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ABSTRACT
The Nelson–Siegel and the Svensson models are two widely
used models for the term structure of interest rates. These
models are quite simple and intuitive, but fitting them to
market data is numerically challenging and various difficulties
have been reported. In this paper, we provide a novel math-
ematical analysis of the fitting problem based on parametric
optimization. We formulate the fitting problem as a separable
nonlinear least-squares problem, in which the linear parame-
ters can be eliminated. We provide a thorough discussion on
the conditioning of the inner part of the reformulated prob-
lem and show that many of the reported difficulties encoun-
tered when solving it are inherent to the problem formulation
itself and cannot be tackled by choosing a particular optimiza-
tion algorithm. Our stability analysis provides novel insights
that we use to show that some of the ill-conditioning can
be avoided, and that a suitably chosen penalty approach can
be used to address the remaining ill-conditioning. Numerical
results indicate that this approach has the expected impact
while being independent of any choice of a particular opti-
mization algorithm. We further establish smoothness prop-
erties of the reduced objective function, putting global opti-
mization methods for the reduced problem on a sound math-
ematical basis.
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1. Introduction

Due to their appealing features, the model of Nelson–Siegel [1] and its extension
by Svensson [2] have become very popular with practitioners in the financial
industry to represent the term structure of interest rates. By means of simple
parametric functions that rely on few parameters only, both models are parsimo-
nious and yet able to capture the shapes of most of the observed term structures
of interest rates in the market. Their extensive popularity is reflected by the fact
that they are widely employed by financial institutions, e.g. by national banks
(see, e.g. [3]). In particular, Svensson’s extension is used on a daily basis by
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the European Central Bank, see Ref. [4], and the Deutsche Bundesbank, see
Ref. [5], to model yield curves constructed from market data. Further applica-
tions can be found in the recent paper [6]. In addition, also quite recently, deep
learning approaches–specifically autoencoders–have been successfully applied
to yield curve data. Since the Nelson–Siegel and Svensson models represent
an approach strongly related to such kind of dimension reduction techniques,
renewed interest in these models has arisen from a data science perspective, cf.
especially [7,8].

To apply the Nelson–Siegel and the Svensson models in practice they need to
be made consistent with observed data, i.e. their parameters need to be chosen
such that model rates best match given (market) rates. This optimization pro-
cedure, frequently called fitting, however, bears several numerical difficulties, as
reported, for instance, in Refs [9–12]; see also Ref. [6] for further references. Both
models are highly nonlinear and non-convex so that the objective function, usu-
ally some kind of root- or mean-square error, contains multiple local minima.
Moreover, it is well-known that the models suffer from severe multi-collinearity
in certain regions of the parameter space.

To avoid non-convexity, a popular yet straightforward technique that has been
adopted by some authors is to provide predetermined values to parameters that
appear in a nonlinear fashion in the model and to use ordinary linear least-
squares methods to obtain the remaining parameters (see Refs e.g. [1,10,12–14]).
Some of these approaches only consider one pre-specified value (where the value
is based e. g. on economic reasoning or hindsight) which, however, limits the
models and reduces some of their flexibility in reproducing different types of
curves. Other approaches consider several potential values for the nonlinear
parameter(s) and can typically be either classified as a grid search method or as a
(heuristic) global optimizationmethod for the reduced global optimization prob-
lem. However, so far no analysis has been provided that puts such methods on
a sound mathematical basis. In particular, the literature lacks continuity and/or
smoothness results for the reduced objective function.

To avoid multi-collinearity, some authors have suggested to not consider
regions of the nonlinear parameter space which lead to such multi-collinearity
(see, for instance, Ref. [15]), while others have proposed to tackle the fitting
problem by a suitable choice of optimization algorithm (e.g. Ref. [6] suggest a
genetic algorithm). We will argue that while the first approach is reasonable, it
still bears some difficulties. For the second approach, we will prove that the issue
ofmulti-collinearity is an inherent aspect of the problem and cannot be addressed
choosing the optimization algorithm in a particular way. Note that although this
result was already indicated in Ref. [15], no formal proofs nor a mathematical
precise analysis were given.

In essence, although the main difficulties in fitting these models have been
recognized in various sources, no fully satisfying analysis nor remedy has been
presented in the literature so far.
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In view of these findings, we propose a novel mathematically rigorous analysis
of fitting Nelson–Siegel and Svensson models. Given that both models are linear
combinations of specific nonlinearly parameterized basis functions, it is well-
known that the problem ofmatchingmodel rates to given rates can be formulated
as a separable nonlinear least-squares problem. In particular, this allows to
express the linear model parameters as an ordinary linear least-squares solution
that depends on the nonlinear parameters. On substituting the optimal solution
into the original objective function, we arrive at an atmost two-dimensional non-
convex and potentially non-differentiable optimization problem in the nonlinear
parameters only. This reduction is the basis for our analysis and quantification
of the ill-conditioning of the problem; an analysis which has not been carried
out before in such a way in the literature. Accordingly, by means of such a stabil-
ity analysis, we can exactly identify the regions of the parameter space that lead
to the ill-conditioning and consequently untrustworthy values. After demon-
strating that some of this ill-conditioning can be avoided by adding more short
and/or long term tenors to the fitting problem, we then argue that the most reli-
able and efficient way to address the remaining ill-conditioning is by penalizing
the reduced objective function, where the parameters of the penalization can be
adjusted as to yield sufficient stability in the linear parameters. One of the main
findings of our analysis is that if the optimal solution is obtained in a region
with a high condition number this can be interpreted as an over-specification
of the model for the data at hand. As our subsequent analysis will show, this ill-
conditioning is caused in full by high collinearity of the basis functions. For the
first time, this also shows in a rigorous way that the model parameters cannot be
properly identified (due to offsetting effects) – independent of the optimization
algorithm employed.

A further interesting result is that the reduced objective function is smooth,
and thus Lipschitz continuous, in a large compact set containing the global opti-
mum, which for the first time puts global optimization methods for the reduced
problem on a sound mathematical basis.

The remainder of this paper is structured as follows. In Section 2, we briefly
review the modelling framework of the Nelson–Siegel and the Svensson mod-
els. In Section 3, we describe the traditional fitting procedure of these models
and show how the (partial) linear structure of the models can be exploited, while
in Section 4, we provide a thorough analysis of the inherent ill-conditioning of
the problem and present an approach to solve the fitting problems by means
of penalization. In Section 5, we support our theoretical findings with a brief
computational study. Finally, Section 6 provides our conclusions.

2. Model specification

Let us start by mentioning that both the Nelson–Siegel and the Svensson model
have their thorough foundations in interest rate theory, see, for instance, Ref. [12],
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where more details on the models can be found. For the purpose of this paper,
it suffices though to assume that some kind of rates y(τ ) (e.g. zero rates, swap
rates, CDS spreads, etc.) are given for selected maturities τ ∈ [0,T], with fixed
horizon date T>0, which we want to approximate by either the Nelson–Siegel
or the Svensson family of functions. This rather pragmatic point of view is also
employed, e.g. by Sokol [8].

2.1. Nelson–Siegel model

In Ref. [1], the following model curve is proposed

yλ,β(τ ) = β1 + β2

(
1 − e−λ1τ

λ1τ

)
+ β3

(
1 − e−λ1τ

λ1τ
− e−λ1τ

)
, (1)

where β1, β2, β3 ∈ R denote the linear coefficients and λ1 ≥ 0 the shape
parameter.

Although Nelson and Siegel’s model is quite simple, it can assume a variety of
shapes depending on the four parameters which have a clear interpretation: β1
describes the long rate, the sum β1 + β2 accounts for the short rate, and β3 and
λ1 determine the height and position of the hump of the curve, respectively.

2.2. Svenssonmodel

To allow for an even greater flexibility in the curves and to improve the fit, the
author [2] proposes to extend Nelson and Siegel’s model by adding a further
term. Svensson’s extension often provides a better fit to long maturities than the
Nelson–Siegel model, see, e.g. [16]. The corresponding model curve is given as

yλ,β(τ ) = β1 + β2

(
1 − e−λ1τ

λ1τ

)
+ β3

(
1 − e−λ1τ

λ1τ
− e−λ1τ

)

+ β4

(
1 − e−λ2τ

λ2τ
− e−λ2τ

)
. (2)

with λ1 ≥ 0 and λ2 ≥ 0.
Unlike other authors, we do not impose any restrictions on the linear param-

eters β1, β2, β3 and β4 at this point. This is justified by the fact that for example
interest rates may well become negative, as developments in financial markets
have shown, see, e.g. [17].

