
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal
non-commercial research or study, without prior permission or charge. This thesis and the accom-
panying data cannot be reproduced or quoted extensively from without first obtaining permission
in writing from the copyright holder/s. The content of the thesis and accompanying research data
(where applicable) must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holder/s.
When referring to this thesis and any accompanying data, full bibliographic details must be given,
e.g.
Thesis: Author (Year of Submission) “Full thesis title”, University of Southampton, name of the Uni-
versity Faculty or School or Department, PhD Thesis, pagination.
Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Evaluating Hardware Reliability in the
Presence of Soft Errors

by

Bing Xue
MEng

ORCID iD: 0009-0000-4009-9277

A thesis for the degree of
Doctor of Philosophy

October 2024

http://www.southampton.ac.uk
https://orcid.org/0009-0000-4009-9277

University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Doctor of Philosophy

Evaluating Hardware Reliability in the Presence of Soft Errors

by Bing Xue

Reliability has been a major concern in embedded systems. Higher transistor density
and lower voltage supply increase the vulnerability of embedded systems to soft
errors. A Single Event Upset (SEU), which is also called a soft error, can reverse a bit
in a sequential element, resulting in a system failure. Simulation-based fault injection
has been widely used to evaluate reliability, as suggested by ISO26262. However, it is
practically impossible to test all faults for a complex design. Random fault injection is
a compromise that reduces accuracy and fault coverage. Formal verification is an
alternative approach. This research aims to utilize formal verification to evaluate the
hardware reliability of a RISC-V Ibex Core in the presence of soft errors. We combine
formal verification and fault injection, and perform backward tracing to identify and
categorize faults according to fault effects (no effect, Silent Data Corruption, crash,
and hang). With the help of formal verification, the entire state space and fault list can
be exhaustively explored. We found that misaligned instructions can amplify fault
effects. Apart from evaluating hardware reliability, the proposed method can help to
determine a cost-effective fault protection strategy. We demonstrate how to use the
method to formally evaluate the protection effectiveness of fault-tolerant technologies,
for example, by identifying faults that can and cannot be detected/protected by
fault-tolerant technologies. Formal verification, such as model checking, has limited
applicability to Double Event Upsets (DEUs), due to infeasible runtime, proving
efforts, and state explosion. We develop a DEU exploration strategy that significantly
reduces model checking runtime and efforts to explore DEUs. We also mitigate state
explosion using abstractions and proper constraints. As a consequence, we
successfully scale our method to explore DEUs within an acceptable time. We found
that DEUs can aggravate SEUs: a DEU consisting of two SEUs that cause no effect can
cause a system failure.

http://www.southampton.ac.uk

v

Contents

List of Figures ix

List of Tables xi

Listings xiii

Declaration of Authorship xiii

Acknowledgements xv

Definitions and Abbreviations xvii

1 Introduction 1
1.1 Reliability of Microprocessors . 1
1.2 Cause and Effects of Faults . 2
1.3 RISC-V Ibex Core . 3
1.4 Cadence JasperGold . 5

1.4.1 Formal Property Verification . 5
1.4.2 Functional Safety Verification . 6
1.4.3 Proof Engines . 7

1.5 Research Problem . 8
1.6 Research Hypotheses . 10
1.7 Research Objectives . 10
1.8 Contributions . 12
1.9 Thesis Structure . 13
1.10 Publications . 14

2 Background and Literature Review 15
2.1 Single and Double Event Effects . 15
2.2 Fault Simulation . 16
2.3 Fault Injection . 18
2.4 Formal Verification and Model Checking 25

2.4.1 Overview of Model Checking . 26
2.4.1.1 Modelling . 26
2.4.1.2 Formalizing . 27
2.4.1.3 Model Checker . 28
2.4.1.4 Abstraction and Reduction 28

2.4.2 BDD and BDD-based Model Checking 28

vi CONTENTS

2.4.3 SAT and Bounded Model Checking 31
2.4.3.1 SAT . 31
2.4.3.2 BMC . 32
2.4.3.3 k-induction . 32
2.4.3.4 IMC . 33
2.4.3.5 IC3 . 34

2.5 Related Work of Formal Verification . 35
2.6 Comparison of Model Checking and Simulation 55
2.7 Summary . 57

3 Formal Method to Analyse SEUs 59
3.1 Method Overview . 60
3.2 Step 1: Fault Injection . 61

3.2.1 Fault Model . 61
3.2.2 Fault Injection Mechanisms . 61
3.2.3 Implicit Fault Injection . 64

3.3 Step 2: Formal Properties . 66
3.3.1 SDC . 67

3.3.1.1 Architectural Properties 67
3.3.1.2 Strobe Properties . 69
3.3.1.3 Summary and Comparison 71

3.3.2 Crash . 71
3.3.3 Hang . 74

3.4 Step 3: Complexity Control Strategies . 75
3.4.1 Black-Box . 75
3.4.2 Input Constraints . 76
3.4.3 Verify at Architectural Level . 78
3.4.4 Handle Undetermined Results . 78

3.5 Step 4: Model Checking . 79
3.5.1 Experimental Strategy . 80
3.5.2 Configurations of Cadence JasperGold 82

3.6 Validating Fault Injection and Properties 83
3.6.1 Validate Fault Injection . 83
3.6.2 Validate Properties . 84

3.7 Validating Framework . 85
3.7.1 Fault Detection . 86
3.7.2 Fault Correction: SDC, Crash and Hang 87
3.7.3 Validation Results . 88

3.8 Results and Analysis . 89
3.8.1 Hardware-level . 90

3.8.1.1 SDC . 90
Architectural Properties . 90
Strobe Properties . 96
Comparison . 97

3.8.1.2 Crash . 98
3.8.1.3 Hang . 99

3.8.2 Instruction-level . 100

CONTENTS vii

3.9 Discussion . 102
3.10 Conclusion . 105

4 Evaluating Fault Tolerant Technologies 107
4.1 Method Overview . 108
4.2 Residue Arithmetic . 109
4.3 Formal Properties . 113

4.3.1 Raw Fault Detection . 113
4.3.2 Crucial Fault Detection . 114

4.3.2.1 SDC . 114
4.3.2.2 Crash . 115
4.3.2.3 Hang . 116

4.4 Model Checking . 116
4.4.1 Experimental Strategy . 117
4.4.2 Configurations of Cadence JasperGold 117

4.5 Results . 118
4.5.1 Raw Fault Detection . 119
4.5.2 Crucial Fault Detection . 120

4.6 Discussion and Conclusion . 124

5 Double Event Upsets 127
5.1 Method Overview . 128
5.2 Step 1: Fault Injection . 129

5.2.1 Fault Model . 129
5.2.2 Fault Injection Mechanism . 129

5.3 Step 2: Formal Properties . 130
5.4 Step 3: Complexity Control Strategies . 131

5.4.1 Input Constraints . 131
5.4.2 Handle Undetermined Results . 132

5.5 Step 4: Model Checking . 132
5.5.1 Experimental Strategy . 132
5.5.2 Configurations of Cadence JasperGold 134

5.6 Results . 134
5.6.1 Hardware-level . 136

5.6.1.1 Different Bits, Different Times 137
5.6.1.2 Different Bits, Same Time 140
5.6.1.3 Same Bit, Different Times 142

5.6.2 Instruction-level . 143
5.7 Discussion . 147

5.7.1 Hardware-level . 147
5.7.2 Instruction-level . 148

5.8 Conclusion . 149

6 Conclusion 151

Appendix A Brief SytemVerilog Assertion Syntax 157

Appendix B Descriptions of Jasper proof engines used 159

viii CONTENTS

Appendix C Using Formal Methods to Evaluate Hardware Reliability in the
Presence of Soft Errors 161

Appendix D Fault Injection Control Module and XOR gates 167

Appendix E Bit ID in the Ibex Core 173

Appendix F Bit patterns of valid RV32IMC instructions 177

Appendix G Static and Dynamic Slicing 193

Appendix H Source code of extra MULTDIV 199

References 201

ix

List of Figures

1.1 Ibex Pipeline . 4
1.2 Process of Formal Property Verification 6
1.3 A classic fault injection diagram . 9
1.4 Fault tracing in a register net . 9

2.1 Fault Injection with a Mux . 20
2.2 A fault injection mechanism in FPGA . 22
2.3 Formal Verification in ASIC design flow 26
2.4 Overview of model checking flow . 27
2.5 A simple circuit with three XOR gates . 29
2.6 Binary Decision Tree generated from Table 2.2 30
2.7 Binary Decision Diagram . 30
2.8 Assumptions to cover all faults [1]. 36
2.9 Integration of formal FPA with fault simulation. [2] 39
2.10 Equivalence checking miter for two copies of the network with different

faults injected [3]. 41
2.11 Propagation of bit-flip faults through a two-input AND (AND-2) gate.

(a) An AND-2 gate. (b) The truth table of AND-2. (c) Partial truth table
for modelling the propagation of bit-flip faults through AND-2. [4] . . . 44

2.12 Integration of design and verification . 48
2.13 RTL generation flow by MetaRTL [5]. 50
2.14 RTL generation flow by MetaRTL [5]. 51
2.15 State path for one simulation . 55
2.16 State path for multiple simulations . 55
2.17 Model checking covers all states . 56

3.1 Overview of the proposed method to analyse SEUs 60
3.2 An XOR gate to inject faults . 63
3.3 (a)Forward tracing of faults using fault injection (b) Backward tracing in

this method . 65
3.4 Format of BGE instruction adopted from [6] 67
3.5 Diagram of Strobe Properties . 69
3.6 Machine Cause register mcause . 72
3.7 Memory Transaction of IMEM . 76
3.8 Case Splitting . 79
3.9 TMR in the Ibex Core . 85
3.10 Block Diagram of Shadow Registers in Ibex 86
3.11 A fault changes RV32I LB to RV32I LBU 97

x LIST OF FIGURES

3.12 The left 16 bits of RV32I SRA can be decoded as RVC LWSP 101

4.1 Block Diagram of Residue Arithmetic in Ibex 109
4.2 Block Diagram of MAC . 112

5.1 Overview: crucial DEUs in different bits at different times 137
5.2 DEUs in different bits at different times can cause crashes 138
5.3 DEUs in bits (3,2) causing a crash . 139
5.4 Overview: crucial DEUs in different bits at the same time 140
5.5 DEUs in different bits at the same time can cause crashes 141
5.6 Comparison of DEUs (in different bits at different times) corrupting sim-

ilar instructions in base form and compressed form 146
5.7 Comparison of DEUs (in different bits at the same time) corrupting sim-

ilar instructions in base form and compressed form 146

Appendix E.1 The first part of bit IDs . 174
Appendix E.2 The last part of bit IDs . 175

xi

List of Tables

2.1 Truth table of the XOR gate . 22
2.2 Truth Table of Figure 2.5 . 29

3.1 Truth Table of XOR Gate . 64
3.2 Strobe Signals . 70
3.3 Exception Code in the Ibex Core . 73
3.4 Results of Random Fault Injection . 83
3.5 Evaluating Results of Shadow Registers 89
3.6 Using Architectural Properties to identify faults causing SDCs 91
3.7 Common Safe Structures to Architectural Properties 93
3.8 Crucial SEUs with structures to Architectural Properties 95
3.9 Proven Results of Strobe Properties . 96
3.10 Bits vulnerable to crashes . 98
3.11 Structures Vulnerable to Insn access fault 99
3.12 Structures Vulnerable to Illegal insn . 99
3.13 Structures Vulnerable to breakpoint . 99
3.14 Structures Vulnerable to load and store access fault 99
3.15 Structures Vulnerable to ECall MMode 99
3.16 Structures Vulnerable to Hang (WFI) . 100
3.17 RV32IC instructions that perform similar functions 101

4.1 Engines used to prove properties in Section 4.3 117
4.2 Detectable Bits by Residue Arithmetic . 120
4.3 Detectable Registers By Residue Arithmetic 120
4.4 Model Checking Results of Residue Arithmetic Enhanced ALU 121
4.5 Vulnerable structures detected by Residue Arithmetic Enhanced ALU . 121
4.6 Model Checking Results of Residue Arithmetic Enhanced MULTDIV . . 122
4.7 Vulnerable structures detected by Residue Arithmetic Enhanced MULT-

DIV . 123

5.1 Overview results of crucial DEUs . 136
5.2 The most frequent crucial DEUs in different bits at different times 138
5.3 Vulnerable structures containing the DEUs in Table 5.2 139
5.4 The most frequent crucial DEUs in different bits at the same time 141
5.5 The most vulnerable structures containing a DEU in different bits at the

same time . 142
5.6 Bits vulnerable to DEUs in the same bit location 143
5.7 DEUs in certain registers can corrupt similar instructions 144

xii LIST OF TABLES

5.8 Vulnerable instruction in the presence of DEUs in the same bit location . 147
5.9 Comparison of instructions affected by DEUs at different times and same

time . 148

xiii

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been
generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research
degree at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been
clearly stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as: B. Xue and M. Zwolinski. Using
formal methods to evaluate hardware reliability in the presence of soft errors. In
2022 17th Conference on Ph.D Research in Microelectronics and Electronics
(PRIME), pages 29–32, 2022. doi: 10.1109/PRIME55000.2022.9816775

Signed:.. Date:..................

xv

Acknowledgements

I would like to thank my supervisors, Professor Mark Zwolinski and Doctor Basel
Halak, for providing guidance and feedback throughout this project. I am extremely
grateful to my primary supervisor Prof. Mark, who was kind and patient to permit
my suspension when I was ill. Thanks also to my parents for supporting me in
finishing my study.

xvii

Definitions and Abbreviations

SEU Single Event Upset
DEU Double Event Upset
MEU Multiple Event Upset
SV SystemVerilog
SVA SystemVerilog Assertion
TMR Triple Modular Redundancy
DMR Double Modular Redundancy
NMR N-Modular Redundancy
SR Shadow Registers
SEE Single Event Effect
SET Single Event Transient
SEFI Single Event Functional Interrupt
SEL Single Event Latch-up
EMI Electromagnetic Interference
EMP Electromagnetic Pulse
ISA Instruction Set Architecture
SoC System-on-Chip
IMEM Instruction Memory
DMEM Data Memory
SDC Silent Data Corruption
RTL Register Transfer Level
COI Cone of Influence
PC Program Counter
RHS Right Hand Side
LHS Left Hand Side
hart hardware thread

1

Chapter 1

Introduction

Computer systems can be classified into two groups: general-purpose computers and
special-purpose computers. A general-purpose computer, such as a desktop
computer, can perform a range of different tasks. A special-purpose computer, which
is also referred to as an embedded system, is designed for specific tasks. An
embedded system is a part of another bigger device, such as a mobile phone, a
vehicle, or a plane. Embedded systems are widely employed in electrical and
mechanical devices. Unreliable embedded systems may lead to severe consequences
[8]. For example, a malfunction that happens in a car can cause a car accident.

While simulation and emulation approaches reach their limits due to the complexity
of the systems under verification, only formal proof techniques can ensure correctness
according to the specification[9].

1.1 Reliability of Microprocessors

Technology scaling leads to better performance, lower power consumption, and
higher transistor density. However, scaling of transistors and voltage significantly
increases the vulnerability of embedded systems to soft errors[8, 10]. Soft errors are a
type of fault. Researchers agree that soft errors have been a major concern of
electronic reliability [11, 12, 13, 14]. Soft errors are also known as Single Event Upsets
(SEUs). In this research, SEUs are the primary focus. Reliability is defined as the
probability that the system under test will behave correctly, even in the presence of
SEUs. Radiation events are the major causes of soft errors. A soft error occurs when an
ionizing particle strike, which is caused by cosmic neutrons and alpha particles,
reverses the state of a storage cell, such as memory, latch, and register [13]. In contrast
to permanent errors, soft errors can be corrected if the storage cell is refreshed with
new data. Radiation events in sequential logic result in soft errors, while radiation

2 Chapter 1. Introduction

events in combination logic result in Single Event Transients (SETs). A soft error also
occurs if an SET is latched into a storage cell [12, 13].

1.2 Cause and Effects of Faults

IEEE 1044-2009 considers faults a type of defect, and defines a defect as an
imperfection or deficiency in a work product where that work product does not meet
its requirements or specifications and needs to be either repaired or replaced [15]. Two
examples are given: 1) omissions and imperfections found during early life cycle
phases and 2) faults contained in software sufficiently mature for test or operation.
When expanded to the hardware area, a defect is the difference between the physical
hardware and the original design. The term threat is used in safety analysis as a
superordinate concept for three aspects: a fault is the initiator for misbehaviour, an
error is the resulting misbehaviour in a system, and a failure is the visible effect of the
fault [16].

A fault can be either a hardware defect or a software bug. This research focuses on
hardware, hence only hardware faults are introduced. Ionizing radiation,
electromagnetic effects, and electromigration are three major reasons causing
hardware faults [17].

When ionizing particles strike semiconductors, free electrons and positively charged
ions can be generated. The electrons can move and create a current, which may cause
faults. For example, the created current alters data in sequential circuits (such as
registers), leading to SEUs. These ionizing particles can be both internal and external.
Internal particles are alpha particles due to alpha decay in the package materials and
elements (such as uranium and thorium) in the fabrication process [18]. External
particles such as protons, neutrons, pions, and muons are from background radiation
like cosmic rays.

Electromagnetic effects such as electromagnetic interference (EMI) and
electromagnetic pulse (EMP) can cause faults by inducing unwanted voltages and
currents in the circuitry [19]. EMI is the disturbance of an electrical circuit due to the
electromagnetic field of a nearby source; EMP is a short burst of electromagnetic
radiation.

Various factors, such as increasing current flow and complexity, lead to hardware
susceptibility to electromigration [20]. Electromigration is a process involving the net
movement of metal atoms under the influence of electron flow and temperature,
which can threaten hardware reliability [21]. While atoms are being driven from the
cathode to the anode and vacancies are being driven in the opposite direction at the

1.3. RISC-V Ibex Core 3

same time, if vacancy distribution is not at equilibrium, faults such as void and
extrusion formation can occur [22].

Faults can lead to errors and failures. Avizienis gives a clear definition of faults,
errors, and failures as well as the relationship, which are adopted in the following
sentences[23]. A failure is an event when the performance of a system varies from the
expected functions. When a failure occurs, at least one state of the system deviates
from the correct state. The deviation is an error. A fault is the adjudged or
hypothesised cause of an error. In other words, a fault may cause an error; multiple
errors may cause a system failure.

Ziade also gives a clear definition of faults, errors, and failures [24]:

• A fault is a physical defect, imperfection, or flaw that occurs within
some hardware or software.

• An error is a deviation from accuracy or correctness and is the
manifestation of a fault.

• A failure is the non-performance of some action that is due or
expected.

There are two types of faults: hardware faults and software faults. As the name
implies, hardware faults occur at the physical level while software faults occur at the
software level. Faults can also be categorized into two groups based on the duration
of impacts: permanent faults and transient faults. Permanent faults are caused by
physical component damage, such as short circuits or open circuits [24]. One solution
to permanent faults is to replace or repair the damaged component. Transient faults
will not cause permanent damage to hardware. One example of a transient fault is an
erroneous state for a short time. After reviewing several pieces of research, Ziade
concluded that transient faults occur more frequently than permanent faults and are
harder to detect [24]. An SEU is a type of transient fault. The SEUs will be further
discussed in Section 2.1.

1.3 RISC-V Ibex Core

RISC-V is a powerful open-source Instruction Set Architecture (ISA) designed for
education, research, and industry [25]. There have been various cores and
System-on-Chips (SoCs) that implement RISC-V ISA. For instance, Ibex Core. We have
chosen the Ibex Core as the exemplar for this research, because the Ibex Core is an
open-source 32-bit RISC-V CPU core that supports the basic RV32IMC instruction sets
(Base Integer Instruction Set, Standard Extension for Integer Multiplication and
Division, and Standard Extension for Compressed Instructions) [26]. In addition, it is

4 Chapter 1. Introduction

FIGURE 1.1: Ibex Pipeline from [26]

written in SystemVerilog, which supports a powerful formal language: SystemVerilog
Assertion (SVA).

There are two pipeline stages in the Ibex Core, as shown in Figure 1.1. The first
pipeline stage fetches and decompresses instructions from the instruction memory.
The second pipeline stage decodes and executes the fetched instructions, and reads
from and writes to the register file. One advantage of RISC-V is that many features are
optional. The Ibex Core can be parametrised to enable multiple features. In this
research, the Ibex Core is configured with the following features:

• Support RV32IMC (Base Integer Instruction Set, Standard Extension for
Compressed Instructions and Standard Extension for Integer Multiplication and
Division).

• A default simple core. No Physical Memory Protection, no Branch Prediction, no
Secure Code Execution, no Instruction Cache, and no Lock Step.

• Disable all Interrupts and Debug Trigger Support.

There are 71 registers (2008 register bits) in this Ibex Core. This work focuses on the
bits inside the core, i.e. all bits inside the rectangle titled ‘Ibex Core’ in Figure 1.1. The
Register File is included, but the Instruction Memory (IMEM) and Data Memory
(DMEM) are excluded. Memory safety, as such, is not an aim of this work. Moreover,
there are various efficient memory error correction technologies and enhanced
memory designs [27, 28, 29]. We assume that faults in IMEM and DMEM will be
corrected within the memory and will not propagate to the core.

Ibex Core supports RISC-V Formal Interface(RVFI). RVFI interface captures useful
signals which describe the behaviour of the core, such as executed instruction in the
core, source register read data, and destination register write data. Such signals are
useful for formal verification.

1.4. Cadence JasperGold 5

1.4 Cadence JasperGold

A formal tool is required in this research. We compared several open-source tools. We
did not choose open source tools because: 1) most of them have limited support of
SystemVerilog and SystemVerilog Assertions (such as PAT and PRISM), and 2) their
limited functionality (i.e., PRISM cannot generate counterexamples). Therefore, we
chose to use commercial tools. We compared some commercial tools: Questa Formal
Verification Apps, Synopsys VC Formal, and Cadence JasperGold. All three tools are
powerful. Considering our server configuration, we chose Cadence JasperGold as the
formal tool. In principle, our method is general to all formal tools that support SVA.
For open-source tools that do not support SVA, our developed properties would need
to be transformed into another language.

1.4.1 Formal Property Verification

Cadence JasperGold is a platform containing a range of formal verification
applications. In this research, the main used application is Formal Property Verification
(FPV). FPV is a classic formal property verification application that is used to perform
model checking. FPV takes user-developed SVA properties as inputs. Most SVA
features are supported, such as sequence declaration and property declaration. A
sequence is a list of Boolean expressions evaluated over time. A property is a set of
design behaviours. Verification directives state what should be done with what
behaviour. Supported verification directives include assert, cover, and assume.
’Assert’ checks the property holds under all circumstances. ’Cover’ demonstrates one
example of how the property can be completed. ’Assume’, which limits inputs to the
DUT, defines constraints. Several useful SVA built-in functions are also supported,
such as $past, $rose, $fell, $stable. In Appendix A we briefly explain some SVA syntax
used in this thesis.

Figure 1.2 shows how FPV works. The formal technical details of model checking will
be given in Section 2.4. The application takes constraints (i.e., SVA assumptions),
specifications (i.e., SVA assertions), and the DUT (i.e., RTL in SV) as inputs. FPV first
transforms everything into mathematical equations. Synthesis is involved in such a
process, hence the design must be synthesizable. Then it analyses each specification
(assertion) independently and tries to find an input sequence that causes wrong
behaviour, violating the specification. If there exists such a sequence, a
counterexample is found. If no counterexample can be found, the assertion is fully
proved. If FPV cannot prove or disprove an assertion in a limited time due to
complexity, the assertion is undetermined. Extra efforts, such as choosing different
model checking techniques, are required to solve undetermined results.

6 Chapter 1. Introduction

FIGURE 1.2: Process of Formal Property Verification

The verification process relies on Cone-of-Influence (COI). For each checker, FPV
automatically determines all inputs, outputs and internal variables that influence the
property. Such a collection is a COI of the checker. COI significantly reduces the
verification complexity by removing unnecessary variables in the design. Perry gives
a clear explanation of computing a COI [30]:

Computing the variables contained in the cone of influence is
straightforward. The tool begins by including the variables that
directly occur in the property specification into the Cone-of-Influence
set. Then for each variable contained in the cone-of-influence set, the
tool will identify all variables that appear on the right-hand side of
the RTL assignments to this variable and add the new variables to the
COI variable set. This process is repeated until no new variables can
be added to the set.

1.4.2 Functional Safety Verification

Other applications in the Cadence JasperGold platform are automated applications
targeting particular verification tasks. Automated applications do not require
user-developed formal properties. Formal properties are generated automatically by
applications. For example, Superlint App checks design errors and coding errors that
violate the coding style. Functional Safety Verification (FSV) can reduce the fault list in
simulation-based fault injection by identifying and removing untestable faults. In
addition, it can formally analyse fault propagation to improve fault classification. FSV
duplicates a DUT (one good machine and one bad machine) and feeds the same inputs
to both. Faults are injected into the bad machine. Strobes are inserted into the same
locations (such as functional outputs and checker outputs) in the two machines. Then
the strobes are compared to classify injected faults. The results can be propagated
faults, unpropagatable faults, (always) detected faults and undetected faults.

1.4. Cadence JasperGold 7

There are three techniques implemented in FSV: Fault Relations Analysis, Fault
Testability Analysis and Fault Propagatability Analysis. Fault Relations Analysis finds
relations among faults, such as equivalence and dominance, to prune the fault list.

Fault Testability Analysis uses: 1) COI Analysis to identify untestable faults which are
outside the COI but have a physical connection to the strobes; 2) Unactivatable
analysis to identify unactivatable faults, such as a fault node permanently driven to a
value; 3) Unpropagatable Analysis to find unpropagatable faults that cannot be
observed on functional strobes.

Fault Propagatability Analysis uses: 1) Activation Analysis to identify safe faults
which cannot be activated from inputs; 2) Propagation Analysis to check whether
faults can (always) propagate to functional outputs; 3) Detection Analysis to check
whether faults can (always) be detected by checker outputs; 4) Correlation Analysis to
check whether propagated faults will always be detected.

FSV integrates both fault injection and equivalence checking to perform fault analysis.
The results from FSV contribute to reducing simulation-based fault injection. The idea
of using formal verification (such as equivalence checking) as a support for
simulation-based fault injection to identify and classify faults has been utilized in
many works, the details are in Section 2.5.

1.4.3 Proof Engines

Cadence JasperGold includes both SAT- and BDD-based engines with variations of
these algorithms. For example, Engines B, C, C2, D, Hp, Ht, I, K, L, M, N, AD, AM use
SAT solvers. Most of these well-known formal techniques/algorithms will be
introduced in Section 2.4. We introduce the proof engines in this subsection.

In general, the proof engines can be divided into three groups based on proof
objectives: 1) proving proofs exclusively; 2) searching traces; and 3) mixing of both. In
addition, the proof engines can be divided into: 1) multi-property engines that analyse
properties concurrently; and 2) single-property engines that analyse each property
only once.

One of our experimental strategies in Chapter 3 is: finding all dangerous bits first,
removing these dangerous bits from the fault list, and fully proving the remaining bits
are safe. The former focuses on finding traces (counterexamples) and the latter focuses
on full proofs. As a result, we started with the following engines, whose descriptions
are in Appendix B. Some engines have both single- and multi-property versions, such
as Hp and Hps. In that case, only single-property versions are introduced to save
space.

8 Chapter 1. Introduction

Full proofs: engines N, Tri, Hp, Hps, AM, C, I, and R.

Counterexamples: engines B, Hts, Ht, AD, L, and U.

However, there is no ’best’ engine mode which can solve all formal problems.
Different engines are good at handling different problems. During experiments, we
used different engine modes to solve different problems. We switched to a different
engine mode if the current engine mode could not solve the investigated problems.
We found some engines are useful and outperform the others. Details of these
problems and suitable engines will be given in the experimental setups in Chapters 3
to 5.

1.5 Research Problem

The most common technology to mitigate SEUs is redundancy-based protection,
either software redundancy such as SWIFT [31] or hardware redundancy such as
Triple Modular Redundancy (TMR). However, redundancy of the whole design leads
to excessive time and space overheads, which is a luxury for embedded systems. An
alternative is partial protection, which only protects vulnerable structures with
expensive protection technology while leaving reliable structures unprotected. The
traditional method to evaluate reliability in the presence of soft errors is fault injection.
Researchers [14, 32, 33] use fault injection to find the most vulnerable components in
different processors and partially protect the most vulnerable components.

Simulation-based fault injection is widely used in reliability and safety research. ISO
26262 is an international standard of automotive safety that applies to all electrical,
electronic, and software components [34]. ISO 26262 requires (random) fault injection
to improve safety. To mitigate soft errors, researchers need to study the effects of soft
errors and how soft errors are propagated in microprocessors. Researchers
[12, 14, 35, 36] use fault injection to investigate soft error effects and propagation in
microprocessors. There are two attributes of a fault: time and location. The injector in
Figure 1.3 controls which clock cycle to inject a fault and which flip flop to inject the
fault. The system under test is monitored for response to the fault. Researchers use
fault injection to study the impacts of SEUs, assess the reliability of the systems under
test, and evaluate soft error mitigation technologies. However, there are limitations to
fault injection.

The first limitation is that it is practically impossible to test all faults. At most one SEU
can occur in any bit at any time during one simulation. Considering the injection time
and the injection location, there is an incredible number of possible combinations in
the fault list. The simulation takes time. It is impossible to test all faults in the fault list

1.5. Research Problem 9

FIGURE 1.3: A classic fault injection diagram

within a reasonable time. As a compromise, only a small number of random faults in
the fault list can be tested, which decreases the accuracy.

The second limitation is failing to cover all state space. Figure 1.4 shows a fault
propagation path of fault injection. Each simulation can only cover limited state space.
Even multiple simulations cannot guarantee to cover all state space, because corner
states are hard to reach. As a result, passing all fault tests cannot guarantee the system
is reliable.

FIGURE 1.4: Fault tracing in a register net

The third limitation is that fault injection cannot perform root cause analysis of faults.
Fault injection is cause-effect analysis: it injects a fault and monitors the response. It
cannot identify/backtrack faults from an error or a failure. For example, with a wrong
output caused by a fault, it is hard to use fault injection to find all candidate faults. We
have not identified any recent successful research about root cause analysis of faults.

An alternative is using formal verification to perform fault analysis. However, the
existing work focus on using formal verification to complement simulation-based
fault injection, for instance, performing formal fault analysis to filter safe faults from
the fault list, and then using simulation-based fault injection to test the remaining
faults. The existing formal work only classifies faults into safe and none-safe faults.

10 Chapter 1. Introduction

There is no formal work that further explore non-safe faults based on the fault effects
at the architectural level.

1.6 Research Hypotheses

Single Event Upsets (SEUs) in digital systems have been a major concern of reliability.
The effects of such faults may be significant, but others will have no effect. We use
errors/failures to denote Silent Data Corruption (SDC), crashes, and hangs. We call
SEUs that may cause errors and system failures, such as SDCs, crashes, and hangs,
crucial SEUs. We describe SEUs that result in no effects as safe SEUs. Similarly, we
define crucial DEUs and safe DEUs.

We have the following hypotheses:

1. Our first research hypothesis is that we can identify and classify crucial faults.
An analysis method will be developed to perform root cause analysis of faults.
We propose developing formal properties to reveal faults that lead to SDCs,
crashes and hangs. We propose using formal verification, such as model
checking, to fully explore the entire state space, and to identify and classify SEUs
based on the SEU effects.

2. Our second hypothesis is that we can mitigate the effects of SEUs by employing
different methods. The proposed method will be expanded to evaluate
fault-tolerant technologies. The evaluation results help determine a cost-efficient
protection strategy to mitigate the effects of SEUs.

3. Our third hypothesis is that DEUs can aggravate SEUs. For example, DEUs that
consist of two safe SEUs may lead to SDCs, crashes, and hangs. In other words,
some safe SEUs are no longer safe in the context of DEUs. We aim to expand our
method to DEUs. The generality of model checking to complex designs and
DEUs is still limited because of infeasible runtime and state explosion. We can
develop multiple complexity control approaches to make the runtime feasible
and to make the results determined.

1.7 Research Objectives

Based on the hypotheses in Section 1.6, we have the following aims and objectives.
Firstly we aim to formalize errors and system failures such as SDCs, crashes and
hangs as formal properties. Formal verification will be used to explore all SEUs in the
whole state space in the RISC-V Ibex Core. To ensure exhaustiveness, we aim to

1.7. Research Objectives 11

develop complexity control approaches and experimental strategies so that all the
results are determined. By proving the developed properties, effect-cause analysis
will be performed to find and categorize all safe SEUs that have no effect, and all
crucial SEUs that lead to SDCs, crashes and hangs. The identified SEUs will be used to
evaluate the reliability of structures (bits, registers and modules) in the
microprocessor. We argue that some structures are more vulnerable than others.

Different hardware fault protection technologies have different costs and
effectiveness. This research secondly aims to expand the proposed method to evaluate
the effectiveness of fault-tolerant technologies. The evaluation results can be used to
determine a cost-efficient protection strategy: use the most effective though the most
expensive technology to protect the most vulnerable bits, use the less effective but
cheaper technology to protect less vulnerable bits, and leave reliable bits unprotected.
Redundancy-based fault-tolerant technologies have been verified by many works, so
we aim to evaluate a different fault-tolerant technology named residue arithmetic.

This research thirdly aims to expand the proposed method to explore DEUs. We aim
to identify and categorize all DEUs based on the fault effects. We aim to prove that
DEUs can aggravate SEUs. We also aim to develop different approaches to scale
model checking to DEUs, for instance, by reducing model checking time and efforts,
and by mitigating state explosion.

The objectives of this research are outlined below:

1. Firstly, we aim to develop a formal method to perform SEU analysis.

(a) To propose formal properties that reveal faults leading to SDCs, crashes
and hangs.

(b) To exhaustively identify and categorize all SEUs based on the fault effects
by model checking the developed properties.

(c) To develop various complexity control strategies to ensure exhaustiveness.

(d) To evaluate the reliability of all hardware structures (such as bits, registers
and modules) and software (such as instructions) in the presence of SEUs.

2. Secondly, we aim to extend the method to verify fault-tolerant technologies in
the presence of SEUs.

(a) To develop formal properties revealing the (raw and crucial) fault detection
effectiveness of the implemented fault-tolerant technology.

(b) To identify all hardware structures where injected faults can be detected by
the implemented fault-tolerant technology.

(c) To identify all crucial faults that can be detected by the implemented
fault-tolerant technology (not all crucial faults can be detected).

12 Chapter 1. Introduction

(d) To evaluate the fault detection effectiveness and hardware cost of the
implemented fault-tolerant technology.

3. Thirdly, we aim to extend the method to DEUs.

(a) To mitigate state explosion caused by DEUs and to make the runtime and
efforts feasible.

(b) To identify and categorize all DEUs based on the fault effects.

(c) To evaluate the reliability of all hardware structures and software
instructions in the presence of DEUs.

(d) To demonstrate that DEUs can aggravate SEUs.

4. We aim to demonstrate the above methods by applying them to a RISC-V Ibex
Core.

1.8 Contributions

Contributions of this research include:

• We formalized three types of failures: SDCs, crashes and hangs as formal
properties. By proving the developed properties, we identified and classified all
SEUs that lead to SDCs, crashes and hangs. Compared to simulation-based fault
injection, our method is exhaustive because all the state space can be covered.
We applied various complexity control strategies to ensure exhaustiveness: all
the SEUs in the fault list were tested and all the results were determined (except
multiplications and divisions). Compared to other work that use formal
verification to perform fault analysis and group faults into safe and crucial
faults, our method can further categorize crucial SEUs into three groups based
on the SEU effects. We chose the Ibex Core as our case study to evaluate the
proposed method. Based on the experimental results, the method can evaluate
the hardware reliability in the presence of SEUs. We found some hardware
structures (bits, registers and modules) are more vulnerable to SEUs than others,
similar to software instructions. We found FIFO and Program Counter are the
most vulnerable structures in the Ibex Core. We found that compressed 16-bit
instructions are more vulnerable than 32-bit instructions. We also found
misaligned instructions can amplify fault effects. We validated the properties
and the method with various approaches, such as simulation and mutations. We
also used Triple Module Redundancy and Shadow Registers as framework
validation measures. The properties can be adapted to other RISC-V processors
with signal remapping. Hence, our method is, in principle, general to other
RISC-V processors.

1.9. Thesis Structure 13

• We expanded our method to evaluate the fault detection effectiveness of
fault-tolerant technologies. Different from other work that use formal
verification to evaluate well-known redundancy-abased fault-tolerant
technologies such as Triple Module Redundancy and Shadow Registers, we
chose to use residue arithmetic as the exemplar. We developed properties to
reveal all hardware structures where injected faults can be detected by the
implemented fault-tolerant technology. We found not all the structures in the
Ibex Core can be covered by residue arithmetic. It is meaningless to explore
faults injected in the uncovered structures, hence reducing the fault space. We
modified the properties in the last paragraph to identify all crucial faults that
can be detected by the implemented fault-tolerant technology. We found not all
the crucial SEUs in the last paragraph can be detected by residue arithmetic. We
found that with little overhead, residue arithmetic can detect more than half of
the crucial SEUs that lead to SDCs, and the detected crucial SEUs are in both the
control and data paths in the Ibex Core. However, faults in the most vulnerable
structures such as the FIFO and PC cannot be detected by residue arithmetic.
The expanded method can identify all SEUs that can and cannot be detected by
fault-tolerant technologies. The results help determine cost-efficient
fault-tolerant technologies.

• We also expanded the method to evaluate the hardware reliability of the Ibex
Core in the presence of DEUs. We exhaustively explored and categorized DEUs
based on the fault effects. We identified vulnerable hardware structures and
software instructions to DEUs, and some are more vulnerable than others. We
proved that DEUs can aggravate SEUs, for example, two safe SEUs together can
cause errors and failures. Hence, it is not enough to protect against SEUs only.
There are few works about applying model checking to explore DEUs due to
infeasible model checking time and state explosion. We developed various
approaches to solve the problems, for instance, pruning the DEU list by
removing DEUs that include crucial SEUs and identifying all safe DEUs in
compact model checking runs. These approaches make it possible and
time-acceptable to perform model checking to explore DEUs. State explosion is
an inherent problem of formal verification. We developed multiple complexity
control and experimental strategies to mitigate state explosion. These mitigation
approaches greatly reduced model checking time and effort and ensured the
results were determined.

1.9 Thesis Structure

This thesis is organized as follows. Chapter 2 introduces some technologies used in
this thesis as well as literature reviews. Chapter 3 demonstrates the proposed formal

14 Chapter 1. Introduction

method to evaluate the hardware reliability in the presence of soft errors. Chapter 4
extends the method to evaluate a fault-tolerant technology, residue arithmetic.
Chapter 5 expands the method to DEUs. Chapter 6 is the conclusion.

1.10 Publications

A paper, as shown in Appendix C, has been accepted by PRIME 2022.

15

Chapter 2

Background and Literature Review

This chapter firstly introduces the background of this research, including Single Event
Upsets, fault simulation and fault injection. Some simulation-based fault injection
work is reviewed to explain the limitations of simulation. Then formal verification is
discussed, including both methods and technologies. In addition, related work of
using formal verification to perform fault analysis is reviewed. Finally, we compare
the reviewed simulation and formal verification work to state the gap.

2.1 Single and Double Event Effects

Single Event Effects (SEEs) are device failures induced by single radiation events [13].
There are four types of SEEs: Single Event Upset (SEU), Single Event Functional
Interrupt (SEFI), Single Event Transient (SET) and Single Event Latch-up (SEL) [13].

Single event upsets (SEUs), also called soft errors since they do not cause permanent
hardware damage, have been the major concern in commercial terrestrial digital
circuits [10, 13]. Ionizing radiation, electromagnetic effects and electromigration are
three major sources of SEUs. Details of these causes have been explained in Section
1.2. For example, when a single energetic particle, such as an alpha particle from
packaging materials or a neutron particle from cosmic rays, strikes a memory element
and discharges itself. This causes enough energy to change the state of the memory
element (a bit flip), and an SEU occurs. Apart from ionizing radiation, electromagnetic
effects and electromigration, malicious attacks such as fault injection can also cause
SEUs. SEUs occur in sequential circuits, hence directly influencing registers and
memories in processors, for instance, a data change in registers. A characteristic of
SEUs is that they are random events, and thus they may occur at unpredictable times
[37]. The effects of an SEU (the altered data) exist until it is corrected or refreshed.
Generally ionizing radiation, electromagnetic effects, electromigration and malicious

16 Chapter 2. Background and Literature Review

attacks can only affect one bit at a time and cause an SEU. If multiple bits are
influenced, Multiple Bit Upsets (MBUs) occur, which can lead to errors and failures
even with error correction [38, 39].

An SEFI occurs if an energetic particle causes a bit flip in a critical system control
register, resulting in system malfunctioning [40]. Different from an SEU, which may
have significant impacts or may not, an SEFI leads to a system malfunction. An SET
occurs if an energetic particle strikes the combinational logic, causing a voltage spike.
If an SET is latched into a flip-flop, an SEU then occurs [41]. When an energetic
particle passes through sensitive regions of a device, such as turning on a CMOS
transistor between well and substrate, resulting in circuit malfunction, an SEL occurs
[42]. SELs may cause permanent damage to hardware, such as short-circuits.

Some SEUs can cause errors and failures, while others do not. Some researchers
[36, 37, 43, 44] performed fault injection to categorize SEUs into the following groups,
based on the effects of SEUs

• Correct: The program in a processor completes normally. The output, the
execution time and the internal states match with the golden run (fault-free run).

• Silent Data Corruption: The program in a processor completes normally without
indication of errors. But the output differs from the golden run.

• Crash: The program in a processor crashes, and an error indication arises.

• Hang: The program in a processor fails to complete in limited clock cycles.

Only SEUs in the correct group have no effect. Others cause serious results. In this
thesis, we use errors/failures to denote Silent Data Corruptions, crashes, and hangs.

2.2 Fault Simulation

Fault simulation is the most used method to test and simulate a faulty model of a
circuit [45]. Fault simulation is very time-consuming because multiple faulty copies of
the circuit as well as the original one are simulated multiple times [46]. Large designs,
in particular when long test sequences are considered, also contribute to slow
simulation [47]. Another reason is the limitations of simulation algorithms. There are
three common algorithms used for fault simulation: serial, parallel, and concurrent
[48]. All three algorithms require one or multiple copies of the design, which results in
computational complexity. Fault simulation is a computationally intensive task. It
needs to perform multiple simulations under different fault conditions, hence it is
time-consuming. In addition, analogue circuits are increasing in SOCs; fault

2.2. Fault Simulation 17

simulation in analogue circuits is even more time-consuming due to more complex
algorithms and the combined need for more functional tests [49, 50]. There have been
multiple methods to speed up fault simulation, such as behavioural fault modelling,
symbolic simulation, parallelism, decision diagrams, and bitwise set operations
[47, 49, 51, 52]. However, these methods cannot meet our requirements of
exhaustively exploring all faults in the fault list, because it is still practically
impossible to run exhaustive fault simulation.

Higher transistor densities and lower voltage supply increase the possibility of MBUs.
Sangchoolie used a software-based fault injection technique to investigate whether
multiple-bit flips can cause a higher ratio of Silent Data Corruptions (SDCs) than
single-bit flips [44]. The fault model used is a bit-flip model, including single-bit flips
and multiple-bit flips. Sangchoolie injected faults to both register files and pipeline
registers at the instruction level [44], for example, reversing bits by modifying
assembly code. 27,300,000 random fault injection experiments are performed, which
can be categorized into three groups:

• Inject a single bit-flip

• Inject multiple-bit flips to the same register

• Inject multiple-bit flips to different registers

Experimental results show that multiple-bit flips do not cause much difference in the
ratio of SDCs compared to single-bit flips. As a result, the single bit-flip model is
enough for reliability studies. There is an incredible number of combinations of faults
for single-bit flips. When it comes to multiple faults, the number of combination of
faults is greater. He did not inject all combinations [44]. Instead, he used two methods
to prune the fault space by only injecting faults to registers when the registers are
used:

• Inject-one-read: Injecting a fault into a register before this register is read by an
instruction. In other clock cycles, no fault is injected.

• Inject-after-write: Injecting a fault into a register this register it is written to by
an instruction. In other clock cycles, no fault is injected.

These two methods significantly reduce the size of combinations by eliminating
inactive registers. However, these methods rely on adding extra instructions to the
program. The behaviour of the system, especially timing can be changed due to the
extra instructions. Another drawback of Sangchoolie’s work is injecting faults at the
software level. Research has proved that software cannot access hidden registers in a
microprocessor, thus losing accuracy [53].

18 Chapter 2. Background and Literature Review

To reduce the cost of fault simulation, Volk adopted program slicing to dynamic HDL
slicing to prune the fault list [54]. Such a methodology can be divided into four steps.
The first step is to build backward static slices for all microprocessor core outputs. A
backward static slice is a set of all program elements that might affect (either directly
or transitively) the values of the chosen observation point. It is similar to a
Cone-Of-Influence (COI) in formal verification [55], which has been explained in
Section 2.4. The second step is to run a simulation-based coverage analysis with a
specific program/benchmark and record coverage data for each clock cycle. The third
step is to compare the static slices with the coverage data to identify the intersection of
both. The intersection is a dynamic slice. The final step is to select critical faults from
dynamic slices and run simulation-based fault injection. Volk claimed that the
methodology can successfully reduce the fault list by up to 10 percent. However, the
methodology is program-dependent. With different programs, dynamic slices and
hence critical fault lists are different. The worst case was only around 1 percent
reduction. There are still too many faults for simulation. This methodology does not
solve the problem of failing to cover all the state space and all faults.

2.3 Fault Injection

Faults could occur during all stages of an embedded system lifetime: specification,
design, development, fabrication, installation, and operation. Single Event Upsets,
which can reverse a state, have been a major concern for reliability, because they can
cause system failures [11, 12, 13, 14]. Implementing SEU detection and recovery
mechanisms during the design and development stages can significantly improve the
system’s reliability and reduce costs. Fault injection has been widely used to assess
the reliability of a system; because it is cheap and accurate enough to the results [43].
Fault injection is a technique to assess the reliability of embedded systems. The basic
idea of fault injection is to inject faults into the system and monitor the response of the
system.

Different fault injection techniques can be classified into the following four groups:

• Hardware-based fault injection is performed in the actual hardware. Injection
methods include power supply disturbance, heavy radiation strike, and beam
testing [10, 56]. Compared to other types of fault injection techniques,
hardware-based fault injection injects faults into the real hardware which
executes the real software. As a result, this technique can cover all design faults
that may occur in the actual operation time [24]. However, this technique may
cause permanent damage to the hardware. It also has poor observability.
Observers cannot check the testing results directly. Extra testing is required to

2.3. Fault Injection 19

evaluate the results. In addition, this technique has poor controllability. It is very
difficult to control the injection location and the injection time.

• Software-based fault injection injects software faults at the software level to
analyse the system [57]. This technique modifies the software, such as the
assembly code, to emulate hardware faults. Compared to hardware-based fault
injection, this technique does not require real hardware for the system, hence it
has low cost and low complexity. In addition, this method can test errors in
programs, which hardware-based techniques cannot. However, one drawback
of this technique is that it cannot access and inject faults into hidden registers.
Hidden registers are invisible from the software view, but they hold execution
data temporarily. Laurent demonstrated the importance of hidden registers in
the processor pipeline by injecting faults into a RISC-V Rocket processor [53].
What is more, this method modifies the program, usually by adding extra
instructions. As a result, the original behaviour of the system may be influenced.

• Simulation-based fault injection injects faults into a simulation model of the
system under test, and is usually VHDL or Verilog based [24]. The faults occur
at the hardware level. This technique does not require a prototype, the system is
simulated using software, such as Modelsim and Verilator. This technique can
be performed at early design stages before the prototype is available to discover
design faults and assess reliability. The biggest advantage of this technique is
great controllability. Injection location, injection time, and fault duration can be
controlled precisely. In addition, unlike the first two techniques, which can only
observe the final output, this technique can monitor internal signals and states of
the system. However, this technique is time-consuming. It can take a long time
to simulate a complex system. The simulation time increases as the design size
increases. The accuracy relies on the selected model. If the model is not accurate,
the injection results may be useless. Considering the injection location and the
injection time, there is an incredible number of possible combinations of faults.
It is impossible to inject all the combinations. There are many states inside the
system. Each simulation can only cover some of the states. Multiple simulations
may cover some common states. Some states are hard to assess by simulation.
Faults in these corner states can be regarded as untested if the corner states are
not assessed during simulation. As a result, it is difficult to use this technique to
simulate all combinations, and some injected faults may not occur in the real
hardware. Though this technique is not as accurate as hardware-based fault
injection, using accurate models can increase the accuracy [58]. With the same
workload and system, the simulation-based fault injection technique is much
faster and more accurate than the software-based fault injection technique [37].

• Emulation-based fault injection uses an emulator, such as an FPGA, to perform
fault analysis. The target design, usually in VHDL and Verilog, is first loaded to

20 Chapter 2. Background and Literature Review

an emulator. The injection process is then performed inside the emulator. The
fault injection mechanism is usually separated into three parts: the emulated
system, a fault injector, and a host. The fault injector, which injects faults into the
emulated system, is controlled by the host. The host is either a computer
connected to the emulator or an embedded CPU on the FPGA [24, 36]. This
technique is much faster for injecting faults compared to simulation-based
techniques. Multiple FPGAs can be used for emulation in parallel. For
emulation, the initial system needs to be synthesized, placed & routed. One
drawback of this technique is that the system source code must be synthesizable.
The system source code for simulation-based techniques does not have to be
synthesizable. Though this technique does not require a prototype, emulators
are required. Though the emulation may be fast due to the high clock frequency
of the FPGA, the speed of the whole fault injection process is limited by the
communication speed between the host and the emulated system. For example,
low data transfer speed between the host computer and the FPGA board can
significantly increase the emulation time. Simulation-based fault injection can
monitor the internal signals and states at any time. However, emulation-based
fault injection can only check internal signals and states at a specific moment.

FIGURE 2.1: Fault Injection with a Mux

Touloupis injected both single-bit flips and double-bit flips to two LEON2 processors
[17]. One processor has no fault tolerance (the default processor). The other triplicates
the whole pipeline including pipeline registers and combinational logic. A voter is
used to select the correct pipeline output. Three automotive benchmarks, mtx4x4,
bitcnt, and qsort from MiBench are chosen as the workloads. MiBench is a free
benchmark suite designed for embedded system tests [59]. Touloupis used a
simulation-based fault injection technique. The LEON2 processors are implemented
in VHDL (and cannot be synthesized). One advantage of using simulation-based fault
injection is that all registers, including registers hidden from the software view, can
have faults injected. A fault injector is designed to inject bit flips to destination
registers at a specific clock cycle. Figure 2.1 is the fault injection mechanism
implemented by Touloupis. The fault injector reads the fault list from a file before
simulation. When reaching the target time, the fault injector flips the normal inputs,
switches the multiplexer, and enables the target register. Such an injector mechanism

2.3. Fault Injection 21

can inject faults. However, it increases the complexity of the processors. Faults are
injected during execution time. In other words, the program is not paused when
injecting faults. So the execution time is not altered. Two extra modules are
implemented: Execution Time Monitor and System State Monitor to generate a fault
injection report. These two modules behave as their names imply and are not
intrusive. Touloupis categorized multiple-bit flips into two groups: concurrent
multiple-bit flips and non-concurrent multiple-bit flips. Results indicate that
concurrent multiple-bit flips are not worse than single-bit flips. One special case is
concurrent multiple-bit flips occurring in the same location, which is equivalent to a
single bit-flip. The effects of non-concurrent multiple-bit flips are different. Touloupis
used simulation-based fault injection to evaluate TRM of the whole pipeline and to
compare the effects of multiple-bit flips and single-bit flips. Touloupis claimed that all
internal registers, especially hidden registers are tested. However, Touloupis did not
acknowledge that some states, hence registers, are hard to reach using simulation. In
addition, Touloupis used random fault injection. Random injection cannot guarantee
all faults are covered.

