). (15)

Note that the function μn is well-defined and allows for the properties described in
the following two remarks.

Remark 1 Definition (15) provides thatμn(y) > 0 for y ∈ X \{x1, . . . , xn}: Assuming
there is an y0 ∈ X \{x1, . . . , xn} with μn(y0) = 0, definition (15) and the Pd

m-
unisolvency of {x1, . . . , xn} yield ln(y0, ·) ≡ 0. This, however, is in contradiction
to the interpolation constraint ln(y0, y0) = 1.

Remark 2 By applying Cramer’s rule to the linear system (12), the function μn can be
computed as

μn(y) = det An

det An(y)
, y ∈ X \{x1, . . . , xn},

where An and An(y) are given by the nonsingular interpolation matrices on the left-
hand sides of Eqs. (8) and (12), respectively. Hence, since det An is a nonzero constant
and limy→xi det An(y) = 0 for any i ∈ {1, . . . , n}, it follows that

lim
y→xi

μn(y) = ∞, i = 1, . . . , n.

Also note that the functionμn (and thus gn) can be equivalently expressed, cf. [12],
Proposition 4.12, which allows for a more intuitive interpretation as well as a more
efficient computation.

Remark 3 The function defined by

vn(y) :=
[

φ(0) −
(

un(y)
π(y)

)� (
Φ P
P� 0

)−1 (
un(y)
π(y)

)]

, y ∈ R
d ,

is identical to 1/μn(y) on y ∈ R
d\{x1, . . . , xn}. In particular, since vn is zero at the

sample points x1, . . . , xn and positive and finite elsewhere, it provides a measure of
the uncertainty of the model sn to f . Moreover, based on vn , the function defined by

hn(y) := vn(y)
[

sn(y) − f ∗
n

]2 , y ∈ R
d ,

is identical to 1/gn(y) on y ∈ R
d\{x1, . . . , xn}.
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Choice of target value

The choice of f ∗
n crucially influences the location of the new point xn+1. To guarantee

that xn+1 as a global minimiser of gn on X \{x1, . . . , xn} exists and does not coincide
with previous sample points, it must hold that

f ∗
n ∈

[

− ∞,min
y∈X

sn(y)

]

, (16)

where the case f ∗
n = miny∈X sn(y) is only admissible if f ∗

n < sn(xi ), i = 1, . . . , n.
Specifically, for low target values satisfying (16), the method essentially performs

a global search in which the new point xn+1 is sampled away from already evaluated
points. A high target value close or equal to miny∈X sn(y) is supposed to sample xn+1
either in the vicinity of a global minimiser of sn , if f ∗

n < miny∈X sn(y), or as a global
minimiser of sn , if f ∗

n = miny∈X sn(y), cf. Regis and Shoemaker [32]. In particular,
for fn → −∞, one can observe by the definition of gn and the boundedness of sn on
X that μn(xn+1) ≤ μn(y), y ∈ X \{x1, . . . , xn}. Hence, choosing f ∗

n = −∞ reduces
the minimisation of gn on X \{x1, . . . , xn} to the minimisation of μn , which samples
xn+1 as far away as possible from the points x1, . . . , xn .

Summary of Gutmann’s RBF method

Altogether, Gutmann’s RBF method for minimising a deterministic and continuous
function f : X → R on a compact set X can be summarised as follows.

Algorithm 1 (Gutmann’s RBF Method).

0. Initial step:

– Choose a conditionally positive definite radial basis function φ of order m.

– Generate a Pd
m-unisolvent set of points {x1, . . . , xn0} ⊂ X .

– Evaluate f at the points x1, . . . , xn0 , and set n = n0.

1. Iteration step:

while n ≤ nmax do

– Construct the interpolant sn ∈ Aφ,m(X ) solving

min
s∈Aφ,m (X )

‖s‖φ s.t. s(xi ) = f (xi ), i = 1, . . . , n.

– Choose an admissible target value f ∗
n ∈ [− ∞,miny∈X sn(y)

]

.

– Determine xn+1, which is the value of y that solves

min
y∈X \{x1,...,xn}

μn(y)
[

f ∗
n − sn(y)

]2
.
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– Evaluate f at xn+1, and set n = n + 1.

end while

3 Approximation with radial basis functions

To recover an unknown function f : X → R on some set X ⊂ R
d from a number

of observed function values f (x1), . . . , f (xn) with x1, . . . , xn ∈ X , an interpola-
tion technique is typically adopted if the respective function values are known to
be exact. However, if the observations are contaminated by noise, i.e. we observe
f̂ (n)(x1), . . . , f̂ (n)(xn) in step n of our algorithm, then other approximation tech-
niques are recommended. In particular, if an interpolation was used for noisy function
observations, too much weight would be given to the involved noise, which may eas-
ily lead to a model overfitting the data and becoming unnecessarily oscillating, thus
corresponding poorly to the underlying function.

Unlike in the case of interpolation, there exist various possibilities to approximate
a set of noisy function values by means of radial basis functions. A suitable choice
essentially depends on the nature of the available data and the intended use of the
resulting approximant. A technique that is frequently employed is a least-squares
approximation, see, e.g., Buhmann [3], Chapter 8, or Iske [16], Section 3.10, where
approximants of the generic form (4) are considered for a reduced numbered of pair-
wise distinct centres {x̃ j }ñj=1 ⊂ X , ñ + m̃ < n, which usually coincide with some
of the sample points x1, . . . , xn , but may also be different. This form is then used to
obtain an optimal approximant s ∈ Ãφ,m(X ) by solving

min
s∈Ãφ,m (X )

n
∑

i=1

wi
(

s(xi ) − f̂ (n)(xi )
)2

, (17)

where Ãφ,m(X ) denotes the corresponding linear function space and w1, . . . , wn are
positive weights to take care of potential heteroscedasticity in the data. Due to the
side conditions in Ãφ,m(X ), problem (17) constitutes a linear least-squares problem
with equality constraints, which can be solved uniquely via a linear system if the set
of centres {x̃1, . . . , x̃ñ} is Pd

m-unisolvent and forms a subset of the sample points,
see, e.g., Iske [16], Theorem 17. A least-squares approach may notably reduce the
complexity of constructing an approximant if ñ � n. However, the main drawback
then lies in choosing a suitable set of centres which defines both the smoothness of
an approximant and its closeness to the data. This ambiguity makes it difficult to
incorporate the technique into a response surface method where new points are added
iteratively, as argued, for instance, by Žilinskas [51].

An approach that explicitly allows to include both the semi-norm as a measure
of smoothness and the availability of error bounds into the construction of a radial
basis function approximant is known as relaxed interpolation, see, e.g., Schaback and
Wendland [38], Section 3. Specifically, requiring an approximant to be as smooth as
possible but such that it deviates at the sampled points xi from the observed values
f̂ (n)(xi ) by at most ε(n)

i , an optimal approximant s ∈ Aφ,m(X ) is found by solving
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min
s∈Aφ,m (X )

‖s‖2φ
s.t.

∣
∣wi
(

s(xi ) − f̂ (n)(xi )
)∣
∣ ≤ ε

(n)
i , i = 1, . . . , n.

(18)

By definition of the semi-norm and the side conditions in Aφ,m(X ), problem (18)
presents a convex quadratic programme with both equality and inequality constraints,
which can be solved uniquely if the set of points {x1, . . . , xn} is assumed to be Pd

m-
unisolvent. Note that, as a consequence of the involved inequality constraints, the
convex quadratic programme needs to be solved; the optimal approximant can no
longer be determined by solving just a linear system of equations. By applying the
KKT conditions, it can be shown that the optimal approximant either interpolates the
endpoints of the (potentially scaled) error bounds or the corresponding coefficient λi
equals zero, or both, cf. Schölkopf and Smola [39] for the related concept of support-
vector machines.

The regularised least-squares approximation, as described, for instance, in Wend-
land andRieger [50] orWendland [48], is another approach that explicitly incorporates
the semi-norm into the construction of the approximant. However, instead of impos-
ing inequality constraints to regulate the discrepancy to the noisy function values, the
closeness to the data is assessed by residual sum of squares. Consequently, an optimal
approximant sγ ∈ Aφ,m(X ) is sought as the solution of

min
s∈Aφ,m (X )

γ ‖s‖2φ + 1

n

n
∑

i=1

wi
(

s(xi ) − f̂ (n)(xi )
)2

, (19)

where the additional parameter γ > 0 is introduced to control the trade-off between
the smoothness of the approximant and its closeness to the noisy function values.
In particular, for large γ we place more emphasis on minimising the bumpiness,
while for small γ the closeness to the data is enforced, yielding an interpolation of
f̂ (n)(x1), . . . , f̂ (n)(xn) in case γ = 0.
Bearing in mind the constraints on the coefficients λi in Aφ,m(X ), problem (19)

comprises an equality constrained convex quadratic programme. Hence, similar to
plain interpolation, the construction of an approximant can be reduced to solving a
(regularised) linear system, see Theorem 1 below. In particular, this implies that errors
in function values are taken into account by interpolating some perturbed noisy func-
tion values, where the magnitude of the perturbation is governed by the regularisation
parameter γ . Moreover, the parameter γ has a clear and intuitive interpretation, which
facilitates its determination by means of the available error bounds (2) or (3) and also
allows for a convenient application of Jones’ technique to determine new evaluation
points, cf. Sect. 4. Consequently, regularised least-squares approximation seems to
provide the most suitable approach for an extension of Gutmann’s RBF method to
noise. In what follows, we will make use of the following result.

Theorem 1 Let φ be a conditionally positive definite radial basis function of order m,
and assume that a Pd

m-unisolvent set of points {x1, . . . , xn} ⊂ X with correspond-
ing noisy function values f̂ (n)(x1), . . . , f̂ (n)(xn) is given. Then, for any γ > 0, the
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approximant sγ
n ∈ Aφ,m(X ) whose coefficients are determined by the linear system

(

Φ + nγW−1 P
P� 0

)(

λ

c

)

=
(

F̂ (n)

0

)

, (20)

where W = diag(w1, . . . , wn) and F̂ (n) = ( f̂ (n)(x1), . . . , f̂ (n)(xn))�, is the unique
element of Aφ,m(X ) that solves the regularised least-squares approximation prob-
lem (19).

