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Abstract

The fate choices of stem cells between self-renewal and differentiation are often tightly
regulated by juxtacrine (cell-cell contact) signalling. Here, we assess how the interplay
between cell division, cell fate choices, and juxtacrine signalling can affect the macroscopic
ordering of cell types in self-renewing epithelial sheets, by studying a simple spatial cell
fate model with cells being arranged on a 2D lattice. We show in this model that if
cells commit to their fate directly upon cell division, macroscopic patches of cells of the
same type emerge, if at least a small proportion of divisions are symmetric, except if
signalling interactions are laterally inhibiting. In contrast, if cells are first ’licensed’ to
differentiate, yet retaining the possibility to return to their naive state, macroscopic
order only emerges if the signalling strength exceeds a critical threshold: if then the
signalling interactions are laterally inducing, macroscopic patches emerge as well. Lateral
inhibition, on the other hand, can in that case generate periodic patterns of alternating
cell types (checkerboard pattern), yet only if the proportion of symmetric divisions is
sufficiently low. These results can be understood theoretically by an analogy to phase
transitions in spin systems known from statistical physics.

Author summary

A fundamental question in stem cell biology is how a cell’s choice to differentiate or
not (cell fate choices), is regulated through communication with other cells in a tissue,
and whether these choices are a one-way path or to some degree reversible. However,
measuring this in living animals is very difficult and often impossible, since this requires
to make videos of cells inside the body with a microscope. Here, we employ a simple
mathematical model for the fate choices of stem cells when they are regulated by
communication with nearby cells in the tissue. We show that different means of cell fate
choice and cell communication can lead to qualitatively different macroscopic features of
the spatial arrangement of cell types: large patches, checkerboard patterns, or randomly
disordered distributions, depending on the character of cell communication, and whether
cell fate is committed at cell division or reversible. Our analysis therefore shows that
those aspects of stem cell activity, which are otherwise difficult to measure, can be
distinguished by observing spatial arrangements of cell types.

Introduction 1

The development of complex tissues requires the appropriate spatial arrangement of 2

cell types. In many organs, cell types are ordered in a certain way, either as regular 3
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arrangements, such as hair follicles in skin or crypts and villi in the intestine, or they 4

are clustered into large, yet irregular domains, such as β-cells in Langerhans islets 5

in the human pancreas [1, 2], prosensory domains in the mammalian inner ear [3], or 6

patches in human epidermis [4, 5]. In other tissues, cell types may be dispersed without 7

apparent order. Understanding the emergence of macroscopic order, be it as regular 8

patterns or irregular domains/patches (see Fig. 1), is one of the fundamental questions 9

of developmental biology. 10

Historically, pattern formation in biology has also been a fundamental subject of 11

study in mathematical biology. Motivated by Turing’s and Wolpert’s seminal works on 12

patterning by long-range morphogen signalling [6–8], partial differential equations have 13

often been employed to model the spatiotemporal dynamics of morphogen signalling and 14

cellular responses in a coarse-grained and deterministic manner. However, a cell’s choice 15

to acquire a certain cell type identity (cell fate choice) is often regulated by paracrine 16

signalling between neighbouring cells, called juxtacrine signalling, and is also subject to 17

some degree of randomness. An example for juxtacrine signalling is the Notch pathway, 18

which can receive signals from neighbouring cells through membrane bound Jagged and 19

Delta-like ligands. This signalling pathway can, depending on circumstances that are 20

not yet entirely understood, either lead to lateral inhibition [9–11], when neighbouring 21

cells mutually repress signalling activity and attain preferably opposite cell type identity, 22

or lateral induction [3, 11–14], when neighbouring cells mutually activate signalling and 23

prefer equal cell identity. In this case, stochastic agent models that consider randomness 24

and the system at single-cell resolution are more appropriate to study the effect of 25

interactions. 26

Understanding the mechanisms underlying the emergence of ordered structures in 27

such systems is of paramount importance for tissue engineering and regenerative medicine. 28

Furthermore, this information may also be used to infer the modes of cell fate choice in 29

tissues, also called self-renewal strategies in homeostasis. The most commonly employed 30

method to infer self-renewal strategies is by using clonal data from genetic cell lineage 31

tracing assays [17,18]. However, competing models can, in homeostatic tissues, often not 32

be distinguished based on clonal data [19, 20]. For example, a long-standing question 33

in stem cell biology is whether cells fully commit to their fate at the point of cell 34

division [21], or whether stem cells fluctuate reversibly between states more or less 35

primed (’licensed’ [22]) for differentiation, independently of cell division, before finally 36

committing to terminal differentiation [19, 22, 23]. Only intra-vital live imaging has 37

so far, in few tissues, been able to resolve this question [24–26], yet this technique is 38

difficult and expensive, and not feasible in all tissues. Hence, other ways to distinguish 39

self-renewal strategies by using fixed tissue samples would be invaluable. If it is known 40

how different self-renewal strategies generate qualitatively different macroscopic patterns 41

of cell type distributions, which could be observed using appropriate molecular markers 42

in fixed tissues, such a distinction could be made. 43

To see whether such an approach could be possible for self-renewing epithelial sheets 44

in homeostasis, we will study a simple cell-based model of cell fate choice in a two- 45

dimensional spatial arrangement of cells (a stochastic cellular automaton model [27–29]), 46

and we will assess what types of long-range spatial ordering are predicted to emerge 47

for different means of juxtacrine signalling (such as the Notch and its ligands) and 48

self-renewal strategies. Tissues with such a quasi-two-dimensional arrangement of cells 49

are, for example, the basal layers of epidermis and oesophagus, or epithelial (organotypic) 50

cultures, but also other tubular yet flat epithelia, like the mammary gland epithelium, 51

can be approximated by such a spatial arrangement. Cellular automata models have 52

been used in the past to model, for example, the lateral-inhibition effect of Notch- 53

