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Egocentric Doxastic Logic

Abstract. Originally proposed by Prior, egocentric logics is a class of logi-
cal systems that capture properties of agents rather than of possible worlds.
The article proposes a doxastic egocentric system with rigid names for rea-
soning about beliefs that an agent might have about herself.
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1. Introduction

Prior proposed to consider egocentric logical systems that express prop-
erties of agents [26]. We can formalise his idea by considering a ternary
satisfaction relation w, a  ϕ between a world w, an agent a, and a
formula ϕ. For example, we can write

w, a  “is sick”

to express the fact that agent a is sick in world w. In this article, we
extend Prior’s egocentric approach to egocentric beliefs or an agent’s
belief about herself. For example, we write

w, a  B“is sick”

to express the fact that, in world w, agent a believes that she (agent a)
is sick. Egocentric statements can be combined in the usual way using
Boolean connectives. For example, one can write

w, a  B“is sick” ∧ B“will recover”
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to state that, in world w, agent a has two beliefs: that she is sick and
that she will recover. Modality B can be nested to say that, in world w,
agent a believes that she believes that she is sick:

w, a  BB“is sick”

or that she believes that she does not believe that she is sick:

w, a  B¬B“is sick”.

Of course, the above statement could be also written in the traditional
(non-egocentric) doxastic logic as w  Ba¬Ba“agent a is sick”. Thus, it
does not make much sense to introduce a doxastic egocentric logic to
do the same. The advantage of the egocentric approach becomes clear
if the modality B is combined with agent-dependent names. By such
a name, we mean any name whose meaning depends on the agent that
uses this name. An example of an agent-dependent name is ma (short
for “mother”). To use agent-specific names, we consider modality @. For
example, the statement

w, a  @ma“is sick”

means that the mother of agent a is sick. Note that nesting modality
@ma gives a way to refer to the mother of the mother. For example, the
statement

w, a  @ma@ma“is sick”

means that the grandma of agent a on the mother’s side is sick. When
the belief modality B is combined with modality @, the language of the
logical system becomes much richer. For example, the statement

w, a  B@ma“is sick”

means that agent a believes that her mother is sick. At the same time,
the statement

w, a  @maB“is sick”

means that the mother of agent a believes that she (the mother) is sick.
The statement

w, a  B(@ma“is sick” ∨@pa“is sick”)
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means that agent a believes that at least one of her parents is sick. The
statement

w, a  @maB(@ma“is sick” ∨@pa“is sick”)

means that agent a’s mother believes that at least one of her (the
mother’s) parents is sick. Finally, note that the statement

w, a  @maB@paB“is sick”

means that agent a’s mother believes that her father believes that he is
sick.

In this article, we introduce a logical system that describes the in-
terplay between modalities B and @. We give the formal semantics of
this modality by combining the standard KD45-style semantics of beliefs
[9, 23] with the egocentric setting. Our main technical result is a sound
and complete axiomatisation of this logical system.

The rest of the paper is structured as follows. In the next section, we
review the existing literature on egocentric logical systems. In Section 3,
we describe the class of models that we use. In the section that follows,
we give the syntax and the semantics of our logical system. Section 5
lists the axioms and inference rules of the system. The soundness of the
system is established in Section 6. To improve readability, the proof of
completeness is split into two sections. Section 7 defines the canonical
model and Section 8 uses this model to prove completeness. In Section 9,
we use a non-standard semantics with non-rigid names to show that
one of our inference rules is not derivable. Section 10 describes partial
and common names as possible directions for future work. Section 11
concludes the article.

2. Literature Review

Two types of egocentric systems have been considered in the literature:
“pure” egocentric systems with a binary satisfaction relation a  ϕ that
captures properties of an agent a and “hybrid” systems (like ours) that
use a ternary relation w, a  ϕ.

Seligman, Liu, and Girard [28, 29] proposed a pure egocentric logic of
friendship that contains “all friends” modality F. For example, in their
language the statement a  F“is sick” means that all friends of agent a
are sick. Modality F is also used in [5, 6]. Jiang and Naumov suggested
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egocentric modality “likes those who” L [17, 19]. In their language, the
statement a  Lϕ means that agent a likes those who have property ϕ.