Proof Let γ > 0 be fixed, and observe that problem (19) can be rewritten as

min
(λ,c)�∈Rn+m̃

nγ λ�Φλ + ∥∥W 1/2(Φλ + Pc − F̂ (n))
∥
∥2
2 s.t. P�λ = 0. (21)

By the conditional positive definiteness of φ, problem (21) is strictly convex. Hence,
a unique solution exists if the set of sample points {x1, . . . , xn} is Pd

m-unisolvent,
guaranteeing that the matrix P� has full row rank. Applying the KKT conditions
to (21) provides the linear equations

(nγΦ + Φ�WΦ)λ + Φ�WPc + Pυ = Φ�W F̂ (n) (22)

P�W (Φλ + Pc) = P�W F̂ (n) (23)

P�λ = 0, (24)

where υ ∈ R
m̃ denotes the Lagrange multiplier for the constraint P�λ = 0. Since

φ is conditionally positive definite, the matrix Φ is invertible for any λ ∈ R
n\{0}

satisfying (24). Thus, multiplying Eq. (22) by (ΦW )−1 simplifies to

(Φ + nγW−1)λ + Pc + (Φ�W )−1Pυ = F̂ (n),

which, by substituting into Eq. (23), yields P�Φ−1Pυ = 0. However, since
{x1, . . . , xn} is Pd

m-unisolvent, the latter implies υ = 0, such that we obtain the stated
linear system (20). ��

Note that the linear system (20) remains uniquely solvable if new points are added,
distinct from already sampled points.

4 A radial basis functionmethod for noisy objective functions

In this section, we describe our novel RBF method for minimising a noisy objective
function f̂ : X → R on a compact set X , which proceeds similar to Algorithm 1
but uses a regularised least-squares approach to construct approximating response
surfaces and determine new evaluation points.

Let φ be a conditionally positive definite radial basis function of order m and Pd
m

be the space of polynomials of degree at most m − 1 with basis {p j }m̃j=1. Assume

that the initially sampled points x1, . . . , xn0 form a Pd
m-unisolvent set and that error
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bounds ε
(n0)
1 , . . . , ε

(n0)
n0 and positive weights w1, . . . , wn0 are available for the cor-

responding noisy function values f̂ (n0)(x1), . . . , f̂ (n0)(xn0). For n ≥ n0, a general
iteration, consisting of the construction of an approximant and the determination of
a new evaluation point by a suitably chosen target value, can then be described as
follows, cf. Sect. 4.4 for a compact description of the full algorithm.

4.1 Construction of response surface

For given data (x1, f̂ (n)(x1)), . . . , (xn, f̂ (n)(xn)), weights w1, . . . , wn , and γ > 0,
let us denote the unique solution of the linear system (20), cf. Theorem 1, by
(λ(n,γ ), c(n,γ )) and the optimal regularised least-squares approximant to the given
data from the space Aφ,m(X ) by

sγ
n (x) =

n
∑

i=1

λ
(n,γ )

i φ(‖x − xi‖2) + p(n,γ )(x), x ∈ R
d . (25)

To determine γn in the n-th iteration, we make use of the fact that we are predomi-
nantly interested in finding a rather smooth approximant that deviates at most by the
error bounds from the noisy function values to recover the underlying function f .
Accordingly, we first observe that the smoothness of the approximant sγ

n can alterna-
tively be characterised in terms of the parameter γ , which seems intuitively clear from
formulation (19). More formally, it can be justified by the following Proposition 1, for
which we define byR(P) the range of the polynomial basis matrix P ∈ R

n×m̃ .

Proposition 1 Let φ be a conditionally positive definite radial basis function of order
m, and let {x1, . . . , xn} ⊂ X be aPd

m-unisolvent set with corresponding noisy function
values f̂ (n)(x1), . . . , f̂ (n)(xn). For γ > 0, let sγ ∈ Aφ,m(X ) denote the unique
solution to the regularised least-squares problem (19). Then, the following holds:

(a) λ(n,γ ) and c(n,γ ) depend continuously on γ .
(b) The optimal value of (19) is concave and monotonically increasing in γ . In case

( f̂ (n)(x1), . . . , f̂ (n)(xn))� /∈ R(P), then the optimal value function is strictly
monotonically increasing.

(c) For any fixed noisy function values, the term ‖sγ ‖φ is monotonically decreasing

in γ and 1
n

∑n
i=1 wi (sγ (xi ) − f̂ (n)(xi ))2 is monotonically increasing in γ . If

( f̂ (n)(x1), . . . , f̂ (n)(xn))� /∈ R(P), then these terms are strictly monotonically
decreasing and increasing in γ , respectively.

Proof Since the associated matrix on the left-hand side of the linear system (20) is
nonsingular and depends continuously on γ , so does its inverse, which establishes
statement (a).

The first part of statement (b) follows directly from the affine structure of the
objective function in γ . For the second part note that it holds ‖sγ ‖2φ �= 0 due to the

assumption ( f̂ (n)(x1), . . . , f̂ (n)(xn))� /∈ R(P), see Gutmann [11], p. 318.
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To show (c), let 0 < γ < γ̃ be fixed. By the optimality of the corresponding
minimisers sγ , s γ̃ ∈ Aφ,m(X ), we then have

γ ‖sγ ‖2φ + 1

n

n
∑

i=1

wi
(

sγ (xi )− f̂ (n)(xi )
)2 ≤ γ ‖s γ̃ ‖2φ + 1

n

n
∑

i=1

wi
(

s γ̃ (xi )− f̂ (n)(xi )
)2

,

(26)
and

γ̃ ‖s γ̃ ‖2φ + 1

n

n
∑

i=1

wi
(

s γ̃ (xi )− f̂ (n)(xi )
)2 ≤ γ̃ ‖sγ ‖2φ + 1

n

n
∑

i=1

wi
(

sγ (xi )− f̂ (n)(xi )
)2

.

(27)
Adding both inequalities, cancelling equal terms, and rearranging yields

(γ̃ − γ )‖s γ̃ ‖2φ ≤ (γ̃ − γ )‖sγ ‖2φ,

such that ‖sγ ‖2φ is monotonically decreasing in γ . Moreover, it follows that

γ
(‖sγ ‖2φ −‖s γ̃ ‖2φ

) ≤ 1

n

n
∑

i=1

wi
(

s γ̃ (xi )− f̂ (n)(xi )
)2 − 1

n

n
∑

i=1

wi
(

sγ (xi )− f̂ (n)(xi )
)2

,

(28)
showing that 1

n

∑n
i=1 wi (sγ (xi ) − f̂ (n)(xi ))2 is monotonically increasing in γ .

To establish the strict monotonicity of both functions in case ( f̂ (n)(x1), . . . ,
f̂ (n)(xn))� /∈ R(P), we start by showing that the minimisers sγ and s γ̃ cannot be
identical for 0 < γ < γ̃ . To this end, assume sγ ≡ s γ̃ and observe that the linear
system (20) provides for i = 1, . . . , n,

sγ (xi ) − f̂ (xi ) = −nγw−1
i λ

γ

i and sγ (xi ) − f̂ (xi ) = −nγ̃ w−1
i λ

γ

i , (29)

where λ
γ

i denotes the i-th coefficient of sγ . The latter in turn yields

n(γ̃ − γ )w−1
i λ

γ

i = 0,

and therefore λ
γ

i = 0 for i = 1 . . . , n. This, however, implies that sγ ∈
Pd
m , such that the function values f̂ (n)(x1), . . . , f̂ (n)(xn) in (29) are interpolated

by a polynomial from the linear space Pd
m , which contradicts the assumption

( f̂ (n)(x1), . . . , f̂ (n)(xn))� /∈ R(P). Since sγ �= s γ̃ and the solution of (19) is unique
according to Theorem 1, we even have

γ ‖sγ ‖2φ + 1

n

n
∑

i=1

wi
(

sγ (xi )− f̂ (n)(xi )
)2

< γ ‖s γ̃ ‖2φ + 1

n

n
∑

i=1

wi
(

s γ̃ (xi )− f̂ (n)(xi )
)2

,

(30)
i.e. < holds instead of ≤ in (26). Adding (30) and (27) and rearranging as before
immediately yields

(γ̃ − γ )‖s γ̃ ‖2φ < (γ̃ − γ )‖sγ ‖2φ,
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and thus the strict monotonicity of ‖sγ ‖φ . Finally, the strict monotonicity of
1
n

∑n
i=1 wi (sγ (xi ) − f̂ (n)(xi ))2 follows by (28). ��

Choosing the regularisation parameter

We will see later that to show convergence of the method it suffices to choose the
regularisation parameter γ in each step in such a way that the corresponding sequence
{γn} converges to zero quickly enough, in particular if γn = o(1/n). This can easily be
achievedbychoosing {γn} to be an appropriate exogeneous sequence, e.g.γn = 1/n1+δ

for some δ > 0.
However, depending on the noise model, much can be gained by choosing γn

adaptively to control the bumpiness of the approximant sγn
n . Proposition 1 provides a

corresponding framework: the parameter γn can be identified uniquely under the weak
assumption that ( f̂ (n)(x1), . . . , f̂ (n)(xn))� /∈ R(P) in the following way. Finding the
smoothest approximant sγn

n such that it deviates at the considered points xi from the
noisy function values f̂ (n)(xi ) by at most ε(n)

i can be stated as the auxiliary problem

max
γ≥0

γ

s.t.
∣
∣sγ
n (xi ) − f̂ (n)(xi )

∣
∣ ≤ ε

(n)
i , i = 1, . . . , n.

(31)

Problem (31) consists of a linear objective function in one dimension, which is
subject to n nonlinear inequality constraints. Since sγ

n converges to the interpolant of
f̂ (n)(x1), . . . , f̂ (n)(xn) for γ → 0, as can be read off from the regularised system (20),
a feasible solution to problem (31) exists. However, unlike the sum-of-squares func-
tion, the individual constraints are potentially non-monotonic in γ , and each evaluation
of the constraints requires to solve the linear system (20). This renders the problem
difficult to solve and unnecessarily time-consuming. Thus, as γn is readjusted in each
iteration upon the addition of a new point, searching for an approximate solution is
sufficient. Preliminary numerical experiments indicate that appropriate values of γn
can be obtained by an efficient backtracking strategy, which starts with a large enough
γn and successively decreases this value until all constraints of (31) are met for the
first time.