Delta and found that when cells are able to switch between their types, checkerboard 54

patterns of cell types can emerge [10, 30–32] (see also Fig. 1B). More generally, it 55
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Fig 1. Fluorescent images of spatial arrangements of cells of two types. Top row: (A)
Muscle cells with ’slow’ fibres (red) and ’fast’ fibres (black) in human biceps brachii
biopsies (Reprinted from [15], on CC-BY license), representing a random arrangement
of cell types. (B) Hair (bright) and support cells (dark) in chick basilar papilla
(Reprinted from [16], Copyright 1997 Society for Neuroscience), representing a regular,
alternating cell type pattern. (C) Integrin expression (bright), marking epidermal stem
cells in the basal layer of human epidermis (shown is a 1D section of a 2D epithelial
sheet), representing non-random cell type patches (Reprinted from [5], with permission
from Portland Press, see also images in [4]); scale bar 50µm. (Bottom row) Illustrations
of qualitative features of spatial cell type arrangements, where blue and orange tiles
denote two different cell types in a cell sheet. These correspond to the two cell types in
the respective panels above, and also to cell types A and B in the models introduced in
the Model section). (D) Illustration of a random distribution of two cell types. Random
clusters can emerge but they have a fractal structure and the two cell types appear in
approximately equal ratios. (E) Periodic pattern (here: with periodicity of one cell
length), (F) Irregular large patches. In contrast to a random distribution, cell type
clusters have smoother boundaries and single large patches may dominate, so that one
cell type occur more often than the other.
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was found that when cell phenotype is determined by reversible genetic switches, a 56

cellular automaton model akin to the Ising model, a paradigmatic lattice model originally 57

developed to understand magnetism [33,34], can help understand some aspects of cell 58

type arrangements [35,36]. In the case where Notch acts to mediate lateral induction 59

and in cases where extended cell membrane protrusions can transmit signals beyond 60

nearest cell neighbours, these patterns can have varying lengths of periodicity [37,38] and 61

exhibit dynamic switching [39]. On the other hand, cellular automata models have also 62

been employed to study the effect of cell division and cell fate choices under crowding 63

control (but without cell type specific regulation), that is, when every lost cell is replaced 64

by the division of a nearby one [19,40], which bears resemblence to the voter model of 65

statistical physics [41]. 66

While some works have studied cell fate choices and others cell-type specific (jux- 67

tacrine) regulation, so far the direct interplay of both, and its effect on large scale ordering 68

of cell types, has not been studied. Here, we wish to explicitly study how cell division and 69

subsequent fate choices may compete with regulatory cues from the immediate cellular 70

environment, to form large-scale features of spatial cell type arrangements. In particular, 71

we will analyse which features of cell fate regulation and cell fate choice patterns would 72

predict the particular large-scale features of cell type arrangements, as observed in 73

several tissues (see Fig. 1). In the future, those predictions about qualitative features of 74

cell type patterns can be compared with data representing the spatial distribution of 75

cell-type specific molecular markers, and thereby mechanisms of juxtacrine signalling 76

and fate choice could be discerned and inferred. 77

Models and methods 78

Model 79

To analyse order formation in homeostatic epithelial sheets, we model the interplay
between divisions of stem cells, cell fate choices, and juxtacrine signalling between
neighbouring cells as a stochastic (Markov) process. We seek to keep this model simple
enough to allow theoretical insights and comprehensive understanding, yet sufficiently
complete to include the commonly encountered features of signalling, cell fate choice,
and lineage hierarchies in homeostatic tissues [19,21,42]: We consider the scenario of a
unipotent lineage hierarchy, with self-renewing stem cells at the top of the hierarchy,
which can differentiate, upon which they leave the epithelial sheet. This is represented
as two categories of cells, a self-renewing category A, which is not committed and can
divide long term, while the other category B comprises cells which are primed (’licensed’)
or committed to differentiation. Each of these two categories may contain multiple cell
types as would be classified by molecular markers or phenotypes, but for notational
convenience, we denote those two categories as ’cell types’ in the following. Furthermore,
we assume cells to be spatially arranged in a square lattice formation, which facilitates
the analysis of ordering phenomena, as we can compare it with known stochastic lattice
models. While in reality, the spatial arrangement of cells in tissues is more complex, the
universal nature of critical phenomena such as macroscopic ordering, suggests that these
will qualitatively prevail also in more complex arrangements of cells [43,44]. Finally, cell
division and fate choice – that is, the process of cells choosing their cell type identity –
are modelled by the combination of two standard models [19,21], expressed schematically

August 12, 2024 4/21



as,

A→

 A+A
A+B
B +B

, B → ∅ (1)

A↔ B . (2)

Here, event (1), left, represents the division of A-cells upon which each daughter cell
chooses to either remain an A-cell or to become a B-cell, i.e. fate decisions are coupled
to cell division [21]. Event (2), on the other hand, allows cell fate choices to occur
independently of cell division [19] and instead of committing immediately, B-cells are
only ’licensed’ to differentiate and retain the potential to return to the stem cell state,
A [22]. Finally, event (1), right, represents the extrusion of B-cells from the epithelial
sheet (it is assumed that cells continue the differentiation process elsewhere, e.g. in the
supra-basal layers of the epithelium, but this is not modelled here). Now, when placing
cells in the spatial context, further constraints are introduced. First, we assume that
cells can only divide when a neighbouring cell creates space when being extruded from
the epithelial sheet. That is, we couple division of an A-cell to the synchronous loss of
a neighbouring B-cell, and vice versa. Hence, only where an A-cell is next to a B-cell,
written as (A,B), the configuration of cells can change: the B-cell is extruded, B → ∅,
which is immediately followed by a division of the A-cell, in which one of the daughter
cells then occupies the site of the previous B-cell. We can express this as,

(A,B)
λ·pλA−−−→ (A,A), (A,B)