Grove and Halpern [14–16] proposed a hybrid egocentric logical sys-
tem for knowledge modality K. The statement w, a  K“is sick” means
in their language that, in world w, agent a knows that she (agent a)
is sick. Epstein, Naumov, and Tao considered the modality “know
who” [8]. Naumov and Tao also proposed the modality “know how to
tell apart” [25].

3. Doxastic Models

In this section, we define the class of models that we use to give the
semantics of our logical system. Throughout the rest of the article, we
fix the set of propositional variables and a set of names N .

Definition 3.1. A tuple (W,A, {Ra}a∈A, {ea}a∈A, π) is called a doxas-
tic model when
1. W is a (possibly empty) set of “worlds”,
2. A is a (possibly empty) set of “agents”,
3. Ra is a binary “plausibility” relation on W for each a ∈ A which is

(a) transitive: for all w, u, v ∈W , if wRau and uRav, then wRav,
(b) Euclidean: for all w, u, v ∈W , if wRau and wRav, then uRav,
(c) serial: for any w ∈W there is an u ∈W such that wRau,

4. “extension” function ea is such that ea(n) ∈ A for each name n ∈ N ,
5. π(p) ⊆W ×A for each propositional variable p.

The above definition adds extension functions ea to the standard
KD45 doxastic models [1–4, 10, 11]. In the literature, sphere [20], neigh-
bourhood [12, 13, 30], and trust-based [18] semantics of beliefs have also
been considered.

Intuitively, in the above definition, ea(n) is the agent to which agent
a refers by name n. The names that we consider in this article are
total because function ea is defined for all names, the names are proper
because the function has a unique value, and they are rigid because the
value ea(n) does not depend on the world. In Section 9 and Section 10,
we discuss possible generalisations of our work for partial, common, and
non-rigid names.

Note that, unlike the standard semantics of the doxastic logic, in
our case, the valuation function π returns a set of pairs. Intuitively,
(w, a) ∈ π(p) if propositional variable p is true in world w about agent a.
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4. Syntax and Semantics

The language Φ of our logical system is defined by the grammar:

ϕ := p | ¬ϕ | ϕ→ ϕ | @nϕ | Bϕ,

where p is a propositional variable and n ∈ N is a name. We read
@nϕ as “statement ϕ is true about the agent named n”. We read Bϕ
as “believes in ϕ”. We assume that biconditional ↔, disjunction ∨ and
Boolean constants true > and false ⊥ are defined in the usual way. For
any integer k ≥ 0 and any sequence of names α = n1, . . . , nk by @αϕ we
denote the formula @n1 . . .@nk

ϕ. Note that if α is the empty sequence,
then @αϕ is the formula ϕ.

Definition 4.1. For any world w ∈ W and any agent a ∈ A of a
doxastic model (W,A, {Ra}a∈A, {ea}a∈A, π) and any formula ϕ ∈ Φ, the
satisfaction relation w, a  ϕ is defined as follows:
1. w, a  p if (w, a) ∈ π(p),
2. w, a  ¬ϕ if w, a 1 ϕ,
3. w, a  ϕ→ ψ if either w, a 1 ϕ or w, a  ψ,
4. w, a  @nϕ, if w, ea(n)  ϕ,
5. w, a  Bϕ if u, a  ϕ for all worlds u ∈W such that wRau.

5. Axioms

In addition to propositional tautologies in language Φ, our logical system
contains the following axioms:
• Distributivity:

B(ϕ→ ψ)→ (Bϕ→ Bψ),
@n(ϕ→ ψ)→ (@nϕ→ @nψ),

• Positive Introspection: Bϕ→ BBϕ,
• Negative Introspection: ¬Bϕ→ B¬Bϕ,
• Belief Consistency: ¬B⊥,
• Commutativity: ¬@nϕ↔ @n¬ϕ.

We write ` ϕ and say that formula ϕ ∈ Φ is a theorem of our logical
system if this formula is provable from these axioms using the Modus
Ponens, the Necessitation, and the Insertion inference rules:

ϕ,ϕ→ ψ

ψ

ϕ

@nϕ

@αϕ

@αBϕ
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We write X ` ϕ if formula ϕ ∈ Φ is derivable from the theorems of
our logical system and the additional set of assumptions X ⊆ Φ using
only the Modus Ponens inference rule. Note that statements ` ϕ and
∅ ` ϕ are equivalent. We say that a set X ⊆ Φ is consistent if X 0 ⊥.

