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Abstract

Evolutionary innovations have played an important role in shaping the diversity of life on Earth. However, how these innovations arise and their
downstream effects on patterns of morphological diversification remain poorly understood. Here, we examine the impact of evolutionary inno-
vation on trait diversification in tetraodontiform fishes (pufferfishes, boxfishes, ocean sunfishes, and allies). This order provides an ideal model
system for studying morphological diversification owing to their range of habitats and divergent morphologies, including the fusion of the teeth
into a beak in several families. Using three-dimensional geometric morphometric data for 176 extant and fossil species, we examine the effect
of skull integration and novel habitat association on the evolution of innovation. Strong integration may be a requirement for rapid trait evolution
and facilitating the evolution of innovative structures, like the tetraodontiform beak. Our results show that the beak arose in the presence of
highly conserved patterns of integration across the skull, suggesting that integration did not limit the range of available phenotypes to tetra-
odontiforms. Furthermore, we find that beaks have allowed tetraodontiforms to diversify into novel ecological niches, irrespective of habitat. Our
results suggest that general rules pertaining to evolutionary innovation may be more nuanced than previously thought.
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Introduction (Liem, 1973). However, the ecological, developmental, and
evolutionary mechanisms by which morphological novel-

Evolutionary innovations have shaped the process of evolu- A ) ; ) ' : -
ties become innovations that enhance diversification remain

tion and can account for the evolutionary success of many ; . o .
clades (Heard & Hauser, 1995; Hunter, 1998; Miller, 1949). Poorly gharacterlzed (E?wm, 2015). Qqantltatlve case studies
These novel traits are adaptations that directly enhance diver- integrating paleontological, phylogenetic, and ecolog1.ca1 data
sification by allowing species access to previously unattain- 1€ needed to better understand the processes underlying evo-
able ecological niches and resources (Heard & Hauser, 1995; lutionary innovation and the resulting downstream effects on
Miller, 1949), often via colonization of novel regions of mor- the tempo and mode of morphological diversification across
phological trait space (Evans et al., 2021). These adaptive multlplp tme scales.. ) , . .

breakthroughs can be found throughout the Tree of Life and i Studies of evoluponary modularl'ty and Integration can aid
include innovations such as flight in birds (Heard & Hauser, in the under_standlrllg. of the evolution of 1nnove}t19n. Hl.gh.ly
1995; Mayr, 1963), adhesive toepads in tree-dwelling lizards modqlar traits exhibit a strong degree of covariation within
(Miller & Stroud, 2022), orb-weaving in spiders (Blackledge mdl@dugl structural regions (mgdules) but mL.ICh lower
et al., 2009) and pharyngeal jaws in cichlids and other fishes ~ cOvariation between modules. In this way, modularity enables

Received May 22, 2024; revisions received August 9, 2024; accepted September 10, 2024

Associate Editor: Emma Sherratt; Handling Editor: Héléne Morlon

© The Author(s) 2024. Published by Oxford University Press on behalf of The Society for the Study of Evolution (SSE).

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https:/
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the
original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact reprints@oup.com for
reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page
on our site—for further information please contact journals.permissions@oup.com.

202 1990}20 0€ U0 Josn Areiqi AojueH A 2/6¥5/2/6981/L L/8./RI0IENI0AS/W00"dNO"olWapede//:sdny Woly papeojumoq


mailto:dkarcila@ucsd.edu
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

1870

organisms to evolve semiindependent adaptations and can
promote the evolution of complexity, diversity, and evolution-
ary innovations (Evans et al., 2017; Goswami et al., 2014;
Jablonski, 2022; Larouche et al., 2018; Wagner & Altenberg,
1996; Yang, 2001). Because highly modular traits can explore
a larger volume of trait space (Goswami et al., 2014), they can
lead to the evolution of morphological innovation as more
novel areas of the trait space become occupied and new mor-
phologies evolve. Conversely, highly integrated traits covary
strongly with each other and evolve together in a coordinated
fashion (Olson & Miller, 1999). With such strong covariation,
these traits have much less freedom to explore a large volume
of trait space (compared to highly modular traits) (Evans et
al., 2021; Goswami et al., 2014). As such, strong integration
has been hypothesized to act as a constraint on diversification
(Goswami & Polly, 2010; Goswami et al., 2014). This has
been documented in cichlid fishes for over 50 years, where
reduced integration in the functionally related oral and pha-
ryngeal jaws has led to increases in diversity (Burress et al.,
2020; Liem, 1973). More recent analyses of this system sug-
gest that increased integration decreases evolutionary rates of
morphological change (Roberts-Hugghis et al., 2023).

Despite integration being traditionally considered a con-
straint that hinders the evolution of complexity and diver-
sity, some studies suggest that strong trait integration can
also promote rapid morphological evolution in functionally
linked traits (Evans et al., 2021; Felice et al., 2018). Recent
simulation studies have shown that in this way, larger, more
rapid morphological changes can evolve by directing evo-
lution along a line of least phenotypic resistance (Goswami
et al., 2014). Such a system would be more likely to evolve
maximally disparate phenotypes by pushing species into the
outer edges of trait space (Evans et al., 2021; Goswami et al.,
2014; Navalon et al., 2020). This has been documented in the
asymmetrical skulls of flatfishes (Evans et al., 2021), extreme
variation in snake skull shapes (Ollonen et al., 2024), and the
elongated beaks of Hawaiian honeycreeper birds (Navalon
et al., 2020), suggesting that integration promotes the evolu-
tion of innovation by allowing clades to rapidly colonize into
novel regions of trait space.