4.2 Determination of next evaluation point

To determine the next point of evaluation xn+1, we continue similar to Jones’ tech-
nique and assume that a noise-free target value f ∗

n has been chosen. Let γn > 0 be
chosen appropriately. Then, let xn+1 be the point y ∈ X \{x1, . . . , xn} such that the
augmented approximant sγn

y ∈ Aφ,m(X ) minimises the regularised least-squares cri-
terion to previous sample points and interpolates f ∗

n at the new y. In formal terms, we
thus require that sγn

y solves

min
s∈Aφ,m (X )

γn‖s‖2φ + 1

n

n
∑

i=1

wi
(

s(xi ) − f̂ (n)(xi )
)2 s.t. s(y) = f ∗

n , (32)
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which is a strictly convex optimisation problem onAφ,m(X ) and thus admits a unique
solution, cf. Theorem 1. Note that (32) is a penalised version of problem (9), in the
sense that we relax n interpolation conditions by adding quadratic penalty terms to
the objective.

To simplify problem (32) in terms of the sought new point y ∈ X \{x1, . . . , xn},
we first rewrite the augmented approximant sγn

y according to

sγn
y (x) = sγn

n (x) + [ f ∗
n − sγn

n (y)
]

lγnn (y, x), x ∈ R
d , (33)

where lγnn (y, ·) ∈ Aφ,m(X ) is the radial basis function approximant that solves the
constrained regularised least-squares problem

min
l(y, · )∈Aφ,m (X )

γn‖l(y, ·)‖2φ + 1

n

n
∑

i=1

wi
(

l(y, xi )
)2 s.t. l(y, y) = 1. (34)

Representation (33) is valid since for any y ∈ X \{x1, . . . , xn} both sγn
n and lγnn (y, ·)

are uniquely defined as solutions to the problems (19) and (34), respectively. Hence,
the right-hand side of (33) is a unique well-defined element of Aφ,m(X ), and it also
satisfies the interpolation constraint in problem (32). Moreover, similar to Theorem 1,
it can be shown that the approximating function lγnn (y, ·) has the form

lγnn (y, x) =
n
∑

i=1

αi (y)φ(‖x − xi‖2)+β(y)φ(‖x − y‖2)+
m̃
∑

j=1

b j (y)p j (x), x ∈ R
d ,

where the coefficients1 α(y) = (α1(y), . . . , αn(y))� ∈ R
n , β(y) ∈ R, and b(y) =

(b1(y), . . . , bm̃(y))� ∈ R
m̃ are defined by the linear system

⎛

⎝

Φ + nγnW−1 un(y) P
un(y)� φ(0) π(y)�
P� π(y) 0

⎞

⎠

⎛

⎝

α(y)
β(y)
b(y)

⎞

⎠ =
⎛

⎝

0
1
0

⎞

⎠ , (35)

for the matrices Φ ∈ R
n×n , P ∈ R

n×m̃ , and W ∈ R
n×n introduced before, and the

corresponding vectors un(y) = (φ(‖x1−y‖2), . . . , φ(‖xn−y‖2))� ∈ R
n andπ(y) =

(p1(y), . . . , pm̃(y))� ∈ R
m̃ .Note that (35) can be seen as a regularised version of (12),

where positive entries have been added to the diagonal of the interpolation matrix Φ.
By inserting representation (33) into the objective function of (32), the latter can

then be reformulated as

1 Note that the coefficients αi (y), β(y), b j (y) also depend on the parameter γn . To keep the notation

simple, we will denote the dependency on γn only for the approximant sγnn and for the function lγnn (y, ·).
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γn‖sγn
y ‖2φ + 1

n

n
∑

i=1

wi
(

sγn
y (xi ) − f̂ (n)(xi )

)2

= γn

(

‖sγn
n ‖2φ + 2

[

f ∗
n − sγn

n (y)
]〈sγn

n , lγnn (y, ·)〉φ + [ f ∗
n − sγn

n (y)
]2‖lγnn (y, ·)‖2φ

)

+ 1

n

n
∑

i=1

wi

((

sγn
n (xi ) − f̂ (n)(xi )

)2 + [ f ∗
n − sγn

n (y)
]2(

lγnn (y, xi )
)2

+ 2
(

sγn
n (xi ) − f̂ (n)(xi )

)[

f ∗
n − sγn

n (y)
]

lγnn (y, xi )
)

= γn‖sγn
n ‖2φ + 1

n

n
∑

i=1

wi
(

sγn
n (xi ) − f̂ (n)(xi )

)2

+ [ f ∗
n − sγn

n (y)
]2
(

γn‖ lγnn (y, ·)‖2φ + 1

n

n
∑

i=1

wi

(

lγnn (y, xi )
)2
)

, (36)

where the last equation holds by definition of the semi-inner product (6) and the
relation sγn

n (xi ) − f̂ (n)(xi ) = −nγnw
−1
i λi , i = 1, . . . , n, due to (20), which both

together yield

〈sγn
n , lγnn (y, ·)〉φ =

n
∑

i=1

λi l
γn
n (y, xi )

= − 1

nγn

n
∑

i=1

wi
(

sγn
n (xi ) − f̂ (n)(xi )

)

lγnn (y, xi ).

Now, the first two terms on the right-hand side of Eq. (36) are independent of y
and correspond to the objective function for constructing the approximant sγn

n , cf.
problem (19). To find the new point y, it thus suffices to consider the last term
in (36). However, by the semi-inner product (6) and the linear system (35), implying
lγnn (y, xi ) = −nγnw

−1
i αi (y) for i = 1, . . . , n, it holds

γn‖lγnn (y, ·)‖2φ + 1

n

n
∑

i=1

wi
(

lγnn (y, xi )
)2

= γn

(
n
∑

i=1

αi (y)l
γn
n (y, xi ) + β(y)lγnn (y, y)

)

+ 1

n

n
∑

i=1

wi
(

lγnn (y, xi )
)2

= γnβ(y).

Therefore, we can conclude that solving the required problem (32) is equivalent to
minimising the nonnegative function

gγn
n (y) := μ

γn
n (y)

[

f ∗
n − sγn

n (y)
]2

, y ∈ X \{x1, . . . , xn} (37)
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with respect to y, where the functionμ
γn
n : X \{x1, . . . , xn} → R is defined for γn > 0

by

μ
γn
n (y) := ‖lγnn (y, ·)‖2φ + 1

nγn

n
∑

i=1

wi
(

lγnn (y, xi )
)2 = β(y). (38)

Note the resemblance of the functions gγn
n and μ

γn
n to their deterministic coun-

terparts (14) and (15), respectively. In particular, since lγnn (y, ·) is well-defined for
y ∈ X \{x1, . . . , xn}, so are both functions gγn

n and μ
γn
n .

Remark 4 By the same argument as given in Remark 1, definition (38) implies that
the function μ

γn
n is positive on X \{x1, . . . , xn}.

Moreover, by definition (38) and Cramer’s rule to solve the linear system (35), we
have

μ
γn
n (y) = det Aγn

n

det Aγn
n (y)

, y ∈ X \{x1, . . . , xn},

where Aγn
n and Aγn

n (y) denote the nonsingular matrices on the left-hand sides of the
linear systems (20) and (35), respectively, that is

Aγn
n :=

(

Φ + nγnW−1 P
P� 0

)

and Aγn
n (y) :=

⎛

⎝

Φ + nγnW−1 un(y) P
un(y)� φ(0) π(y)�
P� π(y) 0

⎞

⎠ .

(39)
Since det Aγn

n is a nonzero constant and limy→xi det A
γn
n (y) �= 0 (i ∈ {1, . . . , n})

by the positivity of v
γn
n , it thus holds

lim
y→xi

μ
γn
n (y) < ∞, i = 1, . . . , n.

Hence, even though μ
γn
n is not defined at the sample points x1, . . . , xn , it can be

continuously extended at these points by the positive and finite values

μ
γn
n (xi ) = det Aγn

n

det Aγn
n (xi )

, i = 1, . . . , n, (40)

due to the continuity of the determinant.

In an analogous manner to Gutmann [12], Proposition 4.12 (cf. Remark 3), the
function μ

γn
n can be rewritten according to the following proposition.

Proposition 2 For γn > 0, the function v
γn
n defined by

v
γn
n (y) :=

[

φ(0) −
(

un(y)
π(y)

)� (
Φ + nγnW−1 P

P� 0

)−1 (
un(y)
π(y)

)]

, y ∈ R
d ,

is identical to 1/μγn
n on y ∈ R

d\{x1, . . . , xn}. Moreover, v
γn
n can be continuously

extended at the sample points x1, . . . , xn by the finite values v
γn
n (xi ) = 1/μγn

n (xi ),
i = 1, . . . , n.
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Proof For any y ∈ R
d\{x1, . . . , xn}, the proof follows in a straightforward manner by

using the definition ofμn(y) in (38) and solving the equations in the linear system (35)
for the coefficient β(y) by rearranging and applying the Schur complement of the
invertible block Aγn

n in the matrix Aγn
n (y). ��

Since the function v
γn
n is positive and finite onX for γn > 0, it can be understood as

a measure of uncertainty in the approximating model sγn
n to f . In particular, the error

v
γn
n (y) at any y is influenced by the distance to the sample points x1, . . . , xn as well
as the inherent noise resulting from inexact function values, which is most notably
reflected by the fact that vγn

n (xi ) > 0 for i = 1, . . . , n.
Finally, based on Proposition 2, the function hγn

n defined by

hγn
n (y) := v

γn
n (y)

[

sγn
n (y) − f ∗

n

]2 , y ∈ R
d ,

can be shown to be identical to 1/gγn
n on y ∈ R

d\{x1, . . . , xn}, with continuously
extended values hγn

n (xi ) = 1/gγn
n (xi ), i = 1, . . . , n.