λ·pλB−−−→ (B,B) , (3)

where λ is the rate at which loss, and coupled to it a symmetric division event, is
attempted – while this attempt may not be successful if the chosen neighbour is not of
opposite cell type. pλA,B denotes the probability of fate choice A,B, of both daughter
cells upon symmetric cell division. Here, we only model symmetric division events of the
type A→ A+ A,A→ B +B explicitly. While asymmetric divisions, producing an A
and a B cell as daughters, are assumed to occur, they do not change the configuration
of cells, since this corresponds to the event (A,B)→ (A,B) (we do not consider events
(A,B)→ (B,A) as it is commonly observed that stem cells retain their position upon
asymmetric division [24, 45]), and are thus not explicitly modelled. Furthermore, cell
fate choice independent of cell division is possible as,

A
ω·pωB−→ B, B

ω·pωA−→ A , (4)

where pωA,B denotes the probability of fate choice A,B, upon an attempted cell fate 80

choice independent of cell division, which happens at rate ω. 81

Finally, we consider that juxtacrine (cell-cell) signalling takes place between neigh-
bouring cells, which affects cell fate choice. We model this by allowing the cell fate
probabilities pA,B (for simplicity we neglect the superscripts here) to depend on the
configuration of neighbouring cell types. In particular, we assume that the fate of a cell

on site i depends only on the number of neighbours of type A, n
(i)
A , and the number

of neighbours of type B, n
(i)
B (for an update according to (3), this encompasses all six

neighbours of the two sites that are updated). Since in homeostasis, the dynamics of
the two cell types must be unbiased and thus symmetric with respect to an exchange
of all cell types A ↔ B, the cell fate probabilities must be functions of the difference

of neighbouring types ni := n
(i)
A − n

(i)
B . If pA is increasing with ni, the excess of neigh-

bouring A cells, this interaction is called lateral induction, and if it decreases with
ni, it is called lateral inhibition [11]. To select appropriate functions pA,B, we first
note that the competition between the cell types must be neutral for a homeostatic
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state to prevail, hence we require that pA,B(−ni) = 1 − pA,B(ni), which also implies
pA(ni = 0) = pB(ni = 0) = 1/2. Furthermore, the probabilities pA,B should, for very
large numbers of neighbours of the same type, tend to pA → 1, pB → 0 (for lateral
induction) or pA → 0, pB → 1 (for lateral inhibition) if ni → ∞ (while the maximum
number of neighbours is 4 and 6, respectively, we can in principle extrapolate this
function). This asymptotic behaviour suggests a sigmoidal function for pA,B(ni). We
test two types of sigmoidal functions, one representing an exponential approach of the
limiting value, modelled as a logistic function, the other one an algebraic approach,
modelled as a Hill function. Since pA(ni = 0) = 1/2, we therefore choose,

p
(log)
A (ni) =

1

2
(1 + tanh (Jni)) (logistic) (5)

p
(hill)
A (ni) =

1

2
(1 +

Jni
1 + |Jni|

) (Hill) , (6)

and pB(ni) = 1 − pA(ni) = pA(−ni). In these equations, the parameter J quantifies 82

the strength of the interaction, that is, how much the cell fate probability is affected by 83

neighbouring cells. Note that here we used a symmetrized version of a Michaelis-Menten 84

function (Hill function with Hill exponent 1) to assure the symmetry, as other Hill 85

functions cannot be symmetrized in that way. 86

In the following, we wish to study whether the mode of cell fate choice affects the
spatial patterning of cell type distributions. One fundamental question in stem cell
biology is whether cells commit to their fate at the point of cell division, or if this choice
occurs independently of cell division and is reversible [19,22]. To address this question,
we consider two model versions. In the first version, cells divide according to events
(3), and B cells are assumed to irreversibly commit to differentiation (model C ), i.e. no
events according to (4) occur. In the second version, we assume that cell fate can be
chosen independently of cell division, in a reversible manner (model R), i.e. transitions
A→ B,B → A according to (4) can occur. In both cases, fate regulation by juxtacrine
signalling is determined by the functional forms of pλA,B(ni) (for model C) and pωA,B(ni)
(for model R), according to (5) and (6). Formally, the two model versions are defined
through specific choices of parameter values in the general model, namely,

model C : ω = 0 (7)

model R : pλA = pλB = 1/2 . (8)

where the equality of pλA and pλB in model R is to ensure homeostasis in the limit 87

ω → 0. This means that, effectively, in model C, only pλA,B is a function of neighbour 88

configurations as in (5),(6), while in model R only pωA,B is. Since for each model it is 89

unambiguous which, pλA,B or pωA,B, is referred to, we neglect the superscripts in the 90

following. 91

To summarize, we model the system as a continuous time Markov process with cells 92

of type A and B arranged on a square lattice of length L (that is, with N = L2 lattice 93

sites), and the possible transitions and parameters as in (3) and (4), together with the 94

functional forms for pA,B, (5) and (6), respectively. In particular, we study the model 95

versions C and R, by fixing parameter values according to (7) and (8), respectively. 96

Methods 97

To study the stochastic model numerically, we undertake computer simulations following 98

a variant of the Gillespie algorithm [46], also called random sequential update [47]: during 99

each Monte Carlo step (MCS), associated with a time period defined by the total event 100

rate as τ = 1
λ+ω , we choose N = L2 times a lattice site i and one of its neighbours j, 101
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each randomly and with equal probability, and update site i according to rules (3) - (6) 102

