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Abstract
In this paper, we address the problem of finding charging stops while travelling in electric 
vehicles (EVs) using artificial intelligence (AI). Choosing a charging station is challenging, 
because drivers have very heterogeneous preferences in terms of how they trade off the 
features of various alternatives (for example, regarding the time spent driving, charging 
costs, waiting times at charging stations, and the facilities provided at the charging 
stations). The key problem here is eliciting the diverse preferences of drivers, assuming that 
these preferences are typically not fully known a priori, and then planning stops based on 
each driver’s preferences. Our approach to solving this problem is to develop an intelligent 
personal agent that learns preferences gradually over multiple interactions. This study 
proposes a new technique that utilises a small-scale discrete choice experiment as a method 
of interacting with the driver in order to minimise the cognitive burden on the driver. Using 
this method, drivers are presented with a variety of routes with possible combinations of 
charging stops depending on the agent’s latest belief about their preferences. In subsequent 
iterations, the personal agent will continue to learn and refine its belief about the driver’s 
preferences, suggesting more personalised routes that are closer to the driver’s preferences. 
Based on real preference data from EV drivers, we evaluate our novel algorithm and 
show that, after only a few queries, our method quickly converges to the optimal routes 
for EV drivers [This paper is an extended version of an ECAI workshop short paper 
(Shafipour Yourdshahi et al., in: ECAI 2023 workshops, Kraków, Poland, 2023)].
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1 Introduction

In order to combat climate change and achieve net-zero emissions, electric vehicles 
(EVs) are becoming increasingly important, and many governments are supporting their 
widespread introduction. There is a plan in place by the UK government to stop selling 
newly manufactured petrol and diesel vehicles by 2035 [17], paralleled by similar objectives 
within the EU aiming for the same target by 2035 [15]. With the anticipated growth of EVs 
in the future, there will be a need for better infrastructure which will facilitate the charging 
of EVs. Nevertheless, according to the United Nations (UN) Sustainable Development 
Goals (SDGs) #11 and #7, it is essential to achieve a transportation system that is affordable 
and sustainable by 2035 to achieve a sustainable world.

There is, however, a lot of work to be done in order to develop this infrastructure and, 
for now, there is a lack of charging stations available to drivers. When it comes to travelling 
long distances, this can be particularly challenging, since it is likely that drivers have to 
stop at rapid charging stations, possibly multiple times, on their journey to reach their 
destination. Hence, the charging problem is still a major obstacle to switching to EVs in 
the future [10]. In order to gain a deeper understanding of the problems faced by current 
EV drivers and their behaviour regarding choosing charging stops, we surveyed 1278 EV 
drivers in April 2022 [19]. In this survey, we found that over a third of the respondents 
were not satisfied with their charging experience on such long journeys. Another survey 
conducted by the UK government’s Department for Transport [24] supports our findings, 
indicating that more than a third of EV drivers express dissatisfaction with the public 
charging infrastructure.

Additionally, we noticed that there was a large variety of preferences of drivers when 
it came to charging stations. Some prioritised time, whereas others considered the overall 
cost of charging stations or even the availability of specific facilities as more important.

This paper explores, based on our findings from the survey, how a personal intelligent 
agent can help EV drivers manage the limited charging infrastructure that is currently 
available for long trips involving EVs. In particular, since the drivers have very diverse 
preferences when it comes to choosing charging stations, we take a driver-centric approach 
and are interested in using artificial intelligence (AI) tools to plan the drivers’ stops over 
long distances, while taking into account their individual preferences (e.g., balancing 
cost, travel time, charging time, and facilities at charging stations). In spite of the fact that 
existing work [12, 18, 22] has examined personalised routing, it does not address dynamic 
preference elicitation.

To minimise reliance on existing data, we assume that the personal agent is not able to 
obtain any information about the driver’s preferences in the beginning, and instead is only 
able to acquire them through subsequent interactions. A novel method is proposed in this 
paper, called Online Estimators for Preference Elicitation (OEPE). The objective of this 
method is to find a route with charging stops that are aligned with the driver’s preferences 
(i.e., a route that will maximise the utility of the driver). As we demonstrate in the results 
of our research, it is possible to learn a driver’s preferences well enough with only a few 
interactions, so that we can suggest a route which is close to the most preferred route 
of the driver. We specifically contribute to the state of the art by making the following 
contributions: 

1. To enhance the driving experience of electric vehicles, we developed a personalised, 
driver-centric routing technique that incorporates information about the driver to find 
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more convenient charging stations. We applied the preference elicitation concept in this 
domain for the first time.