3. Fitting of model curves

The aim of a fitting procedure is to determine model parameters such that they
best match available data. Fitting can thus be seen as defining an optimization
problem, of which several different variants exist, and of choosing and exe-
cuting an optimization algorithm. Different variants of fitting differ from each
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other in the formulation of the objective function as well as in the choice of the
optimization algorithm used to solve the problem.

3.1. Traditional approach

3.1.1. General setup
Given the descriptions of the Nelson–Siegel and the Svensson models in (1)
and (2), respectively, the model curves1 can be expressed as

yλ,β(τ ) =
l∑

j=1
βjφj(λ; τ), (3)

where the continuously differentiable basis functions φj have the form

φ1(λ; τ) = 1, φ2(λ; τ) = 1 − e−λ1τ

λ1τ
,

φ3(λ; τ) = 1 − e−λ1τ

λ1τ
− e−λ1τ , φ4(λ; τ) = 1 − e−λ2τ

λ2τ
− e−λ2τ .

Using (3) and letting 0 < τ1 < . . . < τm ≤ T denote some set of predefined
maturities at which given rates ŷ1, . . . , ŷm ∈ R are available, the fitting of the Nel-
son–Siegel and the Svensson models to these rates can then be described2 in the
least-squares sense as solving the problem

min
λ∈�,β∈Rl

{
F(λ,β) := ∥∥�(λ)β − ŷ

∥∥2
2

}
, (4)

where β ∈ Rl and λ ∈ � are unknown parameters, � ⊂ Rk+ is without loss of
generality a closed set of positive k-dimensional real numbers (see Section 3.2.2
for the relevant reasoning), �(λ) ∈ Rm×l denotes the matrix of basis func-
tions with entries {�(λ)}i,j = φj(λ; τi), i = 1, . . . ,m, j = 1, . . . , l, and ŷ =
(ŷ1, . . . , ŷm)� ∈ Rm presents the vector of given rates. We further assume that
m> l+ k holds, i.e. the number of maturities is greater than the dimension of the
problem so that (4) defines an overdetermined least-squares problem with more
observations than unknowns.

Note that we use throughout the convention

φ2(0; τ) := 1 = lim
λ1→0+ φ2(λ; τ) and

1 For l = 3, λ ∈ R+ , we obtain the Nelson–Siegel model, whereas for l = 4, λ ∈ R2+ , we obtain the Svensson
model. To allow for larger values of l, further basis functions would need to be defined. Our subsequent analy-
sis is specifically tailored for the Nelson–Siegel and Svensson models, but can partially be generalized to larger
models as well.

2 To take care of potential heteroscedasticity in the data, positiveweightsmay additionally be included in the objec-
tive function F. The latter may then be formulated as F(λ,β) := ‖W(�(λ)β − ŷ)‖22, where the elements of the
weightmatrixW = diagw1, . . . ,wl are typically set equal to the reciprocals of the variances of the residuals, which
may be estimated, for instance, from historical data (e.g. Ref. [18]). However, for ease of exposition, we do not use
any weights in our analysis and the numerical calculations.
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φ3(0; τ) := 0 = lim
λ1→0+ φ3(λ; τ),

where both limits are understood in the supremum norm on C([0,T]) (i.e. limits
are uniform in τ ).

Further, note that other possibilities for modeling the fitting problem exist as
well. For instance, one could use other functions than the sum-of-squares tomea-
sure the fitting error, such as the ∞-norm, the 1-norm, or any monotone trans-
formation thereof.While themain idea of our analysis still remains valid for these
formulations, our analysis exploits the special structure of the given optimization
problem. Different variants will require different definitions of a condition num-
ber of the inner problem, which might lead to a much more involved analysis.
Let us point out here that (4) appears to represent the most popular formulation
and is also used in other contexts, e.g. training autoencoders [8].

3.1.2. Review of existing approaches
To deal with the numerical difficulties involved in the fitting, several different
approaches have been presented in the literature which will be reviewed in the
following.

In order to avoid solving a non-convex least-squares problem, the idea of
splitting the problem and employing a grid search on the reduced problem was
already proposed in the original paper [1]: consider the shape parameter λ1 only
on a finite grid of different values in a reasonable interval and estimate for each
of these values the remaining parameter β by solving a linear least-squares prob-
lem. The optimal solution among all sets of parameters was then chosen as the
one yielding the highest coefficient of determination R2.

The idea of fixing the shape parameter at pre-specified values in the estima-
tion of the Nelson–Siegel model was adopted by Fabozzi et al. [10], Diebold and
Li [13], De Pooter [12], and other authors, albeit with a different strategy for the
choice of λ1. Considering that the shape parameter determines the position of
the hump of the zero rate curve, the literature [10,13] fixed the parameter λ1 in
the Nelson–Siegel model in such a way that the maximum of the zero rate curve
was attained for different sets of data at a maturity of 5.38 and 2.5 years, respec-
tively. The latter value was also used by De Pooter [12] for his data set. While the
reason for these particular choices was motivated by historical observations, the
author [14] fixed the nonlinear parameter in hindsight at a value which provided
the lowest fitting error over the time horizon considered. By setting the nonlin-
ear parameter to a single pre-specified value, some of the numerical problems
can be resolved. However, a significant amount of flexibility of the models is lost
this way. In particular, no such strategy guarantees that the fixed parameter is
suitable, let alone optimal, for all individual curves. Moreover, this simple strat-
egy has only been applied to fitting the Nelson–Siegel model. In the case of the
Svensson model, two nonlinear parameters λ1 and λ2 would need to be fixed at
adequate values, which is a much more demanding task. We want to emphasize
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that the original grid search idea proposed inRef. [1] is at presentmerely a heuris-
tic approach, as no mathematical rigorous reasoning has been given as to why
such a strategy should be able to approximate the true global optimum.

If separability is ignored and all parameters are estimated simultaneously,
the corresponding optimization problem (4) is non-convex and may thus have
several local minima. Unsurprisingly, using nonlinear optimization techniques,
various authors hence have noted that the success crucially depends on the
choice of the initial values, see e.g. Ref. [19] for the Nelson–Siegel model as well
as [12,20] for both models. To mitigate the danger of getting stuck in a local opti-
mum, [12] suggested to carefully choose the initial values by applying the above
strategy of fixing the shape parameter. In Ref. [20], it is indicated that it would
be necessary to run any local optimization algorithm from many different initial
values and therefore suggest a multi-start framework in which they run a local
optimizer for (4) from a selected subset of randomly generated points.

The difficulties in fitting are further elevated by the potential multi-
collinearity in the models, as analysed by De Pooter [12], Gilli et al. [15],
and Annaert et al. [21], for instance. It is pointed out in Ref. [12] that the lin-
ear parameter estimates β are sensitive to the choice of the shape parameter λ

and that the fitting procedure as given via (4) can result in optimal parameter
sets that lead to a very good fit but include extreme values, especially for the
Svensson model3. Since the degree of multi-collinearity seemed to be influenced
only by the nonlinear parameter λ (apart from maturities), the most common
technique for preventing multi-collinearity is to restrict its parameter space in an
appropriate manner, see Refs [12,15]. Given the economical interpretation of the
shape parameter, the author [12] constrained the parameter in bothmodels to lie
in a small interval that implies that the humps of the resulting zero rate curves
are between one and five years of maturity for a data set with up to ten years of
maturity. Similarly, to avoid the case in the Svensson model where λ1 and λ2 lie
too close together, he restricted λ2 so that the second hump occurs at a maturity
which is at least one year shorter than the first hump. In contrast to the above
interpretation of the shape parameter, the study [15] discussedmulti-collinearity
in theNelson–Siegel and the Svenssonmodels (albeit not in a completely rigorous
fashion) and constrained the range of λ to those values that yield factor loadings
that are not too highly correlated. If factors become too highly correlated, many
different parameter sets typically have very similar objective function values so
that the factors can no longer be uniquely identified. Nevertheless, their final
restriction of the parameter space excludes regions that may contain a poten-
tial global minimum with moderately correlated factor loadings. An approach
different from restricting the parameter space was chosen by Annaert et al. [21],
who improved the suggested grid search of Nelson–Siegel by a ridge regression

3 An examplewas provided byGimeno andNave [22] for fitting the Svenssonmodel, albeit with a different objective
function. They reported that extreme andoften offsetting optimal values for the linear parametersβ3 andβ4 occur
whenever the corresponding nonlinear parameters λ1 and λ2 are similar to each other.
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to stabilize the estimated parameters and hence prevent multi-collinearity. More
precisely, for an optimal nonlinear parameter λ∗

1 causing high collinearity, they
iteratively re-estimated the corresponding linear coefficients until the condition
number of the modified linear least-squares problem falls below a given thresh-
old. The approach is extendable to the Svensson model in a straightforward
manner. The main disadvantage of this approach is that the changes in the linear
parameters might result in a significant deterioration of the model fits.

