
<zdoi; 10.1097/AUD.0000000000001570>

1

1National Acoustic Laboratories, Hearing Australia, Sydney, Australia; 
2Faculty of Engineering and the Environment, Institute of Sound and 
Vibration Research, University of Southampton, Southampton, United 
Kingdom; 3Division of Psychology and Language Sciences, University 
College London, London, United Kingdom; and 4Interacoustics Research 
Unit, C/O Technical University of Denmark, Lyngby, Denmark.

Copyright © 2024 The Authors. Ear & Hearing is published on behalf of the 
American Auditory Society, by Wolters Kluwer Health, Inc. This is an open 
access article distributed under the Creative Commons Attribution License 
4.0 (CCBY), which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original work is properly cited.

Supplemental digital content is available for this article. Direct URL cita-
tions appear in the printed text and are provided in the HTML and text of 
this article on the journal’s Web site (www.ear-hearing.com).

Audiogram Estimation Performance Using Auditory 
Evoked Potentials and Gaussian Processes

Michael Alexander Chesnaye,1 David Martin Simpson,2 Josef Schlittenlacher,3 Søren Laugesen,4 and 
Steven Lewis Bell2

Objectives: Auditory evoked potentials (AEPs) play an important role in 
evaluating hearing in infants and others who are unable to participate reli-
ably in behavioral testing. Discriminating the AEP from the much larger 
background activity, however, can be challenging and time-consuming, 
especially when several AEP measurements are needed, as is the case for 
audiogram estimation. This task is usually entrusted to clinicians, who 
visually inspect the AEP waveforms to determine if a response is pres-
ent or absent. The drawback is that this introduces a subjective element 
to the test, compromising quality control of the examination. Various 
objective methods have therefore been developed to aid clinicians with 
response detection. In recent work, the authors introduced Gaussian 
processes (GPs) with active learning for hearing threshold estimation 
using auditory brainstem responses (ABRs). The GP is attractive for this 
task, as it can exploit the correlation structure underlying AEP wave-
forms across different stimulus levels and frequencies, which is often 
overlooked by conventional detection methods. GPs with active learn-
ing previously proved effective for ABR hearing threshold estimation in 
simulations, but have not yet been evaluated for audiogram estimation 
in subject data. The present work evaluates GPs with active learning for 
ABR audiogram estimation in a sample of normal-hearing and hearing-
impaired adults. This involves introducing an additional dimension to the 
GP (i.e., stimulus frequency) along with real-time implementations and 
active learning rules for automated stimulus selection.

Methods: The GP’s accuracy was evaluated using the “hearing threshold 
estimation error,” defined as the difference between the GP-estimated 
hearing threshold and the behavioral hearing threshold to the same 
stimuli. Test time was evaluated using the number of preprocessed and 
artifact-free epochs (i.e., the sample size) required for locating hear-
ing threshold at each frequency. Comparisons were drawn with visual 
inspection by examiners who followed strict guidelines provided by 
the British Society of Audiology. Twenty-two normal hearing and nine 
hearing-impaired adults were tested (one ear per subject). For each 
subject, the audiogram was estimated three times: once using the GP 
approach, once using visual inspection by examiners, and once using a 
standard behavioral hearing test.

Results: The GP’s median estimation error was approximately 0 dB 
hearing level (dB HL), demonstrating an unbiased test performance rela-
tive to the behavioral hearing thresholds. The GP additionally reduced 
test time by approximately 50% relative to the examiners. The hearing 

thresholds estimated by the examiners were 5 to 15 dB HL higher than 
the behavioral thresholds, which was consistent with the literature. 
Further testing is still needed to determine the extent to which these 
results generalize to the clinic.

Conclusions: GPs with active learning enable automatic, real-time ABR 
audiogram estimation with relatively low test time and high accuracy. 
The GP could be used to automate ABR audiogram estimation or to guide 
clinicians with this task, who may choose to override the GP’s decisions 
if deemed necessary. Results suggest that GPs hold potential for next-
generation ABR hearing threshold and audiogram-seeking devices.

Key words: Active learning, Audiogram estimation, Auditory brainstem 
responses, Gaussian processes.
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INTRODUCTION

The audiogram shows a subject’s hearing threshold as a func-
tion of frequency, and is routinely used in the clinic to specify 
hearing loss characteristics and fit hearing aids (British Society 
of Audiology 2021). Usually, the audiogram can be estimated 
through pure-tone audiometry, that is, a behavioral hearing test 
that relies on voluntary responses to locate hearing thresholds. 
However, this method is not always applicable, as some sub-
jects, such as newborns and some adults with cognitive impair-
ments, may be unable to provide reliable behavioral responses. 
In these cases, the audiogram can be estimated using objective 
measures of hearing that do not rely on voluntary responses.

A commonly used objective measure of hearing is the audi-
tory brainstem response (ABR), which represents a brief change 
in brain activity triggered by an acoustic stimulus (Hall 2006). 
The ABR can be measured noninvasively using scalp electrodes, 
and comprises a series of peak and trough voltage amplitudes, 
known as “Jewett waves” (Jewett et al. 1970; Hall 2006). The 
challenge is that the ABR is hidden in the background activity, 
which can be an order of magnitude larger than the ABR. To 
reliably detect the ABR, it is common practice to present many 
stimuli to the subject, and average the short time intervals fol-
lowing stimulus onset to reduce “noise.” The cost, however, is 
relatively long test times, especially when multiple ABR mea-
surements are needed. For example, mean test times for esti-
mating eight hearing thresholds (four frequencies per ear) in 
newborns previously ranged from 30 to 60 min (Janssen et al. 
2010; Sininger et al. 2018). Moreover, when testing newborns, 
the time window for data collection tends to be limited to when 
infants are asleep to reduce movement artifacts. If the infant 
wakes, testing may need to be stopped, potentially resulting in 
additional appointments to finalize the test (British Society of 
Audiology 2021). Efficient methods for quickly evaluating hear-
ing ability within these limited time windows are thus desirable, 
especially in busy clinics where short test times are critical.
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Besides long test times, determining the presence or absence 
of an ABR can be a challenging task. This is usually entrusted 
to highly trained clinicians who visually inspect the averaged 
waveforms (British Society of Audiology 2019). Although 
potentially quite sensitive, visual inspection outcomes are 
known to vary within and between examiners (Vidler & Parkert 
2004; Zaitoun et al. 2016), which thus introduces a subjective, 
error-prone element to the procedure. To reduce subjectivity, 
and improve test accuracy and efficiency, numerous statistical 
approaches have been developed to assist clinicians with ABR 
hearing tests (see also Discussion). For the present work, the 
main focus was on a recently developed technique for objec-
tive ABR hearing threshold and/or audiogram estimation, and 
involves Gaussian processes (GPs) in combination with active 
learning rules (Chesnaye et  al. 2023). The GP is a Bayesian 
approach for nonlinear regression (Rasmussen & Williams 
2006), which was previously used to estimate the ABR’s 
amplitude-intensity growth function, that is, ABR amplitude 
across stimulus levels. Active learning rules were also designed 
to automatically adjust the stimulus and efficiently locate hear-
ing threshold. For an accessible, beginner-friendly starting point 
to GPs with active learning, see also Gramacy (2021).