(see discussion of the algorithm in the supplemental text of [48]). Update outcomes are 103

according to the rules defined in the “Model” section, whereby in general any event 104

that is possible (if the configuration allows it, as in (3)) and occurs with a rate, let’s 105

say, γ (e.g. γ = λpλA in the case of (3), left), is chosen with probability γ
ω+λ . Through 106

repeated updates, the system evolves. The initial condition is a random distribution of 107

cell types, with each cell type chosen with equal probability for each site. We generally 108

choose a time long enough for the system to settle into a steady state before recording 109

outputs (runtimes of L2/2 MCS or more), except for the situation ω = 0, J = 0, when 110

the system is equivalent to the voter model, a model where sites randomly copy their 111

state to a neighbouring site, without any further interaction [41]. This model has an 112

equilibration time that diverges with increasing system size [34]. 113

Results 114

Simulation results 115

We will now study the two model versions, C and R, numerically and will determine 116

whether long-range order, such as large patches or other patterning, emerges. For 117

convenience, we assign each lattice site i a value ci = +1 if it is occupied by a cell of type 118

A, and we assign ci = −1 if it is occupied by a cell of type B. This allows us to express 119

ni =
∑
j∼i cj where j ∼ i denotes all sites j neighbouring site i. To assess whether 120

macroscopic patches of cells of equal type emerge, that are of comparable size as the 121

whole epithelial sheet, we measure as an order parameter the difference in proportions of 122

A and B cells, φ = |NA−NBNA+NB
|, where NA,B are the total number of cells of types A,B on 123

the lattice. The order parameter is a widely used measure to identify phase transitions 124

in complex systems [49, 50] We can also express this as φ =
|
∑
i ci|
L2 , where the sum is 125

over the whole lattice. The rationale of choosing this measure is that if patches are only 126

small compared to the system size, and we let the system size L be large (L → ∞), 127

then the proportions of A and B cells should become equal in this limit, and φ ≈ 0. 128

However, if patches emerge that span a substantial fraction of the whole system, then 129

one or few clusters of one type, A or B, may dominate, leading to a non-zero value of 130

the order parameter, φ > 0. Similarly, we will assess a “staggered” order parameter 131

φ̃ [51], which measures the emergence of macroscopic patches of a checkerboard pattern, 132

that is, alternating cell types. For that, we generate a ‘staggered’ lattice with site values 133

c̃i = (−1)ki+lici, where ki, li are row and column index of site i, respectively, and define 134

φ̃ =
|
∑
i c̃i|
L2 . Thus, φ̃ is effectively the order parameter φ taken of the staggered lattice. 135

Since the values c̃i are generated by flipping cell types in a checkerboard pattern, any 136

checkerboard pattern in ci becomes a patch of equal types in c̃i. Therefore, φ̃ measures 137

the emergence of macroscopic patches of checkerboard patterns of cell types. 138

We simulated the model versions, C and R, for varying values of the interaction 139

strength, J , and the proportion of symmetric divisions, q = λ
λ+ω , and computed the 140

order parameters φ and φ̃. For model C, the results are displayed in Fig. 2, both for a 141

logistic cell-cell interaction function pA,B(ni), according to (5) (left column), and the 142

Hill function, (6) (right column). Notably, both these cases show the same behaviour: 143

the order parameter φ is close to zero for any negative value of J , while it raises rapidly 144

to substantially non-zero values for any J ≥ 0. φ̃, on the other hand, is close to zero for 145

any value of J (we have also tested larger ranges, not shown here). Fig. 2 also shows 146

the distribution of cell types on the lattice (bottom), for a negative, positive, and zero 147

value of J , with black pixels representing A-cells and white pixels representing B-cells. 148

As suggested by the order parameters, for negative J no ordering of cells is apparent, 149

one neither sees large patches, nor patterns. For positive J , on the other hand, one 150
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Fig 2. Simulation results for model C, Left: for a logistic interaction function,
pA,B(ni), according to (5), Right: for a Hill-type interaction function, according to (6).

Top row: Order parameters φ (solid curve) and φ̃ (dashed curve) as function of the
signalling strength J . The curve shows the mean order parameters φ and φ̃ of 80
simulation runs with the same parameters, and random initial conditions as described in
the Methods section. Error bars are standard error of mean. The used lattice length is
L = 80 (N = L2 = 6400 sites) and we simulated for 4000 MCS until computing the
order parameters. Below these are corresponding configurations of cell types on the
lattice (black are A-cells, white are B-cells, and the tick labels denote lattice position),
for logistic interaction function (left) and Hill-type interaction function (right), for
different values of J in each row.
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sees large patches emerging, even filling the whole lattice. For J = 0 we also see large 151

clusters, yet they look qualitatively different to the ones for J > 0: The clusters at J = 0 152

have very fuzzy borders, while those for J > 0 have more clearly defined patch borders. 153

Hence, we can conclude that if cell fate is irreversibly chosen at cell division, the default 154

behaviour, for no signalling interaction and for lateral induction, is that macroscopic cell 155

type clusters, in size similar to the system size, emerge. Only lateral inhibition disrupts 156

this order. 157

For model R, there are two parameters: J and the proportion q := λ
λ+γ of symmetric 158

cell division events. For q = 1 the model is identical to model C with J = 0, while 159

for q = 0 there are no symmetric divisions and cell types switch reversibly with rate ω 160

and probabilities pA,B. Fig. 3 shows the order parameters, both φ and φ̃, for pA,B(ni) 161

being a logistic cell-cell interaction function according to (5) (left column), and a Hill 162

function, according to (6) (right column). In contrast to model C, we see that for small 163

magnitudes of J , both in negative and positive ranges, both φ and φ̃ are close to zero 164

and thus no long-range ordering emerges. However, at some critical point J = Jc > 0 165

the order parameter φ suddenly increases to substantially non-zero values. This feature 166

occurs for both logistic and Hill-type interaction function, although Jc is larger in case 167

of signalling interactions following a Hill function. Furthermore, for q = 0 we see a 168

transition in φ̃ from zero to non-zero values if J < J̃c for some J̃c < 0. We also see 169

this when observing the configurations of cell types on the lattice (bottom of Fig. 3): 170

for sufficiently small values J < J̃c < 0 and q = 0, large checkerboard patterns emerge, 171

while for negative values of J of less magnitude, J̃c < J < 0, no long-range order is 172