Cho injected single-bit flips into registers in two RISC-V processor cores to investigate
soft error effects [36]. These two processors have different microarchitectures: one
processor is in-order (Rocket), and the other is out-of-order (BOOM). FPGAs are used
to emulate the processors and to inject faults. The target processors are designed using
Chisel. However, the Rocket Chip Generator can convert the source code to Verilog.
The generated Verilog net-list is modified to add a fault injector. Figure 2.2 is the fault
injection mechanism used by Cho. As shown in Figure 2.2, each flip-flop in the
emulated processor is driven by an XOR gate. The inputs of each XOR gate are the
original input (the correct bit from the combination logic) and the control signal from
the fault injector. As shown in Table 2.1, the input bit to the target flip-flop is flipped
only when the control signal is one. The fault injector is controlled by the host CPU
embedded in the FPGA. The host CPU selects the target flip-flop and the injection
time randomly. The results of fault injection to the target processors reveal a strong
correlation: soft error rates of the same application in different microarchitectures but
the same ISA processors have a linear relationship. Based on this observation, Cho
developed a method to predict the soft error rate of a target processor using soft error
effects established on a known processor that has the same ISA as the target processor.
The prediction error is within 7%. One advantage of this method is using XOR gates
to flip bits. Some researchers implement multiplexers, such as [17], where the fault
injector reads a bit in the target flip-flop, reverses the bit, outputs the reversed bit, and
enables the target flip-flop and multiplexer at the same time. Compared to using
multiplexers, using XOR gates simplifies the fault injection structure. There are many
flip-flops in a processor. It is costly to pick up these flip-flops manually. Another
advantage of this method is using Synopsys Design Compiler to generate a list of
flip-flops in the target processor automatically. One drawback of this method is

22 Chapter 2. Background and Literature Review

random fault injection. Cho injected about 1.6 million faults, but some target flip-flops
may not be used during the emulation. In other words, the injected bit is not used. It
is unclear how many fault injection experiments are meaningless. The BOOM core is
more complex than the Rocket core. There are more flip-flops in the BOOM core than
the Rocket core. However, Cho injected the same number of faults into both
processors, which may influence the accuracy of soft error rates. Cho found strong
correlations between the fault injection results from the two cores. Based on this
finding, Cho argued that it is possible to predict the reliability of processors with the
same ISA. However, the conclusion is based on RISC-V. Other ISAs are not tested.

FIGURE 2.2: Fault injection mechanism used in [23]

TABLE 2.1: Truth table of the XOR gate

Correct Input Control Signal XOR Output
0 0 0
0 1 1
1 0 1
1 1 0

Ramos used fault injection to characterize the SEU sensitivity of lowRISC, a RISC-V
processor [43]. The target processor is implemented in an FPGA. So, this is
emulation-based fault injection. A single bit-flip is used as the fault model. Unlike
other research, which inject faults into a normal memory that stores execution data
and corrupts the stored data, Ramos injected single-bit flips into the configuration
memory in the FPGA. A bit flip occurring in the configuration memory changes the
design or the routing, because the configuration memory controls how the logic maps
in the FPGA. For example, a bit flip in the configuration memory may change an OR
gate into an AND gate. A Soft Error Mitigation (SEM) Core is used to inject faults into

2.3. Fault Injection 23

the emulated processor. SEM is a tool developed by Xilinx to perform SEU detection,
correction, and classification for configuration memory. SEM also injects faults into
the configuration memory [60]. Results show that less than 10% of the faults affect the
execution. The injection location is selected randomly. There are more than 9 million
configuration memory bits in the FPGA board. The randomly selected bits are a small
part. As a result, there is an argument about the accuracy of the final results. One
interesting point of Ramos’s work is using an existing tool (SEM) to inject faults.
Using SEM saves efforts to develop a new tool. However, SEM does not inject faults in
real-time. SEM pauses the execution when flipping a bit in the configuration memory.
Using SEM delays the execution time. There is a type of failure called ”failing to finish
in time”. SEM cannot identify this type of failure.

Travessini used fault injection to analyse SEU effects in processor cores [14]. Travessini
injected single-bit flips into registers in a LEON3 processor. Simulation-based fault
injection is used in Travessini’s work. Built-in simulator commands are used to
automatically inject faults and monitor effects. The core module in the LEON3
processor is duplicated. The copied core module receives the same inputs as the
default one. Outputs of the copied core module are disconnected from the rest of the
system. As a consequence, the copied core does not alter the processor operation. One
core is used for fault injection, the other is the reference. The interfaces of both cores
are monitored in order to investigate the fault propagation. Results show that only a
third of the total injected faults propagate to the core interfaces. The whole time for
one simulation can be divided into two phases: the warm-up phase and the execution
phase. The major work in the warm-up phase is to load the program into the program
memory. The execution phase is the actual simulation phase. In order to analyse SEU
effects in hardware, researchers should inject faults during the execution phase.
However, the time of the warm-up phase varies for different programs and different
designs. This work just considers the final 80% of the whole time as the execution
time, which is not accurate enough. Some faults may be injected during the warm-up
phase, hence reducing the accuracy of results. Another disadvantage is random fault
injection. The third disadvantage is duplicating the whole core. Duplicating the core
increases the complexity of the system under test and doubles the number of fault
injection locations. This may be unacceptable for some large and complex processors.

Traditional fault tolerance techniques are based on redundancy. Dual Modular
Redundancy (DMR) and Triple Modular Redundancy (TMR) are well-known
hardware redundancy-based techniques. The basic idea of N Modular Redundancy
(NMR) technique is replicating the default design N times. Inputs to all copies are the
same as the inputs to the default system. A voter is used to select the output. NMR
techniques result in more than N times overhead. To reduce the overhead, researchers
choose to protect the most vulnerable part of the system. Such a technique is called
partial protection. The most difficult question is how to find the most vulnerable part.

24 Chapter 2. Background and Literature Review

Many researchers use fault injection to select the most vulnerable part. In order to find
the most vulnerable pipeline registers, Jeyapaul proposed a methodology to
quantitatively analyse the vulnerability to soft errors of pipeline registers [32]. By
injecting SEUs into pipeline registers in an AMBER core, which is an open ARM-v2A
processor core designed in Verilog, Jeyapaul discovered that pipeline register
vulnerability depends on instructions. In other words, some bits involved (and hence
are vulnerable) in one instruction may not be used (are hence reliable) by another
instruction. Based on this finding, an ISA-aware systematic methodology is proposed
to analyse pipeline register vulnerability. There are two steps in the methodology. The
first step selects the active pipeline register when executing an instruction. The second
step computes pipeline register vulnerability. The results show that some of the
control bits and some of the instruction bits contribute most to the system’s
vulnerability. By protecting some specific instruction and control bits, the
vulnerability of the system can be reduced by 31% with 3% power overhead. The
most interesting contribution of this work is ISA awareness. By injecting faults into
pipeline registers and comparing the results of executing different instructions,
Jeyapaul discovered that the pipeline register vulnerability depends on the instruction
executed. Other researchers have not considered this. Jeyapaul called the
vulnerability with ISA awareness the effective vulnerability. The effective
vulnerability is only 12% of vulnerability without ISA awareness. This work uses a
simulation-based fault injection technique. The injection time is selected randomly,
but the injection target is not. It is unclear whether Jeyapaul considered the warm-up
phase or not. RTL behavioural analysis is performed first to identify the active
pipeline registers. Some bits identified by RTL behavioural analysis are not actually
vulnerable. Fault injection is then used to verify the vulnerability of the identified bits
using simulation. Performing RTL analysis to filter inactive registers is a smart idea.
However, Jeyapaul did not give details about this process. It is also unclear if Jeyapaul
considered when to inject faults into the identified bits. If the faults are injected in the
warm-up phase, or after the bit is no longer used, the target bit may be recognized as
the reliable bit, hence reducing accuracy. Jeyapaul implemented an access tracker in
Gem5 to calculate vulnerability. One question is that AMBER uses ARM-v2A, which
Gem5 does not support. Jeyapaul did not explain how to solve the mismatch. This
may reduce the accuracy of the vulnerability analysis. Vulnerability analysis and
partial protection in this work is instruction-specific. Embedded processors always
execute specific programs. As a result, the ISA awareness analysis and partial
protection can be a good methodology to improve reliability.

Plusquellic proposed an emulation-based hardware-software co-design fault injection
method [61]. Different from others, Plusquellic’s method addresses hardware
reliability from a security perspective. This method only identifies faults that result in
sensitive information leakage or corruption. RISC-V Rocket is chosen as the study
case. The method with the Rocket core is emulated on an FPGA board. Plusquellic

2.4. Formal Verification and Model Checking 25

performed exhaustive fault injection and observed some security holes. Based on the
results, Owen proposes a countermeasure [62]. Plusquellic’s work focuses on security
and hence focuses less on reliability. Plusquellic’s methodology requires a huge
number of fault injection experiments for different benchmarks (over 5 million
experiments are performed for two benchmarks).

In summary, fault injection is widely used to assess the reliability of an embedded
system. Fault injection injects faults into the system under test to monitor the
response. There are two attributes of faults: when to inject faults and where to inject
faults. Most researchers choose injection targets and injection time randomly, leading
to fewer possibilities but less accuracy. Some researchers slightly reduce the size of
fault combinations by fault pruning. Compared to the total combination of faults, the
injected faults are only a small group. Passing fault injection analysis cannot
guarantee the reliability of the system. In addition, fault injection-based analysis is
forward tracing. It can trace the fault propagation in the system, but it cannot find the
root cause of faults in the presence of a system failure.

Due to the infeasible time consumption, it is practically impossible to simulate all
faults. Some techniques are developed to prune the fault list, such as static analysis
and dynamic slicing [54]. Some researchers use hardware emulation to speed up fault
injection, such as using multiple FPGAs [36]. However, it is still impossible to test all
faults. Most researchers choose to inject a small number of faults, which reduces
efforts with the cost of decreasing accuracy.

2.4 Formal Verification and Model Checking

Formal verification uses mathematical methodologies to verify whether the design
under analysis meets design specification or not [63]. Kropf defines formal verification
as the following [64]:

A formal verification is a concise description of the high-level behaviour
and properties of a system written in a mathematically-based language.

Formal verification can be applied to different stages in the design flow. Figure 2.3
shows two formal verification approaches applied to different design states. There is a
concern that after synthesis and place & route, designs are not equivalent. For
example, an AND gate is changed to an XOR gate by accident. It is difficult to debug
such differences manually. Equivalence checking compares the outputs of two
different models, such as RTL & gate level, with the same sets of inputs, to prove
designs are equivalent [65]. Equivalence checking explores and compares all reachable
state spaces. Compared to exhaustive simulation, equivalence checking (if tractable at

26 Chapter 2. Background and Literature Review

all) will often be faster. One drawback of equivalence checking is that it heavily relies
on the exploration and comparison of the reachable state space [66]. If some states are
not reachable or not compared, the results of equivalence checking are not accurate.

FIGURE 2.3: Formal Verification in ASIC design flow

This research mainly uses model checking. In the following subsections, we will
introduce some well-known model checking techniques involved in Chapters 3 to 5.

2.4.1 Overview of Model Checking

Model checking is a formal method to analyse dynamic systems which can be
modelled by state-transition systems [55, 67]. Figure 2.4 shows an overview of the
model checking flow. Both design descriptions and design requirements are translated
into mathematical models before they are verified by a model checker.

2.4.1.1 Modelling

The design is modelled to a state-transition system. State-transition systems are
basically labelled graphs where nodes represent states, and edges model transitions
[55, 67]. For instance, a Kripke structure [68]. Let AP be a set of atomic propositions.
Atomic propositions are the fundamental parts of propositional logic and cannot be
divided into smaller parts. Atomic propositions can only be true or false. A Kripke
structure over AP is a triple K = ⟨S, T, L⟩, where S is the set of states, T ⊆ S × S is the
transition relation, and L : S → 2AP is a labelling function that gives the set of atomic
propositions true in each state.

2.4. Formal Verification and Model Checking 27

FIGURE 2.4: Overview of model checking flow

Another example of a state-transition system is a symbolic state machine in a
synchronous hardware circuit: a state represents the current value of the registers
together with the values of the input bits, and a transition models the change of the
registers and output bits on a new set of inputs. Most designs under test are not in the
form of explicit state-transition systems. Model checking tools can transform them
into state-transition systems, similar to formal properties.

2.4.1.2 Formalizing

The design requirements are formalized into property specifications. Temporal logics,
such as Linear Temporal Logic (LTL), Computation Tree Logic (CTL) and a
combination of both (CTL∗), are normally used languages to formally express formal
properties [55, 67]. The time view in temporal logic can be either linear or branching.
In LTL, every point in time has only one successor. Extra LTLs are required to handle
branches, because computation paths from a branch are considered separately. LTL
describes events along a single computation path. In CTL, branches are captured, so
there may exist multiple successors for a given point. A tree structure can be
generated to denote all computation paths.

The formal properties can be either safety properties or liveness properties. Safety
properties state something bad will never happen, liveness properties state something
good will eventually happen. Liveness properties should be used with caution
because it may take a lot of time and effort to prove them but get meaningless results.
For convenience, only safety properties are involved and discussed in this chapter. For
example, a safety property (also called an invariant) can be expressed in CTL as AGp:
the property p globally holds in all reachable states along all paths.

28 Chapter 2. Background and Literature Review

2.4.1.3 Model Checker

A model checker checks whether the model satisfies certain property specifications. If
not, a counterexample will be given, such as a witness (path) for the satisfaction of
¬AGp. Another example is a waveform including all related inputs and state
transitions violating the formal properties.

The basic algorithms of CTL model checking is: given a set of atomic propositions AP,
a Kripke structure K = ⟨S, R, L⟩ and a CTL formula f , find all states s in K that satisfy
f and check if initial states are included to satisfy f .

There are many different approaches/algorithms for the implementation of a
model-checking procedure. One historical approach is Explicit-State Model Checking.
As the name implies, the state descriptor for a system is maintained in explicit instead
of symbolic form, along with all state transitions. For example, using a depth-first
search algorithm to explore all state space and state transitions explicitly. Though
some abstraction techniques and partial-order reduction algorithms are used to reduce
the state space, Explicit-State Model Checking still suffers from state exploration.

2.4.1.4 Abstraction and Reduction

Abstraction and reduction are two techniques to mitigate state explosions. Abstraction
reduces a system model to a smaller over-approximation model. if a property holds
for the abstract model, then the property also holds for the original model. One
common abstraction technique for hardware verification is localization abstraction
[55, 69]. For a given property, localization abstraction only considers the logic
necessary to prove the property; hence the complexity can be reduced by removing
some unnecessary logic. For instance, abstracting a counter value. Partial-order
reduction is effective for asynchronous systems [55, 70]. Considering an asynchronous
system with n concurrent transitions. Then there will exist n! different orderings and
2n different states (each transition has two states). However, many properties do not
care about the ordering, hence it is sufficient to consider only a few sequences.

2.4.2 BDD and BDD-based Model Checking

An alternative model checking technique is Binary Decision Diagram (BDD)-based
symbolic model checking [71]. A BDD is a data structure for representing and
manipulating Boolean functions in symbolic form, such as graphs representing
Boolean functions [72]. BDD is canonical and compact compared to explicit
representations of states and transitions, because BDD can consider a large number of
states as a state set and operate on the state set instead of individual states. A simple

2.4. Formal Verification and Model Checking 29

circuit with three XOR gates in Figure 2.5 is used to demonstrate how to construct a
BDD in hardware verification.

FIGURE 2.5: A simple circuit with three XOR gates

The first step is to build a truth table, as shown in Table 2.2. Then a Binary Decision
Tree (BDT) can be generated, as shown in Figure 2.6. The top node labelled with a is a
root. The bottom nodes (0s and 1s) are leaves. The circuit in Figure 2.5 can be
formulated as a Boolean function with four variables (inputs), hence the depth of the
BDT is four, and there are 24 possible leaves and paths. In the BDT, each node is
labelled with a variable and has two outgoing edges. A solid line represents a 1-edge
and a dashed line represents a 0-edge. Different ordering of variables may change the
BDT. Ordering is important in a BDD. We choose an arbitrary order a < b < c < d for
simplification. An Ordered Binary Decision Diagram (OBDD) is an ordered BDT. A
Reduced Ordered Binary Decision Diagram (ROBDD, simply called BDD) is the
compact version (removing all redundancies) of OBDD.

TABLE 2.2: Truth Table of Figure 2.5

a b c d out a b c d out
0 0 0 0 0 1 0 0 0 1
0 0 0 1 1 1 0 0 1 0
0 0 1 0 1 1 0 1 0 0
0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 1 0 0 0
0 1 0 1 0 1 1 0 1 1
0 1 1 0 0 1 1 1 0 1
0 1 1 1 1 1 1 1 1 0

Then BDDs can be generated from BDTs. The BDT in Figure 2.6 is generated from the
truth table and is not compact at all because it contains redundancies. The third step is
to reduce redundancies. Hu summarized the reduction process[73]: 1) obeying the
restrictions that along any path from root to leaf, no variable appears more than once,
and that along every path from root to leaf, the variables always appear in the same
order; 2) merge duplicate/isomorphic nodes; 3) delete redundant tests. The yield
directed acyclic graph in Figure 2.7 is the BDD for the circuit in Figure 2.5.

BDD image computation is a basic in model checking. Suppose in a system, there is a
set of variables V, the current reachable states are Sc, the next states are Sn and a

30 Chapter 2. Background and Literature Review

FIGURE 2.6: Binary Decision Tree generated from Table 2.2

FIGURE 2.7: Binary Decision Diagram

transition relation T. BDD image computation starts with current reachable states Sc,
performs the breadth-first search algorithm to calculate the next states reachable from
the current set of states via transition relations T, such as Sn = ∃VT(V, V ′) ∧ Sc(V),
and grows reachable states by adding the next states Sc = Sc ∨ Sn.

Given the BDD of the design and a safety property in CTL formula AGp, the basic
idea of BDD-based symbolic model checking is to use BDD image computation to
iteratively grow reachable states from the initial state and check whether there exists a
reachable state that does not satisfy property p. For example, along all paths in Figure
2.7, check there there exists a state that does not satisfy property p.

However, BDDs can become too large. For instance, BDD size can grow exponentially
for arithmetic circuits such as multipliers [3]. Though optimal variable ordering might

2.4. Formal Verification and Model Checking 31

be used to reduce the size of BDDs, finding a suitable ordering is NP-complete or
needs manual intervention. There is no efficient ordering for some formulas, such as
multipliers. As a result, formally verifying multipliers is a challenge.

2.4.3 SAT and Bounded Model Checking

2.4.3.1 SAT

The Boolean satisfiability (SAT) problem is: given a propositional formula u,
determine whether there exists a variable assignment that makes the formula u to be
true. If yes, u is called satisfiable. Otherwise, u is unsatisfiable.

BDD-based model checking requires converting a Boolean formula to a BDD and
describing all satisfying solutions. On the other hand, a SAT solver only needs to find
a single satisfying assignment to the Boolean formula, which is more efficient [55].
SAT is more scalable than BDDs [13] when dealing with large industrial circuits
[3, 72]. The SAT solvers seemed to be a better solution than BDDs in model checking,
because SAT procedures also operate on Boolean expressions but do not suffer from
the potential state space explosion of BDDs; hence SAT-based Bounded Model
Checking (BMC) was developed [74].

In BMC, a SAT procedure is used to replace BDDs; and Boolean formulas are
constructed to check satisfiablity for a given finite path of length k. For example, given
a property p and a Kripke structure K, the basic idea of BMC is to construct a
satisfiable formula, if there exists a path of K whose length is bounded by k, and this
path violates the given property p. The formula is then passed to an efficient SAT
solver [55].

Most SAT solvers use conjunctive normal form (CNF) to represent formulas [75]. A
literal is either a variable or its negation. A clause is a conjunction of literals. A CNF
formula is a conjunction of clauses. A CNF formula is satisfied if all clauses are
satisfied. One application is to encode all logic gates in a design and corresponding
formal properties as CNFs, and combine all these CNFs to generate the overall CNF.
Then use an SAT solve to solve the overall CNF.

One algorithm used by SAT solvers is Davis–Putnam–Logemann–Loveland (DPLL)
[76]. The DPLL algorithm essentially performs a branch-and-bound algorithm to
explore all variable assignments, until it finds a satisfying variable assignment (if the
formula is satisfiable) or the search is exhausted.

32 Chapter 2. Background and Literature Review

2.4.3.2 BMC

In BMC, the model (state-transition system) is re-encoded using propositional
variables. For example, a Kripke Structure is a (finite) set of states S, a set of initial
states I ⊆ S, and a transition relation T ⊆ S × S. The Kripke structure can be
re-encoded using propositional variables only, and the result is purely propositional
predicates I and T. The propositional formula I(si) is true if si ∈ I, and T(si, si+1) is
true if (si, si+1) ∈ T.

In BMC, the property is also modelled using temporal logic. For instance, AGp. The
problem of finding a counterexample for the property p can be given as a finite path of
length k that ends with a state s that satisfies ¬p. The problem can be formulated as:

∃s0, ..., sk. I(s0) ∧
⋀︁k−1

i=0 T(si, si+1) ∧ ¬p(sk).

There are three conjuncts in the above formula. The first conjunct states that the state
s0 must be one of the initial states. The second conjunct is the characteristic function of
the transition relation between time step i and i + 1. The conjunction operator creates
k replicas of the transition relation T. The final conjunct asserts that the state sk

satisfies ¬p. If the above formula is satisfied, a counterexample is found.

One feature of BMC is sacrificing completeness for quick bug-finding speed. BMC is
originally an incomplete bug-finding method rather than a complete verification
method. However, some techniques enable unbounded proofs for a given property
[77]. We will introduce some well-known techniques in the following.

One intuitive technique is increasing the bound k to meet the completeness threshold,
but it is too difficult to compute the smallest threshold [55].

2.4.3.3 k-induction

Another method that extends bounded model checking to fully prove properties is
k-induction [78]. For a state-transition system (I is the initial state and T is transition
relation), a property p is inductive if p holds in the initial state I, and p holds in all
states reachable from states that satisfy p. The basic idea of k-induction can be divided
into two steps:

1) Base Case: check there is no counterexample within length k such that

I(s0) ∧
⋀︁k−1

i=0 T(si, si+1) ∧ ¬p(sk).

2) Inductive Case: check no state reachable from a sequence of k-states (that satisfies
p) can violate p.

(
⋀︁k−1

i=0 T(si, si+1) ∧ p(si)) ∧ ¬p(sk).

2.4. Formal Verification and Model Checking 33

If the base case is satisfiable, a variable assignment that satisfies the base case can be
found and can be used to construct a counterexample for p. If both the base and the
inductive cases are unsatisfiable, then return TRUE, which provides a sufficient (but
not necessary) condition to fully verify the property p.

2.4.3.4 IMC

Interpolant-based model checking (IMC) can also complement BMC [79]. Most above
techniques, such as BDDs, compute reachability explicitly. A different idea is building
approximations of reachable states and refining them iteratively. In brief, IMC
constructs an over-approximation of the reachable states and terminates after finding
an inductive invariant or a counterexample.

An interpolant for an unsatisfiable formula A ∧ B is a formula I, where A → I; I → B
is unsatisfiable; and I refers only to the common variables of A and B. The interpolant
I can be used as over-approximations of A.

The algorithm of IMC of a property P(s) is shown in the following, where Init is the
initial state, get interpolant is a function to compute Interpolants.

if check(Init ∧ T(s0, s1) ∧ (¬P(s0) ∨ ¬P(s1))

return False

R = Init, k = 2
while True // approximate reachability

A := R ∧ T(s0, s1), B := ¬P(sk) ∧
⋀︁k−1

i=1 T(si, si+1)

if check(A ∧ B)
if R == Init

return False

else

k ++

else

I = get_interpolant ()

R = R ∨ I[1/0] // map symbols at 1 to symbols at 0

if ¬check(R ∧ T(s0, s1) ∧ ¬R(s1))

return True

Even with approximate reachability, the biggest disadvantages of IMC are requiring
unrolling and restarting every time k is incremented.

34 Chapter 2. Background and Literature Review

2.4.3.5 IC3

The final technique introduced here to complement BMC is IC3. IC3 is considered as
the most efficient single-engine model checking technique for proving properties of
bit-level models; it is also shown to be able to reach deep counterexamples [55].
Invariants generated with the IC3 algorithm are known as property directed
reachability (PDR) [80].

An inductive assertion for a transition system is a formula F which satisfies I ⇒ F
(called initiation and ensures all initial states are covered by F), and F ∧ T ⇒ F′ (called
consecution and states that F is closed under the transition relation). F is inductive if
both conditions are met.

A Counterexample To Induction (CTI) is a state which can reach a bad state in one
step.

The formula F is an inductive strengthening of a safety property P if F ∧ P is inductive.

The formula F is inductive relative to another formula G if both I ⇒ F and
G ∧ T ∧ F ⇒ F′ hold.

Similarly, P is an inductive invariant for the transition system described by T and
initial states I if and only if I ⇒ P and P ∧ T ⇒ P′ [16].

The basic idea of using IC3 to prove P is generating an inductive strengthening F of P
covering all initial states [81]. Details are:

1) Check unsatisfiability of (I ⇒ P) or (I ∧ T ⇒ P). This is to ensure all initial states
have to satisfy P and may not reach a bad state (¬P) in one step. If either is
unsatisfiable, return False.

2) Compute over/under-approximations of forward/backward reachable states. For
example, build a sequence of frames F in CNF. F[k] is an over-approximation of the
states reachable in k steps.

3) Refines approximations by adding restrictions on states reachable in one step
backward from a goal (bad) state. For example, in the ith step, proof obligation is (s, i)
(s states).

IC3 handles this proof obligation by checking F[i − 1] ∧ ¬s ∧ T ⇒ s′.

If unsatisfiable, ¬s is inductive relative to F[i − 1], which means it is not reachable in
one-step from F[i − 1].

Otherwise, a CTI is found. c is a sub clause of s. ∃c.F[i − 1] ∧ ¬s ∧ c ∧ T ⇒ s′.

Which means there is a state contained in F[i − 1] that reaches s′ in one step. Then add
proof obligation (c, i-1) and recurse it.

2.5. Related Work of Formal Verification 35

4) Terminate when an inductive invariant or a counterexample (such as a bad state is
proved to be reachable) has been found. For example, if for some i, F[i] is inductive,
then the property is TRUE; if the proof obligation is pushed to initial states I, then the
property is FALSE.

There is no such algorithm that is always better than the others, though in general,
BMC is good at unsafe checking (bug finding), IMC and IC3/PDR are better for safe
checking (correctness proof) [82].

2.5 Related Work of Formal Verification

Formal verification has been widely used in academia and industry. In this section, we
first review a wide range of formal verification, then we mainly focus on reviews that
are highly related to our research. Detailed discussions of the highly related work,
such as inspiration, limitation and motivation, will be given at the end of each review.

Due to the advantages of formal verification compared to traditional simulation, as
stated in Section 2.4, formal verification can be used to validate the design across
design stages. For example, Gao used formal verification to validate a CHERI-enabled
processor [83]. Sharafinejad performed equivalence checking to verify the low-power
processor designs that contain several power domains and different system-level
power strategies [84]. Rojas combined both formal model checking and simulation to
verify the functionality of a RISC-V processor [85]. Selvakumar used both equivalence
checking and model checking to verify a Pseudo Random Number Generator [86].
Jakobs used both equivalence checking and model checking to verify processors with
custom instruction set extensions [87]. Duan formally verified the connectivity and
function of the I/O multiplexing in SoCs [88]. Drechsler applied BDD-based model
checking to verify multiple types of adders [9]. Liew used SAT-based theorem proving
to verify multiplexers [89]. Xiang and Duran used formal verification to identify bugs
caused by misunderstanding of the ISA [90, 91]. Fadiheh applied formal verification to
detect and locate vulnerabilities in covert channels [92]. Cheang introduced a formal
methodology for enabling secure speculative execution on modern processors [93].

Fault analysis is a crucial aspect of achieving compliance with ISO26262. It involves
identifying potential faults in the system, analyzing their effects, and ensuring that
appropriate safety mechanisms are in place to mitigate risks. Many papers propose
using formal verification approaches to perform fault analysis. We review some recent
work that applied formal approaches to fault identification and classification in this
section.

Jayakumar presented a methodology called model-based fault injection which can
guarantee near-exhaustive state, input, and fault space coverage by applying formal

36 Chapter 2. Background and Literature Review

FIGURE 2.8: Assumptions to cover all faults [1].

verification [1]. This method is in fact a combination of fault injection and model
checking. The method was implemented on Simulink behavioural models using the
Simulink Design Verifier (SDV) model checking tool.

There are six steps in Jayakumar’s method [1]. The first step is to implement fault
injection mechanisms between signal drivers and receivers in the design, which will
inject faults into the design after receiving fault control signals. The second step is to
model fault propagation or error conditions as assumptions. There are a lot of faults in
the fault list, considering the fault locations, injecting times, types, duration and
values shown in Figure 2.8. Fault activation conditions specify the input/state
sequences that cause the injected fault to manifest as errors and propagate within the
system design. Manually listing the fault activation condition is tedious and
time-consuming. Hence Jayakumar used the model checking tool to automatically list
the fault activation conditions. To achieve this goal, the state/output conditions,
which indicate an error or a failure, must be modelled as assumptions. These
assumptions, as shown in Figure 2.8, will be used in later steps. The third step is to
develop fault tolerance properties according to system safety requirements. Fault
tolerance properties denote the expected system behaviour or primary outputs in the
presence of faults.

The following three steps require SDV, the model checking tool [1]. The fourth step is
to configure SDV to select supported fault locations and fault models from the
assumptions in Figure 2.8. In addition, the model checker assumes that the fault can

2.5. Related Work of Formal Verification 37

be injected at any time and for any duration, which allows a complete exploration of
the entire fault list. The next step is to identify all the fault activation conditions for
each fault chosen in the last step. In other words, use SDC to identify all the input
sequences that can cause the injected fault to manifest as an error and propagate. The
final step is to run a model checking of the safety properties. Fully proven results
mean that the fault tolerance functionality can correct all the configured faults.
Otherwise, a counterexample is generated to show the detailed fault attributes
(location, duration, type, value and injection time) that bypass the fault-tolerance or
safety feature.

This methodology successfully implements formal verification to cover all state space
with faults. Jayakumar applied this methodology to verify safety properties by
injecting a fault into the design. It is especially efficient for exhaustive single-fault
injection. Compared to simulation-based fault injection, it saves orders of magnitude
of execution time. However, this methodology suffers from a state space explosion for
the Design Verifier model checker. Jayakumar gave no information about complexity
control and formal techniques involved in his work. It is also not clear how
Jayakumar handled inclusive results and what safety properties were developed.

Busch developed an automated formal verification flow to evaluate safety-critical
registers in automotive micro-controllers [94]. Specification data of Special Function
Registers (SFRs) in Extensible Markup Language (XML) format should be provided to
the verification flow. For example, register level information such as register name,
address, and reset value; and bit-field level information such as bit-field name and
index range. Busch’s method can be generally divided into three steps: 1) generate
formal properties from the design model and specifications; 2) model check these
properties (and other predefined properties); and 3) analyse the results.

Busch’s work focused on functional verification of safety-critical registers [94]. Busch
argued that the contents of these registers should not be corrupted by unintended
software writes or spontaneous random bit-flips. Therefore he developed two groups
of safety requirements: write access restrictions, and error detection & correction
mechanisms. One example of access restrictions is that configuration registers can
only be modified during the start-up phase. The second safety requirement is about
redundancy-based error detection & correction mechanisms. A property was
developed to raise an alarm by monitoring the difference between the original
registers and duplicates. This property can cover all possible fault combinations in
one single proof; iterative fault injection in each bit is not necessary.

To maximise the efficiency of this property, Busch developed a formal fault injection
mechanism [94]. Given a simple register with an output port qout and an input port
qin, ideally, they should be connected to keep the value in the register no change
(suppose no write operation). The fault injection mechanism cuts the two signals into

38 Chapter 2. Background and Literature Review

fan-in (qout) and fan-out (qin). Then assumptions were used to model fault models.
For example, to constantly connect qin to logic 0 to model stuck-at-0, and to connect
qout and qin with an NOT gate to model a bit-flip.

The developed properties in Busch’s work are divided into two types to reduce proof
effort [94]. The first type is black-box properties. This type of property checks registers
by monitoring bus interface signals, such as the write and read values of a register,
hence bus protocol violations can also be checked. For example, checking if a register
is modified by an illegal write, by reading this register before and after an illegal write
access, and assuming there is no intermediate legal write to this register. Besides the
above, the first type also checks legal writes, specific writes (such as mask writes and
read-modify-writes), reset register value, and consistency of register values. The first
type is suitable for verifying read-only or software-write-read-bit-fields-only registers.
The first type of black-box property cannot cover all registers, such as registers with
all bit-fields that are not read-accessible, or with additional internal write protections.
Hence, the second type of white-box property is developed to perform similar checks
on these registers. One difference between black-box properties and white-box
properties is that white-box properties can assess the current state of a register instead
of using an expensive read operation; thus it takes less time to prove white-box
properties.

There are three things in Busch’s work [94] that interest us. The first is what properties
were generated to check safety-critical registers. Busch developed properties based on
two safety requirements that safety-critical registers must hold. By proving these
properties, faults that violate the safety requirements can be found. Though
identifying all faults is not the main aim of Busch’s work, Busch’s work proved that it
is practicable to explore faults using model checking. The second thing that interests
us is the fault injection mechanism using cut points and assumptions. Though this
mechanism supports various fault models, it cannot cover all bit-flips. It can only flip
bits in the register output. If new data is written to the register at the same time the
register output is flipped, which one will be stored in the register? This is a
consideration in our research. The third thing we learn from Busch’s work is using
black-box to abstract some unnecessary parts can improve proof performance. We will
utilize such a technique in this research.

Silva used formal verification to verify and prune fault lists generated by fault
simulators tools in the context of safety verification [95]. Silva deployed Cadence
Xcelium Fault Simulator (XFS) to generate fault lists and perform simulation-based
fault injection. Then Cadence Functional Safety Verification (FSV) was used to
perform fault analysis. Details of using FSV to perform fault analysis have been
provided in Section 1.4.2. The IWLS 2005 benchmarks were chosen as case studies.
Experimental results show that an average reduction of 29.5 % on the number of faults
to be simulated is achieved. Silva’s work has been integrated into the FSV. FSV is

2.5. Related Work of Formal Verification 39

FIGURE 2.9: Integration of formal FPA with fault simulation. [2]

automated and fully integrated with XFS. Users can compile and elaborate the design,
synthesize an Xcelium snapshot appropriate for the formal environment, load the
snapshot into FSV, and run formal fault pre-qualification or sign-off. Integrating FSV
before and after fault simulation reduces the fault set and eliminates useless
re-simulation cycles. As mentioned in Section 1.4.2, FSV requires no formal language
knowledge, as all required properties are automatically generated by the tool; users
only need to specify fault lists and strobe points. Our research aims to develop and
verify formal properties of SDCs, crashes and hangs. Compared to FPV, FSV can only
partially meet our requirements because FSV cannot categorize faults based on SDCs,
crashes and hangs.

Silva’s idea and work [95] is similar to Marchese’s idea and work [2]. Marchese
proposed a two-mode formal fault propagation analysis (FPA) method that can
integrate with simulation-based fault analysis to improve the functional safety of
automotive SoCs [2]. The first mode, Fast Fault Propagation Analysis (FPA), targets
large fault populations. Formal tools, which are configured to automatically select
appropriate proof methods and strategies (such as proof engines in Cadence
JasperGold), are used to identify the majority of safe faults. The second mode, named
Deep FPA, requires more formal knowledge to analyse hard-to-prove faults. However,
Marchese did not give details of the formal techniques involved in the two modes.

Figure 2.9 shows the integration of FPA with simulation-based fault analysis. The first
step is to run FPA in fast mode to prune the fault list by removing safe faults that are
detected or non-propagatable. Then perform simulation-based fault injection to test
the majority of faults. There may be some faults that are hard-to-prove after
simulation. FPA in deep mode can be used to further analyse and classify these
hard-to-prove faults.

Based on the previous work [95], Silva combined Automatic Test Pattern Generators
(ATPG), formal methods and simulation-based fault injection to decrease the efforts
and improve efficiency of functional safety verification [96, 97]. Besides Cadence
Xcelium and JasperGold which were used in the previous work [95], the Cadence
Modus DFT Software Solution ATPG component is used to perform ATPG flow. The
method begins with ATPG and Formal flows in parallel. After the ATPG flow is
finished, the ATPG Testbench is used for simulation-based fault injection. Formal
methods are applied to identify untestable faults and determine the behaviour of

40 Chapter 2. Background and Literature Review

faults that are not covered by ATPG. Finally, at the end of all flows, the results from
simulation and formal verification are retrieved and compared. For example, faults
classified as Untestable by the simulation are equivalent to faults classified as Safe by
formal verification and ignored by ATPG.

ISO26262 recommends fault injection to test reliability and safety. To reduce faults and
to improve ISO26262 compliance, Silva proposed an approach to identify safe faults
that do not disrupt safety-critical functionalities [98]. The method is applied to a CAN
Controller IP, resulting in a Diagnostic Coverage of 93%. Silva argued that formal
verification can identify more than Structural-Safe Faults, which are untestable by any
valid test stimuli, and Detected faults, which are observable on safety-related outputs.
Hence, Silva focused on Residual Faults, which can lead to system failures and are not
covered by a safety mechanism. If such a fault cannot affect safety-related
functionalities, then it is a Determined-Safe fault. Determined-Safe faults may affect
the outputs of the design, but they cannot affect safety-critical functionalities.

Silva’s method can be divided into two steps [98]. The first step is to run simulation to
collect coverage data. Block and toggle coverage are the main focus. Block coverage
determines whether specific states are activated in a state machine. Toggle coverage
measures the activity of specific signals during the simulation. By analysing these two
coverage reports, design elements that are not fully used during the simulation are
Determined-Safe Candidates. These candidates will be further identified by formal
methods.

The next step is to perform formal techniques, such as structural analysis, in FSV to
find Structure-Safe faults. Formal verification generates COI for the target strobe
point. Faults outside the COI cannot affect the target strobe point, hence are safe
faults. Then the Determined-Safe Candidates generated from the last step are
translated into formal rules, such as assumptions. The formal rules can increase the
capacity of Safe Faults identification by limiting the input state space. FSV analysis is
performed again with the formal rules to identify the Determined-Safe Faults.

Silva again used the similar method that relies on Cadence FSV and XFS to identify
nodes that do not disrupt safety-critical functionality, enabling the reduction of
undetected faults [99]. The method is almost the same as above hence not repeated.

Silva’s method [98] extended the previous work [95] to identify safe faults that do not
disrupt safety-critical functionalities. However, there are some limitations. The idea of
using code coverage to prune the fault is not new. For example, dynamic slicing
proposed by Volk [54]. Only stuck-at faults are evaluated. Many of the properties are
not proven, which reduces the accuracy of results. Most of the experiments, including
fault injection simulation using Cadence XFS and formal fault analysis using FSV, use
automatic built-in tool features. Since FSV can exhaustively explore fault relations and

2.5. Related Work of Formal Verification 41

FIGURE 2.10: Equivalence checking miter for two copies of the network with different
faults injected [3].

propagation, we argue that simulation-based fault injection is not necessary to
identify safe faults.

In order to prune the fault list and speed up the functional safety verification process,
Dao proposed a method that uses formal verification to identify equivalent faults [3].
Two or more faults are equivalent if the errors they produce at the outputs of the
design are the same. Dao modelled a fault as a triple: a unique integer representing
fault ID, the target node name and the type of the fault. Besides permanent stuck-at
faults and negation faults, Dao also considered arbitrary functional changes, such as
replacing a driver operator at a node with eight different logic gates, including
(N)AND, (N)OR, (N)XOR, NOT and BUF.

As shown in Figure 2.10, Dao duplicated the design and added a miter circuit to prove
the equivalence of two faults [3]. Dao modelled the design as a Boolean network and
duplicated the network. Both networks are injected with different faults at nodes n
and n′. The miter outputs 1 if any output of the two networks is different. Different
faults are iteratively injected into each node in the networks.

The algorithm of Dao’s method can be divided into three steps. The first step is to
perform structural analysis to filter out nonequivalent faults [3]. Dao observed that if
the primary outputs of two faults are different, or the two faults can affect different
internal nodes / primary outputs, then these faults are likely not equivalent. The
structural analysis results is fed into the second step. The second step uses both SAT
and simulation to prove or disprove the true equivalence between any pair of
candidate faults. The circuit in Figure 2.10 is transformed into a Boolean problem in
the form of a CNF. CNF has been introduced in Section 2.4.3. An SAT solver is used
the solve the problem, such as finding all assignments (inputs and faults) for which
the miter output is 1. If unsatisfiable, the injected two faults are equivalent; if

42 Chapter 2. Background and Literature Review

satisfiable, the faults are not equivalent; if undecided, the faults are assumed to be not
equivalent. In the case of undecided results, case splitting is used for further analysis.
The SAT solver can generate a test-pattern if two faults are not equivalent. In the third
step, the test-pattern is fed into simulation to test all fault pairs in the same candidate
fault class but with case splitting, i.e., splitting the class into several smaller candidate
equivalence classes.

Dao’s method is similar to other reviewed work that use both simulation and formal
verification (such as equivalence checking) to perform fault relation analysis in order
to prune the fault list. Dao used four benchmarks for demonstration. However, we
would argue that the equivalent faults found by Dao are only equivalent under the
four benchmarks (certain states) and are not general to all cases. In addition, Dao only
focused on equivalent faults; Dao could further prune the fault list by performing
fault propagation analysis to filter unpropagatable faults. What inspires us in Dao’s
work is using case splitting to handle inclusive formal results. Case splitting will be
used in our research to handle undetermined results.

Huhn proposed an application-specific approach that applies formal verification to
improve the robustness of sequential circuits [100, 101]. Huhn argued that the value of
a flip-flop (FF) is often equal to the value of many other FFs at the same time. In
addition, if the sequential circuit under test is known, it is possible to determine the
relation between the FFs. For example, the states in which certain FFs can hold the
same value. Under the above arguments, Huhn proposed to implement partial
redundancy to protect FFs by comparing the values of equivalent FFs. Compared to
other traditional space-based approaches (which introduce extra hardware to generate
redundancy), timing-based approaches (which influence the timing behaviour) and
application-specific approaches (which only consider the dedicated parts of a circuit
under certain cases), Huhn claimed the proposed method can solve all the drawbacks,
such as hardware overhead, latency and restrictions to general circuits. The most
important part of the method is to correctly and exhaustively determine the relations
between FFs for given applications, which is a computationally hard task. Huhn
proposed the following Equivalence Property (EP). Pj ⊆ N be a partition of at least
two non-robust FFs N, and ˆ︁S ⊆ S be a set of reachable states.

EP
(︂ˆ︁S, Pj

)︂
:=

⎧⎪⎨⎪⎩ f1, . . . , fl ∈ Pj

⃓⃓⃓⃓
⃓⃓⃓ all FFs f1, . . . , fl outputs the

same value under the same
state s ∈ ˆ︁S

⎫⎪⎬⎪⎭
EP should hold if all combinations of FFs fn, fm ∈ Pj have the same output values in
all reachable states ˆ︁S ⊆ S. Based on the above EP, Huhn can find all equivalent FFs in
a partition and the states where all FFs in the partition hold the same value.

2.5. Related Work of Formal Verification 43

Specifically, Huhn used an SAT-based approach to solve the problem [100, 101]. The
basic idea is that FFs of a partition P form a good partition if: 1) an assignment of the
fan-in cone exists, such that an occurring transient fault in one FF ∈ P is propagated
and visible toward at least one Primary Output (PO); and 2) all FFs of P assume the
same value. Let TP be a set of assignments of Primary Inputs (PIs), such that a
transient fault of any FF of P is observable at the POs. All TPs are denoted as TP(P).
X defines the number of PIs as well as FFs in the fan-in cone of partition P. Then the
TP metric (denoted as M(P) for a given partition P) is:

M(P) =
|TP(P)|

2|X|

The TP metric M(P) can be used to evaluate and rank FFs.

After finding the partition Pj where EP holds using SAT, the next step is to determine
reachable states ˆ︁S using BMC [100, 101]. Huhn formalised the problem into the
following formula and used BMC to solve it. P is a logical formula modelling
EP(sl , Pj). I is the initial state. l is the proof depth.

SFind(Pj, l) = I(s0) ∧
⋀︂

0≤i<l

T(si, si+1) ∧ P

Instead of implementing redundancy-based fault-tolerant technologies to enhance
reliability, Huhn chose to detect faults by utilizing the relationship among equivalent
FFs [100, 101]. SAT and BMC were used to identify the equivalent FFs and the states
where the equivalence holds. However, this method can only protect FFs under
certain states - what about the other states where no equivalent FFs can be found?
Another limitation is the choice of the proof depth in BMC. In Huhn’s experiments,
the proof depth l has been assigned to different numbers but without a clear
explanation.

Hu developed formal fault effect propagation models which can be used for
simulation, formal verification and emulation [4]. Three types of faults were modelled:
bit-flip faults, stuck-at faults and random faults. The first two faults have been
introduced before. An example of random faults is an X-state caused by uninitialized
registers. If these registers are referenced before being configured with a meaningful
value, the system could malfunction and observe unexpected design behaviour.

There are two steps to construct a fault effect propagation model [4]. The first step is
to associate fault labels to all signal bits. A logic-high fault label indicates the labelled
signal has a faulty value. The second step is to construct the model by duplicating the
original circuit design and feeding faulty inputs to the faulty copy. The fault effects
can be observed by comparing the outputs of the two circuit instances. For example,
to model the propagation effects of bit-flip faults in an AND gate, O = A · B, a bit-flip

44 Chapter 2. Background and Literature Review

FIGURE 2.11: Propagation of bit-flip faults through a two-input AND (AND-2) gate.
(a) An AND-2 gate. (b) The truth table of AND-2. (c) Partial truth table for modelling

the propagation of bit-flip faults through AND-2. [4]

can occur at any input port, as shown in Figure 2.11(a). Figure 2.11(b) is the truth table
of the original AND gate. Figure 2.11(c) shows the truth table with bit-flips, where Ae,
Be and Oe are the fault labels of A, B and O respectively. Based on the truth table, the
Boolean formula of the fault effect propagation model for an AND gate is shown in
the following, where Oe is the output in the presence of a fault:

Oe = AAeBe + AeBBe + AAeBBe + ABBe

Hu’s method [4] modelled faults and fault effect propagation in formal verification.
Though Hu claimed his method could be used for formal verification, he did not
perform verification to prove this claim. Only simulations were performed. Hence it
remains a problem whether Hu’s method can be used for formal verification. In
addition, Hu’s method was not automatic: the models were constructed manually. In
fact, there are similar work about modelling fault propagation using formal methods.
For example, Bagbaba represented SETs by multiple SEUs and performs formal
approaches to analyse fault propagation; and experimental results showed that the
fault space can be reduced by tens to hundreds of times [102]. However, these
methods are only suitable for simple and small designs. It is hard to do similar work
in a complex design. Hence, we do not use similar methods to model and analyse
SEUs in our research.

Bernardini used formal techniques to simplify simulation-based fault injection and
enhance the accuracy and comprehensiveness of functional safety analysis [16]. The
basic idea is to find safe faults, prune the fault list by removing the safe faults, and

2.5. Related Work of Formal Verification 45

then simulate the remaining faults in the fault list. The simulation-based fault
injection is a well-known technique, hence we mainly focus on the formal part.

Bernardini performed model checking to find safe faults [16]. A fault will be safety
critical if and only if a “bad state” can be reached as a consequence of the fault itself.
Bernardini defined “safety” as a reachability problem and solved the problem with
model checking, for example, proving a bad state can never be reached from initial
states with known state transitions. In detail, IC3 algorithm-based PDR model
checking (which has been introduced in Section 2.4.3) is used to find the invariant of
the transition system under test. The invariant shows that the system remains safe
with certain injected faults. It is unnecessary to simulate these safe faults.

The results show that Bernardini’s work can reduce timeout simulations and
undecided results, which overall improves the performance of simulation-based fault
injection [16]. We learn that it is theoretically and practically possible to combine fault
injection with model checking. However, Bernardini’s work still focuses on simulation
and cannot solve the problems of simulation-based fault injection, for example, not
being exhaustive. ’Hardware model checking’ from Hardware Model Checking
Competition is chosen as a benchmark for both model checking and simulation [103],
which cannot cover all the input state space. Nevertheless, there are still
inclusive/undetermined results, such as undecided faults. We think a possible
improvement to Bernardini’s work is to use various approaches to further reduce the
undetermined results.

Traskov used formal verification to perform fault analysis of a well-known safety
mechanism, Triple Modular Redundancy (TMR) [104]. The generic flow for fault
analysis includes fault population reduction, fault injection, checking and
classification, and collection of metrics. Traskov thought the purpose of the safety
mechanism was to detect and correct faults. Based on this, Traskov developed two
aspects that must be verified. The first one is functional behaviour: the safety
mechanism’s specification and underlying requirements must be satisfied. For
example, to verify that the design behaves as expected without faults, the design
behaves as expected with specific (’corrected’) faults, and the design goes into a safe
state for a specified list of (’detected’) faults. The second one is diagnostic coverage:
the safety mechanism is able to detect and handle enough faults.

Traskov combined fault injection with Sequential Equivalence Checking (SEC). SEC
exhaustively compares both the logic and temporal behaviour of two given circuits.
SEC has been introduced in Section 2.4. Traskov duplicated the design at gate-level:
one golden as a reference and one faulty with fault injection; both designs were
protected by TMR. A fault injector was used to control and inject faults to the faulty
one. Three fault models were considered: permanent faults (stuck-at-0, stuck-at-1),
transient faults (such as SEU), and intermittent faults.

46 Chapter 2. Background and Literature Review

Traskov used formal techniques to model faults and fault injection. The basic idea is
to: 1) cut the destination signal dest sig so dest sig will be considered as a free net for
the formal engines; 2) drive dest sig with assumptions. The fault injection is controlled
by a signal control sig. If low, destsig is driven by the golden copy re f sig; otherwise,
dest sig is driven by the faults. For example, to model stuck-at-0 faults, the
assumptions are:

assume property (control_sig |-> dest_sig ==0);

assume property (! control_sig |-> dest_sig == ref_sig);

Then formal properties in SVA are developed to check propagation and detection of
faults. Three property examples are given. The first example checks whether an
injected fault can (eventually) be observed at TMR, by comparing the inputs to the
TMR in both copies:

f ault inject at(sig)|− > ##[0 : $]
⋃︁

i(impl.inst.ini == spec.inst.ini)

impl means implementation (the faulty copy), spec means specification (the golden
copy). inst is the instance protected by TMR. in1, ..., ini are inputs to TMR.

The second property verifies that for a particular fault, TMR (eventually) forces the
system to go to a safe state.

f ault inject at(sig)|− > ##[0 : $](impl.inst.state == sa f e state value)

impl.inst.state is the system state variable and sa f e state value is the system state safe
value.

The third property models that a detected fault by TMR can also be corrected by TMR.
In other words, the outputs of the two copies are the same.⋂︁

i f ault inject at(sig)− > (impl.inst.outi == spec.inst.outi)

Mentor’s Questa Formal tool was used to perform SEC. The formal results and
runtime were compared with those obtained using dynamic simulation-based fault
injection techniques. Mentor’s QuestaSim was used to perform simulations. Results
showed that all faults in the TMR-protected elements can be detected and corrected.
However, TMR added an extra majority voter; faults in the majority voter could
propagate and cause errors.