Innovations may also enable access to novel habitats. This
can further shape evolution by providing ecological release
from competition and predation, resulting in increased lin-
eage and morphological diversification rates (Yoder et al.,
2010). Certain habitats may promote more morphological
diversification than others. Coral reefs exemplify such envi-
ronments, containing 25% of all marine life despite occupy-
ing less than 0.2% of the ocean floor (Souter et al., 2021).
Reefs host complex interactions between coral and fish spe-
cies, facilitating fine-scale niche partitioning and associated
morphological and functional specialization, which can lead
to increased ecological opportunities (Alfaro et al., 2007;
Brandl et al., 2018; Cowman & Bellwood, 2011; Evans et
al., 2019b; Price et al., 2011). Additionally, coral reefs appear
to spur the evolution of morphological innovations. Many
reef-associated species bear novel innovations, such as the
intramandibular jaw joint of butterflyfishes (Chaetodontidae),
parrotfishes (Scarinae), and other fishes, which expands the
gape, assisting in grazing algae and invertebrates from reef
surfaces (Gibb et al., 2015).

Of the numerous evolutionary innovations that have
evolved, the avian beak (particularly its shape) is an important
feature that evolved prior to radiations into novel adaptive
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zones (Bhullar et al., 2015; Guillerme et al., 2023; Jetz et
al., 2012). Although birds represent the most speciose clade
possessing beaks, they are found in other groups, including
turtles and tortoises (Testudines) (Ingle et al., 2023), extinct
pterosaurs (Martill et al., 2021), and certain groups of fishes.
Despite their prevalence across the Tree of Life, beak evolu-
tion in these less speciose clades has received comparably less
attention.

Among fishes, the evolution of highly modified teeth form-
ing convergent beaked structures has evolved independently
in at least two groups: parrotfishes (Labridae: Scarinae)
(Evans et al., 2023a; Price et al., 2010) and tetraodontiforms
(pufferfishes, ocean sunfishes, and allies) (Tyler, 1980). These
dental features qualify as evolutionary innovations in both
clades because they enable access to previously unattain-
able dietary and functional niches (Miller, 1949; Miller et
al., 2023). Fish beaks facilitate durophagous feeding modes,
either upon carbonate reef structures in the case of parrot-
fishes (Evans et al., 2023a; Lellys et al., 2019; Price et al.,
2010) or hard-shelled invertebrates in the case of tetraodon-
tiforms (Turingan, 1994; Tyler, 1980). Recently, an extensive
morphological study investigating skull shape evolution in
parrotfishes found that beaks are an evolutionary innovation
that promoted rapid morphological diversification along cer-
tain evolutionary trajectories related to climatic and biogeo-
graphic variables (Evans et al., 2023a). Whether this pattern
holds true for other clades with convergent beaked structures,
such as tetraodontiforms, remains unknown.

Tetraodontiform fishes represent an excellent system for
exploring patterns related to the evolution of innovation.
These fishes possess a host of unique features and morpholo-
gies, including the cuboidal body of boxfishes, erectable body
spines in porcupinefishes, and the fusion of the teeth into a
beak in several families, including the most speciose family,
the pufferfishes (Tetraodontidae) (Santini & Tyler, 2003;
Tyler, 1980). This novel dentition develops from elongated
tooth bands that continuously fuse together during ontogeny
to form a mineralized beak (Fraser et al., 2012; Thiery et al.,
2017).

The tetraodontiform beak represents an evolutionary inno-
vation that has enabled the occupation of new dietary niches.
Beaked species possess a pair of trituration tooth plates on
the inside of the dentary and premaxilla that aid in crushing
hard-bodied prey such as crabs and bivalves (Turingan, 1994;
Tyler, 1980). The tetraodontiform beak is comprised of highly
modified and fused jaw bones and represents a maximally dis-
parate phenotype compared to nonbeaked tetraodontiforms.
Given this extreme morphological disparity, we may expect
that skulls of beaked species evolve rapidly and in a highly
integrated fashion, similar to previous studies showing this
in flatfishes, snakes, and certain birds (Evans et al., 2021;
Navalén et al., 2020; Ollonen et al., 2024).

In addition to displaying novel phenotypes, tetraodon-
tiforms permit tests for links between morphological diver-
sity and habitat association. These fishes are circumglobally
distributed and occupy a wide variety of ecosystems, from
coral reefs to open oceans and even freshwater rivers (Tyler,
1980). This ecological diversity allows for the examination
of how different habitats may influence patterns of morpho-
logical evolution and innovation. Furthermore, tetraodon-
tiforms have a rich fossil record extending back to the Late
Cretaceous, with many well-preserved specimens (Santini &
Tyler, 2003). This enables evolutionary tests over deep time
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scales, providing a more comprehensive understanding of the
factors shaping their diversity.

Here, we investigate the role of an evolutionary innovation,
the tetraodontiform beak, in shaping patterns of evolutionary
integration, evolutionary rates, and morphological disparity.
We quantify skull shape for 176 fossil and extant tetraodon-
tiform species using a three-dimensional geometric morpho-
metric approach. We use this dataset to test factors promoting
the evolution of innovation under a comparative framework.
Compared to its closest relatives, the tetraodontiform beak
represents a maximally disparate phenotype. Thus, we hypoth-
esize that skulls of beaked species have evolved this extreme
morphology due to strong trait integration that evolved rap-
idly along a line of least phenotypic resistance. As such, we
also expect that skulls of beaked species exhibit higher mor-
phological disparity compared to skulls of nonbeaked species,
as they would be able to occupy the more extreme edges of
trait space. Lastly, we hypothesize that highly diverse habitats
may have spurred the evolution of the tetraodontiform beak
and resulted in increased rates of morphological disparity and
evolution. By examining the impact of evolutionary innova-
tion on multiple aspects of morphological diversification in
a comparative framework, this study aims to provide new
insights into the mechanisms driving patterns of phenotypic
diversity across clades and habitats.

