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Abstract

Railway wheelsets operating on curved tracks experience complex dynamic behaviour
which can affect the generation of rolling noise. This paper presents a comprehensive study
on the dynamic response of wheelsets on curved tracks and the associated rolling noise radi-
ation from the wheel and track. A dynamic model is developed to accurately compute the
vibrational response of the flexible wheelset, considering the inertial effects associated with
its rotation and trajectory along the curved track. An axisymmetric approach is proposed,
which reduces significantly the computational effort in comparison to a three-dimensional
numerical model. Considering a railway vehicle and its interaction with the track, the rolling
noise generated in curved conditions is evaluated. Noise radiated as a result of a vehicle
running on curves of 300 m and 2 km radius is compared with a tangent track. Differences
in the sound radiation are found among the acoustic levels associated with each wheelset,
the steady-state position of such wheelsets on the rails being a key factor.

Keywords:
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1. Introduction

Railways are a significant contributor to sustainable mobility, offering an environmentally
friendly and efficient mode of transportation for both passengers and freight. However, noise
emission from railway lines remains a major environmental issue that has been increasingly
recognized as a significant challenge. Among the sources of sound radiation from railway
vehicles, curve squeal and rolling noise are two of the most important [1]. The former is
characterized by a high-pitched tonal sound, often arising in sharp curves due to a number
of complex phenomena, such as self-excited vibration of a wheel caused by unsteady lateral
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forces [2, 3]. The latter, on the other hand, is generated by the interaction between the
wheels and track in the presence of roughness on the wheel and rail rolling surfaces induc-
ing vertical excitation [4]. Due to its nature, squeal noise is strongly linked to running on
curved track (according to [4], it is less likely to occur in curves of radius greater than 200
m). Most studies of rolling noise, however, have focused on tangent track, although it is
present on curved tracks as well. Furthermore, curved segments often exhibit rail corruga-
tion, which can lead to higher rolling noise levels [5, 6]. Hence, the investigation of rolling
noise for curved tracks takes on significance. Wang et al. [7] used a time-domain model for
the vehicle/track interaction to simulate the vehicle curving behaviour and to study rolling
noise on curved tracks. Their analysis involved assessing noise emissions from the inner side
of the wheelset/track interaction on curves with varying radii. Their findings revealed that
as track curvature increased, higher sound pressure levels were observed, primarily because
of increased lateral rail vibration as a consequence of higher lateral forces. While the previ-
ous work provides valuable insights into rolling noise on curved tracks, additional research
and mathematical modelling is needed to understand this phenomenon and to support the
identification of mitigation measures.

When a railway vehicle negotiates a curve, the lateral displacement and angle of attack of
the wheelset cause a change in the position, size, and shape of the wheel/rail contact patch
as well as slip velocities within the contact area [8–11]. This affects the wheel/rail interaction
forces and thus influences the levels of noise radiation compared with running on a tangent
track. To accurately assess rolling noise emission in curve conditions, an advanced model of
the railway vehicle is needed. In such conditions, the vehicle behaviour can be characterized
as a superposition of the steady-state regime and the dynamic oscillations [12]. The former
is commonly described with a multibody model which accounts for the centrifugal effects
induced by the curved trajectory, while a high frequency model of the wheelsets is necessary
for the latter. To this end, Mart́ınez-Casas et al. [13] initially proposed an Eulerian approach
to model the wheelset on a tangent track, which was subsequently extended to consider its
motion along a curved track through the incorporation of a trajectory coordinate set [14].
Later, Andrés et al. [15] adopted an axisymmetric approach for the aforementioned wheelset
model in a tangent track, thereby reducing the computational calculation time by three
orders of magnitude. However, this efficient model does not account for the inertial effects
of the curved trajectory and, to the authors’ knowledge, no axisymmetric wheelset model
considering these inertial effects has been presented so far.

In this work, the wheelset model for a curved trajectory presented in reference [14] is for-
mulated first in a cylindrical reference system and, subsequently, an axisymmetric approach
is proposed by expanding the displacements of the flexible body around the circumferential
direction, yielding a much more efficient model. Using the above wheelset model, rolling
noise radiated by a single wheelset and a complete vehicle while running through a curve is
evaluated. To do this, the steady-state conditions during curving are simulated using the
VI-Rail software [16] and then the dynamic behaviour around these conditions is studied.
The wheelset dynamics are described through the aforementioned model, while the track is
characterized using wave propagation theory [17, 18]. A frequency-domain model of the vehi-
cle/track interaction is then proposed, which allows the wheel/rail contact forces to be solved.
Later, the wheelset sound radiation is determined by applying an acoustic model based on
the use of radiation ratios [19], whereas the track radiation is computed using a methodology
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based on equivalent acoustic sources [20]. Finally, the noise radiated in two different curving
conditions is compared with the acoustic levels in a tangent track, analysing the effect of the
curving condition on the rolling noise. While, as previously mentioned, corrugation might
alter rail roughness on different curves, the present study is concerned with the effect of
curved tracks for the same assumed roughness.

Following this introduction, Section 2 presents a three-dimensional model of the railway
wheelset which incorporates the inertial effects associated with running on curved tracks. In
Section 3, an axisymmetric approach is introduced as an alternative method to investigate
the wheelset behaviour on curved tracks, offering faster computational performance with-
out sacrificing accuracy. Section 4 focuses on the dynamic model of the vehicle, track, and
wheel/rail interaction. Section 5 presents the results of the numerical simulations and anal-
yses, revealing valuable insights into the influence of the curve on noise generation. Finally,
Section 6 summarizes the conclusions and suggests potential avenues for future research.

2. Three-dimensional dynamic model of the wheelset

In this section, the three-dimensional dynamic model developed in [14] is formulated in
a cylindrical frame. To do this, three different reference systems are defined: an inertial
(fixed) Cartesian system u0,1u0,2u0,3, a trajectory coordinate Cartesian frame uc,1uc,2uc,3
travelling with the wheelset and a cylindrical frame also travelling with the wheelset with
coordinates (r,θ,z), as defined in Fig. 1; the last two frames are centred in the undeformed
configuration of the wheelset (midpoint of the axle) and will be referred to as track frames.
To denote a variable in different reference systems, the subscript 0 indicates the inertial one,
the subscript c represents the travelling Cartesian frame, and no subscript is used for the
travelling cylindrical frame. Thus, for an arbitrary variable Φ, the following relationships
hold:

Φ0 =TΦc,

Φc =ΘΦ,
(1)

where the matrices T and Θ are defined as follows:

T =

cos(β) − sin(β) cos(γ) sin(β) sin(γ)
sin(β) cos(β) cos(γ) − cos(β) sin(γ)

0 sin(γ) cos(γ)

 , (2)

Θ =

− sin(θ) − cos(θ) 0
0 0 1

− cos(θ) sin(θ) 0

 , (3)

with β being the track angle, defined as a rotation around the u0,3 vector, and γ being the
cant angle, defined as a rotation around the uc,1 vector, as can be seen in Fig. 1. Note that,
in the case of a right-hand curve, β is negative while γ is positive. It is also worth indicating
that, according to the definition of Θ, the radial coordinate is contained in the 1c-3c plane.
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Fig. 1: Definition of the reference systems.

Considering the motion of the flexible wheelset, the position q0 of any particle of this in
the deformed shape formulated in the inertial reference system can be expressed as follows:

q0 = p0 + TΘ (u + w(u, t)) , (4)

where p0 defines the position of the travelling frames, u =
(
r 0 z

)T
is the spatial posi-

tion corresponding to that particle in the undeformed configuration and w =
(
wr wθ wz

)T
contains the displacements of the particle at the position u and instant t due to the body
flexibility and small rigid body motion (RBM) in the radial, circumferential, and axial di-
rections, respectively. The velocity of that particle of the wheelset expressed in the inertial
reference system can be written as [21, 22]:

Dq0

Dt
= ṗ0 + ṪΘ (u + w) + TΘ

D(u + w)

Dt
, (5)

where D(u+w)
Dt

represents the velocity of the wheelset particle expressed in the cylindrical
frame when running on a tangent track which is given by Eq. (17) of [15]. For convenience,
the velocity of the particle is now formulated in the Cartesian frame using the relation in Eq.
(1), yielding:

Dqc
Dt

= ṗc + ω̃cΘ (u + w) + Θ
D(u + w)

Dt
, (6)
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where ω̃c = TTṪ is the angular velocity matrix of the track frames expressed in the Cartesian
travelling frame. The kinetic energy K of the railway wheelset is thus given by:

K =
1

2

∫
V

ρ
DqT

c

Dt

Dqc
Dt

dV

=
1

2
ṗT
c ṗcM + ṗT

c ω̃c

∫
V

ρΘ (u + w) dV + ṗT
c

∫
V

ρΘ
D(u + w)

Dt
dV

+
1

2

∫
V

ρ(u + w)TΘTω̃T
c ω̃cΘ(u + w)dV +

∫
V

ρ(u + w)TΘTω̃T
c Θ

D(u + w)

Dt
dV +Kt,

(7)

where ρ and V are, respectively, the density and volume of the wheelset, dV = rdθdrdz, and
Kt is the kinetic energy of the wheelset when running on a tangent track (further details are
given in Eq. (18) of reference [15]).