There are some interesting things in Traskov’s work that can be used in our work. The
first thing is that Traskov developed constraints preventing multiple fault toggles
from happening. Without such constraints, the fault control signal can toggle more
than one time, and multiple faults will be injected. This information is important
when exploring SEUs. The second thing we can learn from Traskov’s work is implicit
fault injection. Traskov did not force the fault control signal to toggle at all, thus the

2.5. Related Work of Formal Verification 47

formal tool can decide whether to inject faults or not. In fact, implicit fault injection
has been used in other work [105]. We will use implicit fault injection as a complexity
control strategy, details will be given in Chapter 3.

Traskov [104] is not the only one to use equivalence checking to analyse faults and
fault tolerance technologies. There have been many similar work using equivalence
checking to check structural similarity and to evaluate fault tolerance technologies
(mainly TMR). Berg verified whether three copies in TMR were equivalent and the
voters were inserted as expected [106]. Beltrame used a similar approach but with
fault injection [107]. Benites checked the equivalence of TMR-protected design with
respect to the original design, and performed single fault injection to validate
fault-tolerance of TMR [108].

Entrena used formal verification, mainly equivalence checking, to verify 1) fault
tolerance techniques can prevent fault propagation by masking or detecting faults,
and 2) the protected circuit is functionally equivalent to the original circuit without
fault tolerance techniques [109]. Entrena’s work outperforms the other work
mentioned above [106, 107, 108], because it can effectively verify a wider range of fault
tolerance techniques (more than TMR), such as Duplication with Comparison (DwC),
Safe Finite State Machines and Hamming encoding. Figure 2.12 shows a flow chart of
the overall fault-tolerance verification algorithm.

The fault-tolerant design and the original design are modelled in And-Inverter
Graphs (AIGs). An AIG is a directed and acyclic graph that uses only AND gates and
inverters to represent the Boolean functions of a circuit. Then functional reduction is
performed to the fault-tolerant design to simplify its AIG. The reduction process
includes using structural hashing for fast matching, performing simulation to identify
equivalent nodes, and performing equivalence checking to find equivalent nodes. For
example, in redundancy-based fault-tolerant circuits, combinational logic is
functionally reduced. Then some external constraints, such as required values on
particular nodes for safe FSM, are added to the AIG. Some fault-tolerant designs, such
as TMR, do not require external constraints.

Entrena also formulated the research problem as a formal equivalence checking (EC)
problem, and used implication-based Boolean reasoning to solve the problem.
Boolean reasoning performs a systematic search for a consistent assignment on the
circuit representation. It also facilitates the checking of error propagation constraints.
Entrena extended circuit-based Boolean reasoning to sequential circuits with the help
of timeframes. A sequential circuit can be unrolled in a set of timeframes connected by
flip-flops. The flip-flop inputs are primary outputs of the previous timeframe, and the
flip-flop outputs are primary inputs of the next timeframe.

Instead of checking two explicit copies of the circuit, Entrena used nine-valued models
to represent the circuit [110]. In other words, each node in a circuit has two different

48 Chapter 2. Background and Literature Review

FIGURE 2.12: Integration of design and verification [109]

binary values: a good value vg) and a faulty value v f . Each binary value can be 0, 1 or
X (unknown). Hence, the verification problem can be formulated as a satisfiability
problem: given a target faulty node T, prove that the conditions vg(T) ̸= v f (T) and
vg(Oi) ̸= v f (Oi) are not satisfiable, where Oi is a set of primary outputs.

The next step is to run fault SAT for each fault site. If the fault is satisfiable, report the
satisfying test vector. If the fault is not satisfiable, merge redundant logic. For
example, in a TMR-protected flip-flop, the three flip-flops are functionally equivalent
and are merged after the fault SAT has proved no error can be propagated. At this
point, most redundant elements (added by fault-tolerant technologies) have been
removed, and the fault-tolerant circuit has a similar structure to that of the original
circuit. Finally, equivalence checking is performed between the original and the
fault-tolerant merged circuit.

2.5. Related Work of Formal Verification 49

The biggest difference between Entrena’s work and other work lies in the equivalence
checking step: Entrena performed equivalence checking in a hierarchical way without
flattening the whole circuits. Entrena performed functional reduction to merge
equivalent combinational logic and used fault SAT to merge equivalent storage
elements, thus minimizing the size of the fault-tolerant circuit. This approach can
reduce the computation efforts and thus would be scalable.

Krautz combined fault injection and formal verification to evaluate fault-tolerant
designs [111]. Bit-flips are chosen as the fault model. Faults are injected into HDL by
overwriting inverted values to target signals for one clock cycle. Based on the fault
effects in the presence of fault-tolerance, Krautz categorizes the injected faults into 6
classes: 4 classes for the combination of error detected / not detected and error
propagated / not propagated; and 2 classes for the behaviour error corrected / not
corrected.

The quality of the fault-tolerant designs by evaluated by performing exhaustive fault
injection on the hardened designs and measuring their fault coverage [111]. The
verification process is similar to equivalence checking: Krautz duplicates the design
(one golden and one faulty). The inputs to the two copies are the same and the
outputs from the two copies are compared. A symbolical simulation engine based on
BDD from [112] is used to perform the comparison (verification). BDD has been
introduced in Section 2.4.2. Symbolical simulation constructs a BDD representation of
the design. Then input patterns (faults) that satisfy the six fault classes can be found.
The method essentially performs fault coverage analysis. The coverage results can be
used to determine the error-detection and correction effectiveness of fault tolerance.
The coverage is:

Coverage = DetectedandPropogatedFaults+DetectedbutNotPropagatedFaults
TotalFaults−NotDetectedbutPropagatedFaults

Krautz used a floating point unit (FPU) which was protected by
Berger-Code-Prediction (BCP) for demonstration, and achieved an average coverage
of 98.75% for the single bit error detection in about 42 hours [111].

Compared to other work that use equivalence checking to identify and classify faults,
Krautz further classified single faults into six groups [111]. However, Krautz made an
assumption that the fault effects must appear at the output in a fixed amount of time,
and only performs verification for limited clock cycles. Little detail of the bound was
given. Using fault coverage to analyse the effectiveness of fault tolerance is the main
thing we can learn from Krautz’work. However, we would argue that the results may
not be accurate due to bounded verification.

Kaja used formal verification methods to ensure thorough and reliable fault detection
and correction in safety-critical designs that were protected by fault-tolerant
technologies [5]. Kaja developed a special fault injection mechanism. To introduce this

50 Chapter 2. Background and Literature Review

FIGURE 2.13: RTL generation flow by MetaRTL [5].

special fault injection mechanism, MetaRTL, a model-based RTL generation
framework developed by Schreiner must be briefly introduced at first [113].

MetaRTL utilizes metamodels (such as construction, development, and
documentation) to formalize design requirements, eliminating ambiguities and
imprecise specifications [113]. Figure 2.13 gives the overview of generating HDL from
design specification. The Model-of-Things (MoT) represents an instance of the
metamodel, describing design configurations. The Template-of-Design (ToD) is a
template containing the information on how to build all possible design instances.
The Models-of-Design (MoD) is the RTL model tailored to a certain input
configuration or specification.

Kaja extended the above hardware generation flow to support fault injection, as
shown in Figure 2.14. MetaRTL is used to generate the design RTL, then the RTL is
synthesized to generate gate-level netlist. The design RTL, gate-level netlist and fault
injection targets are fed into the ToD Generator to generate a ToD in a mixed
granularity fashion. For example, if the fault injection target is the Execute stage of a
pipelined processor. Then the generated ToD defines the Execute stage at gate-level,
and leaves the remaining processor in RTL. Fault injectors (extra hardware such as
those introduced in Section 2.3) are added to the design model MoD, which is further
transformed into a transformed MoD (T-MoD). More specifically, each fault injection
target component in the MoD is added by a fault injector. These added fault injectors
are controlled by fault control signals, which are primary inputs of the design. Fault
collapsing is performed to detect equivalent faults and prune the fault list. SEUs are
chosen as the fault model. To prove the functionality of the modified design (with
fault injectors), Kaja used OneSpin to perform formal equivalence checking and verify
the modified design is identical to the original RTL design, when there is no fault
injected into the the modified design.

Kaja used two exhaustive techniques, MetaProp and Complete-Symbolic State Quick
Error Detection (C − S2QED), during formal-based fault injection [5]. MetaProp,
which was introduced by Devarajegowda, is a model-based framework similar to

2.5. Related Work of Formal Verification 51

FIGURE 2.14: RTL generation flow by MetaRTL [5].

MetaRTL and can be used to automatically generate properties [114]. S2QED, which
was introduced by Fadiheh, is a BMC-based formal approach good at detecting
instruction bugs resulting from a sequence of instructions [115]. The basic idea is
similar to equivalence checking, for example, duplicating the CPU under verification.
The two copies have the same input instructions, except that one CPU begins in a
clean state (the pipeline is flushed); while the other CPU starts from a symbolic (free)
state. S2QED properties verify whether the two CPUs can remain QED-consistent (in
other words, the register files of the two CPUs have identical contents). However,
S2QED fails to cover single instruction bugs. Hence Devarajegowda extended S2QED
to C − S2QED, which covers both single and multiple instruction bugs [116]. Kaja
further extended S2QED to FI − S2QED by adding extra constraints (one CPU is
fault-free while the other CPU is injected with faults) to S2QED properties. Kaja used
MetaProp to automatically generate these properties.

Kaja performed experiments on two 5-stage pipelined RISC-V processor cores, one
with RV32IMC instruction sets and one with RV32IMCZicsr instruction sets [5]. TMR
and ECC were implemented to harden the two processors. Three types of experiments
were performed: the above formal method, a simulation-based analysis and an
ATPG-based analysis. The results showed that the formal method achieved better
results than the simulation-based analysis. The formal method also produced similar
results to the ATPG-based analysis on combinational designs at the same time.

In Kaja’s work [5], the first thing that interests us is the automatic fault injection
mechanism generation flow. Kaja claimed that this fault injection flow and method
makes formal methods scalable. However, we will not use the same MetaRTL-based

52 Chapter 2. Background and Literature Review

method in our research, because we think it is too complex. We learn ideas about
atomically implementing fault injection mechanisms into a design instead of copying
the same work. Another thing that interests us is S2QED properties. These properties
duplicate the CPU and compare the Register File in two CPUs, and cannot detect
single instruction bugs. We propose to model architectural behaviours of instructions
as properties, which can detect single instruction bugs and require no design copy.

Liu proposed a fault injection and verification framework based on the Unified
Modelling Language (UML) sequence diagrams (SDs) [117]. UML is a semi-formal
language that can describe structures and behaviours of systems at different levels.
However, UML has limited support for formal verification. Liu extended UML to
formal verification by generating formal models from SDs, implementing fault
injection rules to the formal models, and using a model checker to verify the formal
models. TLA+ and TLC are used as the formal language and the tool [118]. The
fundamental idea of combining fault injection and model checking is common:
injecting faults into the formal model, using a model checker to search all the possible
states automatically, and verifying if the system behaviour violates requirements that
are specified as temporal logical formulas (formal properties).

The first step of Liu’s method is to model the design as SD constructs [117]. An SD
construct is a set of objects LL, MSG and the interactions ACT. LL (lifeline) represents
either roles or objects that participate in the modelled sequence. MSG is the set of
messages (or function calls, signals) enclosed in the SD, and defines communication
between lifelines. ACT includes atomic actions (sending or receiving messages)
directly enclosed in an SD and nested actions (joint atomic actions). Liu extended the
SD constructs by adding variables, which describe properties, to the lifeline. The
extended lifeline is (name, atomACT, isActive, nvVAR, vVAR). name is the lifeline’s
name. atomACT are atomic actions (sending or receiving messages) along the lifeline.
isActive is the activeness of the lifeline. nvVAR is a set of non-volatile variables; vVAR
is a set of volatile variables. The variable values can be changed by atomic actions or
faults.

The second step is feeding the above SD constructs and properties to a tool to generate
a TLA+ specification [117]. The TLA+ specification is similar to a combination of a
transition system and temporal logic. The interactions in SD are interpreted as a
sequence of states. The atomic actions (sending and receiving messages) are
transformed into state transitions. All properties are transformed into temporal
formulas. Liu models a fault in the form of (type, location, condition, error). type is the
fault type introduced in the next paragraph. location indicates the lifeline/action the
fault is injected. condition indicates the state the fault is injected. error is the fault
effect.

2.5. Related Work of Formal Verification 53

Liu categorized four types of faults [117]: (1) lifeline crashes (isActive == False) and
cannot do any actions, and its volatile variables vVAR are reset to default values; (2)
lifeline restarts from its initial state, and its volatile variables vVAR are reset; (3) data
corruption such as some variables of a lifeline are assigned abnormal values; (4)
blocked message such as a message cannot be sent out or received. Liu implemented a
fault injection mechanism by adding actions to TLA+ specifications. For example,
once enabled, if type is a lifeline crash, assign False to isActive and initialize vVAR; for
data corruption, assign abnormal values as defined by error to location. Finally, the
TLC model checker is used to verify the TLA+ model.

Liu’s work focuses more on developing a formal verification tool/framework than
just fault identification and classification. However, compared to other reviewed work
that just care about safe faults and dangerous faults, Liu’s work further classifies the
dangerous faults into four groups. There are some limitations of Liu’s work. The first
limitation is the proposed framework has poor support to constraints or assumptions.
The second limitation is poor support for multiple fault types, such as stuck-at-faults
and bit-flips, since the framework is not sensitive to timing. Inspired by Liu’s work
and other simulation-based fault injection work, we want to use formal verification to
further classify faults based on fault effects.

Fault tree analysis (FTA) is widely used to assess system reliability by identifying
relationships between system failures and faults [119]. FTA starts from an undesirable
event (top event) to find what circumstances may lead to the top event. The fault tree
branches out vertically from the top event. Bottom events are occurrences that may
lead to a component failure. Fault tree models are graphical representations of system
failures, in terms of the system’s components. Standard fault tree models consist of
combinational logic (mainly AND and OR gates) and basic events. Traditional FTA
cannot cover temporal behaviours. To solve the problem, Ammar proposed Temporal
Dynamic Fault Trees (TDFTs) to capture temporal events (such as soft errors) [120].
Ammar introduced the sensitivity to Temporal Basic Events (TBE) to the fault tree
gates by formalizing and modelling of the probabilistic behaviour of Fault Tree (FT)
gates and events over time. Ammar developed the following probabilistic model
(automaton) to represent a FT gate:

Given a TDFT gate with a set of inputs Y and an output Z, connected through certain
logic (such as AND), the priced-timed automaton (PTA) of this gate can be formally
defined by a tuple A = (L, L0, χ, Act, P,L), where L is a finite number of states, L0 is
the initial state, χ is a finite set of clocks, Act is a finite set of actions over L,
inv : L → ζ(Y) is an invariant condition, P is a probabilistic transition function
L × ζ(Y)× Dist(2Y × L), L : L → 2AP is a labelling function assigning atomic
propositions to different states.

54 Chapter 2. Background and Literature Review

Based on the above definition, Ammar developed multiple probabilistic models to
represent Temporal and Gate, Temporal or Gate, FDEP Gate, PAND Gate, and COMB
Gate. To save space, the details of the construction process are not shown. Besides, it
is out of the scope of our research.

Ammar’s fault analysis flow starts from a system-level specification model provided
by the designer in a general-purpose modelling language SysML. In the SysML model,
the failure rate of each component must be characterized. Then a FT can be generated
from any tool. Then add or replace original gates with TDFT gates developed by
Ammar in order to get a formal PTA model of the system’s FT. Then probabilistic
model checking of the FTs is performed to evaluate the reliability of the system.

Similarly, Samadi used FTA to evaluate system reliability [121]. A key point in this
work is to generate Dynamic Fault Tree (DFT) models based on statistical model
checking (SMC). DFTs model the failure behaviour of the system via static and
dynamic fault tree gates [122]. There are four steps in Samadi’s method. In the first
step, a library containing the models of all basic gates is created. The second step
transforms the system under test to Fault Tree (FT) models according to the library in
the first step. UPPAAL-SMC tool uses statistical model checking to reason about the
formal specifications of stochastic systems. Samadi used this tool to model the
probabilistic behaviour of the FT gates and the events as PTA formalism. Then the
probability of system failure can be analysed from the FT model. It is not clear how to
develop the library and how to construct the FI models. The last two steps are done
by a tool. Details such as formal techniques used are not given.

Ammar’s and Samadi’s methods heavily rely on integrated tools. In addition, it is not
clear what fault types are modelled and how they are modelled. Though FTA can be
used to calculate the possibility of a system failure due to an erroneous component,
component failure rates must be provided by designers [120] or calculated by
integrated tools [121]. Hence it is not suitable for early design verification where the
failure rates of each component are unclear. We think using FTA to identify and
classify faults remains a challenge. It is proper to use model checking in our research.

Double Event Upsets (DEUs) have been a challenge in the reliability area. There are
few works about formal verification in this area. Shao used probabilistic model
checking to analyse the reliability of TMR and scrubbing with respect to Multiple Cell
Upsets (MCUs) [123]. Shao combined Common Cause Failure (CCF) theory with a
continuous-time Markov chain to model MCUs. Then Shao used a SAT solver for
simulation. Frehse used formal verification to verify the robustness of a circuit with
respect to multiple soft errors [124]. Frehse abstracted MEUs to prune the fault list and
state space. Then Frehse modelled MEUs as SAT problems and used a SAT solver.
Leveugle combined property checking and fault injection to identify unacceptable

2.6. Comparison of Model Checking and Simulation 55

FIGURE 2.15: State path for one simulation

FIGURE 2.16: State path for multiple simulations

faults in early design stages [125]. Scalability to complex designs is a main issue of
Leveugle’s method [126, 127].

2.6 Comparison of Model Checking and Simulation

Model checking is different from simulation. Figures 2.15, 2.16, and 2.17 show state
coverage of simulation and model checking. A hollow circle represents an uncovered
state. A solid circle represents a covered state. In simulation, different input vectors
can lead to different state paths. One simulation explores one state path. To reach and
cover all state space, multiple simulations and carefully developed testbenches are
needed. However, different inputs may lead to overlapping paths, which makes it
hard for the simulation to reach some corner states. Model checking is independent of
input vectors (requires no testbench). Model checking also does not depend on
simulated clock cycles. From the current state, the next state can vary depending on
inputs (different paths). All paths can be explored at once in model checking. Given
an object state, model checking can automatically generate all necessary variables,
including inputs, internal states, and clock cycles from the present state, to the object
state. Simulation-based verification can achieve similar functions. However,
simulation takes longer time and more effort. It is also hard for the simulation to list
all solutions to the object state. Another benefit of model checking over simulation is
that model checking is based on the present state. Which means the initial state can be
arbitrary. The initial state of the simulation is the state after reset. To start a simulation
from a special state, specific stimuli and time are required to reach the desired initial
state.

56 Chapter 2. Background and Literature Review

FIGURE 2.17: Model checking covers all states

In general, compared to simulation, the advantages of model checking include: 1)
exhaustive analysis; 2) faster with higher state coverage; 3) independent of input
vector, simulated clock cycles, and arbitrary initial state; 4) can list all combinations of
inputs, internal states and time to reach the object state; 5) easy for debugging
[55, 128, 129, 130, 131, 132, 133, 134, 135]. However, one major problem of model
checking is state explosion: as the design size increases, the possible state
combinations increase exponentially. For instance, there may exist 2n states in an n-bit
register. State explosion may be time-consuming. In addition, some complex
properties are hard to prove by model checking. As a result, designs with a large COI
may not be suitable for formal verification.

Apart from the above advantages, we chose formal verification because some
problems are more suitable for or can only be solved by formal verification rather than
simulation. One example is design verification. However, this research focuses on
reliability. There are two scenarios where formal verification gives more benefits than
simulation in the reliability area:

1) Formal verification produces higher fault coverage than simulation within the same
verification time. Simulation-based fault injection is widely used to improve safety
and reliability, as mandated by ISO 26262 for automotive applications [34]. To cover
the entire state space and to explore all possible faults, multiple simulations are
required. Considering the fault location and injection time, it is theoretically possible,
but practically impossible, to simulate all faults for complex designs. Instead, random
fault injection is used, which means a lower fault coverage. On the other hand, using
formal verification to explore faults exhaustively is practically possible compared to
exhaustive simulations. Inputs and initial states in formal verification can be arbitrary,
which saves simulation time to the target states compared to simulation requiring a
long input sequence to reach a specific state to test faults. In addition, some faults
identified by formal verification cannot be identified by simulation [128, 129]. In this
research, we need to perform exhaustive fault exploration, hence we choose formal
verification.

2) Formal verification can perform root cause analysis of faults. Simulation is good at
isolating faults and providing insight behaviour during runtime, hence it is suitable

2.7. Summary 57

for diagnosing operational issues. On the other hand, formal verification can isolate
faults precisely at early design stages and requires no inputs or testbench, facilitating
in-depth (interrelated) fault root cause analysis. Simulation injects faults and monitors
responses, which is a forward tracing of faults. Given an error or a system failure, it is
hard to use simulation to find the root fault. Formal verification can be used to
perform backward tracing of faults: from the wrong results to identify root cause
faults. For example, a crash is monitored and a corresponding assertion failure is
reported. The root cause fault can be extracted from the corresponding
counterexample. This research aims to perform root cause analysis of faults, hence we
choose formal verification.

Formal verification may be computationally intensive. However, we would argue that
a similar problem exists in simulation, as it requires extensive testing with diverse
scenarios (especially for complex designs). Simulation is good at detecting operational
faults that occur during system execution. On the other hand, formal verification can
detect both functional and non-functional faults, including design errors, logical
errors, safety violations, and temporal issues [65].

2.7 Summary

This chapter reviews some terminology and well-known verification technologies as
well as their related work. In addition, the advantages, disadvantages, and suitable
applications of simulation-based fault injection and formal verification are compared.

There have been many works that are related to our research, i.e., many works use
formal verification to identify and classify faults. In general, most of the reviewed
works use formal verification approaches as a support to simulation-based fault
injection. In other words, formal approaches are used to prune the fault list, such as
filtering structure-safe faults from the fault list, and then simulation is used to test the
remaining faults. Only a few works use formal approaches to perform fault analysis.
Most of the reviewed works use equivalence checking, which duplicates the design
and compares outputs, to identify faults. Most of the reviewed works are good at
identifying faults but poor at classifying faults: faults are just classified as safe faults
and dangerous faults. Few works further classify the dangerous faults. There are
many repeated works that formally verify and evaluate redundancy-based
fault-tolerant technologies such as TMR, but there is no work about other
fault-tolerant technologies such as residue arithmetic. There is also little work on
DEUs.

We reviewed many related works and stated the influence of the reviewed work to us
in this Chapter. Now we introduce the gap we want to fill. We want to use only
formal verification approaches to perform fault analysis. We choose model checking

58 Chapter 2. Background and Literature Review

in this research because it is more suitable to achieve our objectives. In the reliability
area, there is a lack of methods to exhaustively explore all SEUs based on SEU effects
in a reasonable time. We aim to identify and classify all faults based on the fault
effects (SDCs, crashes and hangs) at the architectural level. Then we will expand the
formal method to wider applications, such as evaluating fault-tolerant technologies
and DEUs.

59

Chapter 3

Formal Method to Analyse SEUs

In this chapter, we use formal verification, mainly model checking, to perform fault
analysis of SEUs: searching all candidate SEUs for the given SEU effects. Different
from other works that use formal methods to identify safe and unsafe faults, we
further identify and classify crucial SEUs into three groups: SDCs, crashes and hangs.
We develop properties to reveal faults that lead to SDCs, crashes and hangs. To our
knowledge, this is the first work of using formal verification to reveal faults that lead
to three different types of failures.

The basic idea of our approach is: a) to construct the correct behaviour (based on the
design specification) and fault effects (SDCs, crashes and hangs) as formal properties;
and b) to use model checking to find all faults that may violate the corresponding
property assertions. The properties are written as SystemVerilog Assertions (SVAs).
Cadence JasperGold FPV, a commercial formal verification tool that supports Register
Transfer Level (RTL) models and SVA, is used to perform model checking. We
perform experiments on two servers with 24 IntelRXeonR E5-2670 Processors at
2.60GHz. The proposed method can exhaustively search the whole state space to find
all candidate SEUs that may cause SDCs, crashes, and hangs in a reasonable time. We
demonstrate this method by assessing the vulnerability of all structures (bits, registers
and modules) in a RISC-V Ibex Core.

In model checking, there are three possible results of testing a property assertion:
Proven, Undetermined (Bounded Proven), and Failure. If the status of a property
assertion is ‘Proven’, the property assertion is fully proved. Faults in the
corresponding bits cannot cause errors that violate the property assertion. An SEU is
therefore deemed safe. As a result, these bits are not vulnerable to SEUs. If the status
of a property assertion is ‘Failure’, the model checker generates a counterexample for
the property assertion. SEUs in the corresponding bits may cause errors that violate
the property assertion. The SEUs are therefore called crucial SEUs. As a result, these
bits are vulnerable to SEUs.

60 Chapter 3. Formal Method to Analyse SEUs

State explosion, which is an inherent problem in model checking, is a major cause of
’Undetermined’ results. If the status of a property is ‘Bounded Proven’, the formal
tool cannot prove or disprove the property within a bounded trace or time. If there
exists a counterexample, it is beyond the maximum trace or time limit. In other words,
it is hard to find a fault that can fail the property assertion. The bit is undetermined
with respect to SEUs. Section 2.4 reviews some formal technologies to extend BMC to
unbounded results. We aim to utilize those technologies and develop various
complexity control strategies to solve all the undetermined results in this research.

3.1 Method Overview

Figure 3.1 shows the overview of the proposed method to identify and categorize
SEUs. The method can be divided into four steps, as labelled from 1⃝ to 4⃝ in Figure
3.1. We briefly introduce the workflow of the four steps in this section.

FIGURE 3.1: Overview of the proposed method to analyse SEUs

The first step is to implement a fault injection mechanism into the Ibex Core. The fault
controller in Figure 3.1 reads fault control signals as primary inputs, and injects an
arbitrary SEU to the Ibex Core. The details will be given in Section 3.2.

The second step is to model failures caused by SEUs as safety properties. We
developed three types of properties to identify and classify SEUs that can cause SDCs,
crashes and hangs. The details of the developed properties are in Section 3.3.

The third step is to develop various complexity control strategies to improve proof
performance and handle state explosion. The complexity control strategies are more
than the SVA assumptions in Figure 3.1. The details are in Section 3.4.

3.2. Step 1: Fault Injection 61

The final step is to configure the formal tool and perform model checking. The model
checker proves or disproves the developed properties in the presence of SEUs.
Different configurations are used to solve different problems. The details of the formal
tool settings and the experimental strategy are in Section 3.5.

To ensure the correctness of the proposed method, each step and the whole framework
are verified and validated using various approaches in Sections 3.6 and 3.7.

3.2 Step 1: Fault Injection

3.2.1 Fault Model

We choose SEUs as the fault model. There are three attributes of the fault model: the
location where a fault occurs, the time when the fault occurs, and the period for which
the fault exists. We assume that each bit-flip lasts until the bit-flip is refreshed by the
processor. As a result, we do not control the fault period explicitly. We only model the
first two attributes as the fault control signals. We are working at Register Transfer
Level (RTL). The physical proximity of bits is out of consideration; all bits are treated
equally. In other words, we assume SEUs could occur in all bits equally, irrespective of
locations.

3.2.2 Fault Injection Mechanisms

The first step of our method is to implement a fault injection mechanism. We need to
model faults during formal verification in order to explore fault effects. Some formal
tools have such functions. However, Cadence JasperGold FPV does not have this
function. More importantly, we aim to develop a general method that can be used in
other formal tools. There are three general approaches to injecting faults.

The first approach is to use f orce and release statements in SystemVerilog. The IEEE
Standard 1364-2005 defines the f orce and release procedural statements [136]. The
f orce statement overrides all procedural assignments to a variable or net. The release
statement ends a procedural continuous assignment to a variable or net. The value of
the variable remains the same until it is assigned a new value. The following is an
example:

task seu_force_net;

//This task overrides drivers of the bits in the LHS with a

//bit -flip until a release statement is executed

input bit_ID;

integer bit_ID;

62 Chapter 3. Formal Method to Analyse SEUs

begin

case (bit_ID)

0 : force DUT.reg_1.bit_1 = ~DUT.reg_1.bit_1;

1 : force DUT.reg_1.bit_2 = ~DUT.reg_1.bit_2;

......

endcase

end

endtask

task seu_release_net;

input bit_ID;

integer bit_ID;

begin

case (bit_ID)

0 : release DUT.reg_1.bit_1;

1 : release DUT.reg_1.bit_2;

......

endcase

end

endtask

However, this approach is not suitable for our method. The first reason is that
Cadence FPV has poor support of f orce and release statements because they cannot be
synthesized. The second reason is that it is hard to flip correct data from
combinational logic instead of a register itself. Below is an example of a register in
SystemVerilog. The register stores input data if enabled. If the f orce statement is
executed at the same time the register is enabled, the drive of the register is cut (the
input data is lost), and a bit-flip occurs in the wrong value. This may lead to failures
not caused by SEUs, hence a false negative result.

always_ff @(posedge clk_i or negedge rst_ni) begin

if (! rst_ni) begin

reg_1 <= ’0;

end else begin

if (enable) begein

reg_1 <= input_data; end

end

end

The second approach is by cut points and assumptions: disconnecting the target bit
driver and developing an assumption to reverse the bit [94]. The following is an

3.2. Step 1: Fault Injection 63

assumption example.

assume property (@ (posedge clk_i)

if (fault_injection_time_meet)

bit_1 <= ~bit_1);

This approach is, however, also not suitable for our research. The first reason is that
i f ...else.. statement is used inside the property, which is not recommended by
JasperGold, because of the increasing complexity of compilation and model checking.
In addition, each property can only inject one bit-flip to one bit location; multiple
properties are required to inject faults in all bit locations. In addition, if new data is
written to the bit at the same time the bit output is flipped, a false negative occurs.
Moreover, it is hard to control only a single fault - it is hard to enable only one fault
injection property to be active per model checking run. Additional auxiliary (AUX)
code is required, which increases both design and verification complexity, and may
alter the behaviour of the design under test.

The final and most widely used approach is to implement a fault injection mechanism.
There are multiple fault injection mechanisms: injecting faults using software or
scripts [14, 43, 53], implementing extra hardware for fault injection [36]. In this
research, faults are injected by adding extra gates into the SV model.

There are two components in our fault injection mechanism: a Fault Injection (FI)
controller module and multiple XOR gates. Source codes of the FI controller and XOR
gates are provided in Appendix D. Fault location and fault time are two important
attributes in simulation-based fault injection. As shown in Figure 3.1, the FI controller
reads the two fault control signals, fault location and the injection time, as primary
inputs to the Ibex Core. The outputs of the FI controller module are mask signals to all
XOR gates. The XOR gates are introduced in the next paragraph. There is a counter in
the FI controller. When the counter reaches the injection time, the target XOR gate is
triggered to inject a fault into the destination bit.

FIGURE 3.2: An XOR gate to inject faults

64 Chapter 3. Formal Method to Analyse SEUs

A two-input XOR gate is added before each register, as shown in Figure 3.2. The
inputs of the XOR gate are the correct data to the register and a one-hot encoded mask
signal from the FI controller. The correct data is driven by other logic or the output of
the register itself. The mask signal determines the bit flip location of the original data.
As shown in Table 3.1, a logic high in the mask signal can flip a bit in the
corresponding position in the correct data. The output of the XOR gate is fed into the
input port of the register.

TABLE 3.1: Truth Table of XOR Gate

Mask Bit Correct Bit Output
0 0 0
0 1 1
1 0 1
1 1 0

3.2.3 Implicit Fault Injection

We aim to perform backward tracing of faults. Injecting a fault and monitoring the
response (such as simulations) is forward tracing, as shown in Figure 3.3a. A circle
represents a state. Arrows through the state space are paths. Each run explores at
most one fault and one path. In contrast, for backward tracing of faults, Figure 3.3b,
we specify fault-free behaviours at the end; we do not specify fault attributes. Then
we use model checking to find faults that violate the fault-free behaviours and cause
errors and system failures. All paths can be explored at once.

As stated before, the fault location and the fault injection time are two primary inputs.
Compared to simulations that control the fault location and the fault injection time
explicitly, the biggest difference of our method is specifying the fault location and the
fault injection time implicitly: we do not assign any values to the two inputs. In
simulations, assigning no value to an input is a problem. Things are different in model
checking. Inputs without certain values are treated as unconstrained inputs: the fault
location and the fault injection time can be any values during model checking. The
formal tool will explore all combinations of the fault location and the fault injection
time to prove assertions. Hence an arbitrary fault can exist in the Ibex Core during
model checking. The arbitrary fault can occur at any bit location at any time, hence the
whole fault space is covered. The formal tool can explore the whole fault space to
identify a fault that causes a failure (to find a counterexample that causes an assertion
failure). The whole process implies backward tracing of faults, because faults are
identified from the fault effects by proving assertions instead of injecting an explicit
fault and monitoring response. There are multiple assertions. Multiple faults violating

3.2. Step 1: Fault Injection 65

(A)

(B)

FIGURE 3.3: (a)Forward tracing of faults using fault injection (b) Backward tracing in
this method

different assertions can be identified from one model checking run, which is another
advantage over simulations (that can identify at most one fault per simulation).

However, after experiments, we realized that multiple faults were injected per model
checking run. This is caused by under-constrained assumptions, because we aim to
explore SEUs rather than MEUs. The problem is solved by developing the following
two assumptions. FI_time is the primary input to the Ibex Core that controls the fault
injection time, FI_index is the primary input to the Ibex Core that controls the fault
injection bit location. The following two assumptions make sure the fault injection
time and the fault injection location do not change during model checking, hence we
are injecting an SEU rather than MEUs. We use the range from 0 to 2007 to represent
all the register bits in the Ibex Core. The bit index is shown in Appendix E. The second
assumption also limits the fault injection range, because there are only 2008 bits in the

66 Chapter 3. Formal Method to Analyse SEUs

Ibex Core.

assume_FI_time_stable:

assume property (@(posedge clk_i) $stable(FI_time));

assume_FI_index_stable:

assume property (@(posedge clk_i)

$stable(FI_index)&&(FI_index <2008));

Without the two assumptions, FI_time and FI_index can change at every clock cycle.
The worst case is that a different fault is injected into the core at each clock cycle. For
example, a fault is injected to bit 3 at the first clock cycle, then a fault is injected to
bit 1 at the second clock cycle, and after that a fault is injected to bit 5 at the third
clock cycle...

Besides the two assumptions, there is no assumption of FI_time, such as a time
window during which a fault is assumed to occur. We assume a single fault can occur
at any clock cycle after reset and can only occur once per model checking run.
Similarly, we assume a single fault can occur at any bit after reset and can only be
injected once per model checking run. However, during experiments we add extra
assumptions about FI_index to reduce the fault space by assuming the identified
vulnerable bits will be protected, the details are in Section 3.5.1.

In summary, we implement extra XOR gates to inject faults and develop an FI
controller to control the XOR gates. We develop assumptions to ensure that only a
single SEU can be injected per model checking run, and this SEU does not change
during the model checking run. We implement implicit fault injection to inject an
arbitrary SEU: we set the fault control signals as free nets so the model checker can
cover the whole fault space. We validate the fault injection mechanism in Section 3.6.1.

3.3 Step 2: Formal Properties

The second step is to develop formal properties that can identify and classify SEUs
according to the SEU effects. Section 2.1 categorizes SEUs into four groups based on
the four types of SEU effects: no effect, SDCs, crashes, and hangs. Therefore, we aim
to develop three groups of properties to find faults that can cause SDCs, crashes, and
hangs. There is no need to develop a fourth group to cover no effect, because faults
that cause no effect can also be identified by the other three groups. We introduce
these properties and how they are developed in this section. The developed properties
are validated in Section 3.6.2.

3.3. Step 2: Formal Properties 67

3.3.1 SDC

To develop properties that can identify crucial faults that may cause SDCs, the SDC
features must be specified clearly: when an SDC occurs, the behaviour or the outputs
of the design differ from the golden design. The behaviour can be compared at
different levels. For example, the architectural level can monitor executing
instructions, and the microarchitectural level can monitor state transitions. Based on
the above features, two types of SDC properties are developed: architectural
properties and strobe properties. In the following paragraphs, we demonstrate and
compare these two properties.

3.3.1.1 Architectural Properties

Architectural properties specify the correct behaviour of each instruction. In this
research, the RISC-V Instruction Set Manual is referenced to develop architectural
properties [6]. We develop architectural properties that specify the architectural
behaviour of a RISC-V core when executing an RV32IMC instruction. There are 40
RV32I instructions, 8 RV32M instructions, and 25 RV32C instructions. Each instruction
has a unique architectural property.

We use the BGE instruction as an example to demonstrate how to develop an
architectural property. Based on the RISC-V Instruction Set Manual [6], the BGE

instruction uses the B-type instruction format, as shown in Figure 3.4. imm means
immediate value. rs1 and rs2 are two source register addresses. funct3 is the
function code. funct3 and opcode determine an instruction. The 12-bit B-immediate
encodes signed offsets in multiples of 2 bytes. The offset is sign-extended and added
to the address of the branch instruction to give the target address. The conditional
branch range is ±4 kB. BGE instruction compares two registers. BGE takes the branch if
the value in register rs1 is greater than or equal to the value in register rs2.

FIGURE 3.4: Format of BGE instruction adopted from [6]

To develop an architectural property about the BGE instruction, the first step is to
specify the antecedent. The antecedent is a sequence (which can be wired to a signal)
specifying if the executed instruction is the target instruction, in this case, a valid
32-bit BGE instruction. Figure 3.4 shows the funct3 and opcode of BGE. The Ibex Core
supports both 32-bit and 16-bit instructions. In addition, the instruction is wired from

68 Chapter 3. Formal Method to Analyse SEUs

the processor and only valid if valid signal is high. It is necessary to check the validity
and bit length of the retired instruction. As a result, the antecedent of the property is:

wire RV32I_BGE = valid&is_rv32_insn&

(funct3 ==3’b101)&(opcode ==7’ b1100011);

valid is set for one clock cycle after the processor completes executing an instruction.
is_rv32_insn is true if the retired instruction is 32 bits.

The next step is to develop the consequent of the property. The consequent compares
the branch address from the Ibex Core (which is the write data to the PC register) with
the expected branch address (which is the theoretical write data to the PC register).
The theoretical value can be calculated easily:

wire [31:0] next_pc_bge =

$signed(rs1_rdata)>= $signed(rs2_rdata)?

(pc_rdata+imm_b_type):(pc_rdata + 4);

rs1_rdata and rs2_rdata are signed compared values from two source registers.
signed() function treats them as signed values. If the first value, rs1_rdata, is
greater than or equal to the second, rs2_rdata, a branch will be taken. next_pc_bge is
the theoretical value of the next program counter. pc_rdata is the current program
counter value. imm_b_type is the immediate value extracted from the instruction:

assign imm_b_type = { {19{ insn [31]}} , insn [31], insn[7],

insn [30:25] , insn [11:8] , 1’b0 };

In the end, the property is developed:

property p_RV32I_BGE;

RV32I_BGE |-> pc_wdata == next_pc_bge;

endproperty

pc_wdata is the next program counter value extracted from the Ibex Core.
next_pc_bge is the theoretical value of the next program counter.

The above architectural property specifies the correct behaviour of the BGE instruction.
When there is no fault, the property assertion is proven without a vacuous pass. If the
assertion fails, a fault altering the correct execution of the BGE instruction (such as a
fault causing a wrong comparison result) is found.

However, during experiments we observed that the architectural properties cannot
cover all SEUs, such as SEUs in the Register File and SEUs in the instruction
immediate-field. The detailed results are in Section 3.8. As shown in the BGE example,
the source register values rs1_rdata and rs2_rdata and the immediate value

3.3. Step 2: Formal Properties 69

imm_b_type must be extracted from the Ibex Core to generate theoretical values. But
what if the theoretical values are calculated based on the incorrect signals extracted
from the Ibex Core?

On the one hand, the Ibex Core directly reads the source register values from the
Register File and the immediate value from the fetched instruction; there is no safety
mechanism to detect/correct faults in the Register File or the immediate-field. On the
other hand, the signals used in the architectural properties are directly extracted from
the Ibex Core, and there is no golden reference to determine whether these signals
contain faults. As a result, architectural properties cannot cover faults in the Register
File and the instruction immediate-field. To cover faults in these structures without
implementing extra safety mechanisms, an extra design copy is required as the golden
reference. Based on this observation, strobe properties are developed to improve the
SDC fault coverage.

3.3.1.2 Strobe Properties

FIGURE 3.5: Diagram of Strobe Properties

The idea of using strobe properties to detect failures and identify faults is motivated
by Equivalence Checking and Cadence FSV. The Ibex Core is duplicated: one golden
core and one faulty core with an arbitrary SEU. Strobe properties compare important
signals used in architectural properties (such as the instructions and the source
register values) in the two Ibex Cores. There are 15 such signals, whose name and
description are listed in Table 3.2. These strobe signals can be wired as outputs for
comparison. As shown in Figure 3.5, input instructions and data to the two cores are
the same, which is achieved by simply wiring the same inputs to the two cores. Faults
in the structures that cannot be covered by architectural properties, such as Register
File, can be identified easily by comparing the source register values in the two cores.

assert_valid: assert property (

golden_valid == faulty_valid);

70 Chapter 3. Formal Method to Analyse SEUs

TABLE 3.2: Strobe Signals

Name Description
valid An instruction has been completed and retired from the core.
insn The retired instruction

rs1 addr Address of the source register 1
rs2 addr Address of the source register 2
rs1 rdata Read data from the source register 1
rs2 rdata Read data from the source register 2
rd addr Address of the destination register

rd wdata Write data to the destination register
pc rdata The current Program Counter value
pc wdata The next Program Counter value

mem addr Memory address
mem rdata Read data from the memory
mem rmask Read mask to the memory read data
mem wdata Write data from the memory
mem wmask Write mask to the memory write data

The above is the first strobe property assertion we developed (clock and reset signals
are not shown). When both cores finish executing a valid instruction, golden_valid
and faulty_valid are set for one clock cycle. We developed this property at first
because *_valid signals are the most important signals in strobe properties. If they
are not equal, there is no doubt the two Ibex Cores behave differently. In addition,
signals compared in other strobe properties are only valid when *_valid signals are
valid (instructions have been executed). For instance, the source register values and
the immediate value are only valid after executing an BGE instruction, hence can be
wired to properties for comparison. Ideally, *_valid signals should be set and reset at
the same time during model checking if there is no fault. If they are not equal, there is
no need to prove other strobe properties.

assert_insn: assert property (

golden_valid && faulty_valid |->

faulty_insn == golden_insn);

The above is another example, which compares the retired instructions from the two
cores. The retired instructions are stored in register golden_insn and register
faulty_insn. These two registers are valid when golden_valid and faulty_valid

are set. If golden_valid and faulty_valid are not set at the same time, the
antecedent is not met, and there is no need to check the consequent. If the assertion
fails, the injected fault has changed the executed instruction, causing a system failure.
For instance, a fault is injected into the instruction FIFO altering the immediate value
imm_b_type of the BGE instruction. The altered instruction is executed normally but
produces a wrong branch result. Such a fault cannot fail architectural properties but

3.3. Step 2: Formal Properties 71

can fail the strobe properties. The strobe properties should never fail if there is no
fault, because the two cores should behave the same when there is no fault.

3.3.1.3 Summary and Comparison

After developing the architectural properties and strobe properties, we validate them
using various approaches, as in Section 3.6.2. When proving either architectural or
strobe properties, we assume an arbitrary fault exists in the (faulty) Ibex Core. The
arbitrary fault is articulated by the implicit fault injection described in Section 3.2.3.

We tried both architectural properties and strobe properties to explore SEUs that may
cause SDCs. After comparison, strobe properties can produce a higher fault coverage
than architectural properties, mainly because architectural properties cannot cover
faults in some structures such as Register File. However, the fault coverage is too high:
some faults that cannot essentially cause SDCs are also identified as crucial faults by
strobe properties. The detailed results and comparisons are shown in Section 3.8.

Apart from the above, the same structures (bits/registers) vulnerable to SEUs can be
identified by the both groups of properties. However, there are some differences in
terms of development effort and performance. It is simpler to develop the strobe
properties because they just compare outputs. However, the Ibex Core is modified
and duplicated, increasing the complexity of designing and verification. On the
contrary, it is more difficult to develop (and validate) the architectural properties.
However, we argued that it is a one-time cost because the architectural properties can
be used for other RISC-V designs. The architectural properties can also provide a
deeper insight into SDCs compared to the strobe properties.

3.3.2 Crash

Both the ISA manual and the Ibex Core design specification are referred to develop
crash properties, which is different from developing the SDC properties. Some
terminology must be explained first [6]:

• Exception: An unusual condition occurring at run time associated with an
instruction in the current RISC-V hardware thread (hart). An exception can
cause a crash.

• Interrupt: An external asynchronous event that may cause a RISC-V hart to
experience an unexpected transfer of control. An interrupt can cause a crash.

• Trap: The transfer of control to a trap handler caused by either an exception or
an interrupt.

72 Chapter 3. Formal Method to Analyse SEUs

Both exceptions and interrupts can cause traps. By default, the Ibex Core operates in
the machine mode. There are three modes in RISC-V: machine mode (M), supervisor
mode (S), and user mode (U). Machine mode is the highest privilege mode in a
RISC-V system. M-mode is used for low-level access to a hardware platform and is
the first mode entered at reset [137]. We only explore SEUs when the Ibex Core is in
the M mode.

All the interrupts in the Ibex Core are disabled, only exceptions in the M mode can
cause traps/crashes. Rising and handling a trap relies on Control Status Registers
(CSRs). This involves only the necessary hardware to develop crash properties by
directly monitoring CSRs, compared to monitoring output ports. The RISC-V
Instruction Set Manual specifies the mapping and function of CSRs [137]. RISC-V
supports custom CSRs. There are custom CSRs in the Ibex Core. For example, a
custom CSR named cpuctrlsts controls the runtime configuration of CPU
components. Since the custom CSRs can vary in different designs, we do not consider
them.

Some CSRs might be useful to debug traps. For example, a CSR named mtval stores
exception-related information when an exception is encountered. This register can be
used to assist software in handling exceptions. However, we did not choose this CSR
because it can only store limited exception information. For example, there is an error
in the load-store unit; a transaction is misaligned; and there is an illegal instruction
exception. For all other exceptions, mtval stores no information and is set to 0.

FIGURE 3.6: Machine Cause register mcause [6]

We found a CSR that meets our requirements. The CSR is named mcause. This register
is an MXLEN-bit read-write register. MXLEN is 32 in the Ibex Core. mcause is
formatted as shown in Figure 3.6. mcause stores the machine trap cause: the event
code is stored in mcause when a crash is encountered. The Interrupt bit in Figure 3.6 is
set if the trap is caused by an interrupt. However, all interrupts are disabled in the
Ibex Core, so this bit is always 0. The Exception Code represents the exception (or
interrupt if the Interrupt bit is set) that causes the crash. Only supported exception
codes with corresponding crashes are listed in Table 3.3. ’Instruction access fault’,
’Load access fault’, and ’Store access fault’ are terms for software exceptions; they are
not hardware faults.

When a processor attempts to fetch an instruction from an inaccessible address, or
from an address that does not exist, an instruction access fault exception is

3.3. Step 2: Formal Properties 73

TABLE 3.3: Exception Code in the Ibex Core

Exception Code Description
1 Instruction access fault
2 Illegal instruction
3 Breakpoint
5 Load access fault
7 Store access fault
11 Environment call from M-Mode (ECALL)

encountered. When a processor attempts to execute an illegal or not-supported
instruction, such as executing an atomic instruction in the Ibex Core, an illegal
instruction exception is encountered. A breakpoint occurs if a processor meets an
EBREAK instruction during execution. Similarly, an environment call from M mode
occurs if a request to supervisor mode or user mode is made by a processor (running
in M mode) executing an ECALL instruction. The EBREAK and ECALL instructions
are two system instructions, which are used to access system functionality that might
require privileged access [6]. The ECALL instruction is used to make a service request
to the execution environment. The EBREAK instruction is used to return control to a
debugging environment. A load access fault occurs if a processor attempts to read
data from an inaccessible address or a nonexistent address in memory. Similarly, a
store access fault occurs if a processor attempts to write data to an inaccessible
address or a nonexistent address in memory.

Based on the function of the CSR mcause, crash properties can be developed. For
example, to develop a property that can be used to identify faults causing store access
faults, the antecedent could be ’the current privilege mode is the machine mode’, and
the consequent could be ’a store access fault should never occur (the exception code
should never be 7)’. The following is an assertion specifying a crash caused by a store
access fault. crash_priv_mode is the current privilege mode;
crash_priv_mode==2’b11 means the Ibex Core is operating in the machine mode.
crash_mcause_q reads the exception code stored in the control status register mcause.
crash_mcause_q!=6’d7 specifies that the code of store access fault should never occur,
hence the corresponding crash should never occur. The assertion
assert_store_access_fault should never fail for the golden core. If the assertion
fails, a fault causing a store access fault crash is found. The details of the identified
crucial fault, including the fault location and the injection time, can be found in the
auto-generated CEX.

assert_store_access_fault: assert property (

(crash_priv_mode ==2’b11) |->

(crash_mcause_q !=6’d7));

74 Chapter 3. Formal Method to Analyse SEUs

3.3.3 Hang

To develop properties that can identify crucial faults causing hangs, scenarios for a
hang must be classified first. There are three possible scenarios for a hang:

• WFI: The retired instruction is a WFI (Wait-For-Interrupt) instruction, which
means the core will stay in the sleep state until it is activated again by other
instructions. The waiting time is unsure, hence causing a hang.

• Dead State: The core can be thought of as a Finite State Machine (FSM). The FSM
is stuck in a state and cannot leave that state. For instance, the FSM is frozen,
hence causing a hang.

• Live State: The Finite State Machine (FSM) of the core is trapped in a state
sequence. The FSM cannot return to a state from other states. For instance, the
FSM is stuck in an infinite loop, hence causing a hang.

It is easy to model the first scenario as a property: the retired instruction should never
be a WFI instruction. The following example is the hang (WFI) property. valid is true
when the retired instruction is a valid RV32IMC instruction. halt is true if the retired
instruction is the last instruction in the software. !halt is added to the antecedent to
make sure the program is still running. 32’h10500073 is the WFI instruction.

assert_hang_WFI: assert property (

valid && !halt |->

(insn != 32’ h10500073));

It is not suitable to use the previous approach that identifies crucial faults by
disproving correct behaviours to explore Dead States. It is easy to develop a property
that specifies the next FSM state is not equal to the current FSM state. However,
disproving the property assertion may produce false negatives. There exists a scenario
where the FSM is designed to repeat a state several times. If a safe fault that causes no
effect is injected under such a scenario, the assertion may still fail, hence a false
negative.

An alternative approach is to use ‘cover’ instead of ‘assert’: specifying bad behaviours
such as a Dead State as a property and using a ‘cover’ statement to find a scenario that
matches the property, for example, create a sequence containing
$stable(an_FSM_state). an_FSM_state is an arbitrary FSM state used for
demonstration. $stable(an_FSM_state) returns true if an_FSM_state has the same
value at this clock cycle as it did in the previous clock cycle. Then develop a property
that repeats the sequence infinite times using the repetition operator [+] (which
repeats from 1 to infinite times).

3.4. Step 3: Complexity Control Strategies 75

The same problem exists in a Live State and the same solution can be applied to Live
States, except additional AUX code may be required to monitor and record the
repeated state sequence. In addition, the correct behaviour of ”the FSM can
(eventually) return to a state (S0) from other states (S1,S2,S3...)” can be easily modelled
as properties. However, this may create an infinite trace length.

It is possible to develop formal properties of the Dead State and Live State as shown in
the above two paragraphs. In addition, JasperGold Superlint App can automatically
generate corresponding properties of the Dead State and Live State. However, safety
properties and liveness properties are involved. A safety property describes nothing
bad happening. For instance, no deadlock. It is hard to formally verify the generated
safety properties, because too many states are involved. A liveness property describes
something good that eventually happens. For example, the FSM can eventually return
to a state from other states (the FSM can eventually break the infinite loop). Liveness
should be used with caution in formal verification because it is hard to fully verify
liveness properties even with extreme time and high-performance hardware. In this
research, we could not fully verify the liveness properties of our equipment. We only
got undetermined results from the proof of liveness properties. For example, the
liveness properties cannot be either proved or disproved after 24 hours. As a result,
only the first scenario (WFI) is modelled as a formal property.