Methods

Taxonomic sampling and CT scan data acquisition
Weanalyzed theskullshapeof 176 species of Tetraodontiformes,
including 173 extant and three fossil species. This sampling
encompasses all 10 living families, with fossil representatives
from two families (Tetraodontidae and Triodontidae). A com-
prehensive list of the scanned species, scanning locations, and
specimen voucher information is provided in Supplementary
Appendix 1 (Supplementary Material). We included three of
the only known cataloged three-dimensional fossil tetraodon-
tiform skulls, tSphoeroides hyperostosus (Tetraodontidae),
tTriodon antiquus (Triodontidae), and tCtenoplectus wil-
liamsi (stem Triodontidae). Each species was represented by
a single adult specimen that underwent micro-CT scanning
at the University of Washington Friday Harbor Laboratories
(Bruker Skyscan 1173; 40 species), Rice University (Bruker
Skyscan 1273; 92 species), the University of New England,
Australia (General Electric phoenix vitomelx s; 13 species),
Cornell University (General Electric 120 micro-CT; 1 spe-
cies), or the University of Michigan (Nikon XT H 225 ST;
1 fossil species), totaling 147 new scans. Two previously
scanned fossil specimens were also acquired—t Ctenoplec-
tus williamsi from Close et al. (2016) and one unpublished
scan of fTriodon antiquus, both scanned on a Nikon XT H
225 ST at the Natural History Museum, London. Finally, we
sourced scans for 27 additional species from MorphoSource
(morphosource.org) listed in Supplementary Appendix 1
(Supplementary Material).

Segmentation, digitization, and fossil landmarks

Scans were segmented in 3D Slicer (Kikinis et al., 2014) to
isolate the skull bones from the rest of the body. Within 3D
Slicer, digitization of the specimens was conducted using a
landmark scheme of 170 points (48 fixed landmarks and 122
sliding semilandmarks), as detailed in Supplementary Figure
S1 and Supplementary Table S1. This scheme represents an
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extended version of the general Eupercaria scheme from
Evans et al. (2023b), ensuring a comprehensive represen-
tation of the diversity of tetraodontiform skull shapes. To
ensure consistency of landmark placement, all landmarking
was conducted by the same person. After landmarking all
176 specimens, each scan was inspected again for verification,
with slight adjustments made when necessary.

All landmarks were placed on the left side of the skull.
However, for one fossil specimen, tTriodon antiquus, the left
side was unable to be landmarked due to taphonomic deg-
radation. To address this, the CT scan was converted to a
three-dimensional mesh and then inverted for landmarking
using the MeshLab software (Cignoni et al., 2008). Additional
taphonomic processes affecting our fossil specimens occa-
sionally rendered some landmarks unplaceable. Instead of
proceeding with a significantly reduced subset of landmarks
shared across all extant and fossil specimens, we chose to
estimate the missing landmarks for the fossil specimens using
the ‘MissingGeoMorph’ function in the R package LOST
(Arbour & Brown, 2020). We applied a Bayesian principal
components analysis (BPCA) method to estimate missing
landmark data, leveraging principal component regressions
and Bayesian estimations to determine the position of absent
landmarks (Oba et al., 2003). Empirical data set analyses
by Arbour & Brown (2014) have shown this method to be
highly reliable for landmark estimations. Moreover, these
types of estimates produce a better fit to the original data than
exclusion of specimens with incomplete landmarks (Arbour
& Brown, 2014).

Skull shape analyses

After digitization, we imported the landmark coordinates into
R Statistical Environment version 4.2.3 (R Core Team, 2023)
using a custom script from Buser et al. (2023) and processed
them with the geomorph package version 4.0.5 (Baken et al.,
2021). To remove the effect of nonshape variation, such as
scale, size, and orientation across specimens, we performed
a generalized Procrustes superimposition between specimens
(Rohlf & Slice, 1990). Semilandmarks were slid along their
tangent directions using the Procrustes distance criterion
because sliding using bending energy may cause spurious cor-
relations among landmarks that can bias modularity analy-
ses (Zelditch & Swiderski, 2023). Given the biomechanical
complexity of fish skulls, which contain multiple moving
elements, analyzing shape can be challenging due to preser-
vation artifacts affecting jaw positions (Evans et al., 2019a).
We account for these biases in the rotation and translation of
these mobile structures by performing a local superimposi-
tion, ensuring standardized positioning of the different skull
elements (Rhoda et al., 2021a, 2021b). Following local super-
imposition, we then conducted a PCA to assess the main axes
of skull shape variation. The first two principal components
(PC1 and PC2) were visualized as a phylomorphospace using
the pruned, time-calibrated phylogeny of Troyer et al. (2022).
Additionally, we employed the “plotRefToTarget” function in
geomorph to plot the primary and secondary axes of skull
shape variation as ball and stick plots (Supplementary Figure
S2).