The GP is attractive for ABR hearing threshold estimation, 
first because it no longer utilizes repeated null hypothesis sig-
nificance testing. The latter is used by most existing methods, 
which aim to infer hearing threshold from a series of sequen-
tially applied statistical tests that evaluate the null hypothesis 
of “ABR absent” (Özdamar et al. 1990; Bogaerts et al. 2009; 
Berninger et al. 2014; Wang et al. 2021). The drawback is that 
repeated hypothesis testing inflates the false-positive rate (FPR; 
Armitage et  al. 1969), and complex sequential test strategies 
are needed to maintain control over the test’s significance level 
(Stürzebecher et al. 2005; Chesnaye et al. 2020; Zanotelli et al. 
2020). The GP approach, however, adopts a Bayesian frame-
work for parameter estimation, thus circumventing the need for 
complex sequential test strategies. This ultimately helps to sim-
plify the procedure while also providing greater flexibility in 
terms of how long and how often data can be analyzed.

The GP is also attractive because it can learn and exploit 
the correlation structure underlying the ABR waveforms. It is 
well-known that ABR measurements are correlated across stim-
ulus levels and frequencies (Picton 2011), but this is typically 
overlooked by most detection methods. These correlations hold 
valuable information, and are routinely exploited by clinicians: 
ABR estimates at high-level measurements, for example, may 
be used to inform the likely presence of an ABR at lower levels. 
It would be beneficial for the objective detection method to also 
consider these correlations, not only to obtain a more power-
ful test, but also to ensure that the method’s output is aligned 
with the clinician’s intuitions and expertise, as this may lead to 
a more predictable and trustworthy detector. It is perhaps also 
worth mentioning that GP’s have previously been used in the 
related field of behavioral audiogram estimation (Song et  al. 
2015; Schlittenlacher et al. 2018).

In previous work, GPs with active learning proved effective 
for ABR hearing threshold estimation in simulated data where 
it reduced test time by approximately 50% relative to a sequen-
tially applied Hotelling T2 test (Chesnaye et al. 2023). The main 
goal for the present work was to adapt the GP approach for 
ABR audiogram estimation, and to evaluate its performance 
in a cohort of normal-hearing (NH) and hearing-impaired (HI) 

adults. This involves introducing an additional dimension to the 
GP (i.e., stimulus frequency) along with efficient implementa-
tions for real-time data analysis and active learning rules for 
automated stimulus selection. To establish a benchmark to com-
pare against, subject audiograms were also estimated using con-
ventional visual inspection by examiners, who followed strict 
guidelines provided by a modified British Society of Audiology 
(BSA) protocol (British Society of Audiology 2019; see also 
Visual inspection by examiners).

MATERIALS AND METHODS

This section describes the subject-recorded ABR data for the 
assessment (see NH and HI ABR data), along with GPs with 
active learning (see ABR audiogram estimation using GPs and 
active learning) and visual inspection by clinicians (see Visual 
inspection by examiners) for audiogram estimation.

NH and HI ABR Data
Ethical approval was granted by the Faculty Ethics 

Committee at the University of Southampton (ERGO II 56025.
A3). A total of 31 adults (aged 18 to 70 years) participated in 
the study. In 22 subjects, pure-tone hearing thresholds (PTHTs) 
were below 20 dB HL for 250, 500, 1000, 2000, 4000, and 8000 
Hz tones, indicating normal hearing. The remaining nine sub-
jects had varying degrees of hearing loss: four with mild hear-
ing loss (20 > PTHT ≤ 40 dB nHL), one with moderate hearing 
loss (40 > PTHT ≤ 70 dB nHL), one with severe hearing loss 
(70 > PTHT ≤ 90 dB nHL) and two with profound hearing loss 
(PTHT > 90 dB nHL). Standard otoscopy and tympanometry 
examinations were also carried out.

For the ABR test, the aim was to estimate ABR hearing 
thresholds for 500, 1000, 2000, and 4000 Hz narrow-band 
CE-Chirps (Elberling & Don 2010). Chirp stimuli were gen-
erated using in-house Matlab software, and were calibrated 
using a 94 dB SPL calibration piston, a Brüel and Kjaer type 
2112 sound level meter, and an oscilloscope. The peak-to-peak 
amplitude of the 94 dB SPL calibration piston was initially 
measured using the oscilloscope to establish a reference point. 
Chirp calibration in dB hearing level (HL) was then performed 
using peak-to-peak amplitude values given in the International 
Organization for Standardization 389-6: 2007 in conjunction 
with the UK National Hearing Screening Protocol recom-
mended stimulus reference levels for ABRs.

During the ABR test, subjects reclined in a comfortable 
chair in a quiet room and were asked to relax with their eyes 
closed. Chirps were then presented via an RME Fireface UC 
soundcard through ER-2 insert phones at a rate of 47.17 Hz, and 
data were recorded using an Interacoustics Eclipse system with 
electrodes placed at the vertex (active electrode), the nape of the 
neck (reference), and mid-forehead (ground). Line-level EEG 
signals were then routed back to Matlab via the RME Fireface at 
a sampling rate of 48 kHz, after which they were downsampled 
(after appropriate anti-alias filtering) to 5 kHz and band-pass 
filtered from 30 to 1500 Hz using a sixth-order Butterworth fil-
ter. Artifact rejection was also applied using a ±20 µV rejection 
level. Subjects were offered breaks in between test protocols, 
and additional breaks were permitted if requested.

In each subject, the ABR audiogram was estimated twice, 
once using GPs with active learning (see ABR audiogram esti-
mation using GPs and active learning) and once using visual 
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inspection by examiners (see Visual inspection by examiners). 
In addition, behavioral ABR hearing thresholds were estimated 
using a standard 10-down-5-up approach. It is worth emphasiz-
ing that behavioral testing was carried out last to avoid biasing 
the visual inspection results. The behavioral hearing thresholds 
were taken as the gold standard, and were used to assess the 
accuracy of the GP- and BSA-estimated hearing thresholds in 
the sections later.

Approximately 4 hr were allocated for the full test procedure. 
However, in cases where subjects gave noisy signals, there was 
not always sufficient time to estimate hearing thresholds for all 
four chirp stimuli, particularly when using visual inspection by 
examiners. Table 1 shows the total number of estimated hearing 
thresholds for each stimulus when using GPs with active learn-
ing and visual inspection by examiners who followed guidelines 
provided by the BSA.

Posterior Auricular Muscle Artifacts  •  It is important to note 
that in the initial piloting phase, the reference electrode was 
placed on the right mastoid, as opposed to the nape of the neck. 
At high stimulus levels, this led to posterior auricular muscle 
artifacts, which adversely affects the regression analysis con-
ducted by the GP. This issue was overcome by moving the refer-
ence electrode to the nape of the neck.

ABR Audiogram Estimation Using GPs and Active 
Learning

GPs with active learning were previously described in 
Chesnaye et al. (2023) for ABR hearing threshold estimation at 
a single frequency. In what follows, the approach is adapted for 
ABR audiogram estimation, that is, hearing threshold estima-
tion at multiple frequencies. The overarching aim for the GP is 
to infer hearing threshold from the amplitude-intensity growth 
function, defined as the ABR wave V peak-to-trough amplitude 
(PTTa) across stimulus levels. The following sections describe 
this process in detail.