4.3 Choice of target value

As the target value f ∗
n has the same functionality as in Algorithm 1, its choice deter-

mines the locationof thenext evaluationpoint xn+1,minimising gγn
n onX \{x1, . . . , xn}

for fixed γn > 0, in a similar fashion to Algorithm 1. For f ∗
n < miny∈X sγn

n (y) we
usually interpret f ∗

n as the next target function value, i.e. we want to compute an
argument xn+1 with objective function value close to f ∗

n . Unfortunately, however, it
remains unclear at this point whether a choice f ∗

n < miny∈X sγn
n (y) is also sufficient

to guarantee that a global minimiser of gγn
n on X \{x1, . . . , xn} exists, i.e. that a global

minimiser of gγn
n overX does not coincide with any of the sample points x1, . . . , xn , as

in the case of interpolation, or whether a further condition is required. The main issue
here is due to the fact that gγn

n is continuously extendable at the points xi , i = 1, . . . , n,
by a finite value, cf. Eq. (40), which then implies that gγn

n (y) does not tend to infinity
anymore as y approaches any xi .

In any case, though, note that for an admissible choice f ∗
n < miny∈X sγn

n (y),
we may draw the same conclusions for gγn

n as for gn in that, for f ∗
n = −∞, the

minimisation of gγn
n onX \{x1, . . . , xn} reduces tominimisingμ

γn
n onX \{x1, . . . , xn}.

Moreover, due to the identities v
γn
n = 1/μγn

n and hγn
n = 1/gγn

n , as established in the
previous subsection, the minimisers of μ

γn
n and gγn

n correspond to the maximisers of
v

γn
n and hγn

n on X \{x1, . . . , xn}, respectively. Hence, if −∞ < f ∗
n < miny∈X sγn

n (y),
we can equivalently maximise the utility function hγn

n and, if f ∗
n = −∞, the respective

function v
γn
n on X \{x1, . . . , xn}.

In case we end up in a situation in which one of the xi is a global minimiser of
gγn
n , we would revisit xn+1 = xi instead of finding a new point. In this case, there

are various ways ahead, bearing in mind that we want to construct a sequence {xn}
that is dense in X . We could thus consider, e.g., a Delaunay triangulation induced by
the x1, . . . , xn and then choose xn+1 as the center point of the largest simplex in the
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triangulation, or update f ∗
n to a smaller value and repeat the iteration. Since this is not

of importance in the convergence proofs and to keep the exposition succinct, we will
not describe how to handle this case when stating our algorithm in the next subsection.

4.4 Summary of the RBFmethod for noisy objective functions

In summary, the RBF method for minimising a noisy objective function f̂ : X → R

on a compact set X can be formulated by the following algorithm.

Algorithm 2 (RBF Method for Noisy Objective Functions).

0. Initial step:

– Choose a conditionally positive definite radial basis function φ of order m.

– Generate a Pd
m-unisolvent set of points {x1, . . . , xn0} ⊂ X .

– Evaluate f̂ at the points x1, . . . , xn0 , resulting in f̂ (n0)(x1), . . . , f̂ (n0)(xn0).

– Choose x (n0) ∈ argmin
1≤i≤n0

{

f̂ (n0)(xi ) + ε
(n0)
i

}

, and set n = n0.

1. Iteration step:

while n ≤ nmax do

– Choose γn > 0.

– Construct the approximant sγn
n ∈ Aφ,m(X ) solving

min
s∈Aφ,m (X )

γn‖s‖2φ + 1

n

n
∑

i=1

wi
(

s(xi ) − f̂ (n)(xi )
)2

.

– Choose an admissible target value f ∗
n ∈ [− ∞, miny∈X sγn

n (y)
]

.

– Determine xn+1, which is the value of y that solves

min
y∈X \{x1,...,xn}

μ
γn
n (y)

[

f ∗
n − sγn

n (y)
]2

.

– For i = 1, . . . , n, update the evaluation f̂ (n)(xi ) to f̂ (n+1)(xi ).

– Evaluate f̂ at xn+1, resulting in f̂ (n+1)(xn+1).

– Choose x (n+1) ∈ argmin
1≤i≤n+1

{

f̂ (n+1)(xi ) + ε
(n+1)
i

}

.

– Set n = n + 1.

end while
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5 Convergence of method

As Gutmann’s original method, our RBF method for noisy objective functions is a
purely deterministic sequential sampling algorithm. For a given set of noisy function
values, the construction of an approximant and the subsequent selection of a new
evaluation point is carried out independently of any source of randomness. To show
convergence of the method to the global minimum of any continuous function f by
means of noisy objective function values f̂ (n)(xi ), our main task is thus to establish
the density of the sequence of generated iterates {xn} in X , cf. Törn and Žilinskas
[43], Theorem 1.3. We can therefore state the following obvious theorem for the
convergence of Algorithm 2.

Theorem 2 Let f be a continuous function on the compact set X with minimum
function value f ∗. Suppose εn → 0 for n → ∞ in the case of fixed noise and
max1≤i≤n ε

(n)
i → 0 for n → ∞ in the case of vanishing iterative noise. Then, Algo-

rithm 2 provides a sequence {x (n)} with limn→∞ f̂ (n)(x (n)) = limn→∞ f (x (n)) = f ∗
if it generates a sequence of points {xn} that is dense in X .

As it turns out in the below, a key result that allows to establish the density of the
sequence of generated points {xn} is the relationship

lim
n→∞ nγn = 0,

i.e. γn = o(1/n). To this end, we first address the influence of the error bounds {ε(n)
i }

on the sequence {nγn}, provided that γn is chosen in each iteration according to the
auxiliary problem (31). We then present several convergence results, followed by a
proof of convergence of the main statement.

5.1 Assumptions on error bounds

One possibility for establishing density of the iterates x1, . . . , xn is to resort to the
available convergence results of Gutmann’s method (see the supplementary SectionA
for a brief summary of the main results), and show that these pertain if the exact func-
tion values f (xi ) are replaced by the noisy observations f̂ (n)(xi ) (1 ≤ i ≤ n). An
indispensable assumption is thus that the involved level of noise decreases to zero over
the course of the optimisation. As one may already conjecture from the construction
of regularised least-squares approximants through (20), this will be required to adopt
Gutmann’s proof of convergence for noisy function values. Nevertheless, in the van-
ishing iterative noise model, for a natural choice of γn , the sequence {nγn} converges
to zero if we require that ε(n)

i → 0 fast enough as n → ∞, as the following Theorem 3
shows.

Theorem 3 Let φ be a conditionally positive definite radial basis function of order
m, and let {x1, . . . , xn} ⊂ X be a Pd

m-unisolvent set. Let s
γn
n ∈ Aφ,m(X ) denote

the unique optimal solution of the regularised least-squares problem (19), where the
regularisation parameter γn > 0 solves

123



A radial basis function method for noisy global…

max
γ≥0

γ

s.t.
∣
∣sγ
n (xi ) − f̂ (n)(xi )

∣
∣ ≤ ε

(n)
i , i = 1, . . . , n,

(41)

for some positive error bounds ε
(n)
i and assume ‖sγn

n ‖φ ≥ s̄ > 0 for sufficiently large
n:

1. Assume that the sequence {Sn} with

Sn := inf
s∈Aφ,m
‖s‖φ=0

n
∑

i=1

wi

(

s(xi ) − f̂ (n)(xi )
)2

is bounded. Then, γn = O(1/n).
2. Assume that the sequence {wi } is bounded above, i.e. wi ≤ w̄. Then we have that

γ 2
n ≤ φ̄w̄

s̄2
1

n

n
∑

i=1

wi (ε
(n)
i )2

holds, where φ̄ = maxu,v∈X φ(‖u − v‖2).
3. Assume that Φi, j ≥ 0 for all i, j . Then we have that

γ 2
n ≤ φ̄

s̄2
1

n

n
∑

i=1

(wiε
(n)
i )2

holds.

In the second or third case, it follows that γn = o(1/n) if the errors vanish fast enough,
i.e. if

∑

1≤i≤n wi (ε
(n)
i )2 = o(1/n) or

∑

1≤i≤n(wiε
(n)
i )2 = o(1/n) holds resp.

Proof 1. Due to the assumption ‖sγn
n ‖φ ≥ s̄ > 0 for sufficiently large n we have

nγns̄
2 ≤ nγn‖sγn

n ‖2φ ≤ nγn‖sγn
n ‖2φ +

n
∑

i=1

wi

(

sγn
n (xi ) − f̂ (n)(xi )

)2
.

Since sγn
n ∈ Aφ,m(X ) is the optimal solution of (19), we get

nγn‖sγn
n ‖2φ +

n
∑

i=1

wi

(

sγn
n (xi ) − f̂ (n)(xi )

)2 ≤ inf
s∈Aφ,m‖s‖φ=0

nγn‖s‖2φ +
n
∑

i=1

wi

(

s(xi ) − f̂ (n)(xi )
)2

.
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Since the first term in this minimisation problem vanishes, this can be bounded by
an S̄ < +∞ by assumption. In summary,

nγns̄
2 ≤ S̄,

which proves the statement.
2. For given n and γ > 0, let λ = λ(n,γ ) and c = c(n,γ ) denote the unique solution of

the linear system (20), i.e. λ and c are the coefficients of the optimal solution sγ
n

of (19). Then, considering the first block of Eq. (20), we especially obtain

Φλ + nγW−1λ + Pc = F̂ (n).

The i-th row of this equation shows

sγ
n (xi ) + nγw−1

i λi = f̂ (n)(xi ),

and thus
|sγ
n (xi ) − f̂ (n)(xi )| = |nγw−1

i λi |. (42)

Further, considering the matrix Φ, we can bound the maximum eigenvalue κ(Φ)

by the Frobenius norm of Φ to obtain

κ(Φ)2 ≤ ||Φ||2F =
∑

i, j

Φ2
i, j ≤ n2 max

u,v∈X
φ(‖u − v‖2)2 = n2φ̄2.

Hence, for sufficiently large n,

s̄2 ≤ ‖sγn
n ‖2φ = λ�Φλ ≤ κ(Φ)‖λ‖22 ≤ nφ̄‖λ‖22 (43)

holds for sγn
n . Since the weights wi are bounded above by w̄, squaring (42) for

γ = γn yields

n
∑

i=1

wi

(

sγn
n (xi ) − f̂ (n)(xi )

)2 = n2γ 2
n

n
∑

i=1

1

wi
λ2i ≥ n2γ 2

n
1

w̄
‖λ‖22.