2. Our research advances the state of the art like Reinforcement learning [25] and 
Adversarial Learning [13] with the introduction of OEPE (Online Evolution of 
Preferences Estimation), a pioneering method designed to estimate driver preferences in 
the absence of any prior information. This innovative approach enables us to formulate 
initial hypotheses regarding driver inclinations and to iteratively enhance them through 
ongoing interactions with the driver. What sets OEPE apart is its lightweight nature. 
Unlike conventional methods reliant on pre-trained models or the retention of knowledge 
between executions, our algorithm operates by recalculating estimations from scratch 
with each run. This ensures real-time adaptability and accuracy without the burden of 
historical data or preconceived biases. In leveraging OEPE, we offer a dynamic and 
responsive solution for understanding and accommodating driver preferences in diverse 
contexts that go beyond the limitations of traditional preference learning techniques.

3. In this paper, we implemented Discrete Route Choice (DRC) for the first time to solve 
the preference elicitation problem in this domain. Using this technique, drivers are 
offered multiple routes from their origin to their destination. Then, given the number 
of choices available to them, they choose the one which is most suitable for them. The 
advantage of this is that we are able to gather more information from drivers with fewer 
interactions.

We evaluated our algorithms using real-world data which was collected from EV drivers. 
This data involves drivers’ preferred charging points when on long journeys. Through an 
extensive evaluation, we show that our approach can converge to the optimal route within 
only a few iterations as a result of the evaluation.

The remainder of the paper discusses related work in Sect.  2, introduces our novel 
method (OEPE) in Sect.  3, presents the empirical evaluation in Sect.  4, discusses 
limitations in Sect. 5 and concludes with conclusions and future work in Sect. 6. As soon as 
the paper is published, all source codes and datasets needed for conducting and analysing 
the experiments will be publicly available under a license allowing free research use.

2  Related work

User-centric route planning and eliciting human preferences are very active research topics 
[4, 11, 12, 18, 22]. In particular, in recent works on dynamic user-centric route planning 
[12, 18, 22], the authors propose personalised route planning algorithms. These algorithms 
can provide users with routes that meet their needs, assuming these are known a priori.

Unlike their work, our method acquires a user’s preferences without assuming prior 
information about that user. Rather, it builds beliefs about the user’s preferences over time 
through interactions. There is other recent research [23] in which the authors are concerned 
with selecting an appropriate query at each stage of an interactive preference elicitation 
process for the user. Their method is to choose a query that minimises max setwise regret. 
In light of the fact that we currently do not generate questions, and that we already have a 
few possible stations, their solution does not fit our current work.

Furthermore, recent work [4] looked at obtaining the preferences of the user through 
interaction. Based on feedback from human preferences, the authors propose an interactive 
platform for performing grammar-guided symbolic regression. Specifically, they design an 
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interface that provides the user with three distinct ways to state their preferences between 
multiple sampled symbolic expressions: categorising samples, comparing pairs, and sug-
gesting improvements to a sampled symbolic expression. There are other works [1–3, 5, 
11] where the authors suggest pairs to users and ask them to choose one in order to elicit 
feedback. In contrast, in our work, instead of interacting with users by eliciting preferences 
over pairs, we do this by using a method similar to the Discrete Choice Experiment (DCE) 
[6]. DCEs are used to estimate the parameters of a discrete choice model that captures 
the choice behaviour using the stated preferences of the users. In each experiment, a user 
performs a choice task, which is choosing one out of a small number of alternatives. Each 
alternative and each user have observable attributes that are included in the choice model. 
We use a similar approach called Discrete Route Choice (DRC). We provide the driver with 
more than two routes with charging stops where each choice has summarised information 
about the route and charging stops and allow drivers to choose their preferred one. With 
this method, we are able to elicit the preferences of the drivers with fewer interactions.