apparent, as is for small positive values 0 < J < Jc. For large values of J > Jc irregular 173

large-scale patches emerge, for any value of q > 0. Jc and J̃c differ between the logistic 174

and Hill-type interaction function, but the qualitative features are the same. We can 175

thus conclude that if cell fate is reversible, then a non-zero threshold interaction strength 176

|J | must be exceeded for long range order to emerge (macroscopic patches for lateral 177

induction, alternating patterns for lateral inhibition). However, in contrast to model C, 178

cell type patches and checkerboard patterns contain some defects, with some cells not 179

matching the surrounding order, which is due to the non-zero probability to switch cell 180

type even for cells deep in the bulk of a patch/pattern. 181

We now wish to test whether the observed transitions from φ, φ̃ ≈ 0 to substantial 182

non-zero values are genuine phase transitions, that is, a non-analytic transition from 183

strictly φ = 0, φ̃ = 0 to non-zero-values at Jc and J̃c, when L→∞. Phase transitions are 184

strictly only defined in infinitely large systems, but here we are limited by computational 185

constraints to finite systems. Yet, we can assess this problem by scaling the system 186

size. We show the results in Fig. 4. Here we see that the transitions from φ, φ̃ ≈ 0 to 187

φ, φ̃ > 0 become indeed sharper with increasing system size in either model, indicating 188

that φ, φ̃→ 0 for L→∞ in the regime J̃c < J < Jc, as required for a phase transition. 189

Intriguingly, we see the transition from φ̃ = 0 to φ̃ > 0 in model R also for non-zero but 190

small values q > 0 (Fig. 4, 3rd row). Furthermore, if we vary q for sufficiently small 191

J < J̃c, we see that the non-zero regime of φ̃ prevails also for non-zero values of q as 192

long as q < qc for some critical threshold value qc, beyond which it drops sharply to zero 193

(Fig 4, bottom row). Also for this transition, the profile become sharper with system 194

size. This indicates that the ordered phase with macroscopic checkerboard patterns 195

prevails for small, but non-zero proportions of symmetric divisions, q, and only for q > qc 196

long-range order vanishes. Again this qualitative behaviour is seen for both the logistic 197

and Hill-type interaction function, only the numerical values of qc vary. 198

Theoretical insights 199

To understand the observations made by simulations, we can get insights by mapping the
model on a generic two-state spin system as employed in statistical physics. As stated
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Fig 3. Simulation results for model R, Left: for a logistic interaction function,
pA,B(ni), according to (5), Right: for a Hill-type interaction function, according to (6).

Top row: Order parameters φ (solid curves) and φ̃ (dashed curves) as function of the
signalling strength J , for model R, for different values of q = λ

λ+ω : q = 0 (blue), q = 0.2
(cyan), q = 0.4 (green), q = 0.6 (yellow), q = 0.8 (orange), q = 1 (red). Each curve
shows the mean order parameters φ and φ̃ of 80 simulation runs with the same
parameters, and random initial conditions as described in the Methods section. Error
bars are standard error of mean. The used lattice length is L = 80 (N = L2 = 6400
sites) and we simulated for 4000 MCS until computing the order parameters. Below
these are corresponding configurations of cell types shown (black are A-cells, white are
B-cells, and the tick labels denote lattice position), for different values of J (rows) and q
(columns) as noted at the margins (note that values of J differ between left and right
panel arrays). Configurations for q = 0 and J = −0.6 (left) and J = −3.0 (right)
display checkerboard patterns, which are seen best when zoomed in.
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Fig 4. System size scaling. Simulated order parameters φ (solid curves) and φ̃ (dashed
curves) as function of J and q, for increasing system sizes L = 20 (blue), L = 40 (cyan),
L = 60 (green), L = 80 (yellow) and runtimes L2/2 MCS. Each curve shows the mean
order parameters φ and φ̃ of 80 simulation runs with the same parameters, and random
initial conditions as described in the Methods section. Error bars are standard error of
mean. Left column: For logistic interaction function, pA,B(ni), according to (5).
Right column: For Hill-type interaction function, according to (6). Top row: φ(J)
and φ̃(J) for model C. 2nd row: φ(J) and φ̃(J) for model R, with q = 0.5. 3rd row:
φ(J) and φ̃(J) for model R, with q = 0.05 (left) and q = 0.02 (right). Bottom row:
φ(q) and φ̃(q) for J = −2.0 (left), and J = −5.0 (right).
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before, we interpret the cell types as numbers ci = ±1 which in spin systems can be
interpreted as “spin up” (↑,+1) and “spin down” (↓, -1). We now consider a particular
class of spin systems, which we here call memoryless spin-update models (MSUM), as
studied in [52]. Such systems are defined by (1) individual sites being randomly chosen,
with equal probability, and updated, (2) the probabilities that after the update a spin
has value ±1, called p±, may depend on the neighbours of site i, but not on the value of
the spin ci, itself, before the update (hence p∓ = 1−p±), (3) the spin update probability
is symmetric with respect to the neighbour configurations, that is, p±(−ni) = 1−p±(ni).
Such systems have been studied and well understood by means of statistical physics [52].
This class of models contains both the voter and the Ising model [34] for particular
parameter values. Notably, due to the symmetries of p±(ni), these functions, and thus
the model as a whole, are completely defined by two parameters, namely,

p1 := p+(2), p2 := p+(4) , (9)

since due to the symmetry of the function p+(ni), all other possible values of p+ are 200

fixed as p+(0) = 1
2 , p+(−2) = 1− p(2), p+(−4) = 1− p(4), and further p− = 1− p+ is 201

fixed (odd values and values outside the range [−4, 4] are not possible, as only the four 202

neighbours of i are considered). In ref. [52] it has been shown that such a system displays 203

a phase transition in the p1-p2 parameter plane between an ordered and a disordered 204

phase. This phase transition is of the same universality class as that of the Ising model, 205