Peak-to-Trough Amplitude Estimation  •  The initial chal-
lenge is to estimate the PTTa values, which later serve as the data 
inputs for the GP. Due to the low signal to noise ratio (SNR) of 
the ABR, many waveforms (each time-locked to a stimulus), are 
averaged to reduce “noise,” giving what is known as the coher-
ent average. The coherent average is then further inspected for 
PTTa estimation, which involves locating the wave V peak and 
trough, and then computing the difference.

One challenge with PTTa estimation is variability in ABR 
peak and trough latencies due to factors such as the stimu-
lus level, stimulus frequency, subjects’ hearing ability, and 
individual physiology (Picton 2011). To ensure that the peak 

and trough can be located, a relatively wide search window is 
needed. However, using a wide search window increases the 
probability of detecting spurious peaks and troughs, which 
introduces noise to the PTTa estimates. There is hence a trade-
off between maintaining a narrow search range to minimize 
noise, and broadening the search range to ensure reliable peak 
and trough detection. As a compromise, a sliding window 
approach was adopted, which constrains the search interval by 
assuming the peak precedes the trough, and that the time inter-
val between peak and trough is less than 8 msec. Further details 
on the approach can be found in Chesnaye et al. (2023) and are 
also presented in Supplementary Digital Content 1, http://links.
lww.com/EANDH/B477, in the present work.

It is also important to note that the residual background 
activity in the coherent average introduces a bias to the PTTa 
estimates, which adversely affects the regression analysis con-
ducted by the GP. This bias is impacted by the ABR’s SNR, 
making it difficult to estimate, which previously incentivized 
a maximum likelihood approach for unbiased PTTa estima-
tion. The maximum likelihood approach aims to replace the 
biased PTTa estimates with unbiased estimates. The approach 
uses bootstrapping to approximate the expected distribution 
of the biased PTTa values under a range of unbiased PTTa 
values, after which the likelihood can be generated that some 
observed (biased) PTTa value arose under each distribution. 
This then gives a distribution over unbiased PTTa values, 
which is inspected to determine the most likely unbiased 
PTTa value. This distribution is also used to generate a vari-
ance for the unbiased PTTa estimate. A more comprehensive 
description can again be found in Chesnaye et  al. (2023) as 
well as Supplementary Digital Content 1, http://links.lww.com/
EANDH/B477, in the present work.

In what follows, the (unbiased) PTTa estimates will be 
denoted by oXL,XF, and the corresponding variances by σ2

XL,XF 
where xL  and xF indicate the stimulus level (in dB HL) and 
stimulus frequency (in Hz), respectively. The oXL,XF and 
σ2

XL,XF values serve as the inputs for the GP, as described 
later.

Gaussian Processes  •  The function to estimate by GP is the 
(unbiased) PTTa value as a function of the stimulus level and 
frequency, henceforth denoted by f (xL, xF). The following sec-
tion provides a detailed overview of this estimation process.

Defining the prior. When delving into the estimation pro-
cess, it is helpful to consider the GP as a model of our beliefs 
regarding f (xL, xF). Before having collected data, there is 
typically much uncertainty surrounding the f (xL, xF) values, 
but there is also prior knowledge available, that is, it is known 
that PTTa values usually range from 0 to ~1 µV, and that PTTa 

TABLE 1.  The number of estimated ABR hearing thresholds when using the GP approach and visual inspection by examiners who 
followed guidelines provided by the British Society of Audiology (2019)

GP BSA

0.5 kHz 1 kHz 2 kHz 4 kHz Sum 0.5 kHz 1 kHz 2 kHz 4 kHz Sum

HI 8 8 8 8 32 8 7 6 7 28
NH 22 22 22 22 88 11 14 18 21 64
Sum 30 30 30 30 120 19 21 24 28 92

The number of hearing threshold estimates are shown separately for NH and HI subjects, per stimulus. The BSA approach usually initiated testing with the 4 kHz chirp, hence the higher number 
of hearing threshold estimates for this stimulus. This contrasts with the GP approach, which estimates hearing thresholds for all four frequencies simultaneously, hence the equal number of 
hearing threshold estimates at each frequency when using GPs. The table also shows the total number of estimated thresholds, summed across frequencies as well as NH and HI listeners.
BSA, British Society of Audiology; GP, Gaussian process; HI, hearing-impaired; NH, normal-hearing.
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values are similar across adjacent levels and frequencies (Picton 
et al. 1981; Nousak & Stapells 2005; Picton 2011). This prior 
knowledge is used to define an initial set (i.e., a distribution) of 
expected growth functions, known as the GP prior.

More specifically, the GP prior is defined by a multivari-
ate normal (MVN) distribution, which is, in turn, defined by a 
mean vector and a covariance matrix (defined later). The mean 
vector represents the most likely PTTa value at each stimulus 
level (xL) and frequency (xF). Uncertainty regarding the most 
likely PTTa values is then encoded through the main diago-
nal of the covariance matrix, representing the variance of the 
MVN distribution. In addition, the off-diagonal elements of the 
covariance matrix are used to encode expectations of “func-
tion smoothness,” that is, the extent to which PTTa values are 
similar across stimulus levels and frequencies, further clarified 
later.

To illustrate with an example, consider panels (A–D) in 
Figure 1: the thick dashed line is the mean vector, represent-
ing the most likely f (xL, xF) values at 500 Hz (panel A), 1000 
Hz (panel B), 2000 Hz (panel C), and 4000 Hz (panel D). The 
shaded regions then represent ±2.575 SDs (the 99% confidence 
intervals) from the mean, representing the level of uncertainty 
surrounding the mean vector. Note that panels (A–D) are sim-
plified depictions of a single, high-dimensional MVN dis-
tribution, and show just the MVN mean and 99% confidence 
intervals. Function smoothness across level and frequency is not 

immediately evident from panels (A–D), but becomes apparent 
after having observed data.

When defining the GP prior, it is first necessary to specify 
the stimulus levels and frequencies along which the prior is 
defined. These locations are referred to as the “prediction loca-
tions,” as this is where the GP aims to predict the f (xL, xF) 
function values. The prediction locations are denoted by X

P
 

with elements [x1, x2, …, xp] where each xk element (for k = 
1, 2, …, p) is a vector that specifies the level and frequency, 
denoted by xL  and xF respectively, for the stimulus at the kth 
prediction location. In the present work, xL  took integer values 
ranging from −10 to 70 dB HL (81 in total) and xF, was set to 
either 500, 1000, 2000, or 4000 Hz, giving a total of 81 × 4 = 
324 prediction locations.

After specifying the prediction locations, the mean vector 
and covariance matrix for the GP prior are defined. The mean 
vector, say µp, was set to zero for all prediction locations, giving 
µp (xL, xF) = 0 for all [xL, xF] ∈ X

P.
 A zero-mean prior essentially 

represents the initial belief that the subject is deaf, which might 
be viewed as a clinically conservative starting position, that is, 
it may be safer to assume that a careful assessment of hearing 
function is required, rather than assuming the subject has normal 
hearing. As discussed in Chesnaye et  al. (2023), a zero-mean 
prior also facilitates monotonic estimates of the growth func-
tion, which then provides directional guidance on where hearing 
threshold is located, resulting in a more efficient test.