3  Methodology

To model our research, we assume that there is an EV driver who has some preferences for 
choosing charging stops and depending on the destination, the driver can stop at multiple 
charging stations on the route to charge his/her car. It is important to note that each selected 
station has different specifications, such as the cost of charging, and the speed of charging. 
Depending on which stations are chosen, driving time, waiting time, fees for charging, and 
access to facilities will differ. Therefore, based on the driver’s preferences, the optimal stop 
would be different. We assign an intelligent agent to each driver taking into account that 
these preferences are initially unknown to the agent. The agent has initially a hypothesis 
about the driver’s preferences and improves its belief after interacting with the driver 
multiple times. In more detail, Fig.  1 shows the interaction between the agent and the 
driver. The agent will keep suggesting some routes with different charging stops depending 
on the latest perception of the driver’s preferences and based on the driver’s chosen origin 
and destination. When the driver picks the route that is most convenient for them among all 
choices the personal agent updates its belief about the driver’s preferences upon receiving 

Fig. 1  According to the latest 
understanding of the driver’s 
preferences, the agent suggests 
some routes for the journey. The 
agent updates its belief about the 
driver’s preferences when the 
driver selects a route
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the latest choice. For this method, we assume that Rab is a set of all possible routes 
considering charging stops between the given origin a and destination b of the driver. Each 
r ∈ Rab is defined with its feature Xr = {x1, x2, ..., xn} where xi is the ith feature of the route 
r (related to EV charging stops and the route itself). As mentioned earlier, these features 
can include statistics such as mean values and deviations of charging costs, charging speed, 
waiting times, and availability of restaurants, restrooms or childcare facilities during the 
entire journey. Additionally, the marginal contribution of each feature to the driver’s utility 
is denoted by weight W = {w1,w2, ...,wn} . Each element wi is a real number between −1 
and 1 expressing the importance of the respective feature to the driver. Here, we assume 
that each driver’s preferences can be described by a utility function u:

To elicit the driver’s preferences and offer better routes, in this paper, we introduce our 
novel method, Online Estimators for Preference Elicitation (OEPE). Using this method, 
the most appropriate route is determined based on the driver’s preferences regarding 
charging stop specifications on the route between the origin and destination. This is a 
driver-in-the-loop method that learns the driver’s preferences interactively to identify the 
optimal route. The main idea behind our algorithm is to keep a set of estimators, which 
are the most probable hypotheses that are continuously revised over time. Each estimator 
contains potential weights W for calculating the utility u. These weights are used to predict 
the route selected by the driver from a given list of route choices. Estimators that are not 
able to make accurate predictions are removed, and replaced by estimators that are created 
using successful ones as a basis, or purely random selection.

OEPE has some fundamental concepts that are applied during preference elicitation. In 
order to provide a proper understanding of the method, we will first introduce the basics of 
it in Sect. 3.1 and, following that, we will explain the algorithm for eliciting preferences 
using OEPE in Sect. 3.2 in detail.

3.1  OEPE fundamentals

Set of estimators In OEPE, the personal agent keeps a set, E , of N estimators. As we can 
see in Fig. 2, an estimator e is a tuple: {We, �e, fe} , where:

– We is a vector of estimated weights of the driver’s utility function u;

u(W,Xr) = w1x1 + w2x2 +⋯ + wnxn.

Fig. 2  Set of estimators and the 
structure of each estimator
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– �e holds the number of times that e was successful in predicting the chosen route by the 
driver;

– fe keeps the count of failures in identifying the chosen route.

The estimators are initialised at the beginning of the process and evaluated whenever 
a route is chosen by a driver. The estimators that are not able to make accurate predic-
tions after several trials are removed and replaced by estimators that are created using 
successful ones as a basis, or purely randomly, in a fashion inspired by genetic algo-
rithms [9].

List of route choices As we mentioned before, based on the specified origin a and 
destination b, we have Rab as possible routes from a to b. At each interaction with 
the driver, the personal agent recommends a set of route choices R∗

ab
= {r1, r2, ..., r�} 

selected from Rab to the driver. According to the driver’s preference, he/she chooses 
a route r∗ that maximises the utility function. The process of generating Rab and R∗

ab
 

will be explained in more detail in Sect. 3.2, Algorithms 2 and 3. As part of OEPE, we 
keep a list of all routes proposed to the driver R∗

ab
 in all interactions as well as the route 

selected by the driver r∗ in C:

The reason for this is to check the history of suggested routes and select one by the driver 
for validating each estimator of the E.

