
 

 

 

University of Southampton Research Repository 

Copyright © and Moral Rights for this thesis and, where applicable, any 

accompanying data are retained by the author and/or other copyright owners. A 

copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. This thesis and the accompanying data cannot be 

reproduced or quoted extensively from without first obtaining permission in 

writing from the copyright holder/s. The content of the thesis and accompanying 

research data (where applicable) must not be changed in any way or sold 

commercially in any format or medium without the formal permission of the 

copyright holder/s.  

When referring to this thesis and any accompanying data, full bibliographic 

details must be given, e.g.  

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, 

name of the University Faculty or School or Department, PhD Thesis, pagination.  

Data: Author (Year) Title. URI [dataset] 

 





UNIVERSITY OF SOUTHAMPTON

Faculty of Social Sciences
School of Economic, Social and Political Sciences

Three Essays in High Dimensional Linear
Regression in Economics

by

Richard John Thorburn
BSc Economics & Actuarial Science (University of Southampton)

MSc Social Research Methods (University of Southampton)

A thesis for the degree of
Doctor of Philosophy

October 22, 2024

http://www.southampton.ac.uk




iii

University of Southampton

Abstract

Faculty of Social Sciences
School of Economic, Social and Political Sciences

Doctor of Philosophy

title

by Richard John Thorburn

This thesis provides an overview of methods used for forecasting economic variables
with high dimensional data sets. Based on these findings, from here, it proposes new
approaches by modifying existing methods with justification based on statistical
theory and tests with simulated and real-world data.

The first essay explores how the issue of high dimensional data sets is consistently
increasing the challenges in both a logistical and analytical sense for any field relying
on quantitative analysis. In economics this is primarily in the form of least-squares
based approaches being unreliable or infeasible for linear regression frameworks in
addition to the difficulties already faced by economists, such as significant predictor
correlation and temporal dependence in time series covariates. Through finely tuned
simulation experiments, this essay compares the prediction accuracy of existing high
dimensional linear regression methods in a forecasting setting. As more correlation is
induced between the covariates the results are very close with Principal Components
and Ridge Regression, with the former appearing to hold a slight edge. While in the
temporal dependence setting, Random Projections from the machine learning
literature clearly dominates as the variables approach the unit root mark.

The second essay addresses how high dimensional data sets are becoming
increasingly present to econometricians combined with predictor sets that are
characterized by significant correlation amongst the covariates. While the famous
Ridge Regression of Hoerl and Kennard (1970) provides a neat feasible alternative to
Ordinary Least Squares, parameter estimates can suffer through their bias when the
sign and magnitude of true coefficients vary significantly. To overcome such a setback,
this paper proposes the Partial Ridge and Hybrid Estimation Procedure approach that
vary which predictor coefficients face penalisation allowing a more desirable
bias-variance tradeoff to be achieved for prediction purposes. Through theoretical
analysis, a Monte Carlo Simulation study and an application to Iranian residential
property price data, it is shown that while Partial Ridge alone is unable to universally
dominate Ridge Regression, combining the two estimation procedures can lead to
improved predictive accuracy that can outperform Ridge alone.

http://www.southampton.ac.uk


iv

The final essay focuses on a method known as Random Projections and is seen as a
computationally faster alternative to the widely used Principal Components Analysis
for dimension reduction. However, while there is extensive evidence of work focusing
on creating dependent variable predictions and forecasts using Random Projections,
there is very little focus on its use for constructing estimates of the individual
coefficient values themselves. Despite this, there is broad area within the statistics
literature that involves finding the non-parametric bootstrap distribution of the
coefficients. However, the distribution used in Random Projections is a parametric
one, and allows the utilisation of additional key theoretical results to assist with
estimation accuracy. Through the use of a Frisch-Waugh style approach, the so-called
Partial Random Projections is proposed as a way to obtain individual parameter
estimates in high dimensional settings whilst remaining in the spirit of Random
Projections, which is seen to perform very well in the first essay. The theoretical
analysis shows how its bias can often improve upon many other techniques when the
sum of all other parameters except the one of interest is small and its associated
covariate has a small amount of correlation with the others. Finally, a Monte Carlo
Simulation study replicating a causal inference study demonstrates how this approach
can practically provide more accurate estimates than other competing models.
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Chapter 1

Introduction

Due to the advances in technology concerned with methods of data collection in the
last 2 decades, the topic of big data analysis has become increasingly significant across
all disciplines that rely on quantitative analysis for the formation of their conclusions.
In addition, the growing demand for more information from both the public and
private sectors in order to improve their services has lead to an ever-increasing
availability of data that one can access. To provide a more clear characterisation of
“big data”, consider the three-Vs used commonly throughout the literature (Ng (2016),
Laney (2001)), defined as: Volume, Variety and Velocity. Volume refers to the size of
data sets which has increased due to advances in digital storage allowing larger
amounts of data to be contained in a given place. Variety is concerned with the many
different sources of data and collection methods now available leading to greater
availability. It is also associated with the many different formats that data can come in
(Dash et al. (2019)), for example, a large retailer may have transaction level data for
in-store purchases as well click data for its online platform or possibly even audio data
from interviews as part of its market research. Finally, Velocity refers to the speed at
which data can be collected which, through computational advances, has also
increased on a huge scale. For example, Google data on the searches and clicks of
users is constantly being streamed into a database. Another example is financial
markets where, co-called, tick-data is constantly updated as the prices of financial
stocks and derivatives evolve.

Examples of such applications where one is faced with big data are in abundance. For
example, in health care, providers use Electronic Health Records (EHRs) containing a
vast range of characteristics for all patients including demographics, medical history
and test results. In addition to these records containing a rich variety of information
for each patient, the sheer number of patients make them huge, for example, the NHS
has records for over 65 million patients (Kollewe (2019)). In biomedical research, it is
estimated that a human gene compares 3.2 billion base pairs of DNA and 80% of rare
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diseases are believed to be genetic (Peplow (2016)). This has lead to huge data
collection projects such as the 100,000 Genomes Project and the Human Genome
Project. The latter collects sequencing data and links this to diseases in order to
improve future diagnosis procedures. This has also lead to the assembling of a large
number of variables related to individuals, such as symptoms and biochemical test
results (Kalina (2018)). In the field of Psychology research, the World Values Survey
contains data from over 340,000 participants with 1377 variables leading to many
researchers not using the data set in its entirety (Cheung and Jak (2016)). From a more
technical perspective, online activity monitoring is also a key source of data in
Psychology, for example, in Klinkenberg et al. (2011) the response of 3648 children to
3.5 million computer arithmetic tasks were monitored leading to a huge data set to
draw conclusions from. In economics there are a wide variety of applications
involving huge data sets that have arisen as well. For example, the Nielsen data
collects retailer weekly retail scanner data from over 35,000 grocery stores across the
US with over 3 million UPCs (Ng (2016)). All data is numeric and is mostly associated
with the price and quantity of products sold making itself of particular interest to both
micro and macro-economists. In finance based settings the use of text data employing
software to analyse social media posts, news articles and company reports have been
used extensively to improve predictions of stock market variables. For example,
Chung (2014) develop a system called BizPro to compute business intelligence factors
based on thousands of sentences from news sources with such tools becoming
increasingly common as an alternative to standard historical data sets produced for
analysts.

While each discipline faces a variety of issues related to big data sets, such as lack of
digital storage space or security issues, this thesis focuses on one specific class of
problems. This is where the data set is large to the extent that it is impossible to apply
the standard statistical tools used throughout economics in order to carry out the
desired analysis. In particular, one is faced with cross sectional or longitudinal data in
the form of a design matrix with n cross-sectional or time series observations and p
different features or individual series. Shapiro (2017) condenses this into 3 main issues
characterised as follows:

• There are a huge number of observation (large n) such that the design matrix is
too large to be loaded by software packages.

• The number of variables is larger than the observations (p > n), preventing
many standard statistical models from being feasible.

• The number of covariates increases as the number of observations does.
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While the majority of literature throughout Machine Learning is devoted to the first
issue, this thesis focuses on the second issue and is characterised by the term ”High
Dimensionality”. In economics and finance, this is particularly an issue of big interest
due to how pivotal the Ordinary-Least-Squares (OLS) framework is and how it
becomes infeasible since the design covariance matrix is no longer invertible. Even
when p < n, if p is still close to n then the parameter estimates will have a
considerable degree of uncertainty, rendering them unfit for purpose.

There are a vast number of areas throughout the literature where this is the case as
detailed in Fan et al. (2011). Firstly, they mention how the widely used vector
autoregressive (VAR) model of Sims (1980) results in the the number of parameters
increasingly significantly with the number of covariate time series used and leads to
high dimensionality becoming increasingly common. This is especially the case in
recent times as mentioned earlier where more series are collected and available to the
econometrician, for example, Yousuf and Ng (2021) use the FRED-MD database and
are faced with 128 macroeconomic time series. Another reason for this large pool of
covariates comes from how there are multiple indices available to measure similar
phenomena, for example, for prices there are dozens of price indices that differ on the
way they are computed despite measuring more or less the same underlying feature of
the economy. Another source of scenarios where high dimensionality is common is the
nature of how many standard dependent variables such as GDP are usually sampled
at quarterly frequency, whereas many of the covariates will be sampled monthly or
even more frequently (especially financial data which can be sampled daily or even
more regularly). This may lead to one aggregating the higher frequency down to the
lower frequency dependent variable, however, this leads to a loss of information.
Therefore, Foroni et al. (2015) proposed creating separate predictors for each lag of a
given variable. For example, if using a monthly inflation indicator to forecast quarterly
GDP then one could have 3 separate covariates for each inflation observation
corresponding to the 1 GDP observation for the quarter. Consequently, one can see
with this structure that it would only take a small number of high frequency
covariates in order to create a high dimensional setting. Shapiro (2017) also mentions
how a high dimensional set of instrumental variables is a common occurrence that
causes issues. For example, Belloni et al. (2012) investigate how eminent domain
policies determine housing market features and use characteristics of the judges
allocated to appeals cases as instruments for specific eminent domain policies. This
involves a large number of variables associated with the personal characteristics of the
judges such as gender, race and education. As a result, a dimension reduction
technique is required here in order to allow two-stage least squares to be feasible.

As one can see, there are a whole host of settings throughout economics and finance
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where high dimensionality is likely to occur. This thesis investigates the models used
by economists as alternatives to OLS for parameter estimation in linear regression
when the number of predictors is large. Through comparing estimation and predictive
performance of the widely used methods along with the proposal of new estimation
procedures, the contribution of this thesis is somewhat broad with multiple aspects of
high dimensionality in economics covered. The following sections of this chapter
summarise the contributions and approaches taken by the 3 main chapters of this
thesis. The second chapter acts as a general comparison of the methods used with
respect to predictive performance in settings with economic data. The third, proposes
a new estimation procedure based on the widely used Ridge Regression of Hoerl and
Kennard (1970) with improvements to side-step bias issues. The fourth chapter focuses
on a method called Random Projections from the machine learning literature. This is
very new to economics, and even more niche with regards to individual parameter
estimation, making the contribution somewhat ambitious. A parameter estimation
procedure is proposed to act as an attractive option for when one is interested in a
treatment variable coefficient with a large pool of potential control variables.

1.1 An Overview of Modern Methods for Forecasting Economic
Times Series in High Dimensional Settings

This essay begins by summarising the categories of approaches used for high
dimensional linear regression, particularly in economics where often the data possess
certain characteristics worth bearing in mind. One of these features is covariate
multicollinearity (Farrar and Glauber (1967)) whereby, for various reasons, multiple
predictors in the design matrix share a linear relationship leading to potential issues
with identifying which predictors are truly driving changes in the dependent variable.
Such a feature is even more common in high dimensional setting due to how the sheer
number of covariates makes it increasingly likely that variables will share common
trends by chance. Another frequently occurring characteristic, especially in financial
time series data, is the issue of time series persistence. For example, measures of
financial market volatility (Hansen and Lunde (2014)) and even US GDP has been
argued to behave as a non-stationary process (Campbell and Mankiw (1987)). Aside
from the issue of high dimensionality, these 2 features pose serious challenges for OLS.
Multicollinearity leads to a large degree of uncertainty in parameter estimates while
non-stationarity prevents standard asymptotic properties from no longer holding.

Regarding the most common methods used to handle regressions with a high
dimensional set of covariates, a handful of broad categories can be used to summarise.
Firstly, penalised least squares regressions overcome the invertibility issue of the
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covariance matrix while providing parameter shrinkage and possibly a model
selection element in certain cases. Examples of this include: Ridge Regression (Hoerl
and Kennard (1970)), Least Absolute Shrinkage and Selection Operator (Tibshirani
(1996)), Smoothly Clipped Absolute Deviation (Fan and Li (2001)) and Minimax
Concave Penalty (Zhang (2010)). While all methods are based upon the minimisation
of a sum of squares function with a penalty term, the way in which parameter
estimates are penalised varies resulting in differing estimator properties with respect
to bias, standard errors and variable selection consistency. Such approaches are
computationally simple but even these methods struggle as the degree of high
dimensionality increases too much (p >> n).

The other main class of models used throughout economics is factor models. These
seek to incorporate all relevant variables in a small number of observable driving
forces known as factors. Such a technique sits well with economic theory with
examples of factors being present in a wide number of applications, such as the
Arbitrage Pricing Theory of Ross (1976) and the Capital Asset Pricing Model of Sharpe
(1964). While previously, one could apply the Kalman filter to obtain these factors
(Ghysles and Marcellinio (2018, p. 504)), when the number of covariates available is
large then this becomes computationally burdensome. This lead to the work of Stock
and Watson (2002a, 2002b) proposing the use of Diffusion Indices computed by
Principal Components Analysis (PCA). Such an approach is non-parametric based on
the eigenvectors of the predictor covariance matrix allowing significant information to
be maintained in a small number of factors. Work such as Forni and Lippi (1997) and
Forni and Reichlin (1998) as well as others show that, for many macroeconomic
variable forecasts, 2 or 3 factors provide optimal accuracy. While other methods for
factor estimation have been considered and compared throughout the literature
(Boivin and Ng (2005)), this chapter focuses on Principal Components as the most
central methodology for macroeconomic forecasting.

While one can see that there are a wide variety of procedures one can use when faced
with high dimensional linear regression problems, it may seem challenging to
determine which approach is most suitable for the application at hand. As mentioned
earlier, economic data can often be associated with significant multicollinearity or
persistence amongst time series and, as a result, this should be accounted for when
choosing an econometric approach. This chapter seeks to use detailed Monte Carlo
Simulation experiments that replicate forecasting settings incorporating these two
data features. By finely tuning the level of predictor correlation, temporal dependence
as well as sparsity and signal-to-noise, the forecasting performance of numerous
methods detailed above are compared. For that reason, this chapter aims to contribute
by providing a practical overview of the forecasting performance of several popular
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predictive approaches. The aim being to characterise which model should be used
under various DGP conditions in order to provide guidance for predictive accuracy
maximisation to econometricians.

1.2 A Ridge Regression Modification for Handling High Di-
mensional Economic Data

The third chapter focuses specifically on one of the methods used in the experiments
of the second chapter. This method is the penalised least squares Ridge Regression of
Hoerl and Kennard (1970). This approach not only is feasible when p > n but is
shown to always provide a lower parameter estimate variance than OLS. Although
this comes at the expense of inducing some bias, Theobald (1974) showed that, under
certain conditions of the penalty parameter, Ridge will provide a lower
mean-squared-error value for the parameter estimates.

One property that makes Ridge appealing to economists is how the penalty term
allows Ridge to handle correlated predictors successfully by shrinking their coefficient
estimators towards each other as demonstrated in Kidwell and Brown (1982), Gunst et
al. (1974) and Mason and Brown (1975). While other work shows that, when
concerned with prediction, Ridge performs relatively well (Frank and Friedman (1993)
and Dhillon et al. (2013)) and can even be used successfully for variable selection
(Shao and Deng (2012)).

However, these promising attributes do not come without drawbacks. Unlike OLS,
Ridge has non-zero bias when the penalty parameter is non-zero. Moreover, this along
with its variance being dependant on the true value of the coefficients (Smith and
Campbell (1980)) makes it challenging for one to carry out inference with empirical
data. In addition, work such as O’Neill and Buttimer (1972) demonstrate how when
there is a significant mix of signs in the true coefficients or covariate correlations, the
bias of Ridge results in it providing unreliable estimates characterising it as a poor
choice of model for settings such as demand function estimation.

This chapter proposes a new approach that seeks to maintain the benefits of l2 norm
penalisation while overcoming the bias issue that Ridge faces under certain DGPs.
This is attempted by considering the Frisch-Waugh Lovell Theorem of Frisch and
Waugh (1933) as a means of obtaining single OLS estimates by partialling out all other
covariates. Applying l2 norm penalisation to this creates a situation where one is
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estimating a single coefficient by penalising all covariates apart from the one of
interest. Not only can this act as a more focused approach when one is only interested
in the estimates for a small number of coefficients, but also has implications for the
bias and variance. The aim being to provide a more favourable tradeoff to produce a
lower MSE than that of Ridge alone.

This approach is called Partial Ridge and this chapter investigates how the statistical
properties of this approach vary in comparison to Ridge alone. Through theoretical
analysis, Monte Carlo Simulation experiments and an empirical application of house
price prediction, this chapter discusses when Partial Ridge can be used to overcome
the problems that Ridge faces and combining the two methods to define a competitive
approach for predicting economic variables with high dimensional data.

1.3 Partial Random Projection, A Novel Approach to High Di-
mensional Linear Regression in Economics

The fourth chapter turns attention to the machine learning literature which has had
growing influence over multiple disciplines affected by big data in the last decade.
Specifically, a method called Random Projections (RP) is considered for high
dimensional regression problems. RP works in similar fashion to that of the widely
used Principal Components Analysis whereby an auxiliary covariate matrix is created
by taking p linear combinations of each row, where p is the number of predictors.
While Principal Components computes these linear combinations based on the
covariance matrix eigenvalues, RP constructs these based on weightings simulated
from a symmetrically distributed random variable. One may question how such an
approach can preserve enough of the information contained in the original data
matrix in order to be useful, however, the Johsnon-Lindenstrauss Lemma of Johnson
and Lindenstrauss (1984) demonstrates how the pairwise distances between points
can be maintained from the original to auxiliary data matrix with high probability.

This result concerning the pairwise distances between points has made RP extremely
useful in a wide range of applications that require elements of dimension reduction on
large data sets. Historically, the most common examples would involve classification
in areas such as human behaviour monitoring and genetics (Nabil (2017)). However,
more recent uses of the RP transformation on data matrices has involved the initial
processing of text and image data (Bingham and Mannila (2001)) due to the
development of modern algorithms for formalising word frequency in documents and
pixel brightness in image data. Often RP is preferred over other dimension reduction
techniques due to its relative computational simplicity but also because the
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randomised nature of the transformed data set makes it perfect for handling sensitive
data from a security perspective.

Work applying RP to high dimensional linear regression is less present but predictive
risk bounds have have been studied in Boot and Nibbering (2019), Kaban (2014) and
Thanei et al. (2017). While these papers show promising signs for RP in forecasting
and prediction settings, there is no literature yet that focus on the use of RP dimension
reduction when one is focused on the specific coefficients of a small number of
variables. The field of economics leans significantly upon causal inference for a wide
variety of applications where one is concentrated on the estimate of the treatment
variable coefficient with control variables included to improve the accuracy of the
treatment effect estimation. Therefore, this chapter specialises on using the RP
mechanism to construct an approach ideal for estimating a single coefficient (the
treatment effect) with a high dimensional set of control variables.

This essay seeks to propose a new approach motivated by the methodology discussed
in Galbraith and Zinde-Walsh (2020). Here they estimate the treatment effect by
computing Principal Components from only the set of control variables and running
OLS with the treatment variable and a predetermined number of Principal
Components on the right-hand side. Accordingly, this essay considers the case where
one estimates the treatment effect by applying RP to the controls and is defined as the
Partial Random Projections (PRP) approach. While RP alone can return a set of
coefficient estimates of the same scale and dimension as the original data set, this
requires the estimated vector to be recompressed following the compression of the
original covariate matrix imposing bias. Therefore, by removing the treatment
variable from the RP transformation, one can avoid complications leading to the
parameter estimation containing too much error.

This chapter formally defines the PRP procedure and analyses the theoretical aspects
of it by comparing its bias and variance behaviour to that of other widely used
methods. All of this will be considered with respect to fundamentals of the true DGP
such as the sign and magnitude of the true coefficients, the correlation amongst
predictors and signal-to-noise ratio. Finally, a Monte Carlo Simulation study will be
constructed to replicate a broad range of environments that economists will likely face
with estimation accuracy compared to other methods used for high dimensional linear
regression analysis.
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Chapter 2

An Overview of Modern Methods
for Forecasting Economic Time
Series in High Dimensional Settings

2.1 Introduction

In recent years, the improved capacity of data storage on modern computers
combined with the increased amount of data collected by institutions for
research-based purposes has led to so called “big data sets” becoming ever more
common. Whilst this has provided greater opportunities for analysts to gain deeper
insight into their relevant disciplines, it has also provided challenges in the form of
existing statistical models failing to work as effectively when faced with huge
volumes of data. In linear regression settings, it is well known for instance that
Ordinary Least Squares (OLS) has an excess risk that deteriorates rapidly as the
number of predictors, p, approaches the sample size, T, and in other situations, such as
when p > T, OLS is unfeasible. To overcome these difficulties, the statistics and
machine learning literature have proposed regularization techniques designed to
accommodate scenarios where p ∼ T or even p > T through parameter penalisation
approaches. Popular regularisation methods include Ridge Regression of Hoerl and
Kennard (1970) and the Least Absolute Shrinkage and Selection Operator (Lasso) of
Tibshirani (1996) as well as numerous variants. Under suitable assumptions these
techniques have been shown tot provide favourable bias-variance trade-offs while
remaining feasible in high-dimensional settings. Other approaches exploit the fact that
many of the predictors available come from a small handful of unobservable
underlying driving forces leading to the rise of Principal Components and Factor
Analysis in work such as Stock and Watson (2002a, 2011). The same motivation also
lead to the recent development of an approach known as Random Projections (Kaban
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(2014), Thanei et al. (2017)) whereby the original predictor set is compressed to a
smaller one via random linear combinations.

Many of the theoretical arguments supporting the use of these methods are based on
strong assumptions such as the absence of any strong temporal dependence in the
predictors under consideration with independence and identical distributions for each
observation being a common theme. Also, a large proportion of the current work only
allows for a limited degree of correlation amongst the covariates with results being
unreliable outside of this scenario. Such restrictions are unlikely to hold in economics
and financial data sets where it is well known that a significant number of financial
time series are highly persistent unit-root or near unit-root processes. Similarly, in
addition to the economic reasons that induce correlations between time series, it is
well shown that persistence induces correlation between multiple time series, also
known as spurious correlation as shown in work such as Ferson et al. (2003) and
Kruse et al. (2017). This raises many questions on how these attributes of economic
and financial data sets will influence the functionality and statistical properties of
regularisation and dimensionality reduction methods. This paper looks to investigate
how reliable these methods are when used for computing economic predictions in
these high dimensional environments.

Another recent source of need for models that can handle a large number of covariates
relative to the sample size is how the increased availability of variables has resulted in
a greater diversity of sample frequencies amongst time series regressors. For example,
when considering economic indicators the the frequency in which the observations are
sampled at (monthly, quarterly or annually) may vary significantly throughout the
predictor set making it difficult for one to format the data in order to be suitable for
linear regression. One could consider averaging in such a way that condenses the high
frequency data down to that of the lowest frequency but this discards the information
contained through the timing of such observations. An early class of models used to
handle this is the Mixed Data Sampling (MIDAS) class of models of Ghysels et al.
(2004, 2007), however, this often results in more overparameterised specifications. For
example, if one was using monthly sampled inflation to forecast quarterly GDP then
there would be 2 additional variables created as there are 3 lagged values of inflation
corresponding to every single GDP observation. As one can see, this has the potential
to drastically increase the number of predictors in addition to the already large
predictor set for reasons already discussed.

This paper seeks to remedy the uncertainty surrounding how these popular methods
perform relative to one another in an economic forecasting setting that blends high
dimensionality and persistence or strong correlatedness through a Monte Carlo
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simulation study. A small handful of methods is chosen but is still representative of
the broad categories of approaches used to handle a large set of predictors in linear
regression settings such as: Model Selection, Model Averaging, Shrinkage,
Regularisation and Factor Models. The rest of the paper is organised as follows;
Section 2.2 details the methods employed for comparison with intuitive justification
for their inclusion. Section 2.3 describes the simulation experiment design and how
the data generating processes (DGPs) are finely tuned to be fit for purpose with
Section 2.4 presenting the results and interpretation. Section 2.5 concludes with
consideration given to the implications of the results and how one may wish to
proceed with further research in light of this study.

2.2 Models and Estimation Methods

This section begins by detailing the regularisation and dimensionality reduction
methods to be compared in this study with respect given to the intuition behind their
use as well as the main theoretical justification of their benefits. The variety of
methods here is by no means exhaustive of the approaches used throughout the
economics, statistics and machine learning literature for forecasting with high
dimensional data sets. However, the list does include the most widely used models
with a diverse representation of the classes of approaches mentioned in Section 2.1. It
is important to first establish the key notation whereby the predictor matrix is denoted
by X and takes the form of a T × p matrix with each individual column representing
an individual covariate time series. The dependent variable is denoted by a T × 1
vector, Y, which is what one wishes to forecast by using a linear regression framework
as shown in 2.1 with the case of a single observation given as follows:

Y = Xβ + ϵ , (2.1)

yt = x′tβ + ϵt ,

where the time index runs from t = 0, . . . , T and xt is a p × 1 vector containing the
observation at time t for each of the predictors. As is the case with all linear regression
frameworks, one is faced with the task of estimating the p × 1 vector of slopes β which
rely on certain assumptions of the error term, ϵ. As the focus of this paper is on
isolating the influence of persistence and strong correlatedness on high dimensional
methods, the potential for complications to arise from phenomena such as serial
correlation or heteroskedasticity in the ϵt components is removed. Therefore, the
DGPs are assumed to behave such that E[ϵt|xt] = 0 and E[ϵ2

t |xt] = σ2
ϵ for all

t = 0, . . . , T.
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Standard out-of-sample forecasting will involve the analyst estimating the p × 1
vector β using the in-sample data available. Here it is assumed that the in-sample
period is defined from t = 0, . . . , T − 1 with the observation yT being predicted using
the equation below. It is important to note that the the slope estimates, β̂ are computed
using only the observations of yt for t = 0, . . . , T − 1 and xt for t = 0, . . . , T since it is
assumed that the analyst observes the covariates at time T in order to compute a
forecast of yt with the following:

ŷT|T−1 = x′T β̂ . (2.2)

From here one can assess the accuracy of the various approaches used to compute β̂

by considering the forecasting errors defined as êT|T−1 = yT − ŷT|T−1 with the smaller
values corresponding to the more reliable method.

Typically, one would wish to use OLS to estimate the best linear unbiased estimator,
β̂OLS, of β. However, when T<p the key OLS assumption of the predictor matrix being
of full rank is violated resulting in it not being possible to obtain an estimate for β in
this way. Even when T>p, when p is relatively large then there is a greater degree of
predictive risk and seen in 2.3 which shows hows how the predictive risk of OLS
estimates depends on p,

1
n

E[∥Xβ − Xβ̂OLS∥2
2] =

σ2 p
n

. (2.3)

As a result, new methods have been created to resolve these issues and the specific
ones used in this paper are detailed in the following subsections. Multicollinearity
amongst the regressors can reduce the accuracy of 2.2 through a variety of ways;
firstly, Taboga (2021) discusses how computing the inverse of X′X becomes more error
prone resulting in inaccurate coefficients being used. Secondly, it can be challenging
for the model to identify the specific impact of each individual predictor when the
covariates share common trend features. Finally, the standard errors of the coefficients
increase under high correlation causing forecasts to become more uncertain and,
hence, are less reliable to the forecaster.

Lastly, the performance of OLS forecasts suffer greatly when the regressors exhibit
strong temporal dependence as the data is associated with unit roots and
non-stationarity. This leads to the parameters no longer converging to their true
values asymptotically and spurious regression occurs with more discussion seen in
Granger and Newbold (1974). As a result of the coefficients being estimated
incorrectly, the forecasts in turn are untrustworthy meaning that other means are
required for forecasting purposes.
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2.2.1 Ridge Regression

The Ridge Regression approach of Hoerl and Kennard (1970) has been very popular in
chemical engineering and takes a form similar to that of OLS whereby the coefficients
are computed by minimising the following form of penalised-least-squares

β̂Ridge = argminβ{(Y − Xβ)′(Y − Xβ) + λ
p

∑
i=1

β2
i } , (2.4)

where it can be seen that this has a similar set up to the OLS estimator with the
addition of a penalty term being the sum of the squared coefficients multiplied by a
penalty parameter, λ. This allows one to decide the level of trade-off between
in-sample fit and parsimony as required, although for forecasting this would typically
be chosen with the aim of minimising the mean-squared-forecasting-error (MSFE) or
some other similar loss function. The minimisation problem in 2.4 has a closed form
solution making it easy to analyse the theoretical properties of the Ridge estimator
and is detailed below for a fixed design setting,

β̂Ridge = (X′X + λI)−1X′Y , (2.5)

Bias(β̂Ridge) = −λ(X′X + λI)−1β , (2.6)

Var(β̂Ridge) = σ2
ϵ (X′X + λI)−1X′X(X′X + λI)−1 . (2.7)

These features of Ridge are demonstrated in Taboga (2017) where there are also proofs
that the variance in 2.7 is always smaller than that of OLS for when λ > 0. Also, that
the bias is non-zero when λ > 0. Therefore, it is clear that the Ridge regression
approach seeks to overcome the issue of a large variance by sacrificing a small amount
of bias to reduce the uncertainty of the parameter estimates, otherwise known as
managing the bias-variance trade-off. The specific condition on the penalty parameter
to ensure that Ridge provides a lower mean-squared-error (MSE) than that of OLS is
derived in Theobald (1974) and is as follows,

λ <
2σ2

ϵ

β′β
. (2.8)

One final point worth making, as it is most relevant to this paper and applications in
economics, is that one can see how the addition of the λI term ensures that the term to
be inverted is positive definite and hence invertible. Essentially, this results in
correlated predictors having their coefficient magnitudes shrunk towards each other
with the consequences of this to be seen in the simulation study of this paper. One
would expect that this feature would work in favour of Ridge when faced with highly
correlated predictors as the penalty parameter can adjusted to overcome the issues of
inversion. However, when faced with temporally dependent predictors it may not
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experience as much success. This is because Ridge shares some similarities with OLS
in that requires stationarity in the predictors in order for the Central Limit Theorem to
hold when concerning the convergence of the β̂ values. Without this consistency, the
coefficients can be deemed as unreliable making forecasts significantly inaccurate.

2.2.2 Least Absolute Shrinkage Selection Operator (Lasso)

One noticeable drawback of Ridge Regression is that, despite its ability to shrink
parameter estimates, it will never set any of the coefficients exactly to zero. this is
undesirable in sparse settings when one is faced with a large number of predictors but
can be fairly certain that only a few are active, and the others have no relationship
with the dependent variable at all. To rectify this, Tibshirani (1996) proposed the Lasso
model which still has a penalised-least-squares set up, only the l1 norm of β is used as
a penalty as seen in 2.9,

β̂lasso = argminβ{(Y − Xβ)′(Y − Xβ) + λ
p

∑
i=1

|βi|} . (2.9)

Unlike with Ridge, the Lasso minimisation problem cannot be solved analytically,
however, various algorithms are available to obtain the coefficient estimates such as
the LARS algorithm of Efron et al. (2004) have been shown to be effective. The fact
that the Lasso sets certain coefficients directly to zero means that it enjoys lower
coefficient variances compared to Ridge, moreover, Knight and Fu (2000) show that,
under certain conditions on the penalty parameter, the Lasso is consistent in
estimation of β. However, unlike Ridge, when the Lasso is faced with highly
correlated predictors, it selects one and discards the rest (setting their coefficient
directly to zero) due the penalty term being convex, but not strictly convex, with
respect to β. It is because of this that the Lasso is not always consistent in selecting the
right predictors with respect to the true DGP as outlined in Zhao and Yu (2006), where
they derive the Irrepresentable Condition to determine when Lasso will select the true
model consistently. This condition is defined below:

|Cn
21(C

n
11)

−1sign(βn
(1))| < 1 , (2.10)

where βn
(1) represents the coefficients of the q active predictors according to the true

DGP. Regarding the Cn terms, it is important to first define that Xn(1) represents the q
columns of the predictor matrix that correspond to the predictors significant in
influencing the dependent variable while Xn(2) represents the p − q columns of the
predictor matrix that correspond to the inactive regressors. The Cn terms refer to the
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variance and covariance matrices involving Xn(1) and Xn(2) and are as follows:

Cn
11 = 1

T Xn(1)′Xn(1)
Cn

12 = 1
T Xn(1)′Xn(2)

Cn
21 = 1

T Xn(2)′Xn(1)
Cn

22 = 1
T Xn(2)′Xn(2) .

(2.11)

So one can see that by nature, higher covariances between active and inactive the the
predictors results in a higher C21 and the left-hand side of 2.10 being larger and,
therefore, the likelihood of the Irrepresentable condition holding being much less and
model selection being inconsistent. This means that, generally speaking, while the
Lasso will likely outperform Ridge in sparse environments, one would expect Ridge
to improve as contemporaneous correlation amongst the predictors is more common
with this study aiming to learn about how these features affect their relative
forecasting performance in applications faced within economics. When faced with
persistent predictors, the Lasso relies on similar asymptotic features as Ridge making
the shrinkage element of Lasso suffer as regressors approach the unit root mark. In
addition, the trend nature of non-stationary data causes spurious correlation amongst
the predictors which, if strong enough, reaches the same problem discussed earlier
whereby the Irrepresentable Condition no longer holds and the wrong variables are
kept for forecasting.

2.2.3 Adaptive Lasso

As mentioned previously, the Lasso is inconsistent in selection when too much
correlation is present leading to Zou (2006) to propose the Adaptive Lasso approach.
The minimisation problem takes the following form:

β̂ADlasso = argminβ{(Y − Xβ)′(Y − Xβ) + λ
p

∑
i=1

wi|βi|} , (2.12)

where wi =
1

|β̂i|γ
f or γ > 0 .

One can see that the weighing scheme (wi for i = 1, . . . , p) regulates the level of
shrinkage applied to each of the coefficients. The β̂ part of the weight will typically be
the estimate obtained from running OLS on the full data set, however, Zou (2006)
states that it can be any consistent estimator of β. The reasoning for this is that
coefficients with a larger magnitude will receive a smaller weight resulting in less
penalisation. This contributes to the Adaptive Lasso being consistent in selection as
this means that noisy irrelevant variables will face a relatively larger penalty and are
more likely to be correctly discarded.
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2.2.4 Elastic Net

The Elastic Net Regression first proposed by Zou and Hastie (2005) seeks to combine
the merits of Ridge and Lasso, covering more scenarios that those 2 methods suffer in.
The following expression defines the Elastic Net estimator:

β̂EN = argminβ{(Y − Xβ)′(Y − Xβ) + λ
(
(1 − α)

p

∑
i=1

β2
i + α

p

∑
i=1

|βi|
)
} , (2.13)

where α controls how much of the penalty is the of the l1 norm and how much is
penalised by the l2 norm, where 0 < α < 1. One can see that as α increases, the penalty
term works increasingly like the Lasso introducing a greater element of variable
selection over shrinkage. This combination of the Ridge and Lasso penalties results in
the Elastic Net enjoying some useful benefits, firstly the Ridge element contributes to
the penalty term being strictly convex. This causes correlated predictors to be shrunk
collectively as opposed to discarding most of them. While this may or may not
positively influence predictive accuracy, studies that rely on parameter interpretability
can benefit from this, for example in Hastie et al. (2000) a study is carried on DNA data
searching for correlated genes. Another advantage that the Elastic Net boasts over the
Lasso is its ability to maintain its predictive accuracy performance when p>T, where
the Lasso saturates as soon as T predictors are chosen as noted in Rosset et al. (2004).

2.2.5 OLS Post-Selection

Much of the early literature surrounding linear regressions with a large number of
variables involved selecting a subset of predictors based on minimising some criteria,
usually involving the sum of squared errors. The most famous work regarding this
includes the Mallows Information Criteria of Mallows (1973), Akaike Information
Criteria (AIC) of Akaike (1969) and Bayesian Information Criteria (BIC) of Schwarz
(1978) which fit all possible sub models with the predictors available and grade each
model based on the value of the proposed criteria which is composed of a
combination of the sum of squared errors, for prediction accuracy purposes, and the
number of regressors included for the interest of parsimony and variance reduction.
However, model selection can fall short in certain areas, especially when the number
of candidates available is so large as one is faced with the task of estimating 2p

models. For small p, this is feasible, for example when there are 10 candidate
predictors there are 1024 models to compute the chosen criterion for but as p increases
it becomes very apparent that it is computationally infeasible to estimate all the
models and store the criterion value from each one for comparison later. Therefore, in
recent years, the approach of using soft-thresholding methods, such as the Lasso, for
selection, discarding the variables set to zero then running OLS has gained significant
popularity. Intuitively, provided that the Lasso is consistent in model selection, this
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results in the oracle model being estimated as OLS is run on only the variables that are
active according the true DGP as discussed in Belloni and Chernozhukov (2013). They
also show that this approach has a faster rate of convergence to the true β values than
Lasso alone and still experiences lower bias when the Lasso fails to include relevant
predictors.

Other studies that favour this approach include Shi et al. (2020) and Böheim and
Stöllinger (2020) finding significant improvements in identifying treatment effects in
the gender wage gap in the latter. As mentioned before, when there are many
correlated variables, the Lasso generally picks one and discards the rest, therefore, it is
not obvious how only using the selection element of Lasso and Elastic Net followed
by OLS will perform although one would imagine that the Irrepresentable Condition
holding would be crucucial to the success of such approaches. In this paper, OLS post
selection is considered for the standard Lasso, Adaptive Lasso and Elastic Net as these
have the ability to set coefficients directly to zero. Each of these 3 methods is run
followed by the discarding of the variables that are set to 0. OLS is then used to
generate a forecast in a similar to fashion to that discussed previously.

2.2.6 Principal Components Regression

Factor models are very common throughout a vast range of applications in economics
and assume that, despite there being many different variables available, most of them
will originate from a smaller set of unobserved driving forces, defined by theoretical
arguments. These can then be used to forecast the variable concerned using OLS in the
way discussed before. In essence, this attempts to use all the relevant information
from the data set available but with a smaller set of predictors making OLS a more
plausible approach. This is formally defined by the following system of equations:

yt+1 = F′
t Γ + ϵt+1 , (2.14)

Xi:t = F′
t γi + µi:t . (2.15)

In the above expressions, Ft represents an r×1 vector of latent factor values (where
r≪p) at time t and Γ the coefficient matrix which is to be estimated by the forecaster in
order to create out-of-sample forecasts. The expression 2.15 shows how all the
variables observed in i = 1, . . . , p can be written as a linear combination of the latent
factors with ϵt+1 and µi:t representing idiosyncratic error terms. The next question
from here is centred around how to estimate the factors and what are the theoretical
and empirical success implications of these methods.
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Principal Components (PC) has been the most widely used method throughout
economics to construct the factors based on the co-movements and variation amongst
predictors. More specifically the eigenvectors corresponding to the r largest
eigenvalues of the covariance matrix of the regressors is used where r represents the
number of factors to be used in regression 2.14 above. Connor and Korajczky
(1988,1993) were one of the first to use PC to estimate approximate factor models in
asset return prediction. However, prior to this, other more theory and intuition-based
justifications were used to estimate factors depending on the application concerned,
for example, work such as Lehmann and Modest (1988) consider factor estimation for
the Arbitrage Pricing Theory Model of Ross (1976). Also, the famous Capital Asset
Pricing Model (CAPM) of Sharpe (1964) as well as others use a similar idea where the
latent market return is estimated as factor that influences all asset returns with
financial theory to justify this. PC can be viewed as a way to estimate factors in the
absence of sufficient prior knowledge and is successful in reducing the regressor
dimension without directly discarding any information by a means that is
computationally feasible. Stock and Watson (2002a) show that PCs are consistent
estimators of latent factors and confirm that this holds under the case where there is
variation in the coefficients of the underlying DGP over time. Stock and Watson
(2002b) use Diffusion Indexes constructed by PC to forecast various macroeconomic
variables across a range of horizons experiencing great success in a
root-mean-squared-error (RMSE) sense relative to standard benchmark models. More
noticeably, PC has been used to estimate factors in the so-called “Dynamic Factor
Models” (DFMs) proposed originally by Geweke (1977) and Sargent and Sims (1977)
which allow for the weighting of variables in the construction of the factors to vary
over time making PC an ideal approach.