In what follows, we provide a novel analysis supplementing existing
approaches for fitting both the Nelson–Siegel and the Svensson models. As
already mentioned, this analysis is based on the observation that the corre-
sponding optimization problem can be reformulated as a separable nonlinear
least-squares problem, which allows to avoid collinearity issues substantially and
which renders the global optimization problem computationally tractable as its
dimension is reduced significantly. Even though the special structure of the objec-
tive function was already recognized by Angelini and Herzel [23] and Gauthier
and Simonato [20], no theoretical justification in the sense of our Theorem 3.1
was provided, not to mention the subsequent implications on the treatment of
the ill-conditioning of the inner problem.

3.2. Dimension reduction in fittingmodels

3.2.1. Main idea
Since the model rates yλ,β in both the Nelson–Siegel and the Svensson model
are expressed as a linear combination of nonlinear basis functions in which the
parameters λ and β occur independently, cf. formula (3), the original minimiza-
tion problem (4) evidently presents a separable nonlinear least-squares problem,
see e.g. Ref. [24], Section 9.4.

Hence, for any given λ ∈ �, some optimal linear parameter β∗ = β∗(λ) will
always exist and can be obtained by solving the standard linear least-squares
problem

min
β∈Rl

F(λ,β), (5)

for fixed λ ∈ �. Its solution is given by

β∗(λ) = �(λ)†ŷ, (6)

where �(λ)† denotes the Moore-Penrose pseudoinverse of �(λ), see, e.g. [24],
Sections 1.1.4 and 1.2.5. Note that β∗ solves (5) if and only if β∗ satisfies the
normal equations of (5):

�(λ)��(λ)β∗ = �(λ)�ŷ.

Accordingly, if the columns of �(λ) are linearly independent, i.e. rank(�(λ)) =
l, the unique least squares solution is given by β∗(λ) = (�(λ)��(λ))−1�(λ)�ŷ.
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If rank(�(λ)) < l, the least squares solution β∗(λ) is not unique, and any such
solution has the same residual �(λ)β∗(λ) − ŷ. In this case, the Moore-Penrose
pseudoinverse assigns the solution with minimum length ‖β∗(λ)‖2, which is
uniquely defined.

On substituting the optimal solution into the objective function F, the original
problem (4) can be decomposed into an outer and inner optimization problem

min
λ∈�
β∈Rl

F(λ,β) = min
λ∈�

min
β∈Rl

F(λ,β)︸ ︷︷ ︸
=:H(λ)

= min
λ∈�

H(λ), (7)

where the objective function H takes the semi-analytic form

H(λ) = F
(
λ,β∗(λ)

) =
∥∥∥�(λ)�(λ)†ŷ − ŷ

∥∥∥2
2
, (8)

in which the linear parameter β has been eliminated.
The outer problem (7) is a non-convex optimization problem in the nonlinear

parameter λ ∈ �. For each function evaluation of the objective functionH in (8),
the inner problem (5) needs to be solved which represents an unconstrained
low-dimensional linear least-squares problem in the parameter β . Once the opti-
mal nonlinear parameter λ∗ has been obtained by solving the outer problem (7),
the unique corresponding optimal linear parameter β∗(λ∗) can be derived via
Equation (6).

3.2.2. Theoretical justification
The justification for employing the proposed technique is given by the following
Theorem 3.1. For a proof of Theorem 3.1, see Ref. [25], Theorem 2.1. This result
establishes a strong relationship between critical points of the original objective
function F and the new objective function H, as well as between their global
minimizers.

Theorem 3.1: Assume that in the open set �, the matrix of basis functions �(λ)

has constant rank 0 < q ≤ l.

(a) If λ∗ is a critical point, resp. a global minimizer, of H in � and

β∗ = �(λ∗)†ŷ, (9)

then (λ∗,β∗) is a critical point, resp. a global minimizer, of F in � × Rl and
F(λ∗,β∗) = H(λ∗).

(b) If (λ∗,β∗) is a global minimizer of F in � × Rl, then λ∗ is a global minimizer
of H(λ) in � and H(λ∗) = F(λ∗,β∗). Furthermore, if there is a unique β∗
among the minimizing pairs of F, then β∗ must satisfy (9).

We note that the equivalence between the critical points of both objective func-
tions relies on the assumption that the rank of thematrix�(λ) is locally constant
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on an open set �, while the constant rank condition is obviously not necessary
for the equivalence of the global minimizers.

Concerning the corresponding Moore-Penrose pseudoinverse �(λ)†, in our
setup the constant rank condition further allows to establish continuity and even
smoothness of H on �, see the subsequent Corollary 3.1 based on the following
Theorem 3.2. For this purpose, let Dλ�(λ) denote the Fréchet derivative of the
matrix �(λ) with respect to λ. For a proof of Theorem 3.2, let us refer to [25],
Theorem 4.3. Note that our Equation (10) equals equation (4.12) in Ref. [25].

Theorem 3.2: Assume that in the open set �, the matrix of basis functions �(λ)

has constant rank 0 < q ≤ l. Further, let�(λ) be Fréchet differentiable with respect
to λ in �. Then, for any λ ∈ �, we have that the following identity holds:

Dλ�(λ)† = −�(λ)†Dλ�(λ)�(λ)†

+
(
�(λ)��(λ)

)†
Dλ�(λ)�

(
I − �(λ)�(λ)†

)
+

(
I − �(λ)†�(λ)

)
Dλ�(λ)�

(
�(λ)�(λ)�

)†
. (10)

From the differentiability of theMoore-Penrose pseudoinverse on�, it imme-
diately follows with (8) and (10) that the objective function H is differentiable
on � with respect to λ as well, so that formulas for its gradient ∇λH(λ) =
(DλH(λ))� can be established, see the following Corollary 3.1. In Corollary 3.1
we cover the Svensson model; the Nelson–Siegel model can be easily recovered
by setting λ2 = 0, β∗

4 (λ) = 0 and neglecting the second column of DλH(λ).

Corollary 3.1: Assume that in the open set �, the matrix of basis functions �(λ)

has constant rank 0 < q ≤ l and that l = 4. Further, let �(λ) be Fréchet differ-
entiable with respect to λ in �. Then, for any λ ∈ �, H is differentiable and it
holds:

DλH(λ) = −2ŷ� (
I − �(λ)�(λ)†

) [
β∗
3 (λ) (τ ◦ e−λ1τ ),β∗

4 (λ) (τ ◦ e−λ2τ )
]
,

(11)

where ”°” denotes the Hadamard product of componentwise vector multiplication.

Proof: Differentiability ofH has already been noted above. Further, according to
Ref. [25], equation (4.7), the derivative of H with respect to λ can be written as

DλH(λ) = −2ŷ�(
I − �(λ)�(λ)†)Dλ�(λ)�(λ)†ŷ. (12)

SinceD�(λ) ∈ Rk×(m×l) is a tensor, its first and second slice with partial deriva-
tives with respect to λ1 and λ2 have the matrix forms

[Dλ�(λ)]1 = ∂

∂λ1
�(λ) = [

0,Dλ1φ2(λ; τ),Dλ1φ2(λ; τ) + τ ◦ e−λ1τ , 0
]
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and

[D�(λ)]2 = ∂

∂λ2
�(λ) = [

0, 0, 0,Dλ2φ4(λ; τ)
]
,

respectively, where

Dλ1φ2(λ; τ) = ∂

∂λ1
φ2(λ; τ) = e−λ1τ

λ1
− 1 − e−λ1τ

λ21τ
,

Dλ1φ3(λ; τ) = ∂

∂λ1
φ3(λ; τ) = Dλ1φ2(λ; τ) + τ ◦ e−λ1τ , and

Dλ2φ4(λ; τ) = ∂

∂λ2
φ4(λ; τ) = e−λ2τ

λ2
− 1 − e−λ2τ

λ22τ
+ τ ◦ e−λ2τ

denote the derivative of the i-th basis function φi(λ; τ) with respect to λk. Since
Dλ1φ2(λ; τ) does not depend on λ2, we can set

h2(λ1) := Dλ1φ2((λ1, 0); τ).

As previously noted, for each λ ∈ � the inner problem in β possesses at least one
optimal solution β∗(λ) with β∗(λ) = �(λ)†ŷ. We can thus rewrite (12) as

DλH(λ) = −2ŷ� (
I − �(λ)�(λ)†

)
× [(

β∗
2 (λ) + β∗

3 (λ)
)
h2(λ1) + β∗

3 (λ) (τ ◦ e−λ1τ ),

β∗
4 (λ)h2(λ2) + β∗

4 (λ) (τ ◦ e−λ2τ )
]
.