except for the particular point (p1, p2) = (3/4, 1) at which the system corresponds to 206

the voter model. There, any cluster, which in contrast to the Ising model class have 207

fractal surfaces, diverges over time, so that φ→ 1 for any finite system, yet the mean 208

equilibration time is infinite. A sketch of the phase diagram in the p1-p2-plane is shown 209

in Fig. 5, where the dashed black curve sketches the phase transition line. 210

Now we assess whether our model can be interpreted as a MSUM. First, we consider
the rates at which a single site on the lattice is updated according to the model rules (3)
and (4). Without loss of generality, let us consider a particular site i on the lattice that
contains a B-cell. The rate for this site to change its occupation to an A-cell, either by a
change of the cell’s identity or by being replaced by an A-cell via the symmetric division
of a neighbour, is composed of the rates of two events: (1) the cell type changes according
to events (4), with rate ωpωA, or (2) according to events (3) an event (A,B)→ (A,A),
occuring with rate λpλA, turns a B cell into an A cell. However, this may occur both if
the B cell on site i is selected and if the neighbouring A cell is selected, thus the total
rate for this to occur is doubled, 2λpλA. Hence the total rate at which a B cell on site i
becomes/is replaced by an A-cell is,

γA(ni) = ωpωA + fAi 2λpλA =
ni + 4

8
2λpλA + ωpωA , (10)

where fAi = ni+4
8 is the probability that a randomly chosen neighbour of site i is of type

A, so that an update according to (3) can occur. For an A cell, the rate to change cell
type is analogously,

γB(ni) = γA(−ni) =
−ni + 4

8
2λpλB + ωpωB . (11)

To see whether this continuous time stochastic process is equivalent to a MSUM,
we analyse the random-sequential update scheme (Gillespie algorithm) we used for
simulating the system (see “Methods” subsection). We start with model R, that is,
setting pλA = pλB = 1

2 . If we choose as time unit the update scheme’s Monte Carlo
time steps τ = 1

λ+ω , the probability that a randomly selected site i with a B-cell

becomes an A-cell after a Monte Carlo update is pB→A = γAτ = q ni+4
8 + (1− q)pA(ni).

Similarly, we get the probability for an A-cell to become a B-cell, pA→B = γBτ =
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q−ni+4
8 + (1 − q)pB(ni). Crucially, the probability for an A-cell to stay an A-cell is

pA→A = 1− pA→B = q ni+4
8 + (1− q)pA(ni) = pB→A. Hence, the probability that after

the update, site i is occupied with an A-cell is p+ := pB→A = pA→A, i.e.,

p
(2)
+ (ni) =

ni + 4

8
q + (1− q)pA(ni) , (12)

where p
(2)
+ is independent of the occupation of i before the update, whether A-, or B-cell

(the superscript indicates the model version). The same is valid for p− = pA→B =
pB→B = 1 − p+. Furthermore, the function p+(ni) is symmetric with respect to the
sign of ni, p+(−ni) = 1− p+(ni) and thus model R is equivalent to an MSUM with the
relevant parameters, according to [52],

p
(2)
1 = p

(2)
+ (ni = 2) =

3

4
q + (1− q)pA(2) (13)

p
(2)
2 = p

(2)
+ (ni = 4) = q + (1− q)pA(4) , (14)

where pA can take the two forms of interaction functions according to (5),(6). We further 211

note that pA = pA(ni, J) is also a function of J and thus p1 = p1(J, q) and p2 = p2(J, q) 212

are functions of both J and q. In Fig. 5, we show trajectories p(J) = (p1(J), p2(J)) in 213

the p1-p2 parameter plane for several values of q (coloured curves), compared to a sketch 214

of the Ising-type phase transition line of MSUMs [52] (black dashed line). We note that 215

those trajectories cross the theoretical Ising phase transition line for values Jc > 0, for 216

any q < 1. This confirms that model R indeed exhibits a phase transition of the Ising 217

universality class at non-zero Jc > 0, that is, we see a “ferromagnetic” phase transition 218

from a disordered phase, with order parameter φ = 0 to an ordered phase with φ > 0 219

that exhibits patches of cell types (i.e. spins) of a size comparable to the system size. 220

The exception is q = 1, when the model is identical to the voter model (see discussion of 221

this case below). 222

We note that switching to the staggered lattice, ci → c̃i, corresponds to replacing 223

ni → −ni, since either only ci flips sign or all its neighbours. For q = 0, we have p± = 224

pA,B and since pA,B are functions of Jni, p± are symmetric towards the transformation 225

ci → c̃i, J → −J . Hence, it is expected that φ̃ = φ({c̃i}) exhibits the same phase 226

transition at J̃c = −Jc as φ does at Jc, yet via emergence of checkerboard patterns 227

instead of patches of equal cell types. This is consistent with the phase transition we 228

observed numerically for q = 0 and confirms that J̃c = −Jc. However, we also observe 229

numerically a phase transition for small non-zero values q > 0, in which case the system 230

is not symmetric with respect to J → −J, φ→ φ̃. To understand this, let us consider 231

a situation when q > 0 is very small, and J < J̃c, i.e. when φ̃ > 0. This corresponds 232

to the situation where J > Jc and φ > 0 on the staggered lattice of spins c̃i, i.e. when 233

the system is within the ordered region of the p1-p2 phase diagram (upper right corner 234

in Fig. 5). Any symmetric division within a checkerboard patterned area flips the cell 235

type at one site i, leading to c̃i → −c̃i. On the staggered lattice, this corresponds either 236

to a transition A→ B when ñi = 4 or B → A when ñi = −4, meaning that effectively, 237

the probability of symmetric divisions, q, lowers the probability p2, that is p2 → p2 − q. 238