Phylogenetic estimation, trait coding, and ancestral
trait reconstructions

To investigate skull evolution across Tetraodontiformes,
we used the time-calibrated phylogeny proposed by Troyer
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et al. (2022), which encompasses 239 extant and fossil spe-
cies of Tetraodontiformes. Using the ape package (Paradis &
Schliep, 2019), we pruned the tree to retain only the 176 taxa
for which morphological data was available. Habitat associa-
tions for extant species were obtained from FishBase (Froese
& Pauly, 2023) and Fishes of Australia (Bray & Gomon,
2023). Each species was categorized as being coral reef-
associated or nonreef-associated, following previous studies
(Alfaro et al., 2007; Santini et al., 2013a) (Supplementary
Appendix 1). For fossil species, categorization was based on
the paleobiotope where they were discovered, with reef asso-
ciation being determined by the presence of hermatypic corals
(Friedman & Carnevale, 2018; Marrama et al., 2016). Dental
morphology for each species was also characterized. Species
were defined as beaked if they possessed highly modified and
fused teeth, a characterization based on the criteria of Tyler
(1980) (Supplementary Appendix 1). The beaked group con-
sists of all species from the families Molidae, Diodontidae,
Tetraodontidae, and Triodontidae. Nonbeaked species
include those from the families Balistidae, Monacanthidae,
Triacanthidae Triacanthodidae, Ostraciidae, and Aracanidae.
Nonbeaked species possess teeth that are discrete units and
protrude out of the jaw sockets, while beaked species pos-
sess teeth that do not protrude and are incorporated into the
matrix of the jaw bones. For the fossil species in our analy-
sis, their classification as beaked or nonbeaked was based on
characters 68-70 from the morphological matrix by Santini
and Tyler (2003) defining beaked species as possessing teeth
fused into a parrot-like beak and nonbeaked species having
teeth as discrete units, either slender caniniform, stoutly coni-
cal, incisiform-molariform, or thick caniniform teeth.

To determine the timing of evolutionary transitions for
each trait of interest in our analyses (habitat type, dentition
type), we reconstructed ancestral states in phytools (Revell,
2012). We used a stochastic character mapping approach
(Huelsenbeck et al., 2003) under a model with 1,000 simula-
tions with the “make.simmap” function on the complete tree
from Troyer et al. (2022), containing seven outgroup taxa,
52 fossil tetraodontiforms, and 187 extant tetraodontiforms.
Model fitting was conducted using the “ace” function in ape
for an equal rates model that assumes a single rate for all
transitions, an all rates different model that allows transitions
to have unique rates, and a symmetrical rates model where
forwards and backwards transition rates are equal, but can
be unique for each character state pair (Paradis & Schliep,
2019) (Table S2). Empirical Bayesian posterior probabilities
for estimated ancestral states were plotted for each node of
the phylogeny. After pruning outgroups from the tree, we
estimated the number of character transitions between each
state (i.e., reef to nonreef, beak to nonbeak, and vice versa) to
determine the frequency of these transitions over time. Lastly,
we recorded the proportion of time spent in each state, calcu-
lated in the “make.simmap” function that produces a matrix
containing the total time spent in each state along each edge
of the tree (Revell, 2012).

Rates of skull shape evolution and morphological
disparity

We quantified the rate of skull shape evolution between reef
and nonreef-associated species, as well as between beaked and
nonbeaked species using the “compare.evol.rates” function in
geomorph. This method calculates the multivariate rate (the
net rate of change over time along phylogenetic branches)
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of evolution by comparing rates of groups (not necessarily
clades) using a 3D array of Procrustes-aligned coordinates, a
phylogenetic tree, and an array containing group state (i.e.,
habitat type) as input (Adams, 2014; Baken et al., 2021).
Significance was assessed using the phylogenetic simulation
approach run with 1,000 iterations (Adams & Collyer, 2018).
Similarly, to compare skull morphological disparity, we
employed the “morphol.disparity” function in geomorph for
both reef vs. nonreef and beaked vs. nonbeaked states. This
function calculates morphological disparity by estimating the
Procrustes variance for each group using the residuals of a lin-
ear model fit. Additionally, we used the “compare.multi.evol.
rates” function in geomorph to evaluate the net rates of shape
evolution for each skull module and compare between beaked
and nonbeaked species. This method calculates evolutionary
rate parameters of multivariate traits (0?) from predefined
modules. Significance is assessed by comparing the observed
rate to a null rate matrix derived from a random simulation
using 1,000 permutations.

To quantify rates of tetraodontiform skull shape evolution
across the phylogeny, we used BayesTraitsV4 (Pagel & Meade,
2022). To reduce dimensionality, we employed only the first
24 principal components, which account for 95% of the total
shape variation. Principal component scores were multiplied
by 1,000, following Evans et al. (2023b), as a way to correct
for any computation issues arising from small numbers in
BayesTraits. We account for evolutionary correlations in trait
variation using the “TestCorrel” function in BayesTraits. We
used a reversible-jump Markov chain Monte Carlo method
with uniform priors and ran two independent chains for 200
million generations, sampling every 10,000 iterations, with
the first 60 million discarded as burn-in. Convergence was
visually assessed using Tracer v1.7.1 (Rambaut et al., 2018),
with all ESS (Effective Sample Size) values exceeding 200. We
tested two models of trait evolution: a single rate Brownian
motion model that assumes one rate across the phylogeny,
and a variable rates model that allows for changes in rates
throughout the phylogeny and identifies where rates differ
(Venditti et al., 2011). Model fitting was performed by calcu-
lating Bayes factors based on the marginal likelihoods from
both models. A Bayes factor greater than 10 is regarded as
strong support for that particular model (Pagel & Meade,
2022).