Bags of successful weights To predict we precisely and with less interaction, we define 
bags of successful weights. Each bag Bi keeps a set of each parameter wi of vector we sepa-
rately so that it can be used in the future for generating new estimators. Figure 3 shows an 
example of bags for each element of vector we . Whenever we successfully estimates the 
correct route selected by the driver, we store each wi of we in the corresponding bag. If one 
wi is successful many times, it will be kept in the corresponding bag repeatedly. Therefore, 
the chance of selecting it for generating a new estimator will increase. Details of how we 
use bags in the generation step are mentioned in Algorithm 6.

C = {(R∗

ab1
, r∗

1
), (R∗

ab2
, r∗

2
), ..., (R∗

abk
, r∗

k
)}

Fig. 3  The length of W
e
 is three 

so we have three sets of bags for 
each w

i
 . The numbers inside the 

bags are those values that pre-
dicted the correct route selected 
by the driver successfully
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3.2  Process of eliciting preferences

The process of eliciting preferences in OEPE has three main steps: Initialisation, Evalu-
ation and Generation as shown in Fig. 4.

In more detail Algorithm 1 illustrates the process of interacting with the driver and 
eliciting his/her preferences. 

Algorithm 1  Eliciting Preferences

The first step of the Algorithm  1 is Initialisation (Line 2) which is called to 
generate and initialise N estimators. As there is no prior information about the driver’s 
preferences, all weights wi of We for each estimator are initialised with a random value 
drawn uniformly at random from [−1, 1] . Finally, both �e and fe are set to zero. Then the 
interaction with the driver will be started for � times and assume that in each interaction, 
the driver travels from a different origin a to a different destination b and will be asked 
to enter by the driver using GetOriginAndDestination Function (Line 6). Later, the 
GenarateRoutes function generates Λ random routes Rab from a to b considering the 
stations on the route to charge. Details can be found in Algorithm 2. 

Fig. 4  Process of eliciting the preferences
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Algorithm 2  Generate random routes

In Algorithm  2, the first two inputs are the origin a and destination b of the driver. 
Moreover, Λ is the number of routes we will generate with this function. The other input of the 
function ∇ defines the maximum distance from the shortest path between a and b that is where 
we could look for stations. At Line 7, we first find the shortest path rs between the moving 
point of the car � to the destination b. Initially, � is set to the origin a of the driver at Line 4 
and updated later with the location of the station s in Line 10 where the car is supposed to 
be charged and move to the next destination. To find the shortest path, we used A∗ algorithm 
[8], the fastest algorithm among all the algorithms such as Dijkstra [7] and the Manhattan 
distance is applied as the heuristic function. After getting the shortest path rs between � and 
b, we will seek some stations around it. At Line 8, we find all stations S that are within ∇ 
distance of rs . Based on the car’s current state of charge, we calculate (Line 9) all stations 
that can be accessed from � among S . We assume that there is at least one station the car can 
reach. We randomly select one station s from all reachable stations. After getting to that point, 
we will presume that the car is recharged to a certain value and consider that station s as the 
next moving point. This process will be repeated until it reaches the destination. All stations 
selected will be considered as one route. We repeat this process Λ times.

Later, using the PredictWeights function in Line 8 of Algorithm 1, we get the predicted 
weights Wp based on the current set of estimators E , which will be explained in more detail 
further down. As we proceed to Line 9, the function GenerateChoices is used to find � 
( 𝜃 < |Rab| ) possible routes among all possible routes by evaluating them based on the latest 
elicited preferences Wp of the driver. Therefore, the function gets randomly generated routes 
Rab between a and b as well as Wp . The function is explained in Algorithm 3, in which we 
calculate the utility u of each r ∈ Rab as follows:

and then the route with maximum u will be considered as the estimated route re in Line 2. 

u =

n∑

i=1

wpixri
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Algorithm 3  Generate Route Choices

 After selecting the route with maximum utility, we will select another � − 1 routes from 
Rab ⧵ {re} randomly. Following that, the agent will interact with the driver and run a DRC 
with GetSelectedRoute. For this DRC, there are � routes as choices with information about 
the routes’ attributes and their related values. From these routes, the driver chooses his/
her preferred route r∗ . Later in Lines 11 and 12 of Algorithm 1, we update the list of route 
choices C with the offered routes to the driver R∗

ab
 and the preferred one r∗ by the driver. 