While Principal Components based methods are intuitive and have some nice
properties, especially when p>T, Ng (2013) points out that there are no statistical
assumptions made making the way dimensionality reduction is carried out
questionable due to there being no supervision. However, one of the main drawbacks
of PC and factor augmented approaches is the fact that the factors are constructed in a
way that gives no consideration to the variable that is being forecasted. To remedy this
Reduced Rank Regressions were proposed by Rao (1964) whereby factors are
estimated by minimizing an R squared based statistic. One of the other most popular
methods to surpass this is the Partial Least Squares (PLS) estimation strategy of Wold
and Lyttkens (1969). However, in this paper, the focus is purely on the forecasting
accuracy performance of PC whereby 2.15 is used to estimate the factors, then OLS is
run on 2.14 to obtain coefficient estimates. This procedure is then repeated when the
out-of-sample data becomes available, and the coefficients estimated previously are
incorporated to create an out-of-sample forecast yt+1.
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Since PC constructs factors based on co-movements in the regressors, it can be shown
that PC, by construction, is successful in preserving much of the signal from the
numerous correlated predictors to a small handful of factors. Unfortunately, the same
does not occur when faced with temporally dependent regressors. Gonzalo and
Pitarakis (2020) show that the spurious correlation present amongst near unit root
predictors results in factors to be incorrectly constructed due to the artificial
relationship visible between variables. As a result, the factors are ineffective for
forecasting making PC an unreliable model in this scenario.

2.2.7 Random Projection Regression

Finally, this paper considers one of the approaches originating in the machine learning
literature which, as a field, has become increasingly influential on other disciplines
facing high dimensional data sets due to the increasing size of databases available
making storage requirement and processing time more pivotal in the decision-making
process of modern data analysts. In this paper, the focus is on the Random Projections
(RP) regression used in Boot and Nibbering (2019) as a possible means of gaining an
advantage over standard forecasting procedures in the presence of correlation or
persistence. The RP procedure is detailed as follows, a random matrix, R, of
dimension (p×k) is simulated such that k≪p and every element of the matrix is
generated from a standard normal distribution as follows:

Rp×k : Rij ∼ N(0, 1) . (2.16)

The RP regression in then run on the training sample data using OLS as seen below:

Y = XRβ + ϵ . (2.17)

Out-of-sample forecasts are then created using the estimated coefficient vector as
follows:

ŷt+1 = xtRβ̂ . (2.18)

This is repeated for a pre-determined number of random matrices, call it h, resulting
in h different forecasts which are then averaged with equal weighting to produce a
single forecast as seen:

ŷ f inal
t+1 = Eh[ŷh

t+1] . (2.19)

A discussion on the choice of h is available in Boot and Nibbering (2019) but in this
paper it chosen such that increasing it further would not improve the final forecast
significantly. Johnson and Lindenstrauss (1984) show that this method of averaging
over forecasts from random weight matrices is very successful in preserving the
pairwise distances of the row observations in the predictor matrix which contributes
to its forecasting success. Part of the motivation for using this for comparison in this
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paper comes from how this process will likely be less influenced by highly correlated
predictors and persistence due to coefficient biases cancelling each other out across
many projections as well as reduced variance similar to that of the forecast
combination approach discussed in Timmermann (2006).

2.3 Experimental Design and Performance Evaluation Imple-
mentation

In this simulation study, 2 experiments are carried out in order to test the
out-of-sample forecasting performance of Ridge, Lasso, Adaptive Lasso, Elastic Net,
Random Projections and Principal Components as well as OLS used after the selection
element of a few of these methods has been implemented. These experiments involve
varying the levels of correlation between the predictors as well as persistence
approaching the unit root mark in experiments 1 and 2 respectively in order to
replicate scenarios commonly faced in finance and macroeconomics. The
signal-to-noise ratio in these experiments is controlled through the error term variance
in the underlying DGP to keep the simulated data in line with what is likely to be
faced by real-world forecasters and is often very low as discussed in Hastie et al.
(2020).

The sample size is set at T = 200 for all experiments whereby the first 199
observations are used as the training sample for parameter estimation. These
parameters are then used to forecast the 200th observation of Y using the 200th row of
the predictor matrix. As mentioned in the previous section, this implies that the
predictors are contemporaneous to the predictand, however, such a feature is less
significant when one is focused on the impact of correlation and temporal
dependence. It is important to mention that each variable in the predictor matrix is
standardised before parameter estimation occurs and also standardised again once the
200th row becomes available in order to compute forecasts with predictor values that
centred and scaled with respect to the full sample. To formalise this more thoroughly,
the first 199 observations of each column of the predictor matrix are standardised
before parameter estimation occurs. Once the parameters are estimated it is then
assumed that the 200th observation of each predictor becomes available to the
forecaster so now all 200 observations for each predictor are standardised again.
Finally, the forecast is computed using the in-sample parameter estimates and the
200th row of the standardised predictor matrix. The forecasting variable yt is not
standardised, however, this is not an issue as one is only interested in the forecasts
themselves and not the estimates of β. The error is then obtained by differencing this
forecast from the true value in the Y matrix. 1000 simulations in total are run resulting
in 1000 forecasting errors which are squared then averaged to obtain the
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mean-square-forecasting error (MSFE) which will be the main metric for comparing
forecasting performance in this paper. Separate experiments under each design are
run each with a different number of candidate predictors, specifically
p ∈ {20, 100, 200, 400}.

For each experiment 9 different forecasting methods are used, 6 of these include
Ridge, Lasso, Adaptive-Lasso, Elastic Net, PC and RP and the other 3 involve running
OLS on the predictor set left after discarding variables that have their coefficient set to
zero by Lasso, Adaptive-Lasso and Elastic Net. Firstly, for Ridge the method detailed
in 2.4 above is applied to the training sample to obtain an estimate of the coefficient
matrix, which is then multiplied by the regressor vector in the testing sample to obtain
out-of-sample forecasts. For each experiment this procedure is repeated over a grid of
penalty parameters as λ ∈ {0.5, 1, 2, 3, 5, 10, 20, 50}. Lasso, Adaptive-Lasso and Elastic
Net are done very similarly using the processes detailed in 2.9, 2.12 and 2.13
respectively over a grid of penalty parameters as λ ∈ {0.01, 0.1, 1, 2, 3, 5, 10, 20}.
Specifically, for the Adaptive Lasso, the coefficients used to construct wi in 2.12 are
estimated by OLS for when p = 20, 100 and Ridge when p = 200, 400. Another,
increasingly popular idea considered here is the so-called OLS-post-Lasso where one
runs a lasso regression as a means of variable selection to allow the forecaster to
discard the variables that have their slope set to 0 then run OLS on the remaining set
of predictors. In this paper, this is done with not only the Lasso but Adaptive-Lasso
and Elastic Net as they also have the potential to set coefficients directly to zero.

It is worth mentioning that, due to the number of variables and penalty parameters
being considered, if it such that the regularisation method concerned chooses to
discard all the candidate variables then a regression is run with a constant on the
right-hand-side, representing a case where the out-of-sample forecast, ŷ200, is simply
the mean of y from the in-sample period. For larger values of p, it can sometimes be
the case that the regularisation method fails to discard enough variables such that
there are more predictors left than number of observations, for example, the in-sample
data here has 199 observations so if the Lasso sets 199 or more observations to not be
zero (resulting in the predictors being included) then OLS-post-Lasso could not be run
for reasons discussed previously. To overcome this, it is such that when this happens
then only the first (n − 1)− 1 selected variables are included, starting from the
left-hand-side of the predictor matrix. Whilst this seems arbitrary it should not matter
significantly given how sparse the true DGP is meaning that this is often the result of
the penalty parameter chosen being too low resulting in too few variables being
discarded.
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For PC, Principal Components Analysis is applied on the training sample to obtain p
factors. Various regressions of these factors on Y are run and vary by the number of
factors included on the right hand side. The coefficients are estimated and stored to
then be applied to the factors calculated from the full-sample regressor matrix (the
training and testing sample resulting in 200 observations). Finally, the out-of-sample
forecasts are computed by first converting the estimated coefficient vector to one that
is appropriate for the original standardised data set. This is done by multiplying the
estimated covariates by the eigenvectors corresponding to the factors used as detailed
in 10.2 of Severn (2023). This new coefficient vector is then multiplied by the 200th
row of the standardised original covariate matrix to give a single forecast. For each
experiment, the number of factors included are varied over a grid, r where
r ∈ {1, 2, 3, 4, 5, 10, 15, 20} for p = 20 and r ∈ {1, 2, 3, 4, 5, 10, 20, 30} for all other values
of p.

For RP, out-of-sample forecasts are generated as follows; first, a random weights
matrix of dimension t × k is generated as detailed in equation 2.16 where t represents
the number of training sample observations (199 in this case). k represents the
subspace dimension such that k < p and is varied across a range of different values.
These k grids are as follows: for p = 20, k ∈ {2, 3, 4, 5, 10, 15}, for p = 100,
k ∈ {5, 10, 20, 30, 40, 50} and finally, when p is equal to 200 or 400 then
k ∈ {5, 10, 20, 30, 50, 100}. Coefficients are estimated from the in-sample regression
represented in equation 2.17 and are then used to generate a single out-of-sample
forecast by using the same projection matrix and coefficient vector on the
out-of-sample regressor vector as shown in 2.18. Finally, this procedure is repeated h
times with the forecasts being averaged to obtain a single forecast. The choice of h is
discussed in Boot and Nibbering (2019) as one needs to have sufficient draws in order
to restrain forecast variance and not require too many such that the model becomes
computationally burdensome. Figures 2.A1 and 2.A2 in the appendix show how in a
small simulation study where 100 artificial data sets are created, with more details
outlined in the appendix. The forecasting performance of RP relative to the oracle
under the DGP used in design 1 with 400 candidate predictors does not appear to
improve convincingly when more than 100 draws are used. Therefore, in this paper,
100 projections are used as forecasts beyond this see a negligible improvement in
accuracy.

A final subsection is committed to a small discussion on metrics for performance
evaluation. Such a feature is important to establish as this paper focuses on
forecasting performance, therefore, the main feature of interest is Xβ̂ as opposed
causal effect investigations where the researcher is typically only interested in the size,
magnitude and significance of β̂.
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2.3.1 Design 1: Correlation

This first class of simulation experiments uses predictors simulated from a
multivariate normal distribution with covariance matrix that allows one to vary the
level of correlation amongst the independent variables as is done in Elliott et al.
(2013). The predictor matrix of the DGP is defined by the following:

XT×p ∼ N(0, ΣX) , (2.20)

ΣX =



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ
...

...
...

. . .

ρ . . . . . . ρ 1


.

5 Separate experiments are carried out, each with a different value of ρ used in order
to vary the level of correlation amongst the candidate predictors. ρ is varied over the
following values {0, 0.25, 0.5, 0.8, 0.95} for each given value of p. To generate the
dependent variable, the following linear expression is used:

Y = Xβ + ϵ (2.21)

and for a single observation this can be written as

yt = x′tβ + ϵt .

The sparsity setting considered for β is one where the coefficient matrix β is created
such that only the first 5% of the variables have a coefficient of 1 and the rest 0. The
idea of this is to investigate the relative performance of the models concerned in a
realistic setting whereby the forecaster has many predictors available but suspects that
the vast majority have no significant signal on the variable being forecasted. This very
common when forecasting financial market variables such as stock prices where, in
theory, it should not be possible to forecast successfully the future path of a stock price
with past information. One would expect that the Lasso would perform well relative
to Ridge when there are many inactive predictors, however, under high correlation
this is not the case so this design allows one to see the relative importance of these 2
features of the DGP. It is worth noting that the fact that the first few are active is
irrelevant due to the fact that the variables are equally correlated with one another.
Finally, the disturbance component is simulated such that ϵt ∼ N(0, σ2

ϵ ) where σ2
ϵ is

computed based on the desired signal-to-noise ratio (SNR) with the following
relationship:

SNR =
β′ΣX β

σ2
ϵ

. (2.22)
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Throughout this study, the SNR is set to a value of 2 corresponding to an R squared
value of 67% as this provides a good balance between settings that are inherently
noisy and those that have a denser true DGP. This is significant for the interpretability
of the results with regards to the empirical use of such models. For example, Hastie et
al. (2020) point out that many financial market applications experience very low SNRs
in their true DGPs due the presence of a lot of noise whereas data faced in
macroeconomics is likely to experience this to a much a lesser extent. One can show
that, by construction, 2.22 is such that as p increases and as ρ increases then σ2

ϵ must
increase as well in order to keep the SNR fixed at 2. This has implications on the
performance metrics used and will be discussed shortly in Section 2.3.3.

2.3.2 Design 2: Persistence

For this second experiment, the aim is to gain an insight into how the methods
mentioned previously perform relatively when the candidate predictors exhibit varied
levels of persistence. The level of persistence is adjusted throughout approaching the
unit root mark in a similar setting to that used by Gonzalo and Pitarakis (2020).
Specifically, the underlying DGP takes the following form:

yt = x′tβ0 + z′tγ0 + ϵt . (2.23)

Which can also be written as Y = Xβ + ϵ letting Xt =
(
x′t, z′t

)
and β =

(
β0, γ0

)
with Xt

representing row t of X. Where xt is a vector with p1 rows and zt a vector with p2 rows
along with their coefficient vectors β0 and γ0 respectively. As usual, ϵt is an
idiosyncratic error term with mean 0 and variance σ2

ϵ which is decided in the same
way as detailed in the previous section with expression 2.22 linking this to the SNR.
The variables in zt are simulated in a way that means that they do not experience
temporal dependence, and will be discussed shortly, whereas the xt variables are
simulated as AR(1) processes. For t = 1, ..., T the xt values are generated in the
following way:

xt =
(

Ip1 −
C
T

)
xt−1 + vt , (2.24)

where C = diag(c1, ..., cp1) and for this study all values of c are the same and varied
over the grid c ∈ {1, 10, 20, 50, 100}. Here, one can see that this results in the xt

variables following AR(1) processes with the case of c=1 being very close to the unit
root process of a random walk. This can be seen by considering a single column of xt

as being equal to
(
1 − c

200

)
xt resulting in an AR(1) process with coefficient 0.995 when

c is equal to 1. The noise component vt is generated in coalition with the zt variables in
order to allow for some correlation between the persistent and non-persistent
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predictors and is as follows; first let G = (V, Z) and is represented visually below:

GT×p =


v11 v21 . . . vp11 z11 . . . zp21

v12 v22 . . . vp12 z12 . . . zp22
...

...
...

...
...

...
...

v1T v2T . . . vp1T z1T . . . zp2T

 , (2.25)

where G is simulated in the exact same way as X is in equation 2.20 with ρ set to 0.3.
This allows for a small amount of correlation amongst the purely stationary predictors
but also between persistent and non-persistent predictors. It is also worth noting as a
small detail that the simulation occurs such that x0 is a row vector of zeros but is then
discarded from the final predictor matrix once x1, ..., xT are simulated.

Regarding the coefficients of the true process determining yt, it is important to
mention first that for this particular experiment, p1 and p2 are set as being equal
making the ratio of persistent variables to purely stationary ones 1:1. This implies that
for 20 candidate predictors there are 10 persistent and 10 non-persistent, for 100
candidates there are 50 of each type of variable and this pattern continues for 200 and
400 candidates. The coefficient matrices β0 and γ0 are such that the first 10% of the
predictors from both xt and zt have a coefficient of 1 and the rest 0. For example,
where there are 20 candidate predictors (10 persistent and 10 purely stationary) 1 of
the variables in xt and 1 of the variables in zt have a coefficient of 1. Similar to the
previous experiment, the order the variables in the matrix does not have any
implications with regard to their properties meaning that the first 10% of variables
from the left can be chosen with no difference from the case where a random 10% are
chosen.

2.3.3 Performance Evaluation Metrics

This short subsection outlines the metrics used to evaluate the performance of each
model relative to its competitors. It is important to remember that the main objective
of this exercise is to establish which models are more useful with certain data sets for
forecasting values of the dependent variable. Therefore, the general feature of interest
is x′t β̂ relative to yt as opposed to simply the sign, magnitude and significance of the β̂

values, as is the case in studies investigating causal effects. Metrics from the paper by
Hastie et al. (2020) are used with the first being the relative test error which is defined
as:

RTE =
E
(
y200 − x′200 β̂

)2

σ2
ϵ

, (2.26)
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where y200 is the true value of the dependent variable from the test sample. This ratio
represents the variance of the prediction error relative to the variance of yt according
to the underlying DGP. Due to how yt is constructed from a signal component (Xβ)

and a stochastic error term (ϵ), this variance is simply given by the variance of the
error term, σ2

ϵ . The perfect score is 1 in the case where the coefficients are estimated in
a way as good as how as they appear in the true DGP but otherwise this shows the
relative magnitude of variance of the errors arising from the estimated model to the
variance of noise in the underlying process. Therefore, this is not affected by how the
error variance naturally increases as p and ρ increase allowing one to compare the
performance of a given method across different experiments. The expectation is
carried out over the 1000 single values of y200 and x′200 β̂.

Secondly, the widely used mean-squared-forecast-error (MSFE) is used which is a
simpler case of the RTE defined by:

MSFE = E
(
y200 − ŷ

)2
= E

(
y200 − x′200 β̂

)2 . (2.27)

This is simply a measure of pure prediction accuracy making it the most important
statistic with regards to the purpose concerned here which is to forecast a certain
economic variable as precisely as possible. Unlike the case with the RTE, this metric
does not consider the magnitude of the error variance, therefore, as the number of
variables increases the MSFEs will naturally be higher regardless of how successful
the model is at handling the increased dimensionality of the data. As a result this
statistic can only be used to compare the performance of multiple models across the
same experiment and not across different experiments unlike the RTE.

Finally, for the Lasso based methods, the number of zero entries in the estimated
predictor matrix is reported. This helps to explain the relative performance of these
methods and whether it comes from the shrinkage or model selection element.

2.4 Simulation Results

In this section the results of the Monte Carlo experiment detailed in the previous
section are discussed with the prime focus being on the mean squared forecasting
errors as the purpose of this study is to determine which methods are superior for
forecasting economic variables. The tables below present the MSFE for each method
(by row) in each experiment (by column) across the range of numbers of candidate
predictors with the full sample fixed at 200 throughout. The oracle MSFE is computed
by running OLS on only the set predictors that have a non-zero coefficient under the
true DGP, therefore, should not be viewed as an approach in its own right but a best
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case scenario to provide perspective on the MSFEs of other approaches. However, as
this still involves the use of OLS, which can be suboptimal under certain conditions of
the true DGP, there is potential for other approaches to improve upon this. It is worth
noting that, due to the coding of these experiments being split into 3 parts (PC, RP and
regularisation methods) the oracle and OLS quantities are averaged across the 3 code
blocks, however, this does not impact the main conclusions. Finally, for each
simulation, the number of simulated data sets where the IC fails to hold for the Lasso
is recorded in the row labelled Irrepresentable Condition with a value of 1000
implying that for every simulated data set, the IC does not hold.

2.4.1 Design 1 Results

Tables 2.1-2.4 show the MSFEs of each approach for each experiment with a different
amount of correlation amongst the covariates. The first feature noticeable from the 4
results tables below is how Ridge performs relatively at its best when the correlation is
high for all values of p. For example, in Table 2.4 it provides the second or third lowest
MSFE for experiments where ρ ≥ 0.25 and in Table 2.3 it provides the lowest MSFE
when ρ = 0.95 but ranks much worse when the ρ is equal to 0 or 0.25. This highlights
the benefits of what was discussed in section 2 regarding how Ridge shrinks
correlated predictors towards each other simultaneously as this would happen to the
greatest extent in settings with a higher ρ compared to the Lasso which discards most
of the correlated predictors and this is seen for the larger 3 values of p in Table 2.A9.
However, it also loses its ability to select the correct variables consistently as seen by
how across all values of p that the number of times that the IC condition fails as ρ

increases. The Adaptive Lasso overcomes this issue through its adjustable weighting
scheme and, hence, does slightly better than ordinary Lasso for almost all experiments
with the exception of when p = 400.

The methods involving OLS after regularisation enjoy some success when p is low
and or ρ is low also. Specifically, OLS post Elastic Net is in the top 2 most accurate
methods when ρ = 0 for all p with OLS post Adaptive Lasso performing similarly.
The reason for this is likely down to how when there is little correlation between the
predictors, choosing the correct ones becomes more important compared to the case
whereby there is significant dependence amongst the variables meaning that even if a
truly active variable is discarded then some of its signal will be captured through
another variable that is included. This combined with how the IC holds in more cases
when the correlation is low justifies the success of these selection methods that rely on
the IC holding. This does raise questions as to why the OLS post Lasso approach does
not experience quite the same success compared to that of OLS post Adaptive Lasso
and Elastic Net which could intuitively be justified by the increased flexibility of
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penalty weighting and allowance of shrinkage respectively.

The sparse setting means that PC struggles due to the factors being constructed
without distinguishing between signal and noise variables leading to low predictive
accuracy of the factors. Despite this, when p = 200 and p = 400 PC does very well
compared to other models, especially for a high ρ. For example, in Table 2.4 PC
provides the lowest MSFEs for ρ equal to 0.5, 0.8 and 0.95 with it being 6.27%, 4.78%
and 4.01% lower than the next best method for each experiment respectively. This is
likely due to it being immune to the consequences of p ≫ T that methods like the
Lasso face along with its ability to exploit the correlation between active and inactive
predictors resulting in factors that are genuinely informative with respect to y. RP
follows a similar pattern of success whereby it is no better than the other models for
low values of p but when p = 400 it is clearly superior to most. Table 2.4 shows that
only PC is superior when ρ ≥ 0.5 and RP provides the lowest MSFE for ρ = 0.25. This
because, similar to PC, the estimation issues that arise when p ≫ T are not relevant
for RP due to how it reduces the dimension of the original data set before any
least-squares based analysis. Unlike PC, RP does not suffer as badly with respect to
prediction accuracy for the lower values of p and is often in the same realm as the
regularisation methods making it a reliable technique for a wide variety of sparse
scenarios.

Finally, It is clear to see that as the level of correlation increases then so does the error
variance used by construction. This results in naturally higher MSFEs meaning that to
distinguish between the effect on forecasting performance of the higher error variance
and the predictor correlation itself, the RTEs of Tables 2.1-2.4 can be used as they
remove the effect of the error variance. These tables still show similar attributes to that
discussed previously whereby Ridge is very successful when the correlation is high
and even as p increases beyond T. For example, Tables 2.A3 and 2.A4 show Ridge
providing the lowest RTE when ρ = 0.95. Principal components is still relatively
successful when p and ρ are both high with it providing the lowest RTE when ρ = 0.8
for both cases with p > T. Regarding the Lasso and similar models the RTEs show
nothing decisive in addition to that discussed when concerning the MSFEs and remain
very competitive across the majority of the experiments, especially when ρ is small.
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TABLE 2.1: Design 1 MSFEs when p = 20

MSFE
ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.8 ρ = 0.95

Oracle 0.4917 0.5073 0.4831 0.5185 0.5006
OLS 0.5504 0.5609 0.5374 0.5640 0.5500
Ridge 0.6057 0.6144 0.6923 0.6035 0.5426
Lasso 0.4948 0.5147 0.5660 0.5212 0.5174
Adaptive Lasso 0.4910 0.5119 0.5548 0.5085 0.5113
Elastic Net 0.5049 0.5181 0.5742 0.5264 0.5217
Principal Components 0.6186 0.6083 0.5727 0.5482 0.5429
Random Projections 0.6065 0.5911 0.5237 0.5568 0.5338
OLS post Lasso 0.5093 0.5176 0.5627 0.5122 0.5106
OLS post Adaptive Lasso 0.4883 0.5122 0.5499 0.5056 0.5037
OLS post Elastic Net 0.4878 0.5088 0.5490 0.5138 0.5116

Irrepresentable Condition 0 0 0 0 10
Average error variance 0.5 0.5 0.5 0.5 0.5

TABLE 2.2: Design 1 MSFEs when p = 100

MSFE
ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.8 ρ = 0.95

Oracle 2.5377 5.1732 7.8471 10.5051 12.2374
OLS 5.0082 9.9651 15.3562 21.0368 24.2611
Ridge 4.1990 7.3793 8.6951 12.0244 12.3091
Lasso 2.9392 6.2707 8.5997 12.4149 12.4996
Adaptive Lasso 2.7538 5.7973 8.3245 12.2054 12.9215
Elastic Net 3.3041 6.5609 8.2711 11.9380 12.5311
Principal Components 5.8547 7.7784 9.7711 11.1438 11.8313
Random Projections 3.8719 6.6672 9.7898 11.1232 11.8584
OLS post Lasso 3.7090 5.5348 7.9016 11.7033 12.3767
OLS post Adaptive Lasso 2.6591 5.7584 8.3212 12.2954 12.9251
OLS post Elastic Net 2.6025 5.6992 7.8831 11.7872 12.5396

Irrepresentable Condition 0 11 449 966 1000
Average error variance 2.5 5 7.5 10.5 12
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TABLE 2.3: Design 1 MSFEs when p = 200

MSFE
ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.8 ρ = 0.95

Oracle 5.4021 17.0962 29.3973 42.9812 49.8578
Ridge 10.6940 22.4328 35.0879 43.9825 44.5307
Lasso 7.6125 22.7511 36.6475 44.9498 45.9177
Adaptive Lasso 6.7834 19.9242 36.0227 43.6921 44.7391
Elastic Net 9.1778 20.5402 35.4861 44.0525 44.8980
Principal Components 14.4134 23.9136 32.8153 42.8320 45.2997
Random Projections 10.6958 21.4803 32.4008 44.2836 47.1806
OLS post Lasso 11.0260 20.2669 35.6277 44.0108 44.5608
OLS post Adaptive Lasso 6.6480 20.9354 36.1093 44.8028 44.9562
OLS post Elastic Net 6.3573 20.2994 35.5833 44.0538 44.7159

Irrepresentable Condition 5 924 1000 1000 1000
Average error variance 5 16.25 27.5 41 47.75

TABLE 2.4: Design 1 MSFEs when p = 400

MSFE
ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.8 ρ = 0.95

Oracle 10.7400 62.9182 120.1296 178.3564 213.4914
Ridge 22.8872 74.4894 124.7402 181.4494 193.9326
Lasso 18.2605 77.7497 129.8990 184.8912 198.1597
Adaptive Lasso 16.3675 80.6752 134.7272 190.5042 199.7811
Elastic Net 19.2641 77.0968 128.7885 183.9489 197.1652
Principal Components 29.2629 70.9639 110.4807 169.7838 186.1484
Random Projections 25.7437 69.7068 117.8771 178.3143 207.6980
OLS post Lasso 21.4845 79.2908 132.9492 181.7997 198.7956
OLS post Adaptive Lasso 18.3191 83.5807 141.9415 190.5860 205.9468
OLS post Elastic Net 17.8980 80.3486 133.0098 182.9584 200.0020

Irrepresentable Condition 630 1000 1000 1000 1000
Average error variance 10 57.5 105 162 190.5

In summary, while it appears to be very close in terms of predictive reliability of each
of these methods, in the high dimensional settings Principal Components has and
edge once the significant correlation is present. However, Ridge appears to be the best
alternative when looking overall at the the experiments involving a high p and ρ. One
could argue that these results are less apparent for the case where ρ = 0.95, however,
this is a more unrealistic scenario as a means to observing how the methods handle the
extreme case and it is argued that more attention should be given to the case where
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the correlation is between 0.5 and 0.8 where the conclusions are much more concrete.

2.4.2 Design 2 Results

Here, the role of persistence in forecasting performance is considered with Tables
2.5-2.8 showing the MSFEs of each method across all experiments with varied
temporal dependence in the predictors. While for p = 20 and lower persistence the
results show methods such as OLS and OLS post selection performing well, it is very
clear from the tables below that RP is very dominant in terms of forecasting accuracy
and this is amplified as the level of temporal dependence approaches the unit root
mark. The effects of persistence on PC are discussed in Gonzalo and Pitarakis (2020)
where they detail how factors are created spuriously due to how the trend nature of
unit root variables creates artificial correlation and hence misguided parameter
estimates. Despite this, PC still performs relatively well when p = 200 and p = 400 for
persistence that is not too close to the unit root case which is likely to be down to its
ability to handle the ultra-high dimension of the predictor matrix more successfully
than the regularisation approaches. For example, when p = 400 PC always provides
the second lowest MSFE for all experiments (only 6.16% greater for c = 100).

To highlight how it is the persistence that is the key determinant in these stand-out
results, one can look at the RTEs in tables 2.A5-2.A8 which eliminates the effects of the
increased error variance as p increases, leaving only the affect of c. While this
naturally makes the MSFEs higher, this is not the case for the RTEs, therefore, the
appendix tables show how the persistence increasing worsens the performance of all
methods with the exception of RP, and can be arguably even be viewed as improving
as the unit root mark is approached in some cases. For some cases, such as in Table
2.A6 where p = 100 and c = 100, the RP RTE is 1.33029 which is noticeably higher
than the other methods showing how a small amount of persistence is not a problem
for the other approaches in a relative sense. However, this swings in favour of RP very
quickly as p increases and c decreases.

As the degree of temporal dependence increases, the methods based on minimising a
certain form of the sum of squared residuals suffer in similar fashion to how one can
show that unit roots cause the variances of the OLS coefficient estimates to diverge
providing undesirable parameter estimates, hence, adversely affecting forecasting
accuracy. One can also see that the IC fails to hold in the vast majority of cases when
p > T, and more so as the amount of persistence increases. This explains why the
selection methods also struggle in this setting as they also rely on the l1 norm penalty
of the Lasso. RP side steps this issue due to the nature of how the predictor matrix is
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multiplied by a matrix of random weights multiple times and is then averaged
resulting in the persistence, and spurious correlation, diluting. This feature in unison
with how the pairwise distances between points are maintained by RP result in a
situation almost as good as the hypothetical case where forecasts are being computed
from a predictor matrix which is equally as informative in a signalling context but
without the persistence imposing huge elements of unreliability.

TABLE 2.5: Design 2 MSFEs when p = 20

MSFE
c = 100 c = 50 c = 20 c = 10 c = 1

Oracle 1.4910 1.9438 3.0585 5.0570 12.9060
OLS 1.6602 2.1783 3.3656 5.7125 14.7498
Ridge 1.8497 2.7073 5.4035 11.4003 88.1457
Lasso 1.6312 2.4744 5.0016 10.8768 87.3726
Adaptive Lasso 1.5975 2.4147 4.9324 10.7198 87.1193
Elastic Net 1.6556 2.4981 5.0290 10.9323 87.6209
Principal Components 1.6721 2.0742 4.0338 7.7128 47.0529
Random Projections 1.6777 2.2497 3.2666 5.7366 14.2155
OLS post Lasso 1.5676 2.2735 3.7049 7.3485 48.8829
OLS post Adaptive Lasso 1.5257 2.1932 3.5295 7.0681 48.8884
OLS post Elastic Net 1.5266 2.2003 3.5324 7.0730 49.4638

Irrepresentable Condition 0 0 2 72 690
Average error variance 1.4562 1.9023 3.1145 4.8464 12.1766

TABLE 2.6: Design 2 MSFEs when p = 100

MSFE
c = 100 c = 50 c = 20 c = 10 c = 1

Oracle 22.0015 25.9000 40.3075 61.2762 150.4699
OLS 42.2371 54.8054 88.8557 141.8617 359.7707
Ridge 26.1475 33.6745 66.8063 125.0188 894.3338
Lasso 26.9773 35.6799 68.0647 123.4371 893.0332
Adaptive Lasso 26.0415 33.5810 67.4054 124.7783 910.0687
Elastic Net 25.0057 32.7401 64.3754 120.8191 892.4175
Principal Components 25.4562 33.4590 52.9072 90.4496 545.8734
Random Projections 26.8310 31.3168 48.8571 70.3160 159.1336
OLS post Lasso 24.6546 30.0488 50.5893 90.2625 548.8515
OLS post Adaptive Lasso 26.6404 32.7472 56.6149 96.9567 574.5897
OLS post Elastic Net 24.5550 30.0380 50.1273 89.8740 551.1874

Irrepresentable Condition 27 549 943 991 999
Average error variance 20.1113 24.9204 38.8803 57.2359 138.8406
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TABLE 2.7: Design 2 MSFEs when p = 200

MSFE
c = 100 c = 50 c = 20 c = 10 c = 1

Oracle 80.9748 98.5419 150.1243 217.4690 567.7982
Ridge 86.0975 117.6042 235.7314 404.7910 3221.1010
Lasso 87.9541 122.8703 240.2854 411.5388 3226.1190
Adaptive Lasso 91.2503 118.5824 234.9709 418.4911 3113.0450
Elastic Net 87.6826 119.9602 240.1583 410.6078 3222.3180
Principal Components 88.1009 116.4923 174.8450 300.4104 1967.6070
Random Projections 86.2094 109.2127 162.7634 233.2920 541.2370
OLS post Lasso 88.6760 114.6339 195.9120 340.1472 1989.2080
OLS post Adaptive Lasso 94.2684 120.6898 208.3282 368.5898 2104.0410
OLS post Elastic Net 88.6713 113.2021 197.8948 339.0118 2000.7920

Irrepresentable Condition 776 998 1000 1000 1000
Average error variance 72.6319 88.7505 134.4669 194.4776 464.9777

TABLE 2.8: Design 2 MSFEs when p = 400

MSFE
c = 100 c = 50 c = 20 c = 10 c = 1

Oracle 331.8040 389.3076 642.6516 919.2129 2255.6050
Ridge 318.5808 423.3456 816.2487 1506.6080 11145.9900
Lasso 340.7655 459.6387 830.1582 1495.3370 11012.2000
Adaptive Lasso 353.6919 472.3033 901.7242 1630.3720 11303.3300
Elastic Net 332.5640 453.6294 828.7903 1504.8340 11025.9000
Principal Components 298.9232 385.5316 644.0417 1085.2610 6683.9200
Random Projections 281.5807 335.4002 558.8483 810.9149 1865.9430
OLS post Lasso 345.7049 434.8807 726.6423 1184.1160 6832.3460
OLS post Adaptive Lasso 397.3862 509.3047 1023.0480 1683.5330 9402.9090
OLS post Elastic Net 343.1010 433.7461 741.3599 1216.7780 6826.7320

Irrepresentable Condition 1000 1000 1000 1000 1000
Average error variance 275.1854 332.6399 496.8369 714.0774 1699.3830

In summary, Random Projections clearly dominates all other methods across the
majority of experiments for the reasons mentioned previously, even when first
differencing was used the general theme throughout the results remains the same.
While the other methods remain competitive for smaller values of p and less
persistence, especially the OLS-post-slection methods, one could easily make the case
for the use of these methods when the covariates used are not too close to unit roots
(or there are less of them compared to stationary processes). Although as the
dimensioanlity increases, the selection element of these methods face new challenges
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as discussed previously which is why RP dominates as p increases.

2.5 Discussion

This paper has created a platform for the comparison of commonly used methods to
forecast with a large number of predictors available with the focus being on data sets
typically faced by economists. To do this, a detailed Monte Carlo simulation study
was carried out with the DGP fine tuned to replicate characteristics of typical data sets
associated with economics. These features include: noticeable correlation amongst the
predictors, temporal dependence amongst the individual regressors, a sparse DGP
and a high level of noise relative to the signal from the true predictors. Through
keeping the degree of sparsity and the SNR constant across experiments the findings
show some interesting results concerning relative performance across varied
persistence and correlation. Firstly, as expected, Ridge improves relatively as the level
of correlation increases and the ratio p

T as well. This is likely down to how the pivotal
irrepresentable condition of the Lasso fails more frequently as ρ increases causing
inconsistent model selection and, in turn, more uncertain forecasts. However, as it
starts become that p ≫ T then RP and PC begin to triumph over the regularisation
based approaches due to their dimension reduction ability proving more valuable
than the shrinkage and selection features of the other methods which appears to be
more fruitful for a smaller p

T .

For persistence, the results are a lot more conclusive, strongly in favour of RP which
appears to be immune to the breakdown of standard assumptions necessary for OLS
asymptotic properties arising from predictor temporal dependence approaching the
unit root mark. While for lower values of p there is some positive signs for the OLS
post regularisation methods when the persistence is somewhat less, it is very clear
that RP is the only method not being severely impacted by the serial correlation issues
and, hence, can deemed as the most suitable approach when forecasting with a set of
predictors that are notoriously persistent.