Fig. 1. An illustration of the GP approach for ABR hearing threshold estimation for 500, 1000, 2000, and 4000 Hz chirp stimuli in a single test subject. Panels 
(A–D) show simplified depictions of the GP prior, which includes the mean (thick dashed line) and 99% CIs (shaded regions) of an MVN distribution. Panels 
(E–H) show the GP posterior after having estimated PTTa values at several stimulus levels and frequencies, indicated by small dots. Panels (I–L) show the GP 
posterior after data collection was stopped and hearing threshold inferred. For this subject, the estimated hearing thresholds were 11, 10, 1, and −1 dB HL 
for 500, 1000, 2000, and 4000 Hz chirps (indicated by X), respectively, which coincided closely with the behavioral hearing thresholds, equal to 5, 10, 5, 
and 5 dB HL (indicated by O). Further details are provided in the main text. ABR indicates auditory brainstem response; CI, confidence interval; GP, Gaussian 
process; MVN, multivariate normal; PTTa, peak-to-trough amplitude.
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With respect to the covariance matrix, say ΣP, this can be 
specified through a covariance function (Rasmussen & Williams 
2006). It was assumed that PTTa values at adjacent stimulus lev-
els and frequencies were similar, and that similarity decreases 
with the distance in level and frequency, which can be modeled 
using an exponential covariance function (Gramacy 2021):

ΣP = cov (f (xL1, xF1) , f (xL2, xF2)) = s · e−
|xL1 − xL2|

θdB
−|log xF1 − log xF2|

θHz

� (1)

which is defined for all [xL1, xF1] ∈ XP and all [xL2, xF2] ∈ XP.  
With respect to the scale parameter s, this specifies the main 
diagonal of the covariance matrix, which encodes the level of 
uncertainty surrounding the mean vector, and thus the width 
of the prior in Figure 1. Following Chesnaye et  al. (2023), it 
was assumed that 99.9% of PTTa values were smaller than 1.25 
μV, which was motivated by findings from the literature (Picton 
et  al. 1981; Nousak & Stapells 2005). The two-sided 99.9% 
confidence intervals are given by ±3.09 SDs from the mean, 
giving s =

(
1.25
3.09

)2
= 0.1636 µV.

With respect to the θdB and θHz length scale parameters, 
these are used to encode expectations of function smoothness 
with larger values indicating smoother functions. One compli-
cation when specifying these parameters is that growth func-
tions differ across subjects depending on, for example, hearing 
ability, which implies that the optimal θdB and θHz parameters 
may be subject-dependent. Therefore, rather than assume θdB 
and θHz in advance, these were estimated from the data using 
standard maximum likelihood estimation (Gramacy 2021). The 
θdB length scale was confined to the (1000, 2000) interval as 
this previously showed favorable results (Chesnaye et al. 2023). 
Results from a pilot study (specifics not presented) also sug-
gested a favorable test performance when confining θHz to the 
(0.05, 1) interval.

Deriving the posterior. As data becomes available, our 
beliefs (and our level of confidence) regarding the f (xL, xF) 
function values change, which is accounted for by transforming 
the GP prior into a GP posterior. This transformation depends 
on the observed data (the oXL,XF values) and on how noisy the 
data are (the σ2

XL,XF values), but also on prior assumptions, par-
ticularly assumptions regarding “function smoothness.” The lat-
ter leads to information being “smeared” across adjacent levels 
and frequencies, which helps to reduce uncertainty regarding 
the expected f (xL, xF) function values.

To again illustrate with an example, consider panels (E–H) 
in Figure 1, which show the MVN mean and 99% confidence 
intervals of a GP posterior after having observed PTTa values 
at several test locations (indicated by dots in the figure). Note 
that the oL,F estimates are noisy (the σ2

XL,XF values are non-
zero), which implies that there is still uncertainty regarding the 
true f (xL, xF) values at the test locations. It is now also evident 
how function smoothness impacts on expectations of f (xL, xF): 
uncertainty was reduced not just at the test locations, but also at 
the adjacent levels and frequencies.

More formally, data are collected by probing f (xL, xF) at a 
set of test locations, denoted by X

T
 with elements [x1, x2, …, 

xT] where xk (for k = 1, 2, …, T) is again a vector, now con-
taining the [xL, xF] values associated with kth test location. It 
is worth emphasizing that the X

T
 test locations may differ from 

the X
P
 prediction locations. Probing f (xL, xF) at X

T
 thus gives 

a T-dimensional vector of PTTa values, say O
T
, with associated 

variances ϑ2
T. The posterior mean vector can then be generated 

using (Gramacy 2021):

 	 µ̄P = µP +ΣPT
[
ΣT + ITϑ

2
T

]−1
(OT − µT)� (2)

where IT is a T-dimensional identity matrix, µT (xL, xF) denotes 
the prior mean for the XT test locations and was set to 0 for 
all [xL, xF] ∈ XT, ΣT is the prior covariance matrix for XT, and 
ΣPT is the prior cross-covariance matrix between XP and XT.  
Note that ΣT is specified using Eq. (1) for all [xL1, xF1] ∈ XT 
and all [xL2, xF2] ∈ XT, giving a T × T dimensional covariance 
matrix. Similarly, ΣPT is specified using Eq. (1), now for all 
[xL1, xF1] ∈ XP and all [xL2, xF2] ∈ XT, giving a P × T dimen-
sional covariance matrix.

Last, the GP posterior covariance matrix is given by 
(Gramacy 2021):

 	 Σ̄P = ΣP −ΣTP
[
ΣT + ITϑ

2
T

]−1
ΣPT� (3)

where ΣTP is the prior cross-covariance matrix between XT 
and XP, which is again specified using Eq. (1), now for all 
[xL1, xF1] ∈ XP and all [xL2, xF2] ∈ XT. The GP posterior was re-
computed every 500 epochs (approximately every 10 sec). This 
involves updating OT and ϑ2

T to include the new measurement, 
and if the test location is new (i.e., it is not already contained 
by XT), then XT is also updated along with the ΣT, ΣTP, ΣPT, 
and IT matrices.

Active Learning Rules  •  The purpose of the active learning 
rules is to automatically adjust the stimulus, and efficiently 
locate hearing threshold at each frequency. The rules were 
previously described in Chesnaye et  al. (2023) for hearing 
threshold estimation at a single frequency, and are briefly 
summarized later, with some adjustments to enable testing at 
multiple frequencies. In what follows, ABR hearing threshold 
for stimulus frequency xF refers to the lowest xL  value where 
f (xL, xF) > 0, or equivalently the largest xL  value where 
f (xL, xF) = 0, which thus needs to be determined for xF = 500, 
1000, 2000, and 4000 Hz.

One challenge with hearing threshold estimation is that 
f (xL, xF) is zero not just at a single level, but for all inaudible 
stimuli, which introduces the risk of the GP converging on lev-
els below hearing threshold. The active learning rules strive to 
mitigate this risk by approaching hearing threshold from the 
higher stimulus levels, that is, from the f (xL, xF) > 0 region 
(Chesnaye et al. 2023). To facilitate this, the GP first aims to 
locate several nonzero PTTa targets, including the T

1
 = 0.5,  

T
2
 = 0.3, T

3
 = 0.25, T

2
 = 0.2, and T

1
 = 0.15 μV targets. The GP 

starts with locating the largest target (i.e., T
1
) at each stimulus 

frequency, and only moves on to the smaller targets after having 
located the larger ones.