After getting the route chosen by the driver, we will evaluate the estimators. Algorithm 4 
presents the process for evaluating estimators. The key objective of this step is to find 
estimators that can estimate the chosen route correctly. 

Algorithm 4  Evaluating Estimator

As the next step, we will need to evaluate the estimators of E and see which one is 
closest to the driver’s preference. After each interaction with the driver and getting the 
selected route, we start evaluating our estimators and updating the success rate �e and 
failure rate fe of each estimator using Algorithm  4. To calculate �e the increment is not 
simply done by �e ← �e + 1 and the CalculateSuccess function in Line 4 is applied for 
updating the �e . The CalculateSuccess (Algorithm 5) function calculates by looking at the 
history of the interactions between the agent and the driver which are stored in C . It checks 
each choice c in C and identifies what is the optimal route r∗

e
 among Rc by assuming We as 

the driver’s true weight. If the preferred route by driver r∗
c
 is equal to the estimated route 

using We ( r∗e ) then the � will be increased. This process will be repeated for all choices in C 
to get the total � . The value returned from the CalculateSuccess function will be stored in 
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�e . In case there is at least one successful estimation for e, each wi in the We vector will be 
stored in a respective bag Bi , which is mentioned in Line 6 and 7. The union ( ∪ ) which is 
applied in the equation means that new weights will be added to the bag with repetition. If 
a weight succeeds many times, it will appear in the bag with the same number of successes, 
so the chance of selecting it will be higher. 

Algorithm 5  Evaluate Old Choices

If the estimator e could not predict the correct route among previous choices, then fe is 
increased (Line 10). The first failure for the estimator e would not be the reason to remove it 
and it will be given more chances since it may still hold correct weights. Consequently, there is 
a threshold � for the removal, and if fe is greater than � , the estimator e will be removed from E.

After the Evaluation step, Et will be the new surviving estimators as some of them were 
removed due to multiple failures of the estimators and now we start Generation step. In this 
step, the aim is to generate new estimators to increase the size of the set E back to N again. 
This means N − |Et| new estimators need to be generated. Unlike the Initialisation step, new 
estimators are not only created with random values but a proportion of them are generated using 
previous successful weights from the bags B . Accordingly, a new combination of weights that 
had at least one success in the previous steps can be utilised in generating new estimators. 

Algorithm 6  Generating New Estimators
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More detail of the process of generating new estimators is indicated in Algorithm 6. 
The main part of producing new estimators is creating a new weight vector W′ . The 
process of creating all new weights W′ are shown in Lines 5–10 of the Algorithm  6. 
Weights for a proportion (N − |Et|) × m (where m ∈ [0, 1] ) of the new estimators will 
be randomly sampled from a uniform distribution U(−1, 1) . The other proportion 
(N − |Et|) × (1 − m) will be created as a new mixture from the respective bags, which 
contain previously winning weights. If all bags are empty, then all parameters will be 
random. Before creating a new estimator e′ , in Line 12 and 13 of the Algorithm 6, the 
CalculateSuccess function (Line 12) is employed here to check if the recently generated 
weights �′ would have at least one success across the choices list so far. Checking the 
previous successes improves the algorithm since it decreases the likelihood of wasting 
an estimator with weights �′ that would not be able to make any correct prediction 
in the previous steps. As a result, if the output of the function is zero, �′ will be 
discarded. Otherwise, it will be considered as the weight We′ of the new estimator e′ . 
Consequently, �e′ will be assigned with the output of the CalculateSuccess function and 
fe′ will be assigned to zero. In the end, the created e′ will be added to Et , and the process 
repeats until |Et| = N.

Additionally, we need to have the estimated weights for u at each iteration to be able to 
guess the route that the driver would prefer. In this case, we would be able to recommend 
routes that are close to the driver’s preferred route. To enable the personal agent to make 
better recommendations, it is necessary to estimate the weights of the driver’s utility 
function u. For estimating the weights, we apply the PredictWeights function (Line 8). 
In this function, we get the weighted average of the predicted we in which weights are 
�e of each estimator e. We used the weighted average method, as it is a valuable tool for 
estimating values in situations where multiple estimates with different reliability levels are 
available. In this way, we let more reliable estimates contribute more to the final result, 
while less reliable estimates give less influence. Therefore, it gives more weight to the 
more trustworthy estimates and less weight to those that are less reliable.

The number of iterations will continue for � times.