While this paper does not analyse in great depth the theoretical features of all these
methods, the practical focus of the DGP design has provided a useful guide for
economic forecasters who are faced with a large number of variables and wish to use
the most appropriate model to maximise forecasting accuracy. The success of RP
under persistent predictors demonstrated in this paper also provides justification to
the commitment of further research into the use of RP for economic or financial
forecasting as a means of improving more accurate and reliable predictions.
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2.A Appendix

2.A.1 RP Subspace Dimension and Number of Random Draws

FIGURE 2.A1: Relative MSFEs of RP forecasts across a variety of subspace dimensions
for a varying number of draws of random weights matrices under no correlation in

the predictor matrix
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FIGURE 2.A2: Relative MSFEs of RP forecasts across a variety of subspace dimensions
for a varying number of draws of random weights matrices under high correlation in

the predictor matrix ρ = 0.8 in the design 1 DGP

For Figures 2.A1 and 2.A2, a forecasting experiment is carried out in exactly the same
fashion as that of the design 1 experiments. Only instead of comparing different
methods, the RP procedure is run multiple times with varying subspace (k) and
varying number of draws of the R matrix (h). Each line represents the MSFE (relative
to the oracle MSFE) associated for a given subspace dimension when using a different
number of draws.
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2.A.2 Design 1 Relative Test Errors

TABLE 2.A1: Design 1 relative test errors for p = 20

RTE
ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.8 ρ = 0.95

Ridge 1.21144 1.22879 1.38464 1.20694 1.08519
Lasso 0.98961 1.02949 1.13198 1.04247 1.03488
Adaptive Lasso 0.98196 1.02372 1.10957 1.01696 1.02260
Elastic Net 1.00972 1.03622 1.14833 1.05272 1.04342
Principal Components 1.23716 1.21649 1.14544 1.09644 1.08574
Random Projections 1.21297 1.18227 1.04731 1.11351 1.06766
OLS post Lasso 1.01866 1.03512 1.12531 1.02442 1.02112
OLS post Adaptive Lasso 0.97666 1.02435 1.09979 1.01116 1.00747
OLS post Elastic Net 0.97552 1.01759 1.09799 1.02751 1.02313

TABLE 2.A2: Design 1 relative test errors for p = 100

RTE
ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.8 ρ = 0.95

Ridge 1.67961 1.47586 1.15935 1.14518 1.02576
Lasso 1.17568 1.25414 1.14663 1.18237 1.04163
Adaptive Lasso 1.10150 1.15947 1.10994 1.16242 1.07679
Elastic Net 1.32165 1.31217 1.10282 1.13695 1.04426
Principal Components 2.34187 1.55567 1.30282 1.06132 0.98594
Random Projections 1.54876 1.33344 1.30530 1.05935 0.98820
OLS post Lasso 1.48358 1.10696 1.05354 1.11460 1.03140
OLS post Adaptive Lasso 1.10244 1.15168 1.10950 1.17099 1.07709
OLS post Elastic Net 1.04101 1.13985 1.05108 1.12259 1.04497
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TABLE 2.A3: Design 1 relative test errors for p = 200

RTE
ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.8 ρ = 0.95

Ridge 2.13879 1.38048 1.27593 1.07274 0.93258
Lasso 1.52249 1.40007 1.33264 1.09634 0.96163
Adaptive Lasso 1.35668 1.22611 1.30992 1.06566 0.93694
Elastic Net 1.83556 1.26401 1.29041 1.07445 0.94027
Principal Components 2.88269 1.47160 1.19328 1.04468 0.94868
Random Projections 2.13916 1.32186 1.17821 1.08009 0.98807
OLS post Lasso 2.20520 1.24720 1.29555 1.07343 0.93321
OLS post Adaptive Lasso 1.32960 1.28833 1.31306 1.09275 0.97629
OLS post Elastic Net 1.27145 1.24919 1.29394 1.07448 0.93646

TABLE 2.A4: Design 1 relative test errors for p = 400

RTE
ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.8 ρ = 0.95

Ridge 2.28872 1.29547 1.18800 1.12006 1.01802
Lasso 1.82605 1.35217 1.23713 1.14130 1.04021
Adaptive Lasso 1.63675 1.40305 1.28312 1.17595 1.04872
Elastic Net 1.92641 1.34081 1.22656 1.13549 1.03499
Principal Components 2.92629 1.25374 1.05220 1.04804 0.97716
Random Projections 2.57437 1.21229 1.12264 1.10071 1.09028
OLS post Lasso 2.14845 1.37897 1.26825 1.12222 1.04355
OLS post Adaptive Lasso 1.83191 1.45358 1.35182 1.17646 1.08109
OLS post Elastic Net 1.78980 1.39737 1.26676 1.12937 1.04988
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2.A.3 Design 2 Relative Test Errors

TABLE 2.A5: Design 2 relative test errors for p = 20

RTE
c = 100 c = 50 c = 20 c = 10 c = 1

Ridge 1.25197 1.44016 1.75372 2.32151 6.74858
Lasso 1.10212 1.31947 1.62197 2.19727 6.63989
Adaptive Lasso 1.07880 1.28787 1.59926 2.15805 6.60965
Elastic Net 1.11883 1.33021 1.62828 2.20978 6.66113
Principal Components 1.14519 1.09529 1.28389 1.65805 3.87888
Random Projections 1.14998 1.17805 1.05061 1.26426 1.16363
OLS post Lasso 1.06727 1.22653 1.20093 1.54220 4.09601
OLS post Adaptive Lasso 1.03279 1.17655 1.15603 1.47104 4.16753
OLS post Elastic Net 1.03343 1.17915 1.15068 1.47070 4.18033

TABLE 2.A6: Design 2 relative test errors for p = 100

RTE
c = 100 c = 50 c = 20 c = 10 c = 1

Ridge 1.30502 1.33450 1.74869 2.22638 6.22512
Lasso 1.34511 1.40607 1.78570 2.20323 6.16961
Adaptive Lasso 1.29856 1.32826 1.75057 2.21476 6.25435
Elastic Net 1.24777 1.30049 1.68062 2.14373 6.15485
Principal Components 1.26354 1.33794 1.39636 1.64701 4.23520
Random Projections 1.33029 1.26679 1.27068 1.26565 1.17911
OLS post Lasso 1.22702 1.19546 1.29818 1.60546 4.14456
OLS post Adaptive Lasso 1.32654 1.29664 1.47663 1.73070 4.28493
OLS post Elastic Net 1.22191 1.19446 1.30334 1.59842 4.15562
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TABLE 2.A7: Design 2 relative test errors for p = 200

RTE
c = 100 c = 50 c = 20 c = 10 c = 1

Ridge 1.20311 1.33776 1.77125 2.13400 6.55693
Lasso 1.22960 1.39467 1.79742 2.15950 6.53533
Adaptive Lasso 1.27321 1.34829 1.77445 2.19136 6.38223
Elastic Net 1.22591 1.36232 1.80075 2.15604 6.53074
Principal Components 1.20968 1.30360 1.29693 1.59204 4.30362
Random Projections 1.19298 1.22601 1.19774 1.16640 1.16795
OLS post Lasso 1.23920 1.31191 1.47665 1.73908 4.19604
OLS post Adaptive Lasso 1.31698 1.38076 1.57213 1.89712 4.50108
OLS post Elastic Net 1.23890 1.29375 1.49119 1.76499 4.20724

TABLE 2.A8: Design 2 relative test errors for p = 400

RTE
c = 100 c = 50 c = 20 c = 10 c = 1

Ridge 1.16182 1.24271 1.65842 2.18159 6.39346
Lasso 1.24546 1.35277 1.69448 2.18200 6.28238
Adaptive Lasso 1.29567 1.39797 1.84492 2.34312 6.48069
Elastic Net 1.21471 1.33514 1.68843 2.18631 6.29970
Principal Components 1.08604 1.18006 1.29450 1.55531 4.17219
Random Projections 1.02071 1.00846 1.14050 1.14750 1.11135
OLS post Lasso 1.26456 1.28756 1.48100 1.74226 4.31791
OLS post Adaptive Lasso 1.45385 1.50442 2.07258 2.35237 5.64906
OLS post Elastic Net 1.25514 1.28339 1.51411 1.78488 4.28352
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2.A.4 Zero Coefficients from Lasso-based Methods

TABLE 2.A9: Number of zeros on average in the predictor matrix set by the relevant
methods for design 1

p = 20 ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.8 ρ = 0.95

Lasso 18.127 18.023 17.655 17.172 16.625
Adaptive Lasso 18.543 18.676 18.197 18.649 18.660
Elastic Net 13.033 13.762 14.744 14.704 12.744

p = 100

Lasso 65.609 57.628 57.354 68.780 88.732
Adaptive Lasso 88.731 85.639 88.347 90.124 93.926
Elastic Net 40.467 86.343 82.153 80.725 79.764

p = 200

Lasso 120.110 176.568 174.632 181.395 189.397
Adaptive Lasso 169.157 158.940 168.462 168.116 188.305
Elastic Net 82.278 166.774 168.475 176.394 181.428

p = 400

Lasso 263.239 353.271 362.544 377.251 387.821
Adaptive Lasso 328.033 362.284 378.220 385.139 392.422
Elastic Net 361.659 348.246 358.981 372.480 375.981

TABLE 2.A10: Number of zeros on average in the predictor matrix set by the relevant
methods for design 2

p = 20 c = 100 c = 50 c = 20 c = 10 c = 1

Lasso 14.144 13.384 11.983 10.656 8.863
Adaptive Lasso 16.344 16.132 15.511 14.779 16.429
Elastic Net 9.172 8.224 7.174 6.230 5.162

p = 100

Lasso 34.317 33.978 79.934 80.009 79.174
Adaptive Lasso 78.848 72.438 75.703 75.504 78.709
Elastic Net 73.504 73.267 72.005 70.088 76.136

p = 200

Lasso 161.488 161.633 161.644 159.990 151.311
Adaptive Lasso 159.851 145.187 153.051 163.055 124.865
Elastic Net 157.984 140.341 135.854 156.268 147.403

p = 400

Lasso 350.498 324.984 351.057 348.650 370.719
Adaptive Lasso 361.661 356.422 344.748 333.483 304.611
Elastic Net 341.771 340.264 335.111 349.785 362.539
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Chapter 3

A Ridge Regression Modification for
Handling High Dimensional
Economic Data

3.1 Introduction

As time has progressed forecasters and analysts within the field of econometrics (and
other fields) have enjoyed increased accessibility to candidate predictors for what
were previously somewhat simple regression models. While, intuitively, this should
be seen as an advantage from the perspective of generating more accurate time series
forecasts or increased precision of conclusions from causal inference analysis, it has
also brought new challenges as incumbent statistical models based upon standard
Ordinary Least Squares (OLS) are increasingly ill equipped for the tasks they face.
More specifically, one is concerned with a linear model setting where the
econometrician has a response variable, y, and p candidate predictor variables stored
in a matrix, X, where one suspects that only a certain subset of the p variables has
influence on y according to the true data-generating process (DGP). This is detailed
below,

y = Xβ + ϵ , (3.1)

where y is a n × 1 vector of the response variable observations and X is a n × p matrix
of the candidate predictors. ϵ represents the idiosyncratic error term with mean 0 and
variance σ2

ϵ In and β represents the p × 1 vector of coefficients that the analyst wishes
to estimate. This could be for many reasons, for example, they may wish to measure
the magnitude of a causal effect with many controls present meaning that the
estimation accuracy of a given element of β will be the main parameter of interest.
Another purpose could be using the in-sample Xβ̂ to construct out-of-sample forecasts
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for the dependent variable.

Whatever the purpose may be, one must construct an estimate for the coefficient
vector with the highest degree of accuracy possible facing a host of challenges from
the data set concerned. While OLS is the first intuitive option due to its unbiased
nature, as the number of predictors relative to the sample size ( p

n increases) OLS
results in highly uncertain β̂ estimates and when p > n OLS is no longer feasible. To
remedy this, a wide range of approaches have been practised throughout a diverse
range of fields such as regularization methods including Ridge Regression of Hoerl
and Kennard (1970) and the Lasso Model of Tibshirani (1996) which adopt penalised
least-squares based methods in order to manage the bias-variance tradeoff. Creating a
small number of factors from the large predictor has also been a very common
approach, especially in economics, using methods such as Principal Components and
applied to economic settings in work such as Connor and Korajczky (1988) and Stock
and Watson (2002). Finally, Model Selection approaches in work such as Akaike (1969)
and Schwarz (1978) have seeked to use OLS on the best subset of candidate predictors
while other literature, such as Timmermann (2006) seeks to combine results from
many simpler and smaller sub-models.

This paper focuses on models that are well suited to handle the common issue of high
dimensionality as well as significant multicollinearity amongst predictors, with both
issues being faced by economists more regularly as the ability to collect data
improves. This is due to the nature of how data is gathered as well as the way that
underlying human behaviour impacts a variety of key economic indicators
simultaneously. More specifically, this paper focuses on Ridge Regression due to its
ability to collectively shrink the coefficients of correlated predictors towards each
other making it a useful tool for economic data. In contrast to methods such as the
Lasso or other model selection techniques which often give reduced consideration to
the collinearity between predictors, focusing mostly on the relationship of the each
covariate with the dependent variable. To formalise, Ridge seeks to estimate the
coefficient vector using the following minimization problem in similar fashion to OLS.

β̂λ = argminβ
1
n
||y − Xβ||2 + λ||β||2 , (3.2)

which yields the following closed form estimator,

β̂λ =
1
n

(
X′X

n
+ λIp

)−1

X′y . (3.3)

As p moves closer towards n the degree of predictor multicollinearity typically
increases due to spurious correlations between variables (be this by chance or due to
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similarities in the variable construction process). As a result, OLS estimation suffers
from the covariance matrix (X′X) becoming increasingly ill-conditioned resulting in
highly sensitive parameter estimates whereas Ridge overcomes this with the addition
of the λIp term casuing correlated predictors to have their coefficients shrunk towards
each other. Some of the statistical properties of the Ridge estimator under a fixed
design are given as follows:

Bias(β̂λ) = −λ

(
X′X

n
+ λIp

)−1

β , (3.4)

Var(β̂λ) =
σ2

ϵ

n

(
X′X

n
+ λIp

)−1 X′X
n

(
X′X

n
+ λIp

)−1

, (3.5)

and it can be shown that, for a λ > 0, the bias of Ridge is non-zero (greater than OLS)
but the variance is lower than that of OLS. Using the relationship between the bias,
variance and mean-square-error (MSE), Theobald (1974) derived the following
condition on the penalty term to characterise when Ridge parameter estimates will
provide a lower excess risk than that of OLS,

λ <
2σ2

ϵ

β′β
. (3.6)

The condition shows that, as long as at least one true coefficient is not equal to 0 then
there will always exist a λ ̸= 0 which will result in Ridge having a lower excess risk
than OLS. Since OLS is unbiased, one can see that this implies that there is always an
optimal tradeoff between bias and variance through this form of regularisation to
outperform OLS when concerned with prediction accuracy.

Regarding the background of Ridge, the approach first originated in the field of
chemical engineering proposed by Hoerl and Kennard (1970) as a means of
overcoming the issue of multicollinearity. As mentioned before, this causes problems
in regression analysis as it leads to undesirably high standard errors of coefficient
estimates which not only raises questions surrounding the magnitude, and sometimes
sign, of coefficients but frequently results in predictors, that theoretically are believed
as being active, being statistically insignificant. Such an issue is very common in
economics (Farrar and Glauber (1967)) where multiple variables are influenced by
exogenous shocks in similar ways or variables are aggregated across a large number of
cross sectional units, such as firms, households or geographical regions resulting in
highly correlated covariates as discussed in Brown and Nawas (1973).

To demonstrate this, Simeon and Olaiya (2021) use Ridge to investigate the magnitude
of which various sectors of the Nigerian economy influence GDP growth. There are 9
predictors including indicators of production from agriculture, construction and
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services. A correlation coefficient matrix is reported and shows high positive values
resulting in OLS showing some false negative coefficients and insignificant predictors.
However, much of this is rectified when applying Ridge resulting in more realistic
contribution percentages of each sector to GDP. In a different setting, Inoue and Kilian
(2008) use a set of 30 predictors from categories including production, labour markets
and financial markets to carry out out-of-sample monthly forecasts of the US
Consumer Price Index (CPI). Once again, the predictors are heavily correlated and
Ridge along with a vast range of other high-dimensional models are used to create
forecasts. Despite the large variety of competing models, Ridge is one of the most
successful in terms of prediction accuracy highlighting the importance of being able to
handle the correlation amongst the predictors, even when forecasting.

In a production function setting, Brown and Beattie (1975) argue in favour of using
Ridge by showing how the bias (and MSE) of Ridge is lower when all the true β

components are of the same sign and this is also argued by Newhouse and Oman
(1971). In addition, for a given coefficient, β j, they show that it is beneficial for the bias
if β j is similar in magnitude to the average of all other β values. Such features are ideal
for production functions as one would expect nearly all coefficients to be positive as
the input would contribute to producing a greater output, Also, the input variables are
likely to be positively correlated as was the case in the empirical application of Brown
and Beattie (1975) which measures the effect of highly correlated agricultural variables
on water irrigation. However, Coniffe et al. (1976) argue that while it is true that most
of the coefficients in a production function will be positive, quadratic versions on
certain variables will be included having a negative sign to allow for diminishing
marginal returns. While this need not be the case with a Cobb-Douglas production
function of the following form:

Y = αXβ1
1 Xβ2

2 . . . Xβp
p ,

where Y is the output variable with input covariates X1, . . . , Xp, it can be seen that
diminishing returns can hold for βi < 1 allowing all coefficients to be positive.
Although, this is not always an appropriate model meaning that situations where
these ideal properties do not hold are likely to occur. Other functions, such as demand
functions would also prove to be a challenge for Ridge due to the nature of the analyst
wishing to include variables concerning complements and substitutes to the product
of interest resulting in a mix of signs in the true β components. For example, O’Neill
and Buttimer (1972) attempted to use Ridge to approximate the demand function for
Irish beef and found themselves estimating the coefficient of the beef price with the
wrong sign, highlighting the importance of the conditions discussed previously for
the bias to be restricted.
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Therefore, while Ridge can be a useful tool to construct reliable forecasts and
predictions with correlated predictors, under certain profiles of the true β values, it
will become unreliable provoking the need for an alternative procedure. However,
one should not be so quick to completely discard the idea of l2 norm penalisation as
this has many strong attributes for handling the correlation and high dimensional
nature of the data. Therefore, one might wish to use an estimation procedure that uses
Ridge penalisation, but side-steps high bias issues that arises from strong variance in
the sign and magnitude of the true coefficients. This paper proposes a new estimation
procedure called Partial Ridge that allows flexibility through estimating the
coefficients individually in an attempt to improve prediction accuracy of the β̂ vector.
Following the proposition, theoretical analysis is carried out in order to understand
how the newly proposed estimation procedure behaves relative to that of Ridge under
various DGPs both in terms of the estimates for individual coefficients themselves and
then for estimates of the dependent variable, y. The findings show that while Partial
can dominate Full Ridge in terms of the MSEs of some individual coefficients, this is
not possible for all β estimates nor for predictive accuracy (Xβ̂). Therefore a hybrid
approach combining Full and Partial Ridge is proposed with noticeable gains in
predictive risk over Ridge alone found and acts as a neat alternative for situations
when Ridge by itself suffers through its notorious bias induction.

The rest of this paper is organized as follows; Section 3.2 outlines the proposed Partial
Ridge approach with Section 3.3 investigating its theoretical properties compared to
those of the ordinary Ridge Regression. Section 3.4 compares the relative performance
of Full Ridge and the new estimation procedure in a Monte Carlo Simulation setting
with Section 3.5 applying these approaches to an empirical application. Section 3.6
concludes and provides an overview of what has been studied throughout the paper.

3.2 Proposed Estimation Procedure

While Ridge has many advantages over OLS when the data is of a high dimension and
or the degree of correlation amongst the covariates is strong, there are situations
where its bias can make the tradeoff of variance unfavourable. The following small
example will illustrate this where the true DGP is given by 3.1 above and there are 2
standardized predictors, x1 and x2 with correlation ρ between them resulting in it
being such that x′1x1 = x′2x2 = n and x′1x2 = nρ. If one chooses to estimate the
coefficients β1 and β2 with the Ridge estimator in 3.3 then one can show that the
estimator of a given coefficient is given by the following:

β̂i(λ) =
(1 + λ)x′iy − ρx′jy

n ((1 + λ)2 − ρ2)
,
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where i ∈ (1, 2) and j ̸= i one can see that the Ridge estimator approaches 0 as λ → ∞
but will never be set to exactly 0 unlike in certain cases for Lasso and others. So the
penalisation parameter acts as a means of shrinking the magnitude of the estimate.
Taking this further, one can use 3.4 to obtain the following bias expressions for each
estimate,

Bias(β̂1(λ)) =
ρλβ2 − β1λ(1 + λ)

(1 + λ)2 − ρ2 ,

Bias(β̂2(λ)) =
ρλβ1 − β2λ(1 + λ)

(1 + λ)2 − ρ2 ,

where β1 and β2 represents the value of the coefficients under the true DGP. By
squaring these 2 biases and summing them, one obtains the following:

||Bias(β̂λ)||2 =
λ2[(ρ2 + (1 + λ)2)(β2

1 + β2
2)− 4ρ(1 + λ)β1β2

]
((1 + λ)2 − ρ2)2 . (3.7)

By looking at the numerator one can see that the bias can increase significantly with
the magnitude of β1and β2 when the true coefficients are opposite signs and ρ > 0 or
the true coefficients having the same sign and ρ < 0 due to the first part of the
expression always being positive. Therefore, one can see how under certain DGPs the
bias of Ridge may reach levels that make the tradeoff undesirable. Such a feature is a
common theme throughout the literature, with work such as Zhang and Politis (2022)
proposing new approaches to overcome this.

Moreover, the nature of how the penalty parameter is fixed for the estimation of all
parameters can be somewhat limiting when there are many coefficients to estimate
provoking the consideration of a more flexible approach. However, one may not wish
to completely discard the l2 norm penalisation of Ridge due to its remarkable ability to
collectively shrink coefficients that are highly correlated with one another. Intuitively,
one may consider it strange to penalise all variables equally when it is highly likely
that some covariates will be active under the true DGP, needing less penalisation,
while others are more likely to be inactive, needing their coefficient shrunk more
significantly.

The 2 issues mentioned make one question if it is possible to construct a new
estimation procedure that can avoid that bias issues that Ridge faces while also
estimating each coefficient individually to allow for a unique penalty parameter to be
utilized. While staying in the realm of Ridge based estimation, consider the following
estimation set up,

β̂PR
λ,i = argminβ

( 1
n
(y − Xβ)′(y − Xβ) + λi(Siβ)

′(Siβ)
)

, (3.8)
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where Si is a selector matrix represented as

Si = Ip − eie′i .

Here ei is a p × 1 vector with all entries equal to 0 except for the ith entry entry being
equal to 1, resulting in the idempotent property for Si (S′

iSi = Si). Where i refers to the
column number of the predictor matrix for which coefficient is being estimated, for
example, when estimating β3 the above minimization problem would have S33 = 0.
This is almost identical to the ordinary Ridge estimator, only with the ith variable not
facing penalisation. Following through with 3.8 leads to the following full coefficient
vector,

β̂PR
λ,i =

1
n

(
X′X

n
+ λiSi

)−1

X′y . (3.9)

From here, one takes the ith row of the β̂PR
λ,i vector, defined as

β̂i(λi, Si) = e′i(X′X + λiSi)
−1X′y as the estimate for βi with this process repeated for

all i ∈ (1, . . . , p) to build a complete profile of coefficient estimates. This complete
vector of the β estimates is called the Partial Ridge estimator due to how not quite all
variables are penalised with the l2 norm like ordinary Ridge and is defined below,

β̂PR =


β̂1(λ1, S1)

...
β̂p(λp, Sp)

 . (3.10)

In order to see this more closely, one can consider the alternative formulation of 3.1 as
follows, where xi represents the variable corresponding to the coefficient of interest
and X−i represents the predictor matrix with the ith predictor column removed,

y = xiβi + X−iβ−i + ϵ . (3.11)

From here, one can rewrite 3.9 as partitioned matrices using this narrative to obtain
the following:

[
β̂i(λi, Si)

β̂−i

]
=

[ x′i xi
n

x′i X−i
n

X′
−ixi
n

(X′
−iX−i

n + λi Ip−1
)]−1 [ x′iy

n
X′
−iy
n

]
. (3.12)

So here, it is seen that one is penalising β−i while not penalising βi. Now, the standard
partitioned inverse formula can be applied with the individual β̂i component being
shown by the following expression where x∗i = xi − X−i(

X′
−iX−i

n + λi Ip−1)
−1 X′

−ixi
n ,

β̂i(λi, Si) =
x∗

′
i y

x∗′i xi
. (3.13)
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The same can also be carried out for Full Ridge to obtain the following:

[
β̂i(λ

FR)

β̂−i(λ
FR)

]
=

[ x′i xi
n + λFR x′i X−i

n
X′
−ixi
n

(X′
−iX−i

n + λFR Ip−1
)]−1 [ x′iy

n
X′
−iy
n

]
. (3.14)

From here, using the standard partitioned inverse formula leads to an easily
comparable result to that of the Partial Ridge case, only this time
x∗i = xi − X−i(

X′
−iX−i

n + λFR Ip−1)
−1 X′

−ixi
n ,

β̂i(λ
FR) =

x∗
′

i y
x∗′i xi + nλFR

. (3.15)

From here, one can carry out a singular value decomposition of X−i√
n to obtain general

expressions for the bias, variance and mean-squared-error of both the Partial and Full
Ridge estimators to facilitate comparison between the 2 approaches. Firstly, the
singular value decomposition (SVD) is defined as follows:

X−i√
n

= USV ′ , (3.16)

where U is an n × (p − 1) matrix, S is a (p − 1)× (p − 1) matrix with the singular
values in descending order on its diagonal and V is (p − 1)× (p − 1) matrix. It is also
important to mention that, by the definition of SVD, it is such that U′U = Ip−1,
V ′V = VV ′ = Ip−1, which is important for simplification.

Proposition 3.1: The mean-squared-error of Full Ridge and Partial Ridge are given by
the following expressions:

MSE(β̂i(λ
FR)) =

(
λFR x̃iS(S2 + λFR Ip−1)

−1β∗
−i − λFRβi

)2(
1 − x̃′iS

2(S2 + λFR Ip−1)−1 x̃i + λFR
)2

+
σ2

ϵ
n

(
1 − x̃′iS

2(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)
−2 x̃i

)(
1 − x̃′iS

2(S2 + λFR Ip−1)−1 x̃i + λFR
)2 , (3.17)

MSE(β̂i(λi, Si)) =
λ2

i
(

x̃iS(S2 + λi Ip−1)
−1β∗

−i
)2(

1 − x̃′iS
2(S2 + λi Ip−1)−1 x̃i

)2

+
σ2

ϵ
n

(
1 − x̃′iS

2(S2 + 2λi Ip−1)(S2 + λi Ip−1)
−2 x̃i

)(
1 − x̃′iS

2(S2 + λi Ip−1)−1 x̃i
)2 , (3.18)

where
x̃i = U′ xi√

n
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and
β∗
−i = V ′β−i .

A proof is provided in Appendix 3.A.1.

Therefore, the main motivation for Partial Ridge as an estimator for βi is an alternative
bias and variance decomposition that could me more favourable than the unbiased
OLS and highly efficient Ridge estimator. It also allows a different λ to be used for
each estimate which is advantageous as the next section shows how the optimal MSE
and its corresponding λ for a single coefficient varies depending the the true
coefficients, correlation and signal-to-noise ratio (SNR). However, the main focus of
this paper is the alternative bias-variance tradeoff with the potentially flexible penalty
parameter left to future work. The next section investigates the theoretical properties
of this Partial Ridge estimator compared to Ridge where all variables are penalised
with the same λ (Full Ridge).

3.3 Theoretical Results

3.3.1 Assumptions and Definitions

In this section, the theoretical properties of Partial Ridge are analysed in greater detail
to provide insight into how the estimation and prediction accuracy of the Partial
Ridge estimator varies relative to that of ordinary Ridge. This is done using a standard
model setting with the true DGP of a fixed design detailed below,

y = x1β1 + · · ·+ xpβp + ϵ , (3.19)

where y is an n × 1 vector representing the dependent variable observations and xi are
n × 1 vectors of observations for each of the p individual covariates with ϵ being the
n × 1 disturbance term vector. In matrix form this is shown as follows:

y = Xβ + ϵ ,

where β is a p × 1 vector of the true coefficients and X is a n × p matrix. For simplicity,
the analysis in this first subsection focuses entirely on the estimation of a single
coefficient β1 due to the individualized estimation nature of Partial Ridge, however,
one can easily generalize the conclusions to the case where one is estimating the full
set of coefficients. Firstly, the following assumptions are made for the fixed design
setting before progressing:

A1 The error term components are independently and identically distributed with 0
mean and homoskedastic variance. ϵ ∼ I ID(0, σ2

ϵ In).
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A2 The predictor covariance matrix X′X is positive semi-definite.

A3 All covariates are standardized with 0 mean and unit variance resulting in it
being that x′jxj = n for all j = 1, . . . , p and x′jxh = nρjh for all j ̸= h.

It is worth noting that A2 is such that X′X can be non-invertible. Such a feature
ensures that in a high-dimensional setting (p > n) then OLS as well as many other
estimation procedures are no longer feasible. As seen in 3.3, Ridge overcomes this
with the addition of the λIp term to allow invertibility.

3.3.2 Toy Model: Equicorrelation

In this toy model setting the correlation between predictors ρjh are set to all be equal
for simplicity and without loss of generality. This results in the following predictor
covariance matrix:

X′X
n

=



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1


.

Here, it is worth noting that, in order for this covariance matrix to be positive definite
then it must be such that ρ > − 1

p−1 as one can show that all covariances being lower
would result in a negative determinant.

As mentioned in the previous section, the Full Ridge estimator for the complete
coefficient vector is given as follows:

β̂(λFR) =
1
n

(
X′X

n
+ λFR Ip

)−1

X′y .

For Partial Ridge, the estimator for the ith coefficient β̂i(λi, Si) is given by the ith
coefficient of the following vector:

β̂i(λi, Si) =
1
n

(
X′X

n
+ λiSi

)−1

X′y .

Proposition 3.2: The individual estimators for a given coefficient under this fixed
design are as follows:

β̂i(λ
FR) =

(1 + λFR + (p − 2)ρ)x′iy − ρ ∑
p
j ̸=i x′jy

n(1 + λFRn − ρ)(1 + λFR + (p − 1)ρ)
, (3.20)
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β̂i(λi, Si) =
(1 + λi + (p − 2)ρ)x′iy − ρ ∑

p
j ̸=i x′jy

n(1 + λi + (p − 2)ρ − (p − 1)ρ2)
. (3.21)

A proof is provided in Appendix 3.A.2.

This leads into evaluating the properties of the estimators detailed above with the
following proposition.

Proposition 3.3: The bias, variance and MSE of the Partial Ridge and Full Ridge
estimators for a single coefficient under equicorrelation are as follows:

Bias(β̂i(λ
FR)) =

ρλFR ∑
p
j ̸=i β j − βiλ

FR(1 + λFR + (p − 2)ρ)

(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
, (3.22)

Bias(β̂i(λi, Si)) =
ρλi ∑

p
j ̸=i β j

1 + λi + (p − 2)ρ − (p − 1)ρ2 , (3.23)

Var(β̂i(λ
FR)) =

σ2
ϵ

(
(λFR − (ρ − 1)(1 + (p − 1)ρ))2 − (ρ − 1)(p − 1)ρ2(1 + (p − 1)ρ)

)
n(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2 , (3.24)

Var(β̂i(λi, Si)) =

σ2
ϵ

(
(λi − (ρ − 1)(1 + (p − 1)ρ))2 − (ρ − 1)(p − 1)ρ2(1 + (p − 1)ρ)

)
n(1 + λi + (p − 2)ρ − (p − 1)ρ2)2 . (3.25)

A proof is provided in Appendix 3.A.3 with the individuals component in 3.A.3.1,
3.A.3.2, 3.A.3.3 and 3.A.3.4 respectively.

Finally, using the relationship of squared bias and variance with MSE,
MSE(β̂ j) = [Bias(β̂ j)]

2 + Var(β̂ j), the following expressions can be obtained:

MSE(β̂i(λ
FR)) =

(
ρλFR ∑

p
j ̸=i β j − βiλ

FR(1 + λFR + (p − 2)ρ)
)2

(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2 +

σ2
ϵ

n

(
(λFR − (ρ − 1)(1 + (p − 1)ρ))2 − (ρ − 1)(p − 1)ρ2(1 + (p − 1)ρ)

)
(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2 , (3.26)
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MSE(β̂i(λi, Si)) =
(ρλi ∑

p
j ̸=i β j)

2

(1 + λi + (p − 2)ρ − (p − 1)ρ2)2

+

σ2
ϵ

n

(
(λi − (ρ − 1)(1 + (p − 1)ρ))2 − (ρ − 1)(p − 1)ρ2(1 + (p − 1)ρ)

)
(1 + λi + (p − 2)ρ − (p − 1)ρ2)2 . (3.27)

Where one can see that to ensure that the variance terms are positive then it can be
such that ρ > − 1

p−1 , which is equivalent to the condition that the covariance matrix
above is positive-semidefinite. One can also show that the denominator of the Full
Ridge variance will always be greater than that of the Partial Ridge one making the
Full Ridge always have a lower variance. Consider the expansion of the following
expression in the denominator of 3.24:

(1 + λFR − ρ)(1 + λFR + (p − 1)ρ) = 1 + λFR − (p − 1)ρ2 + (p − 2)ρ

+ λFR(1 + λFR + (p − 2)ρ) .

So it is shown that the Full Ridge variance denominator includes the Partial Ridge
Variance denominator squared component plus an additional term which is positive
by the condition for the covariance matrix being positive semidefinite along with
λFR > 0. Therefore for all λFR = λi the variance of Full Ridge is lower than that of
Partial Ridge. Although this will have reduced relevance when considering the full set
of predictors as Full Ridge has less flexibility with the penalty parameter (due to it
being fixed across all parameters) the superior order of magnitude in it’s variance
denominator, O(λ4

FR + p2λ2
FR) compared to O(λ2

i + p2) of Partial Ridge, leaves it in a
very strong position as the dimension increases.

Where Partial Ridge does have potential to outperform comes from the bias term
where already one can see that when ∑

p
j ̸=i β j = 0 there is zero bias, even when βi ̸= 0

unlike with Full Ridge. One can see how the squared biased terms behave as the
penalty parameter increases by expanding the squared expressions of 3.22 and 3.23
and rearranging the numerator and denominator as a polynomial of λFR and λi. This
results in the following expressions where only the top 2 highest order of magnitude
terms are considered where it is important to remember that λ > 0,

Bias(β̂i(λ
FR))2 =

β2
i λ4

FR + 2(β2
i (1 + (p − 2)ρ)− ρβi ∑

p
j ̸=i β j)λ

3
FR + O(λ2

FR)

λ4
FR + 2(2 + (p − 2)ρ)λ3

FR + O(λ2
FR)

,

Bias(β̂i(λi))
2 =

λ2
i ρ2(∑

p
j ̸=i β j)

2

λ2
i + 2(1 − ρ)(1 + (p − 1)ρ)λi + O(1)

.

Firstly, looking at the Full Ridge squared bias term, one can see that the numerator
increases at a faster rate than the denominator in λFR when β2

i > 1 with this relative
rate of expansion increasing in β2

i . From looking at the λ3
FR coefficients, again, a larger
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β2
i results in faster expansion of the numerator but this can also be assisted by the

term, ρβi ∑
p
j ̸=i β j, being negative which can be achieved under a positive ρ with βi and

∑
p
j ̸=i β j being opposite signs.

For Partial Ridge, a large β2
i does not impact the bias and one can see that when

ρ2(∑
p
j ̸=1 β j)

2 < 1 then the bias is decreasing as λi increases. Therefore, in terms of bias,
Partial Ridge can see noticeable gains over Full Ridge in the estimation of a single
coefficient when the true magnitude of the given βi is large and βi and ∑

p
j ̸=i β j are of

opposite signs. Finally, it is worth pointing out that these arguments are relevant for
when λFR and λi are greater than 1 with the opposite conclusions being true when the
penalty parameters are less than 1. However, this may be undesirable from a variance
reduction perspective as choosing λFR < 1 reduces the models ability to limit the
variance under a high dimension and multicollinearity.

3.3.3 MSE Comparison

To identify situations where Partial Ridge will outperform Full Ridge in a prediction
accuracy sense, the MSE expressions of both estimators from 3.26 and 3.27 are
considered with the analysis concentrating on how the bias and variance behave to
understand these estimators more thoroughly. Firstly, consider the case where there is
no correlation amongst the covariates (ρ = 0) then the following the expressions of the
MSEs are obtained:

MSE(β̂i(λ
FR)) =

nβ2
i λ2

FR + σ2
ϵ

n(1 + λFR)2 , (3.28)

MSE(β̂i(λi, Si)) =
σ2

ϵ

n
. (3.29)

In the nature of trying to find a condition where Partial Ridge has lower MSE for all λ,
the case is considered where λ = λFR = λi. Now evaluate the expression for the
difference in MSE values,

MSE(β̂i(λ
FR))− MSE(β̂i(λi, Si)) =

nβ2
i λ2 + σ2

ϵ − σ2
ϵ (1 + λ)2

n(1 + λ)2 . (3.30)

From here, by looking closer at the numerator, one can show that in order for the
above term to be positive (the Partial Ridge MSE to be lower), the following condition
must be satisfied:

β2
i

σ2
ϵ

>
λ + 2

nλ
, (3.31)

where one can see that as λ and n increase, very quickly it becomes such that the ratio
of β2

i and σ2
ϵ (a form of signal to noise ratio) does not have to be very large in order for

Partial Ridge to dominate. While for a very small λ Full Ridge has an increased chance
of having a lower MSE, the fact that Partial Ridge estimates each β̂i(λi, Si)
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individually and Full Ridge does not becomes a real selling point here. This because
that, although for β̂i Full Ridge can provide a lower MSE when using a very low
penalty parameter, this parameter must then be used for all other predictors, so it will
unlikely be desirable for Full Ridge to use such a small penalty parameter for βi

estimation, as this will unlikely be optimal overall when considering the other p − 1
predictors. Partial Ridge, on the other hand, can afford to pick the best λi for βi

estimation as the rest of the coefficient estimates are not bound by this. Therefore,
already one can see promising signs for Partial Ridge over Full Ridge in environments
of little correlation amongst the candidate predictors.

Moving to a more general case, the expressions in 3.20 and 3.21 are considered for
scenarios of varied correlation, dimension ( p

n ), SNR and relative coefficient magnitude
( βi

∑
p
j ̸=i β j

). By setting n = 100, σ2
ϵ = 1 and varying everything else the minimum values

of 3.26 and 3.27 are reported in the 3 tables below along with the corresponding
penalty parameter for each approach in each scenario. With the sample size fixed, p is
varied over (100, 150, 200) with each dimension having the level of correlation varied
over ρ = (0.1, 0.5, 0.8) and for each ρ and p, the SNR and relative coefficients
magnitudes are also modified. More specifically, defining the SNR here as
βi+∑

p
j ̸=i β j

σ2
ϵ

= βi + ∑
p
j ̸=i β j, the SNR is varied over (1, 4, 7) with each case having 3

separate structures of βi and ∑
p
j ̸=i β j. One where βi is large relative to ∑

p
j ̸=i β j, one βi is

small compared to ∑
p
j ̸=i β j and one where they have equal magnitude.
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TABLE 3.1: MSE values provided by PR and FR along with their optimal penalty pa-
rameter values when p=100

ρ β profile PR (×10−2) λi FR (×10−2) λFR

0.1 β1 = 0.9, ∑
p
j ̸=1 β j = 0.1 1.0353 720.354 1.0859 1.248

βi = 0.1, ∑
p
j ̸=i β j = 0.9 1.0897 119.123 0.4775 112.467

βi = 0.5, ∑
p
j ̸=i β j = 0.5 1.0726 316.142 1.0529 4.106

βi = 3.5, ∑
p
j ̸=i β j = 0.5 1.0726 316.142 1.0999 0.083

βi = 0.5, ∑
p
j ̸=i β j = 3.5 1.1001 8.141 1.0473 4.608

βi = 2, ∑
p
j ̸=i β j = 2 1.0984 23.755 1.0978 0.260

βi = 6, ∑
p
j ̸=i β j = 1 1.0917 97.422 1.1006 0.030

βi = 1, ∑
p
j ̸=i β j = 6 1.1007 1.656 1.0873 1.131

βi = 3.5, ∑
p
j ̸=i β j = 3.5 1.1001 8.141 1.0999 0.084

0.5 βi = 0.9, ∑
p
j ̸=i β j = 0.1 1.2795 2980.22 1.9319 1.250

βi = 0.1, ∑
p
j ̸=i β j = 0.9 1.9349 121.99 0.5780 119.686

βi = 0.5, ∑
p
j ̸=i β j = 0.5 1.8475 381.428 1.8294 4.122

βi = 3.5, ∑
p
j ̸=i β j = 0.5 1.8475 381.428 1.9769 0.084

βi = 0.5, ∑
p
j ̸=i β j = 3.5 1.9771 8.085 1.8111 4.670

βi = 2, ∑
p
j ̸=i β j = 2 1.9707 24.364 1.9701 0.259

βi = 6, ∑
p
j ̸=i β j = 1 1.9432 98.900 1.9791 0.028

βi = 1, ∑
p
j ̸=i β j = 6 1.9791 2.764 1.9360 1.143

βi = 3.5, ∑
p
j ̸=i β j = 3.5 1.9771 8.085 1.9769 0.085

0.8 βi = 0.9, ∑
p
j ̸=i β j = 0.1 1.6255 4402.42 4.6590 1.250

βi = 0.1, ∑
p
j ̸=i β j = 0.9 4.6704 121.863 0.6985 118.412

βi = 0.5, ∑
p
j ̸=i β j = 0.5 4.1680 394.855 4.1041 4.123

βi = 3.5, ∑
p
j ̸=i β j = 0.5 4.1680 394.855 4.9297 0.083

βi = 0.5, ∑
p
j ̸=i β j = 3.5 4.9303 8.081 4.0121 4.676

βi = 2, ∑
p
j ̸=i β j = 2 4.8901 24.752 4.8872 0.258

βi = 6, ∑
p
j ̸=i β j = 1 4.7205 98.859 4.9432 0.028

βi = 1, ∑
p
j ̸=i β j = 6 4.9434 2.709 4.6823 1.144

βi = 3.5, ∑
p
j ̸=i β j = 3.5 4.9303 8.081 4.9294 0.084
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TABLE 3.2: MSE values provided by PR and FR along with their optimal penalty pa-
rameter values when p=150

ρ β profile PR (×10−2) λi FR (×10−2) λFR

0.1 β1 = 0.9, ∑
p
j ̸=1 β j = 0.1 1.0368 1036.660 1.0891 1.244

βi = 0.1, ∑
p
j ̸=i β j = 0.9 1.0923 178.346 0.4919 108.577

βi = 0.5, ∑
p
j ̸=i β j = 0.5 1.0743 466.743 1.0563 4.072

βi = 3.5, ∑
p
j ̸=i β j = 0.5 1.0743 466.743 1.1031 0.083

βi = 0.5, ∑
p
j ̸=i β j = 3.5 1.1033 12.335 1.0526 4.400

βi = 2, ∑
p
j ̸=i β j = 2 1.1015 37.269 1.1010 0.258

βi = 6, ∑
p
j ̸=i β j = 1 1.0943 146.046 1.1038 0.030

βi = 1, ∑
p
j ̸=i β j = 6 1.1039 1.687 1.0910 1.087

βi = 3.5, ∑
p
j ̸=i β j = 3.5 1.1033 12.335 1.1031 0.084

0.5 βi = 0.9, ∑
p
j ̸=i β j = 0.1 1.3853 2625.960 1.9385 1.245

βi = 0.1, ∑
p
j ̸=i β j = 0.9 1.9409 183.516 0.6069 112.936

βi = 0.5, ∑
p
j ̸=i β j = 0.5 1.8524 466.743 1.8369 4.081

βi = 3.5, ∑
p
j ̸=i β j = 0.5 1.8524 572.763 1.9835 0.083

βi = 0.5, ∑
p
j ̸=i β j = 3.5 1.9836 12.164 1.8251 4.430

βi = 2, ∑
p
j ̸=i β j = 2 1.9771 36.557 1.9767 0.256

βi = 6, ∑
p
j ̸=i β j = 1 1.9493 148.800 1.9856 0.028

βi = 1, ∑
p
j ̸=i β j = 6 1.9857 4.165 1.9443 1.092

βi = 3.5, ∑
p
j ̸=i β j = 3.5 1.9836 12.164 1.9835 0.084

0.8 βi = 0.9, ∑
p
j ̸=i β j = 0.1 1.7423 4611.590 4.6757 1.245

βi = 0.1, ∑
p
j ̸=i β j = 0.9 4.6848 183.054 0.7422 112.105

βi = 0.5, ∑
p
j ̸=i β j = 0.5 4.1787 593.676 4.1250 4.081

βi = 3.5, ∑
p
j ̸=i β j = 0.5 4.1787 593.676 4.9464 0.082

βi = 0.5, ∑
p
j ̸=i β j = 3.5 4.9468 12.152 4.0657 4.433

βi = 2, ∑
p
j ̸=i β j = 2 4.9062 37.251 4.9042 0.255

βi = 6, ∑
p
j ̸=i β j = 1 4.7352 148.607 4.9598 0.028

βi = 1, ∑
p
j ̸=i β j = 6 4.9599 4.142 4.7094 1.093

βi = 3.5, ∑
p
j ̸=i β j = 3.5 4.9468 12.152 4.9461 0.083
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TABLE 3.3: MSE values provided by PR and FR along with their optimal penalty pa-
rameter values when p=200

ρ β profile PR (×10−2) λi FR (×10−2) λFR

0.1 β1 = 0.9, ∑
p
j ̸=1 β j = 0.1 1.0377 1345.270 1.0908 1.242

βi = 0.1, ∑
p
j ̸=i β j = 0.9 1.0936 237.266 0.4998 106.365

βi = 0.5, ∑
p
j ̸=i β j = 0.5 1.0753 615.217 1.0581 4.055

βi = 3.5, ∑
p
j ̸=i β j = 0.5 1.0753 615.217 1.1048 0.083

βi = 0.5, ∑
p
j ̸=i β j = 3.5 1.1056 1.783 1.0554 4.299

βi = 2, ∑
p
j ̸=i β j = 2 1.1031 49.769 1.1027 0.257

βi = 6, ∑
p
j ̸=i β j = 1 1.0957 194.480 1.1055 0.030

βi = 1, ∑
p
j ̸=i β j = 6 1.1056 1.639 1.0929 1.065

βi = 3.5, ∑
p
j ̸=i β j = 3.5 1.1049 16.806 1.1048 0.083

0.5 βi = 0.9, ∑
p
j ̸=i β j = 0.1 1.3872 3483.690 1.9418 1.242

βi = 0.1, ∑
p
j ̸=i β j = 0.9 1.9439 245.007 0.6218 105.949

βi = 0.5, ∑
p
j ̸=i β j = 0.5 1.8548 763.828 1.8406 4.060

βi = 3.5, ∑
p
j ̸=i β j = 0.5 1.8548 763.828 1.9868 0.083

βi = 0.5, ∑
p
j ̸=i β j = 3.5 1.9869 16.259 1.8319 4.317

βi = 2, ∑
p
j ̸=i β j = 2 1.9803 49.767 1.9800 0.255

βi = 6, ∑
p
j ̸=i β j = 1 1.9523 198.675 1.9889 0.028

βi = 1, ∑
p
j ̸=i β j = 6 1.9890 5.572 1.9484 1.1068

βi = 3.5, ∑
p
j ̸=i β j = 3.5 1.9869 16.259 1.9868 0.084

0.8 βi = 0.9, ∑
p
j ̸=i β j = 0.1 1.7460 6106.60 4.6841 1.242

βi = 0.1, ∑
p
j ̸=i β j = 0.9 4.6920 244.270 0.7645 108.942

βi = 0.5, ∑
p
j ̸=i β j = 0.5 4.1840 792.473 4.1354 4.061

βi = 3.5, ∑
p
j ̸=i β j = 0.5 4.1840 792.473 4.9547 0.082

βi = 0.5, ∑
p
j ̸=i β j = 3.5 4.9550 16.207 4.0917 4.318

βi = 2, ∑
p
j ̸=i β j = 2 4.9143 48.626 4.9127 0.254

βi = 6, ∑
p
j ̸=i β j = 1 4.7426 198.303 4.9681 0.028

βi = 1, ∑
p
j ̸=i β j = 6 4.9682 5.531 4.7228 1.068

βi = 3.5, ∑
p
j ̸=i β j = 3.5 4.9550 16.207 4.9545 0.083

Here it can be seen that, when βi is large relative to ∑
p
j ̸=i β j, Partial Ridge enjoys a

lower MSE but the opposite is true when the coefficient magnitude relativity is
reversed with there being little difference in MSEs when the βi and ∑

p
j ̸=i β j are equal in

size. This is likely down to how the bias term of Partial Ridge in 3.23 is not dependent
on βi unlike that of Full Ridge in 3.22 where a higher βi can cause the bias to escalate
quite rapidly due to how it is multiplied by p and λFR unlike ∑

p
j ̸=i β j. It is for a similar

reason that Full Ridge performs better when βi is relatively small. One can show that
as ∑

p
j ̸=i β j increases relative to βi then the numerator of 3.22 becomes closer to that of
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3.23. This combined with the discussion below 3.25 works in favour of Full Ridge as
the denominator of 3.22 will be lower than that of 3.23 meaning that there will
minimal or even no gains in bias for Partial Ridge over Full Ridge. Combine this with
the variance discussion previously and it arises that there is no room for Partial Ridge
to outperform Full Ridge which is why Full Ridge does better in this scenario.