In this work, a model based on the Finite Element Method (FEM) is utilized, wherein
the computation of the displacement field in the eth element of the FE mesh is accomplished
through interpolation of the nodal solution using the following approach:

w(r, θ, z, t) = N(r, θ, z)we(t), (8)

where the shape function matrix N and the vector we with the displacements or degrees
of freedom (DoF) can be expressed as indicated in Eqs. (22) and (23) of [15], respectively.
The terms of the Lagrange equations associated with the wheelset kinetic energy in Eq. (7),
when this is applied to the eth element of the FE mesh, can be evaluated as follows:

D

Dt

(
∂K

∂ẇe

)T

−
(
∂K

∂we

)T

=2Peẇe + (2ΩSe + Re + Be) we − 2ΩUe −He − Le

−GeTTp̈0 +

(
D

Dt

(
∂Kt

∂ẇe

)T

−
(
∂Kt

∂we

)T
)
.

(9)

where a constant rotational speed Ω of the wheelset about its main axis is assumed. The last
term in Eq. (9) considers the contribution to the Lagrange equations of the kinetic energy of
the wheelset during its motion along a tangent track. This contribution is explicitly detailed
in Eq. (24) of [15]. Considering the new terms due to the curve, the element matrices in Eq.
(9) are given by the following expressions:
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Pe =

∫
V e

ρNTω̃NdV,

Se =

∫
V e

ρNTω̃

(
∂N

∂θ
+ JN

)
dV,

Re =

∫
V e

ρNT ˙̃ωNdV,

Be =−
∫
V e

ρNTω̃Tω̃NdV,

Ue =−
∫
V e

ρNTω̃ê2rdV,

He =−
∫
V e

ρNT ˙̃ωudV,

Le =

∫
V e

ρNTω̃Tω̃udV,

Ge =−
∫
V e

ρNTΘTdV,

(10)

where V e is the volume of the eth element, ω̃ = ΘTω̃cΘ represents the angular velocity
matrix of the track frames formulated in the cylindrical reference system, the matrix J is

given in Appendix A and ê2 =
(
0 1 0

)T
. The terms of the Lagrange equations associated

with the wheelset potential energy (related to the stiffness matrix K) are equal to those for a
tangent track and can be found in Eqs. (19) and (24) of [15]. Assembling the element matrices
into the global ones according to the FEM approach [23] and considering the contribution
of both the last term in Eq. (9) and the elastic potential energy, the equations of motion
(EoM) of the wheelset when running on a curved track are given by:

Mẅ(t) + (2ΩV + 2P) ẇ(t) +
(
K + Ω2A + 2ΩS + R + B

)
w(t)

= Ω2c + 2ΩU + H + L + GTTp̈0 + F(t),
(11)

where the matrices M, V, K, A, and c describe the behaviour of the wheelset on a tangent
track, the expressions for which can be found in Eq. (25) of [15]. The force vector Faccounts
for the external forces applied to the system due to the wheel/rail interaction. In order to
evaluate the rolling noise radiated by the wheels in the wheelset, the model is transformed
to the frequency domain, in which the EoM can be expressed for ω > 0 as:(

−ω2M + iω (2ΩV + 2P) + K + Ω2A + 2ΩS + R + B
)
w(ω) = F(ω). (12)

Regarding the sound radiation from the wheelset, the acoustic model developed by Thomp-
son [19] is applied on the surface vibrational field of both wheels, while the axle radiation is
considered to be insignificant compared with that of the wheels.

3. Axisymmetric dynamic model of the wheelset

Due to the axial symmetry of the wheelset geometry, the displacement field can be repre-
sented using a Fourier series expansion around the circumferential direction as follows [24]:
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wr =wr,0 +
∑
n>0

(wr,n cos(nθ)− wr,n sin(nθ)) ,

wθ =− wθ,0 +
∑
n>0

(wθ,n sin(nθ)− wθ,n cos(nθ)) ,

wz =wz,0 +
∑
n>0

(wz,n cos(nθ)− wz,n sin(nθ)) ,

(13)

with n being an integer number representing each Fourier term. For convenience, the har-
monic amplitudes can be assembled in a vector wh, defined by:

wh =
(
w0 w1 · · · wn · · · wm

)T
,

w0 =
(
wr,0 wz,0 wθ,0

)
,

wn =
(
wr,n wθ,n wz,n wr,n wθ,n wz,n

)
, n = 1, · · · ,m,

(14)

where a truncation up to the Fourier term m is assumed on the expansion of the wheelset
response. When considering this expansion, the kinetic energy of the wheelset described in
Eq. (7) can be integrated analytically over the θ coordinate, as detailed in Appendix B. Unlike
the tangent track case [15], the harmonics from different Fourier terms are now coupled. The
integration mentioned above yields the following expression for the kinetic energy:

K =
1

2
ṗT
c ṗcM + πṗT

c ω̃c

∫
A

ρ (J1wh + J2) rdA+ πṗT
c

∫
A

ρJ1ẇhrdA

+
π

2

∫
A

ρ
(
(ω2

11 + ω2
33)r

2 + 2ω2
22z

2
)
rdA+ π

∫
A

ρJT
3 whrdA+

π

2

∫
A

ρwT
hJ4whrdA

+ Ω2πω2

∫
A

ρr3dA+ π

∫
A

ρ
(
JT
5 + wT

hJ7

)
ẇhrdA+ Ωπ

∫
A

ρ
(
JT
6 + wT

hJ8

)
whrdA

+Kt,

(15)

where A is the area of the wheelset cross-section, dA = drdz, and the matrices Ji are given
in Appendix A. The kinetic energy of the wheelset associated with a tangent track, Kt, is
given in Eqs. (36) and (37) of reference [15]; equivalently, it can be expressed as a function
of the assembled vector wh as indicated in Appendix B. Regarding the angular velocities of
the track frame ωi as well as the squared angular velocities ω2

ij, these can be identified from
the following terms in ω̃c and ω̃T

c ω̃c:

ω̃c =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω̃T
c ω̃c =

ω2
11 ω2

12 ω2
13

ω2
12 ω2

22 ω2
23

ω2
13 ω2

23 ω2
33

 , ω1 = 0,

ω2 = β̇ sin γ,

ω3 = β̇ cos γ,

(16)

where β̇ = Vv
Rc

for a left-hand curve and β̇ = − Vv
Rc

for a right-hand curve, Vv being the vehicle
speed and Rc the curve radius. An axisymmetric FE model is proposed for the wheelset
cross-section (see Fig. 2), which allows the evaluation of the unknown harmonic amplitudes
by means of the following interpolation in the eth element of the mesh:

wh(r, z, t) = Nh(r, z)we
h(t), (17)

7



Nh being the shape function matrix defined for the axisymmetric model. When p nodes are
considered in the eth element, this matrix is given by:

Nh =
[
Nh,1 · · · Nh,j · · · Nh,p

]
, Nh,j = NjI(3+6m)×(3+6m), (18)

where Nj is the shape function associated with the jth node and Ik×k is the identity matrix
of order k. The vector of harmonic amplitudes of the eth element we

h can be expressed as
follows:

we
h =

(
we

h,1 · · · we
h,j · · · we

h,p

)T
,

we
h,j =

(
we

0,j we
1,j · · · we

n,j · · · we
m,j

)
,

(19)

where we
0,j contains the three harmonic amplitudes in the jth node defined for n = 0 and

we
n,j the six harmonic amplitudes in the same node defined for n > 0, sorted as expressed in

Eq. (14).

Fig. 2: Axisymmetric FE mesh of the wheelset cross-section.

When considering the kinetic energy in Eq. (15) for the eth element and evaluating the
Lagrange equations, the result is given by:

D

Dt

(
∂K

∂ẇe
h

)T

−
(
∂K

∂we
h

)T

=2Pe
hẇ

e
h + (2ΩSeh + Re

h + Be
h) w

e
h − 2ΩUe

h −He
h − Le

h

−Ge
hT

Tp̈0 +

(
D

Dt

(
∂Kt

∂ẇe
h

)T

−
(
∂Kt

∂we
h

)T
)
,

(20)

where, as in the 3D model, the last term considers the contribution of the wheelset kinetic
energy during its motion along a tangent track. The development of this term can be found
in Eqs. (53) and (60) of reference [15], wherein the harmonics are uncoupled, allowing the
matrices to be expressed independently for each Fourier term. Later these matrices will be
reformulated for the assembled vector of harmonic amplitudes. The element matrices for the
new terms arising from Eq. (20) are obtained using the following expressions:
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Pe
h =

3∑
i=1

ωiP
e
h,i, Pe

h,i = π

∫
Ae

ρNT
h

∂JT
7

∂ωi
NhrdA,

Seh =
3∑
i=1

ωiS
e
h,i, Seh,i = −π

2

∫
Ae

ρNT
h

(
∂JT

8

∂ωi
+
∂J8

∂ωi

)
NhrdA,

Re
h =

3∑
i=1

ω̇iR
e
h,i, Re

h,i = Pe
h,i,

Be
h =

3∑
i=1

3∑
j=i

ω2
ijB

e
h,ij, Be

h,ij = −π
2

∫
Ae

ρNT
h

(
∂JT

4

∂ω2
ij

+
∂J4

∂ω2
ij

)
NhrdA,

Ue
h =

3∑
i=1

ωiU
e
h,i, Ue

h,i =
π

2

∫
Ae

ρNT
h

∂J6

∂ωi
rdA,

He
h =

3∑
i=1

ω̇iH
e
h,i, He

h,i = −π
∫
Ae

ρNT
h

∂J5

∂ωi
rdA,

Le
h =

3∑
i=1

3∑
j=i

ω2
ijL

e
h,ij, Le

h,ij = π

∫
Ae

ρNT
h

∂J3

∂ω2
ij

rdA,

Ge
h =− π

∫
Ae

ρNT
hJT

1 rdA,

(21)

where Ae is the area of the eth element. Regarding the elastic potential energy and its
contribution to the Lagrange equations, the expressions are the same as for the case of a
wheelset on a tangent track (see [15]). Following the FEM approach, the element matrices
in Eq. (21) are assembled into the global ones and, together with the contribution from
both the last term in Eq. (20) and the potential energy, the EoM of the wheelset using an
axisymmetric approach are given by:

Mhẅh(t) +

(
2ΩVh + 2

3∑
i=1

ωiPh,i

)
ẇh(t)

+

(
Kh + Ω2Ah + 2Ω

3∑
i=1

ωiSh,i +
3∑
i=1

ω̇iRh,i +
3∑
i=1

3∑
j=i

ω2
ijBh,ij

)
wh(t)

= Ω2ch + 2Ω
3∑
i=1

ωiUh,i +
3∑
i=1

ω̇iHh,i +
3∑
i=1

3∑
j=i

ω2
ijLh,ij + GhT

Tp̈0 + Fh(t).