3.4 Step 3: Complexity Control Strategies

Besides the formal technologies implemented in the formal tool (whose details are in
Section 3.5.2), we minimize state explosion and improve proof performance with the
following complexity control strategies.

1. Black-boxing memories to reduce complexity.

2. Developing constraints to reduce state space and to avoid false negatives.

3. Verifying at a high level instead of in detail for each module.

4. Handling inclusive/undetermined results with case splitting and different proof
algorithms/engines.

3.4.1 Black-Box

Firstly, the Instruction and Data Memories (IMEM and DMEM, Figure 1.1) are
black-boxed. As shown in Figure 1.1, there are two memories that store instructions
(IMEM) and data (DMEM) in the Ibex Core. Including memories in formal verification

76 Chapter 3. Formal Method to Analyse SEUs

significantly increases design and verification complexity, which may lead to a state
space explosion. It may also result in failing to fully prove assertions. It is necessary to
abstract away irrelevant details to reduce the state space [138]. Excluding memories
greatly reduces the design complexity and state explosion.

IMEM and DMEM are abstracted (black-boxed) by totally removing the
corresponding source code. We are interested in bits inside the Ibex Core, not bits in
memories. There have been many memory protection technologies. We assume all
faults in IMEM and DMEM cannot propagate to the Ibex Core. Auxiliary (AUX) code
in SystemVerilog is developed (according to the Ibex guidance) to replace IMEM and
DMEM. The AUX code of the memories is simple: it handles only communication
signals; it does not model any data or instructions.

For example, Figure 3.7 displays the memory transaction of IMEM. After receiving the
request signal req and the instruction address addr 1 and addr 2 from the core,
IMEM asserts the grant signal gnt immediately. Then after one clock cycle, IMEM
outputs the corresponding instructions instr 1 and instr 2 and asserts the valid
signal valid to the core.

FIGURE 3.7: Memory Transaction of IMEM

3.4.2 Input Constraints

Secondly, constraints are developed as assumptions to speed up model checking and
avoid false negatives. It is assumed that one clock cycle after receiving an
instruction/data request, the abstracted memories output an instruction/data with a
grant signal. Data from DMEM are unconstrained so that the model checker can
explore all possible input data. However, there are some constraints on instructions
from the IMEM. Only bit patterns corresponding to valid RV32IMC instructions are
allowed. Another aim of these constraints is to make sure the Ibex Core works as
expected when there are no faults. These constraints are expressed as SVA
assumptions, as shown in the following.

assume_valid_RV32IMC: assume property (

(valid_RV32I || valid_RV32M || valid_RVC));

3.4. Step 3: Complexity Control Strategies 77

The above assumption limits the instruction to the core to be a valid RV32I instruction
(valid_RV32I), a valid RV32M instruction (valid_RV32M) or a valid RVC instruction
(valid_RVC). There are multiple valid bit patterns for an instruction. For instance,
RV32I_LUI specifies the correct bit pattern of a Load Upper Immediate (LUI)
instruction:

assign is_rv32_insn = (instr_rdata_i [1:0] == 2’b11);

assign RV32I_LUI = is_rv32_insn && (riscv_instr_opcode == 7’h37);

The LUI instruction places the immediate value (extracted from the instruction) to the
highest 20 bits of the destination register and fills in the lowest 12 bits with zeros.
instr_rdata_i is the instruction from IMEM to the core. is_rv32_insn is true if
instr_rdata_i is a valid 32-bit RISC-V instruction. riscv_instr_opcode is the
OPCODE of the instruction which determines the functionality of the instruction.
7’h37 refers to LUI.

These bit patterns are ORed together according to instruction sets. For instance,
valid_RV32I is a 1-bit wire that ORs all RV32I bit patterns, as shown in the following.
To save space, most bit patterns are not listed. The whole set of bit patterns is in
Appendix F.

assign valid_RV32I = RV32I_LUI || RV32I_AUIPC ||...;

The above statements make sure only valid RV32IMC instruction bit patterns are
allowed during model checking. However, during our experiments, we observed that
these constraints may lead to false negatives: errors and system failures can be
encountered even without any crucial SEUs or with only safe SEUs. This is caused by
valid instructions with illegal sequences (misaligned instructions). For example, the
jump address of branch instructions must be aligned to a multiple of four, otherwise,
the processor will try to align the instruction stored in the jump address by swapping
the upper 16 bits with the lower 16 bits. Such instructions may be illegal, causing an
exception. Therefore, instructions are constrained to be aligned with valid RV32IMC
instructions, as shown in the following.

assume_address_by_4: assume property (

@(posedge clk_i) disable iff (! rst_ni)

aligned_by_4 && instr_gnt_i |->

(is_specified_RV32I || is_specified_RV32M));

assume_address_by_2: assume property (

@(posedge clk_i) disable iff (! rst_ni)

!aligned_by_4 && instr_gnt_i |->

(is_specified_RV32C));

78 Chapter 3. Formal Method to Analyse SEUs

These assumptions state that if the instruction address from the Ibex Core is aligned
by 4, then it is an RV32IM instruction; otherwise, it is an RV32C instruction. This kind
of problem could be caused by bad manually developed assembly language code. On
the other hand, this kind of problem should never arise with a good compiler. With a
qualified compiler, it is not necessary to worry about this problem, hence less effort is
needed to develop instruction constraints.

Given the back-to-back memory transaction in the last subsection and the two
pipeline stages in the Ibex Core, it can be figured out that most instructions take two
clock cycles through the core. However, some multi-cycle instructions, such as branch,
jump, load, store and multiplication and division, can stall the pipeline, and require
more than two clock cycles to propagate through the core even with immediate
memory response. On the other hand, we do not add more constraints than the above
assumptions. For example, during model checking, the input instruction sequence
may or may not contain a specific instruction, hence the latency of every instruction in
the sequence is unknown. It is unnecessary to explicitly define the latency of every
instruction as the time window for fault injection. We let the model checker explore all
valid state space and decide the instructions and faults that lead to failures. If there
exists such a crucial fault, the model checker finds the shortest CEX path where a fault
is injected one to four clock cycles after reset, and an assertion failure arises after
another at least two clock cycles. As a result, we do not develop extra assumptions of
the fault injection time.

3.4.3 Verify at Architectural Level

Thirdly, we focus on architectural behaviour instead of detailed micro-architectural
behaviour, such as state transitions. The architectural behaviour specifies the expected
results of each instruction. Only inputs and outputs are required to verify the
functionality. Moreover, the architectural behaviour is similar to that of other RISC-V
designs because they all follow the same RISC-V ISA manual. Verifying architectural
behaviour can treat the whole system as a black box, which allows abstraction in
model checking.

3.4.4 Handle Undetermined Results

Finally, we use two approaches to handle undetermined results caused by state
explosion. On the one hand, we use different engine modes to solve different
problems, the details are in Section 3.5.2. On the other hand, case splitting is used to
reduce the state space. If unbounded results could not be reported with the present
fault space from a single model checking run, then we divided the fault space into
smaller fault lists, and performed each model checking run to each fault list, as shown

3.5. Step 4: Model Checking 79

FIGURE 3.8: Case Splitting

in Figure 3.8 where a yellow arrow represents undetermined results and a rectangle
represents a split fault list. This is done by SV assumptions. For example, if
undetermined, we first divide the total fault space into module levels, where each
fault list contains all faults in a single module. If such a fault list remains
undetermined, we further divide it into register levels, where each fault list contains
all faults in a single register. Most problems can be fully solved at the register level.
The following is an example of splitting fault space into the register level. It is
unnecessary to state FI_index is less than 2008 because of the register range.

assume_FI_index_stable_reg_1: // reg_1 contains bits [500:531]

assume property (@(posedge clk_i)

$stable(FI_index) && (FI_index inside {[500:531]}));

Case splitting is especially useful to solve undetermined results in step b) and step d)
in Section 3.5.1, such as instead of attempting to prove all the remained faults are safe
in one model checking run, dividing the remained faults into several sub groups. It is
easier and faster to disprove or fully prove the fault list with a smaller size.

3.5 Step 4: Model Checking

Faults are identified by proving assertions and finding CEXs. We model the correct
behaviour (such as a crash should never occur) as formal properties. We perform
model checking on these assertions. If an assertion fails, a CEX will be given in the
form of a waveform, such as a Value Change Dump (vcd) file that stores all digital
logic traces. The fault attributes, such as fault location and injection time, can be found
in the vcd file. Hence the faults can be extracted from the CEX. In this section, we

80 Chapter 3. Formal Method to Analyse SEUs

firstly introduce our experimental strategy to improve proof efficiency by
compressing repeated model checking runs and iteratively reducing the fault space.
Then we provide settings of the formal tool including engine modes.

3.5.1 Experimental Strategy

In each model checking run, though there are multiple assertions, at most one CEX
can be reported from each assertion. In other words, after a single model checking run
with n assertions, at most n crucial faults can be identified; each assertion can only
identify at most one crucial fault. The formal tool cannot report multiple CEXs from
the same assertion at once, hence cannot identify multiple crucial SEUs (in different
bits) violating the same assertion at once. As a result, for a given assertion, multiple
model checking runs are required to identify all crucial SEUs in different bit locations,
hence identifying all bits vulnerable to the error.

The most straightforward strategy is iterated model checking runs. In this case, 2008
runs are required to identify all SEUs in the Ibex Core, because there are 2008 bits in
the Ibex Core. Each run explores SEUs from only one bit location. If a counterexample
is reported, this bit is vulnerable to the error represented by the corresponding
assertion. However, this strategy is still time-consuming. In addition, we observed
that many model checking experiments produce the same results: target bits are not
vulnerable to SEUs (SEUs in these bits have no effect). Performing iterated
experiments on these bits is essentially a repetition of the same work, which wastes a
lot of computation efforts and time.

Therefore, the following experimental strategy is developed to explore SEUs:

For each assertion:

a) Start with an arbitrary SEU;

b) Perform model checking to identify a crucial SEU that violates the assertion;

c) Record the crucial SEU and remove it from the fault space;

d) Go back to b) with the updated fault space. Repeat until no more crucial SEU
can be found and the assertion is fully proven.

The strategy starts with an arbitrary SEU: both the fault location and the injection time
are stable free nets so that the fault space contains all possible SEUs. Details of using
implicit fault injection to inject an arbitrary SEU are in Section 3.2.3. In addition, there
is no other constraint, such as a specific time window for fault injection, as explained
in Section 3.4.

3.5. Step 4: Model Checking 81

The second step is to perform one model checking run to identify a crucial SEU that
violates the given assertion. Details of the properties are described in Section 3.3.
Details of the formal tool configurations are in the next subsection.

COI analysis is performed in parallel with model checking. COI has been explained in
Section 2.4. The COI includes all bits that may affect the target property. Outside the
COI are all bits that have no effects on the target property. Faults that occur in the bits
outside the COI will never fail the target property assertion, hence these bits are
structurally safe bits. By performing COI analysis, 81 common structurally safe bits
for all COI were found. It is unnecessary to explore faults in these structurally safe bits
using model checking, which saves time and effort.

The third step is to add the identified crucial SEU from the last step to constraints (as
SVA assumptions) in order to exclude it from further model checking runs. For
example, after finding one crucial SEU violating the assertion, the vulnerable bit is
excluded from the fault space the next time proving the same assertion. We assume
after identifying a crucial SEU, the vulnerable bit will be protected. This step aims to
avoid repeatedly identifying the same SEU. It also reduces the fault space and forces
the formal tool to explore the other SEUs. Each assertion has a unique fault list,
because different assertions can identify different crucial faults. The following is an
assumption example about a crash assertion after identifying two crucial SEUs.

`ifdef insn_access

assume_FI_index_stable:

assume property (

$stable(FI_index) && (FI_index <2008)

&& !(FI_index inside {608 ,609}));

`endif

We use the range from 0 to 2007 to represent all the register bits in the Ibex Core. The
bit index is shown in Appendix E. In the above example, the already identified crucial
SEUs are in bits 608 and 609. These two bits are in the register err_q, which
determines the validity in the FIFO module. FI_index is the fault injection bit location.
!(FI_index inside {608,609})) makes sure the already identified crucial SEUs can
no longer be explored in further model checking runs.

The final step is to go back to step b) to run a different model checking with the
updated assumptions. We repeat until the assertion is fully proven, which means the
remaining SEUs in the fault space have no effect. Then move to other assertions. At
this point, all crucial SEUs have been identified (and added to the assumptions).
Ideally, only one final model checking run is performed to confirm that all the
remaining SEUs have no effect. However, for most assertions the final model checking
run cannot report unbounded results, hence case splitting as described in subsection

82 Chapter 3. Formal Method to Analyse SEUs

3.4.4 is used. Case splitting splits the fault space and adds some extra model checking
runs in order to get unbounded results. Nevertheless, compared to exploring each
SEU one by one, identifying all safe SEUs at once or with case splitting significantly
saves a lot of time and effort. Efforts and results of case splitting will be given in
Section 3.8.

3.5.2 Configurations of Cadence JasperGold

There are multiple formal techniques to improve proof performance and to handle
state explosion, as mentioned in Section 2.4. Some of the techniques have been
integrated into Cadence JasperGold. For example, JasperGold includes both SAT- and
BDD-based proof engines with variations of these algorithms. In Section 1.4, the
formal tool and the proof engines used in this research have been briefly introduced.
We limited the proof time to three hours for each model checking run. We did not
limit the proof trace. We enabled ProofMaster to improve proof performance. We ran
two FPVs in parallel in one server, hence we set the maximum number of jobs to 10.
We assigned one thread to each engine because each core in the server only has one
thread. We chose specific engine modes to solve different types of problems. In the
following, we explain which engine modes are chosen to solve which problems, and
why these engines are chosen.

Single-property engines were chosen because there is only one assertion in each
model checking run, as shown in subsection 3.5.1. Though engines Hts and Hps are
basic engines, they are the most used engines in this research. Step b) in subsection
3.5.1 focuses on finding counterexamples. Hence we need to choose engines that are
good at finding traces. After experiments, we found engine Hts was able to report
99% of counterexamples within a short time (from seconds to minutes). The
remaining 1% counterexamples cannot be found by Hts within the time limit. But they
can be found with other Engines such as B and AD (some counterexamples needed
case splitting to reduce the fault space). In this research, within the same time, Hts is
faster than the other engines that focus on finding counterexamples in most cases;
only B can outperform Hts in some cases. As a result, we chose engines Hts, B and AD
to find counterexamples.

Step d) in subsection 3.5.1 focuses on full proof. Hence engines that aim at proof were
chosen. Engine Hps was able to fully prove the most simple properties/problems,
such as those architectural properties that model base integer computational
instructions, crash properties and hang properties. Engine Hps was not the only
engine that could solve these problems, but it was much faster (from seconds to
minutes) than other engines to solve the same simple problems.

3.6. Validating Fault Injection and Properties 83

It was much harder for Hps to prove branch & jump properties, and the most difficult
to prove load & store properties. Hps cannot fully prove them even after 25 hours. We
tried other engines to handle these complex problems. For instance, using Engines N
and Tri to fully prove single-properties and Engine R to fully prove multi-properties.
They can solve part of the problems within hours. We also tried different engine
modes, because some engine combinations can speed up the proof process. For
example, Engines I, C and C2 use abstractions to iteratively include logic from the COI
and should be suitable for problems when the analysis region becomes too complex.
However, we ran out of memory and this engine mode could not fully prove or find a
counterexample after 24 hours. Finally, we tried Abstraction Engines AD and AM. AD
was able to find counterexamples that are hard to reach. AM with case splitting can
solve the remained problems: most problems took minutes but a few hard-to-solve
cases took up to 10 hours. As a result, we chose Hps to fully prove the most
properties, and N, R and (mainly) AM for the other hard-to-prove properties.

3.6 Validating Fault Injection and Properties

3.6.1 Validate Fault Injection

Simulation is used to validate the fault injection mechanism. CoreMark, a benchmark
that is designed to test the functionality of a processor core, is chosen as the testbench.
Verilator is used to perform simulation. Verilator is an open-source cycle-accurate
simulator that supports SystemVerilog. Verilator converts the design into a C++ or
SystemC model. A wrapper file written in C++ that includes the main() function is
used to instantiate and evaluate the model. Verilator uses both the converted model
and the wrapper file for simulation. The Ibex Core project provides the wrapper file
for simulation. The wrapper file is modified, by adding two command arguments (the
fault location and the fault injection time). When there is no fault, the benchmark
passes without errors, which proves the fault injection mechanism has no functional
impact on the Ibex Core when there is no fault. Then we perform a random fault
injection with 1000 faults in the Ibex Core.

TABLE 3.4: Results of Random Fault Injection

Fault Effects # of Faults Time (s)
No effect 947 9

SDC 19 9 to 10
Crash 23 <9
Hang 11 >100

Table 3.4 lists the results of the random fault injection results. Among the 1000 injected
faults, 947 faults have no effect, 23 faults lead to crashes (16 are caused by illegal

84 Chapter 3. Formal Method to Analyse SEUs

instructions), 19 faults result in SDC and 11 faults cause hangs. Most of the
simulations (correct results and SDC) of the random fault injection took about 9 to 10
seconds. Simulations that crash took less than 9 seconds. Simulations that are longer
than 4194660 clock cycles (which is ten times the golden run time) were regarded as
timeout (hangs). In total, it took around three days to test the 1000 faults. The results
prove the fault injection mechanism can successfully inject faults into the core and
cause errors.

3.6.2 Validate Properties

The developed properties are validated using both simulation and model checking.
Firstly, a fault-free simulation with CoreMark is performed to collate assertion-based
coverage data. Assertion-based coverage measures how many assertions got activated
[139]. The coverage data shows all the assertions are activated at least once, which
means no vacuous passes. A vacuous pass happens if the antecedent of an assertion
fails, then the assertion will be proven vacuously without checking the consequent. A
vacuous pass means the assertion fails to validate the design. In parallel, we perform
model checking on the Ibex Core with no faults. The model checking result also shows
no vacuous passes. In addition, both simulation and model checking results contain
no assertion failures: all the assertions are proven, which means the properties violate
no design specifications. No vacuous passes and no assertion failures prove the
properties successfully follow the design specifications.

Then we perform model checking again with manually injected faults (mutations).
The faults are injected by assigning certain values to the two fault control signals
through assumptions. For example, the two assumptions about FI_time and
FI_index are modified as follows. FI_time can be assigned to a clock cycle number.
FI_index can only be a number between 0 and 2007 because there are 2008 bits in the
Ibex Core. The following assumptions produce a concrete fault/mutation. The
following example is only used for property validation; the following two
assumptions must not be used in the actual model checking experiments to identify
and classify SEUs.

assume_FI_time_stable:

assume property (@(posedge clk_i) FI_time == 10);

//10 can be changed to any number

assume_FI_index_stable:

assume property (@(posedge clk_i) FI_index == 1);

//1 can be between 0 and 2007

3.7. Validating Framework 85

All the manually injected faults (mutations) can be reported, because all the assertions
can fail if a crucial fault is injected inside the corresponding COI bits. For example, if a
fault is injected into the Program Counter, then an assertion monitoring a crash fails.
By analysing the counterexample, the input fault control signals can be found, hence
the injected fault can be identified. The results prove the properties can identify
mutations and, hence can be used to explore SEUs.

3.7 Validating Framework

After validating the fault injection mechanism and the developed properties, we
validate the whole framework by applying the proposed method to two well-known
fault-tolerant technologies: Triple Modular Redundancy (TMR) and Shadow Registers
(SR). In the following, we first introduce the two fault-tolerant technologies and how
they are implemented in the Ibex Core, and then we introduce how to use them to
validate the framework. The same method, experiment setup and tool setting
mentioned above are used for framework validation.

FIGURE 3.9: TMR in the Ibex Core

TMR triplicates the design under protection and adds a voter after the triplication.
TMR can detect double faults and correct single faults. The design under protection
can be a system, a module, a register, or a bit. In this work, as shown in Figure 3.9,
TMR is introduced at the register level: each register in the Ibex Core is triplicated.
The protected registers include the Register File but exclude the memories, Figure 1.1.
We assume the memories are fault-protected hence all the faults in the memories
cannot propagate to the core part.

Extra hardware, such as double registers, are added to the design by implementing
TMR. It is possible that SEUs occur in the extra registers instead of the original register.
To cover all possibilities, we evaluated faults in both the original bits and the extra
bits. We assume faults could occur in both the original bits and the extra bits equally.

86 Chapter 3. Formal Method to Analyse SEUs

FIGURE 3.10: Block Diagram of Shadow Registers in Ibex

A majority voter is added after each triplicated register. The voter is used to detect
and correct faults. If a single fault is injected into any of the registers in Figure 3.9, the
voter can decide the correct output. The following equation shows the principle of the
majority voter, r0 = (r1&r2)|(r1&r3)|(r2&r3), where r0 is the correct output decided
by the voter, r1, r2, and r3 are three inputs from the original design and two copies. &
means AND, | means OR. The majority voter is a simple AND–OR circuit: the voter
outputs 1 if two or more inputs are 1; and 0 if two or more inputs are 0.

Similar to TMR, SR enhance the protected register by adding a shadow copy and
placing a comparator after them, as shown in Figure 3.10. A fault could occur in either
the original register or the shadow copy. Both cases are considered in this work.

SR can only detect single faults or double/multiple faults that occur in the same
register. SR cannot correct faults by itself. Extra fault correction technologies are
required to correct detected faults. We assume extra fault correction technologies will
be implemented after the analysis, hence all the detected faults will be corrected.

3.7.1 Fault Detection

If a single fault is injected, causing a mismatch between the original register and its
copies, an error signal will be set by the corresponding TMR voter. There are 71
registers in the Ibex Core, hence there are 71 voters and 71 error signals
(error reg1...error reg71). The 71 error signals are ORed together to indicate a fault has
been detected by the TMR in the Ibex Core:
tmr error = error reg1||error reg2||...||error reg71.
If any voter in the design detects a fault, tmr_error sets to logic high.

Similarly, SR raises an error indication signal if a mismatch caused by a fault is found
by the comparator: sr error = error reg1||error reg2||...||error reg71. Though the same
error signal names are used, these error signals are different from the error indication
signals from TMR.

Since there is much in common between TMR and SR, such as both can detect and
correct single faults (we assume extra fault correction technologies will be
implemented with SR to correct faults), we only demonstrate TMR as the example in

3.7. Validating Framework 87

the following paragraphs. However, we did perform the following method and
experiments on both TMR and SR to validate the framework.

Each error signal in TMR has a unique property that checks if the injected fault can be
detected by the corresponding voter. Such properties are named detection properties.
These detection properties are used to evaluate the fault detection effectiveness of
TMR. The following is an example of TMR.

property p_TMR_reg1;

!error_reg1;

endproperty

error reg1 is the error signal from the TMR enhanced register reg1 in the register file. If
the property assertion fails, a fault injected in any of the triple registers can be
detected by TMR. There are 71 registers in the Ibex Core, hence there are 71 detection
properties. The number of detection property assertion failures is used to determine
the detection effectiveness:

detectione f f ectiveness = detectionassertion f ailures
71

Ideally, all the SEUs should be detected by TMR; all the 71 assertions should fail with
an arbitrary fault; hence 100% detection efficiency. Otherwise, there may be a bug in
the framework, and further analysis is required to correct the framework. For
example, the property p_TMR_reg1 cannot fail even if a fault is injected to the register
reg1. This may be a real design bug, such as the inputs of the TMR voter were wired
together; or a framework bug, such as incorrect development or implementation of
FI/assumptions/properties.

3.7.2 Fault Correction: SDC, Crash and Hang

Strobe properties are used to identify SEUs that can cause SDCs in the presence of
TMR. Details of strobe properties have been given in Section 3.3.1.2. We chose strobe
properties rather than architectural properties because we found that it is faster to use
strobe properties for simple designs such as the Ibex Core. There are two differences
compared to Section 3.3.1.2. The first difference is that both cores are protected by
TMR. The second difference is that the error indication signal tmr_error is added into
antecedent in each property assertion. If the error indication signal is not set, which
means no error is detected by TMR, then it is unnecessary to check the consequent of
the property. The following is an example.

assert_rvfi_insn: assert property (

golden_rvfi_valid && faulty_rvfi_valid && tmr_error|->

faulty_rvfi_insn == golden_rvfi_insn);

88 Chapter 3. Formal Method to Analyse SEUs

The example checks whether the detected fault can alter the instruction, hence causing
an SDC, when the design is under the protection of TMR. A proven assertion (without
a vacuous pass) means all the detected faults by TMR cannot alter the retired
instruction just as expected, which further proves the correctness of the framework.

Similarly, the error indication signal tmr_error is also added into antecedent in crash
properties in Section 3.3.2 and hang properties in Section 3.3.3.

The following is an example of a modified crash property assertion. This assertion
specifies that if a fault has been detected by TMR, then the detected fault should never
cause a store access fault crash.

assert_store_access_fault: assert property (

(crash_priv_mode ==2’b11) && tmr_error |->

(crash_mcause_q !=6’d7));

The following is the modified hang property assertion. The assertion specifies that if a
fault is detected by TMR, the retired instruction is a valid RV32IMC instruction, and
the retired instruction is not the last one in the software program (the program has not
ended yet), then the core should not be stuck in a sleeping state that waits for a new
instruction.

assert_hang: assert property (

valid && !halt && tmr_error |->

(insn != 32’ h10500073));

If any of the above three assertions fails, a fault that can be detected but cannot be
corrected by TMR is found, which is in fact impossible, as TMR can correct all the
detected faults. The false negatives could be caused by either a design bug, such as
incorrect wiring; or a framework bug, such as incorrect FI, assumptions and
properties. If all assertions are proven, there is no bug in the design or the framework.
As a result, the framework can be validated by evaluating TMR and SR.

3.7.3 Validation Results

TMR adds 4016 bits and 71 combinational voters to the Ibex Core. Without any faults,
the enhanced Ibex Core works as expected. All the detection assertions are proven,
and all the assertions without the error indication signal are proven. We did not use
the modified properties in the last subsection, because the error indication signals
were not set without faults, which can lead to a vacuous pass when proving assertions
with the error indication signals in the last subsection. This result indicates that the
implemented TMR does not influence the functionality of the Ibex Core when there is
no fault.

3.8. Results and Analysis 89

With an arbitrary SEU, all the error indication assertions fail. All the TMR voters can
raise an error indication signal immediately, if a fault is injected into the
corresponding enhanced bits. All the injected faults can be detected, the fault
detection efficiency is hence 100%. All the strobe, crash and hang assertions are
proven without a vacuous pass. The fault correction efficiency is 100%. All the above
results (both the fault detection efficiency and the fault correction efficiency) satisfy
the features of TMR, which validate the framework.

Similarly, SR adds 2008 bits and 71 comparators to the Ibex Core. Table 3.5 shows the
results of evaluating SR using the framework. The second column, ‘Detected’ lists the
number of detected bit locations by SR. The results show that faults in all bit locations,
including both the original bits and the extra shadow copies, can be detected by SR.
Hence the fault detection effectiveness of SR is 100%.

TABLE 3.5: Evaluating Results of Shadow Registers

Group Detected Failure Proven
SDC 4016 42540 17700

Crash 4016 318 23778
Hang 4016 20 3996

There are 45226 SDC failures in Table 3.5. SR can detect crucial SEUs that may cause
SDCs in 4016 bit locations. The 4016 bit locations include both the original bits and the
shadow copies. The Ibex Core bits that are vulnerable to SDCs without fault-tolerant
technologies will be given in subsection 3.8.1.1, where 21270 crucial faults causing
SDCs are identified by strobe properties. The 21270 crucial faults are also included in
Table 3.5. SR doubles the bits, hence the vulnerable bits are also doubled. That is why
the number of SR-detected crucial SEUs to SDCs, crashes and hangs in Table 3.5 are
doubled compared to those in subsection 3.8.1.2 and 3.8.1.3. Hence the crucial fault
detection efficiency is 100%. The results match the features of SR: SR can detect all
SEUs including all crucial SEUs in the Ibex Core, hence the results can validate the
framework.

In summary, we use our method to evaluate TMR and SR. Though the results are
unsurprising, the validation results validate the whole framework. We further expand
the method to evaluate a different fault-tolerant technology in Chapter 4.

3.8 Results and Analysis

All the model checking results were either ‘Proven’ or ‘Failure’ (except the RV32M
properties). On average, it only took one and a half minutes to report each of the 99%
counterexamples (step b in Section 3.5.1). The remaining 1% were disproved with case
splitting. Each case took one minute to be disproved. It took three hours to fully prove

90 Chapter 3. Formal Method to Analyse SEUs

each of the crash and hang properties. It took one hour to fully prove each of the
RV32IC Integer Computational Instruction properties without case splitting. Case
splitting was used to fully the RV32IC Control Transfer and Load and Store
Instruction properties. 80% of the split cases were fully proved by one and a half
hours. However, it took three hours to fully prove 19% of cases, and it took five hours
to fully prove 1% of hard-to-prove cases.

In this section, we interpret the results at two levels: hardware-level and
instruction-level. Based on the SEU effects, the corresponding bits can be classified
into safe bits (SEUs in these bits have no effects), and vulnerable bits to
SDCs/crashes/hangs (SEUs in these bits can cause SDCs/crashes/hangs). Similar for
instructions. In each subsection, we first explain the safe part, then the vulnerable
part. We introduce not only faults, but also the corresponding structures (bits,
registers, modules) and instructions. Hardware-level identifies bits vulnerable to
SEUs; hardware protection technologies, such as TMR, can be implemented to protect
these vulnerable bits. Instruction-level identifies instructions vulnerable to SEUs;
software protection technologies, such as redundant instructions, can be implemented
to protect these vulnerable instructions.

3.8.1 Hardware-level

3.8.1.1 SDC

In this subsection, we first explain the results of proving architectural properties, then
the results of proving strobe properties. Finally, we compare both results, i.e., in the
term of fault coverage ratios.

Architectural Properties Table 3.6 lists the results of proving architectural
properties. The columns called Name list property names. They also represent the
monitored instructions. The columns called Failure and Proven list the number of
vulnerable bits and safe bits to the corresponding instructions. For example, as shown
in the first row, there are 91 bits that may lead to malfunctioning of the RV32I_LUI

instruction, such as a wrong read value, hence causing an SDC. On the other hand, the
other 1917 bits in the Ibex Core cannot corrupt the RV32I_LUI instruction and cause an
SDC, hence safe bits.

Table 3.6 divides the architectural properties to different groups based on the
instruction functions: RV32IC Integer Computational Instructions, RV32IC Control
Transfer Instructions, RV32IC Load and Store Instructions and RV32M Instructions.
There is no undetermined result for RV32IC instructions. All the RV32IC properties in
Table 3.6 are fully proved. It took the least time and effort to fully prove the RV32IC

3.8. Results and Analysis 91

TABLE 3.6: Using Architectural Properties to identify faults causing SDCs

Name Failure Proven Name Failure Proven
RV32I LUI 91 1917 RVC LUI 130 1878

RV32I ADD 113 1895 RVC ADD 126 1882
RV32I ADDI 112 1896 RVC ADDI 129 1879
RV32I XOR 113 1895 RVC XOR 128 1880
RV32I XORI 113 1895

RV32I OR 112 1896 RVC OR 128 1880
RV32I ORI 112 1896

RV32I AND 112 1896 RVC AND 126 1882
RV32I ANDI 112 1896 RVC ANDI 130 1878
RV32I SLL 113 1895
RV32I SLLI 113 1895 RVC SLLI 127 1881
RV32I SRL 113 1895
RV32I SRLI 118 1890 RVC SRLI 131 1877
RV32I SUB 107 1901 RVC SUB 129 1879
RV32I SRA 106 1902
RV32I SRAI 115 1893 RVC SRAI 134 1874

RV32I AUIPC 91 1917 RVC LI 130 1878
RV32I SLT 112 1896 RVC MV 132 1876
RV32I SLTI 112 1896 RVC ADDI4SPN 134 1874

RV32I SLTIU 112 1896 RVC ADDI16SP 129 1879
RV32I SLTU 106 1902
RV32I JAL 121 1887 RVC JAL 134 1874

RV32I JALR 81 1927 RVC JALR 90 1918
RV32I BEQ 114 1894 RVC BEQZ 130 1878
RV32I BNE 107 1901 RVC BNEZ 121 1887
RV32I BLT 107 1901 RVC JR 91 1917
RV32I BGE 115 1893 RVC J 128 1880

RV32I BLTU 105 1903
RV32I BGEU 115 1893

RV32I LW 106 1902 RVC LW 133 1875
RV32I LB 109 1899 RVC LWSP 132 1876

RV32I LBU 108 1900
RV32I LH 107 1901

RV32I LHU 109 1899
RV32I SW 106 1902 RVC SW 131 1877
RV32I SB 106 1902 RVC SWSP 120 1888
RV32I SH 106 1902

RV32M MUL 1128 81 RV32M MULHSU 1129 81
RV32M MULH 1128 81 RV32M MULHU 1128 81

Integer Computational Instruction properties. Each RV32IC Integer Computational
Instruction property was fully proved by the engine Hps without case splitting within
one hour. It took more time and effort to fully prove the RV32IC Control Transfer
Instruction properties. The jump instructions were fully verified by Hps with case
splitting. Each case took about one hour. The branch instructions were harder to fully
prove by Hps even with case splitting, hence AM was added to the engine mode.

92 Chapter 3. Formal Method to Analyse SEUs

After splitting the fault space of the branch instructions, most cases were fully proved
by AM within three hours, a few were fully proved by Hps. At this point, the fault
space of most properties was only split into register levels. It was the most difficult to
fully prove the RV32IC Load and Store Instructions. The fault space was split into bit
levels, where each fault list contains only a few bits or even one bit. We set the time
limit to 24 hours for the load and store cases. Most case was fully proved by AM
within three hours. A few cases even took five hours to be fully proved.

However, due to the challenge of formally verifying multipliers and dividers, we
cannot fully verify RV32M architectural properties. We identified some crucial SEUs
to the multiplication instructions, but we could not fully prove any safe SEU to the
multiplication instructions with the method. We could not even identify any crucial or
safe SEU to division instructions, because the divider in the Ibex Core takes far more
clock cycles than the multiplier. We also tried to abstract the multiplier and the divider
using built-in functions of FSV but it did not work. Details will be discussed in Section
3.9. The only safe SEUs to RV32M properties were identified by FSV COI analysis.

We performed FSV COI analysis and identified 81 common structural safe bits which
cannot result in SDCs. The safe bits are: instr_rdata_alu_id_o[24:15],
instr_rdata_alu_id_o[11:7], stored_addr_q[31:0], fetch_addr_q[31:0],
imd_val_q[1][33:32]. These bits are reliable because all of them are not consumed
(i.e. further used) in the Ibex Core. In the Ibex Core, the instruction is duplicated and
stored in two 32-bit registers to reduce fan-out. One is the register
instr_rdata_alu_id_o in if_stage module. This register stores the instruction to the
ALU in the Ibex Core. The ALU only reads specific bit fields in
instr_rdata_alu_id_o, such as OPCODE. The other bit fields [24:15] & [11:7] are not
consumed and hence safe.

Similarly, register stored_addr_q in prefetch_buffer module stores the request
address in memory. Since the address is aligned by 4, the two least significant bits are
not consumed, hence faults in the stored_addr_q[1:0] have no effect. It may be
argued that apart from the two least significant bits in the registers stored_addr_q
and fetch_addr_q in the prefetch_buffer module, the other bits can be vulnerable
to SEUs. These bits decide the request instruction address to the memory. A fault in
these bits may lead to a wrong instruction address, hence an invalid instruction may
be produced by the memory. A system failure may occur due to an invalid instruction.
However, such failure is out of consideration. This work focuses on bits inside the
Ibex Core. We assume the memories cannot propagate any errors, all the errors in the
memories will be corrected. As stated in Section 3.4, we abstracted the memories by
totally removing the corresponding code, hence the memories cannot store any data
(whether including faults or not) from the core part. We developed assumptions to
make sure all the instructions from the instruction memory are valid and aligned
instructions. In other words, though the faults in the registers stored_addr_q and

3.8. Results and Analysis 93

fetch_addr_q can propagate to the memory, the faults are corrected by the memory
and cannot propagate from the memory. Hence, all the bits in the registers
stored_addr_q and fetch_addr_q cannot produce errors and are safe bits.

Based on the model checking results, common safe bits/registers/structures to
architectural properties can be identified, as shown in Table 3.7. Since we could not
solve all the undetermined results of RV32M properties, only RV32IC results are
discussed (RV32M is excluded from the following results). There are three reasons
why these structures are safe. 1) Some bits are not consumed with the given
assumptions, such as the MULTDIV module is not triggered when there is no RV32M
instruction and imd_val_q is only used in the MULTDIV. 2) SEUs in some structures,
such as all registers (except register ctrl_fsm_cs which stores the current state of the
module) in the controller module and all registers in the CSR module, can change
the privilege mode so that the core is no longer in the M mode; we only construct
failures in the M mode as properties, as stated in section 3.3. 3) Faults are hidden due
to topology, which is a limitation of architectural properties, the details are in the next
paragraph.

TABLE 3.7: Common Safe Structures to Architectural Properties

Bits Registers Module
[4:11] All except ctrl fsm cs controller

[12:477] All CSR
[512:607] rdata q FIFO
[611:678] imd val q id stage

683 instr new id q if stage
[723:727] instr rdata alu id o if stage
[731:740] instr rdata alu id o if stage

749 instr fetch err plus2 o if stage
[800:823] rdata q load store unit
[824:825] rdata offset q load store unit
[830:861] addr last q load store unit

865 handle misaligned q load store unit
[868:942] All MULTDIV
[943:1012] All except rdata pmp err q prefetch buffer
[1015:2006] All RegFile

2007 core busy q Top

Instructions are important in the core. However, the register rdata_q that stores the
instructions in the FIFO module is identified as a safe register in Table 3.7.
Architectural properties read retired instructions from the core. If the instruction is
fetched with a fault from the FIFO, in the Ibex Core there is no safety mechanism to
detect or correct the fault, then architectural properties can only calculate theoretical
values based on the faulty retired instruction. However, there is no way for
architectural properties to generate correct theoretical values without a correct retired
instruction. As a result, faults in the rdata_q in the FIFO module can never be

94 Chapter 3. Formal Method to Analyse SEUs

identified due to topology. Similarly for the listed registers in the load_store_unit

module and the RegFile module in Table 3.7. This limitation motivated us to develop
strobe properties, as mentioned in subsection 3.3.1.1.

Table 3.8 lists the crucial SEUs and vulnerable hardware structures to architectural
properties. In counterexamples, most of the identified crucial SEUs were injected at
the fifth clock cycle after reset, when the FSM in the controller enters DECODE state
(the normal operation state). The other identified SEUs were injected at later clock
cycles such as the seventh clock cycle, because a longer input sequence was required
to reach corner cases. Then after at least two clock cycles, an assertion failed,
depending on whether the pipeline was stalled. Most of the counterexamples were
reported by Hts without case splitting. Then with case splitting, 61 hard-to-reach
crucial SEUs were identified by Hts and AD within minutes. These 61 SEUs are
identified by proving properties about RV32IC Control Transfer Instructions and
RV32IC Load and Store Instructions, because they are more complex than RC32IC
Integer Computational Instructions.

There are multiple architectural properties. Some properties can report the same
crucial SEUs, hence the corresponding bits/registers/modules are more vulnerable
than others. We divide Table 3.8 into three blocks based on the frequency of crucial
SEUs. In the first block labelled with ≥50, SEUs in the bits can violate more than 50
architectural properties. In the second block, SEUs in the bits can violate 20 to 50
architectural properties. SEUs in the last block labelled with ≤20 can violate no more
than 20 architectural properties. Table 3.8 can be used to rank the reliability of
bits/registers/modules in the Ibex Core. Fault-tolerant technologies should be
implemented in vulnerable structures to improve hardware reliability.

The most crucial SEUs occur in the first block of Table 3.8. SEUs in PC-and
instruction-related registers cause the most architectural property failures. Registers
instr_addr_q and pc_id_o store the current PC. In fact, the value in pc_id_o is
updated by the value in instr_addr_q. The FIFO outputs are fed into a
compressed_decoder, which decompresses the instruction and stores it in the register
instr_rdata_id_o in the if_stage module. The same decompressed instruction is
also duplicated in the register instr_rdata_alu_id_o to reduce fan-out. The
instr_rdata_id_o is then fed into both the controller and the decoder, the
instr_rdata_alu_id_o is only fed into the decoder. That is why the vulnerable bit
fields in the two registers are not the same. The branch_set_raw_q indicates a branch.
A fault in this register can alter the controller and output a wrong PC, hence causing
an assertion failure. The instr_valid_id_q stores the validness of the instruction to
the second pipeline stage. The instr_fetch_err_o and illegal_c_insn_id_o are
similar to the instr_valid_id_q: they store the validness of the fetched instruction
and the validness of the compressed instruction to the second pipeline stage. A fault
in these three registers can alter both the controller (the FSM of the core) and the

3.8. Results and Analysis 95

TABLE 3.8: Crucial SEUs with structures to Architectural Properties

SEUs Bits Registers Module
≥50 [478:508] instr addr q FIFO

679 branch set raw q id stage
682 instr valid id q if stage

[684:690] instr rdata id o if stage
[710:715] instr rdata id o if stage
[716:722] instr rdata alu id o if stage

748 instr fetch err o if stage
767 illegal c insn id o if stage

[768:799] pc id o if stage
[862:864] ls fsm cs load store unit

<50 [0:3] ctrl fsm cs controller
>20 [509:511] valid q FIFO

[608:610] err q FIFO
681 id fsm q id stage

[691:698] instr rdata id o if stage
[704:709] instr rdata id o if stage
[728:730] instr rdata alu id o if stage
[750:765] instr rdata c id o if stage

766 instr is compressed id o if stage
866 pmp err q load store unit

[1013:1014] rdata pmp err q prefetch buffer
≤20 680 branch jump set done q id stage

[699:703] instr rdata id o if stage
[741:747] instr rdata alu id o if stage
[826:827] data type q load store unit

828 data sign ext q load store unit
829 data we q load store unit
867 lsu err q load store unit

decoding process (such as failing to read correct source register address), hence
causing an assertion failure. The ls_fsm_cs stores the FSM state in the
load_store_unit module which takes care of accessing the data memory.

In the second block of Table 3.8, the valid_q determines the validness of all the three
entries in the FIFO. The error_q stores the instruction fetch error (which is valid on
the data phase of a request) from the IMEM. The id_fsm_q stores the current FSM
state of the id_stage module. The instr_rdata_c_id_o stores the compressed
instruction. The instr_is_compressed_id_o determines whether the instruction is 16
bits (compressed) or 32 bits. The Ibex Core supports an optional Physical Memory
Protection (PMP) unit, which implements a region-based memory access checking
protocol. However, PMP is disabled by default and in this work. The pmp_err_q

indicates the PMP has detected an error. Ideally pmp_err_q should be always zero,
because there is no PMP in the Ibex Core. Similar for the rdata_pmp_err_q. Faults in
the two registers can malfunction the load_store_unit module.

96 Chapter 3. Formal Method to Analyse SEUs

In the last block of Table 3.8, a fault in the branch_jump_set_done_q affects executing
multi-cycle branch and jump instructions. In the load_stire_unit module, the data
needs to be extended. The data_type_q determines how the data is extended: word,
half-word or byte extension. The data_sign_ext_q determines whether the data
should be sign extended.

Some structures are less vulnerable and can only cause certain architectural property
failures. For example, faults in most bits in the instr_rdata_c_id_o (which stores the
compressed instruction) can only fail RVC properties; faults in the
data_type_q, data_sign_ext_q, data_we_q in load_store_unit can only fail load
and store properties. This finding can be used to partially protect vulnerable
structures when the software executed in the core is known.

Strobe Properties There are 15 strobe signals, hence 15 strobe properties, as
mentioned in subsection 3.3.1.2. The same method and tool were used to prove the
strobe properties. Firstly we used Hts and Hps but got on average 690 undetermined
results for each strobe property. Then AD, AM and case splitting were used to further
analyse the undermined results. Finally, all the results of strobe properties were either
‘Proven’ or ‘Failure’. We found that the results of all strobe properties are the same: if
an SEU in a bit can/cannot corrupt one strobe, then it can/cannot corrupt all strobes.

The similarity is caused by the strong relationships among the strobes. Instructions in
the core are important. Faults that alter the correct fetch/decode/execute process of
an instruction can change values in all strobes. For example, if a fault alters the
instruction and stalls the pipeline, Instruction_is_done fails. If a fault changes the
source (rs1 and rs2) and destination (rd) register addresses, Instruction,
rs1_address, rs2_address and rd_address can mismatch, which can further change
rs1_read_data, rs2_read_data and rd_write_data. Similarly, if a fault alters a
branch instruction, the PC may change; if a fault corrupts a load or store instruction,
memory-related strobes may change.

TABLE 3.9: Proven Results of Strobe Properties

Bits Registers Module
[4:11] All except ctrl fsm cs controller

[12:477] All CSR
[677:678] imd val q id stage

683 instr new id q if stage
[723:727],[731:740] instr rdata alu id o if stage

749 instr fetch err plus2 o if stage
[830:861] addr last q load store unit
[943:974] stored addr q prefetch buffer

[975:1006] fetch addr q prefetch buffer
1008 discard req q prefetch buffer

3.8. Results and Analysis 97

Table 3.9 lists the proven results (safe structures) with respect to all strobes. The other
bits not in Table 3.9 are failure results (vulnerable structures). Proving strobe
properties report 21270 crucial SEUs in 1418 bit locations. To save space, the
vulnerable structures are not listed. The vulnerable bits identified by proving strobe
properties cover those identified by proving architectural properties.

Comparison Strobe properties find bits vulnerable to strobes, while architectural
properties find bits vulnerable to instructions. Proving strobe properties reports more
crucial SEUs than proving architectural properties. We use strobe properties to
complement architectural properties.

rdata_q in the FIFO stores instructions from the IMEM. rdata_q in the
load_store_unit stores the data from the DMEM, data_offset_q and
handle_misaligned_q in the load_store_unit determines the data extension and
alignment. valid_req_q, rdata_outstanding_q and branch_discard_q play
important roles in the control part in the prefetch_buffer module, faults in these bits
can output wrong data to the core or stall the core. Faults in the RegFile can corrupt
ALU results. A fault in the core_busy_q can stall the whole core. Faults in these
bits/registers cannot be identified by architectural properties, because: 1) Faults in
some structures (such as the rdata_q and rdata_offset_q) can only be identified by
comparing them with golden references. For example, a fault in the rdata_q in the
FIFO can change one valid instruction to another valid different instruction, such from
RV32I LB to RV32I LBU, as shown in Figure 3.11. Such a fault cannot be identified by
architectural properties because the retired instruction is RV32I LBU instead of
RV32I LB. From the view of architectural proprieties, the retired instruction is valid
and contains no fault. 2) Faults in some structures (such as valid_req_q and
core_busy_q) refresh or stall the pipeline and stop instructions/data from
propagation, the instructions/data cannot retire from the core and hence cannot be
checked by architectural properties.

FIGURE 3.11: A fault changes RV32I LB to RV32I LBU

Though strobe properties produce a higher fault coverage, some of the identified
SEUs are not really crucial SEUs. For example, if the faulty core produces correct
results but takes more clock cycles than the golden core, then strobe properties fail
because the strobes from the two cores are not equal. Such a mismatch can be reported
as a counterexample, though it is not essentially an SDC.

In summary, architectural properties provide a narrow scope into instructions, but
architectural properties cannot cover faults in all the structures in the core. Hence

98 Chapter 3. Formal Method to Analyse SEUs

strobe properties are used to improve the fault coverage, though strobe properties
cannot identify and classify faults based on instructions. By combining both
properties, an exhaustive fault analysis of SDCs can be performed.

3.8.1.2 Crash

Table 3.10 shows the results of crash properties. There is no undetermined result. Hps
and Hts were used as the engine modes. Most faults cannot cause a corresponding
crash. The counterexamples were found after at least six clock cycles after reset: four
clock cycles for the core to enter normal operation state and two clock cycles for fault
propagation. Insn_access_fault represents a crash caused by an instruction access
fault, such as invalid instruction address access. Similarly, load_access_fault and
store_access_fault are crashes caused by invalid data address access.
Illegal_insn represents a crash due to invalid instructions, such as instructions
violating the RISC-V ISA specification.

With the help of COI analysis, there are 82 common structural safe bits, which are
included in the Proven results. Compared to 81 safe bits that cannot cause an SDC, the
extra safe bit is instr_new_id_q. This bit is used to capture strobe signals listed in
Table 3.2. In the real Ibex Core, this bit is assigned to a value but never used. Although
instr_new_id_q influences the signals used for formal verification, it does not
influence the behaviour of the Ibex Core. Hence it is a safe bit.

TABLE 3.10: Bits vulnerable to crashes

Name Proven Failure
Insn access fault 2002 6

Illegal insn 1908 100
breakpoint 1963 45

load access fault 2006 2
store access fault 2006 2

ECall MMode 2004 4

Tables 3.11 to 3.15 list the crucial SEUs and vulnerable structures with respect to the
six crash properties. Faults in some bits/registers can cause multiple crashes. For
example, the bit 510 in the valid_q in the FIFO can cause three crashes:
Insn access fault, breakpoint and ECall MMode. Registers valid_q and rdata_q in
the FIFO are the most vulnerable registers to crashes. Bits with faults causing multiple
crashes are more vulnerable than bits with faults causing a single crash and hence
need protection.

3.8. Results and Analysis 99

TABLE 3.11: Structures Vulnerable to Insn access fault

Bits Register Module
[608:610] err q FIFO

748 instr fetch err o if stage
[1013:1014] rdata pmp err q prefetch buffer

TABLE 3.12: Structures Vulnerable to Illegal insn

Bits Register Module
478 instr addr q FIFO

[509:511] valid q FIFO
[512:607] rdata q FIFO

[684:690],[696:698],[709:715] instr rdata id o if stage
767 illegal c insn id o if stage

[1009:1010] rdata outstanding q prefetch buffer
2007 core busy o Top

TABLE 3.13: Structures Vulnerable to breakpoint

Bits Register Module
478 instr addr q FIFO

[509:511] valid q FIFO
[512:523],526,[528:539],542,[544:555],558 rdata q FIFO
[560:571],574,[576:587],590,[592:603],606 rdata q FIFO

690 instr rdata id o if stage
[1009:1010] rdata outstanding q prefetch buffer

2007 core busy o Top

TABLE 3.14: Structures Vulnerable to load and store access fault

Bits Register Module
866 pmp err q load store unit
867 lsu err q load store unit

TABLE 3.15: Structures Vulnerable to ECall MMode

Bits Register Module
510 valid q FIFO

518,550,582 rdata q FIFO
690 instr rdata id o if stage

3.8.1.3 Hang

The results show that faults in 1998 bits cannot cause a hang (WFI); faults in 10 bits
can cause a hang (WFI). The identified crucial SEUs and vulnerable structures are
listed in Table 3.16. FIFO is still the most vulnerable module and needs enhancement.