Now, h2(λ1; τ) = −φ3(λ; τ)/λ1 and h2(λ2; τ) = −φ4(λ; τ)/λ2, and from the
normal equations of the inner problem for fixed λ

�(λ)��(λ)β∗(λ) = �(λ)�ŷ,

it follows that any column of �(λ) is orthogonal to (�(λ)�(λ)† − I)�ŷ. Hence,
DλH(λ) can be simplified to

DλH(λ) = −2ŷ�(I − �(λ)�(λ)†)[β∗
3 (λ) (τ ◦ e−λ1τ ),β∗

4 (λ) (τ ◦ e−λ2τ )].

�

Note that while Equation (12) holds in the general situation, the specific form
of ∇λH(λ) in (11) only holds for the Nelson–Siegel and the Svensson models.
Moreover, since the matrix norms of �(λ) and �(λ)† and the Fréchet deriva-
tives D�(λ) and D�(λ)� are bounded on bounded domains for constant rank,
the Fréchet derivative in (10) is bounded aswell. In particular, theMoore-Penrose
pseudoinverse is locally Lipschitz continuous on�, as well as the objective func-
tion H as a composition of locally Lipschitz continuous functions. Thus, H is
globally Lipschitz continuous on any compact subset � ⊂ �.
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It is a natural next step to investigate for which values of λ ∈ Rk+ the matrix
�(λ) might fail to have full rank. We will prove that in the Svensson model a
rank deficiencymay only occur for points which are not globalminimizers, while
in the Nelson–Siegel model, rank deficiency will only happen for a few isolated
points in the general situation; and most importantly, does not happen at all in
our specific situation.

Proposition 3.1: Let m ≥ 3 and τ1, τ2, τ3 ∈ Q. Then in the Nelson–Siegel model
we have

|{λ ∈ R+ : rank(�(λ)) < 3}| ≤ 4.

Proof: We first note that the extreme case λ = 0 corresponds to �(λ) having
rank 1, as �(λ) only contains columns of 0’s or columns of 1’s. Therefore, let
λ > 0 in the following. To prove the claim it is sufficient to consider the upper
3 × 3 matrix of �(λ), i.e. ignore further maturities, as the rank of the full matrix
is always equal to or larger than the rank of this submatrix:

A :=
⎛
⎝φ1(λ; τ1) φ2(λ; τ1) φ3(λ; τ1)

φ1(λ; τ2) φ2(λ; τ2) φ3(λ; τ2)
φ1(λ; τ3) φ2(λ; τ3) φ3(λ; τ3)

⎞
⎠ .

Since φ3(λ; τ) = φ2(λ; τ) − e−λτ , we can subtract the second column from the
third, then multiply the third column by−1, swap second and third column, and
obtain the matrix B with det(B) = det(A):

B :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 e−λτ1
1 − e−λτ1

λτ1

1 e−λτ2
1 − e−λτ2

λτ2

1 e−λτ3
1 − e−λτ3

λτ3

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We can then multiply the last column of B by λ and substitute z := e−λ (note
0< z<1) to obtain the matrix C with det(C) = λ det(B):

C :=

⎛
⎜⎜⎜⎜⎜⎝
1 zτ1

1 − zτ1

τ1

1 zτ2
1 − zτ2

τ2

1 zτ3
1 − zτ3

τ3

⎞
⎟⎟⎟⎟⎟⎠ .

Letting t ∈ N be the least common denominator of τ1, τ2 and τ3, hence τi = vi/t
for some vi ∈ N, i = 1, 2, 3, we can further substitute y = z1/t and obtain

1/t · det(C) =
(
1
v2

− 1
v3

)
yv3+v2 +

(
1
v3

− 1
v1

)
yv3+v1 +

(
1
v1

− 1
v2

)
yv2+v1
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+
(
1
v1

− 1
v2

)
yv3 +

(
1
v3

− 1
v1

)
yv2 +

(
1
v2

− 1
v3

)
yv1 .

Thus, 1/(t · yv1) · det(C) yields a polynomial in y with a constant term and five
monomial terms. By Descartes’ rule of sign, this polynomial can have at most five
distinct positive real roots as it has at most five sign changes in the coefficients.
Further, since the product of the first and the last coefficient is positive, the num-
ber of roots has to be even, hence there are at most four different positive real
roots. Since we can further divide the remaining polynomial by the leading fac-
tor, which yields a constant term of 1, we know that there must be at least one
positive real root larger than 1 if there is any positive real root smaller than 1 (as
the product of all roots equals 1). Thus, there are at most three positive real roots
in the open interval (0, 1), which proves the claim. �

Remark 3.1: Since 1/(t · yv1) · det(C) has to vanish for y = z = 1, one might be
able to show that the polynomial is, from there on, strictly increasing. This would
actually show that there are no roots besides z = 0 and z = 1. Unfortunately, we
have not been able to prove this yet. Nevertheless, we have checked a variety of
choices for the maturities τ and we have never found an instance where �(λ)

becomes rank deficient in the Nelson–Siegel model.

Fortunately, for the specific choice of maturities which we consider in
Section 5, it is quite easy to prove that �(λ) always has full rank:

Remark 3.2: For the specific choice of maturities as in Section 5, where m ≥ 3
and τ1 = 1, τ2 = 2, and τ3 = 3, we have that t = 1 and, most importantly,

det(C) = 1/6 · (z − 1)4z,

which shows that �(λ) has full rank for all λ > 0. Thus, in the Nelson–Siegel
model, we can choose � = R+ as minimization region, where the case λ = 0
can be covered separately in an easy fashion.

Fromnow on, wemake the assumption on thematurities that λ = 0 is the only
point of rank deficiency for�(λ) in the Nelson–Siegel model, i.e. we require that
the maturities τ1, . . . , τm are such that

in the Nelson–Siegel model holds: {λ ∈ R+ : rank(�(λ)) < 3} = {0}.
(FRNS)

(FRNS) is an assumption, which is satisfied in our numerical setup according to
Remark 3.2. Further, (FRNS) can be easily checked (e.g. with symbolic computing
toolboxes) for other maturity choices.

Under assumption (FRNS) let us now consider the Svensson model in more
detail. We first consider the case that a related full rank assumption for the
Svensson model holds:

(FRNS) holds and in the Svensson model we have:

∀λ1 > 0 ∃λ2 > 0 : rank(�(λ)) = 4. (FRSv)
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Remark 3.3: For the specific choice of maturities as in Section 5, where m ≥ 4
and τk = k (k = 1, . . . , 4), we can prove by similar considerations as in the proof
of Proposition 3.1 that the upper 4 × 4 matrix of �(λ1, λ2) has full rank for all
choices of λ1 > 0 when we set λ2 = ln(4) if λ1 < ln(3) and λ2 = ln(2) other-
wise. Alternatively, this also follows from Remark 3.4 as an easy consequence. In
summary, (FRSv) holds.

Under (FRSv), we can now show that there is at least one global optimizer λ∗ of
H such that �(λ∗) has full rank. This statement is made precise in the following
Proposition 3.2. Proposition 3.2 allows us to restrict the global minimization of
H to regions where �(λ) has full rank.

Proposition 3.2: Let (FRSv) hold. Then

min
λ∈R2+

H(λ) = min
λ∈R2+:rank(�(λ))=4

H(λ)

Proof: Let λ̄ be a global minimizer of H on R2+ with rank(�(λ̄)) < 4. Then
rank(�(λ̄)) = 3, as the first three columns of �(λ) are independent by assump-
tion (FRNS). Thus, there exist ĉ1, . . . , ĉ4 ∈ R with ĉ4 �= 0 such that

4∑
k=1

ĉkφk(λ̄; τ) = 0,

or, equivalently, for ck = −ĉk/ĉ4:

φ4(λ̄; τ) =
3∑

k=1

ckφk(λ̄; τ).

Using H(λ̄) = minβ∈R4 F(λ̄,β) = F(λ̄,β∗(λ̄)) for some optimal β∗(λ̄) yields

H(λ̄) = min
β∈R4

F(λ̄,β) = F(λ̄,β∗(λ̄)) = F(λ̄,β∗
1 (λ̄), . . . ,β∗

4 (λ̄))

= F(λ̄,β∗
1 (λ̄) − c1β∗

4 (λ̄), . . . ,β∗
3 (λ̄) − c3β∗

4 (λ̄), 0).