4  Evaluation

In this section, we assess the efficacy of our innovative approach, Online Estimators for 
Preference Elicitation (OEPE). We undertake a comparative analysis between OEPE and 
two conventional classification methods: Decision Trees (DT) [16], Discrete Choice Model 
(DCM) [21] Deep Q-Networks (DQN) [26]. This evaluation aims to evaluate OEPE’s 
performance in accurately estimating the route preferred by the driver, in comparison to 
established algorithms.

Wp =

∑
e∈E �ewe∑
e∈E �e
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4.1  Benchmarks

We assume the driver’s preferences will be elicited using either DCM/DT/OEPE for each 
scenario. Algorithms  7 and 8 show how we elicit preferences using DT and DCM. For 
both algorithms, all weights wi of We are initialised with a random value from the uniform 
distribution U(−1, 1) . 

Algorithm 7  Eliciting Preferences With DT

In Algorithm 7 (similar to Algorithm 1), from Line 5 to Line 10, we generate R∗

ab
 route 

choices and then get the selected route by the driver r∗ . The next goal of this algorithm 
is to use the data gathered so far to create a model that predicts the driver’s preferences. 
Thus, the dataset is empty at the beginning of the process and increases gradually with 
each interaction with the driver. Here, we add R∗

ab
 and r∗ to the X and Y sets of the dataset 

respectively. After updating the dataset, we applied DecisionTreeClassifier of sklearn and 
fitted the model based on X and Y and then predicted the Wp . However, in Algorithm 8, 
after generating Rab , we run DCE for n times. After gathering n selected choices among 
the suggested routes by the driver we estimate new weights using Maximal Likelihood 
Estimation. For this, we used the pylogit library [14]. 

Algorithm 8  Eliciting Preferences With DCM



Autonomous Agents and Multi-Agent Systems           (2024) 38:45  Page 13 of 19    45 

To enable comparative analysis between our algorithm and RL techniques, we define 
the state space as including all potential charging stations, along with the current state of 
charge of the EV, as well as the origin and destination of the driver. Since we do not know 
the preferences of the driver and there can be an infinite combination of weights, our model 
has an infinite action space. Thus, we used the linear DQN function approximation to solve 
the problem by assuming that the true reward function is the driver’s utility function which 
we defined as a linear function in our method.

4.2  Setup

To evaluate our algorithm, we used data from the survey described in Sect.  1 for the 
experiments. The survey was conducted both online and in person. To conduct the 
in-person survey, our team visited some of the UK’s rapid charging stations, such as 
Cobham, Fleet, and Winchester, and went to the Fully Charged LIVE event in Farnborough. 
Our team interviewed electric vehicle drivers while they were charging their vehicles. As 
part of our interview process, we asked multiple questions, such as what challenges they 
faced and how they overcame them. Moreover, we asked about their priorities in selecting 
a charging station. We presented the following options to them: 

 1. High speed of charging
 2. Overall low charging cost
 3. Part of a charging network that I am a member of
 4. Provisions for drivers with accessibility needs
 5. Minimal deviation to my route
 6. Easy payment methods (for example, access to contactless)
 7. Pricing transparency
 8. Safe location (for example, well-lit, likely to be busy)
 9. Positive online reviews or charging reports
 10. Typically not busy
 11. Close to food/refreshment facilities
 12. Close to shopping facilities
 13. Location with baby change facilities
 14. Sheltered charge point
 15. Location with restrooms
 16. Close to the playground
 17. Real-time availability information.

Then, we asked them to choose up to 10 reasons for choosing a particular charging station 
on a long journey. As a next step, they were asked to rank the chosen options. As a result, 
we know how important each feature is to each user. For our evaluation, we assume that 
these participants are the EV drivers in our system. Thus, to derive the weights of each 
route feature preferred by the drivers, we converted their ranked preferences into weights 
using the following formula:

(1)wi =
1

pi
,
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where pi denotes the rank order of features i for a particular participant. As an example, if a 
participant selected: 1, 2, 6, 9, 10, 11, 13, 15 as their main feature when choosing a charg-
ing stop and ranked them as follows: 10, 2, 1, 13, 11, 6, 15, 9. For this research, we only 
considered High speed of charging (time); Overall low charging cost (cost); Close to food/
refreshment facilities (access to restaurants); Location with restrooms (access to restrooms). 
So, according to the above rankings, the rank for cost is 2nd, for time is 3rd, for access to res-
taurants is 5th, and for access to restrooms is 7th. Accordingly based on the above equation 
the weights for these features are 1

5
 , 1
3
 , 1
5
 , and 1

7
 . We employed these weights for route features 

and linked them as follows: the cost was mapped to the total charging cost of the route, speed 
was associated with the total driving time of the route (including driving time and total charg-
ing time), access to restaurants was correlated with the total number of food facilities on the 
route, and access to restrooms was tied to the number of restrooms available on the route.