To locate a target, the GP first finds the most likely stimulus 
level where f (xL, xF) = Ti μV, per frequency. The most likely 
stimulus levels associated with target Ti are denoted by xTi, 
which are found for xF = 500, 1000, 2000, and 4000 Hz using:

 	 xTi = argmax
xj∈X

N
Ä
Ti, µ̄[xj,xF],σ

2
[xj,xF]

ä
� (4)

where X is a vector containing all potential stimulus levels to 
test for the given xF, and N

Ä
Ti, µ̄[xj,xF],σ

2
[xj,xF]

ä
 is a univariate 

GP posterior with mean µ̄[xj,xF] and variance σ2
[xj,xF]

, evaluated 

at location Ti. The µ̄[xj,xF] and σ2
[xj,xF]

 values are computed using 
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Eqs. (2) and (3), respectively, but using a single prediction loca-
tion, equal to [xj, xF].

Next, the SD of the GP posterior is inspected at each of the 
four [xTi,, xF] locations. Large SD values indicate uncertainty 
regarding the Ti target locations, suggesting that additional data 
collection may be necessary, whereas small SD values indicate 
less uncertainty, which suggests that the Ti target might have 
already been located. More specifically, a Ti target was deemed 
located at frequency xF when the SD of the GP posterior at 
location [xTi,, xF] was less than some threshold value, given by  
δ

1
 = 0.2, δ

2
 = 0.15, δ

3
 = 0.1, δ

4
 = 0.075, and δ

5
 = 0.05 μV for T

1
, 

T
2
, T

3
, T

4
, and T

5
, respectively (Chesnaye et al. 2023). The next 

stimulus to test at was then specified using the [xTi,, xF] values 
where uncertainty along the GP posterior was largest.

Last, in some subjects with hearing loss, it is conceivable 
that the f (xL, xF) growth curve is smaller than the Ti target for 
all test locations, in which case the GP may waste time trying 
to locate a target that does not exist. To mitigate this risk, the 
GP first inspects the GP posterior at some maximum test level, 
per frequency. The corresponding stimuli are specified using 
[xLmax, xF], for xF = 500, 1000, 2000, and 4000 Hz. If the most 
likely PTTa value under the GP posterior for the [xLmax, xF] stim-
ulus is smaller than the Ti target value, then the next stimulus 
to test at is instead specified using [xLmax, xF]. The most likely 
PTTa value at [xLmax, xF] is given by:

 	 TLmax, F = argmax
a ∈A

N
Ä
a, µ̄[xLmax,xF],σ

2
[xLmax,xF]

ä
� (5)

where A  is a vector, containing a range of potential PTTa val-
ues to evaluate, and N

Ä
a, µ̄[xLmax,xF],σ

2
[xLmax,xF]

ä
 is a univariate 

GP posterior with mean µ̄[xLmax,xF] and variance σ2
[xLmax,xF]

, evalu-

ated at location a. The µ̄[xLmax,xF] and σ2
[xLmax,xF]

 values can again 
be computed using Eqs. (2) and (3), respectively, but using a 
single prediction location, now equal to [xLmax, xF]. After having 
located all Ti targets, data collection was stopped, and hearing 
thresholds were inferred, achieved using Eq. (4) with Ti = 0 for 
xF = 500, 1000, 2000, and 4000 Hz.

Visual Inspection by Examiners
To establish a rough benchmark to compare against, sub-

ject ABR audiograms were also estimated in real time through 
visual inspection by 2 examiners. These examiners were 
Audiology undergraduates with prior experience in inspecting 
ABR waveforms. In order to mitigate examiner bias and ensure 
a sufficiently accurate test outcome, the examiners were asked 
to follow guidelines provided by the BSA (British Society of 
Audiology 2019). These guidelines (further described later) 
provide a rigorous set of rules for determining the presence 
or absence or ABRs, but were previously formulated for ABR 
detection in sleeping infants where data tend to be less noisy than 
non-sleeping adults. Consequently, the criteria for determining 
ABR absence were deemed too strict in the present work, and a 
minor adjustment was introduced, as described later.

Visual Inspection Interface  •  Data were presented to the 
examiners as two replicates of the coherently averaged epoch 
using an in-house Matlab interface. The first replicate was 
given by the average of the odd-numbered epochs (epochs 1, 
3, 5, etc) and the second by the average of the even-numbered 
epochs (epochs 2, 4, 6, etc). The 0 to 20 msec poststimulus 
interval of the coherent average replicates was plotted in μV 

with a user-adjustable y axis. To aid hearing threshold estima-
tion, a second panel was also included, which displayed the full 
threshold series for the stimulus frequency in question, show-
ing all measured coherent average replicates in descending dB 
HL order. Illustrations of the Matlab interface are provided 
in Supplementary Digital Content 2, http://links.lww.com/
EANDH/B478.

Clear Response Criteria  •  The BSA criteria for concluding 
that a “clear response” (CR) was present is that coherent average 
replicates show a high degree of similarity while also exhibiting 
the expected waveform characteristics in terms of amplitude, 
latency, and morphology (British Society of Audiology 2019). 
A further criterion is that the wave V PTTa should exceed 40 nV 
and should be at least three times larger than the residual back-
ground activity. The residual background activity was estimated 
by visually evaluating the difference between the two coherent 
average replicates.

Response Absent Criteria  •  The BSA criteria for conclud-
ing “response absent” (RA) is first that the criteria for CR were 
not met. The criteria also state that the coherent average rep-
licates should be “appropriately flat” with “no evidence of a 
response,” and the residual background activity should be less 
than, or equal to, 25 nV. The 25 nV noise requirement, however, 
was deemed too strict for adult ABR data, requiring impracti-
cally large ensemble sizes (i.e., tens of thousands of epochs) 
before being met. This criterion was therefore replaced with the 
requirement that at least 10,000 epochs were averaged (5000 
per coherent average replicate) before RA was concluded. A 
maximum ensemble size of 20,000 epochs was also specified: 
if CR or RA was still not concluded after recording 20,000 
artifact-free epochs, then RA was concluded by default.

Stimulus Selection Protocol  •  The examination was initi-
ated with a 4 kHz 50 dB HL chirp, and data were analyzed (and 
results updated) every ~10 sec. For each stimulus frequency, 
examiners aimed to locate hearing threshold using a 10-down-
10-up approach, that is, the stimulus level was decreased by 10 
dB if CR was concluded, or increased by 10 dB if RA was con-
cluded. Hearing threshold was inferred after determining both 
RA and CR, and was assumed to be the lowest level where CR 
was identified.

RESULTS

Test performance was evaluated in terms of test accuracy 
and test time. Test accuracy was assessed using the “dB estima-
tion error,” defined as the GP- or BSA-estimated hearing thresh-
old minus the behavioral hearing threshold, and test time was 
assessed using the number of preprocessed (and artifact-free) 
epochs required for hearing threshold estimation, per frequency. 
An example of an ABR threshold series that was inspected by 
the examiners is shown in Figure 2. The GP, BSA, and behav-
ioral hearing thresholds are also presented in scatter plots in 
Figure 3, and box and whisker plots of the errors and test times 
are presented in Figure 4. These results are further evaluated in 
the sections later.