Thismeans that λ̄2 is such thatφ4 is already contained in the linear hull of the first
three basis functions. Since nowβ4 = 0, we can choose any other value λ̂2 instead
of λ̄2 without changing the value of F. We choose λ̂2 such that �(λ̄1, λ̂2) has full
rank (i.e. rank(�(λ̄1, λ̂2)) = 4), which is possible due to assumption (FRSv) and
obtain:

H(λ̄) = . . . = F(λ̄,β∗
1 (λ̄) − c1β∗

4 (λ̄), . . . ,β∗
3 (λ̄) − c3β∗

4 (λ̄), 0)

= F((λ̄1, λ̂2),β∗
1 (λ̄) − c1β∗

4 (λ̄), . . . ,β∗
3 (λ̄) − c3β∗

4 (λ̄), 0)

= min
β∈R3

F((λ̄1, λ̂2),β1, . . . ,β3, 0) (X)
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Figure 1. Term structures and objective functionsHwith corresponding globalminimawhen the
Nelson–Siegel model is fitted to the data on 6 January 2009 and 7 January 2009, respectively.
(a) Term structures. (b) Objective functions H and global minima (red points).

≥ min
β∈R4

F((λ̄1, λ̂2),β1, . . . ,β3,β4)

= H((λ̄1, λ̂2)).

This shows the claim. �

Since the set {λ ∈ R2+ | rank(�(λ))) = 4} is open, we choose � := {λ ∈
R2+ | rank(�(λ)) = 4} for the Svensson model. For an approximate characteri-
zation of� let us refer to Remark 3.4. Note that Figure 2 indicates that� has full
rank in the Svensson model as long as λ ∈ L := {(λ1, λ2) ∈ R2+ | λ1 > 0, λ2 >

0, λ1 �= λ2} with potential exception of the two bent curves visible in Figure 2.
This can indeed be rigorously shown in our setup:

Remark 3.4: For the specific choice of maturities as in Section 5, where m ≥ 4
and τk = k (k = 1, . . . , 4), we have that with

B := {(λ1, λ2) ∈ R2+ | λ1 = ln(v(e−λ2)) − ln(u(e−λ2))},
where u(s) = 1 − s + 2s ln(s) and v(s) = s2 − 4s2 ln(s) − s + 2s ln(s), that

L\B ⊂ {λ ∈ R2+ | rank(�(λ)) = 4} ⊂ L.
In analogy to the proof of Proposition 3.1, the first inclusion (the second is
obvious) can be proved by showing, for a := e−λ2 ,

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 zτ1
1 − zτ1

τ1

1−aτ1
−τ1 ln(a) − aτ1

1 zτ2
1 − zτ2

τ2

1 − aτ2

−τ2 ln(a)
− aτ2

1 zτ3
1 − zτ3

τ3

1 − aτ3

−τ3 ln(a)
− aτ3

1 zτ4
1 − zτ4

τ4

1 − aτ4

−τ4 ln(a)
− aτ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= − z
24

(z − 1)4
a − 1
ln(a)

(a − z) (u(a)z + v(a)) .

This shows that the determinant of the above matrix can only vanish for given
a if z = a or if z = −va/ua. Whether � has full rank on B remains open, as we
have only considered the upper 4 × 4 block of �.

Under a slightly stronger assumption than (FRSv), we can show a stronger
statement than in Proposition 3.2. For this purpose, let us introduce the assump-
tion (RNS) on the maturities τi, i = 1, . . . ,m:

∃0 < λ
(1)
1 < . . . < λ

(m)
1 : det

(
φ3((λ

(j)
1 , 0); τk)k,j=1,...,m

)
�= 0. (RNS)

In other words, we can findm different values for λ1 such that them versions of
the basis function φ3 form a basis of the Rm.

Remark 3.5: Assume (FRNS); then assumption (FRSv) immediately follows
from (RNS): since the m versions of the basis function φ3 (and thus also those
of φ4) form a basis ofRm, we can always pick one of thesem values for λ2 to get a
fourth column of�(λ), which is not contained in the linear hull of the first three
columns.

Remark 3.6: For the specific choice of maturities as in Section 5, wherem = 15
and τk = k (k = 1, . . . , 15), we can show numerically that

{λ(1)
1 , . . . , λ(m)

1 }
= {0.01, 0.04, 0.09, 0.17, 0.28, 0.42, 0.58, 0.79, 1.05, 1.36, 1.77, 2.31, 3.10,

4.43, 8.47}
yields a set of values which satisfies (RNS).

Similar considerations show that for our numerical tests the basis function φ2
is also rich enough, i.e. φ2 satisfies (RNS), given

{λ(1)
1 , . . . , λ(m)

1 }
= {0.01, 0.02, 0.06, 0.12, 0.20, 0.32, 0.47, 0.65, 0.89, 1.18, 1.56, 2.06, 2.77,

3.99, 7.62}.
We can now strengthen our result above for the Svensson model to the fol-

lowing Theorem 3.3. Note that Theorem 3.3 is not relevant for the Nelson–Siegel
model, as for theNelson–Siegelmodel thematrix�(λ) always has full rank under
our given assumptions.
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Theorem 3.3: Let λ∗ be the global minimizer of H(λ) on R2+, let H(λ∗) > 0 and
let (RNS) hold. Then, the matrix �(λ∗) has full rank.

Proof: Let λ̄ be a global minimizer of H with H(λ̄) > 0 and assume �(λ̄) does
not have full rank. Then, in complete analogy to the proof of Proposition 3.2 up
to the equality marked (X), we have:

H(λ̄) = min
β∈R3

F((λ̄1, λ̄2),β1, . . . ,β3, 0) = F((λ̄1, λ̄2), β̄1, . . . , β̄3, 0)

= F((λ̄1, λ̂2), β̄1, . . . , β̄3, 0).

SinceH(λ̄) > 0, the residual ŷ − �(λ̄)β̄ (with β̄4 = 0) does not equal 0. Further,
due to (RNS), we can choose λ̂2 not only in such a way that �((λ̄1, λ̂2)) has full
rank, but we can further choose it such that φ4((λ̄1, λ̂2); τ) is not orthogonal to
the residual ŷ − �(λ̄)β̄ and hence

H(λ̄) = F((λ̄1, λ̂2), β̄1, . . . , β̄3, 0) > min
β4∈R

F((λ̄1, λ̂2), β̄1, . . . , β̄3,β4)

≥ min
β∈R4

F((λ̄1, λ̂2),β) = H((λ̄1, λ̂2)).

This shows that λ̄ cannot be a global minimizer, hence the claim follows. �

If H(λ∗) = 0, not much can be said about the rank of �(λ∗). For example,
one might be given data ŷ which is already in the linear hull of the first three
basis functions. Then the choice of λ2 does not play a role and one can choose λ2
in a way such that a rank deficit of � occurs. In our numerical tests, H(λ∗) = 0
has never occurred, indicating that this is indeed a rare event in practise. Further,
Proposition 3.2 tells us that there is at least one other global minimizer without
a rank deficit.

While Proposition 3.2 already allows us to consider only points where � has
full rank, Theorem 3.3 additionally yields that points λ with rank deficient �(λ)

have worse function values than the global minimizer. Thus, these regions can
be avoided by the minimization routine, which provides the basis for our penalty
approach in the next section.

Let us finally remark that establishing global Lipschitz continuity ofH on com-
pact� ⊂ � provides themain basis for all global optimization approaches for the
reduced problem; a result which so far has been missing in the corresponding
literature.

We are now in a situation where we could apply any reasonable global method
to the optimization ofH. However, instead ofmore involved strategies, we remain
with the most simple grid search approach introduced by Nelson and Siegel [1]
for three reasons: first, the dimension of the global optimization problem is
reduced to one or two and thus grid search is computationally feasible, second,
we are given the natural lower bound of 0 for H and can thus easily judge the
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quality of potential solutions, and third, this method is most easily extendable to
the ideas presented in the following section. As our numerical investigations in
Section 5 show, this approach already yields encouraging results.