We found that software programs executed in the core play an important role when
exploring faults causing hangs. The following is an example of the assembly code of a

100 Chapter 3. Formal Method to Analyse SEUs

TABLE 3.16: Structures Vulnerable to Hang (WFI)

Bits Register Module
478 instr addr q FIFO

[509:510] valid q FIFO
512,513,516,528,529,544,545,548 rdata q FIFO

560,561,576,577,580,592,593 rdata q FIFO
688 instr rdata id o if stage

[1009:1010] rdata outstanding q prefetch buffer
2007 core busy o Top

for-loop:

ADDI x1 , x0 , 10 # i = 10

loop:

BEQZ x1, loopend # if i == 0, break loop

SUB x1 , x1 , 1 # i = i - 1

JAl x0 , loop # jump to loop

loopend:

ADDI x3, x1, 0 # a = i

In the above assembly code, if the value in register x1 is zero, the for-loop ends with
the instruction BEQZ. When x1 is zero, if there is a fault when reading or executing
BEQZ, then the for-loop will never end, causing a hang. Several faults can cause such a
problem. For example, faults causing an incorrect instruction address such that BEQZ
is either not fetched from FIFO or read from memory; or wrong results (faults in
RegFile) of BEQZ. Apart from faults in hardware, we found faults in software (such as
the above example) can lead to a hang. To find all faults causing hangs, both software
and hardware need to be considered. It might be easier to find faults causing hangs
with hardware running a known software program. A known software program
constrains the input state space, hence a great amount of computation effort exploring
scenarios outside the given software program can be reduced.

3.8.2 Instruction-level

The value in the instr_is_compressed_id_o in the if_stage determines whether the
instruction is 32-bit or 16-bit. We found that all RV32I instructions are vulnerable to
this register because a fault in this register can force the core to treat RV32I
instructions as RVC instructions. In most cases, illegal RVC instructions are generated
and a crash is reported. The only exception is the RV32I SRA instruction because the
most significant 16 bits can be treated as a valid RVC LWSP instruction, as shown in
Figure 3.12. To save space, only the left 16 bits in the RV32I SRA are displayed. The

3.8. Results and Analysis 101

left 16 bits match the RVC LWSP format: the fun3 code is 010 and the OPCODE is 10 if
bit 17 is 1 and bit 16 is 0 in the RV32I SRA. On the contrary, all RVC instructions are
reliable to the instr_is_compressed_id_o because two combined RVC instructions
can be treated as a valid RV32I instruction.

FIGURE 3.12: The left 16 bits of RV32I SRA can be decoded as RVC LWSP

Instructions that perform similar functions in different instruction sets are placed on
the same row in Table 3.6. For convenience, we extract those instructions to Table 3.17.
It can be seen that the compressed instructions are more vulnerable than the base
instructions. Hence, implementing fewer or no RVC instructions can improve the
reliability of a system in the presence of soft errors.

TABLE 3.17: RV32IC instructions that perform similar functions

Name Failure Proven Name Failure Proven
RV32I LUI 91 1917 RVC LUI 130 1878

RV32I ADD 113 1895 RVC ADD 126 1882
RV32I ADDI 112 1896 RVC ADDI 129 1879
RV32I XOR 113 1895 RVC XOR 128 1880
RV32I OR 112 1896 RVC OR 128 1880

RV32I AND 112 1896 RVC AND 126 1882
RV32I ANDI 112 1896 RVC ANDI 130 1878
RV32I SLLI 113 1895 RVC SLLI 127 1881
RV32I SRLI 118 1890 RVC SRLI 131 1877
RV32I SUB 107 1901 RVC SUB 129 1879
RV32I JAL 121 1887 RVC JAL 134 1874

RV32I JALR 81 1927 RVC JALR 90 1918
RV32I BEQ 114 1894 RVC BEQZ 130 1878
RV32I BNE 107 1901 RVC BNEZ 121 1887
RV32I LW 106 1902 RVC LW 133 1875
RV32I SW 106 1902 RVC SW 131 1877

We group RV32IMC instructions into seven groups: RV32I and RVC Integer
Computational Instructions, RV32I and RVC Control Transfer Instructions, RV32I and
RVC Load and Store Instructions and RV32M Instructions. We found that the
instructions are reliable for some common structures, as listed in Table 3.7. We also
found different groups of instructions have different vulnerabilities. For example, all
RV32I instructions are vulnerable to all four bits in the ctrl_fsm_cs in the
controller, while RVC instructions are only vulnerable to the least significant two
bits, and RV32M instructions are vulnerable to the least significant three bits. Only

102 Chapter 3. Formal Method to Analyse SEUs

RV32M instructions are vulnerable to multiplier-related structures, such as the
imd_val_q register and the MULTDIV module. Only RV32IC Control Transfer
Instructions are vulnerable to SEUs in the branch_jump_set_done_q which indicates
the complement of a branch/jump. The RV32IC Integer Computational Instructions
are more vulnerable to the instr_rdata_alu_id_o in the if_stage than others. The
RV32IC Load and Store Instructions are more vulnerable to the load_and_store_unit

than others. If the vulnerable hardware is not protected, then corresponding
instructions should be enhanced to improve the system’s reliability.

3.9 Discussion

The proposed method can successfully evaluate the hardware reliability in the
presence of SEUs. We use formal verification to explore the entire state space and the
whole fault list to search all crucial SEUs that can cause SDCs/crashes/hangs, and all
safe SEUs that cannot cause SDCs/crashes/hangs. It is found that some bits are more
vulnerable to SEUs than others. For example, the 1-bit register instr_valid_id_q is
very vulnerable because faults in this bit can cause all types of SDCs. In addition,
some registers are only vulnerable to certain failures. For example, the register
ctrl_fsm_cs is only vulnerable to SDCs.

We found that some faults can cause multiple (property assertion) failures. For
instance, all the 31 bits in the register instr_addr_q in the FIFO module can violate all
architectural and strobe properties. In other words, faults in these bits may cause all
the failures modelled by the architectural and strobe properties. Hence, these bits are
the most vulnerable bits and must be protected to minimize SDCs. In addition,
pc_id_o, the program counter, is a very vulnerable register. Most bits in the program
counter can fail all the assertions and hence need protection. It is important to protect
the FIFO and the PC with fault-tolerant technologies.

We also found that faults in both the data path and control path can lead to SDCs. For
instance, faults in the register ctrl_fsm_cs in the controller (in the control path) can
lead to SDCs; faults in the RegFile (in the data path) can also lead to SDCs.

Not all bits in the same register are vulnerable to the same failure. For example, in
Table 3.8, the instr_rdata_alu_id_o register contains 32 bits; some bits can cause
more than 50 failures while some bits can cause less than 20 failures. Another example
is in Table 3.12, not all bits in the instr_rdata_id_o register can cause an illegal insn
crash. As a result, partially protecting the most vulnerable bits instead of the entire
registers could be a cost-efficient method to improve hardware reliability.

Formally verifying RV32IC Integer Computational Instructions is easy because they
are single clock cycle instructions. It is harder to formally verify RV32IC Control

3.9. Discussion 103

Transfer Instructions, because branches and jumps require multiple clock cycles.
Formally verifying RV32IRVC Load and Store Instructions is the most difficult part,
because the load_store_unit is involved which increases the verification complexity.
Fully proven results can be reported for the above instruction sets with our
complexity control strategies. However, we failed to eliminate the undetermined
results of RV32M Instructions because of the MULTDIV module.

The MULTDIV module contains a multiplier and a divider. Formally verifying the
MULTDIV module is the most challenging part of this research. We tried to abstract the
MULTDIV module to reduce verification complexity. There are three parallel 17x17
multipliers in the MULTDIV module. The following is a property that models the
RV32M MUL instruction. A 32x32 multiplication is performed by the property to
calculate the theoretical multiplication result.

logic [63:0] mul_res;

assign mul_res =

$signed($signed(rs1_rdata) * $signed(rs2_rdata));

property p_RV32M_MUL;

rst_ni && RV32M_MUL |-> (rd_wdata == ((rd_addr == ‘x0)

? ’0 : mul_res [31:0])) && (pc_wdata == pc_rdata +4);

endproperty

The three multipliers in the MULTDIV cannot be simply black-boxed, because with
black-boxing FPV can ignore the real multiplication process and try to construct a
multiplication result that violates corresponding RV32M properties. For example, if
both operands of a MUL are 0, the theoretical result should be 0. During model
checking, FPV ignores the multiplication process and derives the result as 2. Hence a
counterexample is reported. This result is meaningless because we cannot find any
crucial SEUs from the counterexample.

What is worse, we found that FPV black-boxed all multipliers, even in the RM32M
architectural properties. In other words, the ∗ operator in the third line of the above
example is also black-boxed. We could not correctly model the MULTIDV, so we could
not get correct theoretical multiplication/division results. As a result, we failed to
apply black-boxing to fully prove the RV32M properties in the presence of SEUs. On
the other hand, this chapter aims to demonstrate our method. One key point of our
research is to construct and formulate different properties which reveal SEUs that lead
to failures such as SDCs, crashes and hangs. Completely verifying multipliers and
dividers with formal verification is not the objective of our research. As a result, we
did not solve undetermined results with RV32M instructions.

Apart from hardware, one notable finding is that an inappropriate sequence of
instructions (misaligned instructions) can lead to system failures. For example, the

104 Chapter 3. Formal Method to Analyse SEUs

jump address of branch instructions must be aligned by four. Otherwise, the Ibex core
will try to align the instruction stored in the jump address by reversing the upper 16
bits with the lower 16 bits. In some cases, reversed instructions are illegal, causing
illegal insn exceptions even without any faults. Similar problems exist in other
properties, such as the for-loop example in the last section. This kind of problem
should never arise with a good compiler. In addition, in the presence of SEUs, the
RV32I instructions are more reliable than the RVC instructions, hence it is better not to
implement RVC instructions in safety-critical designs.

Faults in one bit may cause multiple types of errors. The more types of errors a fault
may cause, the more vulnerable the bit is. Thus the reliability of all bits can be ranked.
In general, most of the bits in the Ibex Core are vulnerable to SDCs, and the second
pipeline stage is more vulnerable to SDCs than the first pipeline stage. As a result,
protecting the bits in the second pipeline stage could be a cost-efficient way to
mitigate SDCs. On the other hand, registers that store instructions and PC are the
most vulnerable structures. Protecting the FIFO and PC is the most important task in
safety-critical designs.

There are differences between the proposed method and the reviewed works in
Chapter 2. The first difference is that we do not need to specify the activation
condition for each fault. Jayakumar manually models state conditions that indicate an
error or a system failure as assumptions and uses model checking to identify fault
activation conditions [1]. Then he uses these conditions to activate faults to verify
safety properties. It is difficult to manually model such assumptions. In addition,
Jayakumar’s work is verifying injected faults with safety properties. Our proposed
work is different. We assume a fault could occur in each bit at each time. We model
properties according to fault effects and use model checking to find counterexamples
indicating faults causing system failures. It is unnecessary to specify fault activation
conditions since once a counterexample is found, the corresponding activation
condition is reported by the formal tool.

The second difference is that our properties are general to all RISC-V processors.
Other works are either application-specific [1] or software-specific [140]. In other
words, our method can be used to evaluate hardware reliability in other RISC-V
designs.

The third difference is that our method is friendly to hardware designers and verifiers.
Samadi’s method involves creating a library to transform the DUT to FT models [121].
It is hard to create such a library. In our method, the DUT is at the RTL level, which is
general in hardware design.

The fourth difference is that we developed input assumptions/constraints to avoid
false negatives. Most works leave inputs to DUT unconstrained. We found that
unconstrained inputs may lead to false negatives: failure may arise with

3.10. Conclusion 105

unconstrained inputs and no faults. The details are in Section 3.4. The false negative
may decrease the result accuracy. As a result, we developed a set of assumptions to
constrain inputs to avoid false negatives.

The last and most important difference is that we identified and categorized faults
according to fault effects. Other formal works just classify faults into two groups:
crucial faults and safe faults. Our method can find both. In addition, our method can
further categorize faults according to fault effects. Our developed properties can
reveal faults that lead to different failures. Our method can find all faults causing
nothing, and faults causing SDCs, crashes and hangs.

It is theoretically possible but practically impossible to use simulations to explore all
SEUs. However, we have successfully explored all SEUs using our formal method. It
might be argued that technologies, such as random fault injection and fault pruning,
and high-performance computing hardware can be applied to speed up simulation.
We argue that with the same time and computing hardware, formal methods can
explore and identify more crucial faults than simulation-based approaches. In
addition, our method is more exhaustive than simulation. It is hard to cover all the
state space with simulation, as stimuli must be chosen carefully to reach corner states.
The results of simulation-based fault injection are program-dependent. To get fair
results, more programs are needed, needing more time and effort. On the other hand,
our method is program-independent and can explore all the state space. It is hard and
tedious to use simulation to find all faults that can cause a given error. Our method
can identify all crucial faults for a given error, which meets the objective of this
research.

There is one limitation to the current work. Architectural properties cannot cover all
bit locations in the Ibex Core. Though we used strobe properties to complement the
fault coverage of architectural properties, strobe properties can report the scenario ’the
faulty core produces correct results but takes more clock cycles than the golden core’
as SDCs, which is a false negative.

3.10 Conclusion

One major concern of embedded systems is Single Event Upsets. Single Event Upsets,
also called soft errors, can cause system failures or can have no effect. This chapter
proposes a formal method that covers the whole state space and the whole fault list
and performs formal fault analysis to identify and classify crucial SEUs that lead to
SDCs, crashes and hangs. The main contribution of this work is not using formal
verification to perform fault analysis, but developing formal properties to identify
faults that lead to SDCs, crashes and hangs. We demonstrate the method on a RISC-V
Ibex Core. The results show that both the hardware (bits/registers/modules)

106 Chapter 3. Formal Method to Analyse SEUs

reliability and the software (instructions) reliability can be evaluated. Compared to
simulation-based fault injection, the advantages of this method are exhaustive search
and short runtime. Due to the advantages, we will expand the method to evaluate
fault-tolerant technologies and Double Event Upsets in the next two Chapters.

107

Chapter 4

Evaluating Fault Tolerant
Technologies

In Chapter 3 we developed properties for revealing faults that lead to failures (SDCs,
crashes and hangs), and applied our formal method to evaluate the hardware
reliability of a RISC-V Ibex Core in the presence of SEUs. We used that method to
identify vulnerable bits to SEUs. We found some bits are more vulnerable than others,
and some faults are more critical (may cause more serious failures) than others. This
chapter extends the previous work to evaluate fault-tolerant technologies.

Fault-tolerant technologies can be used to enhance hardware reliability against soft
errors. Different fault-tolerant technologies have different fault detection and
protection effectiveness and different overheads. It is more cost-effective to protect the
most vulnerable structures with the most effective (but the most expensive)
technology, and less vulnerable structures with less effective (and cheaper)
technologies, and leave reliable structures untouched. We aim to extend our formal
method in Chapter 3 to find all SEUs that might cause errors/system failures under
the protection of fault-tolerant technologies. The identified SEUs can be used to
evaluate the detection effectiveness of the implemented fault-tolerant technologies.
The evaluation results help to determine cost-efficient fault-tolerant technologies.

In Section 3.7 we applied our method to evaluate two well-known fault-tolerant
technologies: Triple Modular Redundancy (TMR) and Shadow Registers (SR). The
results were used to validate our method. In this chapter, we demonstrate how to
apply our method to evaluate the effectiveness of residue arithmetic. Compared to
simulation-based methods, our method can test all faults and cover all the state space
in a reasonable time and is independent of testbenches. A script is used to
automatically carry out the entire experiment process. The developed method is
compatible with other RISC-V processors, because the developed method contains all
the formal properties and constraints compatible with verifying other RISC-V

108 Chapter 4. Evaluating Fault Tolerant Technologies

processors. In addition, the proposed method is easy to use, and users require no
formal knowledge. The only alteration needed to adapt the method to other designs is
to map signal names.

4.1 Method Overview

The basic idea of the method in this chapter is extending the formal method in
Chapter 3 to identify: 1) all hardware structures (bits, registers and modules) where
injected faults (whether safe or crucial) can be detected by the implemented
fault-tolerant technologies; and 2) all crucial faults that can lead to failures (SDCs,
crashes and hangs) even in the presence of fault-tolerant technologies. The extended
method that evaluates the effectiveness of fault-tolerant technologies in this chapter
can be divided into five steps, as shown in the following:

1. Implement a fault-tolerant technology into the Ibex Core.

2. Implement a fault injection mechanism.

3. Develop formal properties that can evaluate raw and crucial fault detection
effectiveness of the implemented fault-tolerant technology.

4. Develop complexity control strategies to improve proof performance.

5. Perform model checking to evaluate the implemented fault-tolerant technology
in the presence of SEUs.

The first step is to implement residue arithmetic into the Ibex Core. The details of
residue arithmetic, including its principle and how it is implemented into the Ibex
Core will be provided in Section 4.2.

The second step is to implement the fault injection mechanism described in Section 3.2
into the Ibex Core. Residue arithmetic adds extra residue bits into the Ibex Core.
Faults in the extra residue bits are also considered. Hence, the fault injection
mechanism is slightly modified so that faults can be injected into both the original bit
locations and the extra residue bit locations. Since the modification is simple, the
details of the fault injection mechanism will not be repeated in this chapter.

The third step is to develop formal properties to reveal all faults that can be detected
by fault-tolerant technologies. The detected faults may or may not cause failures. The
properties in Section 3.3 are then modified to identify faults that lead to SDCs, crashes
and hangs. The details of the new developed properties and the modified properties
will be given in Section 4.3.

4.2. Residue Arithmetic 109

In the fourth step the same complexity control strategies in Section 3.4 are used in this
Chapter.

The final step is to perform model checking. The experimental strategy and the formal
tool settings are slightly different from those in Section 3.5. The details will be given in
Section 4.4.

Similar to Chapter 3, the formal properties are written as SystemVerilog Assertions
(SVAs). Cadence JasperGold FPV is used to perform model checking. The Ibex Core is
chosen as the test platform. An SEU is chosen as the fault model. Proven,
Undetermined (Bounded Proven), and Failure are used to describe model checking
results.

4.2 Residue Arithmetic

Residue arithmetic detects single faults that may result in errors and system failures
caused by arithmetic computation errors. For example, a microprocessor executes an
addition operation: Sum = OP1 + OP2. In a residue number system, equation (4.1)
applies. m is a prime number no less than 3. % is the modulus operator.

Sum % m = (OP1 % m + OP2 % m) % m (4.1)

With the help of the above equation, the correctness of the sum results can be checked.
Besides addition, residue arithmetic can be applied to subtraction, multiplication, and
division. Hence, residue arithmetic can be implemented in hardware to detect
arithmetic errors.

Residue arithmetic itself can only detect faults; it cannot correct faults. Extra fault
correction technologies are required to correct the detected faults. We assume extra
fault correction technologies will be implemented after the analysis, hence all the
detected faults will be corrected. Such an assumption can be used to evaluate the
effectiveness of residue arithmetic, the details are in Section 4.3.

FIGURE 4.1: Block Diagram of Residue Arithmetic in Ibex

110 Chapter 4. Evaluating Fault Tolerant Technologies

Figure 4.1 shows the implementation of residue arithmetic in the Ibex Core. The
original ALU and MULTDIV perform normal 32-bit arithmetic operations. A residue
converter is added at the end to compute the residue of the normal result (LHS in
equation (4.1)). An extra ALU and MULTDIV are added to perform residue
calculation (RHS in equation (4.1)).

Inputs to the extra ALU and MULTDIV are residues rather than 32-bit integers. In
order to minimize hardware and computation overhead, converters that compute
input residues are not implemented before the extra ALU and MULTDIV. In other
words, input residues are not computed every time an arithmetic operation is
executed. Instead, we add extra residue bits to corresponding registers.

The residue of a number is less than its modulus. To minimize the hardware
overhead, the smallest possible modulus, 3, is chosen. As a result, two extra residue
bits would be added to each register in the Ibex Core. Other modulus are greater than
3 and will increase the number of extra residue bits.

After reset, all the residue bits are zero. The residue bits are computed by the residue
converter after the original ALU and MULTDIV. The extra ALU and MULTDIV
perform the following operation:

OP1 residue = OP1%m, OP2 residue = OP2%m.

If equal, Figure 4.1, the resulting residue will be stored in the residue bits in the
destination register. By doing so extra computations can be avoided.

Residue arithmetic adds extra residue bits. Faults in the extra residue bits are also
considered. A residue converter before the extra ALU and MULTDIV cannot detect
faults in the operands due to topology. For example, the correct operation in the
original ALU and the converter is

(5 + 3)%3 = 2;

The correct operation in the extra ALU is

(5%3 + 3%3)%3 = 2.

If a fault occurs in the Least Significant Bit in the first operand, the first operand 5
becomes 4; the operation in the original ALU and the converter becomes:

(4 + 3)%3 = 1;

The operation in the residue ALU becomes

(4%3 + 3%3)%3 = 1.

The fault is hidden by the converter, so the fault can never be detected by residue
arithmetic.

4.2. Residue Arithmetic 111

Therefore, we implement residue bits to all registers that can directly affect the
arithmetic operations through the Ibex Core. We perform backward tracing of these
registers. Both COI analysis and static slicing [54] approaches are involved in this
process. Details of COI analysis and static slicing are in Section 3.5.1 and Appendix G.
Only registers in the Register File are added with residue bits. We will explain the
reasons in the following paragraphs.

Residue arithmetic focuses on comparing residues of arithmetic operations, as shown
in Figure 4.1. To reduce computation efforts, the residues are stored in the
corresponding registers, so that it is unnecessary to compute residues of
ALU/MULTDIV inputs frequently. To reduce the hardware overhead, the extra
residue bits are only added to source registers storing input data to ALU/MULTDIV
and destination registers storing output data from ALU/MULTDIV. In other words,
adding extra residue bits to the Register File is enough to cover all residues involved
in Figure 4.1.

It might be argued that faults in other structures, such as the control path, may alter
arithmetic operations. For example, a fault in the register storing the fetched
instruction (such as the rdata_q in the FIFO) may change an addition operation to
others, hence causing an incorrect arithmetic result. However, though such a fault
may lead to errors or system failures, this fault cannot be detected by residue
arithmetic. As shown in Figure 4.1, residue arithmetic cannot validate whether the
operator is correct or not. We have discussed such faults in Chapter 3. In addition,
investigating this argument, such as the impacts of faults outside the data path, is an
objective of the experiment. Results will be given in Section 4.5.

In addition, it might be argued that registers in ALU/MULTDIV are directly involved
in arithmetic operation, hence it is necessary to add residue bits to enhance them. The
ALU in the Ibex Core is purely combinational logic and there are no registers inside it.
Only registers in the Register File can directly affect the ALU arithmetic results. For
example, source registers storing OP1 and OP2 in Figure 4.1. Sometimes, OP2 can be
an immediate value extracted from the instruction. The extraction process is also
purely combinational logic in the Ibex Core. The residue of the immediate value can
be computed by adding an extra residue converter. However, faults in the instruction
corrupting the immediate value cannot be detected by residue arithmetic, because the
(faulty) immediate value is directly fed into the extra residue converter. Extending
instructions with extra residue bits may solve the problem. However, extending the
instruction size requires adding extra residue bits to almost all registers in the Ibex
Core, which is too expensive. As a result, residue bits are only added to the Register
File.

The MULTDIV module in the Ibex Core is a state machine to perform multiplication
and division. As stated in the Ibex Reference Guide, a Fast Multi-Cycle Multiplier is

112 Chapter 4. Evaluating Fault Tolerant Technologies

FIGURE 4.2: Block Diagram of MAC

implemented, because it provides a reasonable trade-off between area and
performance, and it is the first choice for ASIC synthesis [26]. The multiplier
completes multiplication in three to four clock cycles: a MUL instruction takes three
clock cycles, and a MULH instruction takes four clock cycles. The
Multiply-accumulate (MAC) operation is implemented in the multiplier. A basic
MAC architecture consists of the formation of partial products and an accumulative
addition [141]. As shown in Figure 4.2, a typical n-bit MAC unit contains an n-bit
multiplier, a 2n-bit adder, and a 2n-bit accumulator. ALU is used to perform addition.
In the Ibex Core, in order to reduce the size of the MAC, the multiplier divides a 32-bit
number into two 16-bit numbers and adds a sign-extension bit to each. As a result, the
MAC is capable of a 17-bit x 17-bit multiplication with a 34-bit accumulator. However,
the MAC is still implemented with the ∗ and + operators. As discussed in Section 3.9,
we cannot black box multipliers to reduce the verification complexity.

Though there are registers in the MAC, it is unnecessary to add residue bits to them.
Adding residue bits to the MAC registers brings another residue operation (an extra
MAC, a converter, and a comparator), which is expensive. In addition, if a fault is
injected into the MAC registers and causes a wrong result, the existing residue
arithmetic in Figure 4.1 can detect it. As a result, it is unnecessary to add residue bits
to the registers inside the MULTDIV. Since the extra MULTDIV performs
multiplication on two-bit residues, and in order to make it simple, we choose to
implement the extra MULTDIV without a MAC, as shown in Appendix H.

4.3. Formal Properties 113

4.3 Formal Properties

Developing appropriate formal properties is important in formal verification. Based
on the basic method idea in Section 5.1, we developed two groups of formal
properties. The first group is named Raw Fault Detection properties, which aim to
identify all injected faults that can be detected by the implemented fault-tolerant
technologies. The second group, which is named Crucial Fault Detection properties, is
a modified version of the properties in Section 3.3. Crucial Fault Detection properties
identify faults that can lead to failures (SDCs, crashes and hangs) even in the presence
of fault-tolerant technologies. The first group evaluates the raw fault detection
effectiveness. The second group evaluates the crucial fault detection effectiveness. In
the following section, we first introduce the first group of properties, and then we
introduce the second group of properties.

4.3.1 Raw Fault Detection

Two extra modules, an ALU and a MULTDIV, are added for residue arithmetic. Each
module has a unique error indication signal. If a single fault is injected, causing
different residue results between the original and the extra ALU, the ALU error
indication signal will be set by the comparator in Figure 4.1. This is the same as
MULTDIV. As a result, two raw fault detection properties are developed to monitor
the two error indication signals, as shown in the following.

property p_alu_ra_error;

!alu_ra_error;

endproperty

property p_mul_ra_error;

!mul_ra_error;

endproperty

The first property p_alu_ra_error specifies that the ALU error indication signal
alu_ra_error should never be set. An assertion failure means an injected fault has
been detected by the residue arithmetic protecting the ALU. Similarly, the second
property p_mul_ra_error checks whether an injected fault can be detected by residue
arithmetic in the MULTDIV, by monitoring the MULTDIV error indication signal
mul_ra_error.

The above two properties are used to evaluate the raw fault detection effectiveness of
residue arithmetic. For example, if faults in all bit locations in the Ibex Core could
violate the first property assertion, which means faults in all bits could be detected by

114 Chapter 4. Evaluating Fault Tolerant Technologies

the ALU residue arithmetic, then 100% raw fault detection efficiency is achieved by
the ALU residue arithmetic. This is the same as the MULTDIV residue arithmetic. On
the other hand, If both assertions were proven independent of fault attributes, then
the implemented residue arithmetic cannot detect any faults in the Ibex Core.

4.3.2 Crucial Fault Detection

In this subsection, all the properties are modified from the properties in Section 3.3.
We use the modified properties to reveal faults that can be detected and lead to SDCs,
crashes and hangs. In the following, we only introduce how to modify these
properties, and how to use them to evaluate crucial fault detection effectiveness.

4.3.2.1 SDC

We choose ISA-independent strobe properties to identify faults that can cause SDCs in
the protection of residue arithmetic. One main reason for using strobe properties
instead of architectural properties is that strobe properties can cover the Register File,
where extra residue bits are added. Detailed comparisons of strobe properties and
architectural properties including fault coverage have been given in Chapter 3. Strobe
properties duplicate the Ibex Core. Different from the last chapter, both cores are
protected by residue arithmetic. Another difference is that the two error indication
signals alu_ra_error and mul_ra_error are added to strobe properties as
antecedents respectively. The following are two SDC assertion examples modified
from Section 3.3.

a_rd_wdata_alu: assert property (

golden_valid && faulty_valid && alu_ra_error|->

faulty_rd_wdata == golden_rd_wdata);

a_rd_wdata_multdiv: assert property (

golden_valid && faulty_valid && mul_ra_error|->

faulty_rd_wdata == golden_rd_wdata);

The above two assertions specify that if both retired instructions from the two cores
are valid RM32IMC instructions (golden_rvfi_valid and faulty_rvfi_valid set at
the same time), and the residue arithmetic implemented in the ALU/MULTDIV
detects a fault respectively (alu_ra_error set or mul_ra_error set), then the write
data to the register file from the two cores (golden_rd_wdata and faulty_rd_wdata)
should be the same.

Failure of the first assertion reveals a fault that has been detected by the residue
arithmetic in ALU can corrupt write data to the register file, hence causing an SDC.

4.3. Formal Properties 115

This is similar to the second assertion except in MULTDIV. If the above assertions
were proven, all faults that can be detected by the residue arithmetic in
ALU/MULTDIV bits cannot cause failures. We have found all crucial SEUs in the Ibex
Core without any fault-tolerant technologies in Section 3.8. By comparing both results,
crucial SEUs that cannot be detected and mitigated by the residue arithmetic in
ALU/MULTDIV can be found. Hence the crucial fault detection effectiveness can be
calculated. Details will be given in Section 4.5.

4.3.2.2 Crash

Similar to modifying the SDC properties as above, we modified the crash properties in
Section 3.3 to evaluate residue arithmetic. Error indication signals are added as
antecedents. The following are two examples of modified crash properties.

a_store_access_fault_alu:

assert property (

(crash_priv_mode ==2’b11) && alu_ra_error |->

(crash_mcause_q !=6’d7));

a_store_access_fault_multdiv:

assert property (

(crash_priv_mode ==2’b11) && mul_ra_error |->

(crash_mcause_q !=6’d7));

The first assertion a store access f ault alu specifies that, when the core is operating in
the machine mode, crash_priv_mode==2’b11, if a fault has been detected by the
residue arithmetic in ALU, the error indication signal alu_ra_error is set to logic
high, then the detected fault should never cause a store access fault crash, with
exception code 7 in the CSR register mcause. If the first assertion fails, a crucial fault
that can result in a (store access fault) crash and can be detected by the residue
arithmetic in ALU has been identified. We assume extra fault correction technologies
will be implemented to correct all the detected crucial faults after the analysis. Hence
all the detected and crucial SEUs identified from the assertion failures will be
corrected. If the first assertion was proven without a vacuous pass (the current
privilege mode is the machine mode and the ALU residue arithmetic can detect
injected faults), then all the detected faults can cause no crash. The second assertion
a store access f ault multdiv is similar except the error indication signal mul_ra_error
is from the residue arithmetic in MULTDIV.

116 Chapter 4. Evaluating Fault Tolerant Technologies

4.3.2.3 Hang

In order to avoid hard-to-solve problems such as liveness properties and state
explosion, only the case where ’the core is sleeping and waiting for a new instruction’
is modelled as a formal property. The following are the corresponding assertions of
the residue arithmetic in ALU and MULTDIV respectively. The error indication
signals are added as antecedents separately.

a_hang_alu:

assert property (

valid && !halt && alu_ra_error |->

(insn != 32’ h10500073));

a_hang_multdiv:

assert property (

valid && !halt && mul_ra_error |->

(insn != 32’ h10500073));

The above two assertions are similar. The only difference is the source of the error
indication signal. The above assertions specify that any detected faults by the residue
arithmetic in ALU/MULTDIV should never cause hangs. Signals (except the error
indication signals) involved in the above two assertions have been explained in
Section 3.3.

If the first assertion fails, a detected crucial fault by the ALU residue arithmetic that
can result in a hang has been identified. We assume after the analysis, extra fault
correction technologies will be implemented to prevent detected crucial faults from
propagating and, hence cannot cause hangs. In other words, the identified crucial
faults can be mitigated by the ALU residue arithmetic. If the first assertion was
proven without a vacuous pass, then all the detected faults in the ALU residue
arithmetic cannot cause hangs.

4.4 Model Checking

We perform model checking with the above properties to analyse faults. If an
assertion fails, a CEX (including the fault location and time) will be given, thus the
fault can be extracted from the CEX. In this section, we first introduce our
experimental strategy, and then we provide the formal tool settings.

4.4. Model Checking 117

4.4.1 Experimental Strategy

We first perform the experimental strategy in subsection 3.5.1 (without any changes)
to prove the raw fault detection properties in subsection 4.3.1. This step reports all
detected faults, hence all detectable bit locations by the ALU residue arithmetic and
the MULTDIV residue arithmetic.

Then we modify the experimental strategy to prove the crucial fault detection
properties in subsection 4.3.2. In step a) in subsection 3.5.1 the SEU is no longer
arbitrary in the whole fault space; only faults in the detectable bit locations are
explored. It is meaningless to explore faults in undetectable bit locations, as error
indication signals will not set, and proving the crucial fault detection properties in
subsection 4.3.2 can only report vacuous pass. Removing undetectable bit locations
from the fault space greatly reduces the time and effort for fault analysis. The other
steps of the experimental strategy are the same as those in subsection 3.5.1, hence they
are not repeated in this subsection.

4.4.2 Configurations of Cadence JasperGold

In general, the tool settings are the same as the previous settings in subsection 3.5.2.
The proof time was limited to five hours because, in the last chapter, we found some
cases took up to five hours to be fully proved. We did not limit the proof trace. We
enabled ProofMaster to improve proof performance. We set the number of max jobs
per model checking run to 10 in case of security and ran two FPVs in parallel. One
thread was assigned to each engine because each core in the server only has one
thread.

The same engine modes in subsection 3.5.2 are used to prove the properties in Section
4.3. The detailed engines are shown in Table 4.1. The second and the third columns
represent the residue arithmetic in the ALU and the MULTDIV respectively. The
second and third rows list the engines that falsified and fully proved the raw fault
detection properties in subsection 4.3.1. Similarly, the last two rows list the engines
used to find counterexamples and prove the crucial fault detection properties in
subsection 4.3.2.

TABLE 4.1: Engines used to prove properties in Section 4.3

ALU RA MULTDIV RA
Raw CEX Hts Hts AD

Raw Proven Hps Hps...AM
Crucial CEX Hts Hts AD

Crucial Proven Hps Hps...AM

118 Chapter 4. Evaluating Fault Tolerant Technologies

It was easiest to disprove and prove the ALU residue arithmetic with the raw fault
detection properties, as Hts and Hps can solve all the problems. It was harder to fully
prove the ALU residue arithmetic with the crucial fault detection properties, and case
splitting was used to improve the performance of Hps. Nevertheless, the ALU residue
arithmetic can be fully proved with our complexity control strategies.

On the other hand, we could not fully prove the MULTDIV residue arithmetic,
because of the multiplier and the divider in the MULTDIV, as discussed in Chapter 3.
We used Hts and AD with case splitting to find counterexamples of raw and crucial
fault detection properties with the MULTDIV residue arithmetic. We tried different
engines such as Hps, N, R and AM but only got undetermined results after five hours.

4.5 Results

There are three outcomes from model checking. ‘Failure’ means the assertion fails, i.e.
the detected fault can cause a system failure modelled by the assertion. ‘Proven’
means the assertion is fully proven; all the detected faults cannot cause system
failures. ‘Undetermined’ means that due to time limit or state explosion, it is too
difficult to prove or disprove the assertion, so ‘Bounded Proven’ is reported. In this
chapter, all the undetermined results are reported from proving raw and crucial fault
detection properties with the MULTDIV residue arithmetic. In other words, the ALU
residue arithmetic is fully proved.

We applied the same complexity control strategies in Section 3.4, such as constraining
the input instructions as aligned and valid RV32IMC instructions. However, we
removed the RV32M instructions from the input assumptions when we evaluated the
residue arithmetic enhanced (RAE) ALU. The MULTDIV is used to perform
multiplications and divisions. ALU is used by the MULTDIV for accumulations.
However, during experiments, we found that evaluating the RAE ALU with RV32M
instructions took a long time and sometimes the properties could not be fully proved,
because the MULTDIV is involved by RV32M instructions. Hence we excluded the
RV32M instructions from the input space only when evaluating the RAE ALU. The
verification complexity was greatly reduced without computing the MULTDIV. This is
why there are no undetermined results for the RAE ALU. On the other hand, we
included the RV32M instructions to evaluate the RAE MULTDIV, otherwise the
MULTDIV could not be triggered. It only took minutes to disprove each property of
the ALU residue arithmetic. 90% properties of the ALU residue arithmetic can be fully
proved within one hour, and the remaining properties took up to five hours. It also
took minutes to disprove the MULTIDIV residue arithmetic, but the MULTIDIV could
not be fully proved.

4.5. Results 119

Some fault-tolerant technologies, such as residue arithmetic, can only detect SEUs in
certain bit locations. We call the number of detectable bit locations to the number of
total bit locations the raw detection effectiveness. The faults injected in the detectable
bit locations and can be detected are detected faults. Not each detected fault can cause
failures. Detected crucial faults are the detected faults that cause failures. Detected
crucial faults can be corrected by other technologies such as software redundancy.

By proving the raw fault detection assertions in subsection 4.3.1, the detectable bit
locations can be obtained. The raw fault detection effectiveness of fault-tolerant
technologies can be calculated as:

DetectableBitLocations ÷ TotalBitLocations (4.2)

The number of total bit locations varies because fault-tolerant technologies add extra
bits to the Ibex Core.

By proving the crucial fault detection assertions, such as the modified strobe, crash,
and hang assertions in subsection 4.3.2, the detected crucial faults can be identified.
The crucial fault detection effectiveness of fault-tolerant technologies can be
calculated as:

DetectedCrucialFaults ÷ TotalCrucialFaults (4.3)

The total crucial faults (without any fault-tolerant technologies) have been identified
in Chapter 3.

In this section, we interpret the results in two aspects: raw fault detection and crucial
fault detection. We list vulnerable hardware structures where all crucial faults can be
detected by the RAE ALU and the RAE MULTDIV. All these structures (such as
registers and modules) have been explained in Chapter 3, hence we only introduce
them briefly in this section.

4.5.1 Raw Fault Detection

Two residue bits are added to each of the 32 registers in the Register File, though
register x0 is wired to zero. Residue arithmetic adds 64 residue bits, and associated
combinational logic to the Ibex Core. There are 2072 bits in the Ibex Core enhanced by
residue arithmetic.

As stated in subsection 4.2, we also explore faults in the extra residue bits. Table 4.2
shows the number of detectable bit locations by the ALU residue arithmetic (left part
of the table) and the MULTIDIV residue arithmetic (right part of the table). Faults in
the extra residue bits can also be detected.

120 Chapter 4. Evaluating Fault Tolerant Technologies

TABLE 4.2: Detectable Bits by Residue Arithmetic

Property Detectable Bits (ALU) Property Detectable Bits (MULTDIV)
SDC 1090 SDC 1132

Crash 1090 Crash 1132
Hang 1090 Hang 1132

Although three different groups of properties are used, in theory, the same residue
arithmetic should be able to detect faults in the same bit locations because the
detectable bit locations only depend on the implementation of residue arithmetic and
the micro-architecture of the Ibex Core. In addition, formal verification is able to
explore all the state space to find all the detectable bit locations. The principle applies
to all the rows in Table 4.2. The RAE ALU can always detect faults in 1090 bit
locations, and the RAE MULTDIV can always detect faults in 1132 bit locations, no
matter the properties.

The RAE ALU and RAE MULTDIV can detect faults occurring in about half of the
total bit locations in the Ibex Core. These detectable bits are more than bits in the
Register File. We found that some bit locations in the IF Stage, ID Stage, LSU and
MULTDIV (Figure 1.1) are also detectable. Table 4.3 shows the detectable registers in
each module. A ‘D’ in the last two columns represents faults in the corresponding
register that can be detected by the RAE ALU (ra_alu) and the RAE MULTDIV
(ra_mul). In some registers such as addr_last_q, mult_state_q and rf_reg_q, faults
in all bits can be detected. However, not all bits in the other listed registers are
detectable. Most of these registers are in the second pipeline stage. Faults in both the
control path (such as controller) and data path (such as RegFile) can be detected.

TABLE 4.3: Detectable Registers By Residue Arithmetic

Module Register ra alu ra mul
controller ctrl fsm cs D
id stage imd val q D
if stage instr rdata id o D D

instr rdata alu id o D
load store unit addr last q D

ls fsm cs D D
MULTDIV md state q D

mult state q D
RegFile rf reg q D D

4.5.2 Crucial Fault Detection

Table 4.4 shows the model checking results of exploring fault effects with the RAE
ALU in the Ibex Core. The first column named ‘Property’ lists the proved properties
which are also explored SEU effects. The second column named ‘Failure’ lists the

4.5. Results 121

TABLE 4.4: Model Checking Results of Residue Arithmetic Enhanced ALU

Property Failure Proven
Instruction is done 993 97

Instruction 993 97
rs1 address 993 97
rs2 address 993 97
rd address 993 97

rs1 read data 993 97
rs2 read data 993 97
rd write data 993 97

current PC 993 97
next PC 993 97

memory address 993 97
memory read mask 993 97
memory read data 993 97

memory write mask 993 97
memory write data 993 97

Insn access fault 0 1090
Illegal insn 0 1090
breakpoint 0 1090

load access fault 0 1090
store access fault 0 1090

ECall MMode 0 1090
Hang 0 1090

number of detected crucial faults. The last column named ‘Proven’ lists the number of
detected safe faults. There are three blocks in Table 4.4 representing the results of
strobe, crash and hang properties respectively. As mentioned before, we use strobe
properties because they can cover faults in more structures such as the faults in the
Register File.

Note that the sum of each row in Table 4.4 is 1090, because only faults in the 1090
detectable bit locations were explored. Exploring faults in undetectable bit locations
cannot raise the error indication signal alu_ra_error, hence all the crucial fault
detection properties in subsection 4.3.2 can only report meaningless vacuous pass
results.

TABLE 4.5: Vulnerable structures detected by Residue Arithmetic Enhanced ALU

Failure Register Module
SDC ls fsm cs load store unit
SDC rf reg q RegFile

Table 4.4 shows that the RAE ALU is good at detecting crucial faults that may lead to
SDCs, but the RAE ALU cannot detect any faults that may lead to crashes or hangs.
All the SDC crucial faults that can be detected by the RAE ALU are in the ls_fsm_cs

122 Chapter 4. Evaluating Fault Tolerant Technologies

register in the load_store_unit module and the rf_reg_q register in the RegFile

module, as shown in Table 4.5.

992 of the above detected crucial faults are in the Register File because there are 32
registers in the Registers File but the register x0 is wired to 0. All the faults, which
may cause SDCs, encountered in the Register File can be detected by the RAE ALU.
Another fault is in bit 862 in the ls_fsm_cs that stores the current state in the
ibex_load_store_unit module. This module outputs the last transaction address,
which determines OP1 to the ALU when operand forwarding is executed. Operand
forwarding is a technique to avoid data hazards. For example, there are two
consecutive instructions. The destination register in the first instruction is the source
register in the second instruction. The pipeline must be stalled when executing the
second instruction because the result of the first instruction has not been stored in the
Register File at the current clock cycle. Operand forwarding allows the processor to
bypass the stall by forwarding the result of the first instruction to the second
instruction. A fault in the register ls_fsm_cs may stall the whole pipeline and
produce the wrong last transaction address, hence wrong OP1 to the ALU when
operand forwarding is executed. As a result, this fault is also a detected crucial fault
by the RAE ALU.

TABLE 4.6: Model Checking Results of Residue Arithmetic Enhanced MULTDIV

Property Failure Undetermined Proven
Instruction is done 1028 104 0

Instruction 1050 82 0
rs1 address 1026 106 0
rs2 address 1014 118 0
rd address 1022 110 0

rs1 read data 1023 109 0
rs2 read data 1020 112 0
rd write data 1047 85 0

current PC 1025 107 0
next PC 1026 106 0

memory address 1027 105 0
memory read mask 1007 125 0
memory read data 1001 131 0

memory write mask 984 148 0
memory write data 1026 106 0

Insn access fault 0 1119 13
Illegal insn 12 1119 1
breakpoint 0 1132 0

load access fault 0 1120 12
store access fault 0 1116 16

ECall MMode 0 1127 5
Hang 0 1129 3

4.5. Results 123

Table 4.6 shows the model checking results of exploring fault effects with the RAE
MULTIDV in the Ibex Core. The first column named ‘Property’ lists the proven
assertions which are also explored SEU effects. The second column named ‘Failure’
lists the number of detected crucial faults. The third column named ‘Undetermined’
lists the number of undetermined results. The last column named ‘Proven’ lists the
number of detected safe faults. There is a large number of undetermined results in
Table 4.6 because we could not fully verify the multiplier and the divider in the
MULTDIV when executing the RV32M instructions. The sum of each row in Table 4.6
is 1132, because only faults in the 1132 detectable bit locations were explored.

TABLE 4.7: Vulnerable structures detected by Residue Arithmetic Enhanced MULT-
DIV

Failure Register Module
SDC imd val q id stage
SDC instr rdata id o if stage
SDC instr rdata alu id o if stage
SDC ls fsm cs load store unit
SDC md state q MULTDIV
SDC mult state q MULTDIV
SDC rf reg q RegFile

Crash instr rdata id o if stage

On the other hand, the number of detected crucial faults that violate different SDC
assertions in Table 4.6 are not all the same. Most of the detected crucial faults are in
the Register File. Register imd_val_q in id_stage module contains the second most
detected crucial fault. This register is an intermediate register for multiplications. It
stores intermediate values during the MAC operations. A fault in this register can
cause a wrong multiplication result. The RAE MULTDIV can also detect faults in
some other registers, as shown in Table 4.7. For example, instr_rdata_id_o and
instr_rdata_alu_id_o in if_stage module, ls_fsm_cs in load_store_unit module;
md_state_q and mult_state_q in MULTDIV module. Both registers instr_rdata_id_o
and instr_rdata_alu_id_o store the same instruction to id_stage module, the latter
is a copy of the former to reduce fan-out. Both two registers are decoded to determine
such as the ALU/MULTDIV control logic signals and associated operands. These
detected crucial faults are not only in the data path but also in the control path. The
register ls_fsm_cs has been explained before. md_state_q determines the state
machine of division, mult_state_q is the state machine of multiplication. Faults in
these two registers can lead to wrong division or multiplication results.

In Table 4.4, all the detected faults cannot cause any crashes or hangs. In other words,
no detected crucial faults that may lead to crashes or hangs are found. In Table 4.6,
only 50 faults that cannot cause any crashes or hangs, and 12 detected crucial faults
that may lead to crashes are found; the rest are undetermined results. The detected
crucial faults are in the register instr_rdata_id_o (the same register in the last

124 Chapter 4. Evaluating Fault Tolerant Technologies

paragraph). This proves that a fault in the control path can cause an arithmetic
(multiplication or division) error and hence cause a crash.

By comparing the above results with the raw crucial faults (without any fault-tolerant
technologies) in Section 3.8, we can find which crucial faults can be detected by
residue arithmetic and which cannot be detected. For instance, in subsection 3.8.1.1
there are 1418 crucial faults that may corrupt the write data to DMEM,
memory_write_data. The RAE ALU can detect 993 of them, and the RAE MULTDIV
can detect 1026 of them.

After comparison, more than half of the crucial faults causing SDCs in Section 3.8 are
identified in this subsection, hence detected by the residue arithmetic. However, faults
in the most vulnerable structures discussed in Chapter 3, such as faults in the FIFO

and the PC, cannot be detected by the implemented residue arithmetic.

On the contrary, only 12 crucial faults causing crashes are identified, and no crucial
faults causing hangs are detected by the residue arithmetic. In addition, no faults in
the extra residue bits can cause SDCs, crashes or hangs, because the extra residue bits
are not consumed in the Ibex Core except by the residue arithmetic itself. In other
words, faults in the extra residue bits cannot affect the functionality of the Ibex Core.

In summary, more than half of the bit locations in the Ibex Core are detectable by the
implemented residue arithmetic, but not every fault in the detectable bit locations
leads to failures. The implemented residue arithmetic cannot detect all crucial faults.
The implemented residue arithmetic is good at detecting crucial faults that cause
SDCs, but poor at detecting crucial faults that lead to crashes and hangs. The RAE
MULTDIV have more detectable bit locations than the RAE ALU, and the RAE
MULTDIV can detect more crucial faults than the RAE ALU.

4.6 Discussion and Conclusion

We proved strobe properties instead of performing SEC to identify faults that may
cause SDCs in the presence of fault-tolerant technologies. The idea of strobe
properties is similar to SEC. Both approaches insert ’strobes’ into important signals.
SEC compares strobes between the specification design (the golden design) and the
implementation design (the actual design under test). Strobe properties compare
strobes between the golden core and the faulty core. We did not choose SEC, because
it is hard to control fault injection in the Cadence Jaspergold SEC App. In addition, the
SEC App has limited support for proving user-developed assertions. As a result, we
chose to perform model checking with strobe properties.

We evaluated the raw fault detection effectiveness and the crucial fault detection
effectiveness of residue arithmetic. Residue arithmetic cannot detect faults in all

4.6. Discussion and Conclusion 125

registers in the Ibex Core. However, faults in more than half the bit locations in the
Ibex Core can be detected by the residue arithmetic, which means the raw fault
detection effectiveness is more than 50%. In addition, more than half the crucial SEUs
that may lead to SDCs can be detected, which means the crucial fault detection
effectiveness is also more than 50%. Residue arithmetic brings little hardware
overhead. Residue arithmetic is good at detecting crucial SEUs that may cause SDCs,
but poor at detecting SEUs that may lead to crashes and hangs. With extra fault
correction technologies, the detected crucial SEUs can be protected. However, residue
arithmetic cannot cover the most vulnerable structures such as FIFO and the PC. We
also used the method to validate the framework in Section 3.7. The results are as
expected, proving our method can be used to evaluate fault-tolerant technologies.

Applying our method to other RISC-V cores does not require developing properties
and constraints again. The only modification is signal mapping. We also developed a
script to automate the whole process. No extra formal knowledge and design efforts
are needed. As a result, our method is easy-to-use.

One further application of this method is to use different technologies to protect
different bits or registers according to the rank of reliability. For example, use the most
expensive (and the most efficient) technology to protect the most vulnerable bits;
cheaper technology to protect less vulnerable bits; and no protection for safe bits.

There are limitations to the current work. For instance, a long model checking run
time and undetermined results, caused by state explosion and model checking
multipliers and dividers. However, this work aims to prove that our method can be
used to evaluate fault-tolerant technologies; conquering the challenge of formally
verifying multipliers and dividers is out of the scope of this research.

Single Event Upsets have been a major reliability concern in embedded systems.
ISO26262 suggests using simulation-based fault injection to improve safety and
reliability [34]. Simulation-based methods suffer from fault coverage and long
simulation time. To address the issue, we have proposed an analysis method that
utilizes formal verification (mainly model checking) to evaluate reliability and safety.
The proposed method can also evaluate the effectiveness of fault-tolerant
technologies. The proposed method is exhaustive and time-saving compared to
simulation-based fault injection. In addition, the proposed method is compatible with
other RISC-V microprocessors. Users only need to map signals. There is no need to
change the design or to develop formal properties and assumptions again. We
demonstrate the method on a well-known fault-tolerant techniques: residue
arithmetic. Residue arithmetic adds extra residue bits to the Register File. The results
are as expected, which proves that the method can accurately explore and categorize
all faults according to fault effects within a reasonable time. The experimental results
show that residue arithmetic can detect faults injected at more than half of the bit

126 Chapter 4. Evaluating Fault Tolerant Technologies

locations in the Ibex Core. However, not all faults in the detectable bits lead to
failures. Residue arithmetic can detect most of the crucial faults causing SDCs, a few
crucial faults leading to crashes, and no faults leading to hangs. Residue arithmetic
can detect crucial faults in both the control path and the data path, i.e., faults in both
paths can lead to SDCs. However, residue arithmetic cannot detect any faults in the
most vulnerable hardware structures such as the FIFO and the PC. As a result,
although residue arithmetic is a cost-efficient fault-tolerant technology, it is not
suitable to implement only residue arithmetic to enhance a safety-critical system. In
conclusion, the proposed method can successfully evaluate fault-tolerant
technologies, and would, in principle, be compatible with ISO26262.

127

Chapter 5

Double Event Upsets

In Chapter 3, the formal properties for revealing SEUs that lead to Silent Data
Corruptions (SDCs), crashes and hangs were formulated. We demonstrated our
formal method on a RISC-V Ibex Core. The whole state space was explored and all
SEUs that lead to failures were identified. However, that formal method is only for
SEUs. This Chapter aims to expand that formal method to Double Event Upsets
(DEUs).