One can also see that these gains for either method in either scenario are amplified as
the level of correlation increases but become less apparent as the SNR increases.
However, for determining which method provides the lower MSE, these features do
not play a key role compared to that of the relative coefficient magnitude. It can be
argued that the simple nature of this toy model setting ρ to be equal for all predictors
eliminates the likely importance of the correlation between xi and all other variables
compared to the correlation amongst the other p − 1 covariates themselves but this is
left for future research.

Therefore, from this first stage of theoretical analysis, one can see that when concerned
with the estimation of a single coefficient, Partial Ridge can bring benefit if the true
value of the given coefficient is large relative to the sum of all other true β values.
Although, by definition, it is not possible for this to be the case for all predictors under
a given DGP, in situations where there is a strong degree of sparsity or an even
balance of positive and negative true coefficients with similar magnitudes, such as
product demand function applications, it can be such that for many of the β j’s,

∑
p
h ̸=j βh << β j making Partial Ridge a worthy competitor of Full Ridge.

3.3.4 Considering All Predictors

As mentioned at the end of the previous section, while Partial Ridge can see gains in
bias covert into MSE gains for single predictors that have a true magnitude large
relative to the sum of all other β components, this can not be the case for all predictors.
Moreover, while the estimation of the βi values is important, more often the end goal
is to maximise the prediction accuracy making Xβ̂ a more relevant method of
assessment. Specifically, the excess prediction risk (EPR) defined in Bach (2022) is used
in this paper and is formally defined as follows:

E[R(β̂)]− R∗ = E||β̂ − β||2Σ̂ = E
[
(β̂ − β)′

X′X
n

(β̂ − β)

]
, (3.32)

where R∗ is the predictive risk of the oracle model defined as
R∗ = 1

n E||y − Xβ||2 = σ2
ϵ , Σ̂ represents the predictor covariance matrix, β̂ is the

estimated coefficients of the chosen estimation method and β represents the
coefficients under the true DGP. One can also apply the bias-variance decomposition
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to 3.32 to obtain the following:

E[R(β̂)]− R∗ = ||E(β̂)− β||2Σ̂ + E||β̂ − E(β̂)||2Σ̂ . (3.33)

With this formal definition of EPR, this sections seeks to evaluate the above
expressions under the toy model from the previous section for both Full Ridge and
Partial Ridge.

Proposition 3.4: The expression for the EPR of both Full Ridge and Partial Ridge are
respectively given as follows:

p

∑
k=1

(
MSE(β̂k(λ

FR))

+ ρ
p

∑
i ̸=k

Bias(β̂k(λ
FR))Bias(β̂i(λ

FR)) + Cov
(

β̄k(λ
FR), β̄i(λ

FR)
))

, (3.34)

p

∑
k=1

(
MSE(β̂k(λk, Sk))

+ ρ
p

∑
i ̸=k

Bias(β̂k(λk, Sk))Bias(β̂i(λi, Si)) + Cov
(

β̄k(λk, Sk), β̄i(λi, Si)
))

. (3.35)

Where β̄k(λ
FR) and β̄k(λk, Sk) are the individual β̂k estimates centred around their

mean (β̂k − E[β̂k]). The discussion from the previous section showed how the MSE
component can only be dominated by Partial Ridge when βk is larger relative to

∑
p
j ̸=k β j, but this can not be the case for all predictors. While there is little difference

between the 2 procedures when βi ≈ ∑
p
j ̸=i β j leaving a very small number of scenarios

where Partial Ridge can beat Full Ridge over the sum of individual MSEs. However,
one can see from the expressions above that for a sufficiently large ρ > 0 the excess
prediction risk can be improved when the cross product of bias terms as well as
centred β̂k estimates are negatively correlated leading to a new branch of
investigation.

Similar to the previous section, expressions are 3.34 and 3.35 are evaluated under
various DGP designs to see where Partial Ridge may outperform Full Ridge with the
optimal λ of Partial Ridge chosen by minimising each individual MSE whereas the
single λ for all the Full Ridge coefficients is chosen by running the sum of individual
MSEs over a grid of penalty parameters and using the one that gives the smallest sum
of MSEs.
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Using a DGP based on that of 3.1, expressions 3.34 and 3.35 are evaluated under a
fixed design with varied ρ and p with the sample size fixed at n = 100 and σ2

ϵ = 10.
These are varied in 3 separate designs for the structure of βi values which are detailed
as follows.

Design 1: Sparsity with variation in sign and magnitude amongst the active predictors
In this setting, the true β vector is defined as follows: βi = i(−1)i+1 for
i = 1, . . . , 7 and βi = 0 for i > 7. This scenario would be expected to favour Full
Ridge as one can see that the majority of coefficients are such that βi < ∑

p
j ̸=i β j.

However, one can also see that this results in many of the active coefficients
being such that βi and ∑

p
j ̸=i β j are opposite signs which can inflate the bias of

Full Ridge. In addition the varied in coefficient magnitude makes the adjustable
λi property of Partial Ridge a key advantage over Full Ridge.

Design 2: Sparsity with active predictors summing to 0
This is similar to the previous design only here the active βi values are as
follows. β1 = 10 and βi = −1 for i = 2, . . . , 11 with all other βi values being
equal to 0. On closer inspection one can see that for all βi it is such that
|βi| = |∑

p
j ̸=i β j| which Tables 3.1-3.3 show that this results in almost identical

MSEs for Full and Partial Ridge. However, unlike in the previous setting in
Section 3.2, Full Ridge is committed to a single λFR value for all predictors
leaving the possibility for Partial Ridge to dominate.

Design 3: Equal magnitude with alternation sign
Here it is such that βi = (−1)i+1 leading to every coefficient being equal to either
1 or -1. An interesting feature here is that when p is an even number then ∑

p
j ̸=i β j

is equal to 1 or -1 achieving a similar situation as Design 2. However when p is
an odd number then when βi = 1, ∑

p
j ̸=i β j = 0 and when βi = −1, ∑

p
j ̸=i β j = 2 so

there is an almost even mix of when |βi| > |∑
p
j ̸=i β j| and |βi| < |∑

p
j ̸=i β j|.

For each setting, ρ is varied over (0.1, 0.4, 0.7) with p taking a value of 100 or 200
except for Design 3 where p ∈ (101, 201) is considered in order to achieve the desired
ratios of βi

∑
p
j ̸=i β j

. The tables below show the values of 3.34 and 3.35 under each of these

designs as well as the sum of individual coefficient MSEs.
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TABLE 3.4: EPR for Full and Partial Ridge across each of the designs

p=100 p=200

Design 1 ρ = 0.1 ρ = 0.4 ρ = 0.7 ρ = 0.1 ρ = 0.4 ρ = 0.7

Full Ridge 9.277 8.955 8.110 17.284 16.187 13.600
Partial Ridge 10.607 15.879 50.715 22.625 45.081 193.597

Design 2

Full Ridge 9.098 8.708 7.715 16.668 15.390 12.514
Partial Ridge 17.404 98.570 299.451 46.902 291.052 928.765

Design 3 (p+1)

Full Ridge 9.107 8.683 7.618 18.108 17.255 15.119
Partial Ridge 13.855 49.202 159.194 33.354 138.680 501.598

TABLE 3.5: Sum of individual MSEs for Full and Partial Ridge across each of the de-
signs

p=100 p=200

Design 1 ρ = 0.1 ρ = 0.4 ρ = 0.7 ρ = 0.1 ρ = 0.4 ρ = 0.7

Full Ridge 10.207 14.761 26.701 19.099 26.814 45.003
Partial Ridge 10.941 16.308 32.216 21.976 32.804 64.873

Design 2

Full Ridge 10.009 14.350 25.386 18.415 25.4845 41.381
Partial Ridge 10.067 10.749 12.415 20.112 21.854 25.645

Design 3 (p+1)

Full Ridge 10.019 14.308 25.063 20.015 28.593 50.063
Partial Ridge 10.507 13.181 20.756 20.964 26.781 42.886

Tables 3.4 and 3.5 show show interesting results when evaluating expressions 3.34 and
3.35. While Table 3.5 shows that Partial Ridge dominates in the sum of individual
MSEs for most settings under Designs 2 and 3 (when the correlation is greater than
0.1), the opposite is true when considering the excess risk prediction. The reason for
dominance in the sum of MSEs was justified before but looking at the relativity of βi to

∑
p
j ̸=i β j for each coefficient as well as the fact that Partial Ridge has greater flexibility

with the λi values, the results appear to not reflect this. This leads one to reconsider
the importance of the second parts of 3.34 and 3.35, the bias cross products and
covariances between the centred βi estimates. Therefore 3.34 and 3.35 will be analysed
further to seek answers with the first aim being to define the second part of these 2
equations as follows:

EPRFR(2) =
p

∑
k=1

ρ
p

∑
i ̸=k

Bias(β̂k(λ
FR))Bias(β̂i(λ

FR)) + Cov
(

β̄k(λ
FR), β̄i(λ

FR)
)

,
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EPRPR(2) =
p

∑
k=1

ρ
p

∑
i ̸=k

Bias(β̂k(λk, Sk))Bias(β̂i(λi, Si)) + Cov
(

β̄k(λk, Sk), β̄i(λi, Si)
)

.

Using expressions 3.20-3.25 from the previous subsection, the above can be written as
follows:

EPRFR(2) =
p

∑
k=1

ρ
p

∑
i ̸=k

( (ρλFR ∑
p
j ̸=i β j − βiλ

FR(1 + λFR + (p − 2)ρ))(ρλFR ∑
p
j ̸=k β j − βkλFR(1 + λFR + (p − 2)ρ))

(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2

+
σ2

ϵ ρ(λ2
FR + (ρ − 1)(1 + (p − 1)ρ))

n(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2

)
, (3.36)

EPRPR(2) =
p

∑
k=1

ρ
p

∑
i ̸=k

( (ρλi ∑
p
j ̸=i β j)(ρλk ∑

p
j ̸=k β j)

(1 + λi + (p − 2)ρ − (p − 1)ρ2)(1 + λk + (p − 2)ρ − (p − 1)ρ2)

+
σ2

ϵ ρ(λiλk + (ρ − 1)(1 + (p − 1)ρ))
n(1 + λi + (p − 2)ρ − (p − 1)ρ2)(1 + λk + (p − 2)ρ − (p − 1)ρ2)

)
. (3.37)

By looking at the difference between the corresponding entries in Tables 3.4 and 3.5
one can see that expression 3.36 for Full Ridge is always negative making the EPR
lower than the sum of MSEs whereas for Partial Ridge expression 3.37 is always
positive and becomes quite large in certain scenarios, especially when the correlation
is high making 3.36 and 3.37 a more significant component of the EPR values.

Firstly, it is important to notice that, with Partial Ridge, the λis were obtained by
minimising the individual MSEs but where ∑

p
j ̸=i β j is small then so is the bias. This

combined with how the variance in 3.25 decreases as λi increases leads to the optimal
λi being very large. While this is good for the individual MSEs, expression 3.37 would
suggest otherwise for the EPR. By looking closer at 3.36 and 3.37, expanding them and
sorting by powers of λFR, λi and λk leads to the following expressions for them:

EPRFR(2) =
p

∑
k=1

ρ
p

∑
i ̸=k

(βiβk)λ
4
FR + O(λ3

FR)

λ4
FR + O(λ3

FR)
, (3.38)

EPRPR(2) =
p

∑
k=1

ρ
p

∑
i ̸=k

(
ρ2(∑

p
j ̸=i β j)(∑

p
j ̸=k β j) +

σ2
ϵ ρ
n

)
λiλk + O(1)

λiλk + O(λi) + O(λk)
. (3.39)

So one can see that choosing a single λi as being very large for a given βi can have
consequences for the EPR through the bias cross products and centred estimator
covariances when the numerator coefficient of λiλk is greater than 1. More
importantly though, one can see that the sign and magnitude of the 2 expressions
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above are influenced by different features of the true DGP. For Full Ridge the
coefficient of the highest order of λFR in the numerator has its sign and magnitude
determined by the cross product of individual βi values. Whereas for Partial Ridge
this is determined by the cross products of the ∑

p
j ̸=i β j values. Such a feature is

significant when explaining the results above as the aggregated nature of the ∑j ̸=i β j

values means that not only with they likely be larger in magnitude than that of the βi

cross products but will also likely be the same sign for the majority of the predictors
compared to βis themselves which will have much more variability in sign. For
example, in Design 3 the βi and ∑

p
j ̸=i β j cross products are given in the tables below,

remembering that p is an odd number.

TABLE 3.6: Cross products of βi values under Design 3

i 1 2 3 4 . . . p

βi 1 -1 1 -1 . . . 1

βiβ1 -1 1 -1 . . . 1
βiβ2 -1 -1 1 . . . -1
βiβ3 1 -1 -1 . . . 1
βiβ4 -1 1 -1 . . . -1

...
...

...
...

...
...

...
βiβp 1 -1 1 -1 . . .

∑k ̸=i βiβk 0 -2 0 -2 . . . 0

TABLE 3.7: Cross products of ∑
p
j ̸=i β j values under Design 3

i 1 2 3 4 . . . p

βi 1 -1 1 -1 . . . 1

∑
p
j ̸=i β j 0 2 0 2 . . . 0

(∑
p
j ̸=i β j)(∑

p
j ̸=1 β j) 0 0 0 . . . 0

(∑
p
j ̸=i β j)(∑

p
j ̸=2 β j) 0 0 4 . . . 0

(∑
p
j ̸=i β j)(∑

p
j ̸=3 β j) 0 0 0 . . . 0

(∑
p
j ̸=i β j)(∑

p
j ̸=4 β j) 0 4 0 . . . 0

...
...

...
...

...
...

...
(∑

p
j ̸=i β j)(∑

p
j ̸=p β j) 0 0 0 0 . . .

∑k ̸=i βiβk 0 4 × p−3
2 0 4 × p−3

2 . . . 0

So in this example, one can see that the sum of the βi cross products is negative and
small in value compared to the ∑

p
j ̸=i β j cross products which are positive and larger in

size. This explains why the results in Table 3.5 were promising for Partial Ridge but,
when considering the EPR expression in its entirety, Table 3.4 showed Partial Ridge
suffering, because the expression in 3.37 was positive and large in value compared to
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3.36 being negative reducing the EPR of Full Ridge from its sum of MSEs.

Therefore, it is clear to see that while Partial Ridge has some nice properties when
considering some individual parameters, its individualized nature means that when
considering whole sets of predictors, it is highly likely to be inferior to Full Ridge
when it comes to predictive accuracy. However, this does not mean that Partial Ridge
should be discarded completely but, instead, raises the possibility of combining the 2
estimation methods to reap both of their advantages.

3.3.5 Hybrid Estimation Procedure (HEP)

As discussed, Partial Ridge does extremely well at estimating coefficients that have a
true βi value large relative to the sum of all other coefficients, ∑

p
j ̸=i β j. Therefore,

intuitively, one might wish to estimate coefficients that are believed to have a high
value of βi

∑
p
j ̸=i β j

with Partial Ridge and use Full Ridge for the rest. To formally define

this hybrid approach, first let the coefficient matrix, X, be ordered such that the first s
columns from the left represent the covariates whose coefficients are to be estimated
via Partial Ridge with the remaining p − s columns representing covariates having
their coefficient estimated via Full Ridge. It is important to note that when estimating
the βi’s for these p − s covariates, Full Ridge is run on the entire predictor matrix and
not just the p − s variables described. This allows one to formalise the HEP as follows:

β̂Hy =



β̂1(λ1, S1)
...

β̂s(λs, Ss)

β̂s+1(λ
FR)

...
β̂p(λFR)


. (3.40)

So one can see that this is simply a mixture of the estimators defined in Proposition 3.2
meaning that much of the theoretical analysis before is relevant for this modified
estimator. How one chooses which coefficients to estimate with Partial Ridge and Full
Ridge is very important for the reasons discussed previously and there are multiple
approaches that can be utilised. Firstly, one could run an initial Lasso regression on
the full predictor set and using the model selection element to distinguish between
predictors that are likely to have relatively large slopes and ones that will have small
ones. Therefore, one possible rule could be to estimate all coefficients that are non-zero
under Lasso by Partial Ridge and the rest with Full Ridge. Alternatively, one could
use an initial stage where Full Ridge is applied to the data set and the estimated
coefficients are sorted in order of magnitude. From here, one can choose the largest
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w% of the coefficients and have these slopes estimated by Partial Ridge with the rest
Full Ridge. Here, w can be flexible and allow the use of a priori knowledge, for
example, if one believed that the original data set where sparse in nature then w
would be relatively small. More on this topic is discussed when constructing the
simulation experiment in Section 3.4 but a more formalised approach to this feature is
left to future work.

To understand the properties of this estimation approach, one can repeat the
procedure deriving the excess risk predictions shown in Proposition 3.4 to obtain a
similar expression for the HEP. This is formally defined in Proposition 3.5 below
followed with deeper analysis into the behaviour of the EPR under various DGP
conditions.

Proposition 3.5: The excess risk prediction for the HEP estimator is given by the
following expression:

EPR(β̂Hy) = θ1 + θ2 , (3.41)

where θ1 and θ2 are defined as follows.

θ1 =
s

∑
k=1

MSE(β̂k(λk, Sk))

+ ρ
[ s

∑
i=1,i ̸=k

Bias(β̂i(λi, Si))Bias(β̂k(λk, Sk)) + Cov
(

β̄i(λi, Si), β̄k(λk, Sk))
)

+
p

∑
i=s+1

Bias(β̂i(λ
FR))Bias(β̂k(λk, Sk)) + Cov

(
β̄i(λ

FR), β̄k(λk, Sk)
)]

, (3.42)

θ2 =

p

∑
k=s+1

MSE(β̂k(λ
FR))

+ ρ
[ s

∑
i=1

Bias(β̂i(λi, Si))Bias(β̂k(λ
FR)) + Cov

(
β̄i(λi, Si), β̄k(λ

FR))
)

+
p

∑
i=s+1,i ̸=k

Bias(β̂i(λ
FR))Bias(β̂k(λ

FR)) + Cov
(

β̄i(λ
FR), β̄k(λ

FR)
)]

. (3.43)

Once again, the β̄i values are the estimators themselves with their mean subtracted,
for example, β̄k(λ

FR) = β̂k(λ
FR)− E[β̂k(λ

FR)]. One can see that the MSEs of the
individual coefficients themselves are present again but this time there are bias cross
products and covariances of centred estimators combining Full and Partial Ridge. To
understand this expression further, one must combine 3.41-3.43 with the toy model
expressions from 3.20-3.25 as was done in section 3.3.3.
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Since, the individual coefficient MSEs have already been considered, the analysis here
focuses on the bias cross products and covariances with the square bracket
components of 3.42 and 3.43 investigated. These square bracket terms from 3.42 and
3.43 are defined as θ1(2) and θ2(2) respectively and can be written as follows:

θ1(2) =
s

∑
k=1

ρ
[ s

∑
i=1,i ̸=k

(ρλi ∑
p
j ̸=i β j)(ρλk ∑

p
j ̸=k β j) +

σ2
ϵ

n ρ(λiλk + (ρ − 1)(1 + (p − 1)ρ))

(1 + λi + (p − 2)ρ − (p − 1)ρ2)(1 + λk + (p − 2)ρ − (p − 1)ρ2)

+
p

∑
i=s+1

(ρλFR ∑
p
j ̸=i β j − βiλ

FR(1 + λFR + (p − 2)ρ))(ρλk ∑
p
j ̸=k β j)

(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)(1 + λk + (p − 2)ρ − (p − 1)ρ2)

+
σ2

ϵ
n ρ(λkλFR + (ρ − 1)(1 + (p − 1)ρ))

(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)(1 + λk + (p − 2)ρ − (p − 1)ρ2)

]
, (3.44)

θ2(2) =
p

∑
k=s+1

ρ
[ s

∑
i=1

(ρλi ∑
p
j ̸=i β j)(ρλFR ∑

p
j ̸=k β j − βkλFR(1 + λFR + (p − 2)ρ))

(1 + λi + (p − 2)ρ − (p − 1)ρ2)(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

+
σ2

ϵ
n ρ(λiλ

FR + (ρ − 1)(1 + (p − 1)ρ))
(1 + λi + (p − 2)ρ − (p − 1)ρ2)(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

+

p

∑
i=s+1

i ̸=k

(ρλFR ∑
p
j ̸=i β j − βiλ

FR(1 + λFR + (p − 2)ρ))(ρλFR ∑
p
j ̸=k β j − βkλFR(1 + λFR + (p − 2)ρ))

(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2

+
σ2

ϵ
n ρ(λ2

FR + (ρ − 1)(1 + (p − 1)ρ))
(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2

]
. (3.45)

From here one can conduct similar analysis to that of the previous section whereby
3.42 and 3.43 are expanded and arranged into powers of λFR and λk. The first line of
3.42 and the last 2 lines of 3.43 were studied before in 3.38 and 3.39 with the conclusion
that the magnitude of Full Ridge bias cross products is predominantly determined by
the individual βi values with Partial Ridge being more influenced by the ∑j ̸=i β j cross
products. This results in almost identical expressions to that of 3.38 and 3.39 only with
different summations, with the first expression below corresponding to the first line of
3.44 and the second expression representing the last 2 lines of 3.45,

s

∑
k=1

ρ
s

∑
i=1,i ̸=k

(
ρ2(∑

p
j ̸=i β j)(∑

p
j ̸=k β j) +

σ2
ϵ ρ
n

)
λiλk + O(1)

λiλk + O(λi) + O(λk)
, (3.46)

p

∑
k=s+1

ρ
p

∑
i=s+1,i ̸=k

(βiβk)λ
4
FR + O(λ3

FR)

λ4
FR + O(λ3

FR)
. (3.47)

This reveals a great degree of flexibility to the new HEP as 3.46 and 3.47 show that
each coefficient estimate will influence the EPR through either the βiβk or
(∑

p
j ̸=i β j)(∑

p
j ̸=k β j) cross products depending on whether they were estimated by Full

or Partial Ridge. Based on what was discussed previously, it can be argued that gains
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in the EPR for the HEP over Full Ridge alone can be found when carefully allocating
each coefficient estimate to Full Ridge when the sum of the βiβk cross products is
small or even a negative value with large magnitude. Likewise, coefficients that have
a small or large negative sum of the ∑s

j ̸=i β j cross products should be estimated with
Partial Ridge. To make this clearer, consider the β profiles of the designs from section
3.3.3 with the βis and their corresponding ∑

p
j ̸=i β j values detailed below.

Design 1 Design 2 Design 3
βi ∑

p
j ̸=i β j βi ∑

p
j ̸=i β j βi ∑

p
j ̸=i β j

1 -3 10 -10 1 0
-2 6 -1 1 -1 2
3 1 -1 1 1 0
-4 8 -1 1 -1 2
5 -1 -1 1 1 0

-6 10
...

... -1 2
7 -3 -1 1 1 0
0 4 0 0 -1 2
...

...
...

...
...

...
0 4 0 0 -1 2
0 4 0 0 1 0

Using what was mentioned before, one can look at the the β profile for each design
and pick variables to be estimated by Full and Partial Ridge in an attempt to provide a
lower EPR for the HEP than that of Full Ridge alone. Firstly, for Design 1, one can see
that for the third, fifth and seventh coefficients it is such that βi > ∑

p
j ̸=i β j which will

lead to the individual coefficients having lower MSEs under Partial Ridge that Full
Ridge. However, this will also be more beneficial for 3.46 than for 3.47 since it can be
shown that the sum of βi cross products for these 3 coefficients will be greater than the
sum of cross products for their corresponding ∑

p
j ̸=i β j values. In addition, for these βi

slopes the ∑
p
j ̸=i β j values are 1, -1 and -3 giving a mix of positive negative values

contributing to a low sum of cross products (equating to -1). The other coefficients see
the opposite where βi < ∑

p
j ̸=i β j meaning that not only will the sum of MSE(β̂i(λ

FR))

values be lower under Full Ridge but the expression in 3.46 will likely be greater than
that of 3.47 making Full Ridge more appropriate. Therefore, using the HEP under
Design 1, it would be most appropriate to use Partial Ridge for the third, fifth and
seventh coefficients and Full Ridge for the rest of them.

For Design 2, the decision process is more unclear as it is such that |βi| = |∑
p
j ̸=i β j|

meaning there is very little difference in the MSEs of the Full and Partial Ridge
estimates. In addition, when looking closer at what the sum of the βi and ∑

p
j ̸=i β j cross
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products, it is tricky to allocate coefficients to Partial and Full Ridge that will dominate
any other allocation through keeping the expressions in 3.46 and 3.47 as low as
possible.

Finally, for Design 3 the concept is similar to that of Design 1; βi > ∑
p
j ̸=i β j when

βi = 1 and βi < ∑
p
j ̸=i β j when βi = −1. Therefore, from and individual MSE

perspective it would make sense to use Partial Ridge to estimate coefficients where
βi = 1 and Full Ridge when βi = −1. This also works well for expression 3.39 where
all ∑

p
j ̸=i β j cross products will be 0 for the coefficients estimated by Partial Ridge.

To test this more decisively, the experiment run at the end of the previous subsection is
repeated over Full Ridge and HEP. The DGP is exactly the same for each design with
σ2

ϵ = 10, n = 100 and p and ρ varied over the same set of values for each of the 3
designs. Once again, for Full Ridge, the optimal λFR is obtained by running the sum of
individual coefficient MSEs over a grid a choosing the λFR that provides the lowest
value. Also, for Partial Ridge, when estimating a single βi value, the optimal penalty
parameter is obtained by running the individual MSE(β̂i(λi)) over a grid of λi and
choosing the one that provides the lowest MSE. Since the HEP estimator is simply a
combination of Full and Partial Ridge estimates, this covers how all the penalty
parameters are obtained for the new estimation procedure. Finally, as discussed
previously, for Design 1, the third, fifth and seventh coefficients are estimated by
Partial Ridge with rest by Full Ridge. For Design 2 all coefficients that have a non-zero
true coefficient are estimated with Partial Ridge and the rest Full Ridge. In Design 3 all
βi = 1 are estimated with Partial Ridge and all βi = −1 are estimated with Full Ridge.
The tables below shows the EPR values as well as the sum of individual coefficient
MSEs of Full Ridge and the HEP for each experiment.

TABLE 3.8: EPR for Full Ridge and the HEP across each of the designs

p=100 p=200

Design 1 ρ = 0.1 ρ = 0.4 ρ = 0.7 ρ = 0.1 ρ = 0.4 ρ = 0.7

Full Ridge 9.277 8.955 8.110 17.284 16.187 13.600
HEP 8.723 8.273 7.418 15.284 13.717 11.195

Design 2

Full Ridge 9.098 8.708 7.715 16.668 15.390 12.514
HEP 8.570 8.614 10.523 14.353 13.111 12.776

Design 3 (p+1)

Full Ridge 9.107 8.683 7.618 18.108 17.255 15.119
HEP 14.435 57.088 206.339 36.727 175.634 707.526
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TABLE 3.9: Sum of individual MSEs for Full Ridge and the HEP across each of the
designs, that is ∑s

k=1 MSE(β̂k(λk)) + ∑
p
k=s+1 MSE(β̂k(λ

FR))

p=100 p=200

Design 1 ρ = 0.1 ρ = 0.4 ρ = 0.7 ρ = 0.1 ρ = 0.4 ρ = 0.7

Full Ridge 10.207 14.761 26.701 19.099 26.814 45.003
HEP 9.556 13.384 22.209 16.745 22.160 31.910

Design 2

Full Ridge 10.009 14.350 25.386 18.415 25.4845 41.381
HEP 9.259 12.733 20.274 15.677 20.179 27.391

Design 3 (p+1)

Full Ridge 10.019 14.308 25.063 20.015 28.593 50.063
HEP 10.073 12.332 17.930 20.094 25.057 37.137

Firstly, under Design 1 the Hybrid model dominates Full Ridge for all experiments as
expected. This is due to the combination of running Partial Ridge on the coefficients
where βi > ∑

p
j ̸=i β j to obtain the optimal individual coefficient MSEs. This along with

the mixture of signs in the βis and ∑
p
j ̸=i β j values varying allowed the cross products

signs to be negative in many cases. This contributed to expressions 3.44 and 3.45 being
negative to reduce the EPR from the sum of individual coefficient MSEs as seen by
looking at the entries in Table 3.9 corresponding to those of Table 3.8 for Design 1.

For Design 2, the best approach is more unclear, Table 3.8 shows that the HEP does
well when the correlation is low and the the sparsity increases (p increasing since the
additional variables have true coefficients of 0). While under higher correlation Full
Ridge has a lower EPR, Table 3.9 shows that the sum of individual MSEs is lower for
the HEP in all experiments. This can be explained by looking closer at expressions 3.46
and 3.47 along with the β profile for Design 2. Since it was decided that the 11 active
predictors would be estimated by Partial Ridge, consider the main component of 3.46
below,

11

∑
k=1

ρ
11

∑
i=1,i ̸=k

ρ2(
p

∑
j ̸=i

β j)(
p

∑
j ̸=k

β j)λ
∗
i λ∗

k = −55ρ3λ̄ , (3.48)

where, here it is such that λiλk is equal to some arbitrary constant (λ̄) across all i and k
for simplicity. Now consider the Full Ridge component of the HEP given in 3.47 with
the main influential part given by the following:

p

∑
k=12

ρ
p

∑
i=12,i ̸=k

(βiβk)λ
4
FR . (3.49)

Since all βi = 0 for i = 12, . . . , p it is such that the above expression (as well as 3.47 will
be equal to 0 under this design, therefore, for comparison purposes, the first
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expression equating to −55ρ3λ̄ is most relevant here.

To compare this to the corresponding component of the Full Ridge EPR consider the
main component of 3.38 detailed below,

p

∑
k=1

ρ
p

∑
i=1,i ̸=k

(βiβk)λ
4
FR = −55ρλ4

FR . (3.50)

This is easily comparable to the HEP equivalent expression of −55ρ3λ̄ with the main
difference lying in the power of ρ. This reveals how the correlation plays a key role in
helping Full Ridge to dominate the HEP under higher correlation. Firstly, for ρ > 0
expressions 3.48 and 3.50 will always be negative explaining why the EPR values in
Table 3.8 are smaller than the sum of MSEs in Table 3.9. When the correlation is small
then expressions 3.48 and 3.50 are also small as a result making them less influential
on the EPR as a whole which explains why the HEP dominates from having a lower
sum of individual coefficient MSEs. However, as the correlation increases, the fact that
ρ3 < ρ for 0 < ρ < 1 means that the Full Ridge estimator EPR component in 3.50 will
be a larger negative than that of 3.48. In more simple terms it is such that
−55ρ < −55ρ3 making 3.50 have greater relative power in keeping the EPR low in
relation to the individual coefficient MSE sum. Therefore, while the HEP has desirable
features one must be careful in certain situations where Full Ridge can use the high
level of correlatedness to its advantage.

Finally, for Design 3 the results are surprising as despite the HEP dominating when
concerned with the individual coefficient MSEs, the EPR suffers greatly compared to
Full Ridge for all experiments with this worsened as ρ and p increase. As was the case
with the previous 2 designs, one needs to look closer at the other components of the
EPR starting with the Full Ridge estimator where 3.36 and 3.38 represent the
secondary component of the EPR. Where one is running Full Ridge on all coefficients,
the main component of 3.38 under Design 3 can be shown to be equal to the following
since out of p coefficients, p+1

2 are equal to 1 and p−1
2 are equal to -1,

p

∑
k=1

ρ
p

∑
i=1,i ̸=k

(βiβk)λ
4
FR = − p − 1

2
ρλ4

FR . (3.51)
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For the HEP, one is concerned with the summation of expressions 3.38 and 3.39 given
as follows:

s

∑
k=1

ρ
s

∑
i=1,i ̸=k

(
ρ2(∑

p
j ̸=i β j)(∑

p
j ̸=k β j) +

σ2
ϵ ρ
n

)
λiλk + O(1)

λiλk + O(λi) + O(λk)

+

p

∑
k=s+1

ρ
p

∑
i=s+1,i ̸=k

(βiβk)λ
4
FR + O(λ3

FR)

λ4
FR + O(λ3

FR)
. (3.52)

The main components of this above expression are given by the following:

s

∑
k=1

ρ
s

∑
i=1,i ̸=k

(
ρ2(

p

∑
j ̸=i

β j)(
p

∑
j ̸=k

β j)
)
λiλk +

p

∑
k=s+1

ρ
p

∑
i=s+1,i ̸=k

(βiβk)λ
4
FR . (3.53)

Using the Table below 3.47 showing the β profile of Design 3 and the fact that Partial
Ridge is run on all coefficients that have a true value of 1, one can see that the first part
of 3.53 is equal to 0 since all ∑

p
j ̸=i β j = 0 for βi = 1. Now using that βi = −1 for all

i = s + 1, . . . , p, where p being an odd number means that s = p+1
2 , the second part of

the expression can be evaluated to (p−1)(p−3)
8 ρλ4

FR. This leads to expression 3.53 being
evaluated as follows:

s

∑
k=1

ρ
s

∑
i=1,i ̸=k

(
ρ2(

p

∑
j ̸=i

β j)(
p

∑
j ̸=k

β j)
)

λiλk +

p

∑
k=s+1

ρ
p

∑
i=s+1,i ̸=k

(βiβk)λ
4
FR =

(p − 1)(p − 3)
8

ρλ4
FR .

(3.54)
By comparing 3.54 with 3.51 it can be seen why, under Design 3, Full Ridge dominates
the HEP despite the latter providing lower individual coefficient MSEs. Since ρ > 0
the expression in 3.51 will always be negative and grow in magnitude as p and ρ

increase. On the other hand, for the HEP, 3.54 will always be positive for ρ > 0 and
p > 3 and will grow in size as both p and ρ increase. Going further, the magnitude of
3.54 will increase at a faster rate than that of 3.51 as p increases which explains how
the relative performance of the HEP deteriorates as p and ρ increase. Therefore, it is
clear that caution must be exercised when implementing the HEP and one must not
only consider the relative magnitude of βi to ∑j ̸=i β j, but also the signs of the βi and

∑j ̸=i β j cross products. Where there is a mixture of signs of the βi values then their
cross products will often be negative meaning that Full Ridge alone will do well but
when the ∑j ̸=i β j values vary in sign then Partial Ridge has the potential to bring
predictive gains when combined with Full Ridge in a HEP setting.

This section has provided a thorough investigation into the situations required for
Partial Ridge to be used in a Hybrid approach setting as a means of outperforming
Full Ridge alone when concerned with predictive risk. While one can likely think of
more scenarios where the βi cross products have more negative values compared to



74
Chapter 3. A Ridge Regression Modification for Handling High Dimensional

Economic Data

that of the ∑j ̸=i β j counterparts, there are still many situations where there is a strong
case for employing the Partial Ridge method. For example, when concerned with
demand functions one might choose to include a mixture of complementary and
substitute good variables as candidate predictors resulting in it being such that

∑
p
j=1 β j ≈ 0. This would cause a mixture in sign of the ∑

p
j ̸=i β j values and give

opportunity for the Partial Ridge approach to provide gains as demonstrated in
Design 1. In the next section, a Monte Carlo Simulation experiment is run which tests
the HEP against Full Ridge in a more pragmatic setting since consideration is given to
the fact that the analyst will not know the true βi values. Therefore, one will need to
use a realistic means of determining which variables to estimate with Partial Ridge
and Full Ridge.

3.4 Monte Carlo Simulation Study

3.4.1 Design

In this section a simulation experiment is run replicating a scenario where an analyst if
faced with a high dimensional data set and wishes to forecast 1 step ahead with the
largest degree of accuracy possible. The data-generating-process is detailed as follows
with the basic linear model below forming the base of the design,

y = Xβ + ϵ , (3.55)

where y is the n × 1 vector of the dependent variable and X is the n × p predictor
matrix defined as a multivariate normal random variable with 0 mean and unit
variance as follows:

X ∼ N(0, ΣX) , (3.56)

ΣX =



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1


.

The β component of 3.55 is a p × 1 vector of coefficient determined in a way similar to
that of Design 1 from the previous section. The individual components of β are
determined as follows for i = 1, . . . , p and let s represent the degree of sparsity where
the number of non-zero coefficients is equal to s × p for s ∈ (0, 1),

βi =


(−1)i+1i

50 for i ≤ sp

0 otherwise
. (3.57)
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Therefore, one can see that there is a varying degree of both sign and magnitude in the
coefficients which proved to be beneficial for Partial Ridge and the HEP in the
previous section. However , unlike the experiment prior to this, the degree of sparsity,
s, is now varied across experiments in order to add another perspective for
comparison purposes. Finally, the ϵ component of 3.55 is simulated by an IID normal
random variable with mean 0 and variance equal to σ2

ϵ . The σ2
ϵ is determined in a way

that maintains the Signal-to-noise ratio of the DGP at a value equal 10 using the
following definition of SNR:

SNR =
β′ΣX β

σ2
ϵ

. (3.58)

Since this is an out-of-sample forecasting experiment, a total of 120 observations are
simulated for y and each regressor with the coefficient estimation occurring using
only the first 100 observations. Therefore, for each data set, each approach constructs
20 forecasts using the relevant row of the X matrix but with the coefficients estimated
using only the first 100 observations to create 20 single forecasts, ŷ100+k = x100+k β̂.
where x100+k is the (100+k)th row of of X for k = 1, . . . , 20. For example, once the
coefficients have been estimated the first forecast to be constructed is for the 101th
observation of the y vector, ŷ101 = x101 β̂. To assess the accuracy of the competing
estimation procedures, the mean-squared-forecasting error (MSFE) is used for to
evaluate all 20 forecasts for each data set and is defined as follows:

MSFE =
20

∑
i=1

(y100+i − ŷ100+i)
2 . (3.59)

This MSFE is computed for each approach in each simulated data set with the lowest
value representing the estimation procedure that has has provided the most accurate
forecasts across the out-of-sample period.