4. Stability analysis

One of the main issues that arise in the minimization of the reduced optimiza-
tion problem (7) is the stability of optimal solutions. To assess the quality of
optimal solutions, note that the evaluation of H solely depends on the solution
of the inner problem β∗(λ) = �(λ)†ŷ. Hence, the stability of the inner optimal
solution β∗ of the separable least-squares problem can essentially be analysed by
applying perturbation theory to linear least-squares problems, see e.g. Ref. [24],
Section 1.4. Accordingly, there are two different scenarios in which optimal solu-
tions can become sensitive with respect to perturbations of either the data vector
ŷ or thematrix�(λ). The first scenario concerns the projection of ŷ onto the span
of �(λ) and turns out to be of relevance if both components are nearly orthogo-
nal to each other. In such case, the projected ŷ is much smaller than ŷ itself so that
minor changes in ŷ may affect the linear solution β∗(λ) greatly. However, since
both the Nelson–Siegel and the Svensson model are able to fit a variety of differ-
ent shapes with high accuracy, this scenario never occurs for these models and
the sensitivity to perturbations in ŷ can be neglected.4 The second issue pertains
to the conditioning of the matrix�(λ) and thus is influenced solely by the factor
loading structure that is imposed by themodels. In this case, optimal solutions of
the linear least-squares system respond strongly to perturbations in �(λ) if the
matrix is ill-conditioned, i.e. if some of the columns of �(λ) are almost linearly
dependent. Since this is a more subtle issue, in the remaining part of this section
we provide a thorough analysis of the potential ill-conditioning of�(λ) and how
it can be dealt with. In particular, we use the condition number of thematrix�(λ)

tomeasure the sensitivity of an optimal solution (λ∗,β∗(λ∗))�, which also corre-
sponds to the condition of the problemof evaluatingH(λ). In this way, we are able
to quantify – and manage – the ill-conditioning with our enhanced approach, in
contrast to previous approaches.

Let us point out that the above considerations are not to be confused with the
dependence of the optimal λ∗ on the data ŷ, as this is a different issue. Recall that
the main relationship here is that changes in ŷ imply changes in λ∗, which in turn
imply changes in β∗. While the above considerations contemplate the question,
how (small) changes in�(λ∗) (due to small changes in λ∗) impactβ∗, the general
dependence of λ∗ with respect to ŷ is of different nature. Our penalty approach,
which we introduce later, stabilizes the local behaviour of β∗ for small changes
in λ∗ as it takes care of the condition number of �(λ). However, no approach
whatsoever will be able to prevent large changes in λ∗ given small changes in ŷ

4 If models are used where perturbations to ŷ turn out to be relevant, the following analysis can be extended by
adjusting the condition number to include ŷ, see, e.g. Ref. [24], Subsection 1.4.3.
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Figure 2. A two-dimensional line plot and a contour plot of the condition number of the matrix
�(λ) as a function of the nonlinear parameter λ for the Nelson–Siegel and the Svensson mod-
els, respectively, with maturity vector τ = (1, 2, . . . , 15)�. (a) Nelson–Siegel model. (b) Svensson
model.

due to the inherent non-convex structure of the fitting problem in λ, as the fol-
lowing example shows: Let us take ŷ from the subsequent dates 6 January 2009
and 7 January 2009 and look at corresponding objective functions H in the Nel-
son–Siegel model. As we can see in Figure 1, interest rates do not change much
from one day to the other, but the optimal λ∗ moves from one local minimum to
the other. Similar behaviour can be observed in the Svensson model, where this
happens more often due to a larger number of local minima, which all have quite
similar objective values (compare Figure 6 for an illustrative instance). Unfor-
tunately, such a behaviour in λ (and thus in β correspondingly) can never be
avoided by any fitting method due to the inherent structure of the models, unless
one gives up on the global optimality of λ. Moreover, Figure 1 again indicates
the unwanted property of unidentifiability of the Nelson–Siegel model, i.e. there
exists a data vector ŷ such that two different λ values yield the same optimal
quality of approximation.

4.1. The inherent ill-conditioning of�(λ)

Recall that the matrix function �(λ) in the Nelson–Siegel and the Svensson
models can be written as

�(λ) = [φ1(λ; τ), . . . ,φl(λ; τ)] , (13)

with basis functions φj, j = 1, . . . , l. This implies that the degree of ill-
conditioning of �(λ) depends on both the vector of shape parameters λ and the
vector of predefinedmaturities τ , but not on the data ŷ.5 To be able to quantify the
degree of ill-conditioning of the rectangularmatrix�(λ) ∈ Rm×l, we consider its

5 For the available data described in Section 5.1, we havem = 15 and τ = (1, 2, . . . , 15)� .
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singular value decomposition according to Ref. [24], Theorem 1.2.1, where

�(λ) = U(λ)

(

(λ) 0
0 0

)
V(λ)T ,

for unitary matrices U(λ) ∈ Rm×m and V(λ) ∈ Rl×l, and the diagonal matrix

(λ) containing the singular values of�(λ). Using this decomposition, the con-
dition number of the rectangular matrix�(λ) is then defined as follows, cf. [24],
Definition 1.4.2.

Definition 4.1: The condition number of �(λ) ∈ Rm×l is given by

κ (�(λ)) = ‖�(λ)‖2
∥∥∥�(λ)†

∥∥∥
2

= σ1(λ)

σq(λ)
,

where 0 < q ≤ l, σ1(λ) ≥ σ2(λ) ≥ . . . ≥ σq(λ) > 0 are the nonzero singular
values of �(λ), and ‖ · ‖2 denotes the matrix 2-norm.

The condition number describes how solutions of the linear least-squares
problems are affected by small perturbations. If the condition number is ’large’,
i.e. solutions are affected greatly, the problem is said to be ill-conditioned, see e.g.
Ref. [26], Chapter 3. A more accurate interpretation of ill-conditioning is subject
to the problem at hand and depends on the application. For our setup, we will
give a suitable idea of a large condition number in Section 4.2.

The effect of having obtained an optimal nonlinear solution λ∗ with ill-
conditioned matrix �(λ∗) may become especially apparent in that some of the
values of the corresponding linear parameter β∗(λ∗) turn out to be very large
(and offsetting), with values being proportional to the degree of ill-conditioning.
This, though, is in contradiction to the intuitive economic interpretation that all
model parameters have.

Figure 2 shows a line plot and a contour plot of the condition number of the
matrix �(λ) as a function of the parameter λ for the Nelson–Siegel model and
Svensson’s extension, respectively. From the subfigures, we can observe that the
main difficulties in the fitting of both models arise when the shape parameter λ

is either very small or becomes increasingly large, or, in the case of the Svens-
sonmodel, when λ1 ≈ λ2. The severity of the ill-conditioning in the latter case is
illustrated by the elevated diagonal in the contour plot of the condition number,
see Figure 2(b). Disproportional large condition numbers can also be observed
beneath and above the diagonal in form of slightly bent curves for very small and
increasingly large values of the parameter λ, respectively. These curves exactly
represent the set B defined in Remark 3.4. Note that our numerical computation
indicates that in both cases the linear dependence of the columns is only approxi-
mate and thus does not lead to a rank-deficient matrix�(λ) (although the upper
4 × 4 block is rank-deficient according to Remark 3.4).
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Figure 3. Contour plots of the condition number of the matrix �(λ) as a function of
the nonlinear parameter λ for the Svensson model with different maturity vectors τ (1) =
(1/12, 1/4, 1/2, 1, 2, . . . , 15)� and τ (2) = (1, 2, . . . , 15, 24, 36, 60)�. (a) Maturity vector τ (1). (b)
Maturity vector τ (2).

The approximate linear dependence between the columns of the matrix �(λ)

can be mitigated by considering observations with shorter and/or longer maturi-
ties, in addition to the observations already used in themodel. As an example, the
impact on the condition number of the matrix �(λ) when including short and
longmaturities into the vector ofmaturities τ is depicted in Figure 3(a ,b), respec-
tively. Accordingly, the inclusion of short maturities can considerably improve
the degree of ill-conditioning in the region with increasingly large λ’s and hence
enlarge the parameter space for which a solution may be acceptably stable. Sim-
ilarly, the inclusion of long maturities can improve the degree of ill-conditioning
in the region where λ is small.

Let us point out again that if the global optimal solution λ∗ leads to an ill-
conditioned �(λ∗), then it can not be guaranteed that the parameters of the
model can be identified with high accuracy – independent of the method used.
Hence, ill-conditioning is an issuewith theNelson–Siegel and the Svenssonmod-
els themselves, which can occur for certain types of curves, i.e. certain shape
parameters λ. Usually, simply shaped curves (e.g. flat curves, i.e. λ close to 0)
lead to ill-conditioned solutions as in these cases the models are over-specified.
Hence, the condition number can act as an indicator for the over-specification of
the model.

4.2. A penalty approach for avoiding ill-conditioned�(λ)

The most obvious way of dealing with ill-conditioning in the fitting of the Nel-
son–Siegel and the Svensson models is to restrict the parameter space according
to the condition number of the matrix �(λ). However, this approach is rather
inconvenient, as it bears several issues. Whereas the simple relation between
condition number and nonlinear parameter may still allow for an adequate
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derivation of constraints for the Nelson–Siegel model, see Figure 2(a), it is a
fairly demanding task to constrain the parameter space for the Svensson model,
see Figure 2(b). Due to the irregularly distributed condition numbers over the
parameter space, a suitable restriction only seems possible if the parameter space
is modified accordingly, either through transformation or decomposition, or
both. In any case, though, the derivation of constraints remains prone to inaccu-
racies as it presently depends on the visual amenability of the condition number
in one or two dimensions. It thus also lacks a theoretical foundation.