We call SEUs that cause errors and system failures, such as SDCs, crashes and hangs,
crucial SEUs. We describe SEUs that have no effects as safe SEUs. Similarly, we define
crucial DEUs and safe DEUs. The outcomes of model checking have been explained in
Section 3.8. If the status of an assertion is ‘Proven’, faults in the corresponding bits
cannot cause errors that violate the property. The faults in the bits are therefore
deemed safe. If ‘Failure’, the faults in the corresponding bits may cause errors that
violate the property and are crucial faults.

There are three hypotheses in Section 1.6. We aim to prove the third hypothesis (DEUs
can aggravate SEUs) in this Chapter. We have the following objectives in this Chapter:

• To demonstrate that DEUs can aggravate SEUs.

• To identify all crucial DEUs that can cause SDCs, crashes, and hangs using
model checking.

• To decrease prohibitively large model checking time to an acceptable range. One
possible assumption is to exclude DEUs, that result from already-identified
crucial SEUs, from the fault list. For instance, if one fault in the DEUs is already
identified as a crucial SEU. Excluding this kind of DEU allows us to reduce the
size of the search space significantly.

• To assess the reliability of a RISC-V Ibex Core in the presence of DEUs.

128 Chapter 5. Double Event Upsets

In this chapter, we make the following assumptions. The details will be given in later
sections.

• We assume safe and crucial SEUs have been identified using the formal method
proposed in Chapter 3 before utilizing the method proposed in this chapter to
explore DEUs. The SEU results are used to prune the fault list of DEUs.

• We assume faults could occur in all bits equally. The details and reasons are in
Section 5.2.

• We assume crucial SEUs and hence vulnerable bit locations will be protected.
Thus, DEUs including crucial SEUs do not need further analysis and are
removed from the fault list.

• Similarly, we assume crucial DEUs and corresponding vulnerable bits will be
protected. Details and reasons are in Section 5.5.1.

5.1 Method Overview

The method in this chapter is extended from the method in Chapter 3. As a result, the
basic idea is similar: using model checking to report all DEUs that may violate the
developed property assertions.

The method to explore DEUs in this chapter can be divided into four steps, as shown
in the following:

1. Implement a fault injection mechanism into the Ibex Core.

2. Formalize errors and system failures, such as SDCs, crashes and hangs as formal
properties.

3. Develop various complexity control strategies to improve proof performance.

4. Perform model checking with a model checker to exhaustively identify and
classify DEUs.

The first step is to modify the fault injection mechanism described in Section 3.2 and
implement the modified version into the Ibex Core. The details of the modification
will be given in Section 5.2.

The second step is to develop formal properties in SVAs. We have developed formal
properties in Section 3.3, hence the details will not be repeated in this chapter. In
Section 5.3, we will explain which properties are chosen to explore DEUs with reasons.

5.2. Step 1: Fault Injection 129

In the third step, the complexity control strategies from Section 3.4 are modified to
explore DEUs. The details will be given in Section 5.4.

The final step is to perform model checking. Cadence JasperGold FPV is also chosen
as the model checker. The experimental strategy and the formal tool settings are
slightly different from those in Section 3.5. The details will be given in Section 5.5.

5.2 Step 1: Fault Injection

5.2.1 Fault Model

The last two chapters chose the SEU as the fault model, which has been introduced in
Section 3.2. In this chapter, DEUs, which include two SEUs, are chosen as the fault
model. Details of DEUs, such as three fault attributes (the location where a fault
occurs, the time when the fault occurs, and the period for which the fault exists,
Section 3.2), are similar to SEUs and hence not repeated.

We are working at the Register Transfer Level (RTL). The physical connection of bits is
not considered; all bits are treated equally. In other words, we assume faults could
occur in all bits equally. Another reason for ignoring the physical proximity is that we
are working at the early design stages where the actual layout is unavailable. In
addition, after identifying vulnerable bits using our method, designers can modify the
physical proximity accordingly. Moreover, we mainly aim to prove the idea of our
method. Ignoring the physical proximity helps to reduce complexity, which makes
our problem solvable.

A DEU consists of two SEUs. We categorize DEUs into three types based on timing
and location: two faults occurring in different bit locations and different times;
different bit locations and the same time; the same location and different times.

5.2.2 Fault Injection Mechanism

Section 3.2 has introduced the fault injection mechanism to inject single faults. That
fault injection mechanism is slightly modified so that it can inject DEUs. For example,
previously there were two fault control signals (fault injection time and injection
location) to control a single SEU. The fault control signals are doubled so that DEUs
can be controlled via primary inputs. In addition, extra combinational logic is added
so the two faults can be injected independently. The source code is shown at the
bottom of Appendix D.

130 Chapter 5. Double Event Upsets

In subsection 3.2.3 we developed two SVA assumptions to specify an arbitrary SEU.
Those SVA assumptions are modelled (by adding an extra pair of fault control signals)
to specify an arbitrary DEU, as shown in the following:

assume_FI_time1_stable:

assume property (@(posedge clk_i) $stable(FI_time1));

assume_FI_time2_stable:

assume property (@(posedge clk_i) $stable(FI_time2));

assume_FI_index1_stable:

assume property (@(posedge clk_i)

$stable(FI_index1)&&(FI_index1 <2008));

assume_FI_index2_stable:

assume property (@(posedge clk_i)

$stable(FI_index2)&&(FI_index2 <2008));

We categorized DEUs into three groups in the last subsection. As a result, extra
assumptions are developed to specify the equivalence of the two fault injection times
and locations. The following assumptions determine whether the two faults are
injected at the same time. This is the same as the fault locations, whose assumptions
are not shown to save space.

`ifdef SameTime

assume_FI_time_equal: //DEUs at the same clock cycle

assume property (@(posedge clk_i)

(FI_time1 == FI_time2));

`else

assume_FI_time_different: //DEUs at different clock cycles

assume property (@(posedge clk_i)

(FI_time1 != FI_time2));

`endif

5.3 Step 2: Formal Properties

In Section 3.3 we developed three groups of properties that cover SDCs, crashes and
hangs. Those properties are used without any modification in this chapter to explore
DEUs. There are two different groups of properties to explore SDCs: architectural
properties and strobe properties. Architectural properties are used to explore DEUs.
The first reason for choosing architectural properties is that strobe properties are not
suitable for exploring DEUs, because strobe properties significantly increase the
design size, leading to greater runtime overhead.

5.4. Step 3: Complexity Control Strategies 131

The second reason is that verifying at the architectural level allows abstracting and
neglecting unnecessary structures when proving an assertion. For example, neglecting
structures outside the COI of the assertion, and abstracting a counter. Abstracting
counters in formal verification is a useful technology to reduce the complexity and
large state space caused by counters. The formal tool can automatically perform
counter abstraction by either replacing the initial/reset value with an arbitrary value
so that the counter can start counting from an arbitrary value or only considering
critical counter values such as trigger values that may have an influence on the design.

The third reason is that although proving strobe properties reports a higher fault
coverage than proving architectural properties, all the SEUs in the structures (such as
the RegFile module) that cannot be covered by architectural properties are crucial
SEUs. We assume crucial SEUs and hence vulnerable bits will be protected. The
structures that cannot be covered by architectural properties are vulnerable and hence
do not need further analysis. DEUs including crucial SEUs in the vulnerable structures
do not need further analysis and are removed from the total fault space. As a result,
architectural properties are enough to explore the DEUs that include only safe SEUs.

5.4 Step 3: Complexity Control Strategies

We developed four complexity control strategies in Section 3.4. Most of the strategies
are used without modification to analyse DEUs, except the second and the fourth
strategies. To save space, we only introduce the modifications in this section.

5.4.1 Input Constraints

In Section 3.4.2, we developed assumptions of the input instructions to ensure that: 1)
only bit patterns corresponding to valid RV32IMC instructions are allowed; and 2)
only aligned RV32IMC instructions are allowed. However, we did not fully prove
architectural properties that formulate RV32M instructions, because fully verifying
multipliers and dividers using formal verification is a challenge and out of the scope
of this research. We did not find all safe SEUs with respect to RV32M instructions,
hence we cannot precisely prune the DEU list of RV32M instructions. In addition,
model checking the architectural RV32M properties in the presence of DEUs is even
more complex than SEUs. As a result, we exclude RV32M from the assumptions when
analysing DEUs. For example, if the instruction address from the Ibex Core is aligned
by 4, then input a valid RV32I instruction to the Ibex Core; otherwise, input a valid
RV32C instruction to the Ibex Core.

132 Chapter 5. Double Event Upsets

5.4.2 Handle Undetermined Results

In subsection 3.4.4 we introduced how to use case splitting to analyse undetermined
results. We divided the whole fault space into several sub fault lists at the module
level, register level and even bit level (Figure 3.8) to disprove or fully prove
undetermined results.

Given a design with n modules, the whole SEU space can be divided into n sub SEU
lists, hence only n extra model checking runs are required to explore undetermined
SEUs. However, there are two faults in a DEU, hence producing n2 sub DEU lists and
n2 extra model checking runs to explore undetermined DEUs. We developed a script
that contains a nested loop to explore each combination in the n2 sub DEU lists.

5.5 Step 4: Model Checking

The experimental strategy and the formal tool settings have been explained in Section
3.5. We only introduce the difference in this section.

5.5.1 Experimental Strategy

The strategy to explore DEUs can be briefly divided into the following steps:

For each assertion:

a) Start with an arbitrary DEU;

b) Perform model checking to identify a crucial DEU that violates the assertion;

c) Record the crucial DEU and remove it from the fault space;

d) Go back to b) with the updated fault space. Repeat until no more crucial DEU
can be found and the assertion is fully proven.

There are 2008 bits in the Ibex Core. In theory, there are about four million possible
fault location combinations of DEUs in the Ibex Core. However, combinations
including crucial SEUs are excluded. The SEU experimental strategy in subsection
3.5.1 must be performed first to identify crucial SEUs before performing the DEU
experimental strategy. The identified SEUs have been given in Section 3.8. We assume
it is unnecessary to further analyse DEUs that include crucial SEUs.

We have shown how to identify crucial SEUs and vulnerable bit locations using our
formal method in Chapter 3. If we use, for example, TMR to protect those vulnerable

5.5. Step 4: Model Checking 133

bits further faults in those bits have no effect. Thus, DEUs including faults in those bit
locations (DEUs including crucial SEUs) do not need further analysis because these
bits have already been identified as vulnerable bits. Without this assumption, DEUs
including crucial SUEs will be explored, which is essentially exploring the crucial
SEUs again. As a result, it is not necessary to explore DEUs including crucial SEUs.
Only DEUs excluding crucial SEUs are explored, to examine whether DEUs can
aggravate SEUs.

Since the crucial SEUs of different properties are not all the same, the initial DEU list
of each assertion to explore DEUs is different. As a result, in step a), an arbitrary DEU
is constrained to a smaller fault space where only safe SEUs are included. This is
achieved by assumptions. The following is an example. When verifying the
RV32I_LUI property in the presence of DEUs, all crucial SEUs are excluded in step a)
of the DEU experimental strategy.

`ifdef RV32I_LUI

assume property (

!(FI_index1 inside {/*all crucial SEU bits to RV32I_LUI */}));

assume property (

!(FI_index2 inside {/*all crucial SEU bits to RV32I_LUI */}));

`endif

In step c) the identified DEUs from step b) are added to constraints (as SVA
assumptions) in order to exclude them from further model checking runs. For
example, after finding one crucial DEU violating an assertion, this identified DEU is
excluded from the fault list the next time proving the same assertion. This step aims to
avoid repeatedly identifying the same DEUs. It also reduces the fault list and forces
the formal tool to explore the other DEUs. The following is an example of
assumptions about an assertion after identifying two crucial DEUs.

`ifdef insn_access

assume_FI_index1_stable:

assume property (

$stable(FI_index1) && (FI_index1 <2008)

&& !(FI_index1 inside {509 ,510}));

assume_FI_index2_stable:

assume property (

$stable(FI_index2) && (FI_index2 <2008)

&& !(FI_index2 inside {509 ,510}));

`endif

134 Chapter 5. Double Event Upsets

We use the range from 0 to 2007 to represent the register bits in the Ibex Core. The bit
index is shown in Appendix E. In the above example, the already identified crucial
DEUs are in bit (509,509) and bit (510,510). These two bits are in the register valid_q,
which determines the validity in the FIFO module. FI_index1 and FI_index2 controls
fault injection bit locations of DEUs. !(FI_index1 inside {509,510})) makes sure
the already identified crucial DEUs can no longer be explored in further model
checking runs.

It might be argued that the above assumptions also exclude DEUs in bits (509,510) and
bits (510,509) from the fault list, hence reducing the result accuracy. However,
protection targets are bits instead of DEUs. We argue that since the bits have already
been identified as vulnerable bits and need protection to mitigate DEUs, it is
unnecessary to further explore DEUs that include one of the vulnerable bits. Similar to
protecting SEUs, we assume that after identifying one crucial DEU, the corresponding
vulnerable bit locations will be protected. For example, bits 509 and 510 are enhanced
by TMR. Exploring a DEU, that includes one enhanced bit and one unprotected bit, is
essentially exploring an SEU in the unprotected bit. As a result, it is unnecessary to
further explore DEUs including any of the vulnerable bits. This reduction also
contributes to saving model checking time and computation efforts.

5.5.2 Configurations of Cadence JasperGold

The tool settings were the same as the previous settings in subsection 3.5.2, except the
proof time was changed to five hours, because we found some cases took up to five
hours to be fully proved.

The same engine modes in subsection 3.5.2 were used to perform model checking in
the presence of DEUs. The only difference is that case splitting and the abstraction
engines AD and AM were used more frequently when exploring DEUs. For example,
most of the properties were fully proved by AM in the presence of DEUs. In addition,
it was faster to use AD to find counterexamples than Hts, hence AD was mainly used
to identify crucial DEUs. Similarly to Chapter 3, it was the easiest to prove Integer
Computational Instructions, it was harder to prove Control Transfer Instructions, and
it was the most difficult to prove Load and Store Instructions. In general, formally
analysing DEUs is harder than formally analysing SEUs.

5.6 Results

DEUs can occur in one pair of bits but at different times. In other words, there may
exist a very large number of DEUs from the same bit pairs. We argue that in each bit

5.6. Results 135

pair, one DEU is enough to prove the bits are vulnerable to DEUs. Similar to SEUs, we
assume that after identifying vulnerable bits, fault-tolerant technologies will be
implemented in these identified vulnerable bits, hence all DEUs in these bits can be
protected. Thus, it is not necessary to further explore these DEUs in the same bit pair.

During the experiments, we found that an assertion may fail if one of the double
faults is a crucial SEU (regardless of the other fault). Exploring such DEUs is in fact
exploring crucial SEUs, which is unnecessary. We are interested in errors/failures
caused by DEUs rather than SEUs. As stated before, we assume that bits, where
crucial SEUs may occur, will be protected. As a result, when proving an assertion,
DEUs, that include corresponding crucial SEUs are excluded from the fault list.

In this section, only necessary SEU results, such as crucial SEUs, are presented.
Detailed SEU results and how they are identified have been shown in Section 3.8. We
identified 11696 crucial SEUs causing SDCs, 159 crucial SEUs causing crashes, and 10
crucial SEUs causing hangs. These crucial SEUs are used for DEU reduction. As noted
above, we exclude any DEUs that include these crucial SEUs. For example, when
proving the hang property, DEUs including the 10 crucial SEUs causing hangs are
excluded from the fault list. As noted above, each DEU assertion has a unique DEU
fault list. We use SVA assumptions to specify the DEUs lists. Only DEUs that include
safe SEUs will be explored.

As stated in Section 5.2, we categorized DEUs into three groups: two faults occurring
in different bit locations and at different times; different bit locations and at the same
time; the same location and at different times. We used our method to explore each
group. All the results are either proven or disproved. Though there are two pipeline
stages in the Ibex Core, after injecting a DEU, it can take more than two clock cycles to
report a counterexample because the DEU can stall or flush the pipeline. On average,
for 99% properties, it only took three minutes to report a counterexample (step b in
subsection 5.5.1). The remaining 1% were disproved with case splitting. It took up to
an hour to disprove each case. All the crucial DEUs were falsified by Hts and AD. It
took up to five hours to fully prove a property for a given DEU list (step d in
subsection 5.5.1). Most of the safe DEUs were proved by AM and the others were
proved by Hps. Case splitting (in subsection 5.4.2) was used to handle all properties.
With the help of case splitting, all the properties can be fully proved. It took on
average one hour to fully prove each case in the RV32IC Integer Computational
Instruction properties. It took one and a half hours to fully prove 80% of cases in the
RV32IC Control Transfer and Load and Store Instruction properties. However, it took
three hours to fully prove about 17% of cases and up to five hours to fully prove the
3% of cases, which is similar to crash and hang properties.

We interpret the results at two levels: hardware-level and instruction-level.
Hardware-level identifies structures (such as bits, registers and modules) vulnerable

136 Chapter 5. Double Event Upsets

to DEUs; hardware protection technologies, such as TMR, can be implemented to
protect these vulnerable bits. Instruction-level identifies instructions vulnerable to
DEUs; software protection technologies, such as redundant instructions, can be
implemented to protect these vulnerable instructions. Apart from software, we found
enhancing specific bits/registers/modules can also improve the reliability of
instructions.

5.6.1 Hardware-level

TABLE 5.1: Overview results of crucial DEUs

Property DLDT DLST SLDT Property DLDT DLST SLDT
RV32I LUI 66 76 0 RV32I SW 4 8 1

RV32I ADD 10 2 0 RV32I SB 4 4 1
RV32I ADDI 2 2 0 RV32I SH 4 4 1
RV32I XOR 10 2 0 RVC LUI 26 12 0
RV32I XORI 2 2 0 RVC ADD 118 58 0

RV32I OR 40 12 0 RVC ADDI 25 20 0
RV32I ORI 28 10 0 RVC XOR 22 20 1

RV32I AND 40 12 0 RVC OR 20 18 1
RV32I ANDI 28 10 0 RVC AND 101 34 0
RV32I SLL 10 2 0 RVC ANDI 55 28 0
RV32I SLLI 2 2 0 RVC SLLI 89 38 0
RV32I SRL 10 2 0 RVC SRLI 115 48 0
RV32I SRLI 2 2 0 RVC SUB 108 40 0
RV32I SUB 150 24 0 RVC LI 2 14 0
RV32I SRA 145 24 0 RVC MV 83 48 0
RV32I SRAI 38 6 0 RVC ADDI4SPN 74 30 0

RV32I AUIPC 61 71 0 RVC ADDI16SP 47 26 0
RV32I SLT 38 12 0 RVC JAL 48 26 0
RV32I SLTI 26 10 0 RVC JALR 534 72 0

RV32I SLTIU 26 10 0 RVC BEQZ 25 20 0
RV32I SLTU 38 12 0 RVC BNEZ 67 60 0
RV32I JAL 2 2 0 RVC JR 25 20 0

RV32I JALR 2 2 0 RVC J 43 26 0
RV32I BEQ 29 6 0 RVC LW 4 8 0
RV32I BNE 2 2 0 RVC LWSP 6 10 0
RV32I BLT 2 2 0 RVC SW 11 12 0
RV32I BGE 2 2 0 RVC SWSP 13 14 0

RV32I BLTU 2 2 0 Insn access fault 0 0 0
RV32I BGEU 2 2 0 Illegal insn 22 20 2

RV32I LW 4 8 0 breakpoint 78 66 2
RV32I LB 5 8 0 load access fault 27 4 0

RV32I LBU 5 8 0 store access fault 27 4 0
RV32I LH 5 16 0 Ecall MMode 1361 7858 6

RV32I LHU 4 6 0 Hang WFI 1361 85 27

5.6. Results 137

FIGURE 5.1: Overview: crucial DEUs in different bits at different times

Table 5.1 lists the results of proving all properties in the presence of DEUs. To save
space, only failures are listed. There are no undetermined results. The first and the
fifth columns list the property names. The remaining columns list the number of
crucial DEUs in different groups. ‘DLDT’ represents DEUs in different bits at different
times, ‘DLST’ represent DEUs in different bits at the same time, and ‘SLDT’ represent
DEUs in the same bit at different times. We will explain the results in detail (including
the bits, registers and modules where the crucial DEUs occur) in the following
subsections.

5.6.1.1 Different Bits, Different Times

The first experiment was to explore DEUs occurring in different bits at different times.
The fault injection order was also considered. Two faults f1, f2 are injected in bits b1, b2

at clock cycles t1, t2, respectively. We assume that f1 is always injected before f2,
t1 < t2.

We treat two DEUs occurring in the same bit pairs but in a different order as different
DEUs, irrespective of fault injection times. For example, a DEU in b1, b2 and a DEU in
b2, b1 are two different DEUs.

We treat DEUs occurring in the same bit pair and in the same order as the same DEU,
no matter the fault injection times. For instance, the DEU injected in bit1, bit2 at clock
cycles 6 and 7, and the DEU injected in bit1, bit2 at clock cycle 8 and 9, are the same
DEU.

In this category, we found 4111 crucial DEUs. Figure 5.1 shows the effects of the
identified crucial DEUs. 2511 DEUs cause SDCs, 1515 DEUs cause crashes, and 85
DEUs cause hangs. Figure 5.2 shows the number of the crucial DEUs that cause
crashes. Among the DEUs causing crashes, 1361 DEUs cause Ecall crashes, 78 cause
breakpoint crashes, 22 cause illegal instructions, 27 cause load- and store-access faults.

138 Chapter 5. Double Event Upsets

FIGURE 5.2: DEUs in different bits at different times can cause crashes

We found that DEUs in some bit pairs can lead to multiple assertion failures. In other
words, because each assertion represents an error, these DEUs can lead to multiple
errors, and these bit pairs are vulnerable to multiple errors. Table 5.2 lists the DEUs
that cause multiple assertion failures. To save space, only DEUs that cause more than
16 assertion failures are listed here. The second column ‘# Fail’ is the number of
assertion failures the DEUs listed in the first column can cause. The bit numbers are in
the first column. We use numbers to label all the bits in the Ibex Core, as shown in
Appendix E. The bit ordering determines the injection ordering. For example,
(867,2007) means the first fault is injected to bit 867 and the second fault is injected to
bit 2007. So (867,2007) and (2007,867) represent two different DEUs. Note that the
captured errors appear several clock cycles after the second fault is injected.
Considering that only safe SEUs are included in DEUs, these errors are indeed caused
by DEUs instead of the first safe SEU.

TABLE 5.2: The most frequent crucial DEUs in different bits at different times

DEUs # Fail
(867, 2007) 45

(3, 2)(2007, 867) 32
(2007, 866)(1010, 866)(1009, 866) 20

(2,1009)(2,1010)(3,1009)(3,1010)(866,8)(866,9) 18
(866,1009)(866,1010)(866,2007)(1009,2)(1009,3) 18

(1010,2)(1010,3)(2007,2)(2007,3) 18
(512,750)(513,750)(528,750)(529,750)(544,750)(545,750) 16
(560,750)(561,750)(576,750)(577,750)(592,750)(593,750) 16

(750,1009)(750,1010)(750,2007)(1009,750)(1010,750) 16
(863,864)(2007,750) 16

It can be seen that the DEU at the bit pair (867,2007) (two safe SEUs injected at bit 867
then at bit 2007) causes the most failures. Bit 867 is a 1-bit register lsu_err_q in the
load_store_unit module. This register records the error status of this module. Bit

5.6. Results 139

FIGURE 5.3: DEUs in bits (3,2) causing a crash

2007 is a 1-bit register core_busy_q in the top module of the Ibex Core. This register
disables clock gating if it is logic high. Disabling clock gating leads to a pause in the
Ibex Core.

The next most serious DEUs are encountered in bits (3,2) and bits (2007, 867). A DEU
in bits (2007, 867) causes fewer failures than a DEU in bits (867, 2007). In other words,
the ordering of fault injection influences whether a DEU can lead to errors or not.

Bits 3 and 2 are the two most significant bits in the register ctrl_fsm_cs in the
controller module. This register stores the current state of the module. One of the
errors caused by DEUs in bits (3,2) is a crash due to an illegal instruction. An
illustration of this example is shown in Figure 5.3. After the first_fetch state, the
state machine in the controller module should remain in the DECODE state. However,
two consecutive faults in bits (3,2) force the state machine to enter an invalid state,
4’b1101 at the sixth clock cycle in Figure 5.3. The Ibex Core treats the next instruction
as the first instruction (which it is not). The pipeline is refreshed, and data is lost. As a
result, after several clock cycles, an exception is encountered, causing the assertion
failure.

TABLE 5.3: Vulnerable structures containing the DEUs in Table 5.2

Module Registers
top core_busy_q

controller ctrl_fsm_cs

if_stage instr_rdata_c_id_o

prefetch_buffer rdata_outstanding_q

FIFO rdata_q

load_store_unit ls_fsm_cs,lsu_err_q,pmp_err_q

Based on the identified vulnerable bit pairs, the vulnerable structures can be found.
Table 5.3 lists the registers and modules that include the crucial DEUs in Table 5.2. Bit
750 is the LSB of the register instr_rdata_c_id_o, which stores the compressed
instruction to the second pipeline stage. Bits 1009 and 1011 consist
rdata_outstanding_q, which (together with other signals) affects the FIFO. Register
rdata_q contains the bits [512:607], which stores the values in the FIFO. The previous
work proves not all bits in the FIFO are crucial SEUs to failures, hence some bits in the

140 Chapter 5. Double Event Upsets

FIGURE 5.4: Overview: crucial DEUs in different bits at the same time

rdata_q are in the DEU lists. Bits 863,864 are in the ls_fsm_cs which is the state
machine of the load_store_unit module.

Among the above examples, the combination lsu_err_q with core_busy_q, and the
register ctrl_fsm_cs are the most vulnerable combinations to SDCs in the presence of
DEUs. In addition, modules prefetch_buffer (mainly registers branch_discard_q
and valid_req_q) and FIFO (mainly register err_q) are the most vulnerable structures
to crashes and hangs in the presence of DEUs. As a result, in order to mitigate SDCs,
crashes and hangs caused by DEUs in this category, it is important to enhance these
structures with fault-tolerant technologies or place them away to reduce the
possibility of being hit by the same energetic particle.

5.6.1.2 Different Bits, Same Time

The second experiment explored DEUs occurring in different bits at the same time. For
example, b1! = b2, t1 == t2. After finding a DEU in one pair of bits, we assume these
bits would be protected. Thus this pair is not further explored. One counterexample is
enough to prove these bits are vulnerable to DEUs and need protection.

Figure 5.4 gives an overview of identified crucial DEUs for this case. 9068 crucial
DEUs are found. 1089 DEUs cause SDCs, 7952 DEUs cause crashes, and 27 DEUs
cause hangs. Unlike the last category, the most crucial DEUs in this category cause
crashes.

Of the DEUs causing crashes, 7858 DEUs cause Ecall crashes, 66 cause breakpoint
crashes, 20 cause illegal instructions, and 4 cause load- and store-access faults, as
shown in Figure 5.5. Ecall is the most frequent crash caused by the DEUs in this
category. Among the DEUs causing Ecall crashes, bits 509 and 511, which are inside
the register valid_q in the FIFO module, are the most vulnerable bits. This register
determines whether an instruction stored in the instruction FIFO (which stores fetched
instructions from IMEM) is valid or not. There are 3978 crucial DEUs including faults

5.6. Results 141

FIGURE 5.5: DEUs in different bits at the same time can cause crashes

encountered in bit 509, and 3170 crucial DEUs including faults encountered in bit 511,
that can cause Ecall crashes. Bit 688 is the most common bit in crucial DEUs causing
breakpoint crashes. 36 crucial DEUs including faults in bit 688 may cause breakpoint
crashes. This bit is in the register instr_rdata_id_o in the if_stage module. This
register stores the instructions to the id_stage module. Bits in this register are also the
majority bits of crucial DEUs causing hangs. There are 12 DEUs including faults in bit
1011, and 10 DEUs including faults in bit 1012, that can cause illegal instructions. Bits
1011 and 1012 are in the register branch_discard_q in the prefetch_buffer module.
This register determines whether the module pushes a new entry to the instruction
FIFO. DEUs causing crashes are mainly in the instruction fetch and decode stages.

Table 5.4 lists the crucial DEUs in this group that can cause more than 12 multiple
assertion failures. The others are not listed to save space. The bit numbers are listed in
the first column. The second column ‘# Fail’ shows the number of failures the DEUs
listed in the first column can cause. Most of the bits are also in Table 5.2, except bit 681
in register id_fsm_q (the state machine) in id_stage module, hence they are not
repeated.

TABLE 5.4: The most frequent crucial DEUs in different bits at the same time

DEUs # Fail
(867, 2007) 45
(2,1009)(2,1010)(3,1009)(3,1010)(3,2007) 18
(866,1009)(866,1010)(866,2007) 18
(750,1009)(750,1010)(750,2007) 16
(751,766) 13
(863,681)(863,2007) 12

It can be seen that DEUs in bits (867,2007) in registers lsu_err_q and core_busy_q

cause the most assertion failures, which is the same as in the previous category. Bits
867 and 2007 have been explained in the last subsection. The next most frequent DEUs
occur in registersctrl_fsm_cs, rdata_outstanding_q and instr_rdata_c_id_o.

142 Chapter 5. Double Event Upsets

These registers also affect the functionality of the FIFO. DEUs in the above bit/register
combinations produce the most SDCs, hence enchaining them or putting them away
should contribute to lower SDC rates. Modules prefetch_buffer (mainly registers
branch_discard_q and valid_req_q) and FIFO (mainly register err_q) are the most
vulnerable structures to crashes and hangs. Placing them away or enhancing them can
reduce crash and hang rates.

We found that certain bits appear in many of the DEUs (including DEUs not shown in
Table 5.4). For instance, there are 3978 crucial DEUs that occur in bit 509 and there are
3170 crucial DEUs that occur in bit 511. These bits are in the valid_q in the FIFO and
determine the validness of values in the FIFO. These bits are the most vulnerable bits
to the DEUs in this category. Table 5.5 lists the bits that are vulnerable to more than
100 DEUs. The second column lists the bit numbers. The third column lists the
number of the DEUs that include the bits in the second column. Bit 2007 is in the top
module and enables clock gating. There are 289 crucial DEUs that may occur in this
bit. All of the remaining vulnerable are in the IF stage (first column). IF stage is the
most vulnerable stage to DEUs in different bits at the same time.

TABLE 5.5: The most vulnerable structures containing a DEU in different bits at the
same time

Stage Register Bit DEUs
IF valid_q 509 3978
IF valid_q 511 3170
TOP core_busy_q 2007 289
IF rdata_outstanding_q 1010 264
IF rdata_outstanding_q 1009 228
IF instr_rdata_c_id_o 750 152
IF instr_rdata_id_o 688 126
IF pmp_err_q 866 166
IF ctrl_fsm_cs 3 108
IF instr_rdata_id_o 690 101

5.6.1.3 Same Bit, Different Times

The third experiment explored DEUs occurring in the same bit at different times. For
example, b1 == b2, t1! = t2. For each bit, at most one crucial DEU is explored. After
finding a DEU in a bit, we assume this bit would be protected. Thus this bit is not
further explored. One counterexample is enough to prove a bit is vulnerable to DEUs.

There are fewer crucial DEUs in this category compared to the others. Only 18 crucial
DEUs that occurred in the same bit at different times were found. 5 DEUs cause SDCs,
10 DEUs cause crashes, and 3 DEUs cause hangs. Most of the crucial DEUs cause
crashes. Table 5.6 lists all crucial DEUs in this category. Since DEUs are injected at the

5.6. Results 143

same bit, only one bit number is listed. The first column lists three types of crashes
and a hang, and the third column lists types of SDCs. For example, a_RV32I_S*
represents crucial DEUs that may violate assertions that monitor the behaviours of
RV32I_SB, RV32I_SH and RV32I_SW.

TABLE 5.6: Bits vulnerable to DEUs in the same bit location

Error DEUs Error DEUs
Breakpoint 1011,1012 a RV32I S* 866

Ecall 509,511,544,545,576,577 a RVC XOR 741
Illegal insn 1011,1012 a RVC OR 741
Hang WFI 511,1011,1012

The crucial DEUs in this category can only cause certain errors. As shown in Table 5.6,
the DEUs can only cause one type of hangs, three types of crashes, and five types of
SDCs. The crucial DEUs are in certain bit locations. Bit 866 (in register pmp_err_q in
the load_store_unit), 511 (in register valid_q in the FIFO), 1011 & 1012 (in register
branch_discard_q in the prefetch_buffer), and 0 (in register ctrl_fsm_cs in the
ibex_controller) are the most vulnerable bits. All these bit locations have been
explained in the last two subsections, hence not repeated.

5.6.2 Instruction-level

The results from architectural properties, which model correct instruction behaviour,
show that some assertions identify more crucial DEUs than others. In other words,
some instructions are more vulnerable to DEUs than others. Implementing software
protection technologies to protect these instructions should greatly reduce failures
due to DEUs.

There are two jump-related branch instructions in 16-bit compressed form: RVC_JR
(jump) and RVC_JALR (jump and link). RVC_JR performs an unconditional control
transfer. The target address is determined by the offset in the instruction and the
current PC address. RVC_JALR also performs the same unconditional control transfer
and writes the address of the instruction following the jump (PC+2) to the link
register.

We found that DEUs affecting the compressed jump and link instruction RVC_JALR

cause the most SDCs. For example, 606 DEUs may cause RVC_JALR fails. It is
necessary to apply software protection to this instruction.

We also found that instructions that perform similar functions are vulnerable to the
same crucial DEUs. Most of the vulnerable bits have been introduced in Section5.6.1,
hence this subsection represents DEUs in the form of registers for a better view. The
DEUs are not only at bits within the same register but also at bits across different

144 Chapter 5. Double Event Upsets

registers. Table 5.7 lists the registers (in the last two columns) where injected DEUs
can corrupt the instructions (in the first column). The DEUs are in different bits at
either different times (‘Dt’) or the same time (‘St’).

TABLE 5.7: DEUs in certain registers can corrupt similar instructions

Instructions Registers(Dt) Registers(St)
RV32I Control lsu err q lsu err q
and Transfer core busy q core busy q
RV32I Load ctrl fsm cs ctrl fsm cs
and Store ls fsm cs id fsm q

ls fsm cs
RVC Control ctrl fsm cs ctrl fsm cs
and Transfer load err q pmp err q

store err q lsu err q
pmp err q rdata outstanding q
lsu err q core busy q
rdata outstanding q
core busy q

RVC Load ctrl fsm cs ctrl fsm cs
and Store pmp err q id fsm q

lsu err q pmp err q
instr rdata c id o
instr is compressed id o
addr last q
ls fsm cs
core busy q

The RV32I Control Transfer instructions RV32I_BEQ, RV32I_BNE, RV32I_BLT,
RV32I_BLTU, RV32I_BGE, RV32I_BGEU, RV32I_JAL and RV32I_JALR are all vulnerable to
DEUs (at either the different times or the same time) in registers lsu_err_q in the
load_store_unit module and core_busy_q in the top module. The RV32I Load and
Store instructions RV32I_LW, RV32I_LH, RV32I_LHU, RV32I_LB, RV32I_LBU, RV32I_SW,
RV32I_SH, RV32I_SB are all vulnerable to DEUs at different times in registers
ls_fsm_cs in the load_store_unit and ctrl_fsm_cs in the controller; and DEUs at
the same time in registers ls_fsm_cs in the load_store_unit, id_fsm_q in the
id_stage and ctrl_fsm_cs in the controller.

The RVC Control Transfer instructions RVC_BEQZ, RVC_BNEZ, RVC_J, RVC_JAL, RVC_JALR
and RVC_JR are all vulnerable DEUs at different times in registers
ctrl_fsm_cs, load_err_q, store_err_q in the controller,
pmp_err_q, lsu_err_q in the load_store_unit, rdata_outstanding_q in the
prefetch_buffer and core_busy_q in the top; and DEUs at the same time in registers
ctrl_fsm_cs in the controller, pmp_err_q, lsu_err_q in the load_store_unit,
rdata_outstanding_q in the prefetch_buffer and core_busy_q in the top.

5.6. Results 145

The RVC Load and Store instruction RVC_LW, RVC_LWSP, RVC_SW and RVC_SWSP are all
vulnerable to DEUs at different times in registers ctrl_fsm_cs in the controller,
pmp_err_q, lsu_err_q in the load_store_unit; and DEUs at the same time in
registers instr_rdata_c_id_o, instr_is_compressed_id_o in the if_stage,
ctrl_fsm_cs in the controller, id_fsm_q in the id_stage,
addr_last_q, ls_fsm_cs, pmp_err_q in the load_store_unit, and core_busy_q in
the top.

In addition, some structures are more vulnerable to DEUs when executing
compressed instructions rather than base instructions. For example, DEUs (in
different bits at different times) in bits (3,2) (in the ctrl_fsm_cs) can cause 22 SDCs
due to wrong results from compressed instructions and 8 SDCs due to wrong results
from base instructions. One reason is that DEUs force the state machine in the
controller module to restart from the beginning if it reads source register values
incorrectly. If the instructions executed in the design are known, extra hardware
protection technologies should be applied to these parts.

One application of the above finding is that designers can enhance certain instruction
sets (mitigate SDCs caused by malfunctions of certain instruction sets) by focusing on
specific hardware. For example, the structures in Table 5.7 should be enhanced to
ensure the functionalities of RV32I and RVC Control Transfer and Load and Store
instructions in the present DEUs, and hence mitigate SDCs caused by the
malfunctions of these instructions.

Some instructions in base form (RV32I) and compressed form (RVC) perform similar
functions, such as RV32I_ADD and RVC_ADD. We compared the DEUs in different bit
locations at different times that corrupt RV32I instructions and the DEUs that corrupt
RVC instructions. We observed that logical instructions and jump instructions in base
form tend to be less vulnerable to DEUs than similar instructions in compressed form.
Figure 5.6 shows the comparison. The blue bar is the number of DEUs that corrupt the
correct behaviours of RV32I instructions, the orange bar is the number of DEUs that
corrupt the correct behaviours of RVC instructions. The orange bars are longer than
the blue bars in the logical instructions (ADD, ADDI, AND, ADNI, XOR) and jump
instructions (JAL, JALR). There is a similar trend for DEUs in different bits at the same
time, as shown in Figure 5.7.

On the other hand, load and store instructions in the base form and similar
instructions in the compressed form, such as RV32I_LW & RVC_LW and RV32I_SW &
RVC_SW, are vulnerable to the same DEUs. In real hardware, if software characteristic
is known, then this finding would help to determine appropriate software protection
technologies. For example, if the hardware executes both base and compressed form
instructions and performs a lot of logical and branch instructions, then it would be
necessary to apply software protection to compressed logical and compressed branch

146 Chapter 5. Double Event Upsets

FIGURE 5.6: Comparison of DEUs (in different bits at different times) corrupting sim-
ilar instructions in base form and compressed form

FIGURE 5.7: Comparison of DEUs (in different bits at the same time) corrupting simi-
lar instructions in base form and compressed form

instructions, or apply hardware protection to the specific structures in Table 5.7 to
mitigate DEUs that may corrupt compressed logical and compressed branch
instructions. On the other hand, less compressed instructions should be implemented
to improve the system’s reliability.

Unlike DEUs in different bits (irrespective of time), DEUs in the same bit at different
times can only affect a few instructions. The affected instructions are shown in Table
5.8. To save space, only vulnerable registers and modules where crucial DEUs exist
are listed. RV32I_S* includes RV32I_SB, RV32I_SH, and RV32I_SW. RVC_*OR includes
RVC_OR and RVC_XOR. The results in Table 5.8 indicate that only a few instructions need
to be enhanced to mitigate DEUs in the same bit at different times. Apart from
software protection, certain hardware (registers) can also be protected to enhance
these instructions.

5.7. Discussion 147

TABLE 5.8: Vulnerable instruction in the presence of DEUs in the same bit location

Error Register Module
RV32I S* pmp_err_q load_store_unit

RVC *OR instr_rdata_alu_id_o if_stage

Breakpoint branch_discard_q prefetch_buffer

Ecall valid_q FIFO

Ecall rdata_q FIFO

Illegal insn branch_discard_q prefetch_buffer

Hang valid_q FIFO

Hang branch_discard_q prefetch_buffer

5.7 Discussion

5.7.1 Hardware-level

In general, bits in the Ibex Core are more vulnerable to DEUs occurring in different
bits (either at different times or at the same time) than in the same bits at different
times. For instance, we identified a total of 13179 crucial DEUs in different bits
(irrespective of time) while 18 crucial DEUs occurred in the same bits. Among crucial
DEUs occurring in different bits (both at different times and at the same time), we
identified more DEUs occurring at the same time (9068) compared to DEUs occurring
at different times (4111). After comparing all the results, we found that the Ibex Core
is most vulnerable to DEUs in different bits at the same time; less vulnerable to DEUs
in different bits at different times; and even less vulnerable to DEUs in the same bits at
different times. The ranking of vulnerabilities of the three groups of DEUs can
determine cost-efficient protection technologies to mitigate DEU effects. For example,
using the most expensive and the most effective protection technologies to protect
DEUs in different bits at the same time, and using cheaper but less effective protection
technologies to protect other DEUs.

We observed that DEUs in some bit/register combinations are identified multiple
times. For example, most crucial DEUs occur in the combinations of registers
pmp_err_q and core_busy_q; the second most crucial DEUs occur in the combinations
of register ctrl_fsm_cs in the controller, valid_q, rdata_q in the FIFO, and
instr_rdata_c_id_o, rdata_outstanding_q in the if_stage. Most of these
combinations have direct effects on instructions in the core. In order to improve the
hardware reliability in the presence of DEUs, these registers should be protected to
detect/correct DEUs or be placed away to mitigate DEU occurrence possibility.
Protecting these bits/registers should mitigate errors/failures caused by DEUs.

We have identified other bits that are not vulnerable to SEUs or DEUs. The DEU lists
include only safe SEUs; crucial SEUs have already been identified and excluded from
further consideration. That is, all the explored bits are not vulnerable to SEUs. In

148 Chapter 5. Double Event Upsets

addition, as stated in subsection 5.5.1, the last step identifies all safe DEUs, that is, all
bits that are not vulnerable to DEUs (and not vulnerable to SEUs).

Though the DEU list includes only safe SEUs, results show that these DEUs may lead
to SDCs, crashes and hangs. This proves that DEUs can aggravate SEUs: though both
faults are safe SEUs, the second fault can cause failures.

5.7.2 Instruction-level

In general, DEUs in different bits at different times can affect more logical and branch
instructions than DEUs in different bits at the same time. Table 5.9 lists some of the
instructions affected by DEUs in different bits at both different times and at the same
time. ‘Dt’ is the number of DEUs in different bits at different times. ‘St’ is the number
of DEUs in different bits at the same time. First of all, most DEUs at different times
can corrupt more instructions than DEUs at the same time. As a result, it is important
to mitigate DEUs at different times to protect the instructions. In addition, most
logical instructions and branch instructions in base form tend to be less vulnerable to
DEUs than the equivalent instructions in compressed form. As a result, it might be
better to implement less compressed instructions in safety-critical systems. Finally,
DEUs in the same bit at different times corrupt the least instructions. Most
instructions are not vulnerable to these DEUs and hence need less protection.

TABLE 5.9: Comparison of instructions affected by DEUs at different times and same
time

Instruction Dt St Instruction Dt St
I ADD 10 2 C ADD 118 58
I AND 40 12 C AND 101 34
I ANDI 28 10 C ANDI 55 28
I BEQ 29 6 C BEQZ 25 20
I OR 40 12 C OR 20 18

I XOR 10 2 C XOR 22 20
I SUB 150 24 C SUB 108 40

DEUs in some registers play a vital role in the correct execution of instructions. The
most vital registers have been discussed in Section 5.6.2. Since these registers are vital
for correct instruction functionality, enhancing these registers with fault correction or
placing them away to reduce DEU occurrence possibility should theoretically
contribute to ensuring the functionality of instructions, and hence improving the
reliability of the system.

5.8. Conclusion 149

5.8 Conclusion

In this chapter, we extended our formal method in Chapter 3 to explore DEUs. We
combined model checking with fault injection to perform backward tracing of DEUs,
i.e., identifying DEUs based on stating the effects of DEUs. Compared to other formal
works, we further identified and classified DEUs into three four groups: safe, SDCs,
crashes and hangs.

One major concern of expanding model checking to DEUs is the infeasible number of
model checking runs. To solve the problem, we developed a fault-exploration strategy
that enables the identification of all safe DEUs (that have no effect) in compact model
checking runs. Such a strategy greatly reduces the number of model checking runs to
identify all DEUs. In addition, we excluded DEUs that include crucial SEUs from the
fault list. Another concern about the applicability of model checking is state
explosion. We mitigated state explosion in three ways: 1) abstracting memories, 2)
input constraints, and 3) focusing on architectural functionality and 4) using case
splitting to reduce the input space. These complexity control strategies greatly
reduced model checking runtimes and efforts. These complexity control strategies
make it possible to scale model checking to DEUs without undetermined results.

We have therefore achieved all our objectives. We proved that DEUs can aggravate
SEUs. For example, two safe SEUs can lead to crucial DEUs. We used our method to
identify all crucial DEUs. We decreased the infeasible model checking run time of
DEUs to an acceptable range. We used our method to evaluate the Ibex Core in the
presence of DEUs. We found the Ibex Core is more vulnerable to DEUs in different
bits (irrespective of time) than in the same bits; and more vulnerable to DEUs in
different bits at the same time than in different bits at different times. We have shown
that protecting against SEUs only is not enough to mitigate failures, because DEUs can
aggravate SEUs.

This method can exhaustively identify vulnerable structures (such as bits, registers
and modules) and instructions in the presence of DEUs at early design stages. Our
method can explore all the state space; corner cases can be reached; and no testbench
is required. It might be argued that since gate-level (such as DEUs are more likely to
occur in adjacent bit locations) and software (some instructions are more frequent
than others) play an important role, they should be considered during DEU analysis.
This paper argues that the results help to determine the proper gate-level and
software. The identified vulnerable structures in the presence of DEUs can contribute
to place-and-route, for example, by placing these vulnerable structures in far-away
locations. When developing software executed in the hardware, these identified
vulnerable instructions should be avoided or enhanced.

150 Chapter 5. Double Event Upsets

In principle, the proposed method is compatible with other RISC-V microprocessors.
There is no need to change the design or to develop formal properties and constraints.
In theory, it is possible to extend the method to MEUs. It is easy to add extra fault
control signals to model MEUs. After that, use the same method to explore MEUs.

There is one limitation of our method. We found that many instructions influenced by
DEUs cannot be retired from the core. For example, during the second pipeline, a
fetched instruction is treated as invalid due to a DEU, hence this instruction cannot be
decoded or executed. In other words, this instruction is lost. However, the other
instructions which are not influenced by the DEU can be executed correctly and
cannot violate architectural properties. SDCs may occur due to a missing instruction.
Such DEUs cannot be identified by architectural properties. Architectural properties
check whether a retired instruction is executed correctly, they do not check whether an
instruction is lost in a program. On the other hand, we argue that this limitation can
be solved by using formal methods to explore the effects of missing instructions in a
software program. This idea can be the future work of this research.

151

Chapter 6

Conclusion

ISO26262 suggests using simulation-based fault injection to improve safety and
reliability. However, simulation-based approaches have met limitations. To test
multiple faults with different benchmarks, multiple simulations are required. It is
therefore impossible to use simulation-based methods to test all potential faults.
Reducing the number of injected faults decreases accuracy (fault coverage). In
addition, it is hard to reach some corner cases using simulation – testbenches must be
carefully developed. An alternative and complementary approach is formal
verification. In this research, we proposed using formal verification, mainly model
checking, to exhaustively evaluate the hardware reliability in the presence of soft
errors. Our method can be adapted to other RISC-V cores without developing
properties and constraints again. The only modification is signal mapping. There have
been many works using formal verification to perform fault analysis. However, the
identified faults are only grouped into safe faults and remaining faults, and
simulation-based fault injection is used to analyse the remaining faults. The main
contribution of our method is to develop properties and use formal verification to
further identify and categorize faults into four groups: safe faults that have no effect,
and crucial faults that lead to SDCs, crashes and hangs respectively at the
architectural level.

Firstly, we formalized three types of failures (SDCs, crashes and hangs) as formal
properties to reveal faults that lead to SDCs, crashes and hangs respectively. In
principle, the properties can be adapted to other RISC-V processors with signal
remapping. We implemented a fault injection mechanism which can inject an
arbitrary fault to cover the whole fault space. We developed various complexity
control strategies to make sure the fault analysis is exhaustive and to improve the
proof performance. We validated our properties and method with various
approaches, such as simulation and mutations. We also used TMR and SR as
framework validation measures. Then we performed model checking on the
properties in the presence of an arbitrary SEU. Crucial SEUs can be extracted from the

152 Chapter 6. Conclusion

reported counterexamples. Safe SEUs can be found in full proofs. We developed an
experimental strategy and used different formal tool settings to report determined
results, there were no remaining undetermined results (except multiplications and
divisions). Compared to other work that perform formal fault analysis, our method
can identify and categorize all SEUs based on the SEU effects. We tested the method
on a RISC-V Ibex Core written in SV. The method can explore the entire state space to
find all crucial SEUs that may cause errors and failures in a reasonable time. Based on
the experimental results, we can rank the reliability of all the hardware structures in
the Ibex Core. We found some structures (bits, registers and modules) are more
vulnerable to SEUs than others, similar to software (instructions). We found the FIFO
and the Program Counter are the most vulnerable structures in the Ibex Core. In
general, the Ibex Core is more vulnerable to SDCs than crashes and hangs, and the
second pipeline stage contains more faults that lead to SDCs than the first pipeline
stage. We found the compressed 16-bit instructions are more vulnerable to SEUs than
the 32-bit instructions. We also found misaligned instructions can amplify fault effects.

Apart from evaluating the hardware reliability of the Ibex Core in the presence of soft
errors at early design stages, the proposed method can also be applied to evaluate
fault-tolerant technologies. Different fault-tolerant technologies hold different
protection efficiency and cost. It is more cost-effective to protect the most vulnerable
structures with the most efficient (but the most expensive) technology, and less
vulnerable structures with less efficient (and cheaper) technology. To address the
issue, we expanded the method to evaluate the fault detection effectiveness of a
residue arithmetic enhanced Ibex Core. We developed properties to reveal faults (no
matter safe or crucial) that can be detected by residue arithmetic. These properties
also reveal structures that are detectable by residue arithmetic. We found not all the
structures in the Ibex Core can be covered by residue arithmetic. It is meaningless to
explore faults injected in undetectable structures, hence reducing the fault space. We
then modified the properties that reveal faults that lead to failures in the last
paragraph to explore whether all crucial faults can be detected by residue arithmetic.
We found not all the crucial SEUs without fault-tolerant technology can be detected
by residue arithmetic. However, with little hardware overhead, residue arithmetic can
detect more than half of the crucial SEUs that lead to SDCs, and the detected crucial
SEUs are in both the control and data paths in the Ibex Core. However, residue
arithmetic is poor at detecting crucial SEUs leading to crashes and hangs. What is
worse, the most vulnerable structures such as the FIFO and PC cannot be covered by
residue arithmetic. The results were as expected, which proves that the method can be
used to evaluate fault-tolerant technologies and to determine cost-efficient
fault-tolerant technologies.