To formalise this study further, multiple experiments are run with a varied dimension
(p), degree of sparsity (s) and predictor correlation (ρ). With the in-sample estimation
period fixed at 100 observations, p is varied over (100,150,200) creating scenarios
where OLS is not feasible and, hence, establishes a high dimensional nature. The level
of predictor correlation ranges over ρ ∈ (0.2, 0.5, 0.8) since it was seen in the previous
section how this can influence the relative predictive performance of Full Ridge and
the HEP. Finally, the level of sparsity in the true DGP takes 3 forms with
s ∈ (0.2, 0.5, 0.7) to replicate a sparse, middle-ground and a dense setting in order to
add greater coverage to the conclusions of this experiment with regards to empirical
applications that these motions might be faced with.

Finally, the models compared here include not only Full Ridge and HEP but also the
Lasso of Tibshirani (1996) along with the OLS-post-Lasso approach, whereby one uses
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the Lasso for model selection the run OLS on the variables that did not have their
coefficient estimate set to 0 by Lasso. This adds wider perspective to the HEP as
typically Ridge does well in dense settings with high correlation amongst the
predictors while Lasso and other forms of model selection succeed in more sparse
environments, therefore, comparing the HEP with these 3 models allows one to see
the merits of this new approach in the bigger picture. When estimating the coefficients
from the in-sample data, both Full Ridge and Lasso have their penalty parameter
determined using 10-fold cross validation with these Lasso coefficients being used to
decide which variables are included in a simplified OLS model as part of the
OLS-post-Lasso approach. Since OLS is only feasible when n > p, in the case where
Lasso results in more than n coefficients having a non-zero coefficient, the first n − 1
columns of the predictor matrix being used as predictors to run OLS on. In the case
where Lasso allocates all coefficients a value of 0 then the resulting forecast is 0 as well.

For the HEP, one must first determine which variables are to be estimated using
Partial Ridge and Full Ridge. In this study, it is such that the Full Ridge coefficients are
arranged by their magnitude in descending order with the variables corresponding to
the largest g coefficients being estimated with Partial Ridge with the rest being
allocated their equivalent estimate from the Full Ridge model. Here, g is a grid of
(1, 2, 3, 4, 5, 10) meaning that there are 6 different HEP coefficient vectors. For each
case of g, the coefficients estimated with Partial Ridge each require an individual
penalty parameter in order to estimate the given βi, however, for simplicity, here these
penalty parameters are set as being equal for all g of the coefficients being estimated
with Partial Ridge. To determine this universal λPR, a grid of the penalty parameters
is created and then an in-sample MSE estimate for the HEP created using the resulting
Partial Ridge coefficient estimates (along with the Full Ridge ones) defined as
MSE = ∑100

i=1(y − xi β̂Hy)
2. The λPR chosen is the one that minimises this in-sample

MSE with the coefficients then estimated and an out-of-sample forecast being
computed in the usual way. The grid of λPR varies depending on p; for p = 100 the
grid ranges from 1 to 2000, 1 to 6000 for p = 150 and 1 to 10000 for p = 200.

3.4.2 Results

As mentioned previously, for each of the 100 data sets, and each method run, an MSFE
is computed with the tables below reporting the average of the MSFEs across the 100
simulated data set scenarios. Once again, it is important to mention that the average of
the Hybrid MSFEs is the average of the 100 lowest MSFEs taken from the 6 approaches
used on each data set, with each approach corresponding to a given element of the g
grid for every given data set.
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TABLE 3.10: MSFE values (×10−2) for experiments when p=100

s=0.2 s=0.5 s=0.7

ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

FR 0.0779 0.0465 0.0186 1.0530 0.7059 0.2934 3.0395 1.8877 0.8640
Hy 0.0726 0.0428 0.0162 1.0011 0.6595 0.2795 2.9087 1.8214 0.8297
Las 0.0375 0.0229 0.0102 0.9983 0.6287 0.2600 3.4105 2.0894 0.9044
OPL 0.0443 0.0271 0.0124 1.1309 0.7250 0.3116 4.2262 2.4869 1.1016

TABLE 3.11: MSFE values (×10−2) for experiments when p=150

s=0.2 s=0.5 s=0.7

ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

FR 0.3591 0.2246 0.0880 5.4826 3.2991 1.4382 14.968 9.2192 4.2394
Hy 0.3249 0.2041 0.0778 5.3156 3.1884 1.3337 14.563 8.8675 4.1518
Las 0.1847 0.1210 0.0489 6.2732 3.8470 1.6345 20.167 12.112 5.1644
OPL 0.2201 0.1496 0.0573 7.9390 4.3448 1.9374 36.681 20.130 6.3099

TABLE 3.12: MSFE values (×10−2) for experiments when p=200

s=0.2 s=0.5 s=0.7

ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

FR 0.9835 0.6119 0.2537 14.905 9.3472 3.8176 42.485 27.033 11.248
Hy 0.9124 0.5882 0.2308 14.458 9.3359 3.6391 43.026 26.429 11.190
Las 0.7228 0.4447 0.1890 18.821 11.729 4.9654 57.425 35.546 14.155
OPL 0.9434 0.5292 0.2130 178.58 96.731 40.640 73.425 72.418 46.156

The general pattern that can be seen here is that the l2 norm methods (Full Ridge and
Hybrid) perform stronger in more dense environments (s = 0.7) While the l1 norm
methods (Lasso and OLS-post-Lasso) perform stronger in more sparse environments
(s = 0.2) irrespective of p and ρ. Focusing on the more dense beta profile settings, it
can be seen that the Hybrid approach nearly always dominates, although the relative
margin is somewhat reduced once p reaches 200. Over s = 0.5 and s = 0.7 the
percentage gains in MSFE for the Hybrid approach over Full Ridge vary from 3.5% to
7% for p = 100, 2.1% to 7.3% for p = 150 and −1.3% to 4.7% for p = 200. Therefore,
the gains appear to diminish as p increases but are still significant given how similar
the Hybrid approach is to Full Ridge in terms of the parameter estimates used to
compute forecasts. One could even argue that bigger improvements are possible with
the use of a more effective algorithmic procedure for determining the individual
penalty parameters for the Partial Ridge coefficients given the simplicity of the
method used in this study.
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While these experiments have covered a large variety of DGP conditions which a
forecaster might be faced with, there are still many common data set features, such as
non-stationarity and mixed scaling amongst the predictors, which are not covered
here. Therefore, the next section compares the methods in an empirical application to
add further scrutiny to the Hybrid approach.

3.5 Empirical Application

3.5.1 Data

Building more on the analysis of the previous sections, an application to predicting
with real-world data is carried out. Specifically, a data set concerning prices and
construction costs of residential apartments in Tehran, Iran, completed between the
year 73 Q2 and 90 Q3 of the Persian calendar are taken from the Machine Learning
repository of Dua and Graff (2019). The data set includes a total of 103 predictors
including 8 project physical and financial variables (although one concerning project
locality is dropped) as well as 19 economic variables, each with 5 lags. Finally, there
are 2 dependent variables including the price the apartment is sold for and the total
construction cost, both in Iranian Rial. With 372 observations for each property, the
sample is split into training and testing data with the training data used to estimate
the parameters of the appropriate methods which are then used to generate
predictions of the testing data dependent variables with the testing data predictor
values. The observations are ordered by the time of completion with the property
completed first acting as the first observation and the property completed last acting
as the final observation. However, as this is only recorded to the nearest quarter of a
given year, many properties are essentially completed at the same time meaning that
one has to be cautious when splitting the training and testing data sample to avoid
having 2 properties completed at the same time in 2 separate samples.

3.5.2 Prediction Experiment Design

To assess the Hybrid’s predictive accuracy, the ordered data set is split into 2 parts
with the first being used as the training data which allows the coefficients of the
Hybrid approach and its competitors to be estimated. These coefficients are then used
on the testing data predictor to obtain predictions, in the linear model form of
ŷtest = Xtest β̂, of either the selling price or construction cost of the property. The
models compared to the Hybrid approach are, of course, Ridge Regression, along with
the Lasso and OLS-post-Lasso procedure where, like in the previous section, the
penalty parameter is determined using 10-fold cross validation. However, the
parameters of the Hybrid approach estimated by Partial Ridge are determined in a
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similar way to that which was used in the simulation study of the previous section
whereby a grid of penalty parameters is created ranging from 0.1 to 2000 with varying
increments. For each value of this grid, the in-sample prediction MSE is computed by
estimating all Partial Ridge variables with the same given penalty parameter from the
grid and the λ providing the lowest MSE is used to construct the coefficient vector for
computing the predictions of the testing data.

For the Hybrid approach, a variety of approaches are used to rank covariates by their
believed influence on y and, therefore, determine which coefficients are estimated by
Partial Ridge and which are by Full Ridge. One is using the absolute value of the Lasso
coefficients, for example, when choosing to estimate 10 coefficients by Partial Ridge,
the variables that have their Lasso β̂ training sample estimate in the top 10 when
ranked by absolute value magnitude will be estimated by Partial Ridge. Secondly, the
absolute value of the Full Ridge β̂ values is also used in an identical fashion to that of
the Lasso approach just discussed. Finally, variables are ranked by the magnitude of
the absolute value of their training sample correlation with the dependent variable.
Figure 3.1 below shows the correlation coefficient of each predictor with the given
dependent variable ordered from the largest positive on the left through to the largest
negative on the far right. Although this is for the entire data set, and not just the
training data periods, it shows that many of the variables co-move with price and cost
significantly and, therefore, should almost certainly be estimated by Partial Ridge in
the Hybrid approach due to their likely large coefficient in the true DGP.

FIGURE 3.1: Ordered correlation of each predictor with price (left) and cost (right)

For robustness, multiple splits of the entire data set for the training and testing data
sample are used with consideration given to how many groups of properties within
the 372 observations have their completion date at the same time. Therefore, the
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points of where the data set is split occur at the end of certain years of the Persian
calendar and are detailed in the table below. It is seen from this that the splits result in
larger means of the dependent variable for the testing data than the training data
which leads on to another point about the standardization of variables. For all 4
methods used in this study, the estimation of the coefficients is carried out using the
predictors and dependent variable after they have been standardized to have 0 mean
and unit variance. However, when using the estimated slopes to construct predictions
using the test data, one is required to compute values on the same scale as that of the
non-standardized raw data set in the way detailed in section 25.12 of Stan User’s
guide (Stan 2011). Although it is assumed that the analyst would not know the mean
and standard deviation of the testing data dependent variable, here, it is assumed that
they know these quantities in order to compute non-standardized predictions more
effectively as Table 3.13 and Figure 3.2 show a significant shift in these statistics from
the training sample to the testing one. This is not a completely unrealistic assumption
as forecasting average house prices as well as their volatility for a certain period is
common so it is intuitive for one to compute predictions based off predicted mean
prices and costs rather than that of the data available at a given time.

TABLE 3.13: Training and testing sample split summary data

Year of the Persian Calendar 79 80 81 82 83

Observation number of final
property completed

84 107 129 162 184

p
n split for training data 1.21 0.95 0.79 0.63 0.55

mean price training data 419.11 513.69 578.64 676.76 733.99
mean price testing data 1669.86 1740.23 1806.79 1935.67 2026.97

mean cost training data 79.23 85.65 96.32 109.78 117.53
mean cost testing data 277.40 292.00 305.02 327.43 345.32
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FIGURE 3.2: Property selling price (left) and construction (right) across the entire data
set period where the vertical grey lines represent that training and testing data split

points

3.5.3 Results and Discussion

To compare predictive performance of these methods for each split of the data set, the
predicted values of the testing data dependent variable values are compared to that of
the true ones through the Mean-Squared-Prediction-Error (MSPE) as well as the
out-of-sample R squared value defined respectively as follows where o is the number
of the observation from the original data set used as the last observation of the
training data,

MSPE =
1

372 − o

372

∑
i=o+1

(yi − ŷi)
2 , (3.60)

R2 = 1 − ∑372
i=o+1(yi − ŷi)

2

∑372
i=o+1(yi − ŷbcm

i )2
, (3.61)

where yi represent the true values of the dependent variable, ŷi are the predicted
values by the given model and ŷbcm

i represent the predictions from the benchmark
model, which here is simply the mean of testing data dependent variable values (once
again, this is assumed to be known). The MSPE is a standard measure for
comparability amongst the models and the out-of-sample R squared adds context to
the accuracy of each model as MSPE is subject to the scale of house prices and
construction costs as raw variables. The tables below report the MSPE for each
approach under each split of the original data set with the R squared values reported
in the Appendix. The Hybrid approach is estimated 30 times under each of the 3
ranking criteria discussed above, for example, when using the ranked Ridge
coefficient estimates to determine which coefficients to estimate with Partial Ridge,
first one considers only estimating the variable with the largest Ridge β̂ with Partial,
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then the top 2, all the way up until the top 30. Finally, the numbers in brackets
represent the number of predictors included for OLS-post-Lasso and the optimal
number of predictors estimated with Partial Ridge for the Hybrid approach.

TABLE 3.14: MSPEs (×10−2) for house price prediction

Sample split (no. of observations in training data)
84 107 129 162 184

Full Ridge 1075 1088 965 1091 1373
Lasso 832 830 891 980 1096

OLS-post-Lasso 816 (11) 849 (11) 882 (15) 998 (21) 1075 (12)

Hybrid (using correlation) 724 (26) 796 (3) 762 (26) 1091 (1) 1132 (24)
Hybrid (using Lasso β̂s) 971 (14) 992 (14) 777 (14) 903 (30) 1202 (26)
Hybrid (using Ridge β̂s) 1218 (16) 890 (22) 778 (25) 943 (12) 1081 (17)

TABLE 3.15: MSPEs for construction cost prediction

Sample split (no. of observations in training data)
84 107 129 162 184

Full Ridge 3383 3804 5844 7935 6955
Lasso 10141 5685 2261 2023 2199

OLS-post-Lasso 5659 (3) 4324 (4) 22110 (7) 2057 (14) 3466 (24)

Hybrid (using correlation) 6788 (1) 7796 (1) 6148 (1) 8155 (5) 5260 (18)
Hybrid (using Lasso β̂s) 6047 (9) 7796 (1) 6120 (1) 7402 (5) 6337 (8)
Hybrid (using Ridge β̂s) 6788 (1) 7796 (1) 4193 (20) 7111 (20) 5870 (21)

As can be seen above, the Hybrid approach is very successful in terms of relative
prediction accuracy for the price of apartments with at least one of them dominating
all other methods for each case, with the exception of the sample being split after the
184th observation where OLS-post-Lasso is better by a small margin. The appendix
tables also show very high R squared values for all methods indicating that all models
here make a respectable attempt at prediction and the Hybrid approach
outperforming its competitors is even more significant. Although, it is interesting to
see how there is no consistency in which method of selection for coefficients to be
estimated with Partial Ridge is best, and sometimes this determines the Hybrid’s
success compared to its competitors, the main point is that the Hybrid approach has
the means in a realistic way to improve upon well established methods of prediction.

For construction cost prediction, the results are less promising but there is likely
reasonable justification for this. Firstly, it is seen that for for the 3 columns from the
right the Hybrid approach can outperform Full Ridge but falls significantly short of
the Lasso and OLS-post-Lasso. This is quite a common occurrence as much of the
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literature describes Lasso as having greater potential in settings that are either sparse
or inactive predictors have limited relation to active ones as discussed in Zhao and Yu
(2006). One might suspect this in this setting where the majority of the predictors are
economics variables and their lags which will likely heavily influence the property
market through price. whereas for the cost of building properties, one would expect
this to be more influenced by the project physical variables, which there are fewer of.
For the first 2 sample splits (after the 84th and 107th observation), the results are
somewhat more dubious as here Full Ridge dominates with the Hybrid approach, as
well as the Lasso based methods, performing significantly inferior. While looking
closer at the ranking methods (to determine which coefficients to estimate with Partial
Ridge), it is difficult to spot and any issues with choosing the wrong variables to
estimate with Partial Ridge compared to the cases where the training set is larger.
Therefore, one can put this down to the very nature of the small training set compared
to the testing set making performance unpredictable, especially how Figure 3.2 shows
significantly greater variance on the right side of the graph. While the cost prediction
appears to be disheartening for the Hybrid approach, it can be viewed as an important
reminder that; firstly, l2 penalisation struggles against the Lasso in certain situations
and, secondly, that the nuisance parameters of the Hybrid approach become amplified
when faced with a very small training sample relative to that of the testing one.

3.6 Discussion

This paper has compared the Partial Ridge and Hybrid approach to the ordinary
Ridge Regression of Hoerl and Kennard (1970) through detailed theoretical analysis of
the individual coefficient estimates as well as the overall prediction of the dependent
variable, Xβ̂. In addition, it has used a simulation experiment and an empirical
application including other well-established models to compete with in order to justify
its use as an alternative to Ridge when the bias-variance tradeoff is unfavourable.
While, theoretically, there are situations where the Hybrid approach has the potential
to outperform Ridge in terms of prediction accuracy, when faced with a data set alone,
there are extra layers of contamination such as choosing which coefficients to estimate
with Partial Ridge as well as the penalty parameter to use in each case. However, the
simulations and application to Iranian residential property data show that the restraint
of this does not prevent the Hybrid approach from outperforming its profound
competitors. Therefore, there is potential for one wishing to forecast variables, in
settings where they suspect the true coefficients vary greatly in sign and magnitude, to
benefit from the adoption of the Hybrid approach as opposed to Ridge or Lasso alone.

Further research that would provide further support for this method include attempts
to understand the sensitivity of parameter estimates to λ and ρ. Such an approach
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could be based upon the work of Banerjee et al. (1999) where the GLS estimator
sensitivity to covariance matrix misspecification was measured with the use of a novel
test statistic. This is particularly relevant to high dimensional economic data sets
where autoregressive processes are common and are key contributor to error
covariance matrix misspecification. In addition, work analysing the asymptotic
bias-variance behaviour with respect to the choice of variables estimated by PR in the
HEP would support further establishment of this novel approach.
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3.A Appendix

3.A.1 Derivation of MSE in Proposition 3.1

For Full Ridge the MSE can be computed by considering the bias and variance
separately. As shown in Section 3.2, the Full Ridge estimator is given by the following
expression:

β̂i(λ
FR) =

x∗
′

i y
x∗′i xi + nλFR

,

where x∗i = xi − X−i

(
X′
−iX−i

n + λFR Ip−1

)−1 X′
−ixi
n . Plugging 3.11 into the above gives

the following:

β̂i(λ
FR) =

x∗
′

i xiβi + x∗
′

i X−iβ−i + x∗
′

i ϵ

x∗′i xi + nλFR
.

Using the fact that E[ϵ] = 0, the bias can be formulated as follows:

Bias(β̂i(λ
FR)) = E[β̂i(λ

FR)]− βi =
x∗

′
i xiβi + x∗

′
i X−iβ−i

x∗′i xi + nλFR
− βi ,

Bias(β̂i(λ
FR)) =

x∗
′

i X−iβ−i − nλFRβi

x∗′i xi + nλFR
.

Various components of the above can be evaluated using the SVD of X−i√
n described in

Section 3.2. Consider the following:

x∗i√
n
=

xi√
n
− X−i√

n

(
X′
−iX−i

n
+ λFR Ip−1

)−1 X′
−ixi

n
.

Since X′
−iX−i

n = VSU′USV ′ = VS2V ′, it is such that

x∗i√
n
=

xi√
n
− USV ′(VS2V ′ + λFRVV ′)−1VSU′ xi√

n
,

x∗i√
n
=

xi√
n
− USV ′(V(S2 + λFR Ip−1)V ′)−1VSU′ xi√

n
,

x∗i√
n
=

xi√
n
− USV ′(V ′)−1(S2 + λFR Ip−1)

−1V−1VSU′ xi√
n

,

x∗i√
n
=

xi√
n
− US(S2 + λFR Ip−1)

−1SU′ xi√
n

,

x∗i√
n
=

xi√
n
− US2(S2 + λFR Ip−1)

−1U′ xi√
n

.
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Now consider x∗
′

i xi
n ,

x∗
′

i xi

n
=

x′ixi

n
−

x′i√
n

US2(S2 + λFR Ip−1)
−1U′ xi√

n
.

Now let x̃i =
U′xi√

n and use the fact that x′ixi = n,

x∗
′

i xi

n
= 1 − x̃′iS

2(S2 + λFR Ip−1)
−1 x̃i .

Now consider the following component of the Full Ridge bias expression,

x∗
′

i X−iβ−i

n
=
( x′i√

n
−

x′i√
n

US2(S2 + λFR Ip−1)
−1U′

)X−iβ−i√
n

,

x∗
′

i X−iβ−i

n
=

x′iUSV ′β−i√
n

−
x′i√

n
US2(S2 + λFR Ip−1)

−1U′USV ′β−i .

Now use the fact that x̃i =
U′xi√

n as well as let β∗
−i = V ′β−i,

x∗
′

i X−iβ−i

n
= x̃′iSβ∗

−i − x̃′iS
2(S2 + λFR Ip−1)

−1Sβ∗
−i ,

x∗
′

i X−iβ−i

n
= x̃′iS

(
Ip−1 − S2(S2 + λFR Ip−1)

−1)β∗
−i ,

x∗
′

i X−iβ−i

n
= λFR x̃′iS(S

2 + λFR Ip−1)
−1β∗

−i .

Therefore, the bias of the Full Ridge estimator can be given by the following
expression:

Bias(β̂i(λ
FR)) =

λFR x̃′iS(S
2 + λFR Ip−1)

−1β∗
−i − λFRβi

1 − x̃′iS
2(S2 + λFR Ip−1)−1 x̃i + λFR .

For the variance it is such that

Var(β̂i(λ
FR)) = E

[(
β̂i(λ

FR)− E[β̂i(λ
FR)]

)2
]

,

Var(β̂i(λ
FR)) = E

[ x∗
′

i ϵϵ′x∗i
(x∗′i xi + nλFR)2

]
= σ2

ϵ

x∗
′

i x∗i
(x∗′i xi + nλFR)2

.

Now x∗
′

i x∗i
n is computed as follows,

x∗
′

i x∗i
n

=

(
xi√

n
− US2(S2 + λFR Ip−1)

−1U′ xi√
n

)′ ( xi√
n
− US2(S2 + λFR Ip−1)

−1U′ xi√
n

)
,



3.A. Appendix 87

x∗
′

i x∗i
n

=
x′ixi

n
−

x′i√
n

US2(S2 + λFR)−1U′ xi√
n
−

x′i√
n

US2(S2 + λFR)−1U′ xi√
n

+
x′i√

n
US2(S2 + λFR)−1U′US2(S2 + λFR Ip−1)

−1U′ xi√
n

.

Now use the fact that x̃i =
U′xi√

n to obtain the following:

x∗
′

i x∗i
n

= 1 − 2x̃′iS
2(S2 + λFR)−1 x̃i + x̃′iS

4(S2 + λFR)−2 x̃i ,

x∗
′

i x∗i
n

= 1 − x̃′iS
2
(

2(S2 + λFR)−1 − S2(S2 + λFR)−2
)

x̃i ,

x∗
′

i x∗i
n

= 1 − x̃′iS
2(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)

−2 x̃i .

Now plug the relevant expressions into the following:

Var(β̂i(λ
FR)) = σ2

ϵ

x∗
′

i x∗i
(x∗′i xi + nλFR)2

= σ2
ϵ

x∗
′

i x∗i
n

n( x∗′i xi
n + λFR)2

,

Var(β̂i(λ
FR)) =

σ2
ϵ

n
1 − x̃′iS

2(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)
−2 x̃i

(1 − x̃′iS
2(S2 + λFR Ip−1)−1 x̃i + λFR)2 .

From here, one can use the relationship between the MSE, variance and bias to obtain
the expression in Proposition 3.1.

For Partial Ridge, recall the following expression from Section 3.2,

β̂i(λi, Si) =
x∗

′
i y

x∗′i xi
.

Now plug 4.11 into the above to obtain the following:

β̂i(λi, Si) =
x∗

′
i xiβi + x∗

′
i X−iβ−i + x∗

′
i ϵ

x∗′i xi
= βi +

x∗
′

i X−iβ−i + x∗
′

i ϵ

x∗′i xi
.

Using the fact that E[ϵ] = 0, the bias can be written as follows,

Bias(β̂i(λi, Si)) = E[β̂i(λi, Si)]− βi =
x∗

′
i X−iβ−i

x∗′i xi
.

Using the Full Ridge case, one can see that the numerator can be written as follows,

x∗
′

i X−iβ−i

n
= λi x̃′iS(S

2 + λi Ip−1)
−1β∗

−i .
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Also from the proof for the Full Ridge case, the denominator can be expressed as
follows,

x∗
′

i xi

n
= 1 − x̃′iS

2(S2 + λi Ip−1)
−1 x̃i .

Therefore, the bias of the Partial Ridge estimator can be written as follows.

Bias(β̂i(λi, Si)) =
λi x̃′iS(S

2 + λi Ip−1)
−1β∗

−i

1 − x̃′iS
2(S2 + λFR Ip−1)−1 x̃i

.

For the variance it is such that

Var(β̂i(λi, Si)) = E
[(

β̂i(λi, Si)− E[β̂i(λi, Si)]
)2
]
= E

[ x∗
′

i ϵϵ′x∗i
(x∗′i xi)2

]
= σ2

ϵ

x∗
′

i x∗i
(x∗′i xi)2

.

Using the Full Ridge case, the main component of the numerator can be computed as
follows,

x∗
′

i x∗i
n

= 1 − x̃′iS
2(S2 + 2λi Ip−1)(S2 + λi Ip−1)

−2 x̃i .

Plugging these into the variance expression leads to the following,

Var(β̂i(λi, Si)) = σ2
ϵ

x∗
′

i x∗i
n

n( x∗′i xi
n )2

=
σ2

ϵ

n

x∗
′

i x∗i
n

(
x∗′i xi

n )2
,

Var(β̂i(λi, Si)) =
σ2

ϵ

n

[1 − x̃′iS
2(S2 + 2λi Ip−1)(S2 + λi Ip−1)

−2 x̃i

(1 − x̃′iS
2(S2 + λi Ip−1)−1 x̃i)2

]
.

From here, one can use the relationship between the MSE, variance and bias to obtain
the expression in Proposition 3.1.
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3.A.2 Derivation of expression in Proposition 3.2

For Full Ridge it is such that: 
β̂1(λ

FR)
...

β̂p(λFR)

 =
1
n

(
X′X

n
+ λFR Ip

)−1

X′y .

Consider the matrix 1
n

(
X′X

n + λFR Ip

)−1
X′y evaluated for various values of p below.

For p = 3

1
n

(
X′X

n
+ λFR Ip

)−1

=
1
n

1 + λFR ρ ρ

ρ 1 + λFR ρ

ρ ρ 1 + λFR


−1

=
1

n(1 + λFR − ρ)2(1 + λFR + 2ρ)

 (1 + λFR)2 − ρ2 −ρ(1 + λFR − ρ) −ρ(1 + λFR − ρ)

−ρ(1 + λFR − ρ) (1 + λFR)2 − ρ2 −ρ(1 + λFR − ρ)

−ρ(1 + λFR − ρ) −ρ(1 + λFR − ρ) (1 + λFR)2 − ρ2


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For p = 4

1
n

(
X′X

n
+ λFR Ip

)−1

=
1
n


1 + λFR ρ ρ ρ

ρ 1 + λFR ρ ρ

ρ ρ 1 + λFR ρ

ρ ρ ρ 1 + λFR


−1

=
1

n(1 + λFR − ρ)3(1 + λFR + 3ρ)

 (1+λFR−ρ)2(1+λFR+2ρ) −ρ(1+λFR−ρ)2 −ρ(1+λFR−ρ)2 −ρ(1+λFR−ρ)2

−ρ(1+λFR−ρ)2 (1+λFR−ρ)2(1+λFR+2ρ) −ρ(1+λFR−ρ)2 −ρ(1+λFR−ρ)2

−ρ(1+λFR−ρ)2 −ρ(1+λFR−ρ)2 (1+λFR−ρ)2(1+λFR+2ρ) −ρ(1+λFR−ρ)2

−ρ(1+λFR−ρ)2 −ρ(1+λFR−ρ)2 −ρ(1+λFR−ρ)2 (1+λFR−ρ)2(1+λFR+2ρ)


For p = 5

1
n

(
X′X

n
+ λFR Ip

)−1

=
1
n


1 + λFR ρ ρ ρ ρ

ρ 1 + λFR ρ ρ ρ

ρ ρ 1 + λFR ρ ρ

ρ ρ ρ 1 + λFR ρ

ρ ρ ρ ρ 1 + λFR



−1

=
1

n(1 + λFR − ρ)4(1 + λFR + 4ρ)

×


(1+λFR−ρ)3(1+λFR+3ρ) −ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3

−ρ(1+λFR−ρ)3 (1+λFR−ρ)3(1+λFR+3ρ) −ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3

−ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3 (1+λFR−ρ)3(1+λFR+3ρ) −ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3

−ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3 (1+λFR−ρ)3(1+λFR+3ρ) −ρ(1+λFR−ρ)3

−ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3 −ρ(1+λFR−ρ)3 (1+λFR−ρ)3(1+λFR+3ρ)


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For estimation of β̂i(λ
FR), only the ith row of 1

n

(
X′X

n + λFR Ip

)−1
must be considered and multiplied by X′y. From the above, recursively one

can see that this leads the following expression for p in general,

β̂1(λ
FR) =

1
n(1 + λFR − ρ)p−1(1 + λFR + (p − 1)ρ)


(1 + λFR − ρ)p−2(1 + λFR + (p − 2)ρ)

−ρ(1 + λFR − ρ)p−2

...
−ρ(1 + λFR − ρ)p−2


′ 

x′1
x′2
...

x′p

 y ,

β̂1(λ
FR) =

(1 + λFR − ρ)p−2(1 + λFR + (p − 2)ρ)x′1y − ρ(1 + λFR − ρ)p−2 ∑
p
j ̸=1 x′jy

n(1 + λFR − ρ)p−1(1 + λFR + (p − 1)ρ)
,

β̂1(λ
FR) =

(1 + λFR + (p − 2)ρ)x′1y − ρ ∑
p
j ̸=1 x′jy

n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
.

For Partial Ridge it is such that: 
β̂1(λi, Si)

...
β̂p(λi, Si)

 =
1
n

(
X′X

n
+ λiSi

)−1

X′y ,

where Si is the identity matrix but with the element (i,i) replaced with 0. For representational simplicity here, i=1. Consider the following

evaluations of the matrix, 1
n

(
X′X

n + λiSi

)−1
X′y, for various values of p.
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For p = 3

1
n

(
X′X

n
+ λiSi

)−1

=
1
n

1 ρ ρ

ρ 1 + λi ρ

ρ ρ 1 + λi


−1

=
1

n(1 + λi − ρ)(1 + λi + ρ − 2ρ2)

(1 + λi − ρ)(1 + λi + ρ) −ρ(1 + λi − ρ) −ρ(1 + λi − ρ)

−ρ(1 + λi − ρ) 1 + λi − ρ2 ρ(ρ − 1)
−ρ(1 + λi − ρ) ρ(ρ − 1) 1 + λi − ρ2


For p = 4

1
n

(
X′X

n
+ λiSi

)−1

=
1
n


1 ρ ρ ρ

ρ 1 + λi ρ ρ

ρ ρ 1 + λi ρ

ρ ρ ρ 1 + λi


−1

=

1
n(1 + λi − ρ)2(1 + λi + 2ρ − 3ρ3)

 (1+λi−ρ)2(1+λi+2ρ) −ρ(1+λi−ρ)2 −ρ(1+λi−ρ)2 −ρ(1+λi−ρ)2

−ρ(1+λi−ρ)2 (1+λi−ρ)(1+λi+ρ−2ρ2) ρ(ρ−1)(1+λi−ρ) ρ(ρ−1)(1+λi−ρ)

−ρ(1+λi−ρ)2 ρ(ρ−1)(1+λi−ρ) (1+λi−ρ)(1+λi+ρ−2ρ2) ρ(ρ−1)(1+λi−ρ)

−ρ(1+λi−ρ)2 ρ(ρ−1)(1+λi−ρ) ρ(ρ−1)(1+λi−ρ) (1+λi−ρ)(1+λi+ρ−2ρ2)


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For p = 5

1
n

(
X′X

n
+ λiSi

)−1

=
1
n


1 ρ ρ ρ ρ

ρ 1 + λi ρ ρ ρ

ρ ρ 1 + λi ρ ρ

ρ ρ ρ 1 + λi ρ

ρ ρ ρ ρ 1 + λi



−1

=
1

n(1 + λi − ρ)3(1 + λi + 3ρ − 4ρ2)

×


(1+λi−ρ)3(1+λi+3ρ) −ρ(1+λi−ρ)3 −ρ(1+λi−ρ)3 −ρ(1+λi−ρ)3 −ρ(1+λi−ρ)3

−ρ(1+λi−ρ)3 (1+λi−ρ)2(1+λi+2ρ−3ρ2) ρ(ρ−1)(1+λi−ρ)2 ρ(ρ−1)(1+λi−ρ)2 ρ(ρ−1)(1+λi−ρ)2

−ρ(1+λi−ρ)3 ρ(ρ−1)(1+λi−ρ)2 (1+λi−ρ)2(1+λi+2ρ−3ρ2) ρ(ρ−1)(1+λi−ρ)2 ρ(ρ−1)(1+λi−ρ)2

−ρ(1+λi−ρ)3 ρ(ρ−1)(1+λi−ρ)2 ρ(ρ−1)(1+λi−ρ)2 (1+λi−ρ)2(1+λi+2ρ−3ρ2) ρ(ρ−1)(1+λi−ρ)2

−ρ(1+λi−ρ)3 ρ(ρ−1)(1+λi−ρ)2 ρ(ρ−1)(1+λi−ρ)2 ρ(ρ−1)(1+λi−ρ)2 (1+λi−ρ)2(1+λi+2ρ−3ρ2)



For estimation of β̂i(λi, Si), only the ith row of 1
n

(
X′X

n + λiSi

)−1
must be considered and multiplied by X′y. From the above, recursively one

can see that this leads the following expression for p in general,

β̂i(λi, Si) =
1

n(1 + λi − ρ)p−2(1 + λi + (p − 2)ρ − (p − 1)ρ2)


(1 + λi − ρ)p−2(1 + λi + (p − 2)ρ)

−ρ(1 + λi − ρ)p−2

...
−ρ(1 + λi − ρ)p−2


′ 

x′1
x′2
...

x′p

 y ,

β̂i(λi, Si) =
(1 + λi − ρ)p−2(1 + λi + (p − 2)ρ)x′iy − ρ(1 + λi − ρ)p−2 ∑

p
j ̸=i x′jy

n(1 + λi − ρ)p−2(1 + λi + (p − 2)ρ − (p − 1)ρ2)
,

β̂i(λi, Si) =
(1 + λi + (p − 2)ρ)x′iy − ρ ∑

p
j ̸=i x′jy

n(1 + λi + (p − 2)ρ − (p − 1)ρ2)
.
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3.A.3 Derivation of expressions in Proposition 3.3

3.A.3.1 Full Ridge Bias

Recall from 3.12 that

β̂i(λ
FR) =

(1 + λFR + (p − 2)ρ)x′iy − ρ ∑
p
j ̸=i x′jy

n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
.

Replacing y with the true model from 3.1 leads to the following expression for the
numerator,

(1 + λFR + (p − 2)ρ)
(

x′ix1β1 + x′ix2β2 + · · ·+ x′ixpβp + x′iϵ
)

− ρ
(

x′1x1β1 + x′1x2β2 + · · ·+ x′1xpβp + x′1ϵ

+ x′2x1β1 + x′2x2β2 + x′2x3β3 + · · ·+ x′2xpβp + x′2ϵ

+ · · ·+

x′px1β1 + · · ·+ x′pxpβp + x′pϵ
)

.

Using A3 and collecting terms results in the following expression for the numerator,

(1 + λFR + (p − 2)ρ)
(
nβi + nρ

p

∑
j ̸=i

β j + x′iϵ
)
− ρ

p

∑
j ̸=i

(
nβ j + nρ

p

∑
k=1,k ̸=j

βk + x′jϵ
)

.

Using assumption A1 (E(x′jϵ) = 0 for all j = 1, . . . , p) and taking the expectation of
β̂i(λ

FR) gives the following:

E[β̂i(λ
FR)] =

(1 + λFR + (p − 2)ρ)(nβi + nρ ∑
p
j ̸=i β j)− ρ ∑

p
j ̸=i(nβ j + nρ ∑

p
k=1,k ̸=j βk)

n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
.

One can simplify the second expression of the numerator further,

ρ
p

∑
j ̸=i

(nβ j + nρ
p

∑
k=1,k ̸=j

βk) = ρ
(
nρ(p − 1)βi + n

p

∑
j ̸=i

β j + nρ
p

∑
j ̸=i

p

∑
k=1,k ̸=j

βk
)

,

where one can show that ∑
p
j ̸=i ∑

p
k=1,k ̸=j βk = (p − 2)∑

p
j ̸=i β j resulting in the following:

ρ
p

∑
j ̸=i

(nβ j + nρ
p

∑
k=1,k ̸=j

βk) = ρ
(
nρ(p − 1)βi + n(1 + (p − 2)ρ)

p

∑
j ̸=i

β j
)

.
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Therefore the estimator expectation can be written as

E[β̂i(λ
FR)] =

n(1 + λFR + (p − 2)ρ)(βi + ρ ∑
p
j ̸=i β j)

n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

−
nρ
(
ρ(p − 1)βi + (1 + (p − 2)ρ)∑

p
j ̸=i β j

)
n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

,

E[β̂i(λ
FR)] =

(1 + λFR + (p − 2)ρ)(βi + ρ ∑
p
j ̸=i β j)

(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

−
ρ
(
ρ(p − 1)βi + (1 + (p − 2)ρ)∑

p
j ̸=i β j

)
(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

,

E[β̂i(λ
FR)] =

(1 + λFR + (p − 2)ρ − ρ2(p − 1))βi + ρλFR ∑
p
j ̸=i β j

(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
.

To obtain the bias, the subtraction of βi occurs as follows,

Bias(β̂i(λ
FR)) =

(1 + λFR + (p − 2)ρ − ρ2(p − 1))βi + ρλFR ∑
p
j ̸=i β j

(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

− (1 + λFR − ρ)(1 + λFR + (p − 1)ρ)βi

(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
.

Finally, since (1 + λFR − ρ)(1 + λFR + (p − 1)ρ) =
(1 + λFR + (p − 2)ρ − ρ2(p − 1)) + λFR(1 + λFR + (p − 2)ρ), the following expression
is formed,

Bias(β̂i(λ
FR)) =

ρλFR ∑
p
j ̸=i β j − λFR(1 + λFR + (p − 2)ρ)βi

(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
.

3.A.3.2 Partial Ridge Bias

Recall from 3.13 that:

β̂i(λi, Si) =
(1 + λi + (p − 2)ρ)x′iy − ρ ∑

p
j ̸=i x′jy

n(1 + λi + (p − 2)ρ − (p − 1)ρ)
.

Since the numerator of the Partial Ridge estimator is identical to that of Full Ridge
(with λFR replaced with λi) the proof above can be used to short cut to the following
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expression for the expectation of the Partial Ridge estimator,

E[β̂i(λi, Si)] =
n(1 + λi + (p − 2)ρ)(βi + ρ ∑

p
j ̸=i β j)

n(1 + λi + (p − 2)ρ − (p − 1)ρ)

−
nρ
(
ρ(p − 1)βi + (1 + (p − 2)ρ)∑

p
j ̸=i β j

)
n(1 + λi + (p − 2)ρ − (p − 1)ρ)

,

E[β̂i(λi, Si)] =
(1 + λi + (p − 2)ρ)(βi + ρ ∑

p
j ̸=i β j)

(1 + λi + (p − 2)ρ − (p − 1)ρ)

−
ρ
(
ρ(p − 1)βi + (1 + (p − 2)ρ)∑

p
j ̸=i β j

)
(1 + λi + (p − 2)ρ − (p − 1)ρ)

,

E[β̂i(λi, Si)] =
(1 + λi + (p − 2)ρ − ρ2(p − 1))βi + ρλi ∑

p
j ̸=i β j

(1 + λi + (p − 2)ρ − (p − 1)ρ)
.

To obtain the bias, the subtraction of βi occurs as follows,

Bias(β̂i(λi, Si)) =
(1 + λi + (p − 2)ρ − ρ2(p − 1))βi + ρλi ∑

p
j ̸=i β j

(1 + λi + (p − 2)ρ − (p − 1)ρ)

− (1 + λi + (p − 2)ρ − (p − 1)ρ)βi

(1 + λi + (p − 2)ρ − (p − 1)ρ)
,

which simplifies to what is shown in 3.15,

Bias(β̂i(λi, Si)) =
ρλi ∑

p
j ̸=i β j

(1 + λi + (p − 2)ρ − (p − 1)ρ)
.

3.A.3.3 Full Ridge variance

Recall from the previous proofs that

β̂i(λ
FR) =

(1 + λFR + (p − 2)ρ)
(
nβi + nρ ∑

p
j ̸=i β j + x′iϵ

)
n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

−
ρ ∑

p
j ̸=i

(
nβ j + nρ ∑

p
k=1,k ̸=j βk + x′jϵ

)
n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

.
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Using the equivalence of ∑
p
j ̸=i ∑

p
k=1,k ̸=j βk = (p − 2)∑

p
j ̸=i β j, the following expression

can be obtained,

β̂i(λ
FR) =

(1 + λFR + (p − 2)ρ)
(
nβi + nρ ∑

p
j ̸=i β j + x′iϵ

)
n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

−
ρ
(
n ∑

p
j ̸=i β j + nρ2(p − 2)∑

p
j ̸=i β j + ∑

p
j ̸=i x′jϵ

)
n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

.