To assess changes in subclade morphological disparity for
Tetraodontiformes, we implemented disparity through time
(DTT) analyses under a Brownian motion model using the
“geiger” package in R. We also compare DTT for reef vs.
nonreef-associated species as well as beaked vs. nonbeaked
species. We used the average squared Euclidean distance
among all pairs of data points as our disparity index. The
DTT method calculates changes in relative subclade disparity
through time across nodes in the phylogeny. We compared the
observed disparity to that under a simulated null Brownian
motion model iterated over 1,000 generations. We used the
observed and simulated disparities to calculate a morpho-
logical disparity index (MDI), which measures the deviation
from expectations for relative within-clade disparities under
a model of Brownian motion. A negative MDI indicates that
disparity is distributed among subclades and is commonly
interpreted as evidence for an early burst, characteristic of
adaptive radiation (Harmon et al., 2010; Slater & Pennell,
2014). A positive MDI indicates that disparity is distributed
within subclades. Because MDI estimations at multiple time
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points suffer from a high false-positive rate, we use the two-
tailed rank envelope method of Murrell (2018) to assess sig-
nificance. This method provides an overall p-value as well as a
p-interval because the ranks will almost always result in some
ties. Because this is a two-tailed test, p-values below 0.025 are
considered significant.

Evolutionary modularity and integration

To test for patterns of evolutionary modularity between
beaked and nonbeaked species, we defined eight a priori
hypotheses of modularity that encompass a range of func-
tional, embryological, and sensory hypotheses from previous
literature (Evans et al., 2019a; Helfman et al., 2009; Kague
et al., 2012; Westneat, 2005), as well as an 11-module indi-
vidual bone hypothesis (Supplementary Figures S3). We eval-
uated modularity using the “phylo.modularity” function in
the geomorph package. This function uses the covariance
ratio (CR) method, which is a measure of the relative strength
of covariation between modules compared to the strength
within modules (Adams, 2016). A CR less than 1 indicates a
more modular system, while a CR greater than 1 indicates less
modularity (Adams, 2016). Then, under the best-supported
hypothesis, we compared the effect sizes (strength of the
modular signal) for beaked and nonbeaked species using the
“compare.CR” function in geomorph. The best-supported
model is indicated by the lowest effect size. Additionally, we
evaluated our eight hypotheses of modularity with “phy-
loEMMLI” (Goswami & Finarelli, 2016), which applies max-
imum likelihood to compare different modularity hypotheses
while also accounting for phylogenetic nonindependence. We
visualized the results of the modularity analyses by creating
network plots showing the magnitude of integration between
each module.

Using our best-supported modular hypothesis, we tested
evolutionary integration among modules using the “phylo.
integration” function in geomorph. This method uses partial
least squares (PLS) analysis to quantify the degree of covari-
ation between our hypothesized modules (Rohlf & Corti,
2000). PLS values closer to 1 indicate higher integration.
Because this method can be sensitive to sample size between
groups (Adams & Collyer, 2016), we first randomly removed
42 nonbeaked species until both groups contained 67 spe-
cies. Finally, we compared effect sizes between groups using
“compare.PLS” in the geomorph package. All scripts, data
produced, and Morphosource scan information used for
this study can be found on the Dryad repository (https://doi.
org/10.5061/dryad.4f4qrfjjx) in Supplemental Appendices 1
and 2.

Results

Skull shape evolution inTetraodontiformes

Tetraodontiformes display a wide diversity of skull shapes
(Figure 1A; Supplementary Figure S4A). The primary axis of
shape variation (principal component 1, PC1) accounts for
37% of the overall variance and overwhelmingly corresponds
to dentition type. Along PC1, beaked species occupy a sep-
arate area of the morphospace from their nonbeaked coun-
terparts (Figure 1A). In addition to possessing an elongated
distal margin of the first tooth, which corresponds to a beak,
skulls of beaked species are characterized by an anteriorly
positioned orbit, a long supraoccipital crest, and a wider
preopercle (Supplementary Figure S2). Additionally, we find
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that beaked species exhibit significantly greater (p = 0.002)
skull morphological disparity (variance = 0.0023) than non-
beaked species (variance = 0.0017). By contrast, reef and
nonreef-associated species do not occupy different areas of
the morphospace (Supplementary Figure S4C), and display
no significant difference in skull disparity (p = 0.476; reef
variance = 0.0019, nonreef variance = 0.0020).

DTT analyses suggest that skull shape disparity for
Tetraodontiformes is principally distributed within sub-
clades based on a low yet positive morphological dispar-
ity index (MDI=0.179, rank envelope test: p=0.007,
p-interval = 0.0009-0.0139;  Supplementary Figure SS5).
When comparing DTT between beaked and nonbeaked spe-
cies, both sets of species deviate significantly from the null
Brownian distribution beginning around 90 million years ago
(Ma.) and continue to exceed Brownian expected disparity
until the present day (Figure 1B). However, beaked species
exhibit higher disparity over this time interval (MDI = 0.35;
rank envelope test: p =0.007; p-interval = 0.0009-0.0139)
compared with nonbeaked species (MDI=0.22; rank
envelope test: p=0.005; p-interval =0.0009-0.0109).
Additionally, beaked species display an upturn in disparity
from 20 to 10 Ma. Reef-associated and nonreef-associated
species also exhibit differences in DTT (Supplementary Figure
S4D). Reef species display a lower MDI (MDI = 0.131; rank
envelope test: p = 0.007; p-interval = 0.0009-0.0149) com-
pared with overall Tetraodontiformes, while nonreef species
display a slightly higher MDI (MDI = 0.181; rank envelope
test: p = 0.009; p-interval = 0.0009-0.0189).

Tempo and timing of transition rates and
diversification

In examining overall rates of morphological evolution, we find
significant differences in the tempo of beaked and nonbeaked
tetraodontiforms. Beaked species display significantly higher
rates of skull shape evolution (p = 0.001; rate ratio = 1.42).
When comparing by habitat, interestingly, nonreef-associated
species show an evolutionary pace almost twice as fast as their
reef-associated counterparts (p = 0.001; rate ratio = 1.71).