This corresponds to a shift in the parameter plane as (p1, p2)→ (p1, p2− q). If q is small 239

enough, the system remains within the regime of the ordered phase (beyond the black 240

line in Fig. 5), while if q becomes larger, it may cross the Ising phase transition line 241

towards the disordered phase. 242

For model C, we cannot find a symmetric update probability in general, for any fixed
time unit τ . However, if we assume the system to be in the steady state, we can devise
an update algorithm that corresponds to an MSUM: as the steady state is time-invariant,
we can choose the time unit between updates individually for each update, and do not
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Fig 5. MSUM p1-p2 phase space. Depiction of our model’s implied MSUM parameters
p1 and p2 as function of J , p(J) = (p1(J), p2(J)), within the p1-p2 parameter plane,
according to (13) and (16) (when substituting (5) and (6), respectively). Displayed are
curves for model C in steady state (black) and for model R and different values of q:
q = 0 (blue), q = 0.4 (green), q = 0.8 (red). Left: for a logistic interaction function, (5).
Right: for a Hill-type interaction function, (6). The dots on curves denote the (p1, p2)
values for J = 0, and the arrows show the direction of increasing J . The dashed black
line is a sketch of the phase transition line according to [52], which is of the Ising
universality class, except for the point pv = (0.75, 1) which corresponds to the voter
model (no exact form for the phase transition curve is available, except for the point
p = pv).

need to define an absolute time unit. Thus, as before, we undertake a random-sequential
update scheme, selecting sites randomly, but use at each update of site i a different time
interval between updates, namely τi = 1

γA(ni)+γB(ni)
. We also simplify the interaction

by assuming that the probabilities of updates of site i depend only on the neighbouring
sites of site i, and not on those of the other site j involved in a cell division according
to (3). Since i and j will be chosen at equal probabilities over time, the joint update
probabilities of sites i and j depend on all 6 neighbours of i and j, as in our numerical
model, and thus in the time-invariant stationary state, the model outcomes of this
MSUM are expected to be equivalent to our numerical model from previous sections.

Then we get pB→A = γA(ni)
γA(ni)+γB(ni)

= (4+ni)pA
(4+ni)pA(ni)+(4−ni)pA(−ni) , where we used that

pB(ni) = pA(−ni). Furthermore, pA→A := 1 − pA→B = 1 − γB(ni)
γB(ni)+γA(ni)

= pB→A,

thus the update outcome is independent of the initial value on site i. This means that

in the steady state we can define a probability to update to an A-cell, p
(1)
+ (ni), being

independent of the value on site i, as required for a MSUM:

p
(1)
+ =

(ni + 4)pA(ni)

(ni + 4)pA(ni) + (4− ni)pA(−ni)
. (15)

This update probability is also symmetric, p− = 1 − p+ and p+(−ni) = 1 − p+(ni).
Hence, model C in the steady state, with the approximation to count only neighbours of
the updated site i, constitutes a MSUM. The corresponding relevant parameters are,

p
(1)
1 = p

(1)
+ (ni = 2) =

3pA(2)

1 + 2pA(2)
(16)

p
(1)
2 = p

(1)
+ (ni = 4) = 1 . (17)
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Again, we see the trajectory p(J) plotted in Fig. 5 (black line), which is on the top 243

edge of the diagram, at p2 = 1. Notably, the trajectories for the different interaction 244

functions as given in (5) and (6) both show the same key features: for J = 0, we have 245

pA(2) = 1/2 and thus p1 = 3/4, which is exactly the critical point corresponding to 246

the voter model. For any negative J , the system is in the disordered regime, left of the 247

transition line, while for any positive J , it is in the ordered regime, right of the line. 248

Hence, the transition from disordered, with φ = 0, to ordered, φ > 0, occurs exactly at 249

J = 0, as we have observed numerically. However, the phase transition is of a different 250

character than the Ising model phase transition. In fact, at the critical point, for J = 0, 251

the system is equivalent to the voter model, which does not exhibit a steady state for 252

any infinite system with L→∞. For any finite system, it will eventually lead to φ = 1, 253

with one species, A or B, occupying every lattice site; however, the expected time for 254

this to occur is infinite. 255

Discussion 256

We analysed a cellular automaton model for the cell population dynamics in an epithelial 257

sheet, by modelling cells of two possible types, a stem cell type (A), which can divide, and 258

a cell type primed for differentiation (B), which does not divide, set in a square lattice 259

arrangement. We modelled cell division and fate dynamics according to established 260

models of cell fate choice [19, 21, 40], but assumed in addition that fate choices are 261

regulated by juxtacrine signalling between neighbouring cells. These dynamics mimic, 262

for example, cells in the basal layers of epidermis [21], oesophagus [53], or organotypic 263

cultures [54], which are smooth sheets or have tubular geometry, and which may be 264

regulated through juxtacrine Notch-Delta or Notch-Jagged signalling. We assessed 265

the spatial distributions of cell types in the lattice, as generated from two biologically 266

motivated versions of the model: in one version we assumed that a cell commits to its fate 267

when it divides, while in the other version, changes of cell type can occur independently 268

of cell division, in a reversible manner that reflects ’licensing’ to differentiate [22]. In 269

either case, we assumed that the propensity of cell fate choice is regulated through 270

signalling which is either “laterally inducing”, preferring the choice of the cell type as 271

the majority of neighbouring cells, or “laterally inhibiting”, preferring the opposite cell 272

type to that of the majority of neighbours. We modelled this interaction through a 273

probability of fate choice that depends on the number of neighbours of either cell type, 274

through two possible functional forms, a logistic and a Hill-type function. The strength 275

of this interaction is quantified by a single parameter J , whereby positive J corresponds 276

to a laterally inducing interaction, and negative J corresponds to a laterally inhibiting 277

interaction. 278

Through numerical simulations that we confirmed by theoretical considerations, we 279

found that when cell fate is committed and coupled to cell division, the system usually 280

exhibits long-range order, where macroscopic homogeneous patches (cells of equal type) 281

of size similar to the system size emerge whenever there is no regulating interaction or 282

it is laterally inducing. Only for laterally inhibiting interaction, no long-range order 283

is observed. If cell fate is reversible and is regulated independently of cell division, 284

long-range order is generally only observed if the interaction strength |J | exceeds a 285

critical threshold value Jc > 0. If signalling is laterally inducing and is sufficiently strong 286