Grand Comparison
First, an overall, or “grand comparison” between the GP and 

BSA methods was drawn. For this comparison, no distinction 
was made between NHNH and HI individuals, nor between 
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stimulus frequencies. In the GP, 120 ABR hearing thresholds 
were estimated in 30 subjects, whereas in the BSA approach, 
92 thresholds were estimated in 31 subjects (see also Table 1). 
The resulting dB estimation errors and test times are shown as 
box and whisker plots in Figure 4, panels (A and D), respec-
tively. The median estimation error was 0 dB for the GP and 
5 dB for the BSA approach, whereas the median test time was 
7.1 min for the GP and 14.8 min for BSA. The GP thus showed 
less bias in the estimated hearing thresholds and a reduced 
median test time of ~50%. The GP also demonstrated a smaller 
spread in test times, that is, the SD of the test times (per thresh-
old estimate) was 2.84 min for the GP versus 5.03 min for the 
examiners. However, the spread of the dB estimation errors, 
which is arguably more important than the median estimation 
error, was slightly larger for the GP, that is, the STD of the 
estimation errors was 8.87 dB, whereas for the examiners this 
was 8.03 dB.

Post hoc statistical analysis was carried out to test if the dif-
ferences in test times and test accuracies between the GP and 
BSA methods were statistically significant. A complication, 
however, is that the GP’s results are correlated across frequen-
cies due to the “smearing effect” described in Materials and 
methods. This implies that the number of independent data 
points is unknown. To facilitate the post hoc comparison, results 
were therefore first combined across frequencies to obtain inde-
pendent data points, as described later.

Comparing Test Times  •  For each method and for each test 
subject, a mean test time was computed by averaging the indi-
vidual test times for the frequencies tested (four maximum). For 
the GP, this resulted in 30 mean test times with a grand mean test 
time of 7.6 min, whereas for the BSA approach, this led to 31 
mean test times with a grand mean test time of 15.5 min. Data 
were approximately normally distributed and were compared 

Fig. 2. An example of an ABR threshold series that was inspected visually by an examiner. ABR hearing thresholds (estimated by the examiner) in this subject 
were 20, 20, 10, and 10 dB HL for the 0.5, 1, 2, and 4 kHz chirps, respectively, and the corresponding behavioral hearing thresholds were 5, 10, 5, and 5 dB 
HL, respectively. Test times for this subject were 13.1, 10.5, 10.5, and 24.6 min (respectively), giving an overall test time of 58.7 min. Note that the examiners 
inspected the ABR waveforms using a Matlab interface, which displayed the waveforms differently than shown. Illustrations of the Matlab interface are pro-
vided in Supplementary Digital Content 2, http://links.lww.com/EANDH/B478. ABR indicates auditory brainstem response.

Fig. 3. The estimated hearing thresholds are presented as scatter plots. The left panel shows the GP HT against the BSA HT. The middle panel shows GP HT 
against the behavioral HT, and the right panel shows the BSA HT against the behavioral HT. BSA indicates British Society of Audiology; GP, Gaussian process; 
HT, hearing threshold.
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using a two-sample two-tailed t test, giving p < 0.001, with an 
effect size (measured using Cohen d) of d = 2.467.

Comparing Test Accuracies  •  A similar approach was used 
to compare the dB estimation errors, except that the absolute 
values of the estimation errors were taken before averaging 
across frequencies. For the GP, 30 “mean absolute estimation 
errors” were computed with a grand mean absolute error of 
6.5 dB, whereas for the BSA approach, 31 “mean absolute 
estimation errors” were computed with a grand mean absolute 
error of 9.8 dB. The grand mean absolute errors were deemed 
significantly different (two-sample two-tailed t test; p = 0.021, 
d = 0.6248).

Comparison of Thresholds  •  The relationships between the 
GP, BSA, and behavioral hearing thresholds are displayed using 
scatter plots in Figure 3. Visually inspecting the results sug-
gests that the GP-estimated thresholds were unbiased relative to 
the behavioral hearing thresholds, and that the BSA-estimated 
hearing thresholds were slightly overestimated relative to the 
behavioral as well as the GP-estimated thresholds.

Effect of Hearing Ability
This comparison aims to test whether hearing loss impacted 

on the GP’s and/or the BSA’s test performance. The dB esti-
mation errors and test times are now presented separately for 
NH and HI subjects in Figure 4, panels (B and E). For the 
GP approach, the median dB errors were 0 dB (NH) and 0.5 
dB (HI), whereas in the BSA approach these were 8 dB (NH) 
and 9.3 dB (HI). The GP’s median test times were 7.1 (NH) 
and 7.3 (HI) min, whereas BSA’s median test times were 16.5 
(NH) and 12.2 (HI) min. Data were again combined across 
frequencies to obtain independent data points, as described in 
Grand comparison. Results showed no significant differences 
between the NH and HI test conditions (two-sample two-tailed 
t tests; p > 0.05).

Effect of Frequency
For the third and final analysis, the aim was to test if stimulus 

frequency impacted on the GP’s or BSA’s test performance. The 
dB estimation errors and test times are now presented separately 
for each stimulus frequency in panels (C and F) in Figure 4. 

Fig. 4. Test accuracies and test times, per frequency, from the subject data analysis, presented as box and whisker plots. Panels (A–C) show the dB estimation 
errors, defined as the BSA- or GP-estimated hearing thresholds, whereas panels (D–F) show the test times, that is, the number of preprocessed and artifact-free 
epochs (presented in minutes) required for hearing threshold estimation. Panels (A–D) furthermore show an “Overall” comparison, which implies that no dis-
tinction was made between NH and HI subjects, nor between stimulus frequencies tested. This contrasts with panels (B and E) where a distinction was made 
between NH and HI subjects, but not between frequencies, and with panels (C and F) where a distinction was made between frequencies, but not between 
NH and HI subjects. BSA indicates British Society of Audiology; GP, Gaussian process; HI, hearing-impaired; NH, normal-hearing.
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No distinction was made between NH and HI individuals. The 
median dB errors for the GP were 4, 0, −2, and −2 dB for the 
500, 1000, 2000, and 4000 Hz chirps, and the corresponding 
median test times were 7, 7.5, 6.5, and 7.4 min. The median dB 
errors for the BSA approach were 15, 10, 5, and 5 dB for the 
500, 1000, 2000, and 4000 Hz chirps, and the corresponding 
median test times were 14.8, 16.9, 11.4, and 16.6 min. For the 
GP approach, hearing thresholds were estimated for all four fre-
quencies in 30 subjects, whereas for the BSA, all four thresh-
olds were estimated in just 11 subjects due to time constraints. 
Test times and estimation errors were now treated as repeated 
measurements across frequencies. Results from Friedman test 
show that frequency significantly impacted on the dB errors for 
the GP (p < 0.001) and the BSA approach (p = 0.025) with a 
trend that error reduces as frequency increases. Frequency also 
impacted on the GP’s test times (p = 0.025) but not on the BSA’s 
test times (p = 0.241), which might be due to the smaller sample 
size.

DISCUSSION

Research aimed at improving the efficiency and accuracy 
of ABR hearing tests using objective detection methods has 
traditionally focused on “null hypothesis significance testing,” 
that is, evaluating the hypothesis of “no ABR present.” Many of 
these methods were also designed with ABR hearing threshold 
and/or audiogram estimation in mind. A limitation, however, is 
that the majority of these methods were evaluated under simpli-
fied test conditions, and generally disregard the sequential test-
ing aspects involved in clinical applications.