On a branch-specific level, tetraodontiform fishes exhibit
variable rates of skull shape evolution. Our BayesTraits
analysis yielded strong support for a variable rates model
of trait evolution over a single-rate Brownian motion model
(Supplementary Table S3). The highest rate increases on
the superfamily level occur on the two branches leading to
the two beaked clades: Tetraodontoidea and Triodontoidea
(Figure 2). Within the pufferfishes (family Tetraodontidae),
we find another high rate on the branch leading to the sharp-
nose pufferfishes (Canthigaster spp.), coinciding with a shift
towards more elongated skulls compared to other pufferfish
species (Figure 2). Beyond the beaked species, rate increases
are found in the spikefishes (Halimochirurgus spp.) and the
filefish Anacanthus barbatus, both of which exhibit remark-
able snout elongations.

To determine the timing of evolutionary transitions to
coral reef and nonreef habitats as well as the evolution of
the beak, we performed ancestral character reconstruc-
tions for each trait using the time-calibrated phylogeny
from Troyer et al. (2022). We recovered the ancestral state
of all Tetraodontiformes as nonreef-associated, with mul-
tiple transitions to reef habitats occurring over their evolu-
tionary history (Figure S6). Transitions from nonreef to reef
habitats occur slightly more frequently across the phylogeny

202 1990}20 0€ U0 Josn Areiqi AojueH A 2/6¥5/2/6981/L L/8./RI0IENI0AS/W00"dNO"olWapede//:sdny Woly papeojumoq


http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
https://doi.org/10.5061/dryad.4f4qrfjjx
https://doi.org/10.5061/dryad.4f4qrfjjx
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpae127#supplementary-data

1874

Troyer et al.

N
S
o
X o
= o
N o
»
N
O
o
N
S
o
I
<
g B Beak
1 O Non-beak

I T I
-0.06 -0.04 -0.02

PC 1:37.22%

1.2w

disparity
0.4 0.6 1.0

0.2

B Beak
B3 Non-beak

0.0
|

T I I
110 88 66

Figure 1. Skull shape disparity and evolution in tetraodontiform fishes. (A)
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Phylomorphospace of skull shape evolution colored by dentition type. Insets

depict representative skull shapes for respective regions of the morphospace (1: Chilomycterus reticulatus, 2. Marilyna darwinii, 3: T Ctenoplectus

williamsi, 4: Canthigaster coronata, 5. Triodon macropterus, 6: Tydemania

navigatoris, 7: Balistes capriscus, 8: Halimochirurgus alcocki, 9: Anacanthus

barbatus, 10: Acanthaluteres vittigen. (B) Disparity through time plots for beaked (blue) and nonbeaked species (orange). Dashed lines indicate the
Brownian motion expectation, while shaded regions represent the 95% CI. Solid lines indicate actual measured disparity.

compared to transitions from reef to nonreef habitats. But
on average, Tetraodontiformes have spent proportionally
less time occupying reef habitats (0.467) compared to non-
reef habitats (0.532; Figure 3). Additionally, we identify the
ancestral dentition state as nonbeaked with two independent

transitions to a beak (Supplementary Figure S7). There are
no transitions from a beaked dentition to a nonbeaked state
(Figure 3). On average, the proportion of time spent in a
beaked dentition state (0.43) is less than in a nonbeaked state
(0.57; Figure 3). Notably, the oldest tetraodontiform fossils
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Figure 3. SIMMAP character state transitions. A number of transitions from each state across the Tetraodontiformes phylogeny for (A) dentition state
(beaks = blue, nonbeaks = orange) and (B) habitat state (reef = red, nonreef = grey). Pie charts represent the proportion of time spent in each state.

exhibiting beaked structures are estimated to be approxi-
mately 50 Ma. However, phylogenetic analyses reveal long
stems for these groups extending back over 80 Ma, suggest-
ing that the evolutionary origins of beak development in this
group may precede the current fossil record (Supplementary
Figure S7). Furthermore, the evolutionary origins of the beak
precede Tetraodontiformes invasions into coral reef habitats
by approximately 15 Ma (Supplementary Figures S6 and S7).

Evolutionary modularity and integration

To assess if patterns of skull modularity and integration
differ between beaked and nonbeaked tetraodontiform
fishes, we compared multiple a priori hypotheses of modu-
larity (Supplementary Figure S3) based on previous studies
(Evans et al., 2019a; Helfman et al., 2009; Kague et al., 2012;
Westneat, 2005) using the phylogenetically informed analyses
phyloEMMLI (Goswami & Finarelli, 2016) and a CR anal-
ysis (Adams, 2016). Our analyses find strong model support
for an eleven-module hypothesis of modularity where each
individual skull bone is a separate module (Supplementary
Table S4). Both beaked and nonbeaked species display sim-
ilar levels of skull modularity (CR beaked = 0.813; CR
nonbeaked = 0.865; p =0.66) and skull integration (PLS
beaked = 0.768; PLS nonbeaked = 0.727; p = 0.87).

Despite no significant difference in the degree of skull
modularity and integration between beaked and nonbeaked
species, we do observe a substantial difference in the overall
net rates of morphological evolution in certain skull bones
between groups. Notably, beaked species demonstrate higher
overall rates of morphological evolution than their nonbeaked
relatives (Figure 4). Among beaked species, the highest evo-
lutionary rates are found in the premaxilla, maxilla, frontal,
and dentary bones. Nonbeaked species, however, exhibit the
highest evolutionary rates in the frontal and maxilla. For
bones comprising the jaw (e.g., premaxilla, maxilla, dentary),
beaked species exhibit evolutionary rates that are approxi-
mately two times faster than nonbeaked taxa (Figure 4).