In addition to considering the weight of each feature for the EV driver, we needed to 
simulate the road and charging stops. To evaluate our method and make comparisons, we 
initially defined a grid, assuming that various stops are located in different cells of the grid. 
Also, assuming that the source and destination are situated somewhere along the border of 
the grid. Here is how we set values to each station’s features: Speed is a number between 
10 and 300 kW; Cost is a number between 1 p/kWh and 100 p/kWh; 0 or 1 for having a 
restaurant or not; 0 or 1 for having a restroom or not. Therefore, the total charging cost 
for each route will be the aggregate of the charging cost at each station along that route, 
and the total driving time for that route will include the sum of the driving time plus the 
charging time. Regarding amenities such as food facilities and restrooms, we will count 
the number of available amenities at the stations on the selected route. Finally, to calcu-
late the utility of the route, considering the variance in ranges among these values, we 
will normalise them before multiplying each with its respective weight. The charging cost 
and driving time are normalised based on the lowest and highest possible charge cost and 
charging speed (assuming constant driving time). To normalise the facilities of each route, 
we assume that all stations along the route have that specific facility and that there are no 
facilities along the route as the minimal value of them along the route. For this, we imple-
mented this solution by applying the keras-rl library in Python. We constructed a grid envi-
ronment where we positioned charging stations, as well as source and destination points. 
To thoroughly evaluate our method, we tested it across two grid sizes: 10 × 10 and 20 × 20 , 
each with 10 distinct scenarios. We positioned 20 stations within the smaller grid ( 10 × 10 ) 
and 80 stations within the larger grid ( 20 × 20 ). These stations were located in cells that 
were not designated as drivers’ starting points or destinations. In addition, the car’s battery 
level when starting the trip is randomly chosen between 50 and 90 percent and the maxi-
mum range is set to a random value between 30 and 300 miles. For OEPE configuration, 
N = 100 , � = 3 , � = 20 , Λ = 10 , � = 2 and m = 0.2 . All these 200 scenarios were run 20 
times for 1000 survey participants considering their preferences.

4.3  Results

For each run, we tracked the estimated weights of the drivers, the chosen route and the 
number of interactions with the driver. We aggregated the results and plotted the average 
and the confidence interval ( � = 0.05). Figure 5 shows the number of interactions that each 
method needs for its preference error to converge to 0.01 for different sizes of scenarios. As 
we can see in both Figures, OEPE is significantly better than other methods and can learn 
the preferences in less number of interactions with the driver compared to other methods.
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To plot the error in learning the preferences of drivers, we show the average error across all 
weights by evaluating the mean absolute error of the weights. Moreover, since we aggregate 
multiple results, we calculate and plot the average error. The average error across all weights 
for all drivers and all scenarios is shown in Fig. 6. As we see, OEPE the error of preferences 
gets closer to the true preferences of the driver after a couple of iterations. Figure 6 shows that 
our weight estimation error is consistently lower than the other algorithms starting with the 
second iteration, and it (almost) monotonically decreases with more iterations. On the other 
hand, DCM, DQN, and DT do not show any signs of convergence as the number of iterations 
increases.

However, we know the actual weights Wt of the driver for each scenario. Hence, using the 
driver’s utility, we can find out which route would be the right choice rt for the driver among 
all possible routes Rab for a given origin and destination:

Therefore, at each iteration, we compared the utility of the chosen route r∗ and rt:

rt ← arg max
r∈Rab

(
n∑

i=1

wtixri

)

d = |u(Wt,Xrt
) − u(Wp,Xr∗ )|

Fig. 5  Number of Interactions 
needed to converge preference 
error to 0.01 with error bars 
for 95% confidence interval for 
10 × 10 and 20 × 20 scenario 
sizes
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Figure 7 shows the percentage of the distance of the selected route r∗ at each interaction 
compared to the best route rt at each interaction. After more interactions with the driver, 
our distance quickly surpasses the other algorithms in the mean, becoming significantly 
better after a few iterations. This is because, in OEPE, we begin by assuming a hypothesis 
about what preferences might be. However, for others, there is no initial assumption for 
preferences and they need more data to predict the correct weights.