(J > Jc), macroscopic homogeneous patches emerge. If the proportion of symmetric 287

divisions is sufficiently low, long-range order emerges also for sufficiently strong laterally 288

inhibiting interactions, if J < −Jc < 0, in which case large-scale patterns of alternating 289

cell types, arranged like a checkerboard, emerge. For |J | < Jc, no long-range order is 290

observed. The observed features are independent of the functional form chosen to model 291

the signalling interaction between cells, both a logistic function and a Hill-type function 292
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show the same qualitative behaviour. This means that for modelling such qualitative 293

features, one can choose the type of interaction function freely; preferably such that the 294

analysis is simplified accordingly. 295

The association of patterns and cell type patches with juxtacrine signalling pathways 296

has been demonstrated previously in various works: lateral inhibition can lead to 297

alternating cell type patterns [10,30,32] and lateral induction to patches of cells of the 298

same type [3, 14, 55, 56]). Our work shows that also cell division and associated cell fate 299

choice dynamics are crucial factors to account for when assessing such large-scale features 300

of cell type arrangements. For example, the emergence of alternating patterns, under 301

lateral inhibition in our model, is only possible if cell fate is reversible and if divisions are 302

predominantly asymmetric. This means that symmetric cell divisions generally suppress 303

alternating cell type patterns. On the other hand, large-scale patches can emerge from 304

lateral induction or from symmetric divisions when cells commit to differentiation, even 305

in absence of any regulation. 306

Our model, like any cellular automaton model, is subject to simplifications that may 307

lead to deviations of quantitative predictions compared to the real world situation. For 308

example, our model has a fixed fourfold rotational symmetry, the cell arrangement is 309

fixed, and mobility is only possible through replacement of lost cells. Despite these 310

simplifications, we expect qualitative features of emergent phenomena to prevail in 311

reality, such as the occurrence of a phase transition at some critical point of parameter 312

values. This is a consequence of ’universality’ [43,44], the phenomenon that often only 313

few model features such as symmetries, dimension, and conserved quantities are relevant 314

for qualitative features, while model details do not affect those. Other features may 315

only partially prevail: for example, it is unlikely that genuine checkerboard patterns 316

emerge in reality, as these are a feature of the square lattice’s fourfold symmetry, 317

but approximately alternating patterns would generally be expected1. Beyond this, 318

certain assumptions of our model are possibly more accurate than expected: in mouse 319

epidermis, it was shown that cell arrangements do not change much over time and 320

that cell loss is accompanied by direct replacement through division of a neighbouring 321

cell [24]. Yet, our model can only be the starting point and theoretical groundwork for 322

a future comprehensive modelling framework which will need to explore more detailed 323

models and test quantitative features on experimental data, for example by including 324

cell intercalation when implemented as a vertex model [27,58,59]. Finally, our model 325

is only able to test – and thus possibly exclude – hypotheses within its scope, that is, 326

with juxtacrine nearest-neighbour signalling interaction. Long-range signalling through 327

diffusive ligands or long membrane protrusions [38,39] are not considered here and can 328

only be tested by models which explicitly include those signalling mechanisms. 329

The question whether cell fate is being decided at cell division or independently of 330

it is a long-standing one and has only recently been decided experimentally in a few 331

tissues [24–26], through rather complicated and expensive intra-vital imaging assays. 332

Hence, experimental approaches which are feasible and not too expensive are desirable, 333

as the commonly used method of (static) genetic cell lineage tracing combined with 334

clonal modelling turns out to be insufficient to distinguish these cases [19,20]. The close 335

association of cell fate choice and large-scale features of the cell type arrangement suggests 336

that experiments which can measure this arrangement could be used, in conjunction with 337

mathematical modelling (using our model or future more detailed models), to answer 338

those questions. A candidate approach to measure this are 3D confocal immunofluorescent 339

assays, employed to obtain images of tissues with molecular markers that identify cell 340

types relevant for cell fate choices and regulation. Such experiments have been done 341

1For hexagonal cell arrangements (’triangular’ lattices), which resemble real-world cell arrangements
more closely, no exact alternating pattern is possible [57], but one that is close to alternating, with some
defects interspersed.
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extensively in many tissues, but a comparison with the models is not straightforward 342

without further advanced image processing, as the experimental data does not necessarily 343

reflect the 2D arrangement of cells in epithelial sheets that are not entirely flat. As such, 344

the 3D immunofluorescent images first need to be ’unfolded’ into a 2D arrangement of 345

cells through image analysis and topological algorithms that preserve cell-cell contacts, 346

and to analyse them. Following this, the order parameter or other measures, such as 347

the correlation function or topological methods (e.g. persistent homology [60]) that can 348

identify further features of the cell type arrangement, can be be used to test the models. 349

The so processed experimental data can then be used to test, and possibly reject, 350

certain hypotheses on cell fate choice. For example, assume we knew that laterally 351

inducing juxtacrine signalling is prevalent, then the absence of long range ordering 352

suggests that cell fate is reversible, as we have seen that only model R may lack order, for 353

sufficiently small interaction strength. The observation of alternating cell type patterns, 354

such as in chick inner ear (see Figure 1B), also requires that cell fate choice is reversible, 355

and furthermore, it implies that the proportion of symmetric divisions must be rather 356

small. 357

To summarise, this work shows that qualitative features of spatial cell type arrange- 358

ments, such as long-range order, express information about the underlying modes of 359

cell fate choice. By analysing those features experimentally, conclusions about the 360

reversibility of cell fate, and whether cell fate is decided at cell division or independently 361

of it, can be drawn. 362
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