Discussion

In this study, we used a three-dimensional geometric morpho-
metric dataset of both extant and fossil species to investigate
patterns of morphological disparity and rates of morphological
evolution as they relate to innovation. Using tetraodontiform

fishes as a model system, we focus on the beak dentition pres-
ent in several families. We observe similar patterns of mod-
ularity and integration among beaked and nonbeaked taxa.
In fact, levels of modularity and integration are conserved,
or unchanged, across the entire Tetraodontiformes clade.
Despite this conservation, skulls of beaked tetraodontiforms
evolve twice as fast and show higher levels of morphological
disparity when compared to nonbeaked tetraodontiforms,
especially in bones contributing to the jaws. Furthermore,
contrary to findings from previous studies, we find that coral
reef association does not promote skull evolutionary rates or
morphological disparity. Instead, we suggest the evolutionary
innovation of the tetraodontiform beak is a more important
driver of their morphological diversification and increased
evolutionary rates, making it a critical component of their
evolutionary success.

The role of integration in morphological diversification and
evolutionary innovation is currently debated. Initially, integra-
tion was thought to constrain phenotypic diversification, while
modularity was viewed as a prerequisite to facilitate innova-
tion, with the ability to increase morphological diversification
(Goswami et al., 2014; Marroig et al., 2009; Yang, 2001).
Recently, integration has been suggested to aid in the evolution
of innovation by promoting evolution along specific trajecto-
ries and facilitating rapid diversification within a constrained
region of trait space (Evans et al., 2021; Goswami et al., 2014;
Navalon et al., 2020). In this way, integration can promote large
responses to selective pressures by driving the evolution of max-
imally disparate phenotypes. However, our results show that
despite beaked tetraodontiforms displaying rapid rates of mor-
phological diversification, there are no significant differences
in patterns of modularity and integration between beaked and
nonbeaked species. This suggests covariation is unchanged and
highly conserved throughout the entire clade.

It may seem counterintuitive that both integration and
modularity can be conserved simultaneously; however, these
concepts are hierarchically related. Modules are units that are
tightly integrated internally yet relatively autonomous from
other modules (Klingenberg, 2008; Zelditch & Goswami,
2021). Conserved patterns of skull integration and modular-
ity are seen in other major vertebrate clades, including mam-
mals, caecilians, and squamates (Marshall et al., 2019; Porto
et al.,, 2009; Watanabe et al., 2019). Furthermore, strong
trait integration may play a smaller role in the evolution of
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Figure 4. Rates of bone module evolution in tetraodontiform skulls. Representative skulls from a (A) beaked (Marilyna darwinii) and a (B) nonbeaked
(Balistes capriscus) tetraodontiform depicting bone modules colored by rate of shape evolution under the best-fit modularity hypothesis. Network

plots show the magnitude of integration between each bone module for both groups. Larger module circles indicate higher modularity, while darker
lines between modules indicate higher integration. Bone modules are colored by rate of evolution. Bone abbreviations are: prm (premaxilla), den
(dentary), mxI (maxilla), vom (vomer), prs (parasphenoid), crt (ceratohyal), prp (preopercle), hym (hyomandibula), orb (orbit/frontal), bsc (basioccipital), spr

(supraoccipital).

innovation. For example, whereas Evans et al. (2021) sug-
gested strong integration can play a major role in the evo-
lution of innovation by coordinating responses to selective
pressures across multiple integrated traits, our results suggest
the opposite. We propose that rapid evolution of maximally
disparate phenotypes, such as the tetraodontiform beak, can
still arise while maintaining a conserved pattern and magni-
tude of trait integration across an entire clade.

Coral reefs have been previously linked to increases in rates
of morphological evolution in fishes and the origin of vari-
ous innovations (e.g., the teleost intramandibular jaw joint,
pharyngeal jaws and beaks in parrotfishes, and long, flexible
teeth associated with specialized detritivores) (Bellwood et
al., 2014; Evans et al., 2023a; Gibb et al., 2015; Price et al.,
2010, 2011, 2013). However, our results suggest a contrast-
ing, more nuanced pattern. We observe that the tetraodon-
tiform beak evolved ~15 Ma prior to their colonization of
coral reefs. Additionally, nonreef-associated tetraodontiforms
display elevated rates of skull shape evolution compared to
reef-associated species.

Overall, our findings suggest reef association by itself may
not be enough to promote large changes in morphological