5  Limitations and discussion

There are some limitations to our work, which we discuss in the following. First, the 
experimental settings utilised a set of predefined preferences based on our initial survey data, 
which may not encompass the full diversity of preferences found in real-world scenarios. 
While the OEPE method is designed to adapt to a variety of preferences, the initial scope may 
limit its applicability to edge cases or uncommon preferences. Additionally, our experiments 
were conducted with a limited number of participants and routes. Although the results were 
promising, larger-scale studies are necessary to validate the findings across a more extensive 
and diverse dataset, reflecting a broader range of driving conditions and user preferences.

Fig. 6  Number of Interactions 
needed to converge preference 
error to 0.01 with area for 95% 
confidence interval for 10 × 10 
and 20 × 20 scenario sizes
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Regarding the environment, the experimental scenarios were conducted in a simulated 
environment that may not capture all the nuances of real-world driving, such as unexpected 
traffic conditions, roadworks, or the availability of charging stations. These factors can 
significantly influence route and charging stop decisions, and their impact should be 
evaluated in future real-world tests.

For driver interaction, while the discrete choice experiment method effectively minimised 
cognitive load, the interaction model in a controlled experiment might differ from real-life 
scenarios where drivers may face additional distractions or stress. Further studies should 
explore how these real-world factors affect the interaction and decision-making process.

6  Conclusions

Currently, the biggest barrier preventing people from making the switch to electric vehicles 
is the charging process. Moreover, there can be a wide range of charging stations in terms 
of type, price, and speed. These stations may also be near restaurants, restrooms, childcare 
facilities, or other amenities. Our survey of EV drivers revealed that drivers have different 
preferences regarding charging stops.

Fig. 7  Number of Interactions 
needed to converge to optimal 
route with 95% confidence 
interval for 10 × 10 and 20 × 20 
scenario sizes
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We aimed to facilitate the uptake of electric vehicles by recommending drivers with 
routes and charging stops that are aligned with their preferences. Online Estimators for Pref-
erence Elicitation (OEPE) allows us to elicit drivers’ preferences without prior knowledge. 
To reduce interaction with the driver and get more information at the same time, we used 
DRC. We used real-world data collected through a survey conducted in 2022 as the basis 
for our analysis. We have obtained ethical approval for this study through the University 
of Southampton ethical review process under the ERGO number 70451.A1. We have dem-
onstrated that we can learn the preferences of the driver using this data, and then suggest 
an optimal route using only a limited number of iterations. As a result of this solution, EV 
drivers will experience less range anxiety and be able to charge their electric cars seamlessly 
while on the road. In this way, they will be able to rest assured that using this technique 
will enable them to reach their destination in a timely manner. No matter what their car’s 
battery level is. Our solution will help reduce charging issues, thereby motivating people to 
switch to EVs. This will contribute to the UN Sustainable Development Goals by creating 
a sustainable transportation system (SDG#11). Moreover, there would be a strong incentive 
for people to buy second-hand EVs, which would be cheaper but have a smaller range. This 
means we will increase the population who can afford an EV which will ensure univer-
sal access to affordable, reliable and modern energy services (SDG #7). Furthermore, this 
would allow people to buy cheaper EVs and not be left behind. As part of our future studies, 
we will learn the preferences of the driver under various circumstances such as who they 
travel with, whether they are in a rush to reach their destination, and many other possibili-
ties; we will also focus on recommending dynamic routes to the driver as the features of the 
road and stations like driving time and waiting time might change during the journey.

In conclusion, while the OEPE method has shown effectiveness in personalising EV 
charging stop planning and quickly converging to optimal routes in experimental settings, 
further research is necessary to enhance the real-world applicability of our work. Future work 
will focus on conducting large-scale real-world trials to validate the experimental findings, 
exploring a broader range of preferences, and refining the interaction model to better reflect 
real-life driving conditions. By addressing these challenges, we aim to enhance the robustness 
and applicability of the OEPE method for widespread use in diverse real-world scenarios.
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