(22)

It is worth noting that, in the proposed approach, the angular velocities appear explicitly
in the EoM, while the matrices are functions only of the coordinates r and z. This does
not happen for the 3D model, associated with Eq. (11), in which the angular velocities
are included implicitly in the EoM through the definition of the matrices involved; however,
these matrices could as well be formulated to be independent of those variables if the matrix
multiplications in the integrals of Eq. (10) are developed. By doing this, it is not necessary
to evaluate the matrices of the wheelset at every time step of a curving simulation even if
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the curve radius, vehicle velocity or superelevation (cant) are not constant (note that these
three quantities define the aforementioned angular velocities).

Regarding the force vector Fh in Eq. (22), it considers the wheel/rail interaction forces
after expanding them in Fourier series; a detailed methodology to evaluate the harmonic
amplitudes of the forces for each Fourier term is exposed in Section 4.3 of [15]. The vector
Fh is then obtained by assembling the amplitudes from each Fourier term in accordance with
the order of the vector of unknowns wh, defined in Eq. (14). The matrices Mh, Vh, Kh,
Ah, and ch describe the dynamics of the wheelset when running on a tangent track and their
expressions can be found in Eqs. (54) and (61) of reference [15], formulated independently for
each Fourier term. Due to the coupling between harmonics introduced by the new matrices
in a curved track, the matrices from [15] could be assembled according to wh. Alternatively,
the assembled element matrices can be evaluated as follows:

Me
h =π

∫
Ae

ρNT
hJ9NhrdA,

Ve
h =π

∫
Ae

ρNT
hJT

11NhrdA,

Ke
h =π

∫
Ae

B̃TD̃B̃rdA,

Ae
h =− π

∫
Ae

ρNT
h

(
JT
13 + J13

)
NhrdA,

ceh =π

∫
Ae

ρNT
hJ10rdA,

(23)

where B̃ = L̃Nh, with L̃ being a matrix operator given in Appendix A together with the
matrix D̃. As in the 3D model, to allow the subsequent sound radiation evaluation, the EoM
are transformed to the frequency domain for ω > 0, yielding:(

− ω2Mh + iω

(
2ΩVh + 2

3∑
i=1

ωiPh,i

)
+ Kh + Ω2Ah + 2Ω

3∑
i=1

ωiSh,i +
3∑
i=1

ω̇iRh,i

+
3∑
i=1

3∑
j=i

ω2
ijBh,ij

)
wh(ω) = Fh(ω).

(24)

In line with the dynamic behaviour of the wheelset, the sound radiation can be formulated
in a two-dimensional frame, taking advantage of the expansion of the response around the
circumferential direction. To this end, the methodology described in Section 4.5 of reference
[15] is performed over the surface of the wheels. However, the RBM contribution mentioned
in the previous reference is explicitly excluded in this work since the wheelset FE model
proposed already includes it. As stated in Section 2, the axle contribution to the acoustic
radiation is neglected.

4. Vehicle/track interaction model

In this work, the Manchester Benchmark vehicle [25] is considered to be running in coast-
ing condition on a curved track with constant curvature. The behaviour of the wheelset
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and track in a curve is characterized as a superposition of the steady-state regime and the
dynamic oscillations around it. For simplicity, the former is obtained using the VI-Rail soft-
ware [16]. The steady-state variables on the curve, together with the wheel and rail combined
roughness spectrum, are used as an input for the calculation of rolling noise radiated by the
wheelset and track. The vibroacoustic behaviour of the wheelset is described by the models
previously developed; a modal damping ratio ξ is included in the wheelset model using the
empirical relation proposed by Thompson [4], relating the modal damping ratio and the num-
ber of nodal diameters of a modeshape. The track behaviour and the wheel/rail interaction
problem are addressed as described below.

4.1. Track

The two-layer continuous track model described in [26] is adapted for the current inves-
tigation by including both rails, which are dynamically coupled through the sleepers. This
allows both the dynamic and acoustic behaviour of the rails and sleepers to be evaluated.
The sound radiation calculation requires the assumption that the different waves in the track
can be considered to radiate independently [20], and a condition for this to be true is that
different waves have different wavenumbers. Due to the symmetry of the track, for each
wavenumber there are two independent waves (symmetric and antisymmetric relative to the
track centre) and so the previous assumption does not hold. To apply the acoustic model,
these pairs of waves are combined and thus their contribution to the track response wT can
be expressed as follows:

wT =
∑
r

(
ArΨr + ArΨr

)
e−ikr|x| =

∑
r

ÃrΨ̃re
−ikr|x|,

Ãr = Ar,

Ψ̃r = Ψr +
Ar
Ar

Ψr,

(25)

where subscript r represents each pair of waves with the same wavenumber, x is the longi-
tudinal coordinate of the track coordinate system (running direction), and Ar, Ψr, and kr
represent, respectively, the generalized coordinate, waveshape and wavenumber of the cor-
responding wave. The generalized coordinates and waveshapes with and without a bar are
associated with the two independent waves, while the ones with a tilde represent the com-
bined wave properties. In references [17, 18], a detailed explanation on how to evaluate the
waveshapes and wavenumbers is given. Regarding the generalized coordinates, they depend
on the external forces applied to the track, and given these forces, the coordinates can be
evaluated as described in [20]. These wave properties are subsequently used in the acoustic
model, which predicts both rail and sleeper sound power radiation. In this work, due to the
existence of significant lateral forces coming from the curving behaviour, the sleeper is as-
sumed to radiate from top, bottom, and both lateral faces, and it is modelled as a rigid body
with 4 degrees of freedom (DoF): three Cartesian translations and a rotation with respect to
the longitudinal axis (running direction). While the bottom surface of the sleeper is covered
by the ballast, the study in this work is limited to the radiated sound power and therefore
the contribution of the bottom surface is also considered.

Note that, according to reference [27], the curvature of the track does not notably affect
its dynamic response when the curve radius is greater than 30 m, a value lower than the
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minimum radius used in the simulations conducted in this work. Therefore, the curvature is
not considered in the track dynamic model described above.

4.2. Wheel/rail interaction

Rolling noise occurs as a consequence of the wheel/rail interaction when roughness is
present on their rolling surfaces. The forces resulting from this interaction are evaluated
using the model developed by Thompson [4, 28], which is here extended to consider non-
zero mean values of the creepages, the dynamic fluctuation of the normal contact force and
the effect of the contact angle, leading to a coupling of vertical and lateral vibration of the
wheels and rails. The wheel/rail interaction module is defined in the form of a linearized
input-output relationship between the relative motion of the wheel and rail surfaces at the
contact point and the contact forces. This relationship is initially derived for the case of a
wheelset running centred over the track so that the small contact angle can be neglected.
Then, the model is extended to the case of a wheelset running through a curve, considering
the effect of the contact angle, i.e. the inclination of the plane tangent to the contacting
surfaces with respect to the top-of-rail plane.

Considering the three directions of the space, a diagram of the interaction model showing
the sign convention used in this work is depicted in Fig. 3. The Roman numerals I and
II make reference to the left and right sides, respectively, while longitudinal, lateral, and
vertical directions are denoted by the Arabic numerals 1, 2, and 3, respectively. The text
I/II indicates that the same diagram applies to both sides. Roughness is assumed to exist
only in the vertical direction, in which the wheel and rail are connected through a contact
stiffness (see Fig. 3(c)). In the other two directions, the relation between velocity and force
in the contact area will be explored later. Due to continuity in the contact, the following
relation between velocities is found [4]:

vW,I1
vW,I2
vW,I3
vW,II1
vW,II2
vW,II3

−

vR,I1
vR,I2
vR,I3
vR,II1
vR,II2
vR,II3

−

vC,I1
vC,I2
vC,I3
vC,II1
vC,II2
vC,II3

 =


0
0
rS,I
0
0
rS,II

 iω =⇒ vW − vR − vC = riω, (26)

where, in the velocities, the first subscript refers to the component (W for wheelset, R for
rail, and C for contact) and the second to the element side and direction (for example, vR,I2 is
the lateral velocity of the left rail contact point). A wheel/rail combined (system) roughness
with angular frequency ω is considered in the vertical direction of the left and right sides
with amplitude rS,I and rS,II, respectively, which are assumed to be randomly uncorrelated.
Note that, while the subscript c is used in Sections 2 and 3 to denote the travelling Cartesian
frame, the subscript C (capital letter) is employed in this section to denote a contact variable.
For convenience, the first vector in the left hand side of Eq. (26) is defined as vW , the second
as vR, and the third as vC , while the vector in the right hand is defined as r. Assembling

the interaction forces accordingly, that is F =
(
FI1 FI2 FI3 FII1 FII2 FII3

)T
, and taking

into account the sign convention shown in Fig. 3, the wheelset velocities can be related to
the forces as follows:
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vW = −