When used in the clinic, ABR detection methods are typi-
cally applied repeatedly to the accruing data over time, known 
as a sequential test. Sequential tests are important for providing 
timely feedback to clinicians, but also for keeping test time low 
as data collection can be stopped early in the case of a CR. The 
challenge is that repeated hypothesis testing inflates the FPR 
(Armitage et al. 1969), and to control the significance level of 
the test, the critical thresholds for response detection need to 
be chosen carefully (Stürzebecher et al. 2005; Stürzebecher & 
Cebulla 2013; Cebulla & Stürzebecher 2015; Chesnaye et  al. 
2019, 2020; Zanotelli et al. 2020).

For ABR hearing threshold estimation, sequential testing 
comes into play when determining the presence or absence 
of an ABR at each stimulus level, but also when adjusting the 
stimulus level to locate the hearing threshold. The most com-
mon clinical approach uses an X-down-Y-up test strategy, which 
implies that the stimulus level is decreased by X dB follow-
ing a detection, or increased by Y dB following a non-detection 
(Özdamar et a. 1990). Note that this further increases the num-
ber of hypothesis tests carried out, thus exacerbating the issue 
of inflated FPRs.

Considering the vast number of objective detection methods 
in the literature, it is surprising that just a handful of authors 
have evaluated test performance under “fully sequential test 
conditions,” that is, sequential data analysis when determining 
ABR present/absent for a single stimulus and when switch-
ing between levels to home in on hearing threshold. This was 
already recognized back in 1990 when Özdamar et al. (1990) 
stated, “Contrary to the abundance of response recognition 
methods, little research has been done to develop such track-
ing algorithms,” where “tracking algorithms” refer to stimulus 

selection protocols for locating hearing threshold. Building on 
work from Salvi et al. (1987), Özdamar et al. proceed to evalu-
ate three X-down-Y-up test strategies, including a conventional 
10-down-5-up approach, a 10-down-10-up Békésy test strategy, 
and the Parameter Estimation by Sequential Testing approach, 
which halves the step size with each change in stimulus level 
direction, starting with 20 dB steps and ending with 5. The 
lowest test times and smallest estimation errors were observed 
for the Parameter Estimation by Sequential Testing approach, 
which approximated behavioral hearing thresholds to within 
~6.5 dB.

Although the study in Özdamar et  al. (1990) considered 
sequential testing across stimulus levels, the detection meth-
ods—which included variance ratios and correlation coeffi-
cients—were still applied as single shot tests, that is, sequential 
testing for determining ABR present/absent at each stimulus 
level was not considered. Indeed, to the best of the authors' 
knowledge, objective methods for ABR hearing threshold esti-
mation have been evaluated under fully sequential test condi-
tions in just two publications (Berninger et al. 2014; Wang et al. 
2021).

Starting with Berninger et  al. (2014), ABR detection was 
carried out using the correlation coefficient (CC), computed 
between two coherent average replicates. The test starts by col-
lecting data at a relatively high stimulus level, and if the CC 
exceeds 0.7, then an ABR is deemed present and the stimu-
lus level is decreased. The procedure repeats until an ABR is 
deemed absent, which is concluded after reaching some maxi-
mum sample size without having detected an ABR (CC < 0.7). 
Two variations of this approach were also explored (for details, 
see Berninger et al. 2014). Results show average hearing thresh-
old estimates ranging from 3.9 to 6.5 dB nHL, demonstrating 
test accuracies similar to those from Özdamar et al. (1990).

In Wang et  al. (2021), response detection was carried out 
using cross-correlation functions, computed between three 
coherent average replicates. The test again starts at a relatively 
high stimulus level, and an ABR was deemed present if the time 
lags associated with the maximum peaks in the cross-correlation 
functions were smaller than ±0.3 msec. If an ABR is detected, 
then the stimulus level is decreased, and the procedure repeats 
until two consecutive non-detections are observed, which is 
concluded if the maximum sample size is reached without hav-
ing detected an ABR. The approach was evaluated in mouse and 
human ABR threshold series, where it estimated hearing thresh-
olds to within ±10 dB of visually identified thresholds (with a 
mean difference of 4.6 dB).

Various additional studies have investigated ABR hear-
ing threshold estimation procedures, but these were applied 
either as post hoc tests, that is, after all, data have been col-
lected (Vannier et al. 2002; Schilling et al. 2019; Suthakar & 
Liberman 2019; Thalmeier et al. 2022), or like Özdamar et al. 
(1990), utilizing single shot test strategies (Bogaerts et  al. 
2009). Starting with the latter, Bogaerts et al. (2009) use the 
ABR’s peak amplitude as test statistic, and an ABR is deemed 
present if the peak amplitude exceeds four times the SD of the 
background activity. The test starts at a high level, and if an 
ABR is detected, the level is decreased, until an ABR is deemed 
absent. The approach was evaluated in click- and tone-evoked 
ABR data in mice, and the accuracy of the estimated hearing 
thresholds was comparable to those obtained through visual 
inspection by clinicians.
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In Vannier et  al. (2002), a correlation-based threshold-
seeking procedure built around an optimizable ABR template 
was proposed. This optimizable template was fine-tuned to 
maximize correlation with the coherently averaged epoch and 
was additionally constrained to preserve monotonicity in ABR 
waves I, II, III, and IV/V latencies across stimulus levels. This 
interesting approach requires multiple critical thresholds for 
response detection to be defined, along with a complex set of 
rules for fine-tuning test performance, which might raise con-
cerns regarding overfitting and generalizability. Results show an 
average hearing threshold estimation error of 5 dB (SD 8.3 dB).

Moving on to methods in Schilling et al. (2019), Suthakar and 
Liberman (2019), and Thalmeier et al. (2022), these approaches 
are similar to the GP in the present work in that they aim to infer 
hearing threshold from the estimated ABR amplitude-intensity 
growth function, or some representation of it. In Suthakar and 
Liberman, the amplitude-intensity growth function was rep-
resented by a cross-correlation coefficient growth curve, and 
was estimated using power functions and sigmoid functions, 
whereas in Schilling et al., the growth function was represented 
by the root-mean-square growth curve, which was estimated 
using hard sigmoid functions. Last, in Thelameier et al., a self-
supervised random forest regression model was used to predict 
sound intensity levels in a threshold series, followed by the fit-
ting of a piece-wise function consisting of a constant element 
and a fourth-order polynomial. As mentioned previously, these 
methods were evaluated as post hoc tests, but might be adapted 
and/or evaluated for online sequential data analysis in future 
work.

GPs for Hearing Threshold Estimation: Pros, Cons, and 
Study Limitations

The GP approach in the present work is attractive for online 
ABR hearing threshold estimation in the clinic, first because it 
no longer utilizes repeated null hypothesis significance testing, 
and instead focuses on parameter estimation. This implies that 
complex sequential tests (Stürzebecher et  al. 2005; Chesnaye 
et al. 2020; Zanotelli et al. 2020) for controlling FPRs are no 
longer required. It is worth noting that these sequential tests 
require the number of hypothesis tests, as well as the sample 
size for each test, to be specified at the outset. If the maximum 
test time is reached without having inferred ABR present/absent 
(and/or having located hearing threshold), then the test cannot 
be prolonged without inflating the FPR. This contrasts with the 
GP where data collection continues until the desired level of 
confidence has been obtained, which is specified in the present 
work through the δ

i
 thresholds. Note that although these thresh-

olds are fixed at the outset, the GP’s test time is still adaptive: 
when data are noisy, data collection is automatically prolonged, 
and vice versa for less noisy data. This facilitates quality control 
and helps to bring the examination to an unambiguous outcome 
in terms of hearing threshold location. A challenge remains, 
however, in how to choose these δ

i
 values, as well as the Ti 

targets for the GP to estimate. These parameters impact on the 
GP’s stimulus selection decisions but have not yet been fully 
optimized. As mentioned in Chesnaye et al. (2023), numerous 
rule sets for stimulus selection can be envisioned, and it is highly 
likely that the rules adopted in the present work are suboptimal.