Taking the expectation and using A1 gives

E[β̂i(λ
FR)] =

(1 + λFR + (p − 2)ρ)
(
nβi + nρ ∑

p
j ̸=i β j

)
n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

−
ρ
(
n ∑

p
j ̸=i β j + nρ2(p − 2)∑

p
j ̸=i β j

)
n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)

.

Now consider the following expression,

β̂i(λ
FR)− E[β̂i(λ

FR)] =
(1 + λFR + (p − 2)ρ)x′iϵ − ρ ∑

p
j ̸=i x′jϵ

n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
,

β̂i(λ
FR)− E[β̂i(λ

FR)] =
(1 + λFR + (p − 2)ρ)x′iϵ − ρx′1ϵ − ρx′2ϵ − · · · − ρx′pϵ

n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
.

Since Var(β̂i(λ
FR)) = E[

(
β̂i(λ

FR)− E[β̂i(λ
FR)]

)(
β̂i(λ

FR)− E[β̂i(λ
FR)]

)′
], consider the

following expression,

(
β̂i(λ

FR)− E[β̂i(λ
FR)]

)(
β̂i(λ

FR)− E[β̂i(λ
FR)]

)′
=

(1 + λFR + (p − 2)ρ)x′iϵ − · · · − ρx′pϵ

n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
×

(1 + λFR + (p − 2)ρ)ϵ′xi − · · · − ρϵ′xp

n(1 + λFR − ρ)(1 + λFR + (p − 1)ρ)
.

The numerator of this expression can be expanded by multiplying terms together as
follows,

(1 + λFR + (p − 2)ρ)2x′iϵϵ′xi − ρ(1 + λFR + (p − 2)ρ)x′iϵϵ′
p

∑
j ̸=i

xj

− ρ(1 + λFR + (p − 2)ρ)x′1ϵϵ′xi + ρ2x′1ϵϵ′x1 + · · ·+ ρ2x′1ϵϵ′xp

− ρ(1 + λFR + (p − 2)ρ)x′2ϵϵ′xi + ρ2x′2ϵϵ′x1 + · · ·+ x′2ϵϵ′xp

+ · · ·+

− ρ(1 + λFR + (p − 2)ρ)x′pϵϵ′xi + ρ2x′pϵϵ′x1 + · · ·+ ρ2x′pϵϵ′xp .
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Taking the expectation gives

(1 + λFR + (p − 2)ρ)2x′iE(ϵϵ′)xi − ρ(1 + λFR + (p − 2)ρ)x′iE(ϵϵ′)
p

∑
j ̸=i

xj

− ρ(1 + λFR + (p − 2)ρ)x′1E(ϵϵ′)xi + ρ2x′1E(ϵϵ′)x1 + · · ·+ ρ2x′1E(ϵϵ′)xp

− ρ(1 + λFR + (p − 2)ρ)x′2E(ϵϵ′)xi + ρ2x′2E(ϵϵ′)x1 + · · ·+ x′2E(ϵϵ′)xp

+ · · ·+

− ρ(1 + λFR + (p − 2)ρ)x′pE(ϵϵ′)xi + ρ2x′p(ϵϵ′)x1 + · · ·+ ρ2x′pE(ϵϵ′)xp .

Now using the fact that E[ϵϵ′] = σ2
ϵ I from A1 as well as x′jxj = n and x′jxh = nρ from

A3, the numerator can be simplified to the following:

σ2
ϵ

(
n(1 + λFR + (p − 2)ρ)2 − nρ2(p − 1)(1 + λFR + (p − 2)ρ)

− nρ2(p − 1)(1 + λFR + (p − 2)ρ) + n(p − 1)ρ2 + nρ3(p − 1)(p − 2)

)
,

where the fact that x′i ∑
p
j ̸=i xj = n(p − 1)ρ was used in the first line. The variance term

is as follows,

Var(β̂i(λ
FR)) = E[

(
β̂i(λ

FR)− E[β̂i(λ
FR)]

)(
β̂i(λ

FR)− E[β̂i(λ
FR)]

)′
] =

σ2
ϵ

(
(1 + λFR + (p − 2)ρ)2 − 2ρ2(p − 1)(1 + λFR + (p − 2)ρ) + (p − 1)ρ2 (1 + ρ(p − 2))

)
n(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2 .

Attempting to factorise the numerator leads to the following:

Var(β̂i(λ
FR)) =

σ2
ϵ

((
1 + λFR + (p − 2)ρ − ρ2(p − 1)

)2 − ρ4(p − 1)2 + (p − 1)ρ2 + ρ3(p − 1)(p − 2)

)
n(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2 .

One further stage of simplification leads to the expression in Proposition 3.3 as
follows,

Var(β̂i(λ
FR)) =

σ2
ϵ

((
λFR − (ρ − 1)(1 + (p − 1)ρ)

)2 − (p − 1)(ρ − 1)ρ2(1 + (p − 1)ρ)

)
n(1 + λFR − ρ)2(1 + λFR + (p − 1)ρ)2 .
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3.A.3.4 Partial Ridge variance

Recall from the previous proofs that

β̂i(λi, Si) =
(1 + λi + (p − 2)ρ)

(
nβi + nρ ∑

p
j ̸=i β j + x′1ϵ

)
n(1 + λi + (p − 2)ρ − (p − 1)ρ2)

−
ρ ∑

p
j ̸=i

(
nβ j + nρ ∑

p
k=1,k ̸=j βk + x′jϵ

)
n(1 + λi + (p − 2)ρ − (p − 1)ρ2)

.

Since the numerator is identical to that of Full Ridge with the exception of λFR being
replaced with λi, one can skip to the following expression using the previous proof
but using the Partial Ridge denominator,

β̂i(λi, Si)− E[β̂i(λi, Si)] =
(1 + λi + (p − 2)ρ)x′iϵ − ρ ∑

p
j ̸=i x′jϵ

n(1 + λi + (p − 2)ρ − (p − 1)ρ2)
,

β̂i(λi, Si)− E[β̂i(λi, Si)] =
(1 + λi + (p − 2)ρ)x′iϵ − ρx′1ϵ − ρx′2ϵ − · · · − ρx′pϵ

n(1 + λi + (p − 2)ρ − (p − 1)ρ2)
.

Since Var(β̂i(λi, Si)) = E[
(

β̂i(λi, Si)− E[β̂i(λi, Si)]
)(

β̂i(λi, Si)− E[β̂i(λi, Si)]
)′
],

consider the following expression,

(
β̂i(λi, Si)− E[β̂i(λi, Si)]

)(
β̂i(λi, Si)− E[β̂i(λi, Si)]

)′
=

(1 + λi + (p − 2)ρ)x′iϵ − · · · − ρx′pϵ

n(1 + λi + (p − 2)ρ − (p − 1)ρ2)
×

(1 + λi + (p − 2)ρ)ϵ′xi − · · · − ρϵ′xp

n(1 + λi + (p − 2)ρ − (p − 1)ρ2)
.

From here, one can use the fact that the previous proof showed that the numerator can
be written as follows,

σ2
ϵ

(
n(1 + λi + (p − 2)ρ)2 − nρ2(p − 1)(1 + λi + (p − 2)ρ)

− nρ2(p − 1)(1 + λi + (p − 2)ρ) + n(p − 1)ρ2 + nρ3(p − 1)(p − 2)

)
.

Therefore, the variance expression can be written as

Var(β̂i(λi)) = E[
(

β̂i(λi, Si)− E[β̂i(λi, Si)]
)(

β̂i(λi, Si)− E[β̂i(λi, Si)]
)′
] =

σ2
ϵ

(
(1 + λi + (p − 2)ρ)2 − 2ρ2(p − 1)(1 + λi + (p − 2)ρ) + (p − 1)ρ2 (1 + ρ(p − 2))

)
n(1 + λi + (p − 2)ρ − (p − 1)ρ2)2 .
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Simplifying to the following in a very similar fashion to that of the previous proof,

Var(β̂i(λi, Si)) =

σ2
ϵ

((
λi − (ρ − 1)(1 + (p − 1)ρ)

)2 − (p − 1)(ρ − 1)ρ2(1 + (p − 1)ρ)

)
n(1 + λi + (p − 2)ρ − (p − 1)ρ2)2 .

3.A.4 Alternative Proof of Proposition 3.3

Using the results associated with Proposition 3.1, recall the Full Ridge bias expression
from the proof of Proposition 3.1 as follows,

Bias(β̂i(λ
FR)) =

λFR x̃′iS(S
2 + λFR Ip−1)

−1β∗
−i − λFRβi

1 − x̃′iS
2(S2 + λFR Ip−1)−1 x̃i + λFR .

Using the fact that x̃i =
U′xi√

n and β∗
−i = V ′β−i, the numerator can be written as follows,

λFR x̃′iS(S
2 + λFR Ip−1)

−1β∗
−i − λFRβi =

− λFR[βi −
x′i√

n
USV ′(V ′)−1(S2 + λFR Ip−1)

−1V ′β−i] .

In order to simplify further, first consider the partitioned covariance matrix from
previously,

X′X
n

=


1 ρ . . . ρ

ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

 =

[ x′i xi
n

x′i X−i
n

X′
−ixi
n

X′
−iX−i

n

]
=

 1 x′i√
n USV ′

VSU′ x′i√
n VS2V ′

 .

From this one can see that x′i√
n USV ′ = ρe′, were e is a (p − 1)× 1 vector of 1s.

Therefore, the numerator of the bias can be written as follows,

−λFR[βi − ρe′V(S2 + λFR Ip−1)
−1V ′β−i] .

Now, the denominator can be rewritten as follows,

1 − x̃′iS
2(S2 + λFR Ip−1)

−1 x̃i + λFR = 1 + λFR −
x′i√

n
US2(S2 + λFR Ip−1)

−1U′ xi√
n

.
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Using the rearrangement of X−i√
n = USV ′ as U = X−iVS−1

√
n , gives the following:

= 1 + λFR −
x′i√

n
X−i√

n
VS−1S2(S2 + λFR Ip−1)

−1S−1V ′ X
′
−i√
n

xi√
n

,

1 + λFR − ρe′VS(S2 + λFR Ip−1)
−1S−1V ′ρe ,

1 + λFR − ρe′V(S2 + λFR Ip−1)
−1V ′ρe .

Therefore, the bias of Full Ridge can be expressed as follows,

Bias(β̂i(λ
FR)) =

−λFR[βi − ρe′V(S2 + λFR Ip−1)
−1V ′β−i]

1 + λFR − ρe′V(S2 + λFR Ip−1)−1V ′ρe
.

For the Variance, the proof of Proposition 3.1 resulted in the following:

Var(β̂i(λ
FR)) =

σ2
ϵ

n
1 − x̃′iS

2(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)
−2 x̃i

(1 − x̃′iS
2(S2 + λFR Ip−1)−1 x̃i + λFR)2 .

For the numerator, using the x̃i expansion results in the following expression,

1 − x̃′iS
2(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)

−2 x̃i =

1 −
x′i√

n
US2(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)

−2U′ xi√
n

,

= 1 −
x′iX−i

n
VS−1S2(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)

−2S−1V ′ X
′
−ixi

n
,

= 1 − ρe′V(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)
−2V ′ρe .

For the denominator component inside squared brackets, the following is considered,

1 − x̃′iS
2(S2 + λFR Ip−1)

−1 x̃i + λFR = 1 + λFR −
x′i√

n
US2(S2 + λFR Ip−1)

−1U′ xi√
n

,

= 1 + λFR −
x′iX−i

n
VS−1S2(S2 + λFR Ip−1)

−1S−1V ′ X
′
−ixi

n
,

= 1 + λFR − ρe′V(S2 + λFR Ip−1)
−1V ′ρe .

Therefore, the variance term can be written as

Var(β̂i(λ
FR)) =

σ2
ϵ

n
1 − ρe′V(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)

−2V ′ρe
(1 + λFR − ρe′V(S2 + λFR Ip−1)−1V ′ρe)2 .
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For Partial Ridge the bias is given by

Bias(β̂i(λi, Si)) =
λi x̃′iS(S

2 + λi Ip−1)
−1β∗

−i

1 − x̃′iS
2(S2 + λi Ip−1)−1 x̃i

.

The numerator can be rewritten as follows simply, as it is identical to that of the Full
Ridge case only with λFR replaced with λi and the elimination of the λFRβi term,

λi x̃′iS(S
2 + λi Ip−1)

−1β∗
−i = λiρe′V(S2 + λi Ip−1)

−1V ′β−i .

For the denominator, it is a similar situation whereby the Partial Ridge case is identical
to that of Full Ridge, only with λFR replaced with λi and the elimination of the λFR

component,

1 − x̃′iS
2(S2 + λi Ip−1)

−1 x̃i = 1 − ρe′V(S2 + λi Ip−1)
−1V ′ρe .

Therefore, the Partial Ridge bias term is given by the following expression,

Bias(β̂i(λi, Si)) =
λiρe′V(S2 + λi Ip−1)

−1V ′β−i

1 − ρe′V(S2 + λi Ip−1)−1V ′ρe
.

For the Variance, consider the expression arising in the proof of Proposition 3.1 as
follows,

Var(β̂i(λi, Si)) =
σ2

ϵ

n

[1 − x̃′iS
2(S2 + 2λi Ip−1)(S2 + λi Ip−1)

−2 x̃i

(1 − x̃′iS
2(S2 + λi Ip−1)−1 x̃i)2

]
.

Once again, the numerator,is identical to that of Full Ridge, only with λFR replaced
with λi resulting in the following:

1 − x̃′iS
2(S2 + 2λi Ip−1)(S2 + λi Ip−1)

−2 x̃i = 1 − ρe′V(S2 + 2λi Ip−1)(S2 + λi Ip−1)
−2V ′ρe .

For the denominator, the following expression can be obtained by using the usual
similarities with the Full Ridge variance expression,

1 − x̃′iS
2(S2 + λi Ip−1)

−1 x̃i = 1 − ρe′V(S2 + λi Ip−1)
−1V ′ρe .

Therefore the Partial Ridge variance is given by the following:

Var(β̂i(λi, Si)) =
σ2

ϵ

n
1 − ρe′V(S2 + 2λi Ip−1)(S2 + λi Ip−1)

−2V ′ρe
(1 − ρe′V(S2 + λi Ip−1)−1V ′ρe)2 .

To formalise the above, the table shows the alternate forms for the bais and variance of
a single Full and Partial Ridge estimate.
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Bias Variance

Full Ridge −λFR[βi−ρe′V(S2+λFR Ip−1)
−1V′β−i ]

1+λFR−ρe′V(S2+λFR Ip−1)−1V′ρe
σ2

ϵ
n

1−ρe′V(S2+2λFR Ip−1)(S2+λFR Ip−1)
−2V′ρe

(1+λFR−ρe′V(S2+λFR Ip−1)−1V′ρe)2

Partial Ridge λiρe′V(S2+λi Ip−1)
−1V′β−i

1−ρe′V(S2+λi Ip−1)−1V′ρe
σ2

ϵ
n

1−ρe′V(S2+2λi Ip−1)(S2+λi Ip−1)
−2V′ρe

(1−ρe′V(S2+λi Ip−1)−1V′ρe)2

For this equicorrelation environment, various values of p will be considered with each
case involving a specific S and V matrix (as well as specialising the dimension of e)
allowing the expressions in the table above to be evaluated.

Case 1: p=3
In this case, it is such that X−i is a 2 × 2 matrix with the following SVD components
(assuming ρ > 0),

S2 =

[
1 + ρ 0

0 1 − ρ

]
,

V =

[
1√
2

− 1√
2

1√
2

1√
2

]
.

First, consider the Full Ridge bias. The main component of the numerator can be
written as follows,

λFRρe′V(S2 + λFR Ip−1)
−1V ′β−i =[

ρ ρ
] [ 1√

2
− 1√

2
1√
2

1√
2

] [
1

1+ρ+λFR 0

0 1
1−ρ+λFR

] [
1√
2

1√
2

− 1√
2

1√
2

]
β−i .

Multiplying out gives

λFRρe′V(S2 + λFR Ip−1)
−1V ′β−i =

λFRρ

1 + λFR + ρ ∑
j ̸=i

β j .

Therefore, the bias numerator is given by the following expression,

λFRρ

1 + λFR + ρ ∑
j ̸=i

β j − λFRβi .

For the denominator, recall the following,

1 + λFR − ρe′V(S2 + λFR Ip−1)
−1V ′ρe .
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The main component can be written as follows,

ρe′V(S2 + λFR Ip−1)
−1V ′ρe =[

ρ ρ
] [ 1√

2
− 1√

2
1√
2

1√
2

] [
1

1+ρ+λFR 0

0 1
1−ρ+λFR

] [
1√
2

1√
2

− 1√
2

1√
2

] [
ρ

ρ

]
.

ρe′V(S2 + λFR Ip−1)
−1V ′ρe =

2ρ2

1 + λFR + ρ

Therefore the denominator is given by the following,

1 + λFR − 2ρ2

1 + λFR + ρ
.

Combining this with the numerator term allows one to compute the Full Ridge bias as
follows,

Bias(β̂i(λ
FR)) =

λFRρ
1+λFR+ρ ∑j ̸=i β j − λFRβi

1 + λFR − 2ρ2

1+λFR+ρ

=
λFRρ ∑j ̸=i β j − λFRβi(1 + λFR + ρ)

(1 + λFR − ρ)(1 + λFR + 2ρ)
.

For the variance, recall the following numerator expression,

1 − ρe′V(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)
−2V ′ρe .

This can be written as follows,

1 −
[
ρ ρ

] [ 1√
2

− 1√
2

1√
2

1√
2

]  1+ρ+2λFR

(1+ρ+λFR)2 0

0 1−ρ+2λFR

(1−ρ+λFR)2

 [ 1√
2

1√
2

− 1√
2

1√
2

] [
ρ

ρ

]
.

Multiplying out gives the following expression for the numerator,

1 − ρe′V(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)
−2V ′ρe = 1 − 2ρ2(1 + 2λFR + ρ)

(1 + λFR + ρ)2 .

For the denominator, recall the following expression,

(1 + λFR − ρe′V(S2 + λFR Ip−1)
−1V ′ρe)2 ,

where this is the denominator of the bias but squared leading to the following:

(1 + λFR − ρe′V(S2 + λFR Ip−1)
−1V ′ρe)2 =

(
1 + λFR − 2ρ2

1 + λFR + ρ

)2 .
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Therefore, the variance can be written as follows,

Var(β̂i(λ
FR)) =

σ2
ϵ

n

1 − 2ρ2(1+2λFR+ρ)
(1+λFR+ρ)2(

1 + λFR − 2ρ2

1+λFR+ρ

)2 =
σ2

ϵ

n
(1 + λFR + ρ)2 − 2ρ2(1 + 2λFR + ρ)(

(1 + λFR)(1 + λFR + ρ)− 2ρ2
)2 ,

which can be rearranged to obtain the following:

Var(β̂i(λ
FR)) =

σ2
ϵ

n

(
λFR − (ρ − 1)(1 + 2ρ)

)2 − 2(ρ − 1)ρ2(1 + 2ρ)

(1 + λFR − ρ)2(1 + λFR + 2ρ)2 .

For Partial Ridge, recall the bias numerator expression,

1 − ρe′V(S2 + λi Ip−1)
−1V ′ρe ,

where the numerator is almost identical to that of the Full Ridge case with the
elimination of λFRβi and λFR replaced with λi resulting in the following:

λiρe′V(S2 + λi Ip−1)
−1V ′β−i =

λiρ ∑j ̸=i β j

1 + λi + ρ
.

For the denominator, it is also very similar to that of Full Ridge leading to the
following:

1 − ρe′V(S2 + λi Ip−1)
−1V ′ρe = 1 − 2ρ2

1 + λi + ρ
.

Therefore, the Partial Ridge bias can be written as follows,

Bias(β̂i(λi, Si)) =

λiρ ∑j ̸=i β j
1+λi+ρ

1 − 2ρ2

1+λi+ρ

=
λiρ ∑j ̸=i β j

1 + λi + ρ − 2ρ2 .

For the variance, recall the following numerator expression as being identical to that
of Full Ridge but with different λ notation. This leads to the following:

1 − ρe′V(S2 + 2λi Ip−1)(S2 + λi Ip−1)
−2V ′ρe = 1 − 2ρ2(1 + 2λi + ρ)

(1 + λi + ρ)2 .

For the denominator, once again, the Partial Ridge expression is identical to that of
Full Ridge with the elimination of the λFR term and λi instead of λFR,

(1 − ρe′V(S2 + λi Ip−1)
−1V ′ρe)2 =

(
1 − 2ρ2

1 + λi + ρ

)2 .
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Therefore, the Partial Ridge variance can be written as follows,

Var(β̂i(λi, Si)) =
σ2

ϵ

n

1 − 2ρ2(1+2λi+ρ)
(1+λi+ρ)2(

1 − 2ρ2

1+λi+ρ

)2 =
σ2

ϵ

n
(1 + λi + ρ)2 − 2ρ2(1 + 2λi + ρ)

(1 + λi + ρ − 2ρ2)2 ,

which can be simplified to the following:

Var(β̂i(λi, Si)) =
σ2

ϵ

n

(
λi − (ρ − 1)(1 + 2ρ)

)2 − 2(ρ − 1)ρ2(1 + 2ρ)

(1 + λi + ρ − 2ρ2)2 .

Case 2: p=4
In this case, it is such that X−i is a 3 × 3 matrix with the following SVD components
(assuming ρ > 0),

S2 =

1 + 2ρ 0 0
0 1 − ρ 0
0 0 1 − ρ

 ,

V =


1√
3

− 1√
2

− 1√
6

1√
3

0
√

2
3

1√
3

1√
2

− 1√
6

 .

First, consider the Full Ridge bias. The main component of the numerator can be
written as follows,

λFRρe′V(S2 + λFR Ip−1)
−1V ′β−i =

[
ρ ρ ρ

] 
1√
3

− 1√
2

− 1√
6

1√
3

0
√

2
3

1√
3

1√
2

− 1√
6




1
1+2ρ+λFR 0 0

0 1
1−ρ+λFR 0

0 0 1
1−ρ




1√
3

1√
3

1√
3

1√
2

0 1√
2

− 1√
6

√
2
3 − 1√

6

 β−i .

Multiplying out gives

λFRρe′V(S2 + λFR Ip−1)
−1V ′β−i =

λFRρ

ρ1 + λFR + 2ρ ∑
j ̸=i

β j .

Therefore, the bias numerator is given by the following:

λFRρ

1 + λFR + 2ρ ∑
j ̸=i

β j − λFRβi .
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For the denominator, recall the following:

1 + λFR − ρe′V(S2 + λFR Ip−1)
−1V ′ρe .

The main component can be written as follows,

ρe′V(S2 + λFR Ip−1)
−1V ′ρe =

[
ρ ρ ρ

] 
1√
3

− 1√
2

− 1√
6

1√
3

0
√

2
3

1√
3

1√
2

− 1√
6




1
1+2ρ+λFR 0 0

0 1
1−ρ+λFR 0

0 0 1
1−ρ




1√
3

1√
3

1√
3

1√
2

0 1√
2

− 1√
6

√
2
3 − 1√

6


ρ

ρ

ρ

 ,

ρe′V(S2 + λFR Ip−1)
−1V ′ρe =

3ρ2

1 + λFR + 2ρ
.

Therefore, the denominator is given by the following:

1 + λFR − 3ρ2

1 + λFR + 2ρ
.

Combining this with the numerator term allows one to compute the Full Ridge bias as
follows,

Bias(β̂i(λ
FR)) =

λFRρ
1+λFR+2ρ ∑j ̸=i β j − λFRβi

1 + λFR − 3ρ2

1+λFR+2ρ

=
λFRρ ∑j ̸=i β j − λFRβi(1 + λFR + 2ρ)

(1 + λFR − ρ)(1 + λFR + 3ρ)
.

For the variance, recall the following numerator expression,

1 − ρe′V(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)
−2V ′ρe .

This can be written as follows,

1 −
[
ρ ρ ρ

] 
1√
3

− 1√
2

− 1√
6

1√
3

0
√

2
3

1√
3

1√
2

− 1√
6




1+2ρ+2λFR

(1+2ρ+λFR)2 0 0

0 1−ρ+2λFR

(1−ρ+λFR)2 0

0 0 1−ρ+2λFR

(1−ρ+λFR)2



×


1√
3

1√
3

1√
3

1√
2

0 1√
2

− 1√
6

√
2
3 − 1√

6


ρ

ρ

ρ

 .

Multiplying out gives the following expression for the numerator,

1 − ρe′V(S2 + 2λFR Ip−1)(S2 + λFR Ip−1)
−2V ′ρe = 1 − 3ρ2(1 + 2λFR + 2ρ)

(1 + λFR + 2ρ)2 .
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For the denominator, recall the following expression,

(1 + λFR − ρe′V(S2 + λFR Ip−1)
−1V ′ρe)2 ,

where this is the denominator of the bias but squared leading to the following:

(1 + λFR − ρe′V(S2 + λFR Ip−1)
−1V ′ρe)2 =

(
1 + λFR − 3ρ2

1 + λFR + 2ρ

)2 .

Therefore, the variance can be written as follows,

Var(β̂i(λ
FR)) =

σ2
ϵ

n

1 − 3ρ2(1+2λFR+2ρ)
(1+λFR+2ρ)2(

1 + λFR − 3ρ2

1+λFR+2ρ

)2 =
σ2

ϵ

n
(1 + λFR + 2ρ)2 − 3ρ2(1 + 2λFR + 2ρ)(

(1 + λFR)(1 + λFR + 2ρ)− 3ρ2
)2 ,

which can be rearranged to obtain the following:

Var(β̂i(λ
FR)) =

σ2
ϵ

n

(
λFR − (ρ − 1)(1 + 3ρ)

)2 − 3(ρ − 1)ρ2(1 + 3ρ)

(1 + λFR − ρ)2(1 + λFR + 3ρ)2 .

For Partial Ridge, recall the bias numerator expression,

1 − ρe′V(S2 + λi Ip−1)
−1V ′ρe ,

where the numerator is almost identical to that of the Full Ridge case with the
elimination of λFRβi and λFR replaced with λi resulting in the following:

λiρe′V(S2 + λi Ip−1)
−1V ′β−i =

λiρ ∑j ̸=i β j

1 + λi + 2ρ
.

For the denominator, it is also very similar to that of Full Ridge leading to the
following:

1 − ρe′V(S2 + λi Ip−1)
−1V ′ρe = 1 − 3ρ2

1 + λi + 2ρ
.

Therefore, the Partial Ridge bias can be written as follows,

Bias(β̂i(λi, Si)) =

λiρ ∑j ̸=i β j
1+λi+2ρ

1 − 3ρ2

1+λi+2ρ

=
λiρ ∑j ̸=i β j

1 + λi + 2ρ − 3ρ2 .

For the variance, recall the following numerator expression as being identical to that
of Full Ridge but with different λ notation. This leads to the following:

1 − ρe′V(S2 + 2λi Ip−1)(S2 + λi Ip−1)
−2V ′ρe = 1 − 3ρ2(1 + 2λi + 2ρ)

(1 + λi + 2ρ)2 .
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For the denominator, once again, the Partial Ridge expression is identical to that of
Full Ridge with the elimination of the λFR term and λi instead of λFR, seen as follows,

(1 − ρe′V(S2 + λi Ip−1)
−1V ′ρe)2 =

(
1 − 3ρ2

1 + λi + 2ρ

)2 .

Therefore, the Partial Ridge variance can be written as follows,

Var(β̂i(λi, Si)) =
σ2

ϵ

n

1 − 3ρ2(1+2λi+2ρ)
(1+λi+2ρ)2(

1 − 3ρ2

1+λi+2ρ

)2 =
σ2

ϵ

n
(1 + λi + 2ρ)2 − 3ρ2(1 + 2λi + 2ρ)

(1 + λi + 2ρ − 3ρ2)2 ,

which can be simplified to the following:

Var(β̂i(λi, Si)) =
σ2

ϵ

n

(
λi − (ρ − 1)(1 + 3ρ)

)2 − 3(ρ − 1)ρ2(1 + 3ρ)

(1 + λi + 2ρ − 3ρ2)2 .

To formalise the above, the following table shows the bias and variance for each p
under equicorrelation where one can see a general pattern that allows the expressions
to be generalized with respect to p.

Full Ridge
Bias Variance

p = 3
λFRρ ∑j ̸=i β j−λFRβi(1+λFR+ρ)

(1+λFR−ρ)(1+λFR+2ρ)
σ2

ϵ
n

(
λFR−(ρ−1)(1+2ρ)

)2
−2(ρ−1)ρ2(1+2ρ)

(1+λFR−ρ)2(1+λFR+2ρ)2

p = 4
λFRρ ∑j ̸=i β j−λFRβi(1+λFR+2ρ)

(1+λFR−ρ)(1+λFR+3ρ)
σ2

ϵ
n

(
λFR−(ρ−1)(1+3ρ)

)2
−3(ρ−1)ρ2(1+3ρ)

(1+λFR−ρ)2(1+λFR+3ρ)2

...

p
λFRρ ∑j ̸=i β j−λFRβi(1+λFR+(p−2)ρ)

(1+λFR−ρ)(1+λFR+(p−1)ρ)
σ2

ϵ
n

(
λFR−(ρ−1)(1+(p−1)ρ)

)2
−(p−1)(ρ−1)ρ2(1+(p−1)ρ)

(1+λFR−ρ)2(1+λFR+(p−1)ρ)2

Partial Ridge

p = 3
λiρ ∑j ̸=i β j

1+λi+ρ−2ρ2
σ2

ϵ
n

(
λi−(ρ−1)(1+2ρ)

)2
−2(ρ−1)ρ2(1+2ρ)

(1+λi+ρ−2ρ2)2

p = 4
λiρ ∑j ̸=i β j

1+λi+2ρ−3ρ2
σ2

ϵ
n

(
λi−(ρ−1)(1+3ρ)

)2
−3(ρ−1)ρ2(1+3ρ)

(1+λi+2ρ−3ρ2)2

...

p
λiρ ∑j ̸=i β j

1+λi+(p−2)ρ−(p−1)ρ2
σ2

ϵ
n

(
λi−(ρ−1)(1+(p−1)ρ)

)2
−(p−1)(ρ−1)ρ2(1+(p−1)ρ)

(1+λi+(p−2)ρ−(p−1)ρ2)2

Therefore, from looking at the pattern over p when evaluating the expressions acting
as the main components in Proposition 3.1, the results detailed in Proposition 3.3 are
obtained.
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3.A.5 Empirical Application R squared values

TABLE 3.A1: R squared values for house price prediction

Sample split (no. of observations in training data)
84 107 129 162 184

Full Ridge 0.928 0.930 0.940 0.936 0.924
Lasso 0.945 0.947 0.945 0.943 0.939

OLS-post-Lasso 0.946 (11) 0.945 (11) 0.945 (15) 0.942 (21) 0.941 (12)

Hybrid (correlation) 0.952 (26) 0.949 (3) 0.953 (26) 0.936 (1) 0.937 (24)
Hybrid (Lasso β̂s) 0.935 (15) 0.936 (15) 0.952 (18) 0.947 (30) 0.934 (26)
Hybrid (Ridge β̂s) 0.919 (16) 0.943 (22) 0.952 (25) 0.945 (12) 0.940 (17)

TABLE 3.A2: R squared values for construction cost prediction

Sample split (no. of observations in training data)
84 107 129 162 184

Full Ridge 0.863 0.842 0.754 0.621 0.654
Lasso 0.590 0.764 0.905 0.903 0.891

OLS-post-Lasso 0.771 (3) 0.821 (4) 0.070 (7) 0.902 (14) 0.828 (24)

Hybrid (correlation) 0.726 (1) 0.677 (1) 0.742 (1) 0.610 (5) 0.739 (18)
Hybrid (Lasso β̂s) 0.756 (9) 0.677 (1) 0.743 (1) 0.646 (5) 0.685 (8)
Hybrid (Ridge β̂s) 0.726 (1) 0.677 (1) 0.824 (20) 0.660 (20) 0.708 (21)
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Chapter 4

Partial Random Projections, A Novel
Approach to High-Dimensional
Linear Regression in Economics

4.1 Introduction

The increased availability of data through automated collection as well as a wide host
of other factors has meant that nearly all fields utilising quantitative analysis have
faced larger data sets. For cross-sectional and longitudinal data sets this may involve a
greater number of samples and time observations respectively, or it might be a case of
there being a larger number of data attributes available. Both has presented new
challenges for researchers ranging from data storage and manageability issues to the
computational feasibility when using existing statistical models. Within the field of
economics, the most significant area where this is noticed lies with linear regression
analysis, where one is typically using a model similar to that detailed by the following:

y = Xβ + ϵ , (4.1)

where y is an n × 1 vector representing the dependent variable and X is a n × p matrix
with each of the p columns representing an independent variable. The ϵ term
represents the disturbance component, typically assumed to be such that each element
is IID with 0 mean and constant variance across all observations. Finally, β is a p × 1
vector representing the coefficients and are what one has to estimate, whether this be
for predictive purposes (Xβ̂) or to analyse causal inference of certain covariates.
Usually, this is done through methods based upon Ordinary Least Squares (OLS)
resulting in the following unbiased and efficient estimator:

β̂ = (X′X)−1X′y , (4.2)
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where one can see that the above leans upon the inversion of the covariance matrix,
X′X. However, due to the increased availability of candidate predictors, it is often
such that p is large relative to n resulting in 4.2 providing uncertain estimates and
when p > n then the above is no longer feasible, this is characterised as a
high-dimensional setting. Throughout economics, there are 2 main branches of
approaches that seek allow estimation of β for either predictive or causal inference
purposes, the first being regularization techniques in the form of Penalized Least
Squares such as as Ridge and Lasso (Hoerl and Kennard (1970) and Tibshirani (1996)).
They work in a similar way to OLS, only they induce some bias in return for reduced
variance to handle to overparameterisation aiming to make the trade off favourable in
a mean-squared-error (MSE) sense.

The second branch of approaches, frequently used in the field of economics, is to
directly reduce the size of the pool of predictors in order to make OLS feasible. The
most widely used example of this is factor models, which make the assumption that
all covariates are determined by a small number of underlying driving forces. While
there have been many ways in which these factors can be estimated from a large set of
predictors, Principal Components Analysis (PCA) is the most used method due to it
not requiring any a priori knowledge as well as its ability to retain a significant
amount of the information from the original data set as seen in Connor and Korajckzy
(1988) and Stock and Watson (2002). Here, one computes the factors by transforming
X using the eigenvectors of the predictor covariance matrix. This is followed by
choosing a small number of factors to run OLS on with a significant amount of
information from all p predictors maintained in the small number of factors used.

Other less common methods include model selection approaches that still allow OLS
to be run on a subset of the original predictor by choosing what is believed to be the
most relevant with respect to the dependent variable. Historically, this was carried out
through various information criteria such as: AIC (Akaike (1969)), BIC (Schwarz
(1978)) and MIC (Mallows (1973)), however, even these approaches suffer when p is
too large as they require all possible submodels to be computed under the criteria in
order to choose an optimal set of predictors. More modern approaches involve using
the model selection element of the Lasso to choose a set of predictors to use OLS on
(Belloni and Chernozhukov (2013)). Such estimation procedures are well established
throughout the economics and statistics literature and are commonly adapted to fit the
extent to which p > n with often 2 or more Lasso models being applied in order to
sufficiently reduce the submodel of predictors. The obvious criticism of such methods
lies in the assumption of a certain degree of sparsity amongst the true predictors as
one discards a significant amount of information (possibly useful) which can
adversely effect parameter estimation. Finally, in the case where one is only interested



4.1. Introduction 113

in predictions of the dependent variable, model averaging is nice alternative
considered in work such as Timmermann (2006) and Elliott et al. (2013) with
promising results.

Returning to the second branch of methods, one approach similar in nature to
Principal Components, but originating from the machine learning literature is
Random Projections (RP). Where PCA seeks to reduce the dimension of X by
multiplying X by a matrix containing the k eigenvectors (where k is the size of the new
dimension) corresponding to the k largest eigenvalues of X′X. RP does something
similar in that X is multiplied by a matrix R in order to reduce the dimension of X, only
here, the entries of R are independent but identically distributed random variables. To
reduce the number of rows in X, a row-wise random projection was analysed in
Dhillon et al. (2013) where the following transformation to a small subspace occurs:

Rk×nXn×p . (4.3)

Such a transformation is known as sketching and is very common throughout the
machine learning literature where, very frequently, the issue faced by analysts lies in
the number of data observations being too large to store and move the original data
set around prior to applying the data to a model. However, from the perspective of
linear regression analysis it is the number of covariates (p) being too large which is the
issue requiring a column-wise transformation to a smaller subspace as follows:

Xn×pRp×k , (4.4)

where k << p meaning that methods based upon OLS can now be carried out on the
above transformed data set as is done in work such as Kaban (2014) and Thanei et al.
(2017). Typically, one would compute R such that each entry is an IID standard normal
distribution, however, other distributions have been considered in work such as Li et
al. (2006) and Achlioptas (2003) in order to save computational time and is often
known as Sparse Random Projections. However, in the majority work related to linear
regression, the standard normal has been used and will be the main focus of this
paper.

Intuitively, one might question how RP can be successful when the compressed
dimension column are simply linear combinations of the original set with random
weights compared to a data driven approach such as PCA. However, the
Johnson-Lindenstrauss lemma of Johnson and Lindenstrauss (1984) shows how when
this process is repeated over multiple draws of R, the expectation maintains the
pairwise Euclidean distances between the points with other work on this including
Matoušek (2008) and Dasgupta and Gupta (2003). Therefore, one can view this as a
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way of side stepping the curse of dimensionality whilst maintaining all the
information necessary for the desired form of analysis to take place.

This premise of Random Projections has been used for a wide variety of applications
throughout the machine learning literature. A large area of work has focused on using
RP as a means of reducing the dimension of image and text data in order to carry out
Nearest Neighbour (NN) algorithms where one is might be interested in finding
similar documents based on certain words appearing in similar papers or identifying
images of identical objects or landmarks from a large pool of separate images based on
the brightness of pixels. Work such as Fradkin and Madigan (2003), Yan et al. (2018)
and Nabil (2017) have shown how RP can be useful in applying NN algorithms to
large data sets with Deegalla and Bostrom (2006) comparing RP to PCA on medical
image data sets. They find that, for the majority of data sets, PCA is more accurate but
is more sensitive to the choice of subsample size compared to RP.

Another key area of the machine learning literature where RP has been used
successfully is that of clustering and classification where huge data sets concerning
text data, such as academic papers, social media posts and financial market
announcements are often highly noisy causing standard algorithms to poorly group
the observations concerned. RP has been applied to algorithms such as the Gaussian
Mixture Model in work such as Anderlucci et al. (2010), Fern and Brodley (2003) and
Dasgupta (2000). Kaski (1998) compared RP to PCA in a setting that organises text
documents and and found that RP was equally as effective with regards to sorting
accuracy but has the benefit of a faster run time.

However, in terms of how RP has been applied to linear regression settings, the
literature is somewhat sparse and nearly all work focuses purely on prediction of y
rather than individual β estimation. McWilliams et al. (2015) proposed an algorithm
that combines RP with the Ridge Regression of Hoerl and Kennard (1970) in the
so-called LOCO algorithm while Slawski (2018) compares the prediction error of RP to
PCA in a Twitter data application highlighting the potential of RP. Bounds on excess
predictive risk are constructed in Maillard and Munos (2009) and developed further in
Kaban (2014) and Thanei et al. (2017) which reveal a similar bias-variance trade off
that methods such and Ridge and Lasso experience. Where reducing the size of the
new subspace, k, induces bias but reduces variance in a predictive sense. Finally, one
of the only works to apply RP to a setting in economics is Boot and Nibbering (2019)
who show RP outperforming many other commonly used method for
high-dimensional linear regression in a setting concerned with forecasting with
FRED-MD data. They also derive a predictive risk bound to support the case of RP
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being useful for forecasting with macroeconomic indicators.

Therefore, it can be seen that such a method is very new to economics in a predictive
sense. In addition, it is also noticeable that RP has not been adapted in any way that
focuses primarily on individual parameter estimates that may be of interest in typical
linear regression settings encountered by economists. Therefore, this paper seeks to
propose an estimation procedure for individual parameters that may be of particular
interest to an analyst. This procedure seeks to utilise the dimension reduction element
of RP and, hence, is referred to as Partial Random Projections (PRP). In a similar
fashion to that of many earlier methods, it aims to achieve a favourable bias-variance
trade off when faced with data sets typically faced by economists and, therefore, are
often characterised by significant contemporaneous correlation amongst predictors as
well as sparsity in the true data-generating-process (DGP). More specifically, ordinary
RP is known to is known to induce bias into the coefficients from reducing the
dimension of the predictor matrix. PRP seeks to improve upon this from the
perspective of a single parameter by using the RP mechanism to reduce the dimension
of the X−j without affecting xj. The aim of this being to achieve more favourable
properties in the estimate of β j as a reflection of its true value.

This paper is organized as follows: Section 4.2 formally defines RP and the proposed
estimation procedure as well as the toy model setting under which the properties of
this approach will be analysed. Section 4.3 goes into depth on the behaviour of the
bias and variance of PRP with comparisons drawn with Ridge. Section 4.4 provides
simulation evidence to support the theoretical conclusions and Section 4.5 concludes.