YW,I1-I1 YW,I1-I2 YW,I1-I3 YW,I1-II1 YW,I1-II2 YW,I1-II3
YW,I2-I1 YW,I2-I2 YW,I2-I3 YW,I2-II1 YW,I2-II2 YW,I2-II3
YW,I3-I1 YW,I3-I2 YW,I3-I3 YW,I3-II1 YW,I3-II2 YW,I3-II3
YW,II1-I1 YW,II1-I2 YW,II1-I3 YW,II1-II1 YW,II1-II2 YW,II1-II3
YW,II2-I1 YW,II2-I2 YW,II2-I3 YW,II2-II1 YW,II2-II2 YW,II2-II3
YW,II3-I1 YW,II3-I2 YW,II3-I3 YW,II3-II1 YW,II3-II2 YW,II3-II3

F = −YWF, (27)

with YW being a mobility matrix associated with the wheelset contact points. As for the
velocities, the first subscript of the mobilities refers to the element while the second subscript
denotes where the response is measured and the unit force applied. For example, the mobility
YW,II3-I2 represents the vertical (3) velocity of the wheelset right side contact point (II) when
only a unit lateral (2) force is applied on the wheelset left side contact point (I). These
mobilities are determined using either the three-dimensional or axisymmetric wheelset model
proposed in this work. Equivalently, the rail velocities are given by:

vR = YRF, (28)

where the rail mobility matrix is defined analogously as the one for the wheel. Using the
model discussed in Section 4.1, the components of YR are determined by applying a unit
force and solving the generalized coordinates [20], and then evaluating Eq. (25) and its time
derivative. Regarding the contact velocities, the following relation with the interaction forces
is found:

vC =


YC,I1-I1 0 YC,I1-I3 0 0 0

0 YC,I2-I2 YC,I2-I3 0 0 0
0 0 YC,I3-I3 0 0 0
0 0 0 YC,II1-II1 0 YC,II1-II3
0 0 0 0 YC,II2-II2 YC,II2-II3
0 0 0 0 0 YC,II3-II3

F = YCF, (29)

where the left and right contact zones are not coupled. Thus, hereafter the side subscripts
I and II are omitted for simplicity. A Hertz contact spring is considered for the normal
direction, in which the (linearized) mobility is given by [4, 28]:

YC,3-3 = iω
ξ

2

(
2

3E ′2F 0
3 re

) 1
3

, (30)

with E ′ = E
1−ν2 being the plane strain elastic modulus, E and ν the Young’s modulus and

Poisson’s ratio, respectively, F 0
3 the steady-state (superscript 0) force normal to the contact,

re the effective radius of curvature of the wheel/rail surfaces in contact, and ξ a parameter
depending on the aspect ratio of the assumed contact patch ellipse. Further details on the
last two parameters can be found in [4]. It is worth indicating that the mobility in Eq.
(30) is linearized about the steady-state normal load obtained from the curve simulations
conducted in the VI-Rail software [16]. In relation to the tangential directions, the model
developed by Gross-Thebing [29] is utilized, which considers non-zero steady-state values
of longitudinal, lateral, and spin creepages to evaluate the dynamic tangent forces at the
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contact. In the aforementioned work, the creepages are described as a superposition of a
mean value (steady-state value) and a fluctuation around it:

γ1 = γ01 + ∆γ1 =
1

Vv

(
v0C,1 + ∆vC,1

)
,

γ2 = γ02 + ∆γ2 =
1

Vv

(
v0C,2 + ∆vC,2

)
,

w3 = w0
3 + ∆w3 =

1

Vv

(
ω0
C,3 + ∆ωC,3

)
,

(31)

where γ1, γ2, and w3 are the longitudinal, lateral, and spin creepages, respectively, ωC,3 is the
relative rotational speed between the wheel and rail contact points around the normal axis
to the contact patch, subscript 0 represents the mean value and ∆ denotes the increment
around the previous value. Considering only linearized effects, the creep forces are related to
the creepages as follows [29]:

F1 = F 0
1 +GabĈ11∆γ1,

F2 = F 0
2 +Gab

(
Ĉ22∆γ2 +

√
abĈ23∆w3

)
,

M3 = M0
3 +Gab

(√
abĈ32∆γ2 + abĈ33∆w3

)
,

(32)

with G being the shear modulus, a and b the longitudinal (running direction) and lateral

semi-axis lengths of the contact patch (assumed elliptical), respectively, Ĉjk the complex creep
coefficients developed by Gross-Thebing [29], which depend on the frequency and steady-state
values of the creepages, and M3 the creep torque around the normal direction. As pointed out
by Thompson [30, 31], the normal load F3 influences the contact patch size and, in this case,
also the complex creep coefficients and steady-state creep forces. Taking increments in Eq.
(32) and neglecting the products of small quantities, the following equations are obtained:

∆F1 = ∆F 0
1 +

G

Vv
a0b0Ĉ0

11∆vC,1,

∆F2 = ∆F 0
2 +

G

Vv
a0b0

(
Ĉ0

22∆vC,2 +
√
a0b0Ĉ0

23∆ωC,3

)
,

∆M3 = ∆M0
3 +

G

Vv
a0b0

(√
a0b0Ĉ0

32∆vC,2 + a0b0Ĉ0
33∆ωC,3

)
.

(33)

Since the steady-state creep forces are dependent on the contact patch semi-axis lengths
as well as the normal load [32], their increments can be expressed as follows:

∆F 0
k =

∂F 0
k

∂a
∆a+

∂F 0
k

∂b
∆b+

∂F 0
k

∂F3

∆F3, k = 1, 2, 6, F 0
6 = M0

3 , (34)

in which subscript 6 makes reference to the rotational velocity and torque around the direction
3 (normal to the contact patch, i.e. spin). The semi-axis lengths of the contact patch are
given by [4]:
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(a) (b) (c)

Fig. 3: Diagram of the wheel/rail interaction model. (a) Longitudinal direction. (b) Lateral direction. (c)
Vertical direction.

a = σ1

(
3F3re
2E ′

) 1
3

,

b = σ2

(
3F3re
2E ′

) 1
3

,

(35)

where σ1 and σ2 are parameters depending on the aspect ratio of the contact patch ellipse (the
corresponding expressions can be found in [4]). Therefore, the increments of these lengths
can be evaluated as follows:

∆a =
∂a

∂F3

∆F3 =
a

3F3

∆F3,

∆b =
∂b

∂F3

∆F3 =
b

3F3

∆F3.

(36)

Introducing Eqs. (34) and (36) into Eq. (33), the increments of the contact relative
velocities are related to those of the creep forces by:

G

Vv
a0b0Ĉ0

11∆vC,1 = ∆F1 − T1∆F3,

G

Vv
a0b0Ĉ0

22∆vC,2 +
G

Vv
(a0b0)

3
2 Ĉ0

23∆ωC,3 = ∆F2 − T2∆F3,

G

Vv
(a0b0)

3
2 Ĉ0

32∆vC,2 +
G

Vv
(a0b0)2Ĉ0

33∆ωC,3 = ∆M3 − T6∆F3,

(37)

where the variables Tk are given by:

Tk =
∂F 0

k

∂a

a

3F3

+
∂F 0

k

∂b

b

3F3

+
∂F 0

k

∂F3

, k = 1, 2, 6, F 0
6 = M0

3 , (38)
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with the partial derivatives of the steady-state forces being, in this work, evaluated numer-
ically using the FASTSIM algorithm developed by Kalker [33] and linearized around the
steady-state values. Solving the system in Eq. (37), the contact relative (linear) velocities
can be expressed as follows:

(
∆vC,1
∆vC,2

)
=


Vv

Ga0b0Ĉ0
11

0 − VvT1
Ga0b0Ĉ0

11

0
VvĈ0

33

Ga0b0S1

Vv(Ĉ0
23T6−

√
a0b0Ĉ0

33T2)
G(a0b0)

3
2 S1


∆F1

∆F2

∆F3



=

[
YC,1-1 0 YC,1-3

0 YC,2-2 YC,2-3

]∆F1

∆F2

∆F3

 ,

(39)

where S1 = Ĉ0
22Ĉ

0
33 − Ĉ0

23Ĉ
0
32. Eq. (39) defines the mobilities YC,1-1, YC,1-3, YC,2-2, and YC,2-3

used in Eq. (29). The coupling between the wheel and rail dynamic spin motion is not
considered in this work, but the corresponding mobilities can also be derived from Eq. (37).
Note that, as described by Thompson [30, 31], the presence of steady-state creepage (or,
equivalently, steady-state creep forces) induces a coupling between the normal and tangen-
tial directions, in which a harmonic normal load generates harmonic tangential vibration.
The contact mobilities in the previous equation are linearized about the steady-state vari-
ables (subscript 0) obtained from the VI-Rail software curve simulations [16]. Finally, by
introducing Eqs. (27), (28), and (29) into Eq. (26), the interaction forces are evaluated by
solving the resultant system of equations, given by:

− (YW + YR + YC) F = riω, (40)

where the wheel and rail combined roughness is considered as an input.
So far, as it is represented in Fig. 3, the components of the wheelset, rail, and contact co-

ordinate systems are considered to be parallel. When the vehicle runs on a curved track, the
position of the wheel and rail contact point is displaced, often leading to a non-negligible con-
tact angle. With this consideration, Fig. 4 shows the reference systems of the aforementioned
three elements. In this work, the roll angle of the wheelset due to its lateral displacement is
assumed to be negligible, so that the wheelset and track frame components are considered
to be parallel. The contact reference system is defined rotating the track reference by the
contact angle α. The angle γ has already been defined in Section 2 as the cant angle. As
the components of the three reference systems are not parallel, Eq. (40) cannot be directly
applied. Previously, the mobilities need to be formulated in the same frame. In this work,
the interaction is solved in the contact reference system. Therefore, both wheelset and rail
mobilities need to be rotated by the contact angle as follows:

YC
W = ΞTYW

WΞ,

YC
R = ΞTYR

RΞ,
(41)

where the notation for the mobilities has changed by adding a superscript that indicates the
frame in which the variable is expressed. Note that YW

W and YR
R are the wheelset and rail

mobilities as defined in Eqs. (27) and (28), respectively, where the superscripts are omitted as
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the wheel, rail, and contact reference systems are coincident (formulation before considering
a non-negligible contact angle). The matrix Ξ is given by:

Ξ =


1 0 0 0 0 0
0 cos(αI) − sin(αI) 0 0 0
0 sin(αI) cos(αI) 0 0 0
0 0 0 1 0 0
0 0 0 0 cos(αII) − sin(αII)
0 0 0 0 sin(αII) cos(αII)

 , (42)

with αI and αII being the contact angle of the left and right sides, respectively, which are
evaluated in the steady-state condition from the steady-state regime calculation performed
using software VI-Rail. In order to determine the interaction forces, the matrices YW and
YR in Eq. (40) are substituted by YC

W and YC
R , respectively, and the resultant system is

solved. Note that the contact mobilities do not need any rotation. The roughness vector r is
also assumed to be expressed in the contact reference system, which means that roughness is
only considered in the direction normal to the contact patch. As a result of this methodology,
the interaction forces are also expressed in the contact frame.