Finally, we expanded the proposed method to evaluate DEUs. One major concern of
expanding model checking to DEUs is the exponential fault list, which leads to

153

infeasible model checking runtime and state explosion. We used various approaches
to solve the concern. We pruned the DEU list by removing DEUs that contain crucial
SEUs. We assumed crucial SEUs will be protected, hence it is not necessary to further
explore DEUs including crucial SEUs. We also compact the number of model checking
runs to explore DEUs. We used multiple complexity control strategies to mitigate state
explosion and to improve the proof performance. These approaches greatly reduced
model checking time and effort. Together with different formal tool settings, all the
reported results were determined; there were no remaining undetermined results. We
exhaustively identified and categorized DEUs based on the DEU effects. We identified
vulnerable hardware structures and software instructions to DEUs, and some are
more vulnerable than others. We found the Ibex Core is more vulnerable to DEUs in
different bits than in the same bits; and more vulnerable to DEUs in different bits at
the same time than in different bits at different times. We also found that DEUs can
aggravate SEUs, for example, two safe SEUs together can cause errors and failures.
Hence protecting SEUs only is not enough to mitigate all errors and system failures.

We have therefore proved the hypothesis and achieved all our objectives in Chapter 1:

1. In Chapter 3, we developed a formal method to perform SEU analysis. We used
TMR and SR as framework validation measures.

(a) We developed formal properties that reveal faults leading to SDCs, crashes
and hangs, and validated the properties with simulation and mutations.

(b) We identified all SEUs, and categorized them into four groups: no effect,
SDCs, crashes and hangs.

(c) We developed complexity control strategies and experimental strategies
and used different formal tool settings to ensure the exhaustiveness of the
experiments: the whole state space and the fault list were covered, and
there was no remaining undetermined result (except multiplications and
divisions).

(d) We evaluated the reliability of all hardware structures (bits, registers and
modules) and software instruction in the presence of SEUs. We found some
structures are more vulnerable to SEUs than others, similar to instructions.
For example, the FIFO and the PC are the most vulnerable structures; the
compressed 16-bit instructions are more vulnerable than the 32-bit
instructions.

2. In Chapter 4, we expanded the developed method to formally evaluate
fault-tolerant technologies in the presence of SEUs. We chose residue arithmetic
as the exemplar.

(a) We developed properties to reveal all faults that can be detected by residue
arithmetic. We then modified the properties that reveal faults that lead to

154 Chapter 6. Conclusion

failures in the last achievement to explore whether all crucial faults can be
detected by residue arithmetic.

(b) We proved the above properties and identified all faults that can be
detected by residue arithmetic. Hence, we found all hardware structures
where injected faults can be detected by residue arithmetic. We found not
all the structures in the Ibex Core can be covered by residue arithmetic. It is
meaningless to explore faults in undetectable structures, hence reducing
the fault space.

(c) We identified all crucial faults that can be detected by residue arithmetic.
We found not all the crucial SEUs without fault-tolerant technology can be
detected by residue arithmetic.

(d) We evaluated the fault detection effectiveness and hardware cost of residue
arithmetic. With little hardware overhead, more than half of the bit
locations in the Ibex Core are detectable by residue arithmetic. In addition,
residue arithmetic can detect more than half of the crucial SEUs that lead to
SDCs, including both the control and data paths in the Ibex Core. However,
residue arithmetic is poor at detecting crucial SEUs leading to crashes and
hangs. What is worse, the most vulnerable structures (the FIFO and PC)
cannot be covered by residue arithmetic.

3. In Chapter 5, we scaled our method to DEUs.

(a) We pruned the DEU list by removing DEUs that contain crucial SEUs. We
also reduced the number of model checking runs to explore all DEUs.
These approaches with the approaches in the first achievement mitigated
state explosion and made the runtime and efforts feasible.

(b) We identified and categorize all DEUs based on the fault effects. The
vulnerability rank of DEUs are: DEUs in different bits at the same time >

DEUs in different bits at different times > DEUs in the same bits at
different times. We identified vulnerable hardware structures and software
instructions to DEUs. All the results were determined (except
multiplications and divisions).

(c) We evaluated the reliability of all hardware structures and software
instructions in the presence of DEUs. We found some structures (such as
the FIFO) and instructions (such as the compressed instructions) are more
vulnerable than others. Another example is that logical and branch
instructions are more vulnerable to DEUs in different bits at different times.

(d) We proved that DEUs can aggravate SEUs, for example, two safe SEUs
together can cause errors and failures. Hence protecting SEUs only is not
enough to mitigate all errors and system failures.

155

4. In Chapter 3, 4 and 5, we demonstrated the above proposed methods in a
RISC-V Ibex Core.

One application of our method is to exhaustively evaluate the hardware reliability
against SEUs or DEUs at early design stages. We have demonstrated this application.
The proposed method overcomes the limitations of simulation-based fault injection,
and would, in principle, be compatible with ISO26262 Another application of the
method is to determine cost-efficient hardware and software protection technologies
at early design stages. The method can find vulnerable hardware structures and
vulnerable software instructions to choose hardware and software protection
technologies. The method can also evaluate fault-tolerant technologies.

Though formal verification has advantages listed in Chapter 2, there are several
limitations of formal verification (especially model checking). Formal verification
knowledge is required to develop formal properties, which is more difficult than
developing testbenches. In addition, the correctness of formal verification depends on
the design and verification specifications. For example, in this research, if an incorrect
design specification (such as an incorrect Ibex guide and RISC-V Manuals) was
provided, wrong properties and incomplete assumptions would be developed, which
would lead to incorrect formal verification results. Formal verification is also limited
by design complexity. The state space to be explored explodes exponentially as the
design size increases. It is too computationally intensive and time-consuming to
verify complex designs. Moreover, verification of IPs that are prohibited from access
during verification is a challenge in formal verification.

One limitation of this research is not exploring two scenarios of hangs: Dead State and
Live State described in Section 3.3. Fully proving liveness is extremely difficult using
model checking. Another limitation is that the architectural properties can only verify
retired instructions. If an instruction cannot be retired from the core due to faults, for
instance, a pipeline flush, this instruction is lost. Missing instructions in a software
program can lead to SDCs. However, SDCs caused by missing instructions in the
software program cannot be captured by architectural properties. Architectural
properties verify whether a retired instruction was executed correctly, they do not
check whether an instruction was lost. One possible solution is to use strobe
properties, but strobe properties can produce false negatives, for example, if the faulty
core took more clock cycles than the golden core to produce correct outputs, strobe
properties can fail. An alternative is using formal methods to explore the effects of
missing instructions in a software program. This proposal might be the future work of
this research.

157

Appendix A

Brief SytemVerilog Assertion Syntax

##n;

##[2:$];

##n delays n clock cycles. ##[2 : $] delays 2 to infinite clock cycles.

|->

|=>

The LHS of the implication operator is called the antecedent and the RHS is called the
consequent. If |− > is used, the consequent is evaluated at the same clock cycle if the
antecedent is true. If | => is used, the consequent is evaluated at the next clock cycle
if the antecedent is true. | => is equivalent to |− > ##1.

Label:

assume property (property_expr);

The property expr in the ’assume’ is used to limit the behaviour of DUT inputs. Also
known as constraints. The syntax of ’assert’ and ’cover’ is similar. ’Assert’ checks that
the property holds under all circumstances. ’Cover’ tries to demonstrate one example
of how the sequence can be completed given the design and assumptions.

$past(expr , N);

Returns the value of expr N clock cycles ago.

$rose(expr);

158 Chapter A. Brief SytemVerilog Assertion Syntax

Returns TRUE if expr is TRUE in this cycle and was FALSE in the previous cycle,
otherwise returns FALSE.

$fell(expr);

Returns TRUE if expr is FALSE in this cycle and was TRUE in the previous cycle,
otherwise returns FALSE.

$stable(expr);

Returns TRUE if expr has the same value this cycle as it did in the previous cycle,
otherwise returns FALSE. We used it in ’assume’ to constrain expr cannot change
during model checking; without it, expr may change every clock cycle.

$onehot(expr);

Returns TRUE if expr has exactly one bit with the value 1′b1, otherwise returns
FALSE. We wire all XOR gate trigger signals to expr. Then we used this function in
’assume’ to make sure only one XOR gate is triggered (only one fault is injected)
during model checking.

disable iff (expr)

If expr is TRUE then all current outstanding obligations for that property (including
all overlapping ones) are removed. For example, if the DUT is under reset condition,
then the property should not be checked.

159

Appendix B

Descriptions of Jasper proof engines
used

Engine Hps focuses on finding proofs. It remembers unsuccessful proof attempts and
skips them when revisiting a property factor loop. This engine does not skip proof
attempts if additional invariants or proven directives are applied. Hp is the
multi-property version of engine Hps.

Engine Hts focuses on finding counterexamples. Ht is the multi-property version of
engine Hts.

Engine B uses SAT solvers and abstractions to find counterexamples. This engine is
similar to engine Ht but can outperform engine Ht in some cases. However, this
engine can never find an exhaustive proof. It can only give counterexamples or
bounded proofs.

Engine D proves or finds counterexamples for one property at a time. It uses
on-the-fly compression of the proof for increased capacity with deeper proofs.

Engine I proves or finds a counterexample for one property at a time, which is similar
to Engine D. Engine I iteratively includes logic from the COI, thus minimizing the
amount of logic necessary for a proof. This engine can be used in combination with
engines C, C2, K, and N to speed up the proof process. By default, engine I exchanges
information with engines C, K, and N during the proofs of the same property to speed
up the process.

Engines C and C2 prove or find counterexamples for one property at a time. These
engines are often better for verifying complex sequential properties such as for
datapath credit or token management units. They use abstractions to iteratively
include logic from the COI, thus minimizing the amount of logic necessary for a proof.

160 Chapter B. Descriptions of Jasper proof engines used

Engine K is optimized to find bounded proofs. This engine only searches for traces,
and it will generally not find proofs. It uses abstractions to iteratively includes logic
from the COI, minimizing the amount of logic used while searching.

Engine L is a bug-hunting engine and focuses on finding counterexamples or hitting
cover points that are normally hard to reach by conventional formal engines. It is
based on a combination of bounded model checking algorithms and state selection
heuristics for smart traversal of a subset of the reachable state space.

Engine M can find full proofs and is not limited to finding traces like engines B, K,
and L. The focus of this engine is on proving properties that are valid (assertions) or
unreachable (covers). It works well on liveness properties. This engine works best on
properties with a small COI and without any complex constraints.

Engine N can find full proofs and is not limited to finding traces like engines B, K, and
L. This engine works best on properties with a small COI and without any complex
constraints. Engine N can be used in combination with engines C, I, and K to speed
up the proof process. By default, engine N exchanges information with engines C, I,
and K during the proofs of the same property to speed up the process.

Engine R is multi-property engine that focuses on proofs. This engine is better at
finding proofs (like Hp) than traces and it provides trace attempts, proof attempts,
and min length updates. This engine uses a proof strategy similar to engine M. In
addition, it limits resources with a timeout and automatically restarts with longer
timeouts.

Engine Tri uses several processes at once, to process one property. During the proof, it
gives proof attempt messages while computing the reachable states.

Engine U is a SAT-based multi-property engine that uses constraint solving to walk
along the set of reachable states of the given model. It makes an effort to choose the
next state to visit uniformly at random from the set of all available next states.

Abstraction Engines AM and AD follow the same algorithm of their non-abstraction
counterparts, engines M and D. One difference is that Engines AM and AD start with
a small number of flops/gates in the analysis region and gradually add more. For
large designs, where a sequentially deep bound is needed to get a precise abstraction,
A engines might be better than other abstraction engines, such as K, C, I, and N. A
engines might be especially helpful for problems that have a big COI but a small proof
witness.

161

Appendix C

Using Formal Methods to Evaluate
Hardware Reliability in the
Presence of Soft Errors

162
Chapter C. Using Formal Methods to Evaluate Hardware Reliability in the Presence

of Soft Errors

163

164
Chapter C. Using Formal Methods to Evaluate Hardware Reliability in the Presence

of Soft Errors

165

167

Appendix D

Fault Injection Control Module and
XOR gates

The following is the FI controller to inject a single SEU. To save space, some code is
replaced with comments.

module FI_control (

input logic clk_i ,

input logic rst_ni ,

// injection time

input logic [31:0] FI_time ,

// injection bit index

input logic [11:0] FI_index ,

// Mask Signals

// ibex_controller

output logic [3:0] FI_ctrl_fsm_cs ,

output logic FI_nmi_mode_q ,

output logic FI_do_single_step_q ,

output logic FI_debug_mode_q ,

output logic FI_enter_debug_mode_prio_q ,

output logic FI_load_err_q ,

output logic FI_store_err_q ,

output logic FI_exc_req_q ,

output logic FI_illegal_insn_q ,

// ibex_cs_registers

output logic [1:0] FI_priv_lvl_q ,

output logic [2:0] FI_mcountinhibit_q ,

168 Chapter D. Fault Injection Control Module and XOR gates

output logic [5:0] FI_mstatus_q ,

output logic [31:0] FI_mepc_q ,

output logic [17:0] FI_mie_q ,

output logic [31:0] FI_mscratch_q ,

output logic [5:0] FI_mcause_q ,

output logic [31:0] FI_mtval_q ,

output logic [31:0] FI_mtvec_q ,

output logic [31:0] FI_dcsr_q ,

output logic [31:0] FI_depc_q ,

output logic [31:0] FI_dscratch0_q ,

output logic [31:0] FI_dscratch1_q ,

output logic [2:0] FI_mstack_q ,

output logic [31:0] FI_mstack_epc_q ,

output logic [5:0] FI_mstack_cause_q ,

output logic [5:0] FI_cpuctrl_q ,

output logic [63:0] FI_mcycle ,

output logic [63:0] FI_minstret ,

// ibex_fetch_fifo

output logic [30:0] FI_instr_addr_q ,

output logic [2:0] FI_valid_q ,

output logic [31:0] FI_rdata_q [3],

output logic [2:0] FI_err_q ,

// ibex_id_stage

output logic [33:0] FI_imd_val_q [2],

output logic FI_branch_set_raw_q ,

output logic FI_branch_jump_set_done_q ,

output logic FI_id_fsm_q ,

// ibex_if_stage

output logic FI_instr_valid_id_q ,

output logic FI_instr_new_id_q ,

output logic [31:0] FI_instr_rdata_id_o ,

output logic [31:0] FI_instr_rdata_alu_id_o ,

output logic FI_instr_fetch_err_o ,

output logic FI_instr_fetch_err_plus2_o ,

output logic [15:0] FI_instr_rdata_c_id_o ,

output logic FI_instr_is_compressed_id_o ,

output logic FI_illegal_c_insn_id_o ,

output logic [31:0] FI_pc_id_o ,

169

// ibex_load_store_unit

output logic [23:0] FI_rdata_q_ls ,

output logic [1:0] FI_rdata_offset_q ,

output logic [1:0] FI_data_type_q ,

output logic FI_data_sign_ext_q ,

output logic FI_data_we_q ,

output logic [31:0] FI_addr_last_q ,

output logic [2:0] FI_ls_fsm_cs ,

output logic FI_handle_misaligned_q ,

output logic FI_pmp_err_q ,

output logic FI_lsu_err_q ,

// ibex_multdiv_fast

output logic [4:0] FI_div_counter_q ,

output logic [2:0] FI_md_state_q ,

output logic [31:0] FI_op_numerator_q ,

output logic [31:0] FI_op_quotient_q ,

output logic FI_div_by_zero_q ,

output logic [1:0] FI_mult_state_q ,

// ibex_prefetch_buffer

output logic [31:0] FI_stored_addr_q ,

output logic [31:0] FI_fetch_addr_q ,

output logic FI_valid_req_q ,

output logic FI_discard_req_q ,

output logic [1:0] FI_rdata_outstanding_q ,

output logic [1:0] FI_branch_discard_q ,

output logic [1:0] FI_rdata_pmp_err_q ,

// ibex_register_file_ff

output logic [31:0] FI_rf_reg_q [31],

// ibex_top

output logic FI_core_busy_q

);

logic [2007:0] mask_onehot;

assign {/*all the 2008 bits of the output Mask Signals */} = mask_onehot;

//A simple counter is not shown to save space

170 Chapter D. Fault Injection Control Module and XOR gates

wire flag;

assign flag = (counter == FI_time);

always_comb begin

onehot_control = ’0;

if (flag) begin

onehot_control [FI_index] = 1’b1;

end

end

endmodule

The following is implementing an XOR gate to inject an SEU.

// Before implementing XOR

valid_q <= valid_d;

// After implementing XOR

valid_q <= valid_d ^ FI_valid_q;

The following is the modified FI controller to inject DEUs. To save space, some
repeated lines from the above are not shown.

module FI_control (

input logic clk_i ,

input logic rst_ni ,

// injection time

input logic [31:0] FI_time1 , FI_time2 ,

// injection bit indexes

input logic [11:0] FI_index1 , FI_index2 ,

// Mask Signals

// repeated lines

output logic FI_core_busy_q

);

logic [2007:0] mask_onehot;

// repeated lines

wire flag1 , flag2;

171

assign flag1 = (counter == FI_time1);

assign flag2 = (counter == FI_time2);

always_comb begin

onehot_control = '0;

if (flag1) begin //flag1 sets if the time meets the first fault injection time

onehot_control [FI_index1] = 1'b1;

end

`ifdef DEU //If double fault injection is enabled

if (flag2) begin //flag2 sets if the time meets the second fault injection time

onehot_control [FI_index2] = 1'b1;

end

`endif

end

endmodule

173

Appendix E

Bit ID in the Ibex Core

174 Chapter E. Bit ID in the Ibex Core

FIGURE E.1: The first part of bit IDs

175

FIGURE E.2: The last part of bit IDs

177

Appendix F

Bit patterns of valid RV32IMC
instructions

logic is_rv32_insn;

assign is_rv32_insn = (instr_rdata_i [1:0] == 2’b11);

logic RV32I_LUI , RV32I_AUIPC , RV32I_JAL , RV32I_JALR ,

RV32I_BEQ , RV32I_BNE , RV32I_BLT , RV32I_BGE , RV32I_BLTU ,

RV32I_BGEU , RV32I_LB , RV32I_LH , RV32I_LW , RV32I_LBU ,

RV32I_LHU , RV32I_SB , RV32I_SH , RV32I_SW , RV32I_ADDI ,

RV32I_SLTI , RV32I_SLTIU , RV32I_XORI , RV32I_ORI ,

RV32I_ANDI , RV32I_SLLI , RV32I_SRLI , RV32I_SRAI ,RV32I_ADD ,

RV32I_SUB , RV32I_SLL , RV32I_SLT , RV32I_SLTU , RV32I_XOR ,

RV32I_SRL , RV32I_SRA , RV32I_OR , RV32I_AND , RV32I_FENCE ,

RV32I_ECALL , RV32I_EBREAK;

assign RV32I_LUI = is_rv32_insn && (

riscv_instr_opcode == 7’b0110111);

assign RV32I_AUIPC = is_rv32_insn && (

riscv_instr_opcode == 7’b0010111);

assign RV32I_LB = is_rv32_insn && (

riscv_instr_funct3 == 3’b000) & (riscv_instr_opcode == 7’

b0000011) && (riscv_imm_i_type [1:0] == ’0);

assign RV32I_LH = is_rv32_insn && (

riscv_instr_funct3 == 3’b001) & (riscv_instr_opcode == 7’

b0000011) && (riscv_imm_i_type [1:0] == ’0);

assign RV32I_LW = is_rv32_insn && (

riscv_instr_funct3 == 3’b010) & (riscv_instr_opcode == 7’

b0000011) && (riscv_imm_i_type [1:0] == ’0);

178 Chapter F. Bit patterns of valid RV32IMC instructions

assign RV32I_LBU = is_rv32_insn && (

riscv_instr_funct3 == 3’b100) & (riscv_instr_opcode == 7’

b0000011) && (riscv_imm_i_type [1:0] == ’0);

assign RV32I_LHU = is_rv32_insn && (

riscv_instr_funct3 == 3’b101) & (riscv_instr_opcode == 7’

b0000011) && (riscv_imm_i_type [1:0] == ’0);

assign RV32I_SB = is_rv32_insn && (

riscv_instr_funct3 == 3’b000) & (riscv_instr_opcode == 7’

b0100011) && (riscv_imm_s_type [1:0] == ’0);

assign RV32I_SH = is_rv32_insn && (

riscv_instr_funct3 == 3’b001) & (riscv_instr_opcode == 7’

b0100011) && (riscv_imm_s_type [1:0] == ’0);

assign RV32I_SW = is_rv32_insn && (

riscv_instr_funct3 == 3’b010) & (riscv_instr_opcode == 7’

b0100011) && (riscv_imm_s_type [1:0] == ’0);

assign RV32I_ADDI = is_rv32_insn && (

riscv_instr_funct3 == 3’b000) & (riscv_instr_opcode == 7’

b0010011);

assign RV32I_SLTI = is_rv32_insn && (

riscv_instr_funct3 == 3’b010) & (riscv_instr_opcode == 7’

b0010011);

assign RV32I_SLTIU = is_rv32_insn && (

riscv_instr_funct3 == 3’b011) & (riscv_instr_opcode == 7’

b0010011);

assign RV32I_XORI = is_rv32_insn && (

riscv_instr_funct3 == 3’b100) & (riscv_instr_opcode == 7’

b0010011);

assign RV32I_ORI = is_rv32_insn && (

riscv_instr_funct3 == 3’b110) & (riscv_instr_opcode == 7’

b0010011);

assign RV32I_ANDI = is_rv32_insn && (

riscv_instr_funct3 == 3’b111) & (riscv_instr_opcode == 7’

b0010011);

assign RV32I_SLLI = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b001) & (riscv_instr_opcode == 7’b0010011) && (!

riscv_shamt [5]);

assign RV32I_SRLI = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b101) & (riscv_instr_opcode == 7’b0010011) && (!

riscv_shamt [5]);

179

assign RV32I_SRAI = is_rv32_insn && (

riscv_instr_funct7 == 7’b0100000) & (riscv_instr_funct3

== 3’b101) & (riscv_instr_opcode == 7’b0010011) && (!

riscv_shamt [5]);

assign RV32I_ADD = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b000) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_SUB = is_rv32_insn && (

riscv_instr_funct7 == 7’b0100000) & (riscv_instr_funct3

== 3’b000) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_SLL = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b001) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_SLT = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b010) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_SLTU = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b011) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_XOR = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b100) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_SRL = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b101) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_SRA = is_rv32_insn && (

riscv_instr_funct7 == 7’b0100000) & (riscv_instr_funct3

== 3’b101) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_OR = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b110) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_AND = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000000) & (riscv_instr_funct3

== 3’b111) & (riscv_instr_opcode == 7’b0110011);

assign RV32I_FENCE = is_rv32_insn && (

riscv_instr_funct3 == 3’b000) & (riscv_instr_opcode == 7’

b0001111);

logic [31:0] riscv_pc_rdata;

always_ff @ (posedge clk_i) begin

180 Chapter F. Bit patterns of valid RV32IMC instructions

if (! rst_ni) begin

riscv_pc_rdata <= 32’ h00100080; // initial PC

end else if (rvfi_valid) begin

riscv_pc_rdata <= rvfi_pc_wdata;

end

end

wire [31:0] rv32im_rs1_rdata , rv32im_rs2_rdata;

assign rv32im_rs1_rdata = u_top.gen_regfile_ff.

register_file_i.rf_reg_q[rv32im_instr_rs1];

assign rv32im_rs2_rdata = u_top.gen_regfile_ff.

register_file_i.rf_reg_q[rv32im_instr_rs2];

assign RV32I_JAL = is_rv32_insn && (

riscv_instr_opcode == 7’b1101111) && (riscv_imm_j_type

[1:0] == ’0) && (riscv_imm_j_type !=’0);

wire [31:0] RV32I_JALR_next_PC = ((riscv_imm_i_type +

rv32im_rs1_rdata)& (~1));

wire [31:0] RV32I_BEQ_next_PC = (rv32im_rs1_rdata ==

rv32im_rs2_rdata) ? (riscv_pc_rdata + riscv_imm_b_type) :

(riscv_pc_rdata + 4);

wire [31:0] RV32I_BNE_next_PC = (rv32im_rs1_rdata !=

rv32im_rs2_rdata) ? (riscv_pc_rdata + riscv_imm_b_type) :

(riscv_pc_rdata + 4);

wire [31:0] RV32I_BLT_next_PC = ($signed(rv32im_rs1_rdata)

< $signed(rv32im_rs2_rdata)) ? (riscv_pc_rdata +

riscv_imm_b_type) : (riscv_pc_rdata + 4);

wire [31:0] RV32I_BGE_next_PC = ($signed(rv32im_rs1_rdata)

>= $signed(rv32im_rs2_rdata)) ? (riscv_pc_rdata +

riscv_imm_b_type) : (riscv_pc_rdata + 4);

wire [31:0] RV32I_BLTU_next_PC = ($unsigned(

rv32im_rs1_rdata) < $unsigned(rv32im_rs2_rdata)) ? (

riscv_pc_rdata + riscv_imm_b_type) : (riscv_pc_rdata + 4)

;

wire [31:0] RV32I_BGEU_next_PC = ($unsigned(

rv32im_rs1_rdata) >= $unsigned(rv32im_rs2_rdata)) ? (

riscv_pc_rdata + riscv_imm_b_type) : (riscv_pc_rdata + 4)

;

181

assign RV32I_JALR = is_rv32_insn && (

riscv_instr_funct3 == 3’b000) & (riscv_instr_opcode == 7’

b1100111) && (riscv_imm_i_type [1:0] == ’0) && (

riscv_imm_i_type !=’0) && (RV32I_JALR_next_PC [0] == ’0);

assign RV32I_BEQ = is_rv32_insn && (

riscv_instr_funct3 == 3’b000) & (riscv_instr_opcode == 7’

b1100011) && (riscv_imm_b_type [1:0] == ’0) && (

riscv_imm_b_type !=’0) && (RV32I_BEQ_next_PC [0] == ’0);

assign RV32I_BNE = is_rv32_insn && (

riscv_instr_funct3 == 3’b001) & (riscv_instr_opcode == 7’

b1100011) && (riscv_imm_b_type [1:0] == ’0) && (

riscv_imm_b_type !=’0) && (RV32I_BNE_next_PC [0] == ’0);

assign RV32I_BLT = is_rv32_insn && (

riscv_instr_funct3 == 3’b100) & (riscv_instr_opcode == 7’

b1100011) && (riscv_imm_b_type [1:0] == ’0) && (

riscv_imm_b_type !=’0) && (RV32I_BLT_next_PC [0] == ’0);

assign RV32I_BGE = is_rv32_insn && (

riscv_instr_funct3 == 3’b101) & (riscv_instr_opcode == 7’

b1100011) && (riscv_imm_b_type [1:0] == ’0) && (

riscv_imm_b_type !=’0) && (RV32I_BGE_next_PC [0] == ’0);

assign RV32I_BLTU = is_rv32_insn && (

riscv_instr_funct3 == 3’b110) & (riscv_instr_opcode == 7’

b1100011) && (riscv_imm_b_type [1:0] == ’0) && (

riscv_imm_b_type !=’0) && (RV32I_BLTU_next_PC [0] == ’0);

assign RV32I_BGEU = is_rv32_insn && (

riscv_instr_funct3 == 3’b111) & (riscv_instr_opcode == 7’

b1100011) && (riscv_imm_b_type [1:0] == ’0) && (

riscv_imm_b_type !=’0) && (RV32I_BGEU_next_PC [0] == ’0);

logic RV32M_MUL , RV32M_MULH , RV32M_MULHSU , RV32M_MULHU ,

RV32M_DIV , RV32M_DIVU , RV32M_REM , RV32M_REMU;

assign RV32M_MUL = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000001) & (riscv_instr_funct3

== 3’b000) & (riscv_instr_opcode == 7’b0110011);

assign RV32M_MULH = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000001) & (riscv_instr_funct3

== 3’b001) & (riscv_instr_opcode == 7’b0110011);

assign RV32M_MULHSU = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000001) & (riscv_instr_funct3

== 3’b010) & (riscv_instr_opcode == 7’b0110011);

182 Chapter F. Bit patterns of valid RV32IMC instructions

assign RV32M_MULHU = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000001) & (riscv_instr_funct3

== 3’b011) & (riscv_instr_opcode == 7’b0110011);

assign RV32M_DIV = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000001) & (riscv_instr_funct3

== 3’b100) & (riscv_instr_opcode == 7’b0110011);

assign RV32M_DIVU = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000001) & (riscv_instr_funct3

== 3’b101) & (riscv_instr_opcode == 7’b0110011);

assign RV32M_REM = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000001) & (riscv_instr_funct3

== 3’b110) & (riscv_instr_opcode == 7’b0110011);

assign RV32M_REMU = is_rv32_insn && (

riscv_instr_funct7 == 7’b0000001) & (riscv_instr_funct3

== 3’b111) & (riscv_instr_opcode == 7’b0110011);

logic is_specified_RV32I , is_specified_RV32M;

assign is_specified_RV32I = RV32I_LUI || RV32I_AUIPC ||

RV32I_JAL || RV32I_JALR || RV32I_BEQ || RV32I_BNE || RV32I_BLT ||

RV32I_BGE || RV32I_BLTU || RV32I_BGEU || RV32I_LB || RV32I_LH ||

RV32I_LW || RV32I_LBU || RV32I_LHU || RV32I_SB || RV32I_SH ||

RV32I_SW || RV32I_ADDI || RV32I_SLTI || RV32I_SLTIU || RV32I_XORI

|| RV32I_ORI || RV32I_ANDI || RV32I_SLLI || RV32I_SRLI ||

RV32I_SRAI || RV32I_ADD || RV32I_SUB || RV32I_SLL || RV32I_SLT ||

RV32I_SLTU || RV32I_XOR || RV32I_SRL || RV32I_SRA || RV32I_OR ||

RV32I_AND || RV32I_FENCE;

assign is_specified_RV32M = RV32M_MUL || RV32M_MULH ||

RV32M_MULHSU || RV32M_MULHU || RV32M_DIV || RV32M_DIVU ||

RV32M_REM || RV32M_REMU;

logic RV32C_Right_reserved , RVC_Right_ADDI4SPN ,

RVC_Right_LW , RVC_Right_SW , RVC_Right_ADDI , RVC_Right_JAL

, RVC_Right_LI , RVC_Right_ADDI16SP , RVC_Right_LUI ,

RVC_Right_SRLI , RVC_Right_SRAI , RVC_Right_ANDI ,

RVC_Right_SUB , RVC_Right_XOR , RVC_Right_OR , RVC_Right_AND

, RVC_Right_J , RVC_Right_BEQZ , RVC_Right_BNEZ ,

RVC_Right_SLLI , RVC_Right_LWSP , RVC_Right_JR ,

RVC_Right_MV , RVC_Right_JALR , RVC_Right_ADD ,

RVC_Right_SWSP;

183

assign RV32C_Right_reserved = is_rv32c_insn && (

riscv_compressed_instrR == 16’b0) || (

riscv_compressed_instrR [15:10] == 6’b100111 &&

riscv_compressed_instrR [1:0] == 2’b01);

assign RVC_Right_ADDI4SPN = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b000) && (

riscv_compressed_instrR [1:0] == 2’b00) && ({22’d0 ,

riscv_compressed_instrR [10:7] , riscv_compressed_instrR

[12:11] , riscv_compressed_instrR [5],

riscv_compressed_instrR [6], 2’b00}!=’0);

assign RVC_Right_LW = is_rv32c_insn &&

(riscv_compressed_instrR [15:13] == 3’b010) && (

riscv_compressed_instrR [1:0] == 2’b00);

assign RVC_Right_SW = is_rv32c_insn &&

(riscv_compressed_instrR [15:13] == 3’b110) && (

riscv_compressed_instrR [1:0] == 2’b00);

assign RVC_Right_ADDI = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b000) && (

riscv_compressed_instrR [1:0] == 2’b01);

assign RVC_Right_LI = is_rv32c_insn &&

(riscv_compressed_instrR [15:13] == 3’b010) && (

riscv_compressed_instrR [1:0] == 2’b01);

assign RVC_Right_ADDI16SP = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b011) && (

riscv_compressed_instrR [1:0] == 2’b01) && (

riscv_compressed_instrR [11:7] == 5’d2) && ($signed ({ {23{

riscv_compressed_instrR [12]}} , riscv_compressed_instrR

[4:3] , riscv_compressed_instrR [5],

riscv_compressed_instrR [2], riscv_compressed_instrR [6],

4’b0})!=’0);

assign RVC_Right_LUI = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b011) && (

riscv_compressed_instrR [1:0] == 2’b01) && (

riscv_compressed_instrR [11:7] != 5’d2) && ($signed ({ {15{

riscv_compressed_instrR [12]}} , riscv_compressed_instrR

[6:2] , 12’b0})!=’0);

assign RVC_Right_SRLI = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b100) && (

riscv_compressed_instrR [11:10] == 2’b00) && (

riscv_compressed_instrR [1:0] == 2’b01) && (!

riscv_compressed_instrR [12]);

184 Chapter F. Bit patterns of valid RV32IMC instructions

assign RVC_Right_SRAI = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b100) && (

riscv_compressed_instrR [11:10] == 2’b01) && (

riscv_compressed_instrR [1:0] == 2’b01) && (!

riscv_compressed_instrR [12]);

assign RVC_Right_ANDI = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b100) && (

riscv_compressed_instrR [11:10] == 2’b10) && (

riscv_compressed_instrR [1:0] == 2’b01);

assign RVC_Right_SUB = is_rv32c_insn && (

riscv_compressed_instrR [15:10] == 6’b100011) && (

riscv_compressed_instrR [6:5] == 2’b00) && (

riscv_compressed_instrR [1:0] == 2’b01);

assign RVC_Right_XOR = is_rv32c_insn && (

riscv_compressed_instrR [15:10] == 6’b100011) && (

riscv_compressed_instrR [6:5] == 2’b01) && (

riscv_compressed_instrR [1:0] == 2’b01);

assign RVC_Right_OR = is_rv32c_insn && (

riscv_compressed_instrR [15:10] == 6’b100011) && (

riscv_compressed_instrR [6:5] == 2’b10) && (

riscv_compressed_instrR [1:0] == 2’b01);

assign RVC_Right_AND = is_rv32c_insn && (

riscv_compressed_instrR [15:10] == 6’b100011) && (

riscv_compressed_instrR [6:5] == 2’b11) && (

riscv_compressed_instrR [1:0] == 2’b01);

assign RVC_Right_SLLI = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b000) && (

riscv_compressed_instrR [1:0] == 2’b10) && (!

riscv_compressed_instrR [12]);

assign RVC_Right_LWSP = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b010) && (

riscv_compressed_instrR [1:0] == 2’b10) && (

riscv_compressed_instrR [11:7] != ’0);

assign RVC_Right_MV = is_rv32c_insn &&

(riscv_compressed_instrR [15:12] == 4’b1000) && (

riscv_compressed_instrR [1:0] == 2’b10) && (

riscv_compressed_instrR [6:2] != ’0);

assign RVC_Right_ADD = is_rv32c_insn && (

riscv_compressed_instrR [15:12] == 4’b1001) && (

riscv_compressed_instrR [1:0] == 2’b10)&& (

riscv_compressed_instrR [6:2] != ’0);

185

assign RVC_Right_SWSP = (riscv_compressed_instrR [15:13]

== 3’b110) && (riscv_compressed_instrR [1:0] == 2’b10);

// Left 16 bits of a 32-bit RVC instruction

wire [31:0] RVC_Left_JAL_imm = $signed ({ {21{

riscv_compressed_instrL [12]}} , riscv_compressed_instrL

[8], riscv_compressed_instrL [10], riscv_compressed_instrL

[9], riscv_compressed_instrL [6], riscv_compressed_instrL

[7], riscv_compressed_instrL [2], riscv_compressed_instrL

[11], riscv_compressed_instrL [5], riscv_compressed_instrL

[4], riscv_compressed_instrL [3], 1’b0});

wire [31:0] RVC_Left_JAL_next_PC = (riscv_pc_rdata +

RVC_Left_JAL_imm);

wire [31:0] RVC_Left_J_imm = {{21{ riscv_compressed_instrL

[12]}} , riscv_compressed_instrL [8],

riscv_compressed_instrL [10], riscv_compressed_instrL [9],

riscv_compressed_instrL [6], riscv_compressed_instrL [7],

riscv_compressed_instrL [2], riscv_compressed_instrL [11],

riscv_compressed_instrL [5], riscv_compressed_instrL [4],

riscv_compressed_instrL [3], 1’b0};

wire [31:0] RVC_Left_J_next_PC = (riscv_pc_rdata +

RVC_Left_J_imm);

wire [4:0] RVC_Left_B_insn_rs1 = {1’b1 ,

riscv_compressed_instrL [9:7]};

wire [31:0] RVC_Left_B_rs1_rdata = u_top.gen_regfile_ff.

register_file_i.rf_reg_q[RVC_Left_B_insn_rs1];

wire [31:0] RVC_Left_B_imm = { {24{ riscv_compressed_instrL

[12]}} , riscv_compressed_instrL [6:5] ,

riscv_compressed_instrL [2], riscv_compressed_instrL

[11:10] , riscv_compressed_instrL [4:3], 1’b0};

wire [31:0] RVC_Left_BEQZ_next_PC = ((

RVC_Left_B_rs1_rdata == 0) ? (riscv_pc_rdata +

RVC_Left_B_imm) : (riscv_pc_rdata + 32’d2));

wire [31:0] RVC_Left_BNEZ_next_PC = ((

RVC_Left_B_rs1_rdata != 0) ? (riscv_pc_rdata +

RVC_Left_B_imm) : (riscv_pc_rdata + 32’d2));

wire [4:0] RVC_Left_J_insn_rs1 = riscv_compressed_instrL

[11:7];

186 Chapter F. Bit patterns of valid RV32IMC instructions

wire [31:0] RVC_Left_J_rs1_rdata = u_top.gen_regfile_ff.

register_file_i.rf_reg_q[RVC_Left_J_insn_rs1];

wire [31:0] RVC_Left_JR_next_PC = (RVC_Left_J_rs1_rdata &

~32’d1);

wire [31:0] RVC_Left_JALR_next_PC = (RVC_Left_J_rs1_rdata

& ~1);

assign RVC_Left_JAL = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b001) && (

riscv_compressed_instrL [1:0] == 2’b01) && (

RVC_Left_JAL_next_PC [0] == ’0);

assign RVC_Left_J = is_rv32c_insn &&

(riscv_compressed_instrL [15:13] == 3’b101) && (

riscv_compressed_instrL [1:0] == 2’b01) && (

RVC_Left_J_next_PC [0] == ’0);

assign RVC_Left_BEQZ = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b110) && (

riscv_compressed_instrL [1:0] == 2’b01) && (

RVC_Left_BEQZ_next_PC [0] == ’0);

assign RVC_Left_BNEZ = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b111) && (

riscv_compressed_instrL [1:0] == 2’b01) && (

RVC_Left_BNEZ_next_PC [0] == ’0);

assign RVC_Left_JR = is_rv32c_insn &&

(riscv_compressed_instrL [15:12] == 4’b1000) && (

riscv_compressed_instrL [1:0] == 2’b10) && (

riscv_compressed_instrL [11:7] != ’0) && (

riscv_compressed_instrL [6:2] == ’0) && (

RVC_Left_JR_next_PC [0] ==’0);

assign RVC_Left_JALR = is_rv32c_insn && (

riscv_compressed_instrL [15:12] == 4’b1001) && (

riscv_compressed_instrL [1:0] == 2’b10) && (

riscv_compressed_instrL [11:7] != ’0) && (

riscv_compressed_instrL [6:2] == ’0) && (

RVC_Left_JALR_next_PC [0] ==’0);

187

// Right 16 bits of a 32-bit RVC instruction

wire [31:0] RVC_Right_JAL_imm = $signed ({ {21{

riscv_compressed_instrR [12]}} , riscv_compressed_instrR

[8], riscv_compressed_instrR [10], riscv_compressed_instrR

[9], riscv_compressed_instrR [6], riscv_compressed_instrR

[7], riscv_compressed_instrR [2], riscv_compressed_instrR

[11], riscv_compressed_instrR [5], riscv_compressed_instrR

[4], riscv_compressed_instrR [3], 1’b0});

wire [31:0] RVC_Right_JAL_next_PC = (riscv_pc_rdata +

RVC_Right_JAL_imm);

wire [31:0] RVC_Right_J_imm = {{21{ riscv_compressed_instrR

[12]}} , riscv_compressed_instrR [8],

riscv_compressed_instrR [10], riscv_compressed_instrR [9],

riscv_compressed_instrR [6], riscv_compressed_instrR [7],

riscv_compressed_instrR [2], riscv_compressed_instrR [11],

riscv_compressed_instrR [5], riscv_compressed_instrR [4],

riscv_compressed_instrR [3], 1’b0};

wire [31:0] RVC_Right_J_next_PC = (riscv_pc_rdata +

RVC_Right_J_imm);

wire [4:0] RVC_Right_B_insn_rs1 = {1’b1 ,

riscv_compressed_instrR [9:7]};

wire [31:0] RVC_Right_B_rs1_rdata = u_top.gen_regfile_ff.

register_file_i.rf_reg_q[RVC_Right_B_insn_rs1];

wire [31:0] RVC_Right_B_imm = { {24{

riscv_compressed_instrR [12]}} , riscv_compressed_instrR

[6:5] , riscv_compressed_instrR [2],

riscv_compressed_instrR [11:10] , riscv_compressed_instrR

[4:3] , 1’b0};

wire [31:0] RVC_Right_BEQZ_next_PC = ((

RVC_Right_B_rs1_rdata == 0) ? (riscv_pc_rdata +

RVC_Right_B_imm) : (riscv_pc_rdata + 32’d2));

wire [31:0] RVC_Right_BNEZ_next_PC = ((

RVC_Right_B_rs1_rdata != 0) ? (riscv_pc_rdata +

RVC_Right_B_imm) : (riscv_pc_rdata + 32’d2));

wire [4:0] RVC_Right_J_insn_rs1 = riscv_compressed_instrR

[11:7];

188 Chapter F. Bit patterns of valid RV32IMC instructions

wire [31:0] RVC_Right_J_rs1_rdata = u_top.gen_regfile_ff.

register_file_i.rf_reg_q[RVC_Right_J_insn_rs1];

wire [31:0] RVC_Right_JR_next_PC = (RVC_Right_J_rs1_rdata

& ~32’d1);

wire [31:0] RVC_Right_JALR_next_PC = (

RVC_Right_J_rs1_rdata & ~1);

assign RVC_Right_JAL = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b001) && (

riscv_compressed_instrR [1:0] == 2’b01) && (

RVC_Right_JAL_next_PC [0] == ’0);

assign RVC_Right_J = is_rv32c_insn &&

(riscv_compressed_instrR [15:13] == 3’b101) && (

riscv_compressed_instrR [1:0] == 2’b01) && (

RVC_Right_J_next_PC [0] == ’0);

assign RVC_Right_BEQZ = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b110) && (

riscv_compressed_instrR [1:0] == 2’b01) && (

RVC_Right_BEQZ_next_PC [0] == ’0);

assign RVC_Right_BNEZ = is_rv32c_insn && (

riscv_compressed_instrR [15:13] == 3’b111) && (

riscv_compressed_instrR [1:0] == 2’b01) && (

RVC_Right_BNEZ_next_PC [0] == ’0);

assign RVC_Right_JR = is_rv32c_insn &&

(riscv_compressed_instrR [15:12] == 4’b1000) && (

riscv_compressed_instrR [1:0] == 2’b10) && (

riscv_compressed_instrR [11:7] != ’0) && (

riscv_compressed_instrR [6:2] == ’0) && (

RVC_Right_JR_next_PC [0] ==’0);

assign RVC_Right_JALR = is_rv32c_insn && (

riscv_compressed_instrR [15:12] == 4’b1001) && (

riscv_compressed_instrR [1:0] == 2’b10) && (

riscv_compressed_instrR [11:7] != ’0) && (

riscv_compressed_instrR [6:2] == ’0) && (

RVC_Right_JALR_next_PC [0] ==’0);

189

logic is_rv32c_insn;

assign is_rv32c_insn = (instr_rdata_i [1:0] != 2’b11);

logic [15:0] riscv_compressed_instrL ,

riscv_compressed_instrR;

assign riscv_compressed_instrL = instr_rdata_i [31:16];

assign riscv_compressed_instrR = instr_rdata_i [15:0];

logic RV32C_Left_reserved , RVC_Left_ADDI4SPN , RVC_Left_LW ,

RVC_Left_SW , RVC_Left_ADDI , RVC_Left_JAL , RVC_Left_LI ,

RVC_Left_ADDI16SP , RVC_Left_LUI , RVC_Left_SRLI ,

RVC_Left_SRAI , RVC_Left_ANDI , RVC_Left_SUB , RVC_Left_XOR ,

RVC_Left_OR , RVC_Left_AND , RVC_Left_J , RVC_Left_BEQZ ,

RVC_Left_BNEZ , RVC_Left_SLLI , RVC_Left_LWSP , RVC_Left_JR ,

RVC_Left_MV , RVC_Left_JALR , RVC_Left_ADD , RVC_Left_SWSP;

assign RV32C_Left_reserved = is_rv32c_insn && (

riscv_compressed_instrL == 16’b0) || (

riscv_compressed_instrL [15:10] == 6’b100111 &&

riscv_compressed_instrL [1:0] == 2’b01);

assign RVC_Left_ADDI4SPN = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b000) && (

riscv_compressed_instrL [1:0] == 2’b00) && ({22’d0 ,

riscv_compressed_instrL [10:7] , riscv_compressed_instrL

[12:11] , riscv_compressed_instrL [5],

riscv_compressed_instrL [6], 2’b00}!=’0);

assign RVC_Left_LW = is_rv32c_insn &&

(riscv_compressed_instrL [15:13] == 3’b010) && (

riscv_compressed_instrL [1:0] == 2’b00);

assign RVC_Left_SW = is_rv32c_insn &&

(riscv_compressed_instrL [15:13] == 3’b110) && (

riscv_compressed_instrL [1:0] == 2’b00);

assign RVC_Left_ADDI = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b000) && (

riscv_compressed_instrL [1:0] == 2’b01);

assign RVC_Left_LI = is_rv32c_insn &&

(riscv_compressed_instrL [15:13] == 3’b010) && (

riscv_compressed_instrL [1:0] == 2’b01);

190 Chapter F. Bit patterns of valid RV32IMC instructions

assign RVC_Left_ADDI16SP = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b011) && (

riscv_compressed_instrL [1:0] == 2’b01) && (

riscv_compressed_instrL [11:7] == 5’d2) && ($signed ({ {23{

riscv_compressed_instrL [12]}} , riscv_compressed_instrL

[4:3] , riscv_compressed_instrL [5],

riscv_compressed_instrL [2], riscv_compressed_instrL [6],

4’b0})!=’0);

assign RVC_Left_LUI = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b011) && (

riscv_compressed_instrL [1:0] == 2’b01) && (

riscv_compressed_instrL [11:7] != 5’d2) && ($signed ({ {15{

riscv_compressed_instrL [12]}} , riscv_compressed_instrL

[6:2] , 12’b0})!=’0);

assign RVC_Left_SRLI = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b100) && (

riscv_compressed_instrL [11:10] == 2’b00) && (

riscv_compressed_instrL [1:0] == 2’b01) && (!

riscv_compressed_instrL [12]);

assign RVC_Left_SRAI = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b100) && (

riscv_compressed_instrL [11:10] == 2’b01) && (

riscv_compressed_instrL [1:0] == 2’b01) && (!

riscv_compressed_instrL [12]);

assign RVC_Left_ANDI = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b100) && (

riscv_compressed_instrL [11:10] == 2’b10) && (

riscv_compressed_instrL [1:0] == 2’b01);

assign RVC_Left_SUB = is_rv32c_insn && (

riscv_compressed_instrL [15:10] == 6’b100011) && (

riscv_compressed_instrL [6:5] == 2’b00) && (

riscv_compressed_instrL [1:0] == 2’b01);

assign RVC_Left_XOR = is_rv32c_insn && (

riscv_compressed_instrL [15:10] == 6’b100011) && (

riscv_compressed_instrL [6:5] == 2’b01) && (

riscv_compressed_instrL [1:0] == 2’b01);

assign RVC_Left_OR = is_rv32c_insn && (

riscv_compressed_instrL [15:10] == 6’b100011) && (

riscv_compressed_instrL [6:5] == 2’b10) && (

riscv_compressed_instrL [1:0] == 2’b01);

191

assign RVC_Left_AND = is_rv32c_insn && (

riscv_compressed_instrL [15:10] == 6’b100011) && (

riscv_compressed_instrL [6:5] == 2’b11) && (

riscv_compressed_instrL [1:0] == 2’b01);

assign RVC_Left_SLLI = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b000) && (

riscv_compressed_instrL [1:0] == 2’b10) && (!

riscv_compressed_instrL [12]);

assign RVC_Left_LWSP = is_rv32c_insn && (

riscv_compressed_instrL [15:13] == 3’b010) && (

riscv_compressed_instrL [1:0] == 2’b10) && (

riscv_compressed_instrL [11:7] != ’0);

assign RVC_Left_MV = is_rv32c_insn &&

(riscv_compressed_instrL [15:12] == 4’b1000) && (

riscv_compressed_instrL [1:0] == 2’b10) && (

riscv_compressed_instrL [6:2] != ’0);

assign RVC_Left_ADD = is_rv32c_insn && (

riscv_compressed_instrL [15:12] == 4’b1001) && (

riscv_compressed_instrL [1:0] == 2’b10)&& (

riscv_compressed_instrL [6:2] != ’0);

assign RVC_Left_SWSP = (riscv_compressed_instrL [15:13]

== 3’b110) && (riscv_compressed_instrL [1:0] == 2’b10);

logic is_specified_RV32C;

assign is_specified_RV32C = (RVC_Left_ADDI4SPN ||

RVC_Left_LW || RVC_Left_SW || RVC_Left_ADDI || RVC_Left_JAL ||

RVC_Left_LI || RVC_Left_ADDI16SP || RVC_Left_LUI ||

RVC_Left_SRLI || RVC_Left_SRAI || RVC_Left_ANDI || RVC_Left_SUB

|| RVC_Left_XOR || RVC_Left_OR || RVC_Left_AND || RVC_Left_J ||

RVC_Left_BEQZ || RVC_Left_BNEZ || RVC_Left_SLLI ||

RVC_Left_LWSP || RVC_Left_JR || RVC_Left_MV || RVC_Left_JALR ||

RVC_Left_ADD || RVC_Left_SWSP) && (RVC_Right_ADDI4SPN ||

RVC_Right_LW || RVC_Right_SW || RVC_Right_ADDI || RVC_Right_JAL

|| RVC_Right_LI || RVC_Right_ADDI16SP || RVC_Right_LUI ||

RVC_Right_SRLI || RVC_Right_SRAI || RVC_Right_ANDI ||

RVC_Right_SUB || RVC_Right_XOR || RVC_Right_OR || RVC_Right_AND

|| RVC_Right_J || RVC_Right_BEQZ || RVC_Right_BNEZ ||

RVC_Right_SLLI || RVC_Right_LWSP || RVC_Right_JR ||

RVC_Right_MV || RVC_Right_JALR || RVC_Right_ADD ||

RVC_Right_SWSP);

193

Appendix G

Static and Dynamic Slicing

Dynamic slicing is an improved method of simulation-based fault injection. Volk uses
dynamic slicing to speed up fault injection [54], which has been referenced in Chapter
2. In that paper, Volk claims that with dynamic slicing, up to 10 percent fault list
reduction can be achieved, which is a significant improvement in validation costs.
Such a methodology is adopted in this chapter to prove its limitations.

The adopted methodology is different from Volk’s work. We used Verilator to
simulate the design and to collect coverage data. In addition, we developed a Python
program to process the coverage data to automatically generate static slices and
dynamic slices. The commercial application functions (except simulation) used in
Volk’s work are replaced by the developed Python program.

The adopted methodology can be divided into five steps:

1. Build corresponding static slices for all primary core outputs.

2. Run simulations to collect coverage data at each clock cycle. The coverage data
contains the lines of consumed/executed code at each clock cycle.

3. Analyse the coverage data to identify the consumed registers (the registers in the
lines of consumed code) at each clock cycle.

4. Generate dynamic slices by comparing the static slices with the consumed
registers.

5. Prune the fault list with the help of the dynamic slices and perform
simulation-based fault injection with the pruned fault list.