The Insertion inference rule is the most non-trivial rule in our logical
system. Note that a special case of this rule, if the sequence α is empty,
is the Necessitation rule for modality B:

ϕ

Bϕ
One might naturally wonder if the Insertion rule in its full form is really
necessary in our logical system or whether it can be replaced by the
Necessitation rule for modality B. We know only a partial answer to
this question. Namely, let L− denote a version of our logical system that
contains the Necessitation rule for modality B instead of the full form of
the Insertion rule. In Section 9, we use a semantics with non-rigid names
to show that the full form of the Insertion rule is not derivable in system
L−. The question of whether this rule is admissible in L− remains open.

Next, we show several lemmas that are used later in the proof of
completeness. The first of them generalises the Commutativity axiom.

Lemma 5.1. ` @α¬ϕ↔ ¬@αϕ.

Proof. We prove the lemma by the induction on the length of sequence
α. If the length is zero, then the formula @α¬ϕ ↔ ¬@αϕ is a propo-
sitional tautology. Let α be n1, . . . , nk, where k ≥ 1. Then, by the
induction hypothesis,

` @n2,...,nk
¬ϕ↔ ¬@n2,...,nk

ϕ.

Thus, by the laws of propositional reasoning,
` @n2,...,nk

¬ϕ→ ¬@n2,...,nk
ϕ,

` ¬@n2,...,nk
ϕ→ @n2,...,nk

¬ϕ.

Hence, by the Necessitation inference rule,
` @n1(@n2,...,nk

¬ϕ→ ¬@n2,...,nk
ϕ),

` @n1(¬@n2,...,nk
ϕ→ @n2,...,nk

¬ϕ).

Then, by the Distributivity axiom and the Modus Ponens inference rule,
` @n1@n2,...,nk

¬ϕ→ @n1¬@n2,...,nk
ϕ,

` @n1¬@n2,...,nk
ϕ→ @n1@n2,...,nk

¬ϕ.
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Thus, by the Commutativity axiom and propositional reasoning,
` @n1@n2,...,nk

¬ϕ→ ¬@n1@n2,...,nk
ϕ,

` ¬@n1@n2,...,nk
ϕ→ @n1@n2,...,nk

¬ϕ.

Therefore, by propositional reasoning,

` @n1@n2,...,nk
¬ϕ↔ ¬@n1@n2,...,nk

ϕ.

This concludes the proof of the lemma. a

Lemma 5.2. ` ¬@αB⊥.

Proof. By the Belief Consistency axiom, ` ¬B⊥. Thus, by the Ne-
cessitation inference rule applied multiple times, ` @α¬B⊥. Therefore,
` ¬@αB⊥ by Lemma 5.1 and propositional reasoning. a

The next lemma proves the Distributivity axiom for modality @ in a
more general form.

Lemma 5.3. ` @α(ϕ→ ψ)→ (@αϕ→ @αψ).

Proof. Let α be the sequence n1, . . . , nk, where k ≥ 0. We prove the
statement by induction on k. If k = 0, then the formula

` @α(ϕ→ ψ)→ (@αϕ→ @αψ)

is a propositional tautology.
Suppose that k > 0. By the induction hypothesis,

` @n2,...,nk
(ϕ→ ψ)→ (@n2,...,nk

ϕ→ @n2,...,nk
ψ).

Then, by the Necessitation inference rule,

` @n1(@n2,...,nk
(ϕ→ ψ)→ (@n2,...,nk

ϕ→ @n2,...,nk
ψ)).

Thus, by the Distributivity axiom and the Modus Ponens inference rule,

` @n1@n2,...,nk
(ϕ→ ψ)→ @n1(@n2,...,nk

ϕ→ @n2,...,nk
ψ)).

Therefore,

` @n1@n2,...,nk
(ϕ→ ψ)→ (@n1@n2,...,nk

ϕ→ @n1@n2,...,nk
ψ))

by the Distributivity axiom and propositional reasoning. a

The next lemma shows that the converse of Lemma 5.3 is also true.