One of the main advantages of the GP over conventional 
detection methods is that it can learn and exploit the correlation 

structure underlying the ABR waveforms through the θdB and 
θHz length scale parameters. These correlations hold valuable 
information, but are neglected by most detection methods in 
the literature, albeit with some exceptions (Vannier et al. 2002; 
Schilling et  al. 2019; Suthakar & Liberman 2019; Thalmeier 
et al. 2022). Incorporating these correlations in the estimation 
procedure helps to further reduce uncertainty in the estimated 
growth function, and as mentioned in the introduction, may lead 
to a more trustworthy detector, as the detection method’s output 
is now more in line with examiner’s expectations who similarly 
exploit these correlations (consciously, or not) when visually 
inspecting the ABR waveforms.

While the GP has some clear advantages over existing meth-
ods, it also has limitations, which first include not exploiting 
monotonicity in ABR amplitudes across levels. Although the 
GP exploits smoothness in PTTa values across levels, it allows 
PTTa values to decrease with increasing stimulus levels. The 
monotonicity assumption is generally more restrictive than 
smoothness assumptions, and therefore potentially also more 
powerful. By leveraging monotonicity in ABR amplitudes, the 
space of anticipated growth functions can be further reduced, 
which helps to reduce uncertainty regarding the true PTTa 
growth function, leading to more efficient growth function 
estimation.

On a related note, the GP in the present work is applied to 
just the largest PTTa amplitude values, which typically repre-
sent wave V of the ABR. The remaining ABR peaks and troughs 
may be smaller, but still hold valuable information, which is 
currently being discarded by the GP. Moreover, by compressing 
the ABR to a single PTTa value, the GP is also discarding ABR 
waveform morphology, which holds an additional monotonic-
ity property, that is, increasing ABR peak and trough latencies 
with decreasing stimulus levels. Further reductions in test time 
might be obtained by leveraging this additional monotonicity 
property, along with the remaining ABR peaks and troughs.

Another aspect to consider includes specifying the stimulus 
levels that the GP is allowed to test at. In the present work, these 
ranged from −20 to 70 dB with a 1 dB resolution. However, 
pilot simulations suggest that a 10 dB resolution is slightly more 
efficient. A 10 dB resolution would also benefit examiners who 
visually inspect the averaged waveforms together with the GP, 
as a 10 dB resolution leads to fewer (but higher SNR) coherent 
averages.

Although GP’s performance is less susceptible to false-
positives than conventional detection methods that utilize null 
hypothesis significance testing with X-down-Y-up test strate-
gies (Chesnaye et al. 2023), it is still adversely affected by spu-
rious patterns in noise. This is apparent when sampling along 
the f (xL, xF) = 0 interval, which, in some cases, resulted in the 
GP temporarily getting “stuck” along this interval. The issue is 
exacerbated when the GP has no directional guidance regard-
ing the f (xL, xF) = 0 locations, which occurs primarily in the 
early stages of the test, that is, when there is relatively little 
data available. The active learning rules aim to circumvent this 
issue by not sampling the f (xL, xF) = 0 interval. This helps 
to prevent the GP from temporarily getting stuck, but it does 
not solve the issue entirely, and in some cases, spurious effects 
along f (xL, xF) = 0 may still lead to reduced test accuracies 
and/or increased test times. In future work, more robust solu-
tions should be explored to further mitigate the effect of data 
outliers.
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Last, the GP approach in the present work demonstrated sig-
nificant reductions in test time relative to the examiners, but 
the extent to which these test time reductions generalize to a 
clinical setting remains questionable. This is first because the 
BSA guidelines in the present work were developed for sleep-
ing infants, rather than awake adults. The adult data recorded 
in the present work were relatively noisy, and the BSA criteria 
for response detection were deemed too strict, particularly when 
finding an acceptable residual noise to determine the absence of 
an ABR. Although modifications were introduced to keep test 
time manageable (see Section Visual Inspection by Examiners), 
these have not yet been optimized, and may have resulted in 
a less-than-optimal test time. In addition, the examiners in the 
present work were instructed to adhere to a strict 10-down-
10-up stimulus selection protocol with replicate recordings seen 
at each level, whereas in practice, clinicians may utilize more 
efficient stimulus selection protocols and not replicate each 
level tested. It is also worth pointing out that the 10 dB resolu-
tion for the stimulus level may have contributed to a reduced 
test accuracy for the examiners, and that closer approximations 
of hearing threshold might be achieved with smaller resolu-
tions. Last, the examiners in the present work were audiology 
graduates who, although had been trained in the 3:1 approach, 
had limited experience of ABR hearing threshold estimation, 
whereas, in practice, the test would be carried out by highly 
trained professionals. These factors may all have contributed 
toward an overestimated test time for the examiners, albeit rela-
tive to what might be observed in the clinic. Future work would 
be to compare the method on sleeping infants.

Fully Automatic Versus Assistive Systems for ABR 
Hearing Threshold Estimation

One question with objective hearing threshold and audio-
gram estimation is whether to aim to fully replace clinicians, 
or whether to assist clinicians with this task. The risk with fully 
automated systems is that they might fail to detect abnormal 
test conditions, for example, a problem may occur during data 
collection that is easily picked up by a clinician, but not by the 
detection method. Similarly, a fully automated system might 
confuse stimulus artifacts with real responses. As there is much 
at stake, especially when testing vulnerable patient groups such 
as infants with hearing loss, it might be unwise to take clini-
cians out of the loop altogether, albeit until the performance 
and trustworthiness of these automated systems have reached 
a sufficiently high standard. That said, there have also been 
cases of considerable clinical errors in interpreting waveforms 
in recent years, leading to significant patient mismanagement 
(British Academy of Audiology 2021). When also considering 
variations both within and between examiners, an argument can 
be made to at least assist examiners with ABR hearing threshold 
estimation using efficient and accurate objective methods.

CONCLUSION

GPs with active learning were used for real-time ABR audio-
gram estimation in a cohort of 22 NH and 9 HI subjects. The 
GP’s median hearing threshold estimation error was 0 dB HL, 
demonstrating an unbiased test performance relative to the 
behavioral hearing thresholds to the same stimuli, whilst also 
reducing test times per frequency by ~50% relative to visual 

inspection by examiners. The GP utilizes a Bayesian framework 
for parameter estimation, which is attractive as it circumvents 
the need for complex sequential tests for controlling FPRs. The 
GP additionally uses adaptive stopping criteria for data collec-
tion, which helps to bring the examination to a clear outcome, 
thus facilitating quality control of the examination. Last, the 
GP might be used to fully automate the procedure, or instead 
might be used to provide timely visual feedback to clinicians, 
who have the option to manually override the GP’s decisions. 
Overall, results suggest that GPs with active learning are prom-
ising for next-generation ABR threshold-seeking devices.
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