(a) (b)

Fig. 4: (a) Diagram of wheelset and rails when running on a curved track along with their reference systems.
(b) Zoom around one contact point and angles between the different reference systems.

The combined roughness acting at each wheel/rail contact is considered to be incoherent
and so, given a wheelset running on the rails, the methodology to calculate the rolling noise
is as follows:

1. The roughness on the right side is set to zero (rS,II = 0) and the interaction forces are
obtained by solving Eq. (40). Then, the vibrational response to these is evaluated on
the surfaces of both wheels, both rails, and sleepers. Subsequently, the rolling noise
radiated by these elements is calculated.

2. The same procedure is repeated setting the left side roughness to zero (rS,I = 0),
resulting in the noise radiated by the same elements as in the previous step, but with
roughness being present on the other side.

3. The sound power radiated in both cases is added up, resulting in the noise emitted by
the wheelset and track as a consequence of the roughness on both sides.
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When considering a bogie instead of a single wheelset, two wheelsets are taken into
account. In this case, the previous three points are independently applied to both wheelsets.
The incoherence of the combined roughness, particularly that of the wheel surfaces, allows
the radiated power from the elements to be added. In this work, the same approach is applied
to the Manchester Benchmark vehicle [25], which consists of four wheelsets.

5. Results

5.1. Inputs

Regarding the different dynamic simulations performed in this work, the following prop-
erties are considered:

� A track consisting of rails with UIC60 rail profile, with a gauge of 1435 mm, a rail
inclination of 1:40, and a damping loss factor of 0.02 for the rails. The latter are
supported by a spring–mass–spring system formed by the rail pad, sleeper, and ballast,
the properties of which are converted to represent an equivalent continuously supported
track assuming a sleeper span of 0.6 m. The rail pad has a stiffness of 715 MN/m in the
vertical direction and 55 MN/m in the other two directions as well as a damping loss
factor of 0.375. The sleeper has a mass of 244 kg, a length of 2500 mm in the lateral
direction, a width of 250 mm in the longitudinal direction (running direction), and a
height of 220 mm. The ballast has a stiffness of 70 MN/m in the vertical direction and
35 MN/m in the other two directions and a damping loss factor of 1.5.

� A wheelset with straight web wheels (see Fig. 2) and an approximate mass of 1050 kg.
The wheels have a nominal diameter of 920 mm and a S1002 profile.

� A wheel/rail combined roughness spectrum according to the standard EN13979-1 [34]
for cast iron brake blocks (see Fig. 5(a)), which is assumed to exist only in the normal
direction to the contact plane, as indicated in Section 4.2. Also, the contact filter
presented by Thompson [4], which corrects the effect of the roughness due to contact
patch size (see Fig. 5(b)), is considered. In addition, a friction coefficient of 0.4
is taken into account for the wheel/rail interaction, which is representative of a dry
contact condition [35].

� The Manchester Benchmark vehicle running on a curved track. As a result, one car
body with two bogies, and thus four wheelsets in coasting condition, is analysed.

µ

(a) (b)

Fig. 5: (a) Roughness spectrum. (b) Contact filter for a = 5 mm (solid line) and a = 7 mm (dashed line).
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5.2. Comparison of methodologies

The three-dimensional model presented in Section 2 is compared with the axisymmetric
approach developed in Section 3. To do this, the Manchester Benchmark vehicle [25] is
considered, running on a 300 m radius curve with 100 mm of superelevation and a speed of
75 km/h. The comparison concerns the frequency response function (FRF) in the radial-
radial direction for the contact point of the outer wheel in the leading wheelset of the vehicle,
as well as the sound power levels (SWL) of that wheelset due to the interaction of its wheels
with the rails, evaluating it according to the method described in Section 4.2. As can be
observed in the corresponding results depicted in Fig. 6, no significant differences are found
between both approaches, whereas the computational performance of the axisymmetric model
is two orders of magnitude higher (less than in the tangent case [15] due to the coupling of
the different Fourier harmonics). Thus, the axisymmetric approach is preferred over the
three-dimensional methodology.

(a)

(b)

Fig. 6: Comparison of the three-dimensional ( ) and axisymmetric ( ) models for a vehicle speed of 75
km/h. (a) Radial-radial mobility at the contact point for the outer wheel of the leading wheelset. (b) Rolling
noise radiated from this wheelset.

5.3. Rolling noise in curves

The noise radiation in two different curve situations is compared with a tangent track.
The conditions considered are shown in Table 1, with h being the superelevation. Note that
the latter is related to the cant angle γ as h = sin(γ)(gT + bR), where gT is the track gauge
and bR the rail head width. The same vehicle speed is considered for all calculations in order
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to reduce the influence of the roughness spectrum and contact filter, which have a variable
frequency distribution depending on the speed.

Table 1: Running conditions.

Rc (m) Vv (m) h (mm)

Curve 1 300 75 100

Curve 2 2000 75 30

Tangent ∞ 75 0

The radiated noise due to the running of the Manchester Benchmark vehicle [25] through
the three different tracks is depicted in Fig. 7. The frequency spectra of the three cases
exhibit some noticeable differences, while smaller variations are found in the overall levels
(see values in the figure legend). The overall level is determined by adding the sound power
in each one-third octave frequency band after considering the contact filter proposed by
Thompson [4] as well as the A-weighting filter [36], therefore expressed in dB(A) respect to 1
pW. Note that the levels in Fig. 7 correspond to the interaction of the four wheelsets of the
vehicle with the rails, as explained in Section 4.2. Different radiation associated with each
wheelset/track interaction is found, which will be explored later. Circulation on Curve 1
leads to higher overall noise from the wheels and rails, but lower radiation from the sleepers,
causing a similar total overall noise when compared to a tangent track. On the other hand,
for Curve 2 there is slightly less overall noise from all elements than in a straight section.
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(a) (b)

(c) (d)

Fig. 7: SWL from the wheels (a), rails (b), and sleepers (c), as well as total noise (d) due to the running of
the vehicle on the three tracks.

The interaction of each wheelset with the track results in a different noise radiation due to
the variations in the associated steady-state condition. Fig. 8 shows the SWL corresponding
to each wheelset/track interaction. The wheelsets are arranged in order from the front to the
back, with the leading wheelset of the first bogie identified as W1 and the trailing wheelset
of the second bogie as W4. In general terms, the noise associated with the interaction of the
two leading wheelsets with the track is similar, as a result of having comparable positions in
a curve, and the same can be said for the two trailing wheelsets.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8: SWL associated with the interaction of a single wheelset with the track. Wj refers to the jth wheelset.
Left column: leading wheelsets. Right column: trailing wheelsets. First row: wheel. Second row: rail. Third
row: sleeper. Fourth row: total.
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The differences in the noise radiation associated with the three running conditions con-
sidered involve three main factors: changes in the interaction forces, an increase in the
vertical-lateral coupling as the contact point moves away from the centre of the wheel tread
and rail head, and the effect of the contact filter due to the size of the contact patch. As can
be seen in Fig. 9, larger transverse displacements of the contact point across the wheel and
rail profiles correspond to the left side (outer side as a right-hand curve is considered) of the
leading wheelsets, especially for Curve 1 (higher curvature). Additionally, the legend in Fig.
9 displays the contact patch semi-length along the running direction a. In most cases, this
variable is larger when running on a curve than on a tangent track, particularly for the outer
side of the leading wheelsets (the ones that suffer higher lateral displacement of the contact
position). As can be observed in Fig. 5(b), a larger contact patch semi-length a entails a
higher impact of the contact filter, i.e. the SWL is more reduced in these cases.

(a)

(b)

Fig. 9: Contact positions of the leading (a) and trailing (b) wheelsets in their interaction with the rails.
The legends also display the contact patch semi-length along the running direction a. A right-hand curve is
considered for the curving conditions.

In general, it is observed that the position of the wheel/rail contact is enough to explain
the noise radiation in a curve, as the other steady-state contact variables are correlated
with it. As the contact point moves away from the nominal position, although with some
exceptions, it is found that: (1) the vertical force becomes lower, (2) the lateral force increases,
(3) the vertical-lateral coupling is higher, and (4) the contact patch semi-length along the
running direction a gets larger, increasing the impact of the contact filter. The first and last
effects lead to lower noise radiation, and the opposite for the other two. Due to the opposite
effect of them on the noise, different results are found for Curve 1 and Curve 2.