Lemma 5.4. ` (@αϕ→ @αψ)→ @α(ϕ→ ψ).
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Proof. Observe that the following two formulae are propositional tau-
tologies:

¬ϕ→ (ϕ→ ψ) ψ → (ϕ→ ψ).
Thus, by the Necessitation inference rule applied multiple times,

` @α(¬ϕ→ (ϕ→ ψ)) ` @α(ψ → (ϕ→ ψ)).

Hence, by Lemma 5.3 and the Modus Ponens inference rule,

` @α¬ϕ→ @α(ϕ→ ψ) ` @αψ → @α(ϕ→ ψ).

Then, by Lemma 5.1 and propositional reasoning,

` ¬@αϕ→ @α(ϕ→ ψ) ` @αψ → @α(ϕ→ ψ).

Hence, ` ¬@αϕ∨@αψ → @α(ϕ→ ψ) by propositional reasoning. Thus,
` (@αϕ→ @αψ)→ @α(ϕ→ ψ) again by propositional reasoning. a

Lemma 5.5. ` @αB(ϕ→ ψ)→ (@αBϕ→ @αBψ).

Proof. An instance B(ϕ → ψ) → (Bϕ → Bψ) of the Distributivity
axiom implies, by multiple applications of the Necessitation inference
rule, that

` @α(B(ϕ→ ψ)→ (Bϕ→ Bψ)).
Therefore,

` @αB(ϕ→ ψ)→ (@αBϕ→ @αBψ)
by Lemma 5.3 and propositional reasoning. a

We give proof of the following standard lemma in the appendix.

Lemma 5.6 (deduction). For any n > 0 and any formulae ϕ1, . . . , ϕn, ψ,
if ϕ1, . . . , ϕn ` ψ, then ϕ1, . . . , ϕn−1 ` ϕn → ψ.

The next lemma rephrases the Insertion inference rule in a more gen-
eral form which is more convenient to use in the proof of completeness.

Lemma 5.7. If @αϕ1, ..,@αϕn ` @αψ, then @αBϕ1, ..,@αBϕn ` @αBψ.

Proof. Suppose @αϕ1, . . . ,@αϕn ` @αψ. Hence, by Lemma 5.6,

@αϕ1, . . . ,@αϕn−1 ` @αϕn → @αψ.

Then, by Lemma 5.4 and the Modus Ponens inference rule,

@αϕ1, . . . ,@αϕn−1 ` @α(ϕn → ψ)
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Thus, by repeating the last two steps n− 1 more times,

` @α(ϕ1 → . . . (ϕn → ψ) . . . ).

Hence, by the Insertion inference rule,

` @αB(ϕ1 → . . . (ϕn → ψ) . . . ).

Then, by Lemma 5.5,

` @αBϕ1 → @αB(ϕ2 → . . . (ϕn → ψ) . . . ).

Thus, by the Modus Ponens inference rule,

@αBϕ1 ` @αB(ϕ2 → . . . (ϕn → ψ) . . . ).

Therefore,
@αBϕ1, . . . ,@αBϕn ` @αBψ

by repeating the last two steps n− 1 more times. a

Finally, by the standard proof of Lindenbaum’s lemma [see, e.g., 22,
Proposition 2.14], we have:

Lemma 5.8 (Lindenbaum). Any consistent set of formulae can be ex-
tended to a maximal consistent set of formulae.

6. Soundness

Theorem 6.1. If ` ϕ, then w, a  ϕ for any world w and any agent a
of any doxastic model.

The proofs of soundness of the Distributivity, the Positive Introspec-
tion, the Negative Introspection, the Belief Consistency, and the Com-
mutativity axiom as well as of the Modus Ponens and the Necessitation
inference rules are straightforward. Below we prove the soundness of the
Insertion inference rule as a separate lemma.

Lemma 6.1. If w, a  @αϕ for each agent a ∈ A and each world w of
each doxastic model, then w, a  @αBϕ for each agent a ∈ A and each
world w of each doxastic model.
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Proof. Consider any doxastic model (W,A, {Ra}a∈A, {ea}a∈A, π), any
w ∈W , and any agent a ∈ A. It suffices to show that w, a  @αBϕ.

Let α be the sequence n1, . . . , nk. By item 4 of Definition 4.1, to show
w, a  @n1,...,nk

Bϕ, it suffices to prove that w, ea(n1)  @n2...,nk
Bϕ.