Combining this with inequality (43), we obtain

s̄2 ≤ φ̄w̄

nγ 2
n

n
∑

i=1

wi

(

sγn
n (xi ) − f̂ (n)(xi )

)2 ≤ φ̄w̄

nγ 2
n

n
∑

i=1

wi (ε
(n)
i )2,

where the last inequality follows from (41). This shows the claim.
3. Here, we proceed as before, up to Eq. (43). Combining (41) with (42) yields for

γ = γn :
|nγnλi | ≤ wiε

(n)
i ,
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and, since Φ only contains non-negative entries, we get for all i, j :

|n2γ 2
n λiΦi, jλ j | ≤ wiε

(n)
i Φi, jw jε

(n)
j .

For notational brevity, let ε(n) := (ε
(n)
1 , . . . , ε

(n)
n )�; then

n2γ 2
n λ�Φλ≤n2γ 2

n

∑

i, j

|λiΦi, jλ j |≤n2γ 2
n

∑

i, j

wiε
(n)
i Φi, jw jε

(n)
j =ε(n)�WΦWε(n)

for all γ feasible for (41). As noted before,

λ�Φλ = ‖sγn
n ‖2φ ≥ s̄2,

hence we get for sufficiently large n that

n2γ 2
n s̄

2 ≤ n2γ 2
n λ�Φλ ≤ ε(n)�WΦWε(n) ≤ κ(Φ)‖Wε(n)‖22 ≤ nφ̄‖Wε(n)‖22,

which shows the claim.

Remark 5 We note that Theorem 3 provides at least two cases of vanishing iterative
noise, where γn goes to 0 fast enough to guarantee convergence of our algorithm;
roughly speaking, ε(n)

i needs to vanish faster than 1/n. Further note that the assumption
that {wi } is bounded is usually satisfied. Finally, while the assumption that Φi, j ≥ 0
does not require any further assumption on {wi }, it rules out surface spline radial basis
functions of the form rν log r , where ν ∈ N is even, cf. Table 2.

5.2 Convergence results

Besides assuming nγn → 0 as n → ∞, we further require the target values f ∗
n

to be set sufficiently low compared to the approximating surfaces sγn
n in order to

achieve convergence of the RBF method for noisy objective functions, cf. Gutmann
[12], condition (4.16) for the deterministic case. Due to the presence of noise, the
critical thresholds for f ∗

n need to be adjusted marginally to guarantee convergence of
the method in a similar fashion as Gutmann. To this end, we let, for infinitely many
n ∈ N, the target values f ∗

n satisfy

f ∗
n < min

y∈X

[

sγn
n (y) − τ‖sγn

n ‖∞
[

Δn(y) + w̃
−1/2
n (y)

]ρ/2
]

, (44)

where, as in the noise-free counterpart, τ > 0 and ρ ≥ 0 are constants with ρ < 1,
for φ(r) = r , and ρ < 2, otherwise, and Δn denotes the minimum distance function

Δn(y) := min
1≤i≤n

‖y − xi‖2, y ∈ X . (45)
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For given y ∈ X , the function w̃n(y) gives the weight wi of the sample point xi that
is closest to y, i.e. for i(y) = argmin1≤i≤n‖y − xi‖2, we have

w̃n(y) := wi(y), (46)

with the convention that the largest i(y) is selected among the minimising indices if
argmin is not unique.

Finally, note that the convergence of the method is restricted to the choice of radial
basis function φ as its proof requires to bound the sequence {μγn

n (y)} uniformly from
above for any y ∈ R

d that is bounded away from the points in the sequence {xn}, cf.
Lemma 4. This, in turn, can be shown if there is a function that takes the value 1 at y
and zero outside a neighbourhood of y, and that belongs to the corresponding native
space Nφ,m(Rd) of φ, as defined below, cf. Gutmann [12], Definition 3.10.

Definition 1 LetD ⊂ R
d , and letNφ,m(D) be the space of functions f : D → R, such

that for anyPd
m-unisolvent set {x1, . . . , xn} ⊂ D the optimal interpolant s ∈ Aφ,m(D)

to f at these points satisfies
‖s‖φ ≤ C f ,

where C f is a nonnegative constant that only depends on f . Then Nφ,m(D) is called
the native space.

Auseful criterion for a function to be in the native space of a radial basis function can
be given for surface splines by the following theorem, cf.Gutmann [12], Theorem3.19.

Theorem 4 Let φ be a conditionally positive definite surface spline of order m from
Table 2, and let

νd =
{

(d + ν + 1)/2 if d + ν is odd,

(d + ν)/2 if d + ν is even.

If f ∈ Cνd (D), where (i) D ⊂ R
d is compact, or (i i) D = R

d and f has compact
support, then f ∈ Nφ,m(D).

Note, however, that the native spaces of multiquadrics, inverse multiquadrics, and
Gaussians do not contain any nonzero functionswith compact support, as shown by the
next corollary, cf. Gutmann [12], Corollary 6.34. It is thus not possible to generalise
the convergence proof to these radial basis functions.

Corollary 1 Let φ be a multiquadric, inverse multiquadric, or Gaussian type function
of order m from Table 2. If f ∈ Nφ,m(Rd) has compact support, then f ≡ 0.

In the case of spline type radial basis functions, Gutmann’smain convergence result,
stating that the generated sequence is dense inX , cf. Gutmann [12], Theorem 4.5, can
now be formulated in the noisy setup as follows. For a proof of the statement, see
Sect. 5.3.

Theorem 5 Let φ be a conditionally positive definite surface spline of order m from
Table 2, and let {xn} be the sequence of iterates generated by Algorithm 2. Further, let
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sγn
n with γn > 0 be the optimal regularised least-squares approximant fromAφ,m(X )

to the data (xi , f̂ (n)(xi )), i = 1, . . . , n, with corresponding weightswi bounded away
from zero. Assume that, for infinitely many n ∈ N, the choice of f ∗

n satisfies (44), where
τ ,Δn, ρ and w̃n are given as above, and that nγn → 0 as n → ∞. Then, the sequence
{xn} is dense in X .

In view of Gutmann [12], Corollary 4.6, we can conclude the following particular
convergence result from Theorems 2 and 5, due to the finiteness of the right-hand side
in assumption (44) for any n ∈ N.

Corollary 2 Let φ andm be as in Theorem 5. Further, let f be continuous with minimal
function value f ∗, and assume that, for infinitely many n ∈ N, it holds f ∗

n = −∞.

Suppose εn → 0 for n → ∞ in the case of fixed noise and max1≤i≤n ε
(n)
i → 0 for

n → ∞ in the case of vanishing iterative noise, and γn = o(1/n) holds. Then, we
have limn→∞ f (x (n)) = f ∗ for the sequence {x (n)} constructed by Algorithm 2.

To derive a further convergence result applying to functions f in the native space
and under particular assumptions on the error bounds, we first show that for sufficiently
large n the maximum norm of the approximating surface can be bounded, cf. Gutmann
[12], Lemma 4.7, for the equivalent case of interpolation. The lemma below assumes
that f is from the corresponding native space and uses the norm ‖·‖Nφ,m

on this native
space, as introduced by Schaback [37].

Lemma 1 Let {xn} be a sequence in X with pairwise different points such that
{x1, . . . , xn0} is Pd

m-unisolvent. For n ≥ n0, let s
γn
n with γn > 0 denote the opti-

mal regularised least-squares approximant to f̂ at x1, . . . , xn, where the respective
weights w1, . . . , wn are bounded away from zero. Further, let f ∈ Nφ,m(X ), and
assume that nγn ≤ n0γn0 for sufficiently large n. Then, for n large enough,

‖sγn
n ‖∞ ≤ 1√

α1

(
∥
∥ f
∥
∥
2
Nφ,m

+ 1

nγn

n
∑

i=1

wi
(

f (xi ) − f̂ (n)(xi )
)2
)1/2

+ ∥
∥ f
∥
∥∞, (47)

where α1 is a constant depending on x1, . . . , xn0 .

Proof Fix n ∈ N, and let y be any point in X \{x1, . . . , xn}. For γn > 0, let s̃γn
n be

the optimal regularised least-squares approximant from Aφ,m(X ) to (xi , f̂ (n)(xi )),
i = 1, . . . , n, with corresponding weights wi bounded away from zero, and subject to
s̃γn
n (y) = f (y). Analogous to the derivation in Sect. 4.2, the approximant can thus be
rewritten as

s̃γn
n (x) = sγn

n (x) + [ f (y) − sγn
n (y)

]

lγnn (y, x), x ∈ R
d , (48)

where lγnn (y, ·) is the optimal regularised least-squares approximant to (xi , 0), with
respective weights wi , and subject to lγnn (y, y) = 1. Moreover, it follows that
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γn‖s̃γn
n ‖2φ + 1

n

n
∑

i=1

wi
(

s̃γn
n (xi ) − f̂ (n)(xi )

)2

= γn‖sγn
n ‖2φ + 1

n

n
∑

i=1

wi
(

sγn
n (xi ) − f̂ (n)(xi )

)2 + [ f (y) − sγn
n (y)

]2
γnμ

γn
n (y),

(49)

where the positive function μ
γn
n of the approximant lγnn (y, ·) is given by (38). Equal-

ity (49) thus yields

[

f (y) − sγn
n (y)

]2 ≤ γn‖s̃γn
n ‖2φ + 1

n

∑n
i=1 wi

(

s̃γn
n (xi ) − f̂ (n)(xi )

)2

γnμ
γn
n (y)

. (50)

The right-hand side of inequality (50) can further be bounded as follows. On the
one hand, the optimality of the approximant s̃γn

n provides

γn‖s̃γn
n ‖2φ + 1

n

n
∑

i=1

wi
(

s̃γn
n (xi ) − f̂ (n)(xi )

)2

≤ γn‖s̃n‖2φ + 1

n

n
∑

i=1

wi
(

s̃n(xi ) − f̂ (n)(xi )
)2

≤ γn
∥
∥ f
∥
∥
2
Nφ,m

+ 1

n

n
∑

i=1

wi
(

f (xi ) − f̂ (n)(xi )
)2

, (51)

where s̃n is the optimal interpolant to the data (xi , f (xi )), i = 1, . . . , n, and (y, f (y)),
whose semi-norm is bounded by ‖ f ‖Nφ,m

as f ∈ Nφ,m(X ), see Definition 1. On the
other hand, we have for sufficiently large n ≥ n0 with nγn ≤ n0γ0 that