diversification and evolution of divergent structures such as
the beak. Recent studies lend support to these findings. Evans
et al. (2019b) examined pharyngeal jaw morphology across
reef and nonreef-associated wrasses but found no difference
in rates of morphological evolution between groups. However,
higher rates were found in specialized reef-associated clades,
such as cleaner wrasses and parrotfishes (Evans et al., 2019b).
We observe a similar result in Tetraodontiformes, where the
branch leading to species in the genus Canthigaster displays a
rapid increase in the rates of skull shape evolution (Figure 2).
These are small, reef-associated pufferfishes that have evolved a
pointed snout, perhaps allowing them to easily maneuver into
tiny crevices and feed on small benthic organisms like sponges,
corals, and invertebrates (Allen & Randall, 1977; Santini et al.,
2013a). Overall, our findings corroborate those of Evans et al.
(2019b) but in another clade of reef-dwelling fishes. The tradi-
tional notion that reefs are promoters of morphological diver-
sity and innovation (Alfaro et al., 2007; Cowman & Bellwood,
2011; Kiessling et al., 20105 Price et al., 2011) may be more
nuanced than previously thought. Instead, other factors, such
as specialized trophic ecologies found on reefs may play a more
important role in governing morphological adaptation.
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Regardless of habitat, the beak in certain tetraodontiform
families is likely an important factor in their high rates of
morphological diversification. We observe that rates of skull
shape evolution are almost twice as fast in beaked species
compared to nonbeaked species, despite species having spent
less proportional time in a beaked state compared to a non-
beaked state. This highlights the role that beaks may play in
facilitating rapid evolution. Beak-like structures have evolved
independently several times in ray-finned fishes. Notably, the
beak-like teeth of parrotfishes (Labriformes) are estimated to
have appeared around 32 Ma during the Oligocene (Evans
et al., 2023a). In contrast, our ancestral trait reconstruction
indicates that beaks evolved in Tetraodontiformes approxi-
mately 100 Ma (Supplementary Figure S7), making them one
of the earliest and longest-established examples of this mor-
phological innovation among fishes. The oldest unequivoca-
ble fossil evidence of the tetraodontiform beak comes from
the holotype specimen of tBalkaria histiopterygia that dates
to 55.8 Ma during the Eocene period. In contrast, some of the
earliest parrotfish fossils date to the middle Miocene (15.9—
11.6 Ma) (Bellwood & Schultz, 1988; Streelman et al., 2002).

Evolutionary innovations can be defined as traits that
allow a lineage to exploit its environment in a novel way
and enable access to previously unavailable resources (Miller,
1949; Miller et al., 2023). Some recent definitions have also
included lineage diversification as a requirement for key inno-
vations (Heard & Hauser, 1995; Hunter, 1998). However, it
has been argued that these definitions are problematic in the
sense that they conflate two separate phenomena (diversifica-
tion and ecological shifts) (Miller et al., 2023). Furthermore,
while certain innovations have resulted in increased rates of
diversification, many do not (Wainwright & Price, 2016). For
instance, several feeding innovations in wrasses (e.g., the split
lower lip of cleaner wrasses) have led to reduced diversifi-
cation but increased ecological specialization, potentially by
reducing the size of available trophic niches (Wainwright &
Price, 2016).

This pattern of specialization without diversification may
explain why we observe a variable species richness among
beaked tetraodontiforms. Despite sharing a similar functional
innovation, the family Tetraodontidae contains over 200
species, while the deep-sea family Triodontidae represents a
monotypic lineage. Perhaps there is an unknown element to
the deep-sea trophic niche of Triodontidae that is responsible
for this disparity in species richness. In addition to a beak,
other tetraodontiform clades possess unique morphologies,
such as body inflation (Bemis et al., 2023; Wainwright &
Turingan, 1997), which may contribute to their diversifica-
tion, and future studies should examine these aspects of their
anatomy.

In this study, our ancestral character reconstruction infers
beaks arose twice in the tetraodontiform phylogeny. These
findings mirror those of another clade, where wrasses were
observed to have three independent origins of a beak (Evans
et al., 2023a). Evans et al. observed distinct differences in the
beak shapes of these three clades and hypothesized this may
be due to differing trophic ecologies (Evans et al., 2023a).
While our study did not explicitly test this hypothesis, the
two evolutionary origins and subsequent diversification of
the tetraodontiform beak may have evolved similarly. For
example, beaks of diodontids (e.g., Chilomycterus reticula-
tus) are comparatively thicker and wider than other beaked
tetraodontiforms; beaks and snouts of Canthigaster spp. are
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smaller and more narrow, and the skulls of triodontids (e.g.,
Triodon macropterus) are much more similar in shape to
those of nonbeaked tetraodontiforms (Figure 1).

This partitioning of beaks into different areas of the mor-
phospace may be paralleled in trophic niches as well. Although
diet data is sparse, diodontids have been recorded using their
powerful jaws to crush hard-shelled gastropods, mollusks,
and crustaceans (Turingan, 1994; Vermeij & Zipser, 20135).
By contrast, the Canthigaster diet tends to be more herbivo-
rous with a smaller percentage of crabs and gastropods being
ingested (Randall, 1967). Extremely little is known of the diet
of the deep-sea Triodon macropterus; however, they have been
observed eating crabs, fishes, squids, cuttlefishes, and shrimps
in captivity (Bemis et al., 2023). Despite this study finding
two transitions to a beak in tetraodontiforms, its evolutionary
origins are still debated. Some studies have placed all beaked
families into a clade (Santini & Tyler, 2003; Arcila & Tyler,
2017; Winterbottom, 1974), while others infer Triodontidae
as separate (Arcila et al., 2015; Ghezelayagh et al., 2022;
Santini et al., 2013b; Troyer et al., 2022). With difficulties of
placing Triodontidae into the tetraodontiform phylogeny, this
raises the question of whether the tetraodontiform beak has
a single evolutionary origin or represents convergent or par-
allel morphologies arising multiple independent times. Future
studies that fully resolve the placement of this clade will add
clarity to the evolutionary origins of the beak.

Altogether, despite observing a conserved and unchanged
pattern and magnitude of trait integration, we still see
increased morphological rates in the jaws of beaked tetra-
odontiforms. These results suggest that the beak is an
important innovation promoting their overall morphologi-
cal diversification and rapid evolutionary rates. Additionally,
rules that were previously thought to be broadly applicable,
such as reef associations driving morphological diversity, are
perhaps more nuanced. Instead, other factors, such as trophic
specialization, may better explain this phenomenon.
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