Finally, the approach is somewhat inflexible since minor changes in the mod-
els, or even the use of other models that share the same separable structure,
require the constraints to be readjusted. Because of these reasons, we follow a dif-
ferent approach that deals with the ill-conditioning of the matrix�(λ) in a more
general way, still ensuring the separability of the problem. The approach relies on
a penalization of the objective function if the condition number of �(λ) exceeds
a maximum allowed level and is described hereinafter.

To penalize large condition numbers in the objective functionH of the reduced
optimization problem, we consider the function

Hpen(λ) =
∥∥∥�(λ)�(λ)†ŷ − ŷ

∥∥∥2
2
+ η [κ (�(λ)) − κmax]+ , (14)

where η > 0 denotes the weight of the penalization, κmax the maximum condi-
tion number whose exceedance is penalized, and [ x ]+ = max{x, 0}.

Adding a penalty term to the objective function avoids optimal solutions being
situated in regions with relatively high condition numbers. Because of the direct
relation between the nonlinear parameter λ and the condition number κ(�(λ))

in the objective function Hpen, the impact of the condition number can be con-
trolled more effectively than for any restriction of the parameter space. This is a
particular advantage in case there are no easy-to-identify regions of the parame-
ter space in which the condition number is large, such as for the Svenssonmodel.
A further benefit of the approach lies in its flexibility, as it only requires by choos-
ing the weight parameter η and the maximum unpenalized condition number
κmax.

To determine themaximumunpenalized condition number κmax in the penal-
ization of the objective function Hpen, we consider the stability of optimal linear
solutions under perturbations of the matrix �(λ∗), using the results found in
Ref. [24], Section 1.4.3. More specifically, assuming that

∥∥δ�(λ∗)
∥∥
2 < σl(λ

∗)
holds to ensure a full and constant rank under perturbation, it follows from
formula (1.4.18) that the absolute change in β∗(λ∗) with respect to small per-
turbations in �(λ∗) can be bounded by

∥∥δβ∗(λ∗)
∥∥
2 ≤ ‖δ�(λ∗)‖2

‖�(λ∗)‖2 κ
(
�(λ∗)

) [∥∥β∗(λ∗)
∥∥
2 + ‖r(λ∗)‖2

‖�(λ∗)‖2 κ
(
�(λ∗)

)]
,

(15)
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Figure 4. Perturbationbounds according to inequality (15), with‖δ�(λ∗)‖2 = σl(λ
∗) for fitting

theNelson–Siegel and the Svenssonmodels to the dataset described in Section 5.1. The condition
numberκmax is set to 100 and180, respectively, corresponding to anacceptable perturbation level
of 0.15 and 0.2, respectively. (a) Nelson–Siegel model. (b) Svensson model.

where r(λ) = �(λ)�†(λ)ŷ − ŷ denotes the residual vector6. This is a first-order
estimate for least squares solutions that can be derived from the normal equations
for a perturbed solution by ignoring second-order terms, taking norms, andusing
the singular value decomposition of �(λ∗).

Now, since the perturbation bound on the right-hand side of (15) is mainly
influenced by the condition number of �(λ∗), it can be controlled to a certain
extent by the maximum allowed condition number κmax of Hpen. In particular,
to avoid situations in which optimal linear solutions are too sensitive to pertur-
bations in �(λ∗), the value of κmax should be chosen in such a way that the
absolute change in β∗(λ∗) does not exceed a reasonable level for all fittings in the
worst case. For the dataset given in Section 5.1, we therefore fix the maximum
acceptable perturbation in the optimal linear solutions at a level of 0.15 and 0.2,
respectively. The parameter β is thus not allowed to change by more than 0.15
and 0.20, respectively, to exclude disproportional large movements. This is about
five to ten times the average rate level or standard deviation of rates, respectively,
cf. Figure 5 for historical zero rate levels and their oscillations. By reverse engi-
neering inequality (15) such that, when solving the sequence of fitting problems,
the right-hand side of (15)with the obtainedλ∗’s (and ‖δ�(λ∗)‖2 = σl(λ

∗)) does
not exceed 0.15 and 0.20, respectively, these levels then imply that the condi-
tion number κmax needs to be set to approximately 100 and 180, respectively, to
guarantee reasonably stable and moderate parameters. For the latter values, the
time series of perturbation bounds resulting from the fitting of the models to
the given data are depicted in Figure 4, along with the corresponding maximum
perturbation levels.

6 Note that we have disregarded perturbations in the data vector ŷ and therefore set δŷ = 0. If deemed relevant,
the perturbation bound in (15) can easily be adjusted accordingly.
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Figure 5. (Selected)market zero rate curves. (a)Market zero rates of every fifth business day from
1 January 2004 to 31 December 2014. (b) From left to right: Examples of upward sloping (as of 13
October 2005), nearly flat (as of 14 February 2007), and inverted market zero rate curves (as of 9
September 2008).

Figure 6. The objective function H for the Nelson–Siegel and the Svenssonmodels for data from
16 March 2004. (a) Nelson–Siegel model. (b) Svensson model.
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In contrast to κmax, the weight η of the penalization is less relevant for the
minimization of the objective functionHpen. To keep the resulting function val-
ues within a reasonable range in ill-conditioned regions of the parameter space,
we have set η = ×10−6.

5. Numerical analysis

In this section, we assess the numerical aspects of our method when applied
to historical zero rate data. We begin by briefly describing the underlying data
that we have used and then illustrate a typical objective function for each of
the models. Finally, we conduct a brief computational study in which we show
that a) our grid search approach is effective and that b) the penalty approach
indeed improves the condition of the problemwithout a significant deterioration
in solution quality.

5.1. Data

To fit the models to some data, we have chosen market zero rates ŷ1, . . . , ŷm, in
order to stay with the original interpretation of themodels. However, other kinds
of data, like swap rates, etc. can have been used as well, i.e. the models can also be
directly fitted to observed swap rate quotations. For our analysis, we have used
Euro swap rates which can be converted into the corresponding zero rates by
the usual bootstrapping technique. More specifically, we use daily swap par rates
withmaturities from one to 15 years, which are observed in the time period from
1 January 2004 to 31 December 2014, as obtained from Bloomberg L.P.7. The
resulting dataset hence consists of 2769 daily zero rate curves with 15 maturities
each, to which the models are fitted.

For the given dataset, Figure 5(a) shows the evolution of the zero rate curves
over time. It can be observed that the curves vary considerably and assume several
different shapes. Apart from the typical upward sloping shapes, nearly flat and
inverted zero rate curves can also be found in the dataset, cf. Figure 5(b).

5.2. Illustration of objective function

To provide some qualitative analysis of the objective functions under considera-
tion, we have plotted two representative examples for a selected date in Figure 6,
ignoring any penalization term. As can be seen from both subfigures, the objec-
tive function H typically has one or two local minima in case the Nelson–Siegel
model is fitted, and it usually exhibits between three and five different regions
in which the local minima are situated in the case of fitting the Svensson model.
Naturally, the exact number of local minima depends on the market data. For

7 The respective Bloomberg tickers are ’EUSA1 CMPN Curncy’, ’EUSA2 CMPN Curncy’,. . . , ’EUSA15 CMPN Curncy’,
where we use the last quote ’Px_Last’ of each day.
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Figure 7. RMSEs and condition numbers obtained by fitting the Nelson–Siegel model to the
given data, using a grid search to minimize H and Hpen.

certain instances, this number may change, due to adding a penalization term.
However, the overall impact on the fitting quality is negligible in these cases, as
can be seen in Figures 7 and 8.

From Figure 6, it becomes apparent that for the objective functionH, there are
different regions inwhich the objective exhibits different types of behaviour: there
are small regions of the parameter space in which H is rather insensitive to any
parameter changes and larger regions where changes in the parameter result in
considerable differences in the function values. Moreover, local minima are com-
monly situated in areas of the parameter space that are characterized by narrow
and flat valleys. Let us point out again that especially in the Svenssonmodel, local
minima often have almost the same objective value which might cause jumps in
λ from one region to the other over the course of time.