To prove the last statement, by the same item 4 of Definition 4.1, it
suffices to show that w, eea(n1)(n2)  @n3...,nk

Bϕ. By repeating the
same argument k− 2 more times, we can observe that it suffices to show
that

w, e. . .eea(n1)(n2) .
. .

(nk)  Bϕ.

Next, consider any world u ∈ W such that wRau. By item 5 of Defini-
tion 4.1, it suffices to show that

u, e. . .eea(n1)(n2) .
. .

(nk)  ϕ.

Then, by the same item 5 of Definition 4.1 applied k times, it suffices to
show that u, a  @αϕ. The last statement is true by the assumption of
the lemma. a

7. Canonical Model

Towards the proof of the completeness theorem, in this section, we define
the canonical model (W,A, {Ra}a∈A, {ea}a∈A, π) for our logical system.
As usual in modal logic, possible worlds are maximal consistent sets of
formulae.
Definition 7.1. W is the set of all maximal consistent sets of formulae.

Next, we define the set of agents in the canonical model. In the
proofs of completeness, elements of the model are usually specified us-
ing syntactical constructions. In our case, we define the agents in the
canonical model as sequences of names in the language.
Definition 7.2. A is the set of all finite sequences of names.

Informally, the empty sequence represents an “initial” agent in our
model. The sequence “ma” represents the mother of the initial agent.
The sequence “ma,pa” represents the father of the mother of the ini-
tial agent, and so on. Throughout the paper, by s :: x we mean the
concatenation of an element x to the end of a sequence s.
Definition 7.3. ea(n) = a ::n for any agent a ∈ A and any name n ∈ N .
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For example, intuitively, ema,ma(pa) = (ma,ma) :: pa = ma,ma, pa
because ma,ma is a grandmother of the initial agent and ma,ma, pa is
a great-grandfather of the initial agent.

At the core of most proofs of completeness is a “truth” lemma. In
traditional (non-egocentric) modal logics, it usually states that w  ϕ
iff ϕ ∈ w for each world w and each formula ϕ. Note that, in our case,
satisfaction w, a  ϕ is a ternary relation that includes agent a. Thus,
we need to modify the right-hand side of the truth lemma to somehow
include agent a. The solution we found is stated as Lemma 8.2 in the
next section: w, a  ϕ iff @aϕ ∈ w.

Informally, the statement @aBϕ ∈ w means that, in the world w,
agent a believes that agent a has property ϕ. To model this, we must
guarantee that property @aϕ is satisfied in all worlds that agent a finds
plausible. This explains our intuition behind the following definition:

Definition 7.4. wRau if {@aϕ | @aBϕ ∈ w} ⊆ u.

The next definition is chosen to satisfy the base case of the truth
lemma for our logical system.

Definition 7.5. π(p) = {(w, a) | @ap ∈ w}.

This concludes the definition of the canonical model. In the next
three lemmas, we show that relation Ra satisfies conditions 3(a) through
3(c) of Definition 3.1.

Lemma 7.1. Relation Ra is transitive.

Proof. Consider any worlds w, u, v ∈ W and a formula ϕ ∈ Φ such
that wRau, uRav, and @aBϕ ∈ w. By Definition 3.1(3(a)), it suffices to
prove that @aϕ ∈ v.

Indeed, the formula Bϕ → BBϕ is an instance of the Positive Intro-
spection axiom. Then, ` @a(Bϕ→ BBϕ) by the Necessitation inference
rule. Hence, ` @aBϕ → @aBBϕ by the Distributivity axiom and the
Modus Ponens inference rule. Thus, w ` @aBBϕ by the assumption
@aBϕ ∈ w. Then, @aBBϕ ∈ w because w is a maximal consistent
set. Hence, @aBϕ ∈ u by the assumption wRau and Definition 7.4.
Therefore, @aϕ ∈ v by the assumption uRav and Definition 7.4. a

Lemma 7.2. Relation Ra is Euclidean.

Proof. Consider any worlds w, u, v ∈ W and a formula ϕ ∈ Φ such
that wRau, wRav, and (?): @aBϕ ∈ u.
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By item 3(a) of Definition 3.1, it suffices to prove that @aϕ ∈ v.
Suppose that @aϕ /∈ v. Thus, @aBϕ /∈ w by the assumption wRav

and Definition 7.4. Hence, ¬@aBϕ ∈ w because w is a maximal con-
sistent set. Then, by Lemma 5.1 and propositional reasoning, we have
(??): w ` @a¬Bϕ.