The wheel noise in the curving situations is higher than in the tangent track below about
2 kHz, where the lateral forces are found to be significantly higher in the curves. Although
the vertical forces are lower in the curves, the vertical-lateral coupling plays an important
role. Above 2 kHz, however, the difference in the lateral forces becomes smaller (still higher
in the curves) and it is not enough to counter the effect of the contact filter. Thus, higher
noise levels are found in this frequency range for the tangent track.
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The SWL of the rail in a curve results from the contribution of both the lateral and
vertical vibration. The former predominates in the low and medium frequency range (below
approximately 1 kHz) and the latter at higher frequencies. Consequently, the noise radiated
in the curving situations is higher than in the tangent track below 1 kHz (influenced by higher
lateral force levels) and the opposite above 1 kHz. Here the vertical-lateral coupling and the
contact filter effect are also important, although the two effects compensate with each other
in the two curves.

The sleeper noise is governed by the vertical component of the interaction forces. The
lateral radiation of the sleeper is negligible in comparison with the vertical one due to a small
radiation area along with a lower vibration as a consequence of a lower rail pad stiffness in
such direction, which produces a higher decoupling of this element from the rail. As a result,
the sleeper noise is found to be lower in the curves than in the tangent track, especially for
the wheelsets undergoing higher lateral displacements.

Due to different trends for the sleeper, rail, and wheel noise, the total sound power
spectra in the curves and in the tangent track exhibit differences in their frequency content.
In general, it can be seen that the leading wheelsets exhibit higher differences between the
curves and tangent track, as a consequence of larger lateral displacements of the contact
positions in the curves. Additionally, in the frequency range where the sleeper contribution
to the total noise is predominant, that is, below about 400 Hz, the noise is found to be
higher in tangent track. In the frequency range in which the rail noise is more important, i.e.
between 400 Hz and 1 kHz, the sound radiation in the curves is higher. Above 1 kHz, where
the wheel becomes predominant in the total radiation, the tangent SWL is higher again. It
is worth noting that the previous trends correspond to a specific roughness spectrum and to
the properties previously detailed for the wheelset and track.

6. Conclusions

In this study, a dynamic model of a flexible wheelset is proposed to evaluate the rolling
noise radiation when operating on curved tracks. Two formulations are considered, both of
them valid for any rotating structure with axial symmetry describing a generic trajectory (in
particular, a curve of constant radius). On the one hand, a full three-dimensional numerical
approach based on the FEM and, on the other, an axisymmetric model combining a FE
approach for the wheelset cross-section and an analytical expansion of the response around
the circumferential direction. In both cases, an Eulerian formulation is adopted to consider
the inertial effects associated with the rotation and curved trajectory. It is shown that the
results of both approaches present an excellent agreement, the axisymmetric one exhibiting
significantly better computational performance.

The rolling noise radiation in two curve situations is analysed and compared with the
case of the vehicle running on tangent track, the radius of the curves being 300 m and 2 km.
The curve is found to influence the acoustic radiation for both cases. For the curve with a
radius of 300 m, the overall wheel and rail noise is higher than in the tangent track, while the
sleeper contribution is lower. For the curve with radius 2 km, instead, the overall levels of
all three elements are smaller in the curve. Changes in the interaction forces, vertical-lateral
coupling of the wheel and rail, and contact filter effect play an important role in rolling noise
in curves. It is noted that the position of the wheel/rail contact point is strongly related to
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the noise emitted by the wheelset and track in a curve. Thus, differences among the wheelsets
in the vehicle are observed in terms of rolling noise radiation. Finally, the differences found
in the overall total noise (sum of wheel, rail, and sleeper contributions) for both curving
conditions compared with the tangent track are likely to depend on the roughness spectrum
considered for the wheel and rail surfaces as well as on the properties of the wheelset and
track. A more comprehensive study of noise emission in curves, in the form of a Design of
Experiments considering the effect of different relevant parameters, such as the presence of
traction or braking, is envisaged as a future development of this work.
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Appendix A. Matrices and matrix operators

From Eq. (10), the matrix J is given by:

J =

0 −1 0
1 0 0
0 0 0

 . (A.1)

The matrices Ji in Eqs. (15), (21), (23), and (B.2–B.6) are sparse and thus they are
defined in this appendix through their non-zero elements as follows:

J1 {size 3× (3 + 6m)} :

(1, 7) = 1, (1, 8) = 1, (2, 2) = 2, (3, 4) = −1, (3, 5) = 1,
(A.2)

J2 {size 3× 1} :

(2, 1) = 2z,
(A.3)

J3 =
3∑
i=1

3∑
j=i

ω2
ij

∂J3

∂ω2
ij

{size (3 + 6m)× 1} :

∂J3

∂ω2
11

: (1, 1) = r, (10, 1) = −r
2
, (11, 1) =

r

2
,

∂J3

∂ω2
22

: (2, 1) = 2z,

∂J3

∂ω2
33

: (1, 1) = r, (10, 1) =
r

2
, (11, 1) = −r

2
,

∂J3

∂ω2
12

: (7, 1) = z, (8, 1) = z, (9, 1) = r,

∂J3

∂ω2
23

: (4, 1) = −z, (5, 1) = z, (6, 1) = −r,

∂J3

∂ω2
13

: (13, 1) = −r, (14, 1) = −r,

(A.4)
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J4 =
3∑
i=1

3∑
j=i

ω2
ij

∂J4

∂ω2
ij

{size (3 + 6m)× (3 + 6m)} :

∂J4

∂ω2
11

: (1, ) = 1, (3, ) = 1, (4, ) =
1

4
, (5, ) =

1

4
, (7, ) =

3

4
, (8, ) =

3

4
,

(1, 10) = −1, (1, 11) = 1, (3, 13) = 1, (3, 14) = 1, (4, 5) =
1

2
, (7, 8) =

1

2
,[[

(6n− 3 + k, ) =
1

2

]
k=1,2,4,5

]m
n=2

,
[[[

(6n− j, 6n+ 9 + k) =
(−1)k

2
,

(6n+ j, 6n+ 12 + k) =
(−1)j

2

]
j=1,2

]
k=1,2

]m−2
n=1

∂J4

∂ω2
22

: (2, ) = 2,
[
(6n, ) = 1, (6n+ 3, ) = 1

]m
n=1

,

∂J4

∂ω2
33

: (1, ) = 1, (3, ) = 1, (4, ) =
3

4
, (5, ) =

3

4
, (7, ) =

1

4
, (8, ) =

1

4
, (1, 10) = 1,

(1, 11) = −1, (3, 13) = −1, (3, 14) = −1, (4, 5) = −1

2
, (7, 8) = −1

2
,[[

(6n− 3 + k, ) =
1

2

]
k=1,2,4,5

]m
n=2

,
[[[

(6n− j, 6n+ 9 + k) = −(−1)k

2
,

(6n+ j, 6n+ 12 + k) = −(−1)j

2

]
j=1,2

]
k=1,2

]m−2
n=1

,

∂J4

∂ω2
12

: (1, 9) = 2, (2, 7) = 2, (2, 8) = 2, (3, 6) = 2,
[
(6n− 2, 6n+ 9) = 1,

(6n− 1, 6n+ 9) = 1, (6n, 6n+ 7) = 1, (6n, 6n+ 8) = 1,

(6n+ 1, 6n+ 6) = −1, (6n+ 2, 6n+ 6) = 1, (6n+ 3, 6n+ 4) = −1,

(6n+ 3, 6n+ 5) = 1
]m−1
n=1

,

∂J4

∂ω2
23

: (1, 6) = −2, (2, 4) = −2, (2, 5) = 2, (3, 9) = 2,[
(6n− 2, 6n+ 6) = −1, (6n− 1, 6n+ 6) = −1, (6n, 6n+ 4) = −1,

(6n, 6n+ 5) = 1, (6n+ 1, 6n+ 9) = 1, (6n+ 2, 6n+ 9) = 1,

(6n+ 3, 6n+ 7) = −1, (6n+ 3, 6n+ 8) = −1
]m−1
n=1

,

∂J4

∂ω2
13

: (1, 13) = −2, (1, 14) = −2, (3, 10) = −2, (3, 11) = 2, (4, 7) = −1,

(4, 8) = −1, (5, 7) = 1, (5, 8) = 1,
[
(6n− 2, 6n+ 13) = −1,

(6n− 2, 6n+ 14) = −1, (6n− 1, 6n+ 13) = −1, (6n− 1, 6n+ 14) = −1,

(6n+ 1, 6n+ 10) = 1, (6n+ 1, 6n+ 11) = −1, (6n+ 2, 6n+ 10) = −1,

(6n+ 2, 6n+ 11) = 1
]m−2
n=1

,

(A.5)
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J5 =
∑
i=1

ωi
∂J5

∂ωi
{size (3 + 6m)× 1} :

∂J5

∂ω1

: (4, 1) = −z, (5, 1) = z, (6, 1) = r,

∂J5

∂ω2

: (3, 1) = −2r,

∂J5

∂ω3

: (7, 1) = −z, (8, 1) = −z, (9, 1) = r,

(A.6)

J6 =
∑
i=1

ωi
∂J6

∂ωi
{size (3 + 6m)× 1} :

∂J6

∂ω1

: (9, 1) = −2r,

∂J6

∂ω2

: (1, 1) = 4r,

∂J6

∂ω3

: (6, 1) = 2r,

(A.7)

J7 =
∑
i=1

ωi
∂J7

∂ωi
{size (3 + 6m)× (3 + 6m)}(antisymmetric) :