The first step is to generate a static slice for each sink. Since we are interested in
monitoring the response of faults, a sink in this experiment is an output port of the
Ibex Core. A static slice is a collection of all source code that may influence the sink

194 Chapter G. Static and Dynamic Slicing

[54]. In this experiment, we are interested in SEUs, hence a static slice is narrowed
down to a collection of all registers that may influence the chosen output port,
regardless of the benchmark. A static slice is similar to a COI introduced in Chapter 2.
A script is used to automatically generate static slices. The Breadth-First Search
algorithm is implemented in the script to generate static slices of all sinks, as shown in
the following:

a) Traverse the entire source code to find all (first-level) registers that can
influence the target sink. Append the (first-level) registers to a list.

b) For each register in the list, traverse the entire source code to find all
(second-level) registers that can influence the target register. Append the
(second-level) registers to the list.

c) Repeat step b) until no more sub-level registers can be found and all the
registers in the list have been processed. The list is a static slice for the target
sink.

d) Go back to step a) to generate static slices of the other sinks.

The second step is to collect coverage data. CoreMark is chosen as the benchmark.
Verilator is used to simulate the Ibex Core and collect coverage data. Verilator
supports block coverage, line coverage, and branch coverage. In this experiment, only
line coverage is used, which records lines of code that are executed/consumed during
simulation. Consumed registers can be easily extracted from the consumed code lines
by searching register names in the corresponding source code. An SEU can occur at
any clock cycle during simulation. In order to prune the fault list, it is necessary to list
the consumed registers in each clock cycle. As a result, line coverage data at each
clock cycle are recorded. Collecting coverage data in this step relies on Verilator.
However, Verilator has limited support to generate coverage data for each bit: it
cannot identify more than two-level depths if SystemVerilog structures are used to
declare registers. For example, the Ibex Core uses a packaged structure to declare a
CPU control register, as shown in the following.

typedef struct packed {

logic [2:0] dummy_instr_mask;

logic dummy_instr_en;

logic data_ind_timing;

logic icache_enable;

} cpu_ctrl_t;

cpu_ctrl_t cpuctrl_q;

cpuctrl_q is a register with two-level depths. The structure cpu_ctrl_t defines all
fields of the register. Verilator is able to generate the coverage data of all the fields of

195

this register. However, if one of the field is another structure, this register is more than
two-level depths and Verilator cannot trace the nested structure. As a result, there is a
limitation in this step: it is hard to narrow consumed registers down to consumed bits.

The third step is to analyse the coverage data to identify consumed registers at each
clock cycle. The coverage data generated in the second step contains consumed line
numbers at each clock cycle with corresponding source file names. Actual
executed/consumed codes are not included. In other words, consumed registers
cannot be directly extracted from the line coverage data. Hence, a script was
developed to process the coverage data. For each coverage data at each clock cycle,
the script first extracts the executed line numbers and file names from the coverage
data. Then corresponding consumed codes in the source files are located. The next
step is to identify and record the consumed registers from the consumed codes. The
outputs of this step are multiple lists of consumed registers at each clock cycle for the
given benchmark and different sinks.

There are many lines of source code in a complex design. For a certain
program/benchmark, not all lines of code are executed during simulation. For
instance, not all branches are executed because of some unmet conditions. Similarly,
though there may exist many registers in a static slice, not all registers are actually
consumed during simulation. A dynamic slice is a collection of actually executed lines
for a benchmark [54]. For convenience in this Chapter, a dynamic slice is narrowed
down to a collection of actually consumed registers during simulation for a
benchmark. Because we are interested in SEUs in registers inside the Ibex Core; other
components in the executed lines are out of consideration.

The fourth step is to compare the static slice with the list of consumed registers
generated from the third step. The static slice is a list of registers that may influence
the chosen output. By comparing the static slice and the list of consumed registers,
consumed registers that actually influence the sink at each clock cycle can be found.
Such a list of registers is a dynamic slice. For a chosen sink and a benchmark, there is
one static slice and multiple dynamic slices, because there are multiple clock cycles in
simulation. The number of dynamic slices depends on the clock cycles of the
benchmark.

The next step is to generate a fault list from the dynamic slices. Each dynamic slice
contains all registers that influence an output port at a certain clock cycle, hence fault
locations and injection time can be specified. Faults outside the dynamic slices are
pruned from the fault list. The output of this step is a fault list that contains both fault
location and injection time for the chosen benchmark. The fault list is then used for
simulation-based fault injection.

There are nine output ports of the Ibex Core. It only takes seconds to generate all static
slices. However, it takes about 16 seconds to write all coverage data for one clock cycle

196 Chapter G. Static and Dynamic Slicing

to the hard disk. According to this calculation, it may take up to 777 days to record all
coverage data, which is unacceptable. To reduce time, the multiplication program
from Mibench benchmark is used instead. Simulating the multiplication program
takes 68490 clock cycles, which is far less than CoreMark. Each coverage data takes
around 195.1 KB. As a result, it takes approximately 13 days and 13 GB to record all
coverage data. Then the above steps are performed. The following is an example for
demonstrating the methodology. To save space, only a part of the results are shown.

========== Static Slice Example =====================

Sink: instr_req_o

Module: ibex_core

register: instr_req_o

Parents in current module:

instr_req_out pmp_req_err

Module: ibex_prefetch_buffer

Parents_in_current_module:

valid_req_q rdata_outstanding_q rdata_pmp_err_q

Module: ibex_fetch_fifo

Parents_in_current_module:

valid_q out_addr_o instr_addr_q rdata_q err_q

===

========== Coverage Data Example ====================

Bit Name Clock Cycle

ctrl_fsm_cs [0] 1

counter_q [0] 1

counter_q [0] 1

mtvec_q [0] 1

mtvec_q [20] 1

rdata_q [0] 1

rdata_q [20] 1

instr_addr_q [20] 1

instr_addr_q [7] 1

fetch_addr_q [20] 1

fetch_addr_q [7] 1

ctrl_fsm_cs [0] 2

dcsr_q.prv 2

===

197

========== Dynamic Slice Example ====================

register cycle module

rdata_q 1 ibex_fetch_fifo

instr_addr_q 1 ibex_fetch_fifo

rdata_q 2 ibex_fetch_fifo

===

The primary output instr_req_o, which is an instruction request signal to the
memory, is chosen as the sink. The first step is to generate a static slice. The script
firstly searched all (first-level) registers that may affect the sink and found registers
instr_req_out and pmp_req_err in the ibex_core module. Then it searched registers
that may affect the (first-level) registers and found multiple (second-level) registers in
the ibex_prefetch_buffer module and (third-level) registers in the
ibex_fetch_fifo module. The coverage data is supposed to record all consumed
‘bits’ at each clock cycle. However, as noted above, Verilator cannot trace bits in
nested structures, such as dcsr_q.prv. dcsr_q is a CSR register used in Debug mode.
The Ibex Core uses nested SystemVerilog structures to declare this register. prv is a
two-bit register that stores the privilege mode. It is hard to determine which bit is the
real consumed bit from the coverage data. Hence, we only recorded registers in the
dynamic slice example.

In theory, only consumed registers in each cycle should affect the sink. By removing
unconsumed registers from the whole register list at each cycle, the fault list should be
pruned. According to the result, there are 33 to 66 consumed registers in each clock
cycle. The variation is caused by different sizes of static slices of different outputs. In
general, most registers are consumed at each clock cycle. After 68490 clock cycles,
there are 2324327 consumed registers. The register reduction percentage is 52 %.

The reduction percentage is different from [54]. Note this is the register reduction
percentage for a simple multiplication program instead of the bit reduction percentage
for all benchmarks. There are 1,435,387 faults left in the fault list after performing
dynamic slicing. Compared to the total 137,527,920 faults without dynamic slicing, the
reduction is significant. The fault list is reduced by almost 99 %. The reduction
percentage is high because a simple program is simulated. Using a simple
multiplication program saves time and space. However, there are registers that are
never consumed. For example, register instr_is_compressed_id_o, which contains
compressed instructions. This register is never consumed because after compilation
there are no compressed instructions in the simple multiplication program. As a
result, further fault injection has limited fault coverage.

Using dynamic slicing does prune the fault list. However, it is still practically
impossible to simulate the remaining 1,435,387 faults in the fault list. The cost of

198 Chapter G. Static and Dynamic Slicing

reducing the fault list is overhead time and storage space. It may be helpful to use
dynamic slicing to find non-critical faults for a design running a certain program.
However, fault injection is still needed to test the rest faults, since the results of the
rest faults are unknown. It is not worth using dynamic slicing to prune the fault list,
because after the efforts of pruning, it is still practically impossible to use fault
injection to test the remaining faults.

Dynamic slices generated above are just for one multiplication program. By
comparing the static slices and dynamic slices mentioned above, most lines of codes
(and hence registers) are consumed. However, there are some registers that are never
consumed, leading to unreachable states or corner cases. To reach corner cases or to
cover all state space, careful stimulus and hence more programs, dynamic slicing, and
more fault injections are needed, leading to infeasible time and storage space
overhead.

In summary, applying dynamic slicing can prune the fault list. However, this method
relies on collecting coverage data. It is hard to apply this method with tools that
cannot support the bit coverage well, such as Verilator in this experiment. The prune
percentage varies based on designs and programs. In general, it is not worth using
dynamic slicing to prune the fault list for further fault injection. In addition, this
method does not solve any of the limitations of simulation-based fault injection. It is
not appropriate to use this improved simulation-based fault injection method to
achieve the objectives of this research.

199

Appendix H

Source code of extra MULTDIV

// Extra MULTIDV without MAC

logic [63:0] mul_result_ext;

logic [31:0] mul_result;

logic [31:0] Q, R;

logic [ResidueWidth -1:0] Q_residue , R_residue;

logic [1:0] a_residue , b_residue;

logic [3:0] residue_mul;

always_comb begin

mul_result_ext = op_a_i [31:0]* op_b_i [31:0];

mul_result = mul_result_ext [63:32];

Q = $signed(op_a_i [31:0]) / $signed(op_b_i [31:0]);

R = $signed(op_a_i [31:0]) % $signed(op_b_i [31:0]);

Q_residue = Q%3;

R_residue = R%3;

a_residue = op_a_i [33:32];

b_residue = op_b_i [33:32];

residue_mul = a_residue*b_residue;

multdiv_result_o = residue_mul %3;

201

References

[1] A.V. Jayakumar and C. Elks. Property-based fault injection: A novel approach
to model-based fault injection for safety critical systems. In Marc Zeller and Kai
Höfig, editors, Model-Based Safety and Assessment, pages 115–129, Cham,
2020. Springer International Publishing. ISBN 978-3-030-58920-2.

[2] S. Marchese, J. Grosse, and OneSpin. Formal fault propagation analysis that
scales to modern automotive socs. 2017. URL
https://api.semanticscholar.org/CorpusID:250647228.

[3] A.Q.Dao, M.P.H. Lin, and A. Mishchenko. Sat-based fault equivalence checking
in functional safety verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37:3198–3205, 2018. URL
https://api.semanticscholar.org/CorpusID:53781579.

[4] W. Hu, J. Tan, L. Wu, Y. Tai, and L. Hong. Developing formal models for
measuring fault effects using functional eda tools. In 2021 IEEE International
Test Conference in Asia (ITC-Asia), pages 1–6, 2021. doi:
10.1109/ITC-Asia53059.2021.9808799.

[5] E. Kaja, N. Gerlin, B. Zhao, D.S. Lopera, J.A. Halabi, A.S. Khan, S. Prebeck,
D. Stoffel, W. Kunz, and W. Ecker. An automated exhaustive fault analysis
technique guided by processor formal verification methods. In 2024 25th
International Symposium on Quality Electronic Design (ISQED), pages 1–8,
2024. doi: 10.1109/ISQED60706.2024.10528697.

[6] RISC-V Instruction Set Manual, Volume I: User-Level ISA, .

[7] B. Xue and M. Zwolinski. Using formal methods to evaluate hardware
reliability in the presence of soft errors. In 2022 17th Conference on Ph.D
Research in Microelectronics and Electronics (PRIME), pages 29–32, 2022. doi:
10.1109/PRIME55000.2022.9816775.

[8] S. Mittal and J. S. Vetter. A Survey of Techniques for Modeling and Improving
Reliability of Computing Systems. IEEE Transactions on Parallel and
Distributed Systems, 27(4):1226–1238, April 2016. ISSN 1045-9219. doi:
10.1109/TPDS.2015.2426179.

https://api.semanticscholar.org/CorpusID:250647228
https://api.semanticscholar.org/CorpusID:53781579

202 REFERENCES

[9] R. Drechsler. PolyAdd: Polynomial Formal Verification of Adder Circuits. In
2021 24th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS), pages 99–104, 2021. doi:
10.1109/DDECS52668.2021.9417052.

[10] A. Dixit and A. Wood. The impact of new technology on soft error rates. In 2011
International Reliability Physics Symposium, pages 5B.4.1–5B.4.7, April 2011.
doi: 10.1109/IRPS.2011.5784522.

[11] A. Vijayan, S. Kiamehr, M. Ebrahimi, K. Chakrabarty, and M. B. Tahoori. Online
Soft-Error Vulnerability Estimation for Memory Arrays and Logic Cores. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37
(2):499–511, Feb 2018. ISSN 0278-0070.

[12] X. Iturbe, B. Venu, and E. Ozer. Soft error vulnerability assessment of the
real-time safety-related ARM Cortex-R5 CPU. In 2016 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pages 91–96, Sep. 2016. doi: 10.1109/DFT.2016.7684076.

[13] R. C. Baumann. Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and Materials Reliability, 5(3):
305–316, Sep. 2005. ISSN 1530-4388. doi: 10.1109/TDMR.2005.853449.

[14] R. Travessini, P. R. C. Villa, F. L. Vargas, and E. A. Bezerra. Processor core
profiling for SEU effect analysis. In 2018 IEEE 19th Latin-American Test
Symposium (LATS), pages 1–6, March 2018.

[15] IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009
(Revision of IEEE Std 1044-1993), pages 1–23, 2010. doi:
10.1109/IEEESTD.2010.5399061.

[16] A. Bernardini, W. Ecker, and U. Schlichtmann. Where formal verification can
help in functional safety analysis. In 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–8, 2016. doi:
10.1145/2966986.2980087.

[17] E. Touloupis, J. A. Flint, Member, V. A. Chouliaras, and D. D. Ward. Study of the
Effects of SEU-Induced Faults on a Pipeline Protected Microprocessor. IEEE
Transactions on Computers, 56(12):1585–1596, Dec 2007. ISSN 0018-9340. doi:
10.1109/TC.2007.70766.

[18] G.S. Rodrigues, F.L. Kastensmidt, and A. Bosio. Radiation Effects on Digital
Devices, pages 25–36. Springer International Publishing, Cham, 2022. ISBN
978-3-031-15717-2. doi: 10.1007/978-3-031-15717-2 3. URL
https://doi.org/10.1007/978-3-031-15717-2_3.

https://doi.org/10.1007/978-3-031-15717-2_3

REFERENCES 203

[19] M. Dumont, M. Lisart, and P. Maurine. Electromagnetic Fault Injection : How
Faults Occur. In 2019 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 9–16, 2019. doi: 10.1109/FDTC.2019.00010.

[20] H. Zhuang, R. Bauer, and M. Dinkel. Electromigration in Power Devices: A
Combined Effect of Electromigration and Thermal Migration. Journal of
Microelectronics and Electronic Packaging, 18(1):1–6, 04 2021. ISSN 1551-4897.
doi: 10.4071/imaps.1377365. URL https://doi.org/10.4071/imaps.1377365.

[21] D.G. Pierce and P.G. Brusius. Electromigration: A review. Microelectronics
Reliability, 37(7):1053–1072, 1997. ISSN 0026-2714. doi:
https://doi.org/10.1016/S0026-2714(96)00268-5. URL https:

//www.sciencedirect.com/science/article/pii/S0026271496002685.
Reliability Physics of Advanced Electron Devices.

[22] K. Tu. Electromigration-induced failure in Al and Cu interconnects, page
270–288. Cambridge University Press, 2010. doi:
10.1017/CBO9780511777691.013.

[23] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11–33, Jan 2004. ISSN 1545-5971. doi:
10.1109/TDSC.2004.2.

[24] H. Ziade, R. Ayoubi, and R. Velazco. A Survey on Fault Injection Techniques.
The International Arab Journal of Information Technology, 1:171–186, 01 2004.

[25] P.D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, and
L. Benini. Slow and steady wins the race? A comparison of ultra-low-power
RISC-V cores for Internet-of-Things applications. In 2017 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), pages 1–8, 2017. doi: 10.1109/PATMOS.2017.8106976.

[26] lowRISC. Ibex: An embedded 32 bit RISC-V CPU core. URL
https://github.com/lowRISC/ibex.

[27] A. Mukati. A survey of memory error correcting techniques for improved
reliability. Journal of Network and Computer Applications, 34(2):517–522, 2011.
ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2010.11.006. URL https:

//www.sciencedirect.com/science/article/pii/S1084804510002043.
Efficient and Robust Security and Services of Wireless Mesh Networks.

[28] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos. Exploiting correcting codes: On
the effectiveness of ecc memory against rowhammer attacks. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 55–71. IEEE, 2019.

https://doi.org/10.4071/imaps.1377365
https://www.sciencedirect.com/science/article/pii/S0026271496002685
https://www.sciencedirect.com/science/article/pii/S0026271496002685
https://github.com/lowRISC/ibex
https://www.sciencedirect.com/science/article/pii/S1084804510002043
https://www.sciencedirect.com/science/article/pii/S1084804510002043

204 REFERENCES

[29] S.G. Amrutha and V.S. Chakravarthi. Design of error correction engine based on
flexible unequal error control code (fuec) for flash memory faults in space
applications. In Shubhakar Kalya, Muralidhar Kulkarni, and K.S.
Shivaprakasha, editors, Advances in Communication, Signal Processing, VLSI,
and Embedded Systems, pages 419–431, Singapore, 2020. Springer Singapore.
ISBN 978-981-15-0626-0.

[30] D.L. Perry and H. Foster. Applied Formal Verification: For Digital Circuit
Design. McGraw-Hill electronic engineering series. McGraw-Hill Education,
2005. ISBN 9780071588898. URL
https://books.google.co.uk/books?id=imKnsuYmZMkC.

[31] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. SWIFT:
software implemented fault tolerance. In International Symposium on Code
Generation and Optimization, pages 243–254, 2005. doi: 10.1109/CGO.2005.34.

[32] R. Jeyapaul, R. Flores, A. Avila, and A. Shrivastava. Systematic Methodology for
the Quantitative Analysis of Pipeline-Register Reliability. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 25(2):547–555, Feb 2017. ISSN
1063-8210. doi: 10.1109/TVLSI.2016.2574642.

[33] C. Bottoni, B. Coeffic, J. Daveau, L. Naviner, and P. Roche. Partial triplication of
a SPARC-V8 microprocessor using fault injection. In 2015 IEEE 6th Latin
American Symposium on Circuits Systems (LASCAS), pages 1–4, Feb 2015. doi:
10.1109/LASCAS.2015.7250415.

[34] ISO 26262-1: Road vehicles — Functional safety.

[35] T. Bonnoit, A. Coelho, N. Zergainoh, and R. Velazco. SEU impact in processor’s
control-unit: Preliminary results obtained for LEON3 soft-core. In 2017 18th
IEEE Latin American Test Symposium (LATS), pages 1–4, March 2017. doi:
10.1109/LATW.2017.7906763.

[36] H. Cho. Impact of Microarchitectural Differences of RISC-V Processor Cores on
Soft Error Effects. IEEE Access, 6:41302–41313, 2018. ISSN 2169-3536.

[37] M. Rebaudengo, M.S. Reorda, and M. Violante. Accurate Analysis of Single
Event Upsets in a Pipelined Microprocessor. Journal of Electronic Testing, 19(5):
577–584, Oct 2003. ISSN 1573-0727. doi: 10.1023/A:1025130131636. URL
https://doi.org/10.1023/A:1025130131636.

[38] S. Satoh, Y. Tosaka, and S.A. Wender. Geometric effect of multiple-bit soft errors
induced by cosmic ray neutrons on DRAM’s. IEEE Electron Device Letters, 21
(6):310–312, 2000. doi: 10.1109/55.843160.

https://books.google.co.uk/books?id=imKnsuYmZMkC
https://doi.org/10.1023/A:1025130131636

REFERENCES 205

[39] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong. Characterization of multi-bit
soft error events in advanced SRAMs. In IEEE International Electron Devices
Meeting 2003, pages 21.4.1–21.4.4, 2003. doi: 10.1109/IEDM.2003.1269335.

[40] R. Koga, S.H. Penzin, K.B. Crawford, and W.R. Crain. Single event functional
interrupt (SEFI) sensitivity in microcircuits. In RADECS 97. Fourth European
Conference on Radiation and its Effects on Components and Systems (Cat.
No.97TH8294), pages 311–318, 1997. doi: 10.1109/RADECS.1997.698915.

[41] J. Benedetto, P. Eaton, K. Avery, D. Mavis, M. Gadlage, T. Turflinger, P.E. Dodd,
and G. Vizkelethyd. Heavy ion-induced digital single-event transients in deep
submicron processes. IEEE Transactions on Nuclear Science, 51(6):3480–3485,
2004. doi: 10.1109/TNS.2004.839173.

[42] P.E. Dodd, M.R. Shaneyfelt, J.R. Schwank, and G.L. Hash. Neutron-induced
latchup in SRAMs at ground level. In 2003 IEEE International Reliability
Physics Symposium Proceedings, 2003. 41st Annual., pages 51–55, 2003. doi:
10.1109/RELPHY.2003.1197720.

[43] A. Ramos, J.A. Maestro, and P. Reviriego. Characterizing a RISC-V SRAM-based
FPGA implementation against Single Event Upsets using fault injection.
Microelectronics Reliability, 78:205 – 211, 2017. ISSN 0026-2714.

[44] B. Sangchoolie, K. Pattabiraman, and J. Karlsson. One Bit is (Not) Enough: An
Empirical Study of the Impact of Single and Multiple Bit-Flip Errors. In 2017
47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 97–108, June 2017.

[45] Z. Navabi. Fault Simulation Applications and Methods, pages 103–142.
Springer US, Boston, MA, 2011. ISBN 978-1-4419-7548-5. doi:
10.1007/978-1-4419-7548-5 4. URL
https://doi.org/10.1007/978-1-4419-7548-5_4.

[46] H.K. Lee and D.S. Ha. Hope: an efficient parallel fault simulator for
synchronous sequential circuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 15(9):1048–1058, 1996. doi:
10.1109/43.536711.

[47] U. Reinsalu, J. Raik, R. Ubar, and P. Ellervee. Fast RTL Fault Simulation Using
Decision Diagrams and Bitwise Set Operations. In 2011 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, pages 164–170, 2011. doi: 10.1109/DFT.2011.42.

[48] J. Seaton. Fault simulation basics. In Proceedings., Second Annual IEEE ASIC
Seminar and Exhibit,, pages T5–1/1, 1989. doi: 10.1109/ASIC.1989.123161.

https://doi.org/10.1007/978-1-4419-7548-5_4

206 REFERENCES

[49] Y. Kilic and M. Zwolinski. Behavioral fault modeling and simulation using
VHDL-AMS to speed-up analog fault simulation. Analog Integrated Circuits
and Signal Processing, 39(2):177–190, May 2004. URL
https://eprints.soton.ac.uk/259464/.

[50] V.R. Devanathan, L. Balasubramanian, and R. Parekhji. New Methods for
Simulation Speed-up and Test Qualification with Analog Fault Simulation. In
2015 28th International Conference on VLSI Design, pages 363–368, 2015. doi:
10.1109/VLSID.2015.67.

[51] O. Sinanoglu and A. Orailoglu. RT-level fault simulation based on symbolic
propagation. Proceedings 19th IEEE VLSI Test Symposium. VTS 2001, pages
240–245, 2001. URL https://api.semanticscholar.org/CorpusID:14356267.

[52] M. Karami, M. Haghbayan, M. Ebrahimi, A. Miele, and J. Plosila. Thread-level
Parallelism in Fault Simulation of Deep Neural Networks on Multi-Processor
Systems. In 2022 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), pages 1–4, 2022. doi:
10.1109/DFT56152.2022.9962358.

[53] J. Laurent, V. Beroulle, C. Deleuze, and F. Pebay-Peyroula. Fault Injection on
Hidden Registers in a RISC-V Rocket Processor and Software Countermeasures.
In 2019 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 252–255, March 2019. doi: 10.23919/DATE.2019.8715158.

[54] M. Volk, S. Junges, and J. Katoen. Fast Dynamic Fault Tree Analysis by Model
Checking Techniques. IEEE Transactions on Industrial Informatics, 14(1):
370–379, Jan 2018. ISSN 1551-3203. doi: 10.1109/TII.2017.2710316.

[55] E.M. Clarke, T.A. Henzinger, H. Veith, and R. Bloem. Handbook of model
checking, volume 10. Springer, 2018.

[56] M. Kooli and G. Di Natale. A survey on simulation-based fault injection tools
for complex systems. In 2014 9th IEEE International Conference on Design
Technology of Integrated Systems in Nanoscale Era (DTIS), pages 1–6, May
2014. doi: 10.1109/DTIS.2014.6850649.

[57] R. Natella, D. Cotroneo, and H.S. Madeira. Assessing Dependability with
Software Fault Injection: A Survey. ACM Comput. Surv., 48(3):44:1–44:55,
February 2016. ISSN 0360-0300. doi: 10.1145/2841425. URL
http://doi.acm.org/10.1145/2841425.

[58] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and P. Rech.
Demystifying Soft Error Assessment Strategies on ARM CPUs:
Microarchitectural Fault Injection vs. Neutron Beam Experiments. In
International Conference on Dependable Systems and Networks (DSN), 06 2019.

https://eprints.soton.ac.uk/259464/
https://api.semanticscholar.org/CorpusID:14356267
http://doi.acm.org/10.1145/2841425

REFERENCES 207

[59] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark
suite. In Proceedings of the Fourth Annual IEEE International Workshop on
Workload Characterization. WWC-4 (Cat. No.01EX538), pages 3–14, Dec 2001.
doi: 10.1109/WWC.2001.990739.

[60] INC. XILINX. Soft Error Mitigation (SEM) Core, 2018. URL https://www.

xilinx.com/products/intellectual-property/sem.html#documentation.

[61] J. Plusquellic, D.E. Owen, T.J. Mannos, and B. Dziki. Information Leakage
Analysis Using a Co-Design-Based Fault Injection Technique on a RISC-V
Microprocessor. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(3):438–451, 2022. doi: 10.1109/TCAD.2021.3065915.

[62] D.E. Owen, J. Joseph, J. Plusquellic, T.J. Mannos, and B. Dziki. Node Monitoring
as a Fault Detection Countermeasure against Information Leakage within a
RISC-V Microprocessor. Cryptography, 6(3), 2022. ISSN 2410-387X. doi:
10.3390/cryptography6030038. URL
https://www.mdpi.com/2410-387X/6/3/38.

[63] C. Kern and M.R. Greenstreet. Formal Verification in Hardware Design: A
Survey. ACM Trans. Des. Autom. Electron. Syst., 4(2):123–193, April 1999. ISSN
1084-4309.

[64] T. Kropf. Introduction to Formal Hardware Verification. Springer Berlin
Heidelberg, 2013. ISBN 9783662038093. URL
https://books.google.co.uk/books?id=7ImrCAAAQBAJ.

[65] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
Cambridge, MA, USA, 1999. ISBN 0-262-03270-8.

[66] M.H. Zaki, S. Tahar, and G. Bois. Formal verification of analog and mixed signal
designs: A survey. Microelectronics Journal, 39(12):1395 – 1404, 2008. ISSN
0026-2692. doi: https://doi.org/10.1016/j.mejo.2008.05.013. URL
http://www.sciencedirect.com/science/article/pii/S0026269208002085.

[67] C. Baier and J. Katoen. Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008. ISBN 026202649X.

[68] S.A. Kripke. Semantical considerations on modal logic. 2012. URL
https://api.semanticscholar.org/CorpusID:56539813.

[69] R.P. Kurshan. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton University Press, USA, 1994. ISBN
0691034362.

https://www.xilinx.com/products/intellectual-property/sem.html#documentation
https://www.xilinx.com/products/intellectual-property/sem.html#documentation
https://www.mdpi.com/2410-387X/6/3/38
https://books.google.co.uk/books?id=7ImrCAAAQBAJ
http://www.sciencedirect.com/science/article/pii/S0026269208002085
https://api.semanticscholar.org/CorpusID:56539813

208 REFERENCES

[70] F. Cassez, C. Jard, B. Rozoy, and .D. Ryan. Modeling and verification of parallel
processes. In Lecture Notes in Computer Science, 2001. URL
https://api.semanticscholar.org/CorpusID:33442020.

[71] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):
142–170, 1992. ISSN 0890-5401. doi:
https://doi.org/10.1016/0890-5401(92)90017-A. URL
https://www.sciencedirect.com/science/article/pii/089054019290017A.

[72] Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986. doi:
10.1109/TC.1986.1676819.

[73] A.J. Hu. Formal hardware verification with bdds: an introduction. In 1997 IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing,
PACRIM. 10 Years Networking the Pacific Rim, 1987-1997, volume 2, pages
677–682 vol.2, 1997. doi: 10.1109/PACRIM.1997.620351.

[74] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking without
bdds. In International Conference on Tools and Algorithms for Construction
and Analysis of Systems, 1999. URL
https://api.semanticscholar.org/CorpusID:524729.

[75] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications.
IOS Press, NLD, 2009. ISBN 1586039296.

[76] M. Davis and H. Putnam. A computing procedure for quantification theory. J.
ACM, 7(3):201–215, jul 1960. ISSN 0004-5411. doi: 10.1145/321033.321034. URL
https://doi.org/10.1145/321033.321034.

[77] M. Awedh and F. Somenzi. Termination criteria for bounded model checking:
Extensions and comparison. In BMC@CAV, 2005. URL
https://api.semanticscholar.org/CorpusID:7685490.

[78] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using
induction and a sat-solver. In Proceedings of the Third International Conference
on Formal Methods in Computer-Aided Design, FMCAD ’00, page 108–125,
Berlin, Heidelberg, 2000. Springer-Verlag. ISBN 3540412190.

[79] K.L. McMillan. Interpolation and sat-based model checking. In International
Conference on Computer Aided Verification, 2003. URL
https://api.semanticscholar.org/CorpusID:11048569.

https://api.semanticscholar.org/CorpusID:33442020
https://www.sciencedirect.com/science/article/pii/089054019290017A
https://api.semanticscholar.org/CorpusID:524729
https://doi.org/10.1145/321033.321034
https://api.semanticscholar.org/CorpusID:7685490
https://api.semanticscholar.org/CorpusID:11048569

REFERENCES 209

[80] N. Eén, A. Mishchenko, and R. Brayton. Efficient implementation of property
directed reachability. In 2011 Formal Methods in Computer-Aided Design
(FMCAD), pages 125–134. IEEE, 2011.

[81] A.R. Bradley. Sat-based model checking without unrolling. In Proceedings of
the 12th International Conference on Verification, Model Checking, and
Abstract Interpretation, VMCAI’11, page 70–87, Berlin, Heidelberg, 2011.
Springer-Verlag. ISBN 9783642182747.

[82] X. Zhang, S. Xiao, Y. Xia, J. Li, M. Chen, and G. Pu. Accelerate safety model
checking based on complementary approximate reachability. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 42(9):
3105–3117, 2023. doi: 10.1109/TCAD.2023.3236272.

[83] D. Gao and T. Melham. End-to-End Formal Verification of a RISC-V Processor
Extended with Capability Pointers. In 2021 Formal Methods in Computer
Aided Design (FMCAD), pages 24–33, 2021.

[84] R. Sharafinejad, B. Alizadeh, and T. Nikoubin. Formal Verification of
Non-Functional Strategies of System-Level Power Management Architecture in
Modern Processors. In 2020 IEEE 14th Dallas Circuits and Systems Conference
(DCAS), pages 1–6, 2020. doi: 10.1109/DCAS51144.2020.9330633.

[85] C. Rojas, H. Morales, and E. Roa. A Low-Cost Bug Hunting Verification
Methodology for RISC-V-Based Processors. In 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5, 2021.

[86] D. Selvakumar, J. Mervin, S. Pattanshetty, and D. Vivian. Formal Verification
and Analysis of a Pseudo Random Number Generator. In 2021 25th
International Symposium on VLSI Design and Test (VDAT), pages 1–6, 2021.
doi: 10.1109/VDAT53777.2021.9601109.

[87] M. Jakobs, F. Pauck, M. Platzner, H. Wehrheim, and T. Wiersema.
Software/Hardware Co-Verification for Custom Instruction Set Processors.
IEEE Access, pages 1–1, 2021.

[88] L. Duan, Y. Hu, H. Liu, W. Feng, and J. Gan. An Efficient Formal Verification
Method in I/O Multiplexing Module Based on VC Formal CC. In 2020 IEEE 3rd
International Conference on Electronics and Communication Engineering
(ICECE), pages 112–116, 2020. doi: 10.1109/ICECE51594.2020.9353040.

[89] V. Liew, P. Beame, J. Devriendt, J. Elffers, and J. Nordström. Verifying Properties
of Bit-vector Multiplication Using Cutting Planes Reasoning. In 2020 Formal
Methods in Computer Aided Design (FMCAD), volume 1, pages 194–204. TU
Wien Academic Press, 2020.

210 REFERENCES

[90] Y. Xing, H. Lu, A. Gupta, and S. Malik.
Leveraging Processor Modeling and Verification for General Hardware Modules,
pages 1130–1135. 2021. doi: 10.23919/DATE51398.2021.9474194.

[91] C. Duran, H. Morales, C. Rojas, A. Ruospo, E. Sanchez, and E. Roa.
Simulation and Formal: The Best of Both Domains for Instruction Set Verification of RISC-V Based Processors,
pages 1–4. 2020. doi: 10.1109/ISCAS45731.2020.9180589.

[92] M.R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz. Processor Hardware
Security Vulnerabilities and their Detection by Unique Program Execution
Checking. In 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 994–999, 2019. doi: 10.23919/DATE.2019.8715004.

[93] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan. A Formal Approach
to Secure Speculation. In 2019 IEEE 32nd Computer Security Foundations
Symposium (CSF), pages 288–28815, 2019. doi: 10.1109/CSF.2019.00027.

[94] H. Busch. An automated formal verification flow for safety registers. 2015. URL
https://api.semanticscholar.org/CorpusID:20406506.

[95] F.A.D. Silva, A.C. Bagbaba, S. Hamdioui, and C. Sauer. Use of formal methods
for verification and optimization of fault lists in the scope of iso26262. 2018.
URL https://api.semanticscholar.org/CorpusID:214721167.

[96] F.A. Silva, A.C. Bagbaba, S. Hamdioui, and C. Sauer. Efficient methodology for
iso26262 functional safety verification. In 2019 IEEE 25th International
Symposium on On-Line Testing and Robust System Design (IOLTS), pages
255–256, 2019. doi: 10.1109/IOLTS.2019.8854449.

[97] F.A. Silva, A.C. Bagbaba, S. Hamdioui, and C. Sauer. Combining fault analysis
technologies for iso26262 functional safety verification. In 2019 IEEE 28th Asian
Test Symposium (ATS), pages 129–1295, 2019. doi:
10.1109/ATS47505.2019.00024.

[98] F.A. da Silva, A.C. Bagbaba, S. Sartoni, R. Cantoro, M.S. Reorda, S. Hamdioui,
and C. Sauer. Determined-Safe Faults Identification: A step towards ISO26262
hardware compliant designs. In 2020 IEEE European Test Symposium (ETS),
pages 1–6, 2020.

[99] F.A. da Silva, A. Cagri Bagbaba, S. Hamdioui, and C. Sauer. An automated
formal-based approach for reducing undetected faults in ISO 26262 hardware
compliant designs. In 2021 IEEE International Test Conference (ITC), pages
329–333, 2021. doi: 10.1109/ITC50571.2021.00047.

[100] S. Huhn, S. Frehse, R.t Wille, and R. Drechsler. Determining application-specific
knowledge for improving robustness of sequential circuits. IEEE Transactions

https://api.semanticscholar.org/CorpusID:20406506
https://api.semanticscholar.org/CorpusID:214721167

REFERENCES 211

on Very Large Scale Integration (VLSI) Systems, 27(4):875–887, 2019. doi:
10.1109/TVLSI.2018.2890601.

[101] S. Huhn and R. Drechsler. Next Generation Design For Testability, Debug and
Reliability Using Formal Techniques. In 2022 IEEE International Test Conference
(ITC), pages 609–618, 2022. doi: 10.1109/ITC50671.2022.00086.

[102] A.C. Bagbaba, M. Jenihhin, R. Ubar, and C. Sauer. Representing gate-level set
faults by multiple seu faults at rtl. In 2020 IEEE 26th International Symposium
on On-Line Testing and Robust System Design (IOLTS), pages 1–6, 2020. doi:
10.1109/IOLTS50870.2020.9159715.

[103] A. Biere and K. Heljanko. Hardware model checking competition (hwmcc) 2011
benchmarks, 2011.

[104] A. Traskov, T. Ehrenberg, S. Loitz, A. Ayari, A. Efody, J. Hupcey, and Mentor
Graphics. Fault proof: Using formal techniques for safety verification and fault
analysis. 2016. URL
https://api.semanticscholar.org/CorpusID:250664392.

[105] A.L.D. Antón, J. Müller, M.R. Fadiheh, D. Stoffel, and W. Kunz. Fault attacks on
access control in processors: Threat, formal analysis and microarchitectural
mitigation. IEEE Access, 11:52695–52711, 2023. doi:
10.1109/ACCESS.2023.3280804.

[106] .D. Berg and K.A. Label. Verification of triple modular redundancy (tmr)
insertion for reliable and trusted systems. 2016. URL
https://api.semanticscholar.org/CorpusID:61468919.

[107] G. Beltrame. Triple modular redundancy verification via heuristic netlist
analysis. PeerJ Comput. Sci., 1:e21, 2015. URL
https://api.semanticscholar.org/CorpusID:16454229.

[108] L.A.Benites and F.. Kastensmidt. Automated design flow for applying triple
modular redundancy (tmr) in complex digital circuits. 2018 IEEE 19th
Latin-American Test Symposium (LATS), pages 1–4, 2018. URL
https://api.semanticscholar.org/CorpusID:13850498.

[109] L. Entrena, A.J. Sánchez-Clemente, L.A. Garcı́a-Astudillo, M.a Portela-Garcı́a,
M. Garcı́a-Valderas, A. Lindoso, and R. Sarmiento. Formal verification of
fault-tolerant hardware designs. IEEE Access, 11:116127–116140, 2023. URL
https://api.semanticscholar.org/CorpusID:264338901.

[110] Muth. A nine-valued circuit model for test generation. IEEE Transactions on
Computers, C-25(6):630–636, 1976. doi: 10.1109/TC.1976.1674663.

https://api.semanticscholar.org/CorpusID:250664392
https://api.semanticscholar.org/CorpusID:61468919
https://api.semanticscholar.org/CorpusID:16454229
https://api.semanticscholar.org/CorpusID:13850498
https://api.semanticscholar.org/CorpusID:264338901

212 REFERENCES

[111] U. Krautz, M. Pflanz, C. Jacobi, H.W. Tast, K. Weber, and H.T. Vierhaus.
Evaluating coverage of error detection logic for soft errors using formal
methods. In Proceedings of the Design Automation Test in Europe Conference,
volume 1, pages 1–6, 2006. doi: 10.1109/DATE.2006.244062.

[112] V. Paruthi, C. Jacobi, and K. Weber. Efficient symbolic simulation via dynamic
scheduling, don’t caring, and case splitting. In Conference on Correct Hardware
Design and Verification Methods, 2005. URL
https://api.semanticscholar.org/CorpusID:16009754.

[113] J. Schreiner, R. Findenigy, and W. Ecker. Design centric modeling of digital
hardware. In 2016 IEEE International High Level Design Validation and Test
Workshop (HLDVT), pages 46–52, 2016. doi: 10.1109/HLDVT.2016.7748254.

[114] K. Devarajegowda and W. Ecker. On generation of properties from specification.
In 2017 IEEE International High Level Design Validation and Test Workshop
(HLDVT), pages 95–98, 2017. doi: 10.1109/HLDVT.2017.8167470.

[115] M.R. Fadiheh, J. Urdahl, S.S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel, and
W. Kunz. Symbolic quick error detection using symbolic initial state for
pre-silicon verification. In 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 55–60, 2018. doi: 10.23919/DATE.2018.8341979.

[116] K. Devarajegowda, M.R. Fadiheh, E. Singh, C. Barrett, S. Mitra, W. Ecker,
D. Stoffel, and W. Kunz. Gap-free processor verification by s2qed and property
generation. In 2020 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 526–531, 2020. doi: 10.23919/DATE48585.2020.9116515.

[117] H. Liu, J. Yin, C. Huang, H. Lan, Z. Jin, Z. Zheng, and X. Zhang. A fault
injection and formal verification framework based on uml sequence diagrams.
In 2023 IEEE 34th International Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 45–50, 2023. doi:
10.1109/ISSREW60843.2023.00045.

[118] C.R. Lincoln. Specifying systems: The tla+ language and tools for hardware and
software engineers. Software Quality Professional, 5(4):43–43, 2003.

[119] W.E. Vesely, F.F. Goldberg, N. Roberts, and D.F. Haasl. Fault Tree Handbook.
NRC, 1987. URL https://api.semanticscholar.org/CorpusID:60773312.

[120] M. Ammar, G.B. Hamad, O.A. Mohamed, and Y. Savaria. Towards an accurate
probabilistic modeling and statistical analysis of temporal faults via temporal
dynamic fault-trees (tdfts). IEEE Access, 7:29264–29276, 2019. doi:
10.1109/ACCESS.2019.2902796.

https://api.semanticscholar.org/CorpusID:16009754
https://api.semanticscholar.org/CorpusID:60773312

REFERENCES 213

[121] A. Samadi, M. Ammar, and O.A. Mohamed. Dynamic Fault Tree Analysis and
Risk Mitigation Strategies of Data Communication System via Statistical Model
Checking. In 2021 19th IEEE International New Circuits and Systems
Conference (NEWCAS), pages 1–4, 2021. doi:
10.1109/NEWCAS50681.2021.9462743.

[122] K.D. Rao, V. Gopika, V.S. Rao, H.S. Kushwaha, A.K. Verma, and A. Srividya.
Dynamic fault tree analysis using monte carlo simulation in probabilistic safety
assessment. Reliability Engineering & System Safety, 94(4):872–883, 2009.

[123] Q. Shao, S. Yang, and X. Gou. Formal Analysis of Multiple-Cell Upset Failure
Based on Common Cause Failure Theory. IEEE Transactions on Reliability, 70
(4):1495–1509, 2021. doi: 10.1109/TR.2020.3010937.

[124] S. Frehse, G. Fey, A. Suflow, and R. Drechsler. Robustness Check for Multiple
Faults Using Formal Techniques. In 2009 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools, pages 85–90, 2009. doi:
10.1109/DSD.2009.218.

[125] R. Leveugle. A new approach for early dependability evaluation based on
formal property checking and controlled mutations. In 11th IEEE International
On-Line Testing Symposium, pages 260–265, 2005. doi: 10.1109/IOLTS.2005.8.

[126] I. Buzhinsky and A. Pakonen. Model-Checking Detailed Fault-Tolerant Nuclear
Power Plant Safety Functions. IEEE Access, 7:162139–162156, 2019. doi:
10.1109/ACCESS.2019.2951938.

[127] A. Pakonen and I. Buzhinsky. Verification of fault tolerant safety IC systems
using model checking. In 2019 IEEE International Conference on Industrial
Technology (ICIT), pages 969–974, 2019. doi: 10.1109/ICIT.2019.8755014.

[128] E. Segev, S. Goldshlager, H. Miller, O. Shua, O. Sher, and S. Greenberg.
Evaluating and comparing simulation verification vs. formal verification
approach on block level design. In Proceedings of the 2004 11th IEEE
International Conference on Electronics, Circuits and Systems, 2004. ICECS
2004., pages 515–518, 2004. doi: 10.1109/ICECS.2004.1399731.

[129] S. Verma, P. Lee, and I.G. Harris. Error Detection Using Model Checking vs.
Simulation. In 2006 IEEE International High Level Design Validation and Test
Workshop, pages 55–58, 2006. doi: 10.1109/HLDVT.2006.319964.

[130] A.J. Hu. Simulation vs. Formal: Absorb What Is Useful; Reject What Is Useless.
In Karen Yorav, editor, Hardware and Software: Verification and Testing, pages
1–7, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN
978-3-540-77966-7.

214 REFERENCES

[131] W.K. Lam.
Hardware Design Verification: Simulation and Formal Method-Based Approaches.
Prentice Hall PTR, USA, 1st edition, 2008. ISBN 0137010923.

[132] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci. System Level
Formal Verification via Model Checking Driven Simulation. In Natasha
Sharygina and Helmut Veith, editors, Computer Aided Verification, pages
296–312, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN
978-3-642-39799-8.

[133] R. Lipka, M. Paška, and T. Potužák. Simulation Testing and Model Checking: A
Case Study Comparing these Approaches. In István Majzik and Marco Vieira,
editors, Software Engineering for Resilient Systems, pages 116–130, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-12241-0.

[134] L. Lavagno, I. Markov, G. Martin, and L. Scheffer. Electronic Design
Automation for IC System Design, Verification, and Testing, 2016.

[135] M. Girish, G. Gopakumar, and D.S. Divya. Formal and Simulation Verification:
Comparing and Contrasting the two Verification Approaches. In 2021 2nd
International Conference on Advances in Computing, Communication,
Embedded and Secure Systems (ACCESS), pages 41–44, 2021. doi:
10.1109/ACCESS51619.2021.9563305.

[136] IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005
(Revision of IEEE Std 1364-2001), pages 1–590, 2006. doi:
10.1109/IEEESTD.2006.99495.

[137] RISC-V Instruction Set Manual, Volume II: Privileged Architecture, .

[138] R. Barbosa, A. Fonseca, and F. Araujo. Reductions and abstractions for formal
verification of distributed round-based algorithms. Software Quality Journal, 29
(3):705–731, Sep 2021. ISSN 1573-1367. doi: 10.1007/s11219-020-09539-6. URL
https://doi.org/10.1007/s11219-020-09539-6.

[139] H. Witharana, Y. Lyu, S. Charles, and P. Mishra. A Survey on Assertion-Based
Hardware Verification. ACM Comput. Surv., 54(11s), sep 2022. ISSN 0360-0300.
doi: 10.1145/3510578. URL https://doi.org/10.1145/3510578.

[140] T. Yamaguchi, B. Hoxha, D. Prokhorov, and J.V. Deshmukh.
Specification-guided Software Fault Localization for Autonomous Mobile
Systems. In 2020 18th ACM-IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE), pages 1–12, 2020. doi:
10.1109/MEMOCODE51338.2020.9315067.

https://doi.org/10.1007/s11219-020-09539-6
https://doi.org/10.1145/3510578

REFERENCES 215

[141] P.A. Patil and C. Kulkarni. A Survey on Multiply Accumulate Unit. In 2018
Fourth International Conference on Computing Communication Control and
Automation (ICCUBEA), pages 1–5, 2018. doi: 10.1109/ICCUBEA.2018.8697705.

	Contents
	List of Figures
	List of Tables
	Listings
	Declaration of Authorship
	Acknowledgements
	Definitions and Abbreviations
	1 Introduction
	1.1 Reliability of Microprocessors
	1.2 Cause and Effects of Faults
	1.3 RISC-V Ibex Core
	1.4 Cadence JasperGold
	1.4.1 Formal Property Verification
	1.4.2 Functional Safety Verification
	1.4.3 Proof Engines

	1.5 Research Problem
	1.6 Research Hypotheses
	1.7 Research Objectives
	1.8 Contributions
	1.9 Thesis Structure
	1.10 Publications

	2 Background and Literature Review
	2.1 Single and Double Event Effects
	2.2 Fault Simulation
	2.3 Fault Injection
	2.4 Formal Verification and Model Checking
	2.4.1 Overview of Model Checking
	2.4.1.1 Modelling
	2.4.1.2 Formalizing
	2.4.1.3 Model Checker
	2.4.1.4 Abstraction and Reduction

	2.4.2 BDD and BDD-based Model Checking
	2.4.3 SAT and Bounded Model Checking
	2.4.3.1 SAT
	2.4.3.2 BMC
	2.4.3.3 k-induction
	2.4.3.4 IMC
	2.4.3.5 IC3

	2.5 Related Work of Formal Verification
	2.6 Comparison of Model Checking and Simulation
	2.7 Summary

	3 Formal Method to Analyse SEUs
	3.1 Method Overview
	3.2 Step 1: Fault Injection
	3.2.1 Fault Model
	3.2.2 Fault Injection Mechanisms
	3.2.3 Implicit Fault Injection

	3.3 Step 2: Formal Properties
	3.3.1 SDC
	3.3.1.1 Architectural Properties
	3.3.1.2 Strobe Properties
	3.3.1.3 Summary and Comparison

	3.3.2 Crash
	3.3.3 Hang

	3.4 Step 3: Complexity Control Strategies
	3.4.1 Black-Box
	3.4.2 Input Constraints
	3.4.3 Verify at Architectural Level
	3.4.4 Handle Undetermined Results

	3.5 Step 4: Model Checking
	3.5.1 Experimental Strategy
	3.5.2 Configurations of Cadence JasperGold

	3.6 Validating Fault Injection and Properties
	3.6.1 Validate Fault Injection
	3.6.2 Validate Properties

	3.7 Validating Framework
	3.7.1 Fault Detection
	3.7.2 Fault Correction: SDC, Crash and Hang
	3.7.3 Validation Results

	3.8 Results and Analysis
	3.8.1 Hardware-level
	3.8.1.1 SDC
	Architectural Properties
	Strobe Properties
	Comparison

	3.8.1.2 Crash
	3.8.1.3 Hang

	3.8.2 Instruction-level

	3.9 Discussion
	3.10 Conclusion

	4 Evaluating Fault Tolerant Technologies
	4.1 Method Overview
	4.2 Residue Arithmetic
	4.3 Formal Properties
	4.3.1 Raw Fault Detection
	4.3.2 Crucial Fault Detection
	4.3.2.1 SDC
	4.3.2.2 Crash
	4.3.2.3 Hang

	4.4 Model Checking
	4.4.1 Experimental Strategy
	4.4.2 Configurations of Cadence JasperGold

	4.5 Results
	4.5.1 Raw Fault Detection
	4.5.2 Crucial Fault Detection

	4.6 Discussion and Conclusion

	5 Double Event Upsets
	5.1 Method Overview
	5.2 Step 1: Fault Injection
	5.2.1 Fault Model
	5.2.2 Fault Injection Mechanism

	5.3 Step 2: Formal Properties
	5.4 Step 3: Complexity Control Strategies
	5.4.1 Input Constraints
	5.4.2 Handle Undetermined Results

	5.5 Step 4: Model Checking
	5.5.1 Experimental Strategy
	5.5.2 Configurations of Cadence JasperGold

	5.6 Results
	5.6.1 Hardware-level
	5.6.1.1 Different Bits, Different Times
	5.6.1.2 Different Bits, Same Time
	5.6.1.3 Same Bit, Different Times

	5.6.2 Instruction-level

	5.7 Discussion
	5.7.1 Hardware-level
	5.7.2 Instruction-level

	5.8 Conclusion

	6 Conclusion
	Appendix A Brief SytemVerilog Assertion Syntax
	Appendix B Descriptions of Jasper proof engines used
	Appendix C Using Formal Methods to Evaluate Hardware Reliability in the Presence of Soft Errors
	Appendix D Fault Injection Control Module and XOR gates
	Appendix E Bit ID in the Ibex Core
	Appendix F Bit patterns of valid RV32IMC instructions
	Appendix G Static and Dynamic Slicing
	Appendix H Source code of extra MULTDIV
	References