4.2 Model Framework and Assumptions

4.2.1 Estimation Procedure

In order to define the proposed parameter estimation approach, the following true
Data Generating Process (DGP) is defined as a reformulation of 4.1 with X = (xj X−j)

and β = (β j β−j)
′ with β j being the individual coefficient of interest at this given time,

y = xjβ j + X−jβ−j + ϵ , (4.5)

where xj is an n × 1 vector of the covariate whose coefficient is of interest while X−j is
a n × (p − 1) matrix with each column representing another covariate which may or
may not be active in determining the outcome, y. Therefore, β j is a scalar and β−j is a
(p − 1)× 1 vector. The error term is denoted by ϵ with a more formal definition in the
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assumptions below.

From here it is assumed that p is large relative to n resulting in OLS via the
Frisch-Waugh-Lovell Theorem being infeasible since p − 1 > n. Therefore, in the
nature of RP, X−j is compressed to a n × k dimension where k < n < p − 1 by multiply
by the random matrix Rs for s = 1, . . . , S where S is the total number of random draws
of the R matrix used. Specifically, the Frisch-Waugh-Lovell theorem can can now be
applied to the following linear model. So, essentially, one is estimating β j by
partialling out the covariates in X−j with a RP mechanism as seen below,

y = xjβ j + X−jRsβ−j + e , (4.6)

where Rs is a p − 1 × k matrix such that:

Rs
ij ∼I ID N(0, 1) .

For i = 1, . . . , p − 1 and j = 1, . . . , k. This makes X−jRs an n × k matrix with k << p.

This process can be repeated for each variable in j = 1, . . . , p so that a full profile of β

can be estimated. This way one side steps the issue of OLS being infeasible while the
potential higher bias arising from Random Projections alone due to how one
compresses the original predictor then recompresses it after OLS has been carried out.

Proposition 4.1: The Partial Random Projections estimator for β j for a single draw of
Rs is given by the following expression:

β̂s
j = (x′jxj)

−1x′j(y − X−jRs β̂−j) , (4.7)

where
β̂s
−j = (Rs ′X′

−j MxX−jRs)−1Rs ′X′
−j Mxy . (4.8)

It is important to mention here that β̂s
−j is a k × 1 vector so once may not view this as a

final estimator of β−j. To obtain this estimate, one must multiply β̂s
−j by Rs, however,

this is irrelevant when one is only concerned with β̂s
j . Since this is repeated for S

draws of R, a final estimate for β̂ j is computed by averaging the estimate for each
draw as follows:

β̂ j = ER[β̂
s
j ] =

1
S

S

∑
s=1

β̂s
j .

A proof is provided in Appendix 4.A.1
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It is worth noting that, from here onwards, the s superscript notation will be dropped
as all expressions will be considered as an expectation (or variance) over all draws of
R. Here, Mx = In − xj(x′jxj)

−1x′j. While these expressions mean little in isolation, the
following subsections analyse the bias and variance of this method and draw
comparison with other high-dimensional regression methods in a simplified setting.
While the expression in Proposition 4.1 is for a single draw of R, the bias and variance
analysis allows for one to construct numerous β̂ j estimates over multiple draws of R
then average them to obtain a final estimate.

4.2.2 Toy Model

In the following section, expressions for the bias and variance of Partial Random
Projections will be derived for a fixed design setting. However, on surface value these
do not mean much in terms of understanding how they behave under various
conditions of the data and true DGP. Therefore, some restrictions are imposed later on
in order to more easily understand how the bias and variance will likely vary between
settings in order to determine when this novel approach can outperform other well
established methods.

The following assumptions are made:

A1 The error term components are independently and identically distributed with 0
mean and homoskedastic variance. ϵ ∼ I ID(0, σ2

ϵ In).

A2 The predictor covariance matrix X′
−jX−j is positive semi-definite.

A3 All covariates are standardized to have mean 0 and unit variance (x′ixi = n for all
i = 1, . . . , p).

A4 The correlation between xj and all covariates in X−j are equal. That is
X′
−jxj

n = (τ, τ, . . . , τ)′.

A5 There is equal correlation between all covariates in X−j and this need not be the
same as the correlation between xj and each variable in X−j (ρ ̸= τ). Therefore,
with a slight abuse of notation, the covariance matrix of X−j is given as follows:

X′
−jX−j

n
=



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1


.
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Where one can see that in order for the above p − 1 square matrix to be positive
definite, the following condition must be satisfied for p > 2 (for p = 2 then only only
ρ2 < 1 is required),

ρ > − 1
p − 2

.

Note that, in order for the covariance matrix for X = (xj X−j) to be positive definite,
the following condition, derived from recursively computing the determinant of X′X,
must hold concerning τ and ρ assuming n is fixed,

(p − 2)ρ > (p − 1)τ2 − 1 .

As p → ∞ then this is approximately

ρ > τ2 .

Therefore, in this toy model setting, it is such that ρ ≥ 0 which, although may seem
restrictive, the results will be without loss of generality.

4.3 Estimator Properties

4.3.1 Bias

In this section, the bias of Partial Random Projections is derived under the toy model
assumptions and compared to other commonly used approaches such as Ridge
Regression. To begin with, the bias is derived from the expression in Proposition 4.1
using the formula of conditional expectations since both R and ϵ are stochastic.
Therefore, as mentioned previously, from here onwards, the case where multiple
draws of R are used and averaged over is considered with ER denoting the mean
across all draws of R.

4.3.1.1 Partial Random Projections

Since it is known that RP induces bias from projecting the predicting matrix onto a
lower dimensional subspace, one would suspect that sparing xj from projection would
benefit the estimation of β j. The following proposition and analysis investigate this
claim further to understand how PRP may be able to hold an edge over RP in certain
scenarios.
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Proposition 4.2: Where R is the p − 1 × k subspace transformation matrix, the bias
expression for the Partial Random Projections estimator is given by the following
general expression by taking an expectation over both R and ϵ,

Bias(β̂ j) = (x′jxj)
−1x′jX−j

(
β−j − ER[R(R′X−j MxX−jR)−1R′]X′

−j MxX−jβ−j

)
. (4.9)

A proof is provided in Appendix 4.A.2

From here, one can carry out an eigendecomposition of the matrix X′
−j MxX−j as

follows:
X′
−j MxX−j = UDU′ , (4.10)

D = diag(λ1, λ2, . . . , λp−1) ,

where U is a p − 1 × p − 1 matrix with each column representing an eigenvector of
X′
−j MxX−j and D is p − 1 × p − 1 diagonal matrix with each diagonal element being

the eigenvalues of X′
−j MxX−j in descending order with the largest in the top left down

to the smallest in the bottom right. Since X−j MxX−j is symmetric, it is such that U is
orthogonal meaning that U′U = UU′ = Ip−1 resulting in the following expression for
the bias term:

Bias(β̂ j) = (x′jxj)
−1x′jX−jU

(
Ip−1 − ER[R(R′DR)−1R′]D

)
U′β−j . (4.11)

From here, the fundamental way to evaluate the expression above lies in the
evaluation of ER[R(R′DR)−1R′]. Due to the nature of how this transformation of the R
components involves quadratic ratios, it is not possible to write this as a closed form
expression as shown in Marzetta et al. (2011). However, it is well defined in the sense
that it is a diagonal matrix with each diagonal element a function of k

p (more
specifically k

p−1 ) and the eigenvalues in D,

ER[R(R′DR)−1R′] = diag
(

1
η1

,
1
η2

, . . . ,
1

ηp−1

)
. (4.12)

It is worth noting that a special case where all the eigenvalues of X′
−j MxX−j are equal

results in 4.11 being much more easily analyzed since it is such that
λ1 = λ2 = · · · = λ = ηi for all i meaning that 4.12 can be written as 1

λ Ip−1. However,
the following theorem generalizes more under the toy model framework.
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Theorem 4.1: Under the assumptions of the toy model detailed in Section 4.2.2, the
bias of the PRP estimator is given by the following:

Bias(β̂ j) = τ

(
1 − 1 + (p − 2)ρ − (p − 1)τ2

η1

) p

∑
i ̸=j

βi , (4.13)

where the 1
η1

component comes from the assumption that 1 + (p − 2)ρ − (p − 1)τ2 is
the maximum eigenvalue which can be made without loss of generality.

A proof is provided in Appendix 4.A.3

From, here one can use Corollary 1 from Thanei et al. (2017) that allows the bias term
to be bound from above.

Lemma 4.1: The bias term can be bounded above with the following expression:

Bias(β̂ j) ≤ τw
p

∑
i ̸=j

βi , (4.14)

where

w =

(
1 + 1

k

)
α2 +

(
1 + 2

k

)
α + 1

k(
k + 2 + 1

k

)
α2 + 2

(
1 + 1

k

)
α + 1

k

,

α =
1 + (p − 2)ρ − (p − 1)τ2

Trace(D)
.

Combining all the expressions in Lemma 4.1, the following inequality can be written.

Bias(β̂ j) ≤
τ(2 + 3(p − 2)ρ − 2(p − 1)τ2)

2 + 3(p − 2)ρ − 2(p − 1)τ2 + k(1 + (p − 2)ρ − (p − 1)τ2)

p

∑
i ̸=j

βi . (4.15)

One of the first features that stands out is how when τ = 0 the bias (and squared bias)
of PRP is 0 which hints that this methods looks promising for estimating coefficients
of covariates that show little correlation with the other candidate predictors. This
corresponds to the case where xj is uncorrelated with all variables in X−j so may be
viewed as hypothetical but provides a good foundation for characterising when PRP
will perform well. Another interesting property can be seen when considering the
case where ρ = 0 allowing significant simplification leading to the following bound:

Bias(β̂ j) ≤
2τ

2 + k

p

∑
i ̸=j

βi . (4.16)
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This helps so show, more clearly, how the bias magnitude remains low when either τ,

∑
p
i ̸=j βi or both are small and this can be assisted by choosing a larger subspace

dimension (k). Such an expression can be easily compared to that of Ridge regression
and will be discussed in the following subsection. Finally, one can see that the fraction
term from 4.15 lies between 0 and 1 and will depend on ρ, τ and k. the figure below
shows, under various magnitudes of ρ and τ, how the fraction component changes
with k.

FIGURE 4.1: How the fraction component (τw) varies across k under various correla-
tion conditions where p=100

As expected, the weight, and the magnitude of the bias, decreases as k approaches p.
It is also interesting to see that the case where τ and ρ is 0.7 provides the highest
weight compared to the cases where one or both ρ and τ being significantly smaller. It
is also worth noting that cases where τ is smaller seem to result in the weight starting
at a smaller value and staying lower than the rest for all values of k. So it seems that τ

is more influential on the bound for the bias compared to ρ which can have
implications for the optimal k as when τ is small, there is little improvement in the
bound compared to when τ is larger. This can allow one to impose a lower k to keep
the variance down unlike the case where τ = 0.7 where the bound improvement slope
does not start to flatten until k

p reaches approximately 0.5.
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4.3.1.2 Comparison to other methods

In this subsection, the bias of PRP will be compared with the marginal least squares
estimator for β j as well as that of Ridge regression with respect to features of the true
DGP. Firstly, for marginal least squares, the estimator for β j under 4.5 is given as
follows:

β̂mls
j =

x′jy

x′jxj
, (4.17)

where one can easily show that the bias is given by the following:

Bias(β̂mls
j ) =

x′jX−jβ−j

x′jxj
= τ

p

∑
i ̸=j

βi . (4.18)

This can be shown to be always larger than the bound for the bias of PRP in 4.15 since
the discussion below A5 showed that 1 + (p − 2)ρ − (p − 1)τ2 ≥ 0 then the following
is true,

w =
(2 + 3(p − 2)ρ − 2(p − 1)τ2)

2 + 3(p − 2)ρ − 2(p − 1)τ2 + k(1 + (p − 2)ρ − (p − 1)τ2)
≤ 1 . (4.19)

Moreover, it can be shown that w is smaller when the degree to which ρ > τ2 is larger.
Therefore, PRP has noticeable gains in bias over marginal least squares which is
interesting given how the 2 approaches are similar in nature due to how they focus on
the estimation of a single parameter at a time. This a crucial step for the PRP approach
as marginal least squares should be viewed a benchmark and to take this further a
comparison to the more sophisticated Ridge Regression will be made to consolidate
this further.

Under the toy model assumptions, one can easily show that the bias expression of
Ridge regression is given as follows:

Bias(β̂ j(λR)) =
τλR ∑

p
i ̸=j βi − λRβ j(1 + λR + (p − 2)ρ)

(λR + 1)2 + ρ(p − 2)(λR + 1)− (p − 1)τ2 , (4.20)

where, unlike for PRP, when τ = 0 the bias in non-zero. More specifically, it is given by

Bias(β̂ j(λR)) = −
λRβ j

λR + 1
. (4.21)

Here, one can also see that the main component of this expression is the true value of
β j itself meaning that as β j becomes larger in magnitude, PRP has bigger gains
potential through the bias. It is also very similar for when ∑

p
i ̸=j βi = 0 where the PRP
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is unbiased whereas the bias for Ridge is given by the following:

Bias(β̂ j(λR)) = −
λRβ j(1 + λR + (p − 2)ρ)

(λR + 1)(1 + λR + (p − 2)ρ)− (p − 1)τ2 , (4.22)

= −
λ2

Rβ j + λRβ j + O(1)
λ2

R + ((p − 2)ρ + 2)λR + O(1)
,

where, once again, this is typically non-zero and grows significantly in magnitude as
the size of β j does. Returning to the expression in 4.20, for the purpose of this
comparison, consider the bias written in the following form:

Bias(β̂ j(λR)) =
τ ∑

p
i ̸=j β j

1
λR

((λR + 1)2 + ρ(p − 2)(λR + 1)− (p − 1)τ2)

−
β j(1 + λR + (p − 2)ρ)

1
λR

((λR + 1)2 + ρ(p − 2)(λR + 1)− (p − 1)τ2)
. (4.23)

Here the focus will be on the first fraction term where the numerator is similar to that
seen in the bound for the PRP bias in 4.14 and 4.15 where τ ∑

p
i ̸=j βi is the key

component. Looking closer, one can expand and rearrange the denominator term as
follows where, henceforth, it is such that h = 1 + (p − 2)ρ − (p − 1)τ2 (h > 0),

λR + 2 + (p − 2)ρ +
h

λR
. (4.24)

To see how this behaves, the first derivative is taken with respect to λR,

d
dλR

(
λR + 2 + (p − 2)ρ +

h
λR

)
= 1 − h

λ2
R

. (4.25)

Where it can be seen that this is decreasing in λR up until where λR = h
1
2 with a

strictly positive second derivative. Even from here, the gradient is never greater than 1
meaning that there is the potential (when h is very large) for a very large λR required
in order to sufficiently restrain this first component of 4.23. However, the second
fraction of 4.23 has a λR term in the numerator and will always increase in magnitude
with λR when |β j| > 1 since the numerator and denominator both have the same
order of magnitude in λR.

Now, recall from 4.15 the bias bound that can be reformulated in a similar way to that
of the first term from 4.23,

Bias(β̂ j) ≤
τ ∑

p
i ̸=j βi

1 + kh
2h+(p−2)ρ

. (4.26)

Therefore, one can assess these 2 bias terms by comparing 4.24 and the denominator of
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4.26. This can be formalised with the following condition for when the denominator of
4.26 is greater than 4.24,

kh
2h + (p − 2)ρ

−
(

λR +
h

λR
+ 1 + (p − 2)ρ

)
> 0 . (4.27)

When this condition holds, one more step can be taken in establishing the bias of PRP
being smaller in magnitude than that Ridge by revisiting 4.23. If the denominator of
4.26 is larger than that of 4.24, it can then be seen that if β j has the opposite sign to that
of τ ∑

p
i ̸=j βi then the second fraction in 4.23 will increase the magnitude of the squared

bias for Ridge due to how the denominator is always positive for λR > 0.

Looking at 4.27 closer one can see that a large h makes this much more likely to hold
or, at the very least, requires a very small λR in order to prevent it which would then
leave little room for Ridge to demonstrate its variance gains as will be discussed in the
following section. In addition, this may not still prevent the second fraction term in
4.23 from escalating the bias significantly when β j and ∑

p
i ̸=j βi are opposite signs.

Therefore, one can argue that situations where ρ is much greater then τ2 (leading to a
large h) favour PRP over Ridge due to the bias. To summarise this more concretely;
the larger h leads to a larger denominator for the bias bound from 4.26 which,
combined with β j being of opposite sign to that of ∑

p
i ̸=j βi contributes to a bound of

the PRP bias being much less than that of Ridge. So one can see that there are multiple
channels to which PRP can improve over Ridge.

4.3.2 Variance

In this section, the behaviour of the variance of PRP under the toy model is
investigated with respect to the subspace dimension as well as the relevant features of
the true DGP. It is somewhat more complex than the bias due to how uncertainty
comes from both the true DGP noise (ϵ) as well as the randomness from the dimension
reduction matrix (R). Nonetheless, the Proposition below represents and expression
for the variance in closed form.

4.3.2.1 Partial Random Projections

While it was established that PRP shows promising signs through its bias term, this
may be undone should its variance suffer under certain conditions of the true DGP.
The following proposition and analysis look closer into how its variance behaves
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given that only X−j has its dimension reduced.

Proposition 4.3: The variance expression of the PRP estimator is given by the
following expression by considering the variance over the distribution of both R and ϵ,

Var(β̂ j) = σ2
ϵ

(
(x′jxj)

−1 + (x′jxj)
−1x′jX−jER[R(R′X′

−j MxX−jR)−1R′]X′
−jxj(x′jxj)

−1
)

+ VarR

(
(x′jxj)

−1x′jX−jR(R′X′
−j MxX−jR)−1R′X′

−j MxX−jβ−j

)
. (4.28)

A proof is provided in Appendix 4.A.4

From first appearance of the expression above, one can see that there are 2
components which can be justified with intuition. The first line of 4.28 is similar in
nature to the variance of a Frisch-Waugh OLS estimate for β j being governed by the
error variance and the covariance matrix of the transformed data set. While the
second line is noticeably different and appears to be very similar in structure to that of
the β j estimate for a given draw of R seen in 4.7 or even the bias term in 4.9. Therefore,
one can view this component as the variability in the estimate of β j arising from the
randomness of R.

Using a similar approach to that used for the bias, one can rewrite the expectation
term in 4.28 as follows:

(x′jxj)
−1x′jX−jER[R(R′X′

−j MxX−jR)−1R′]X′
−jxj(x′jxj)

−1 =
(p − 1)τ2

η1
. (4.29)

Where η1 corresponds to the maximum eigenvalue of X′
−j MxX−j. From here, one can

use the following inequality from Thanei et al. (2017) to bound the above expression,(
1 − λi

ηi

)2

≤ w2
i ≤ 1 , (4.30)

1
η1

≤ 2
λ1

.

Applying this to 4.29 with the maximum eigenvalue being 1 + (p − 2)ρ − (p − 1)τ2,
the following variance inequality can be stated. Due to what was discussed in 4.2.2
regarding the relationship between ρ and τ2, when writing general expressions it will
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be assumed that ρ > τ. Therefore the variance is 4.28 can be bounded as follows:

Var(β̂ j) ≤
σ2

ϵ

n

(
1 +

2(p − 1)τ2

1 + (p − 2)ρ − (p − 1)τ2

)
+ VarR

(
(x′jxj)

−1x′jX−jR(R′X′
−j MxX−jR)−1R′X′

−j MxX−jβ−j

)
. (4.31)

While this bound does is not dependent on k, the first component in brackets on the
right-hand side can be shown to be increasing in k and will always be greater than σ2

ϵ
n

apart from the case where τ = 0 (since 1 + (p − 2)ρ − (p − 1)τ2 > 0). Once again, it
can be seen that this component is much lower when ρ is significantly greater than τ2

along with τ alone being smaller in magnitude bringing the entire term in brackets
closer to 1. This is an important benchmark as this is what the variance would be for
OLS if it were feasible and will also be an important point of comparison to other
methods as will be seen in the following subsection.

The second component of the above inequality is notably more challenging to
evaluate for 2 reasons. Firstly, the complexity of it means that it is hard for one to
simplify it into standard components, such as R(R′X′

−j MxX−j)
−1R′, leaving a very

complex transformation of Gaussian random variables. Secondly, the fact it is a
polynomial function of Gaussian random variables with infinite support makes it
challenging to bound. However, one can see that when τ = 0 then the whole
component goes to 0, stressing once more how PRP performs so well when the
correlation between xj and X−j is relatively low.

To understand this more deeply, a small simulation study is carried out to investigate
the behaviour of the variance component on the right-hand side of 4.31 with respect to
ρ, τ and β−j. This small study is divided into 4 separate classes, each considering a
different profile of β−j. For each design the number of of coefficients in β−j, p − 1, is
fixed at 100 and the variance is taken over 100 draws of R. 3 separate combinations of
ρ and τ are considered; one being where they are both small, one where ρ is large and
τ is small and, finally, one where they are both large. It is worth noting that one can
easily verify that, for each experiments, the conditions of A5 are satisfied with a
varying magnitude of (p − 2)ρ − (p − 1)τ2. Regarding the profiles of β−j, the
following table summarises this.

Design β−j pattern ∑
p−1
i=1 β−j,i

1 βi = 1 for all i p − 1

2 50% of βi = 2, 50% of βi = −2 0

3 βi = i p(−1)
2

4 βi = i(−1)i+1 − p−1
2
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So one can see that there is significant variation in profiles of β−j that one might face
in empirical settings. One would expect Design 3 to possibly produce the largest
variances due to how 4.31 shows the variance component increasing with the
elements of β−j and this design has by far the largest sum of all the coefficients. The
following tables report the value of this variance component using 100 draws of R for
each design with each row representing a different experiments with varied ρ and τ

combination while each column represents a different subspace dimension, k, for the
matrix R.

TABLE 4.1: Design 1 Variance component of 4.31

k
10 20 30 40 50 60 70 80 90

τ = 0.2, ρ = 0.2 4.965 0.973 0.465 0.174 0.078 0.026 0.016 0.006 0.003

τ = 0.2, ρ = 0.7 0.315 0.029 0.005 0.001 0.000 0.000 0.000 0.000 0.000

τ = 0.7, ρ = 0.7 20.08 3.264 0.795 0.258 0.072 0.037 0.018 0.010 0.002

TABLE 4.2: Design 2 Variance component of 4.31

k
10 20 30 40 50 60 70 80 90

τ = 0.2, ρ = 0.2 0.163 0.133 0.068 0.056 0.037 0.017 0.015 0.010 0.004

τ = 0.2, ρ = 0.7 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

τ = 0.7, ρ = 0.7 0.284 0.154 0.094 0.048 0.039 0.032 0.020 0.014 0.005

TABLE 4.3: Design 3 Variance component of 4.31

k
10 20 30 40 50 60 70 80 90

τ = 0.2, ρ = 0.2 1129 2656 955.0 660.8 198.6 86.47 50.48 18.76 5.562

τ = 0.2, ρ = 0.7 477.1 58.81 13.35 5.312 1.967 0.837 0.393 0.174 0.050

τ = 0.7, ρ = 0.7 7075 7194 1001 421.8 177.5 86.98 43.80 20.12 7.121

TABLE 4.4: Design 4 Variance component of 4.31

k
10 20 30 40 50 60 70 80 90

τ = 0.2, ρ = 0.2 160.5 90.46 48.64 34.34 26.34 17.41 15.66 8.418 3.683

τ = 0.2, ρ = 0.7 3.228 1.188 0.845 0.468 0.278 0.222 0.134 0.083 0.036

τ = 0.7, ρ = 0.7 309.8 120.7 88.82 71.00 34.26 18.77 17.18 5.988 4.394

One of the first things that stands out from the results is how the variances improve as
k increases and is likely due to how the expression inside the variance term is similar
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in structure to that of the bias which improves as k approaches p. This is in contrast to
the first component of 4.31 which can be seen to worsen as k increases so this feature
makes bias-variance trade off of PRP somewhat unclear with regards to using k as a
means of controlling this. Secondly, as predicted, it appears that when the sum of all
the β−j components are larger then so is the entire variance component. This can be
seen how typically the values in Table 4.3 are greater than that of the counterparts in
all other tables while Design 2 has the smallest values when previously it was shown
that ∑

p−1
i=1 β−j,i = 0 for Design 2. Finally, it is clear from the results that the variance

component is smallest when ρ = 0.7 and τ = 0.2 for all designs. This is also consistent
with the bias properties discussed in 4.3.1 and further supports the argument of there
being situations that PRP can thrive in and act as a useful alternative to other methods.

4.3.2.2 Comparison to other methods

Similar to section 4.3.1.2 the variance of PRP will be compared to that of marginal least
squares and Ridge. Firstly, one can see that from the estimator for marginal least
squares in 4.17 the variance is given by the following:

Var(β̂mls
j ) =

σ2
ϵ

n
. (4.32)

Therefore, based on the discussion from Section 4.3.2.1, the variance of marginal least
squares will always be smaller than that of PRP with the exception of when τ = 0.
This is interesting as in Section 4.3.1.2 it was shown that the PRP bias will always be
smaller than that of marginal least squares, therefore, one can make the generalisation
that PRP is more effective when ∑

p
i ̸=j βi is large relative to σ2

ϵ , or rather that the
signal-to-noise ratio (SNR) is greater since the bias gains will outweigh the variance
differences.

For Ridge, it is much more complex, under the toy model, the variance for the
estimator of a single predictor using Ridge is given as follows:

Var(β̂ j(λR)) =

σ2
ϵ

n
(1 + λR + (p − 2)ρ)2 − 2τρ(p − 1)(1 + λR + (p − 2)ρ) + τ2(p − 1)(1 + (p − 2)ρ)

((1 + λR)2 + (p − 2)ρ(1 + λR)− (p − 1)τ2)2 .

(4.33)

Firstly, one can see how the above varies with respect to λR by considering separate
derivatives of the numerator and denominator. The numerator first derivative is given
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by the following expression:

2
(
λR + 1 + ρ ((p − 2)− τ(p − 1))

)
, (4.34)

with the denominator equivalent given below,

2
(
2(1 + λR) + ρ(p − 2)

)(
1 + λ2

R + ρ(p − 2) + λR (2 + (p − 2)ρ) + τ2(p − 1)
)

. (4.35)

This can be written as follows to facilitate comparisons between the 2 expressions,

(
2(1+λR + ρ(p− 2))+ 2(1+λR)

)(
1+λ2

R + ρ(p− 2)+λR (2 + (p − 2)ρ)+ τ2(p− 1)
)

,

which can be rewritten in the following form:

2(1 + λR + ρ(p − 2))
(
1 + λ2

R + ρ(p − 2) + λR (2 + (p − 2)ρ) + τ2(p − 1)
)

+ 2(1 + λR)
(
1 + λ2

R + ρ(p − 2) + λR (2 + (p − 2)ρ) + τ2(p − 1)
)

. (4.36)

From here, one can use the fact from A5 that for λR ≥ 1 then
1 + λ2

R + ρ(p − 2) + λR (2 + (p − 2)ρ) + τ2(p − 1) > 1 (this will also very likely be the
case for when 0 ≤ λR ≤ 1). Therefore, it can be seen that for λR ≥ 1 then the
denominator derivative will be much larger than that of the numerator with both
always being positive. As a result, it can be concluded that with λR increasing, the
variance of Ridge shrinks rapidly allowing potential for large gains over PRP. To give
this more perspective, a possible worst case scenario is considered whereby λR = 0 to
see how the variance of Ridge behaves with respect to ρ and τ. When λR = 0, the
variance expression given in 4.33 becomes the following:

Var(β̂ j(λR)) =

σ2
ϵ

n
(1 + (p − 2)ρ)2 − 2τρ(p − 1)(1 + (p − 2)ρ) + τ2(p − 1)(1 + (p − 2)ρ)

(1 + (p − 2)ρ − (p − 1)τ2)2 . (4.37)

Rearranging the above leads to the following expression making it more comparable
to PRP,

Var(β̂ j(λR)) =
σ2

ϵ

n

(
1 +

(1 + (p − 2)ρ) (p − 1)
(
3τ2 − 2τρ

)
− (p − 1)τ2

(1 + (p − 2)ρ − (p − 1)τ2)2

)
, (4.38)

where one can see that for 0 ≤ τ ≤ 2
3 ρ then the fraction term within the brackets

becomes negative meaning that the Ridge variance term is less than the marginal least
squares benchmark of σ2

ϵ
n and, therefore, will always be lower than that of PRP. Based

on the condition relating ρ and τ2 in A5, this requirement will occur more of often
than not making Ridge have a lower variance, even when λR = 0. This combined with
the previous analysis revealing how the variance is always decreasing in λR for



130
Chapter 4. Partial Random Projections, A Novel Approach to High-Dimensional

Linear Regression in Economics

λR ≥ 1, it is clear that Ridge has a significant advantage over PRP in terms of variance.

This section has shown that Ridge (and marginal least squares) have an advantage
over PRP when τ ̸= 0, therefore, for PRP to outperform them, its gains will come from
its promising potential for a lower bias. This means that, already, one can characterise
scenarios in which PRP provides a lower MSE by situations where the the SNR is
greater since the bias magnitude, inflated by β j and ∑

p
i ̸=j βi, is a larger component than

the variance controlled by σ2
ϵ

n . The following section provides simulation evidence to
see how these opposite approaches to the bias-variance trade off perform in an
environment where one is focused on the estimation of a single parameter with a high
dimensional set of controls mimicking a causal inference study.

4.4 Simulation Evidence

As mentioned previously, this section is devoted to replicating a causal inference
study whereby one is interested in estimating the sign and magnitude of the treatment
variable parameter as accurately as possible. A range of approaches will be used to
compute this coefficient and will be compared based on how close their estimate of
the treatment variable coefficient is to that of the value under the true DGP. Multiple
experiments are carried out with the correlation amongst the predictors,
signal-to-noise ratio and sparsity in the true coefficients varied throughout. The
experiments are split into 2 separate classes concerned with the profile of true
parameters. The first is concerned with all active coefficients being homogeneous
while the second involves all non-zero coefficients varying significantly in sign and
magnitude. From the analysis of the previous section, one would expect PRP to thrive
more when the the coefficients have mixed sign and magnitude due to the bias gains
over other methods. To facilitate this, a high SNR would likely also favour PRP as the
relativity of the coefficients size to the error variance would mean that the bias is a
larger proportion of the MSE where PRP has an advantage.

The DGP is defined by the linear expression identical to 4.1 as follows:

y = Xβ + ϵ , (4.39)

where, as mentioned previously, X is a n × p matrix of predictors and y is a n × 1
vector of the dependent variable observations. The coefficient profile is given in the
p × 1 vector, β, and the stochastic error terms are given in the vector ϵ. To begin, the
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predictor matrix X is simulated from a multivariate normal distribution as follows:

Xn×p ∼ N(0, ΣX) , (4.40)

where the covariance matrix is defined similar to that used in the toy model setting by
the following:

ΣX =



1 τ τ . . . τ

τ 1 ρ . . . ρ

τ ρ 1 . . . ρ
...

...
...

. . .
...

τ ρ ρ . . . 1


, (4.41)

with τ and ρ varied across experiments. At this point, it is worth mentioning that the
expression in 4.39 can also be reformulated in similar fashion to 4.5 as seen in 4.42.
Here X = (xj X−j) and β = (β j β′

−j)
′ with xj and β j being the jth column of X and jth

element of β respectively while X−j and β−j represent all other covariates and
coefficients respectively.

y = xjβ j + X−jβ−j + ϵ . (4.42)

This is particularly useful since the focus of this study is on the estimation of a single
covariate of interest which is β j in this case. It is also important to note that, by the
design of 4.41, the covariance between xj and all other predictors is τ while the
correlation between all predictors besides xj is given by ρ when j = 1. Therefore, an
additional layer of fine tuning has been added to investigate how the relative
correlations influence estimation accuracy as Section 4.3 showed how significant this
is likely to be. Specifically, all experiments carried out consider 3 separate profiles of τ

and ρ, all of which satisfy the conditions outline below A5 for covariance matrix
feasibility. The first is where τ = 0.2 and ρ = 0.7 as is this is believed to favour PRP
over other methods as discussed previously and replicates a setting where the controls
variable are closely correlated with each other but the treatment variable has little
correlation with the controls. One might expect this to be the case where many of the
control variables are similar measures, for example, in a macroeconomic setting one
might wish to use inflation as a control but will likely have multiple price indices
available which will be highly correlated with each other. Another setting is where
both τ and ρ are equal to 0.2 replicating an environment with all-round little
correlation. Although this is less realistic since, in high dimensional settings, there is
usually significant correlation present purely by chance. Finally, a more realistic
setting where both τ and ρ are equal to 0.7 is used to create an environment where all
the variables are highly correlated, proving helpful for some methods but negatively
impacting the estimation accuracy of others.

For the coefficients in β, 2 classes of profiles are considered with attention given to the
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proportion of variables deemed as being active (variables that have a non-zero true
coefficient) as well as the sign and magnitude of these active coefficients. Firstly, let s
be defined as the proportion of coefficients in β that are non-zero for s ∈ (0, 1).
Multiple experiments are considered with s varied over (0.1, 0.4, 0.8) to see how the
degree of sparsity can influence the performance of PRP and its competitors. While
there is no direct implication of this detailed in Section 4.3, one would expect that it
has the potential to exaggerate the gap in computational accuracy’s of PRP and the
other various methods with implications on when PRP may be most suitable. For the
sp active predictors, the 2 designs are as follows:

• Design 1: Homogeneous Coefficients
Here, the first sp coefficients of β all take a value of 1√

n with the rest equal to 0.
Under the formulation of 4.42, β1 = 1√

n so one is always interested in the
estimation of an active coefficient. As discussed earlier, this setting is less
favourable to PRP due to less potential relative bias gains over methods such as
Ridge, however, it is still interesting to see how its performance varies over other
factors of the true DGP.

• Design 2: Mixed Sign and Magnitude Coefficients
Under this design, the coefficients in β are computed as follows for i = 1, . . . , p,

βi =


(−1)i(sp+1−i)√

n for i ≤ sp

0 otherwise
. (4.43)

to illustrate this with a small example, when sp = 5 then the non-zero
components of β would be βactive = (−5, 4,−3, 2,−1)′ (assuming n = 1 for
simplicity here) and since β1 is the first component of β then β1 = −5. In this
setting, one would expect PRP to estimate β1 more accurately relative to other
methods that suffer through the bias when the true coefficients vary significantly
in sign and magnitude. Finally, in both of these designs, the inclusion of the
reciprocated

√
n term is to keep the coefficients local to 0 which is necessary to

keep the bias from using a low dimensional subspace finite (Boot and Nibbering
(2019)) for the purpose of RP and PRP.

Regarding the disturbance term in 4.39, it is such that each element of ϵ is simulated
from an independent normal distribution such that ϵ ∼ N(0, σ2

ϵ In). Regarding the
variance term, σ2

ϵ , the following definition of signal-to-noise ratio (SNR) is first
defined,

SNR =
β′ΣX β

σ2
ϵ

. (4.44)

Therefore, using the above equality, 3 separate experiments are carried out with the
SNR fixed at 1, 5 and 10 to replicate different DGP environments that might be face.



4.4. Simulation Evidence 133

One would expect PRP to perform well in environment of a high SNR where the
magnitude of β components is large relative to that of σ2

ϵ making the estimator biases
account for a larger proportion of inaccuracy, where PRP is known to carry benefits
over other approaches.

For all experiments, the analyst is faced with 200 candidate predictors (p = 200) and a
sample size of n = 100 ensuring a high dimensional setting. As mentioned previously,
one is interested solely in the estimation of the first coefficient in the coefficient matrix
as seen in 4.42 with j = 1 since xj is assumed to be the treatment variable and the
methods used to estimate this include: Marginal Ordinary Least Squares (MOLS),
Ridge, Lasso, Partial Ridge (from previous work), Random Projections (RP) and PRP.
For MOLS, an estimate of β1 is computed by regressing only x1 on y while Ridge and
Lasso estimate the whole profile of β followed by the estimate of β1 taken out for
comparison purposes. For both Ridge and Lasso, 10 fold cross validation is used to
determine the penalty parameter while for Partial Ridge a grid with varying interval
sizes from 0.1 to 2000 is used to compute multiple estimates of β1. The penalty
parameter that provides the lowest mean-square-error (MSE) of β1 is used as the final
estimate representing Partial Ridge with MSE defined shortly.

Finally, for RP and PRP, the subspace dimension, k, is also chosen by considering the
grid k ∈ (10, 20, 30, 50, 70, 90) meaning that for each simulation there will be 6
estimates for both RP and PRP with the one providing the lowest MSE reported.
When computing an estimate for each subspace dimension size for either RP or PRP,
100 draws of the random matrix R are used leading to 100 preliminary estimates of β1,
these are then averaged to obtain a single estimate for that simulated data set. For
each method in a given experiment, the best of the 6 estimates are reported so the
value of k for each result is either 10, 20, 30, 50, 70 or 90 and this need not be the same
for both RP and PRP. It is also important to mention that, for all methods besides
MOLS1, both the dependent and independent variable are standardised before
parameter estimation. Following this, the estimated value of β1 is multiplied by the
ratio of standard deviations, sd(y)

sd(x1)
, in order to obtain a parameter estimation on the

same scale as the original data.

Regarding the metric of performance comparison, the main measure used is the
mean-squared error (MSE) with the lowest MSE representing a higher accuracy. This
is defined as the squared difference between the estimated coefficient from a given
method (β̂1) and the true value of the coefficient (β1) averaged over the total number

1Although the experiments were repeated when standardisation is used for MOLS but there are no
obvious differences in the results.
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of simulations, N. This is shown by the following expression:

MSE(β̂1) =
1
N

N

∑
l=1

(β̂1 − β1)
2 , (4.45)

where, for the experiments in this study, there are a total of 100 simulations (N = 100).
This can be viewed as the main way to measure estimation accuracy and will be the
priority for making conclusions from the results. Other related measures used include
the bias and variance of the estimators for each approach defined as follows:

Bias(β̂1) = E[β̂1]− β1 , (4.46)

Var(β̂1) =
1
N

N

∑
l=1

(β̂1 − E[β̂1])
2 , (4.47)

where the mean of the chosen estimator across simulations is given by
E[β̂1] =

1
N ∑N

l=1 β̂1. One can use the well-known relationship to show that
MSE(β̂1) = Bias(β̂1)

2 + Var(β̂1) and this can be seen to be in the case in the results
with only occasional minor discrepancies due to rounding. The measures in 4.46 and
4.47 will help provide insight into the composition of the MSE to facilitate the
explanation of the MSE hierarchy for each experiment as it has already been shown
that the main channel of improvement for PRP comes from the bias compared to other
methods such as Ridge. The following 2 subsections report the MSEs for each
experiment with relevant discussions with tables showing the bias and variance
values relegated to the appendix.

4.4.1 Design 1: Homogeneous Coefficients

Tables 4.5-4.7 shows the MSEs for each method across each experiment for Design 1 of
the β profile with each table representing a different environment with respect to the
signal-to-noise ratio. As expected PRP generally struggles here for reasons associated
with the relativity of β1 to ∑

p
i ̸=1 βi as discussed previously. Looking more closely, it can

be seen from Table 4.5 that, for s = 0.1 and τ = 0.2, PRP remains closely competitive
with the other methods with the second results column showing it provides the
second lowest MSE of 0.0045 (52% of the that of Lasso). However, as the density of the
coefficient profile increases, the MSEs of methods such as Lasso and RP change little
while the PRP increases significantly to 0.3381 in the second column from the right
(649% of that of Lasso). This is understandable since s increasing means that the
relativity of β1 to ∑

p
i ̸=1 βi,

βi

∑
p
i ̸=1 βi

, becomes smaller removing its potential for bias gains.

Such a feature is easy to see in this setting of homogeneous coefficients where the
increase in s leads to a linear increase in the size of ∑

p
i ̸=1 βi (with β1 still fixed).

Although, one would expect that, for a fixed SNR, the sparsity increasing would also
reduce the error variance leading to more emphasis on the bias which favours PRP.
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Therefore, this shows how the coefficient profile is more influential on performance
than the SNR.

Regarding the correlation structure, it is visible that PRP performs relatively better
when τ = 0.2, particularly when τ = 0.2 also. For example, consider Table 4.6 when
s = 0.1 the MSE of RP is 73% of the PRP MSE when τ = 0.2 and ρ = 0.2, 57% when
τ = 0.2 and ρ = 0.7, and 24% when τ and ρ are both 0.7 with and identical pattern
seen in the majority of other settings. This supports what was discussed previously in
how τ and the bias bound of PRP are positively linearly related. However, one may
question this in light of the theoretical analysis where it was clearly shown that the
bias and variance bounds of PRP improved upon the ratio of ρ

τ being larger. This is
explained by how the design of the experiment being such that SNR determination of
σ2

ϵ is influenced by ΣX as seen in 4.44. Therefore, a higher ρ results in a larger error
variance to keep the SNR fixed at a certain value since all true coefficients and ρ are
positive under this design. This implies that when ρ = 0.7 the size of σ2

ϵ is larger
relative the coefficient size than when ρ = 0.2 making the bias gains less apparent,
hence, explaining why PRP performs stronger under ρ = 0.2 when τ = 0.2. Despite
this, in an empirical setting, where the SNR was not fixed, one would expect PRP to
improve as ρ

τ increases with σ2
ϵ remaining unchanged.