At the same time, note that the formula ¬Bϕ→ B¬Bϕ is an instance
of the Negative Introspection axiom. Thus, ` @a(¬Bϕ→ B¬Bϕ) by the
Necessitation rule. Hence, ` @a¬Bϕ→ @aB¬Bϕ by Lemma 5.3. Then,
by (??) and propositional reasoning, w ` @aB¬Bϕ.Thus, @aB¬Bϕ ∈ w
because w is a maximal consistent set. Hence, @a¬Bϕ ∈ u by the as-
sumption wRau and Definition 7.4. Then, u ` ¬@aBϕ by Lemma 5.1 and
propositional reasoning. Therefore, @aBϕ /∈ u because u is consistent,
which contradicts assumption (?). a

Lemma 7.3. Relation Ra is serial.

Proof. Consider any w ∈ W . By item 3(c) of Definition 3.1, it suf-
fices to show that there is a world u ∈ W such that wRau. Indeed,
consider the set of formulae (∗) X = {@aϕ | @aBϕ ∈ w}. First, we
show that it is consistent. Assume the opposite. Then there are formu-
lae (∗∗) @aBψ1, . . . ,@aBψn ∈ w, where @aψ1, . . . ,@aψn ` ⊥. Hence,
@aψ1, . . . ,@aψn ` @a⊥ by the Modus Ponens rule and the tautology
⊥ → @a⊥. Thus, @aBψ1, . . . ,@aBψn ` @aB⊥, by Lemma 5.7. Hence,
by (∗∗), we have w ` @aB⊥, which contradicts Lemma 5.2 and the
consistency of w.

By Lemma 5.8, the set X can be extended to a maximal consistent
set u. Note that wRau by Definition 7.4, equation (∗), and the choice of
u as an extension of X. a

8. Completeness

In this section, we prove the completeness theorem for our logical sys-
tem. Logical systems in which satisfaction relation  has more than
just a possible world on the left-hand side are sometimes called “multi-
dimensional”. Multiple completeness results for such systems have been
obtained in the past [21, 24]; the closest to us are works [7, 8, 16, 25, 27].

The semantics of logical systems in [7, 8, 16, 25], just like the one in
the current article, is defined in terms of the relation w, a  ϕ between
a world w, an agent a, and a formula ϕ. In such a setting, constructing
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canonical models in which all agents are present in all worlds has been
particularly challenging. In fact, in the semantics used in [16], “each
agent exists in just one world” [16, Appendix D]. In [7, 8], the authors
prove completeness with respect to the class of models in which not all
agents are present in each world. This assumption is essential for the
tree-based canonical model construction in these works. In [25], a newly
proposed “matrix” technique is used to construct a canonical model that
allows all agents to be present in all possible worlds.

Work [27] considers a logical system without agents whose semantics
is defined using a ternary relation w, u  ϕ, where w and u are possible
worlds of two distinctive types. One can treat the worlds of the second
type as agents, which makes [27] similar to [7, 8, 16, 25] as well as the
current paper. The distinctive feature of [27] is the inclusion of @ modal-
ity. In the presence of such modality, a complicated “matrix” technique
of [25] is not needed and the canonical model can be constructed using
a single maximal consistent set. This is the approach that we adopt
in the current article as well. In fact, the truth lemma in [27] has the
form “i, a  ϕ iff @i@a ∈ w”, which is very similar to our Lemma 8.2.
The most significant difference between our work and [27] is that our
language contains names, like ma, whose meanings change depending
on the agent that uses this name. Of course, our logical system also
captures beliefs. As a result, we assume that relation Ra is transitive,
Euclidean, and serial. The modality in [27] captures the property of a
general reachability relation.

As usual, we prove the truth lemma by induction. To improve the
readability of its proof, we separated the most non-trivial part of the
induction step into a separate lemma below.

Lemma 8.1. If @aBϕ /∈ w, then @aϕ /∈ u for some world u ∈ W such
that wRau.