∂J7

∂ω1

: (1, 6) = 1, (2, 4) = −1, (2, 5) = 1, (3, 9) = −1,
[
(6n− 2, 6n+ 6) =

1

2
,

(6n− 1, 6n+ 6) =
1

2
, (6n, 6n+ 4) = −1

2
, (6n, 6n+ 5) =

1

2
,

(6n+ 1, 6n+ 9) =
1

2
, (6n+ 2, 6n+ 9) = −1

2
, (6n+ 3, 6n+ 7) = −1

2
,

(6n+ 3, 6n+ 8) = −1

2
,
]m−1
n=1

,

∂J7

∂ω2

: (1, 3) = −2, (4, 8) = −1, (5, 7) = 1,[
(6n− 2, 6n+ 2) = −1, (6n− 1, 6n+ 1) = 1

]m
n=2

,

∂J7

∂ω3

: (1, 9) = 1, (2, 7) = −1, (2, 8) = −1, (3, 6) = 1,
[
(6n− 2, 6n+ 9) =

1

2
,

(6n− 1, 6n+ 9) =
1

2
, (6n, 6n+ 7) = −1

2
, (6n, 6n+ 8) = −1

2
,

(6n+ 1, 6n+ 6) = −1

2
, (6n+ 2, 6n+ 6) =

1

2
, (6n+ 3, 6n+ 4) =

1

2
,

(6n+ 3, 6n+ 5) = −1

2

]m−1
n=1

,

(A.8)
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J8 =
∑
i=1

ωi
∂J8

∂ωi
{size (3 + 6m)× (3 + 6m)} :

∂J8

∂ω1

: (1, 9) = −2, (3, 6) = −2,
[
(6n− 2, 6n+ 9) = −(n+ 1),

(6n− 1, 6n+ 9) = −(n+ 1), (6n, 6n+ 7) = n, (6n, 6n+ 8) = n,

(6n+ 1, 6n+ 6) = n+ 1, (6n+ 2, 6n+ 6) = −(n+ 1),

(6n+ 3, 6n+ 4) = −n, (6n+ 3, 6n+ 5) = n
]m−1
n=1

,

∂J8

∂ω2

: (1, ) = 2, (3, ) = 2, (4, 5) = 2, (7, 8) = −2,[[
(6n− 3 + k, ) = 1

]
k=1,2,4,5

]m
n=1

,
[
(6n− 2, 6n− 1) = 2n,

(6n+ 1, 6n+ 2) = −2n,
]m
n=2

,

∂J8

∂ω3

: (1, 6) = 2, (3, 9) = −2,
[
(6n− 2, 6n+ 6) = n+ 1,

(6n− 1, 6n+ 6) = n+ 1, (6n, 6n+ 4) = −n, (6n, 6n+ 5) = n,

(6n+ 1, 6n+ 9) = n+ 1, (6n+ 2, 6n+ 9) = −(n+ 1),

(6n+ 3, 6n+ 7) = −n, (6n+ 3, 6n+ 8) = −n
]m−1
n=1

,

(A.9)

J9 {size (3 + 6m)× (3 + 6m)} :[
(k, ) = 2

]
k=1,2,3

,
[[

(6n− 3 + k, ) = 1
]6
k=1

]m
n=1

,
(A.10)

J10 {size (3 + 6m)× 1} :

(3, 1) = −2r,
(A.11)

J11 {size (3 + 6m)× (3 + 6m)}(antisymmetric) :

(1, 3) = −2,
[
(6n− 2, 6n+ 2) = −1, (6n− 2, 6n+ 1) = n,

(6n− 1, 6n+ 1) = 1, (6n− 1, 6n+ 2) = −n, (6n, 6n+ 3) = n
]m
n=1

,

(A.12)

J12 {size (3 + 6m)× 1} :

(1, 1) = 2r,
(A.13)

J13 {size (3 + 6m)× (3 + 6m)} :

(1, ) = 1, (3, ) = 1,
[[

(6n− 3 + k, ) =
n2 + 1

2

]
k=1,2,4,5

,[
(6n− 3 + k, ) =

n2

2

]
k=3,6

, (6n− 2, 6n− 1) = 2n,

(6n+ 1, 6n+ 2) = −2n
]m
n=1

,

(A.14)
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where, as indicated in Section 3, m indicates the truncation harmonic on the expansion of
the response along the circumferential direction. Regarding the notation in the previous
equations, it is worth indicating the following aspects:

� An element (k, k) in the diagonal of a matrix is denoted as (k, ).

� Matrices J7 and J11 are antisymmetric and therefore only the terms over the diagonal
are given.

� The notation
[
f(n)

]m
n=j

indicates that f is evaluated for every integer n from j to m.

� The notation
[
f(k)

]
k=r,s

indicates that f is evaluated for k = r and k = s.

� The nested notation
[[
f(k, n)

]
k=r,s

]m
n=j

indicates that f is evaluated for any combina-

tion of k and n.

Regarding the matrix D̃ from Eq. (23), it is a square matrix of order (6+12m), evaluated
as follows:

D̃ =


2D 0 · · · 0

0 D · · · 0

...
...

. . .
...

0 0 · · · D

 , (A.15)

where 0 is a square null matrix of order 6 and D is the material stiffness matrix obtained
from Hooke’s Law, given by [23]:

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


, (A.16)

with E being the Young’s modulus and ν the Poisson’s ratio. In relation to the matrix
operator L̃, which allows the calculation of B̃ in Eq. (23), it is a non-square matrix of
dimensions (6 + 12m)× (3 + 6m), given by:

L̃ =


L0 02 · · · 02

01 L1 · · · 03

...
...

. . .
...

01 03 · · · Ln

 , (A.17)
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where 01, 02, and 03 are null matrices of dimensions 12× 3, 6× 6, and 12× 6, respectively,
and the operators L0 and Ln (with n > 0) are defined as follows:

L0 =



∂
∂r

0 0

1
r

0 0

0 ∂
∂z

0

∂
∂z

∂
∂r

0

0 0 ∂
∂r
− 1

r

0 0 ∂
∂z


. (A.18)

Ln =



∂
∂r

0 0 0 0 0

1
r

n
r

0 0 0 0

0 0 ∂
∂z

0 0 0

∂
∂z

0 ∂
∂r

0 0 0

−n
r

∂
∂r
− 1

r
0 0 0 0

0 ∂
∂z

−n
r

0 0 0

0 0 0 ∂
∂r

0 0

0 0 0 1
r

−n
r

0

0 0 0 0 0 ∂
∂z

0 0 0 ∂
∂z

0 ∂
∂r

0 0 0 n
r

∂
∂r
− 1

r
0

0 0 0 0 ∂
∂z

n
r



, n = 1, · · · ,m. (A.19)

Appendix B. Kinetic energy integration

In this appendix, a detailed term-by-term analytical integration of the kinetic energy in
Eq. (7) around the circumferential direction is provided.

K1 =
1

2
ṗT
c ṗcM, (B.1)

K2 = ṗT
c ω̃c

∫
V

ρΘ (u + w) dV = πṗT
c ω̃c

∫
A

ρ (J1wh + J2) rdA, (B.2)

K3 = ṗT
c

∫
V

ρΘ
D(u + w)

Dt
dV = πṗT

c

∫
A

ρJ1ẇhrdA, (B.3)

K4 =
1

2

∫
V

ρ(u + w)TΘTω̃T
c ω̃cΘ(u + w)dV

=
π

2

∫
A

ρ
(
(ω2

11 + ω2
33)r

2 + 2ω2
22z

2
)
rdA+ π

∫
A

ρJT
3 whrdA

+
π

2

∫
A

ρwT
hJ4whrdA,

(B.4)
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K5 =
1

2

∫
V

ρ(u + w)TΘTω̃T
c ω̃cΘ

D(u + w)

Dt
dV = Ω2πω2

∫
A

ρr3dA

+π

∫
A

ρ
(
JT
5 + wT

hJ7

)
ẇhrdA+ Ωπ

∫
A

ρ
(
JT
6 + wT

hJ8

)
whrdA,

(B.5)

Kt =
1

2

∫
V

ρ
D(u + w)T

Dt

D(u + w)

Dt
dV = Ω2πω2

∫
A

ρr3dA+
π

2

∫
A

ρẇT
hJ9ẇhrdA

+Ωπ

∫
A

ρ
(
JT
10 + wT

hJ11

)
ẇhrdA+ Ω2π

∫
A

ρ
(
JT
12 + wT

hJ13

)
whrdA,

(B.6)

where dV = rdθdA and the matrices Ji are defined in the Appendix A.

References

[1] D. J. Thompson, C. J. C. Jones, A review of the modelling of wheel/rail noise generation,
J. Sound Vib. 231 (3) (2000) 519–536, https://doi.org/10.1006/jsvi.1999.2542.

[2] M. J. Rudd, Wheel/rail noise—part II: Wheel squeal, J. Sound Vib. 46 (3) (1976) 381–
394, https://doi.org/10.1016/0022-460X(76)90862-2.

[3] I. Zenzerovic, W. Kropp, A. Pieringer, An engineering time-domain model for curve
squeal: Tangential point-contact model and Green’s functions approach, J. Sound Vib.
376 (2016) 149–165, https://doi.org/10.1016/j.jsv.2016.04.037.

[4] D. J. Thompson, Railway Noise and Vibration. Mechanisms, Modelling and Means
of Control, Elsevier, 2009, ISBN: 978-0-08-045147-3, https://doi.org/10.1016/

B978-0-08-045147-3.X0023-0.

[5] S. L. Grassie, J. Kalousek, Rail corrugation: Characteristics, causes and treatments,
Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit 207 (1) (1993) 57–68, https:

//doi.org/10.1243/PIME_PROC_1993_207_227_02.