Tables 4.A1-4.A3 show the bias and variance associated with each method for all the
experiments and confirms the conclusions of the analysis before whereby PRP
provides the lowest bias for almost all experiments when s = 0.1 reinforcing the
justification for the best relative performance in MSEs. Across all SNR values, when
s = 0.1 it is only when τ = ρ = 0.7 and when the SNR is equal to 1 or 5 that it does not
provide the lowest bias which is justified by the previous arguments. However, these
tables also show how PRP very often has one of the largest variances, especially when
τ = ρ = 0.7 where it provides the highest the vast majority of the time. This reinforces
what was discussed in Section 4.3.2 where the dual component of the PRP leaves it
vulnerable to estimation uncertainty through even the value of true coefficients
themselves, unlike most other approaches. One can see from the second component of
4.31 and the following study in Tables 4.1-4.4 that the total sum of true coefficients
combined with an unfavourable correlation profile quickly leads to the variance term
increasing rapidly unless k is very close to p.
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TABLE 4.5: MSE for experiments under Design 1 with SNR = 1

s=0.1 s=0.4 s=0.8
τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7
ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS 0.2068 0.1482 1.8182 3.2922 3.0081 31.245 13.533 10.494 126.93

Ridge 0.0216 0.0066 0.0260 0.3210 0.0696 0.3347 1.2834 0.2515 1.1026

Lasso 0.0133 0.0086 0.0172 0.0627 0.0196 0.0667 0.2135 0.0521 0.1994

PR 0.0206 0.0049 0.0560 0.2796 0.1124 0.8656 1.2994 0.3754 2.7868

RP 0.0035 0.0030 0.0034 0.0131 0.0027 0.0056 0.0321 0.0028 0.0110

PRP 0.0195 0.0045 0.0630 0.3148 0.1000 0.95551 1.3183 0.3381 2.8553

TABLE 4.6: MSE for experiments under Design 1 with SNR = 5

s=0.1 s=0.4 s=0.8
τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7
ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS 0.1511 0.1595 1.7562 3.2927 2.6983 30.289 13.974 10.254 125.822

Ridge 0.0063 0.0030 0.0074 0.0683 0.0143 0.0922 0.2667 0.0429 0.3290

Lasso 0.0074 0.0052 0.0081 0.0177 0.0143 0.0325 0.0900 0.0218 0.0991

PR 0.0041 0.0037 0.0111 0.0547 0.0354 0.1630 0.2927 0.0931 0.8642

RP 0.0028 0.0024 0.0028 0.0045 0.0014 0.0035 0.0077 0.0010 0.0046

PRP 0.0049 0.0033 0.0115 0.0640 0.0306 0.1586 0.2947 0.0922 0.8660

TABLE 4.7: MSE for experiments under Design 1 with SNR = 10

s=0.1 s=0.4 s=0.8
τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7
ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS 0.1542 0.1531 1.7869 2.8750 2.5730 30.305 11.790 10.238 126.31

Ridge 0.0038 0.0035 0.0059 0.0327 0.0085 0.0389 0.1177 0.0240 0.1873

Lasso 0.0055 0.0035 0.0087 0.0146 0.0101 0.0200 0.0401 0.0255 0.1112

PR 0.0016 0.0010 0.0061 0.0219 0.0234 0.1175 0.1249 0.0764 0.4758

RP 0.0020 0.0028 0.0032 0.0038 0.0014 0.0017 0.0040 0.0005 0.0026

PRP 0.0021 0.0011 0.0057 0.0270 0.0207 0.1020 0.1376 0.0721 0.3889

Overall, it is clear that under a coefficient profile of homogeneous coefficients, PRP
rarely provides competitive estimation accuracy for the treatment variable parameter
due to the ratio of β1 to ∑

p
i ̸=1 βi being unfavourable for the bias and very little scope to

gain any edge through the variance term. While it is clear that environments where
the predictor sparsity is low and the correlation between the treatment variable and
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controls (x1 and X−1 respectively) is also small then there is some hope, as this keeps
the bias and variance of PRP down, ultimately, the coefficient profile is most
significant in making PRP highly undesirable in this setting.

4.4.2 Design 2: Mixed Sign and Magnitude Coefficients

Tables 4.8-4.10 shows the MSEs for each method across each experiment for Design 2
of the β profile with each table representing a different environment with respect to
the signal-to-noise ratio. Here, it can be seen that PRP is much more successful in
providing a low MSE relative to the other methods and provides the lowest value in
the majority of experiments. This makes sense based on how the coefficient profile has
an even mixture of signs in β−j contributing a smaller ∑

p
i ̸=1 βi relative to β1.

Specifically, PRP is the most accurate method whenever τ = 0.2 with the exception of
when the SNR = 1 and s = 0.8 where RP dominates. This is likely due to the reasons
mentioned previously where the low SNR makes the error variance high compared to
the coefficients and the dense setting will make ∑

p
i ̸=1 βi larger relative to βi adversely

impacting the bias of PRP making a worst case scenario for PRP in this class of
experiments. Therefore, this does show that, while the coefficient profile is highly
significant in the performance of PRP, the correlation can override this benefit in some
cases.

The results are similar to before in the sense that PRP has an improving edge as the
level of sparsity decreases. For example, in Table 4.9 for τ = 0.2, ρ = 0.7 and s = 0.8
the MSE of PRP is 99% of the MSE of the second best approach (Partial Ridge) but for
the corresponding correlation profile when s = 0.1 the MSE of PRP is 88% of the
second lowest MSE (also Partial Ridge). At this stage it is also worth mentioning how
PRP and Partial Ridge follow a similar performance pattern relative to the other
approaches. This is likely due to how they are similar in that they estimate a single
parameter while applying penalisation or dimension reduction to the remaining
variables giving them similar statistical properties. This is particularly evident in how
they both enjoy benefits in through their bias under the same coefficient conditions.

Tables 4.A4-4.A6 show that, with the exception of Partial Ridge, PRP provides a
significantly lower bias than all other methods for all the experiments, even in the
worst of scenarios for PRP such as the last column of Table 4.A4 PRP provides a bias
of 2.3990 compared to 14.8678 and 10.7250 of Lasso and Ridge respectively. Unlike for
Design 1, PRP is much more competitive on the variance with the other methods in
this study, for example, in the first column of Table 4.A4, it provides the lowest
variance of 0.0944. The only area where it still struggles is when τ and ρ are both equal
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to 0.7 where very often it provides the highest variance regardless of the sparsity or
SNR.

TABLE 4.8: MSE for experiments under Design 2 with SNR = 1

s=0.1 s=0.4 s=0.8
τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7
ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS 0.1797 0.4889 0.6583 10.296 33.041 16.798 110.04 324.36 121.57

Ridge 0.4009 1.3521 1.3617 12.297 25.825 27.440 83.082 146.07 180.50

Lasso 0.3558 1.5856 1.6317 26.316 52.727 54.610 146.47 235.93 244.40

PR 0.0989 0.2798 0.2330 6.3112 20.631 8.8849 66.175 166.49 135.93

RP 0.4144 1.2095 1.2002 9.0488 19.303 21.132 51.618 89.707 110.38

PRP 0.0947 0.2798 0.2528 6.1357 19.754 10.378 65.925 162.596 145.53

TABLE 4.9: MSE for experiments under Design 2 with SNR = 5

s=0.1 s=0.4 s=0.8
τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7
ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS 0.1253 0.2014 0.6006 6.6934 19.147 15.280 60.949 122.73 74.219

Ridge 0.3951 1.1095 1.2989 7.8088 20.678 20.89 42.478 93.477 111.63

Lasso 0.0766 0.2723 0.3868 9.4000 33.085 33.344 101.01 195.77 195.49

PR 0.0537 0.1022 0.0754 3.2308 8.7426 6.3569 30.407 41.761 94.453

RP 0.3821 1.1013 1.2640 7.0100 19.892 19.894 36.381 83.167 94.453

PRP 0.0473 0.0938 0.0924 2.9856 8.0680 7.5723 30.224 36.220 80.798

TABLE 4.10: MSE for experiments under Design 2 with SNR = 10

s=0.1 s=0.4 s=0.8
τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7
ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS 0.1226 0.2801 0.5448 5.7558 13.081 12.707 37.336 106.33 64.050

Ridge 0.3685 1.2183 1.3302 6.2686 20.081 20.442 31.611 102.64 87.834

Lasso 0.0442 0.1916 0.2167 6.1641 29.654 28.464 74.503 180.76 169.92

PR 0.0274 0.1192 0.0926 1.9621 4.2853 5.4050 15.401 53.851 44.710

RP 0.3279 1.3080 1.2635 5.8501 20.678 19.638 28.676 82.047 78.920

PRP 0.0264 0.1078 0.0967 1.6219 4.0851 6.2565 13.305 53.755 48.205

Despite the first design of coefficients showing little hope for PRP in terms of
estimation accuracy, the second design is much more promising with PRP being the
superior method in the vast majority of situations. This can be brought down the bias
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variance trade off in most cases where earlier it was discussed that the PRP has an
advantage through lower bias when β1 is not too small compared to ∑

p
i ̸=1 βi compared

to methods such as Ridge and Lasso. This can then be supported by a scenario where
the correlation between x1 and variables in X−1 is also low and a high SNR
environment also helps the cause. Overall, this section has characterised situations
where PRP can be the best approach to accurately estimating a single coefficient if one
has a certain level of prior knowledge about the data set concerned.

4.5 Discussion

This paper has proposed a new estimation procedure for a single parameter in a linear
regression framework that is characterised as being of a high-dimensional nature.
Specifically, this has sought to adapt the widely used approach of Random Projections
from the machine learning literature where previously the only work on Random
Projections in a regression setting was focused around forecasting and prediction of
the dependent variable. By incorporating this approach into a Frisch-Waugh style
method for individual parameter estimation, this work has looked to define a method
that not only overcomes the issue of high-dimensionality that hinders OLS based
methods but also avoid the issue of inflated biases under certain DGP conditions that
approaches such as Ridge face frequently. This has lead to the proposal of the Partial
Random Projections estimation procedure which, through theoretical analysis of the
bias and variance as well as finely tuned simulation experiments, has proved to be
very effective at single parameter estimation compared to many well-established
methods from the literature. More specifically, the conditions where this is most
apparent include when: the true value of the coefficient of interest is not too small
relative to the sum of all other true coefficients, the correlation between the variable of
interest and all others is small and, finally, the ratio of signal-to-noise in the true DGP
is higher then these gains are amplified. Situations where such conditions are present
in economics settings can be easily identified, for example, if the predictor set includes
price and quantity data on multiple complementary and substitute products then the
sign of coefficients will likely vary significantly in conjunction with the setting created
in the second design of the simulation study.

While this study acts as the initial stage for establishing an approach for computing
individual coefficient estimates using Random Projections, one can easily realise the
broad range of directions that could be explored through future work. One path could
be devoted to investigating additional theoretical properties of the estimator itself.
This might include hypothesis testing for statistical significance or determining the
asymptotic distribution of the PRP estimator. In addition, comparisons could be made
with the non-parametric coefficient distributions obtained from the bootstrap
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approaches seen in Mammen (1993). Due to these approaches being similar in spirit to
that of RP and PRP, a comparison between the asymptotic behaviour of these methods
has the potential to uncover more about stochastic based shrinkage in a broader sense.
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4.A Appendix

4.A.1 Proof of Proposition 4.1

The least squares regression of 4.2 results in the following estimator classification for a
single draw of R,

δ̂s
PRP =

[
β̂ j

β̂−j

]
=

[
x′jxj x′jX−jRs

Rs ′X′
−jx−j Rs ′X′

−jX−jRs

]−1 [
x′jy

Rs ′X′
−jy

]
.

Now let δ̂s
PRP = (W ′

RWR)
−1W ′

Ry where WR = [xj X−jRs]. One can use this with the
Partial Ridge model approach to 4.1 as follows,

y − xβ̂ j − X−jRs β̂−j = y − WRδ̂s
PRP = y − WR(W ′

RWR)
−1W ′

Ry

Letting PWR = WR(W ′
RWR)

−1W ′
R the following expression can be seen,

y − xβ̂ j − X−jRs β̂−j = (In − PWR)y .

Now define Px = xj(x′jxj)
−1x′j, one can show that PWR Px = Px. Therefore, the above

equation can be rearranged and rewritten as follows,

xj β̂ j = y − X−jRs β̂−j − (In − PWR)y .

Now multiply both sides by Px to obtain

Pxxj β̂ j = Px(y − X−jRs β̂−j)− Px(In − PWR)y = Px(y − X−jRs β̂−j) .

Expanding the Px term gives the following:

xj(x′jxj)
−1x′jxj β̂ j = xj(x′jxj)

−1x′j(y − X−jRs β̂−j) ,

x−j β̂ j = xj(x′jxj)
−1x′j(y − X−jRs β̂−j) ,

β̂ j = (x′jxj)
−1x′j(y − X−jRs β̂−j) .

4.A.2 Proof of Proposition 4.2

Recall the expression for β̂ j as being given by the following when combining 4.3 and
4.4,

β̂ j = (x′jxj)
−1x′j

(
In − X−jR(R′X′

−j MxX−jR)−1R′X′
−j Mx

)
y .
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Replacing y with the true model from 4.1 and using the fact that Mxxj = 0 gives

β̂ j = β j + (x′jxj)
−1x′j

(
In − X−jR(R′X′

−j MxX−jR)−1R′X′
−j Mx

)
(X−jβ−j + ϵ) .

Taking the expectation with respect to ϵ allows the use of A1 leading to the following
simplification,

Eϵ[β̂ j|R] = β j + (x′jxj)
−1x′j

(
In − X−jR(R′X′

−j MxX−jR)−1R′X′
−j Mx

)
X−jβ−j .

Now one can apply the law of conditional expectation to obtain a complete expression
for the bias,

ER
[
Eϵ[β̂ j]

]
= β j + (x′jxj)

−1x′j
(

In − X−jER[R(R′X′
−j MxX−jR)−1R′]X′

−j Mx

)
X−jβ−j .

Therefore, the bias can be expressed as follows,

Bias(β̂ j) = ER
[
Eϵ[β̂ j]

]
− β j =

(x′jxj)
−1x′j

(
In − X−jER[R(R′X′

−j MxX−jR)−1R′]X′
−j Mx

)
X−jβ−j .

Which can be rearranged as the expression in Proposition 4.2,

Bias(β̂ j) = (x′jxj)
−1x′jX−j

(
β−j − ER[R(R′X′

−j MxX−jR)−1R′]X′
−j MxX−jβ−j

)
.

4.A.3 Proof of Theorem 4.1

Recall the bias expression for Partial Random Projections is given as follows from
Proposition 4.2,

Bias(β̂ j) = (x′jxj)
−1x′jX−j

(
β−j − ER[R(R′X′

−j MxX−jR)−1R′]X′
−j MxX−jβ−j

)
.

From here one can decompose X′
−j MxX−j as detailed below Proposition 4.2 and use

the orthogonality of U to replace R with UR as shown in Marzetta et al. (2011),

Bias(β̂ j) = (x′jxj)
−1x′jX−jU

(
Ip−1 − ER[R(R′DR)−1R′]D

)
U′β−j .
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Using the result from Marzetta et al. (2011) and writing the above as matrices, the
following is obtained,

Bias(β̂ j) =
[
τ τ . . . τ

]
U



1 − λ1
η1

0 0 . . . 0

0 1 − λ2
η2

0 . . . 0

0 0 1 − λ3
η3

. . . 0
...

...
...

. . .
...

0 0 0 . . . 1 − λp
ηp−1


U′β−j .

By looking closer at X′
−j MxX−j, one can easily find the eigenvalues under the toy

model assumptions,

X′
−j MxX−j = X′

−jX−j −X′
−jxj(x′jxj)

−1x′jX−j =



1 − τ2 ρ − τ2 ρ − τ2 . . . ρ − τ2

ρ − τ2 1 − τ2 ρ − τ2 . . . ρ − τ2

ρ − τ2 ρ − τ2 1 − τ2 . . . ρ − τ2

...
...

...
. . .

...
ρ − τ2 ρ − τ2 ρ − τ2 . . . 1 − τ2


,

where one can show that p − 2 of the eigenvalues are equal to ρ − 1 and one is equal to
1 + (p − 2)ρ − (p − 1)τ2. Without loss of generality, it will be assumed that the largest
eigenvalue is λ1 = 1 + (p − 2)ρ − (p − 1)τ2 meaning the D matrix is given as follows,

D =



1 + (p − 2)ρ − (p − 1)τ2 0 0 . . . 0
0 ρ − 1 0 . . . 0
0 0 ρ − 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . ρ − 1


.

From here, the bias expression can be evaluated for small values of p to observe a
pattern which then allows generalization of p.

Case 1: p-1=2 Here, the eigenvectors of X′
−j MxX−j are given by the following as the U

matrix,

U =

[
1√
2

− 1√
2

1√
2

1√
2

]
.
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Therefore, the bias expression can be evaluated as follows,

Bias(β̂ j) =
[
τ τ

] [ 1√
2

− 1√
2

1√
2

1√
2

] [
1 − 1+ρ−2τ2

η1
0

0 1 − 1−ρ
η2

] [
1√
2

1√
2

− 1√
2

1√
2

]
β−j

= τ
p

∑
i ̸=j

βi

(
1 − 1 + ρ − 2τ2

η1

)
.

Case 2: p-1=3 Here, the eigenvectors of X′
−j MxX−j are given by the following as the U

matrix,

U =


1√
3

− 1√
6

− 1√
2

1√
3

√
2
3 0

1√
3

− 1√
6

1√
2

 .

Therefore, the bias expression can be evaluated as follows,

Bias(β̂ j) =
[
τ τ τ

] 
1√
3

− 1√
6

− 1√
2

1√
3

√
2
3 0

1√
3

− 1√
6

1√
2




1 − 1+2ρ−3τ2

η1
0 0

0 1 − 1−ρ
η2

0

0 0 1 − 1−ρ
η3



×


1√
3

1√
3

1√
3

− 1√
6

√
2
3 − 1√

6

− 1√
2

0 1√
2

 β−j ,

Bias(β̂ j) = τ
p

∑
i ̸=j

βi

(
1 − 1 + 2ρ − 3τ2

η1

)
.

Case 3: p-1=4 Here, the eigenvectors of X′
−j MxX−j are given by the following as the U

matrix,

U =


1
2 − 1

2
√

3
− 1√

6
− 1√

2
1
2

√
3

2 0 0
1
2 − 1

2
√

3

√
2
3 0

1
2 − 1

s
√

3
− 1√

6
1√
2

 .
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Therefore, the bias expression can be evaluated as follows,

Bias(β̂ j) =


τ

τ

τ

τ


′


1
2 − 1

2
√

3
− 1√

6
− 1√

2
1
2

√
3

2 0 0
1
2 − 1

2
√

3

√
2
3 0

1
2 − 1

s
√

3
− 1√

6
1√
2




1 − 1+3ρ−4τ2

η1
0 0 0

0 1 − 1−ρ
η2

0 0

0 0 1 − 1−ρ
η3

0

0 0 0 1 − 1−ρ
η4



×


1
2

1
2

1
2

1
2

− 1
2
√

3

√
3

2 − 1
2
√

3
− 1

2
√

3

− 1√
6

0
√

2
3 − 1√

6

− 1√
2

0 0 1√
2

 β−j ,

Bias(β̂ j) = τ
p

∑
i ̸=j

βi

(
1 − 1 + 3ρ − 4τ2

η1

)
.

Therefore, one can see from the pattern with p increasing, that the general case can be
written as

Bias(β̂ j) = τ
p

∑
i ̸=j

βi

(
1 − 1 + (p − 2)ρ − (p − 1)τ2

η1

)
.

4.A.4 Proof of Proposition 4.3

Recall the conditional variance formula which can be written as follows when applied
to this framework,

Var(β̂ j) = ER
[
Varϵ(β̂ j|R)

]
+ VarR

(
Eϵ[β̂ j|R]

)
.

One can use the 2 expressions from Proposition 4.1 to write a closed form expression
for β̂ j in terms of the true DGP as was done in the proof for Proposition 4.2. Recall the
following expression from this proof,

β̂ j = β j + (x′jxj)
−1x′j

(
In − X−jR(R′X′

−j MxX−jR)−1R′X′
−j Mx

)
(X−jβ−j + ϵ) .

Therefore, β̂ j − Eϵ[β̂ j] is given by the following:

β̂ j − Eϵ[β̂ j|R] = (x′jxj)
−1x′j

(
ϵ − X−jR(R′X′

−j MxX−jR)−1R′X′
−j Mxϵ

)
.

From here, Varϵ(β̂ j|R) can be computed as follows,

Varϵ(β̂ j|R) = Eϵ

[
(β̂ j − Eϵ[β̂ j|R])(β̂ j − Eϵ[β̂ j|R])′|R

]
,
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Varϵ(β̂ j|R) = Eϵ

[
(x′jxj)

−1x′jϵϵ′xj(x′jxj)
−1

− (x′jxj)
−1x′jϵϵ′MxX−jR(R′X′

−j MxX−jR)−1R′X′
−jxj(x′jxj)

−1

− (x′jxj)
−1xjX−jR(R′X′

−j MxX−jR)−1R′X′
−j Mxϵϵ′xj(x′jxj)

−1+

(x′jxj)
−1x′jX−jR(R′X′

−j MxX−jR)−1R′X′
−j Mxϵϵ′MxX−jR(R′X′

−j MxX−jR)−1R′X′
−jxj(x′jxj)

−1 .

Using assumption A1 and the fact that Mxxj = 0 results in the following:

Varϵ(β̂ j|R) = σ2
ϵ

(
(x′jxj)

−1 + (x′jxj)
−1x′jX−jR(R′X′

−j MxX−jR)−1R′X′
−jxj(x′jxj)

−1
)

.

Therefore, it is such that

ER[Varϵ(β̂ j|R)] =

σ2
ϵ

(
(x′jxj)

−1 + (x′jxj)
−1x′jX−jER

[
R(R′X′

−j MxX−jR)−1R′
]

X′
−jxj(x′jxj)

−1
)

.

For the second component from the conditional variance formula, recall that, from the
proof of Proposition 4.2, the expectation of β̂ j conditional on R is given as follows,

Eϵ[β̂ j|R] = β j + (x′jxj)
−1x′j

(
In − X−jR(R′X′

−j MxX−jR)−1R′X′
−j Mx

)
X−jβ−j .

Therefore, one can easily achieve the expression for the variance with respect to R seen
in Proposition 4.3.

VarR(Eϵ[β̂ j|R]) =

VarR

(
β j + (x′jxj)

−1x′j
(

In − X−jR(R′X′
−j MxX−jR)−1R′X′

−j Mx

)
X−jβ−j

)
,

VarR(Eϵ[β̂ j|R]) = VarR

(
(x′jxj)

−1x′jX−jR(R′X′
−j MxX−jR)−1R′X′

−j MxX−jβ−j

)
.

Therefore, combining these 2 components achieves the expression stated in
Proposition 4.3,

Var(β̂ j) = σ2
ϵ

(
(x′jxj)

−1 + (x′jxj)
−1x′jX−jR(R′X′

−j MxX−jR)−1R′X′
−jxj(x′jxj)

−1
)

+ VarR

(
(x′jxj)

−1x′jX−jR(R′X′
−j MxX−jR)−1R′X′

−j MxX−jβ−j

)
.
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4.A.5 Simulation Biases and Variances

TABLE 4.A1: Bias and Variances for experiments under Design 1 with SNR = 1

s=0.1 s=0.4 s=0.8

τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7

ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS Bias 0.03823 0.3670 1.3347 1.5688 1.6568 5.5410 3.2115 3.0994 11.1609
Variance 0.0607 0.0135 0.0367 0.8312 0.2631 0.5433 3.2188 0.8878 2.3659

Ridge Bias -0.0258 -0.0533 -0.0484 -0.0346 -0.0238 0.0084 0.1819 -0.0288 0.0370
Variance 0.0209 0.0038 0.0236 0.3198 0.0691 0.3346 1.2503 0.2507 1.1012

Lasso Bias -0.0684 -0.0801 -0.0771 -0.0633 -0.0556 -0.0719 -0.0331 -0.0371 -0.0169
Variance 0.0086 0.0022 0.0113 0.0587 0.0165 0.0615 0.2124 0.0508 0.1991

PR Bias 0.0219 0.0339 0.1177 0.0829 0.1788 0.4473 0.2905 0.3091 0.8301
Variance 0.0202 0.0037 0.0421 0.2727 0.0804 0.6656 1.2150 0.2799 2.0977

RP Bias -0.0366 -0.0427 -0.0347 -0.0392 -0.0296 -0.0324 -0.0317 -0.0227 -0.0169
Variance 0.0021 0.0012 0.0022 0.0116 0.0018 0.0046 0.0311 0.0023 0.0107

PRP Bias 0.0133 0.0259 0.0730 0.0506 0.1508 0.3044 0.1778 0.2656 0.4685
Variance 0.0194 0.0038 0.0577 0.3122 0.0773 0.8624 1.2866 0.2676 2.6358
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TABLE 4.A2: Bias and Variances for experiments under Design 1 with SNR = 5

s=0.1 s=0.4 s=0.8

τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7

ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS Bias 0.3481 0.3850 1.3203 1.6509 1.6018 5.4856 3.4006 3.1291 11.1712
Variance 0.0299 0.0113 0.0131 0.5674 0.1325 0.1977 2.4100 0.4624 1.0272

Ridge Bias -0.0436 -0.0419 -0.0507 -0.0295 -0.0246 -0.0973 0.1155 -0.0262 0.0266
Variance 0.0044 0.0012 0.0048 0.0675 0.0137 0.0827 0.2534 0.0422 0.3283

Lasso Bias -0.0638 -0.0458 -0.0713 -0.0698 -0.0302 -0.0552 -0.0226 -0.0425 -0.0155
Variance 0.0033 0.0031 0.0031 0.0129 0.0134 0.0295 0.0895 0.0200 0.0988

PR Bias 0.0043 0.0356 0.0589 0.0759 0.1187 0.2002 0.2272 0.1752 0.5122
Variance 0.0041 0.0024 0.0076 0.0489 0.0213 0.1229 0.2411 0.0624 0.6018

RP Bias -0.0365 -0.0401 -0.0383 -0.0359 -0.0208 -0.0350 -0.0135 -0.0132 -0.0142
Variance 0.0015 0.0008 0.0013 0.0032 0.0009 0.0022 0.0075 0.0009 0.0044

PRP Bias -0.0043 0.0316 0.0541 0.0403 0.1020 0.1450 0.1811 0.1563 0.4602
Variance 0.0040 0.00233 0.0086 0.0624 0.0202 0.1376 0.2619 0.0678 0.6542
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TABLE 4.A3: Bias and Variances for experiments under Design 1 with SNR = 10

s=0.1 s=0.4 s=0.8

τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7

ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS Bias 0.3527 0.3795 1.3335 1.5511 1.5636 5.4863 3.1044 3.1296 11.2056
Variance 0.0298 0.0091 0.0088 0.4690 0.1281 0.2064 2.1521 0.4436 0.7435

Ridge Bias -0.0374 -0.0538 -0.0583 -0.0429 -0.0339 -0.0271 0.0768 0.0045 -0.0298
Variance 0.0024 0.0006 0.0025 0.0309 0.0073 0.0381 0.1118 0.0239 0.1864

Lasso Bias -0.0583 -0.0441 -0.0679 -0.0622 -0.0419 -0.0465 -0.0267 -0.0232 0.0404
Variance 0.0021 0.0016 0.0041 0.0108 0.0084 0.0178 0.0394 0.0249 0.1096

PR Bias 0.0083 0.0175 0.0426 0.0426 0.0900 0.2012 0.1689 0.1651 0.3924
Variance 0.0016 0.0007 0.0043 0.0201 0.0153 0.0770 0.0963 0.0491 0.3218

RP Bias -0.0323 -0.0476 -0.0442 -0.0389 -0.0259 -0.0232 -0.0188 -0.0067 -0.0126
Variance 0.0009 0.0005 0.0013 0.0023 0.0007 0.0012 0.0036 0.0005 0.0025

PRP Bias 0.0013 0.0148 0.0371 0.0137 0.0784 0.1746 0.1168 0.1489 0.3346
Variance 0.0021 0.0009 0.0044 0.0268 0.0145 0.0710 0.1240 0.0499 0.2770
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TABLE 4.A4: Bias and Variances for experiments under Design 2 with SNR = 1

s=0.1 s=0.4 s=0.8

τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7

ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS Bias 0.1441 0.1431 0.7209 0.4070 0.4174 2.9516 1.1487 2.1756 6.7179
Variance 0.1589 0.4684 0.1385 10.1298 32.8666 8.0858 108.7230 319.6219 76.4391

Ridge Bias 0.5412 1.0919 1.1034 2.1617 4.0632 4.6002 4.7326 8.8083 10.7250
Variance 0.1080 0.1600 0.1442 7.6244 9.3148 6.2784 60.6841 68.4833 65.4742

Lasso Bias 0.4270 1.0678 1.0830 3.5630 6.6230 7.0420 8.6673 13.4363 14.8678
Variance 0.1734 0.4454 0.4588 13.6203 8.7748 5.0201 71.3513 55.3950 23.3543

PR Bias -0.0200 -0.0084 0.1144 -0.1804 -0.4838 0.5589 -0.1796 0.3305 3.4671
Variance 0.0985 0.3119 0.2199 6.2786 20.3964 8.5726 66.1429 166.3761 123.9081

RP Bias 0.5507 1.0374 1.0152 2.0889 3.5550 4.0013 5.1625 7.4507 8.8161
Variance 0.1111 0.1332 0.1696 4.6853 6.6647 5.1219 24.9670 34.1945 32.6550

PRP Bias -0.0153 -0.0291 0.0571 -0.2498 -0.5610 0.3536 -0.4267 0.2585 2.3990
Variance 0.0944 0.2790 0.2495 6.0733 19.4394 10.2534 65.7425 162.5291 139.7745
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TABLE 4.A5: Bias and Variances for experiments under Design 2 with SNR = 5

s=0.1 s=0.4 s=0.8

τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7

ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS Bias 0.1794 0.1651 0.7088 0.7711 1.0198 3.0064 1.7800 1.7117 5.7767
Variance 0.0931 0.1741 0.0983 6.0988 18.1071 6.2412 57.7810 119.8009 40.8483

Ridge Bias 0.5911 1.0268 1.1207 2.2237 4.1681 4.2811 4.2030 8.5476 9.0800
Variance 0.0456 0.0552 0.0429 2.8638 3.3044 2.5666 24.8125 20.4160 29.1863

Lasso Bias 0.1491 0.4060 0.4880 1.7914 4.6497 4.6519 6.3216 12.7750 11.9264
Variance 0.0544 0.1075 0.1486 6.1908 11.4654 11.7031 61.0500 32.5727 53.2517

PR Bias -0.0025 -0.0121 0.0711 -0.1202 0.0121 0.2134 -0.4164 0.4653 1.3986
Variance 0.0537 0.1020 0.0703 3.2164 8.7425 6.3114 30.2332 41.5446 64.2538

RP Bias 0.5774 1.0153 1.0995 2.0685 4.0750 4.1247 4.4710 8.2065 8.4784
Variance 0.0487 0.0705 0.0550 2.7313 3.2869 2.8802 16.3916 15.8197 22.5695

PRP Bias 0.0011 -0.0390 0.0527 -0.0522 -0.0706 0.0123 -0.5121 0.3357 1.0967
Variance 0.0473 0.0923 0.0896 2.9829 8.0630 7.5721 29.9618 36.1075 79.5951
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TABLE 4.A6: Bias and Variances for experiments under Design 2 with SNR = 10

s=0.1 s=0.4 s=0.8

τ 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7

ρ 0.7 0.2 0.7 0.7 0.2 0.7 0.7 0.2 0.7

MOLS Bias 0.2137 0.1901 0.6911 0.3507 1.1284 2.6952 1.4197 1.7101 4.8844
Variance 0.0769 0.2440 0.0672 5.6327 11.8075 5.4425 35.3208 103.4097 40.1926

Ridge Bias 0.5824 1.0818 1.1337 2.1756 4.2352 4.2599 4.2820 8.8609 8.3133
Variance 0.0293 0.0481 0.0448 1.5353 2.1443 2.2950 13.2754 24.1284 18.7222

Lasso Bias 0.1293 0.3270 0.3676 1.3575 4.4432 4.0478 5.6837 12.1149 11.0866
Variance 0.0275 0.0847 0.0816 4.3212 9.9120 12.0787 42.1986 33.9890 47.0100

PR Bias 0.0185 0.0349 0.0756 -0.2017 0.2371 -0.0480 -0.2787 0.6638 -0.2510
Variance 0.0270 0.1180 0.0869 1.9214 4.2291 5.4027 15.3229 53.4108 44.6474

RP Bias 0.5305 1.1159 1.0969 2.0905 4.2640 4.1114 3.9800 7.9531 7.8386
Variance 0.0464 0.0628 0.0603 1.4799 2.4961 2.7343 12.8358 18.7957 17.4772

PRP Bias 0.0109 0.0174 0.0371 -0.1907 0.1357 -0.2322 -0.2197 0.3279 -0.6318
Variance 0.0263 0.1075 0.0953 1.5855 4.0667 6.2026 13.2564 53.6470 47.8060
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Conclusion

This thesis has sought to contribute to the literature on high dimensional linear
regression models in two different ways. One was by providing an overview of the
methods available for economic forecasters, the other was by proposing modifications
to existing statistical models for the improvement of practicality and reliability.
Throughout this work, consideration has not only been given to the types of data that
economists face, but also the purpose for which they require a statistical procedure.
The first two essays were concerned with the case where one has to compute forecasts
while the final one focused on where the estimation of individual slope parameters are
of interest.

The first essay provided a base level of knowledge and first stage of direction in
determining the most appropriate forecasting model when faced with a given high
dimensional economic data set. This was executed through carefully designed
simulation experiments that consider the influence of predictor correlation and
temporal dependency separately. More specifically, the experiments mimic a setting
where a forecaster is faced with a large set of predictors and wishing to compute
one-step-ahead forecasts of the dependent variable value for the following period
using a linear regression framework.

The first class of experiments focused on the correlation aspect of predictors in
econometric models with Principal Components being the most successful across the
experiments with a large p and ρ. With Ridge performing very similarly, this was
expected given how the 2 models are shown to thrive when covariates co-move
notably. While many attributes of this study can be argued as being realistic with
respect to an empirical application, there are some aspects which can be questioned or,
at the very least, provided a limited vision of how the methods truly perform. Firstly,
the SNR is fixed throughout all experiments and it was seen in the later essays how
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this influences the performance of models based on the estimator bias-variance trade
off.

Another area that can be argued to be unrealistic is the assumption of sparsity. For this
class of experiments it was assumed that only 5% of the covariates were active with
the rest having no direct influence on y. Such an assumption has been debated
throughout the field of economics with work such as Giannone et al. (2021) finding no
theoretical evidence to support the assumption of sparsity. Future work could commit
attention to covering a wider range of scenarios through diversifying the sparsity,
SNR as well as allowing the true coefficients to vary in sign as magnitude, as in this
essay they are either 0 or 1. In addition, it was assumed that the correlation between
all predictors was equal and greater than 0. While this is relevant and facilitated easy
interpretation of how correlation influences forecast reliability, it is not representative
of a scenario likely to be faced with real data. As discussed in the second essay,
methods such as Ridge can suffer when the sign of correlations are mixed and the
concept of clusters of highly correlated predictors is another area worth attention in
the context of high dimensional predictors sets in economic applications.

For the second design of experiments, the DGP is similar to that of the first, only with
the degree of time series persistence varied instead of correlation. The results here are
much more concrete with Random Projections dominating all other methods as soon
as the level of persistence increases slightly. The limitations of this class of
experiments are similar to that of the first with respect to the SNR, sign and
magnitude of true coefficients and highly sparse DGP. While having an even split of
persistent and purely stationary predictors was logical, future work could consider
varying compositions of stationary and non-stationary covariates as well as uneven
splits of the active predictors amongst these two sets (for example, 70% of active
predictors stationary and the remaining 30% showing persistence).

The second essay concentrated, specifically, on the Ridge Regression approach of
Hoerl and Kennard (1970) and proposed a modified approach to predictive regression
with the aim of overcoming the bias issues that Ridge alone faces in certain situations.
Using a Frisch-Waugh style approach, this essay proposed the Partial Ridge procedure
for estimating a single coefficient applying Ridge penalisation but sparing the variable
of interest. Through theoretical and simulation analysis it was demonstrated that
Partial Ridge can achieve superior MSEs over Ridge for single covariates when βi is
large relative to ∑

p
j ̸=i β j. However, it is infeasible that this be the case for all of the true

predictors, therefore, when considering the estimation of a full profile of slopes,
Partial Ridge is inferior to Ridge.
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As a result, a hybrid approach was proposed whereby one carries out an initial stage
of screening to assess which true coefficients are likely to be largest. These select
coefficients are then estimated with Partial Ridge and the rest with Full Ridge. Using a
fixed design toy model setting with all predictors having equal correlation amongst
them, the expected predictive risk of this method was compared to that of using Ridge
alone. It was shown that, under specific DGPs and with a certain degree of accuracy
when choosing how to estimate each parameter, the hybrid approach can provide a
lower predictive risk than that from using Ridge alone.

These results were supported by an equicorrelation simulation setting that replicated
a one-step-ahead forecasting scenario in similar fashion to that of the first essay. The
study used Full Ridge as a way to screen and determine which coefficients to estimate
with Partial Ridge and, therefore, can be deemed as realistic in comparison to the
theoretical analysis which began with assumption that the analyst has some idea of
which true coefficients are likely to be large. The results confirmed what was shown in
the toy model in that when the true coefficients vary markedly in sign and magnitude
then the hybrid approach outperforms Ridge alone. In addition, a higher SNR
amplifies the gains in bias achieved by the use of Partial Ridge and, hence, provides
strong justification for the use of this approach in economic applications with
relatively little noise.

Finally, an empirical application concerning the prediction of residential apartment
selling prices and construction costs was considered to complete the investigation of
how appropriate this method can be for econometric modelling. For robustness, this
was done by considering multiple splits of the original data set into the training and
testing sample in addition to a careful but computationally reasonable strategy for
determining penalty parameters. The newly proposed estimation procedure was
highly competitive for the prediction of apartment selling prices providing further
evidence to support its use. Although, one could argue that this was not a fair
reflection of the suitability of HEP in practise due to how this study considered a
range of forecasts using multiple choices of variable subsets to be estimated with
Partial Ridge and reports the best in an MSFE sense. Therefore, this can be considered
as a best case scenario but still reveals that the potential is there and inspires the need
of further work concerning a formal procedure for choosing which parameters to
estimate with Partial Ridge.

The final essay was motivated by the success of Random Projections in the first essay.
However, the lack of work on RP as a way to estimate individual parameters meant
there was a perfect opportunity to combine the Frisch-Waugh approach utilised in the
second essay with the highly effective Johnson-Lindenstrauss Lemma to improve
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estimation precision. This gave rise to the proposal of Partial Random Projections as
an attempt to reduce individual estimation bias through avoiding distortion of the
predictor of interest during the dimension reduction phase. Using a fixed design
setting with predictor correlation restrictions imposed, the bias and variance features
of PRP were studied and compared with that of Ridge and Marginal OLS. Similar to
what was seen in the second essay, PRP has significant potential over its rivals when
through its bias term. However, its variance can be seen to clearly suffer pointing
towards a similar scenario seen in the previous essay whereby PRP will favour
situations with a high SNR.

Generally, the lower the correlation of the variable of interest with all other covariates
(τ), the more successful PRP was along with a low ∑

p
j ̸=i β j amplifying its bias gains in

similar fashion to that of Partial Ridge. This was demonstrated through a simulation
study replicating causal inference studies but considering 2 separate profiles of the
true coefficients. While PRP struggled to be competitive when the coefficients had
little variation in sign and magnitude, it frequently provided the lowest MSE when
the sign and size of the true coefficients was mixed and the correlation between the
variable of interest τ was small relative to ρ.

Therefore, this essay provided the foundations of a new model for studying causal
inference in high dimensional settings, similar to that of Galbraith and Zinde-Walsh
(2020). While this essay showed that there are situations where PRP can be considered
as the most appropriate method in terms of estimation accuracy, there are still a vast
number of areas that require attention to support its reputation as a respectable model
for causal inference. The main question one raises is concerned with the standard
error of the PRP estimator. This was shown to depend on the value of true coefficients
themselves and, therefore, poses significant challenges to one wishing to carry out
hypothesis testing. Another area in need of further research is the choice of the
subspace dimension, as while this is widely discussed for RP, this may be applied
differently for PRP which suffers more through its variance and, therefore, possibly
requires a smaller k than RP alone would.

This thesis has sought to contribute to the knowledge surrounding the use of high
dimensional models with data from economics and finance. Following a broad
overview of these methods in a generalised but detailed simulation study, the
remaining essays attempt to adapt methods that showed promising signs in the first
essay with the aim to improve their accuracy or provide an additional purpose for
them with respect to applications in economics. The proposal of these new
methodologies is ambitious but reflects the degree to which high dimensional linear
regression models are still relatively unexplored in light of applications to economics.
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Consequently, through the incorporation of existing literature in econometrics,
statistics and machine learning, there is an extensive span of avenues worth
investigating to assist econometricians with the analysis of high dimensional
economic data.
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