5.3. Numerical results

In the following, we present numerical results in which we compare how min-
imizing the objective function Hpen compares with minimizing H for a grid
search method8. The obtained results are then analysed in terms of model fit

8 We have also tested a multi-start strategy starting a pattern-search method in each grid point of a slightly coarser
grid which yields higher accuracy in λ∗ at the cost of a higher numerical effort. The main result for the Nel-
son–Siegel model is that the time series of the optimal λ∗ remains quite unchanged. With the exception of a
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Figure 8. RMSEs and condition numbers obtained by fitting the Svensson model to the given
data, using a grid search to minimize H and Hpen.

Table 1. Lower (LB) and upper (UB) bounds for fitting the
Nelson–Siegel and the Svensson models to the given data
using objective functions H and Hpen.

(a) Nelson–Siegel model

λ1

LB ×10−3

UB 5

(b) Svensson model

λ1 λ2

LB ×10−4 ×10−8

UB 4 15

and solution quality, where we visualize the time series of fitting errors on a loga-
rithmic scale by using the (monotone) root-mean-square error (RMSE) measure√

1
m F̃(λ∗,β∗), with F̃(λ∗,β∗) denoting theminimumobjective function value of

the approach considered. This can be interpreted as the average error in terms of
basis points (bps).

To solve the series of fitting problems with objective functionsH andHpen by
the considered method, we use the constraints as described in Table 1.

few instances with larger differences, there are only slight changes in most λ∗ values. Especially Figure 9 remains
mainly unchanged.
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Figure 9. Parameters obtained by fitting the Nelson–Siegel model to the given data, using a grid
search to minimize Hpen, along with β1 + β2 and the estimated 1y zero rate.

All numerical computations9 were carried out in Matlab [27].
We consider a grid search method in which we evaluate each of the objective

functionsH andHpen at an equidistant grid of points and then take the point with
the lowest function value as an optimal solution. The grid size in each dimen-
sion is set to 2000 and 250 in the case of the Nelson–Siegel and Svensson model,
respectively. Note that it is feasible to use such a fine grid as we have reduced the
problem dimension to one or two.

Some interesting straightforward observations can be made based on the
results reported in Figures 7 and 8 and Tables 2 and 3:

• The average fit of theNelson–Siegelmodel is quite good; on average, the fitting
error per tenor is roughly one basis point.

• There are some instances, where the fit is worse than one basis point, and the
error exceeds five basis points only in a few instances.

• As expected, the average fit of the Svenssonmodel is even better, with a smaller
number of bad instances.

9 The source code as well as the data and the underlying analysis are available upon request from the first author.
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Table 2. Mean and standard deviation of the RSMEs for fitting the
Nelson–Siegel and the Svenssonmodels to the given data, using a
grid search to minimize H and Hpen.

(a) Nelson–Siegel model

Mean Std. Dev.

Hpen 1.17 × 10−4 0.69 × 10−4

H 1.16 × 10−4 0.69 × 10−4

(b) Svensson model

Mean Std. Dev.

Hpen 0.50 × 10−4 0.36 × 10−4

H 0.45 × 10−4 0.34 × 10−4

Table 3. Mean and standard deviation of the run times for fitting
the Nelson–Siegel and the Svensson models to the given data,
using a grid search to minimize H and Hpen.

(a) Nelson–Siegel model

Mean Std. Dev.

Hpen 0.1996s 0.0927s
H 0.2119s 0.1134s

(b) Svensson model

Mean Std. Dev.

Hpen 7.1114s 1.9349s
H 6.0102s 0.8149s

• Working with Hpen instead of H does not impact the error in a significant
manner, both for the Nelson–Siegel and the Svenssonmodel.While maintain-
ing the solution quality, a much better condition number can be obtained in a
variety of instances.

• We observe that the grid search is fully effective since solutions with very high
quality are found. Although it might be possible to refine these solutions fur-
ther by some local search, the obtained solution quality is already sufficient
for practical purposes. Let us emphasize again that jumps between successive
λ∗ values cannot be avoided due to the non-convex character of the fitting
problem in λ.

In accordance with the fitting errors obtained by the grid search, Figures 9
and 10 show the evolution of fitted parameters for the Nelson–Siegel and the
Svensson model, respectively. The evolution of fitted parameters of the Nel-
son–Siegel model looks by and large as expected: small changes in the data from
one day to the next typically imply that all fitted parameters do not change much
(depending on the conditioning of the problem), as long as the global minimum
does not switch from one region to the other (which also happens, especially
for the Svensson model). Even though the collections of all fitted parameters of
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Figure 10. Parameters obtained by fitting the Svensson model to the given data, using a grid
search to minimize Hpen, along with β1 + β2 and the estimated 1y zero rate.

the Svensson model in Figure 10 look severely more irregular than in the Nel-
son–Siegel model at first sight, a closer examination reveals that the parameters
actually still behave as just described: Since in the Svensson model there are typ-
ically more local minima as in the Nelson–Siegel model and objective values of
local minima are more similar to each other in the Svensson model than in the
Nelson–Siegel model, more jumps between the regions occur for the Svensson
model as for the Nelson–Siegel model.

Whether day-by-day changes of the nonlinear parameter λ (with according
to changes in the inner linear parameter β) are acceptable for the application at
handhas to be decided on a case-by-case basis by themodel user. For example, the
models described heremight be fully adequate as (compressed) descriptivemod-
els of the term structure, but they might not be suitable for econometric analysis
or dynamic term structure modelling because of these changes.

6. Conclusion

In this paper, we have presented a mathematical analysis of the fitting of the
Nelson–Siegel and the Svensson models to given rates. The analysis is based
on the fact that the fitting problem can be formulated as a separable nonlinear
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least-squares problem which allows to eliminate the linear model parameters in
the objective function and to optimize over the remaining nonlinear parameters.
Besides smoothness results for the reduced objective function, our analysis espe-
cially shows that the fitting of the Nelson–Siegel and the Svensson models may
become ill-conditioned in certain regions of the parameter space. To deal with
this issue and to avoid estimated parameters become too sensitive with respect to
perturbations, we propose to penalize the least-squares objective function if the
condition number of the matrix of basis functions exceeds a pre-specified level.
This reformulation leads to an easy and effective handling of ill-conditioning.
Numerical results based on market data indicate that our proposed penaliza-
tion method substantially improves the solution in terms of robustness while
maintaining solution quality.

By our analysis, the strengths and weaknesses of both models have been made
more transparent, especially with respect to econometric aspects of the fitting.

Notes

1. For l = 3, λ ∈ R+, we obtain the Nelson–Siegel model, whereas for l = 4, λ ∈ R2+, we
obtain the Svensson model. To allow for larger values of l, further basis functions would
need to be defined. Our subsequent analysis is specifically tailored for the Nelson–Siegel
and Svensson models, but can partially be generalized to larger models as well.

2. To take care of potential heteroscedasticity in the data, positive weights may additionally
be included in the objective function F. The latter may then be formulated as F(λ,β) :=
‖W(�(λ)β − ŷ)‖22, where the elements of the weight matrix W = diagw1, . . . ,wl are
typically set equal to the reciprocals of the variances of the residuals, which may be esti-
mated, for instance, from historical data (e.g. Ref. [18]). However, for ease of exposition,
we do not use any weights in our analysis and the numerical calculations.

3. An example was provided by Gimeno and Nave [22] for fitting the Svensson model,
albeit with a different objective function. They reported that extreme and often offsetting
optimal values for the linear parameters β3 and β4 occur whenever the corresponding
nonlinear parameters λ1 and λ2 are similar to each other.

4. If models are used where perturbations to ŷ turn out to be relevant, the following anal-
ysis can be extended by adjusting the condition number to include ŷ, see, e.g. Ref. [24],
Subsection 1.4.3.

5. For the available data described in Section 5.1, we havem = 15 and τ = (1, 2, . . . , 15)�.
6. Note that we have disregarded perturbations in the data vector ŷ and therefore set δŷ = 0.

If deemed relevant, the perturbation bound in (15) can easily be adjusted accordingly.
7. The respective Bloomberg tickers are ’EUSA1 CMPN Curncy’, ’EUSA2 CMPN

Curncy’,. . . , ’EUSA15 CMPN Curncy’, where we use the last quote ’Px_Last’ of each day.
8. We have also tested a multi-start strategy starting a pattern-search method in each grid

point of a slightly coarser grid which yields higher accuracy in λ∗ at the cost of a higher
numerical effort. Themain result for the Nelson–Siegel model is that the time series of the
optimal λ∗ remains quite unchanged. With the exception of a few instances with larger
differences, there are only slight changes in most λ∗ values. Especially Figure 9 remains
mainly unchanged.

9. The source code as well as the data and the underlying analysis are available upon request
from the first author.
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