Proof. First, consider the set of formulae

X = {¬@aϕ} ∪ {@aψ | @aBψ ∈ w}. (∗)

We show that this set is consistent. Suppose the opposite. Then there are
formulae (∗∗) @aBψ1, . . . ,@aBψn ∈ w such that @aψ1, . . . ,@aψn ` @aϕ.
Thus, @aBψ1, . . . ,@aBψn ` @aBϕ, by Lemma 5.7. Hence, w ` @aBϕ,
by assumption (∗∗). Then, @aBϕ ∈ w because w is maximal, which
contradicts the assumption of the lemma. Therefore, X is consistent.
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Second, by Lemma 5.8, the set X can be extended to a maximal
consistent set u. Note that wRau, by Definition 7.4, equation (∗), and
the choice of u as an extension of X. Finally, ¬@aϕ ∈ X ⊆ u, by
equation (∗), and the choice of u as an extension of X. Therefore,
@aϕ /∈ u because u is consistent. a

Lemma 8.2. w, a  ϕ iff @aϕ ∈ w.

Proof. We prove the lemma by induction on the structural complexity
of formula ϕ. If ϕ is a propositional variable, then the statement of the
lemma follows from item 1 of Definition 4.1 and Definition 7.5.

Suppose that ϕ has the form ¬ψ. (⇒): Assume that w, a  ¬ψ.
Thus, w, a 1 ψ by item 2 of Definition 4.1. Hence, @aψ /∈ w by the in-
duction hypothesis. Then, ¬@aψ ∈ w because w is a maximal consistent
set of formulae. Hence, w ` @a¬ψ by the Commutativity axiom and
propositional reasoning. Therefore, @a¬ψ ∈ w because w is a maximal
consistent set. (⇐): Assume that @a¬ψ ∈ w. Then w ` ¬@aψ, by
Lemma 5.1. Hence, @aψ /∈ w because w is consistent. Then, w, a 1 ψ
by the induction hypothesis. Thus, w, a  ¬ψ, by Definition 4.1(2).

Suppose that ϕ has the form ψ1 → ψ2. By Definition 4.1(3), the
statement w, a  ψ1 → ψ2 is equivalent to the disjunction of the state-
ments w, a 1 ψ1 and w, a  ψ2. By the induction hypothesis, the
disjunction of these statements is equivalent to the disjunction of the
statements @aψ1 /∈ w and @aψ2 ∈ w. Because w is a maximal con-
sistent set, the latter disjunction is equivalent to the disjunction of the
statements ¬@aψ1 ∈ w and @aψ2 ∈ w. Finally, the last disjunction is
equivalent to @a(ψ1 → ψ2) ∈ w, by Lemma 5.3, Lemma 5.4, and the
maximality of w.

Suppose that ϕ has the form @nψ. By Definition 4.1(4), the state-
ment w, a  @nψ is equivalent to w, ea(n)  ψ. By Definition 7.3, the
last statement is equivalent to w, a :: n  ψ. By the induction hypoth-
esis, the statement w, a :: n  ψ is equivalent to @a::nψ ∈ w. The last
statement is equivalent to @a@nψ ∈ w by the definition of @.

Suppose that ϕ has the form Bψ. (⇒): Assume that @aBψ /∈ w.
Then, by Lemma 8.1, there exists a world u ∈ W such that wRau and
@aψ /∈ u. Hence, u, a 1 ψ by the induction hypothesis. Therefore, w, a 1
Bψ by item 5 of Definition 4.1. (⇐): Consider any world u ∈ W such
that wRau. By item 5 of Definition 4.1, it suffices to show that u, a  ψ.
Indeed, the assumptions @aBψ ∈ w and wRau imply that @aψ ∈ u by
Defintion 7.4. Therefore, u, a  ψ by the induction hypothesis. a
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Theorem 8.1 (strong completeness). For any set of formulae X ⊆ Φ
and any formula ϕ ∈ Φ, if X 0 ϕ, then there is a world w and an agent
a of a doxastic model such that w, a  χ for each formula χ ∈ X and
w, a 1 ϕ.