μ
γn
n (y) ≥ ‖lγnn (y, ·)‖2φ + 1

n0γn0

n0∑

i=1

wi
(

lγnn (y, xi )
)2

≥ ‖lγn0n0 (y, ·)‖2φ + 1

n0γn0

n0∑

i=1

wi
(

l
γn0
n0 (y, xi )

)2 = μ
γn0
n0 (y),

where l
γn0
n0 (y, ·) with regularisation parameter γn0 > 0 is the optimal approximant to

(x1, 0), . . . , (xn0 , 0)with respective weightsw1, . . . , wn0 , and subject to l
γn0
n0 (y, y) =

1. By Cramer’s rule, the positive function μ
γn0
n0 can then be computed as μ

γn0
n0 (y) =

det A
γn0
n0 / det A

γn0
n0 (y), where the nonsingular matrices A

γn0
n0 and A

γn0
n0 (y) are given

in (39) for n = n0, respectively. Now, det A
γn0
n0 is a nonzero constant and det A

γn0
n0 (y)

is bounded on X , as a continuous function. It thus follows that μ
γn0
n0 (y) is bounded

away from zero. Hence, there exists a constant α1 > 0, depending on x1, . . . , xn0 and
on γn0 , such that
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μ
γn
n (y) ≥ α1, ∀ y ∈ X \{x1, . . . , xn}, n ≥ n0. (52)

Consequently, by (51) and (52), we get that inequality (50) reduces to

[

f (y) − sγn
n (y)

]2 ≤
∥
∥ f
∥
∥2Nφ,m

+ 1
nγn

∑n
i=1 wi

(

f (xi ) − f̂ (n)(xi )
)2

α1
,

which, as f is bounded on X , results in

∣
∣sγn
n (y)

∣
∣ ≤ 1√

α1

(
∥
∥ f
∥
∥2Nφ,m

+ 1

nγn

n
∑

i=1

wi
(

f (xi )− f̂ (n)(xi )
)2
)1/2

+∥∥ f ∥∥∞, (53)

for y ∈ X \{x1, . . . , xn}.
Due to the continuous extension of μ

γn
n , inequality (52) also applies at the sample

points, cf. Eq. (40). Accordingly, since φ is assumed to be conditional positive definite
and thus continuous, the upper bound in (53) is also valid for sγn

n at the sample points
x1, . . . , xn . ��

Under additional assumptions on the scaled weighted sum of squared errors in
inequality (47) such that {‖sγn

n ‖∞} is bounded uniformly, the following convergence
result for sufficiently smooth objective functions f can then be established together
with Theorems 2 and 5. For the analogous deterministic case, see [12], Corollary 4.8.

Corollary 3 Let φ and m be as in Theorem 5. Further, let νd be as in The-
orem 4, f ∈ Cνd (X ) with minimal function value f ∗, and let the sequence
(1/nγn)

∑n
i=1 wi ( f (xi )− f̂ (n)(xi ))2} be convergent. Assume that, for infinitely many

n ∈ N, we have

f ∗
n < min

y∈X

[

sγn
n (y) − τ

[

Δn(y) + w̃
−1/2
n (y)

]ρ/2
]

,

where τ , Δn, ρ and w̃n are given as above, and that nγn → 0 as n → ∞. Then, we
have limn→∞ f (x (n)) = f ∗ for the sequence {x (n)} constructed by Algorithm 2.

Remark 6 Note that Lemma 1 may also be formulated for noisy functions f̂ in the
native space, i.e. for functions with sufficiently well-behaved noise. In this case,
‖sγn

n ‖∞ can be bounded uniformly by a number that only depends on x1, . . . , xn0 ,
γn0 , and f̂ , such that Corollary 3 holds for f̂ ∈ Nφ,m(X ).

5.3 Proof of convergence

To prove Theorem 5, we require some lemmas on the behaviour of the functions μ
γn
n ,

n ∈ N. The lemmas essentially generalise Lemmas 4.9–4.11 in [12] in order to account
for the presence of noise. Correspondingly, the first two lemmas are concerned with
the limit of the sequence {μγn

n (xn)}.
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Lemma 2 Let φ be a conditionally positive definite radial basis function of order
m from Table 2, and let {z1, . . . , zk} be a Pd

m-unisolvent set in a compact set X ⊂
R
d . Let {xn} and {yn} be convergent sequences in X that have the same limit x∗ /∈

{z1, . . . , zk} and satisfy xn �= yn, n ∈ N. Further, let l̃γnn (xn, ·) with γn > 0 be the
optimal regularised least-squares approximant to the data (z1, 0), . . . , (zk, 0), (yn, 0)
and subject to l̃γnn (xn, xn) = 1, where the corresponding weights w1, . . . , wk, wn are
bounded away from zero.

If nγn → 0 as n → ∞, then

lim
n→∞

[‖yn − xn‖2 + w
−1/2
n

]ρ
μ̃

γn
n (xn) = ∞, (54)

where μ̃
γn
n is the function defined by (38) for the approximant l̃γnn (xn, ·), and where

0 ≤ ρ < 1, for φ(r) = r , and 0 ≤ ρ < 2, otherwise.

Proof For γn > 0, consider the optimal approximant l̃γnn (xn, ·) to (z1, 0), . . . , (zk, 0),
(yn, 0), with corresponding weights w1, . . . , wk, wn , and interpolating (xn, 1). For
sufficiently large n, neither xn nor yn is in the set {z1, . . . , zk}, so that Cramer’s rule
may be applied to compute the function μ̃

γn
n associated to l̃γnn (xn, ·) by

μ̃
γn
n (xn) = det Aγn

n

det Aγn
n (xn)

,

where the nonsingular matrices Aγn
n and Aγn

n (xn) are of the form (39) for the points
z1, . . . , zk, yk and z1, . . . , zk, yk, xn , respectively. In particular, the latter matrix can
be written as

Aγn
n (xn) =

⎛

⎜
⎜
⎝

Φ + nγnW−1 uk(yn) uk(xn) P
uk(yn)� φ(0) + nγnw

−1
n φ(‖yn − xn‖2) π(yn)�

uk(xn)� φ(‖yn − xn‖2) φ(0) π(xn)�
P� π(yn) π(xn) 0

⎞

⎟
⎟
⎠

,

whereΦ ∈ R
k×k and P ∈ R

k×m̃ correspond to the interpolation and polynomial basis
matrix of {z1, . . . , zk}, respectively, W = diag(w1, . . . , wk), and uk(y) = (φ(‖z1 −
y‖2), . . . , φ(‖zk − y‖2))� and π(y) = (p1(y), . . . , pm̃(y))� for any y ∈ X .

By the continuity of the determinant and the assumption nγn → 0 as n → ∞
with weights bounded away from zero, it follows that limn→∞ det Aγn

n = det A∗ �= 0,
where A∗ denotes the nonsingular interpolation matrix given in form of the left-hand
side of (8) for the points z1, . . . , zk, x∗. In order to show assertion (54), it therefore
remains to consider expression

[‖yn − xn‖2 + w
−1/2
n

]−ρ det Aγn
n (xn), (55)

123



A radial basis function method for noisy global…

for which we show in the following that it converges to zero as n → ∞. First note
that the (k + 1)-th and (k + 2)-th rows of the matrix Aγn

n (xn), given by

(

uk(yn)� φ(0) + nγnw
−1
n φ(‖yn − xn‖2) π(yn)�

)

, and
(

uk(xn)� φ(‖yn − xn‖2) φ(0) π(xn)�
)

,

have the same limit for n → ∞, as the weights are bounded away from zero and
nγn → 0 for n → ∞. Consequently, det Aγn

n (xn) → 0 as n → ∞, and hence, for
ρ = 0, assertion (54) follows immediately.

For ρ > 0, note that the determinant of Aγn
n (xn) does not change if the (k + 1)-th

row of the matrix Aγn
n (xn) is replaced by the difference between the (k+1)-th and the

(k + 2)-th row, and, subsequently, the (k + 1)-th column is replaced by the difference
between the (k + 1)-th and the (k + 2)-th column. Therefore, det Aγn

n (xn) can equally
be computed as

∣
∣
∣
∣
∣
∣
∣
∣
∣

Φ + nγnW−1 uk(yn) − uk(xn) uk(xn) P

uk(yn)� − uk(xn)� 2[φ(0) − φ(‖yn − xn‖2)] + nγnw
−1
n φ(‖yn − xn‖2) − φ(0) π(yn)� − π(xn)�

uk(xn)� φ(‖yn − xn‖2) − φ(0) φ(0) π(xn)�

P� π(yn) − π(xn) π(xn) 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

To deduce the convergence of expression (55) to zero, we then divide the (k + 1)-th
row and the (k + 1)-th column of the latter determinant by [‖yn − xn‖2 + w

−1/2
n ]ρ/2,

and make the following remarks on the newly formed (k + 1)-th column.
For all choices of φ, the functions φ(‖zi − ·‖2), i = 1, . . . , k, are Lipschitz

continuous on X . This implies for ρ < 2 that

lim
n→∞

φ(‖zi − yn‖2) − φ(‖zi − xn‖2)
[‖yn − xn‖2 + w

−1/2
n

]ρ/2 = 0, i = 1, . . . , k,

such that uk(yn) − uk(xn) → 0 as n → ∞. Similarly, for the same choice of ρ, the
Lipschitz continuity of the polynomials yields

lim
n→∞

p j (yn) − p j (xn)
[‖yn − xn‖2 + w

−1/2
n

]ρ/2 = 0, j = 1, . . . , m̃,

resulting in π(yn) − π(xn) → 0 as n → ∞. Further, we have

lim
n→∞

φ(‖yn − xn‖2) − φ(0)
[‖yn − xn‖2 + w

−1/2
n

]ρ
= 0,

for ρ < ν in the case of surface splines and for ρ < 2 in the other cases. This follows
directly in the case of surface splines, due to their form, and by the second order Taylor
expansion in the other cases, as φ′(0) = 0 and φ′′(r) is bounded for small r .
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Eventually, by assuming that nγn → 0 as n → ∞ and since wn is bounded away
from zero, we observe for ρ < 2,

lim
n→∞

nγnw
−1
n

[‖yn − xn‖2 + w
−1/2
n

]ρ
= 0.