[6] P. T. Torstensson, M. Schilke, Rail corrugation growth on small radius
curves—measurements and validation of a numerical prediction model, Wear 303 (1)
(2013) 381–396, https://doi.org/10.1016/j.wear.2013.03.029.

[7] J. Wang, D. J. Thompson, G. Squicciarini, Rolling noise on curved track: an efficient
time domain model including coupling between the two wheels and rails, in: Noise and
Vibration Mitigation for Rail Transportation Systems, 2024, pp. 307–315, ISBN: 978-
981-99-7852-6.

[8] A. Wickens, Fundamentals of Rail Vehicle Dynamics, CRC Press, 2003, ISBN:
9780429224652, https://doi.org/10.1201/9780203970997.

[9] K. Knothe, S. Stichel, Rail Vehicle Dynamics, Springer International Publishing, 2017,
ISBN: 978-3-319-45376-7, https://doi.org/10.1007/978-3-319-45376-7.

31

https://doi.org/10.1006/jsvi.1999.2542
https://doi.org/10.1016/0022-460X(76)90862-2
https://doi.org/10.1016/j.jsv.2016.04.037
https://doi.org/10.1016/B978-0-08-045147-3.X0023-0
https://doi.org/10.1016/B978-0-08-045147-3.X0023-0
https://doi.org/10.1243/PIME_PROC_1993_207_227_02
https://doi.org/10.1243/PIME_PROC_1993_207_227_02
https://doi.org/10.1016/j.wear.2013.03.029
https://doi.org/10.1201/9780203970997
https://doi.org/10.1007/978-3-319-45376-7


[10] S. Iwnicki, M. Spiryagin, C. Cole, T. McSweeney (Eds.), Handbook of Railway Vehicle
Dynamics, Second Edition (2nd ed.), CRC Press, 2019, ISBN: 9780429469398, https:
//doi.org/10.1201/9780429469398.

[11] S. Bruni, J. P. Meijaard, G. Rill, A. L. Schwab, State-of-the-art and challenges of railway
and road vehicle dynamics with multibody dynamics approaches, Multibody Syst. Dyn.
49 (2020) 1–32, https://doi.org/10.1007/s11044-020-09735-z.

[12] E. Di Gialleonardo, F. Braghin, S. Bruni, The influence of track modelling options
on the simulation of rail vehicle dynamics, J. Sound Vib. 331 (19) (2012) 4246–4258,
https://doi.org/10.1016/j.jsv.2012.04.024.

[13] J. Mart́ınez-Casas, L. Mazzola, L. Baeza, S. Bruni, Numerical estimation of stresses
in railway axles using a train–track interaction model, Int. J. Fatigue 47 (2013) 18–30,
https://doi.org/10.1016/j.ijfatigue.2012.07.006.

[14] J. Mart́ınez-Casas, E. Di Gialleonardo, S. Bruni, L. Baeza, A comprehensive model of the
railway wheelset–track interaction in curves, J. Sound Vib. 333 (18) (2014) 4152–4169,
https://doi.org/10.1016/j.jsv.2014.03.032.

[15] V. T. Andrés, J. Mart́ınez-Casas, F. D. Denia, D. J. Thompson, A model of a rotating
railway wheel for the prediction of sound radiation, J. Sound Vib. 553 (2023) 117667,
https://doi.org/10.1016/j.jsv.2023.117667.

[16] VI-Grade GmbH, VI-Rail 2022.1 Documentation, VI-Grade Engineering Software &
Services, 2022.

[17] D. J. Thompson, Wheel-rail noise generation, part III: Rail vibration, J. Sound Vib.
161 (3) (1993) 421–446, doi: https://doi.org/10.1006/jsvi.1993.1084.

[18] D. J. Mead, A general theory of harmonic wave propagation in linear periodic systems
with multiple coupling, J. Sound Vib. 27 (2) (1973) 235–260, doi: https://doi.org/

10.1016/0022-460X(73)90064-3.

[19] D. J. Thompson, C. J. C. Jones, Sound radiation from a vibrating railway wheel, J.
Sound Vib. 253 (2) (2002) 401–419, https://doi.org/10.1006/jsvi.2001.4061.

[20] D. J. Thompson, M. H. A. Janssens, F. G. de Beer, Track Wheel Interaction Noise
Software (TWINS) Theoretical Manual (version 3.4), TNO report, TNO Institute of
Applied Physics, 2019.

[21] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 2000,
ISBN: 9780511800955, https://doi.org/10.1017/CBO9780511800955.

[22] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Revised 2nd Edition,
John Wiley & Sons, 2006, ISBN: 978-0-470-11539-8.

[23] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The Finite Element Method: Its Basis and
Fundamentals, 7th Edition, Butterworth-Heinemann, 2013, ISBN: 978-1-85617-633-0,
https://doi.org/10.1016/C2009-0-24909-9.

32

https://doi.org/10.1201/9780429469398
https://doi.org/10.1201/9780429469398
https://doi.org/10.1007/s11044-020-09735-z
https://doi.org/10.1016/j.jsv.2012.04.024
https://doi.org/10.1016/j.ijfatigue.2012.07.006
https://doi.org/10.1016/j.jsv.2014.03.032
https://doi.org/10.1016/j.jsv.2023.117667
https://doi.org/10.1006/jsvi.1993.1084
https://doi.org/10.1016/0022-460X(73)90064-3
https://doi.org/10.1016/0022-460X(73)90064-3
https://doi.org/10.1006/jsvi.2001.4061
https://doi.org/10.1017/CBO9780511800955
https://doi.org/10.1016/C2009-0-24909-9


[24] M. Petyt, Introduction to Finite Element Vibration Analysis, 2nd Edition, Cam-
bridge University Press, 2010, ISBN: 9780521191609, https://doi.org/10.1017/

CBO9780511761195.

[25] S. Iwnicki, Manchester benchmarks for rail vehicle simulation, Veh. Syst. Dyn. 30 (3-4)
(1998) 295–313, https://doi.org/10.1080/00423119808969454.

[26] V. T. Andrés, J. Mart́ınez-Casas, F. D. Denia, D. J. Thompson, Influence study of rail
geometry and track properties on railway rolling noise, J. Sound Vib. 525 (2022) 116701,
https://doi.org/10.1016/j.jsv.2021.116701.

[27] W. Liu, L. Du, W. Liu, D. J. Thompson, Dynamic response of a curved railway track
subjected to harmonic loads based on the periodic structure theory, Proc. Inst. Mech.
Eng., Part F: J. Rail Rapid Transit 232 (7) (2018) 1932–1950, https://doi.org/10.
1177/0954409718754470.

[28] D. J. Thompson, Wheel-rail noise generation, part I: Introduction and interaction model,
J. Sound Vib. 161 (3) (1993) 387–400, doi: https://doi.org/10.1006/jsvi.1993.

1082.

[29] A. Gross-Thebing, Frequency-dependent creep coefficients for three-dimensional rolling
contact problems, Veh. Syst. Dyn. 18 (6) (1989) 359–374, doi: https://doi.org/10.

1080/00423118908968927.

[30] D. J. Thompson, Wheel-rail noise: theoretical modelling of the generation of vibrations,
PhD Thesis, University of Southampton (1990).

[31] D. J. Thompson, Wheel-rail noise generation, part IV: Contact zone and results, J. Sound
Vib. 161 (3) (1993) 447–466, doi: http://dx.doi.org/10.1006/jsvi.1993.1085.

[32] J. J. Kalker, Wheel-rail rolling contact theory, Wear 144 (1) (1991) 243–261, doi: https:
//doi.org/10.1016/0043-1648(91)90018-P.

[33] J. J. Kalker, A fast algorithm for the simplified theory of rolling contact, Veh. Syst.
Dyn. 11 (1) (1982) 1–13, doi: https://doi.org/10.1080/00423118208968684.

[34] Railway applications – Wheelsets and bogies – Monobloc wheels – Technical approval
procedure – Part 1: Forged and rolled wheels. EN 13979-1:2020, European Committee
for Standardization (2020).

[35] U. Olofsson, Chapter 17 - Adhesion and friction modification, in: R. Lewis, U. Olofs-
son (Eds.), Wheel–Rail Interface Handbook, Woodhead Publishing, 2009, pp. 510–527,
ISBN: 978-1-84569-412-8, https://doi.org/10.1533/9781845696788.1.510.

[36] Electroacoustics – Sound level meters – Part 1: Specifications. IEC 61672-1:2013, Inter-
national Electrotechnical Commission (2013).

33

https://doi.org/10.1017/CBO9780511761195
https://doi.org/10.1017/CBO9780511761195
https://doi.org/10.1080/00423119808969454
https://doi.org/10.1016/j.jsv.2021.116701
https://doi.org/10.1177/0954409718754470
https://doi.org/10.1177/0954409718754470
https://doi.org/10.1006/jsvi.1993.1082
https://doi.org/10.1006/jsvi.1993.1082
https://doi.org/10.1080/00423118908968927
https://doi.org/10.1080/00423118908968927
http://dx.doi.org/10.1006/jsvi.1993.1085
https://doi.org/10.1016/0043-1648(91)90018-P
https://doi.org/10.1016/0043-1648(91)90018-P
https://doi.org/10.1080/00423118208968684
https://doi.org/10.1533/9781845696788.1.510

	Introduction
	Three-dimensional dynamic model of the wheelset
	Axisymmetric dynamic model of the wheelset
	Vehicle/track interaction model
	Track
	Wheel/rail interaction

	Results
	Inputs
	Comparison of methodologies
	Rolling noise in curves

	Conclusions
	Matrices and matrix operators
	Kinetic energy integration
	References