Altogether, we therefore have that expression (55) converges for the given choices of
ρ to zero as n → ∞, proving that assertion (54) also holds in case ρ > 0. ��

Lemma 3 Let φ and m be as in Lemma 2, where ρ takes a value as indicated. Let
{xn} be a sequence in X with pairwise different points such that {x1, . . . , xn0} is Pd

m-
unisolvent. For any y ∈ X \{x1, . . . , xn}, let lγnn (y, ·) with γn > 0 be the optimal
regularised least-squares approximant to the data (x1, 0), . . . , (xn, 0) and subject to
lγnn (y, y) = 1, where the corresponding weights w1, . . . , wn are bounded away from
zero. If nγn → 0 as n → ∞, then for every convergent subsequence {xnk }k∈N of {xn}
it holds

lim
k→∞

[

Δnk−1(xnk ) + w̃
−1/2
nk−1(xnk )

]ρ
μ

γnk−1

nk−1 (xnk ) = ∞,

where μ
γnk−1

nk−1 , Δnk−1, and w̃nk−1 are the functions given by (38), (45), and (46),
respectively, for n = nk − 1.

Proof For n ≥ 2, let i(xn) = argmin1≤i≤n−1‖xn − xi‖2, where we choose the largest
i(xn) among the minimising indices if argmin is not unique, and let the sequence
{yn}n∈N be defined as

yn :=
{

x2, n = 1,

xi(xn), n ≥ 2.

Further, let {xnk } be any subsequence of {xn} that converges to a point x∗ ∈ X .
The choice of {yn} and convergence thus yield limk→∞‖xnk − ynk‖2 = 0. Also
note that there always exists a Pd

m-unisolvent set {x̄1, . . . , x̄l}, l ∈ N, in the
sequence {xn} that does not contain the limit point x∗. If x∗ = xi for some
i ∈ {1, . . . , n0}, then we can pick xni in a neighbourhood of x∗ such that the ini-
tial set {x1, . . . , xi−1, xni , xi+1, . . . , xn0} is Pd

m-unisolvent.
For sufficiently large k ∈ N such that ynk /∈ {x̄1, . . . , x̄l} and for any y ∈

X \{x1, . . . , xnk−1}, let l̄γkk (y, ·) with γk > 0 be the optimal regularised least-squares
approximant to the data (x̄1, 0), . . . , (x̄l , 0), (ynk , 0), with corresponding weights
w1, . . . , wl , wnk bounded away from zero, and subject to l̄γkk (y, y) = 1. Likewise,

let l
γnk−1

nk−1 (y, ·) with γnk−1 > 0 be the optimal regularised least-squares approximant
to (x1, 0), . . . , (xnk−1, 0), with corresponding weights w1, . . . , wnk−1 bounded away
fromzero, and subject to l

γnk−1

nk−1 (y, y) = 1.Observe that, for k large enough, l
γnk−1

nk−1 (y, ·)
approximates (x̄i , 0), i = 1, . . . , l, and (ynk , 0), along with their given weights and
subject to the same interpolation condition. Hence, for sufficiently large k, the func-
tions μ̄

γk
k and μ

γnk−1

nk−1 associated to l̄γkk (y, ·) and lγnk−1

nk−1 (y, ·) via (38), respectively, and
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the optimality of l̄γkk (y, ·) imply

μ̄
γk
k (y) = ∥∥l̄γkk (y, ·)∥∥2

φ
+ 1

(l + 1)γk

[ l
∑

i=1

wi
(

l̄γkk (y, x̄i )
)2 + wnk

(

l̄γkk (y, ynk )
)2
]

≤ ∥∥lγnk−1

nk−1 (y, ·)∥∥2
φ

+ 1

(l + 1)γk

nk−1
∑

i=1

wi
(

l
γnk−1

nk−1 (y, xi )
)2

≤ μ
γnk−1

nk−1 (y),
(56)

where the last inequality follows from the assumption that nγn → 0 as n → ∞.
Eventually, by definition of the sequence {yn} and applying Lemma 2 with the set

of points {z1, . . . , zk} being {x̄1, . . . , x̄l}, the weights w1 . . . , wk being replaced by
w1, . . . , wl , and setting n = nk , we obtain

lim
k→∞

[

Δnk−1(xnk ) + w̃
−1/2
nk−1(xnk )

]ρ
μ̄

γk
k (xnk )

= lim
k→∞

[‖xnk − ynk‖2 + w
−1/2
nk

]ρ
μ̄

γk
k (xnk ) = ∞,

for the given choice of ρ. Consequently, by setting y = xnk in (56), it follows that

[Δnk−1(xnk ) + w̃
−1/2
nk−1(xnk )]ρ μ

γnk−1

nk−1 (xnk ) tends to infinity for k → ∞, as claimed. ��
Akin to [12], Lemma 4.11, the next lemma states that the sequence {μγn

n (y)} is
uniformly bounded if y is bounded away from the points in the sequence {xn}. Note
that this result only holds for surface splines, as Theorem 4 is required.

Lemma 4 Let φ be a conditionally positive definite surface spline of order m from
Table 2, and let {xn} be a sequence in R

d with pairwise different points such that
{x1, . . . , xn0} is Pd

m-unisolvent. Further, let y0 ∈ R
d satisfy ‖y0 − xn‖2 ≥ δ, n ∈ N,

for some δ > 0. Then, there exists C > 0, depending only on y0 and δ, such that

μ
γn
n (y0) ≤ C, ∀ n ≥ n0,

where μ
γn
n with γn > 0 is the function given by (38).

Proof Let Bδ(y0) = {x ∈ R
d : ‖x − y0‖2 < δ}. There exists a compactly supported

function ϕ ∈ C∞(Rd) that takes the value 1 at y0 and 0 onRd\Bδ(y0). It follows from
Theorem 4 that ϕ ∈ Nφ,m(Rd).

For anyn ≥ n0, let ln(y0, ·)be theoptimal interpolant to thedata (x1, 0), . . . , (xn, 0)
and (y0, 1), such that ln(y0, xi ) = ϕ(xi ) = 0, i = 1, . . . , n, and ln(y0, y0) = ϕ(y0) =
1. Similarly, for any n ≥ n0, let l

γn
n (y0, ·) with γn > 0 denote the optimal regu-

larised least-squares approximant to (x1, 0), . . . , (xn, 0), with corresponding weights
w1, . . . , wn , and subject to lγnn (y0, y0) = 1. By definition of μ

γn
n and the optimality

of lγnn (y0, ·), we then have

μ
γn
n (y0) ≤ ‖ln(y0, ·)‖2φ + 1

nγn

∑n
i=1 wi

(

ln(y0, xi )
)2
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= ‖ln(y0, ·)‖2φ,

which is bounded by C := ‖ϕ‖2Nφ,m
, see Definition 1. ��

By using the lemmas above, we can now provide the main proof of Theorem 5,
stating that the sequence generated by Algorithm 2 is dense in X . Because of the
established similarity of the algorithm to Gutmann’s RBF method, the proof follows
the main lines of the proof of Theorem 4.5 in [12].

Proof of Theorem 5 Assume that there is y0 ∈ X and δ > 0, such that Bδ(y0) = {x ∈
R
d : ‖x − y0‖2 < δ} does not contain any xn , n ∈ N. According to the iteration step

of Algorithm 2, it then holds

gγn
n (xn+1) ≤ gγn

n (y0), n ≥ n0,

where γn > 0. Moreover, since f ∗
n is assumed to satisfy condition (44) for infinitely

many n ∈ N, there exists a subsequence {xnk }k∈N such that

s
γnk−1

nk−1 (xnk ) − f ∗
nk−1 > τ

∥
∥s

γnk−1

nk−1

∥
∥∞
[

Δnk−1(xnk ) + w̃
−1/2
nk−1(xnk )

]ρ/2
,

for the specified quantities τ and ρ, and the functions Δnk−1 and w̃nk−1 as given by
(45) and (46), respectively, for n = nk − 1. Now, the sequence {xnk } has a convergent
subsequence which, without loss of generality, shall be denoted again by {xnk }. Since
each xnk , k ∈ N, minimises gnk−1 onX \{x1, . . . , xnk−1}, the same reasoning as in the
proof of Theorem 7 in [10], inequality (A.11) to (A.12), then leads to the inequality

μ
γnk−1

nk−1 (xnk )
[

Δnk−1(xnk ) + w̃
−1/2
nk−1(xnk )

]ρ

≤ μ
γnk−1

nk−1 (y0)

[
[

Δnk−1(xnk ) + w̃
−1/2
nk−1(xnk )

]ρ/2 + 2

τ

]2

, (57)

which renders a contradiction by virtue of Lemmas 2–4. In particular, on the one hand,
Lemma 3 reveals that the left-hand side of (57) converges to infinity for k → ∞. On
the other hand, Lemma 4 shows that μ

γn
n (y0) is bounded above by some constant

independent of n, which together with the uniform boundedness of Δnk−1(xnk ) on X
and the weights being bounded away from zero implies that the right-hand side of
inequality (57) is bounded above by a constant independent of k. Hence, due to this
contradiction, we can deduce that Bδ(y0) must contain a point of the sequence {xn},
so that, eventually, {xn} is dense in the compact set X . ��

6 Some illustrative numerical results

In this section, we provide some illustrative numerical results by employing the RBF
method for noisy objective functions on a simple test problem. Specifically, we con-
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Fig. 1 Objective function f and global minimum (red point) (colour figure online)

sider the underlying deterministic objective function

f (x) = −(1.4 − 3x) sin(18x), x ∈ [0, 1.1].

Note that f is continuous and nonconvex with a global minimum of f ∗ ≈ −1.489072,
attained at x∗ ≈ 0.966086, see Fig. 1.

We consider the following two noise models:

1. Fixed noise: we assume that the i-th function evaluation of f , i = 1, . . . , n, is
perturbed such that

f̂ (xi ) = f (xi ) + ε̄(xi ), ε̄(xi ) ∼ U([−εi , εi ]
)

,

where the error bound εi is given by εi = 0.5 · i−0.4.

2. Vanishing iterative noise: we assume that in iteration n, the i-th function evaluation
of f , i = 1, . . . , n, is perturbed by

f̂ (n)(xi ) = f (xi ) + ε̄(xi ), ε̄(xi ) ∼ U([−ε(n), ε(n)]),

where the error bound ε(n) is given by ε(n) = 0.5 · n−0.4. In particular, we thus use
in each iteration n the same error bounds for all function evaluations, i.e. we have
ε
(n)
i = ε(n) for i = 1, . . . , n.

To minimise the noisy objective functions, we choose the thin plate spline radial
basis function φ(r) = r2 log r and initialise the RBF method for noisy objec-
tive functions at the end points and the midpoint of the considered interval. We
set the regularisation parameter γn in both noise models by approximately solv-
ing the auxiliary problem (31) via a backtracking strategy and set the target value
to f ∗

n = miny∈X sγn
n (y) − wc(max1≤i≤n f̂ (n)(xi ) − min1≤i≤n f̂ (n)(xi )), where wc

cycles through the sequence (1, 0.56, 0.25, 0.06, 0) to balance between global and
local search. The subproblems of minimising sγn

n and − log hγn
n are solved by the

DIRECT algorithm [21].
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(a) Fixed noise.
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(b) Vanishing iterative noise.

Fig. 2 The sample points xi , their observed function values f̂ (xi ) and f̂ (n)(xi ) with associated error
bounds εi and ε(n), respectively, as well as the response surfaces sγnn of the RBFmethod for noisy objective
functions after n = 10, n = 20, and n = 40 iterations

Results obtained are illustrated in Fig. 2 in form of the points sampled, their cor-
responding observed noisy function values with prespecified error bounds, as well
as the resulting response surfaces for the fixed and vanishing iterative noise mod-
els, respectively. In both cases, we can observe that the method is able to recover
the global behaviour of the objective function f by means of the response surface
reasonably well after a certain number of iterations. In particular, we can see by the
sampled points that the method successfully balances between global search (by select
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new points in unexplored regions of the domain) and local search to approximate the
global minimum.

7 Conclusions

In this paper, we have addressed the global optimisation of an expensive and noisy
objective function where observed function values are assumed to lie within error
bounds. Based on Gutmann’s original RBF method for minimising a deterministic
objective function, relying on radial basis function interpolation, we have first dis-
cussed common approaches of radial basis function approximations for integration
into a response surface method. Arguing in favour of regularised least-squares approx-
imants, we then have presented a noisy RBF method that constructs the smoothest
possible response surfaces that stay within the given error bounds at the evaluated
points, and determines newevaluation points byminimising a regularised least-squares
criterion in terms of a target value. Further on, we have established convergence of
the noisy RBF method to the global minimum of any continuous function, under
some additional assumptions on the error bounds, and provided relevant convergence
results. Finally, we have provided a numerical illustration of our RBFmethod for noisy
objective functions by considering a simple test problem. Future work will include the
assessment of the proposed method on various academic and real-world test functions.
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A Appendix

This section summarises the convergence results of the RBF method for deterministic
objective functions as detailed in Gutmann [12], Section 4.2 (and Gutmann [10],
Section 4).2 These results serve as main basis for establishing convergence of the RBF
method for noisy objective functions in Sect. 5 of this paper.

2 Note that, throughout this section, we refer to both Gutmann’s dissertation and his publication, as the
results in the latter are easier to access even though formulated in a slightly less general way.

123

http://creativecommons.org/licenses/by/4.0/


D. Banholzer et al.

In order to show convergence of a global optimisation algorithm to the global
minimum of any continuous function on a compact set, it is required that the generated
sequence of sample points is dense, see Törn and Žilinskas [43], Theorem 1.3. Applied
to Gutmann’s RBF method, this can thus be stated as follows, see Gutmann [12],
Theorem 4.4 (or Gutmann [10], Theorem 4).

Theorem 6 Algorithm 1 converges for every continuous function f if and only if it
generates a sequence of points that is dense in X .

A.1 Main convergence result

The convergence of the RBF method does not allow a free choice of radial basis
function. This is because the proof relies on the existence of a compactly supported,
infinitely differentiable function that takes the value 1 at a point y ∈ R

d and 0 out-
side a neighbourhood of y, and that belongs to the corresponding native space of the
chosen radial basis function (see Definition 1). For spline type radial basis functions,
cf. Table 2, it can be shown that their native space contains sufficiently smooth and
compactly supported functions, see Theorem 4. However, the native spaces of multi-
quadric, inverse multiquadric, and Gaussian radial basis functions do not contain any
nonzero functions with compact support, cf. Corollary 1. Consequently, Gutmann’s
convergence proof cannot be extended to these kind of radial basis functions.

Moreover, the convergence of the method is established under the assumption that
the target values f ∗

n are set sufficiently low compared to the interpolating surfaces sn .
More specifically, it is required that, for infinitely many n ∈ N, the target values f ∗

n
satisfy

f ∗
n < min

y∈X

[

sn(y) − τ‖sn‖∞Δ
ρ/2
n (y)

]

, (58)

where τ > 0 and ρ ≥ 0 are constants with ρ < 1, for φ(r) = r , and ρ < 2, otherwise,
and Δn denotes the minimum distance function defined in (45).

Gutmann’s main convergence result, stating that the generated sequence is dense
in X , can then be formulated for surface splines as follows, see Gutmann [12], Theo-
rem 4.5 (or Gutmann [10], Theorem 7).

Theorem 7 Let φ be a conditionally positive definite surface spline of order m from
Table 2, and let {xn} be the sequence of iterates generated by Algorithm 1. Further,
let sn be the optimal interpolant from Aφ,m(X ) to the data (xi , f (xi )), i = 1, . . . , n.
Assume that, for infinitely many n ∈ N, the choice of f ∗

n satisfies (58), where τ , Δn,
and ρ are given as above. Then, the sequence {xn} is dense in X .

The proof of Theorem 7 is based on the following lemmas, cf. Gutmann [12],
Lemmas 4.9–4.11 (or [10], Lemmas 12–14). Essentially, the first two lemmas are
concerned with the limit of the sequence {μn(xn)}, whereas the third lemma states
that the sequence {μn(y)} is uniformly bounded if y is bounded away from the points
in the sequence {xn}. Note that the latter result only holds for surface splines, as
Theorem 4 is required.
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Lemma 5 Let φ be a conditionally positive definite radial basis function of order m
from Table 2, and let {z1, . . . , zk} be aPd

m-unisolvent set in a compact setX ⊂ R
d . Let

{xn} and {yn} be convergent sequences inX that have the same limit x∗ /∈ {z1, . . . , zk}
and satisfy xn �= yn, n ∈ N. Further, let l̃n(xn, ·) be the optimal interpolant to the
data (z1, 0), . . . , (zk, 0), (yn, 0), and (xn, 1). Then

lim
n→∞‖yn − xn‖ρ

2 μ̃n(xn) = ∞,

where μ̃n is the function defined by (15) for the interpolant l̃n(xn, ·), and where
0 ≤ ρ < 1, for φ(r) = r , and 0 ≤ ρ < 2, otherwise.

Lemma 6 Let φ and m be as in Lemma 5, where ρ takes a value as indicated. Let
{xn} be a sequence in X with pairwise different points such that {x1, . . . , xn0} is Pd

m-
unisolvent. For any y ∈ X \{x1, . . . , xn}, let ln(y, ·) be the optimal interpolant to the
data (x1, 0), . . . , (xn, 0), and (y, 1). Then, for every convergent subsequence {xnk }k∈N
of {xn}, it holds

lim
k→∞ Δ

ρ
nk−1(xnk ) μnk−1(xnk ) = ∞,

where μnk−1 and Δnk−1 are the functions given by (15) and (45), respectively, for
n = nk − 1.

Lemma 7 Let φ be a conditionally positive definite surface spline of order m from
Table 2, and let {xn} be a sequence in R

d with pairwise different points such that
{x1, . . . , xn0} is Pd

m-unisolvent. Further, let y0 ∈ R
d satisfy ‖y0 − xn‖2 ≥ δ, n ∈ N,

for some δ > 0. Then, there exists C > 0, depending only on y0 and δ, such that

μn(y0) ≤ C, ∀ n ≥ n0,

where μn is the function given by (15).

A.2 Specific convergence results

From Theorems 6 and 7, a particular convergence result can be established by observ-
ing that the right-hand side in assumption (58) is finite for any n ∈ N, see Gutmann
[12], Corollary 4.6 (or Gutmann [10], Corollary 8).

Corollary 4 Let φ and m be as in Theorem 5. Further, let f be continuous and assume
that, for infinitely many n ∈ N, it holds f ∗

n = −∞. Then, Algorithm 1 converges.

A further convergence result applies to functions f that lie in the native space
Nφ,m(X ) of a chosen radial basis function φ, as in this case it can be shown that
{‖sn‖∞} is uniformly bounded, see Gutmann [12], Lemma 4.7 (or Gutmann [10],
Lemma 9).

Lemma 8 Let f be in Nφ,m(X ). Further, let {xn} be a sequence in X with pairwise
different points such that {x1, . . . , xn0} isPd

m-unisolvent. For n ≥ n0, let sn denote the
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optimal interpolant to f at x1, . . . , xn. Then,

‖sn‖∞ ≤ 1√
α1

∥
∥ f
∥
∥Nφ,m

+ ∥
∥ f
∥
∥∞,

where α1 is a constant depending on x1, . . . , xn0 .

By Lemma 8, the following convergence result can then be obtained from The-
orems 6 and 7 for sufficiently smooth objective functions f , see Gutmann [12],
Corollary 4.8 (or Gutmann [10], Corollary 11).

Corollary 5 Let φ and m be as in Theorem 7. Further, let νd be as in Theorem 4 and
f ∈ Cνd (X ). Assume that, for infinitely many n ∈ N, we have

f ∗
n < min

y∈X

[

sn(y) − τΔ
ρ/2
n (y)

]

,

where τ , Δn, and ρ are given as above. Then, Algorithm 1 converges.
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