Proof. The assumption X 0 ϕ implies that the set X ∪ {¬ϕ} is con-
sistent. By Lemma 5.8, this set can be extended to a maximal consis-
tent w. Let ε be the empty sequence of names. Lemma 8.2 implies that
w, ε  χ for each formula χ ∈ X and w, ε  ¬ϕ. So, w, ε 1 ϕ, by
Definition 4.1(2). a

9. Non-Rigid Names

In Definition 3.1, we assumed that the value of the extension function
ea(n) depends on agent a, but does not depend on the world. Thus,
for example, we assumed that agent a has the same mother ea(ma) in
all possible worlds. The names whose meanings do not depend on the
current world are usually called rigid. One can also consider a more
general setting in which the meaning of the name might be changing
from one world to another. Such names are called non-rigid. Non-rigid
names could be used, for example, to model a situation when agent a
believes that the agent’s mother is one person, but in actuality, she is
a different person. To capture non-rigid names, it suffices to assume in
Definition 3.1 that extension function ewa (n) has an additional parameter
w ∈W . In Definition 4.1, we only need to modify item 4 as follows:
4′. w, a  @nϕ, if w, ewa (n)  ϕ.

Recall from Section 5, that by L− we denote a version of our logical
system that contains the Necessitation inference rule for modality @ in-
stead of the Insertion inference rule. Informally, we say that an inference
rule is derivable in system L− if it can be represented by a fixed finite
combination of the axioms and inference rules from system L−. An
example of a derivable rule in L− is the rule

@nBϕ
@nBBϕ

Indeed, this single rule is equivalent to the following combination of the
Positive Introspection and the Distributivity axioms as well as the Modus
Ponens and the Necessitation (for modality @) inference rules:
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@nBϕ

Bϕ→ BBϕ
@n(Bϕ→ BBϕ) @n(Bϕ→ BBϕ)→ (@nBϕ→ @nBBϕ)

@nBϕ→ @nBBϕ
@nBBϕ

However, it is not so easy to capture the above intuitive notion of “deriv-
ability” in a formal definition. In this article, we formally define deriv-
ability as stated in Definition 9.2 below.

Definition 9.1. A set of formulae S is a theory of a logical system L
if S contains all axioms of L and is closed with respect to the inference
rules of L.

Definition 9.2. An inference rule is derivable in a logical system L if
any theory of L is closed with respect to this inference rule.

The notion of derivability is different from the notion of admissibility.

Definition 9.3. An inference rule is admissible in a logical system L if
the set of theorems of L is closed with respect to this inference rule.

Each derivable inference rule is admissible, but an admissible rule
is not necessarily derivable. In this section, we use a doxastic model
with non-rigid names depicted in Figure 1 to prove that the Insertion
inference rule is not derivable in system L−. We do not know if it is
admissible.

a b

n

n

Ra, Rb

world w

world u
a b

n

n

Ra, Rb

Figure 1. A doxastic model with non-rigid names.

The doxastic model with non-rigid names depicted in Figure 1 con-
tains two possible worlds, w and u, and two agents, a and b. Both



Egocentric doxastic logic 17

agents find world u to be more plausible than world w. In other worlds,
Ra = Rb = {(w, u), (u, u)}. We show this in Figure 1 by directed arrows
labelled with Ra and Rb from world w to world u and from world u back
to world u. Without loss of generality, we assume that the set of names
N contains a single name n. The values of the extension function are
specified in Figure 1 by the directed edges inside each world:

ewa (n) = ewb (n) = b and eua(n) = eub (n) = a. (1)

In other words, the name n always refers to agent b in world w and
it always refers to agent a in world u. Finally, again without loss of
generality, we assume that the language Φ has a single propositional
variable. To improve the readability of the proof, we assume that the
name of the variable is “has a hat”. This variable is true in world w for
agent b and in world u for agent a:

π(“has a hat”) = {(w, b), (u, a)}. (2)

Figure 1, we visualise this by placing a hat on the agent in the worlds
where the propositional variable “has a hat” is true for this agent.

Towards the proof of nonderivability of the Insertion inference rule,
let us make two observations about the model depicted in Figure 1.

Lemma 9.1. x, y  @n“has a hat” for each world x ∈ {w, u} and each
agent y ∈ {a, b} of the doxastic model depicted in Figure 1.

Proof. First, note that w, b  “has a hat” and u, a  “has a hat”.
One can observe the above statements using Figure 1 or, more formally,
using Definition 4.1(1) and equation (2). Thus, by Definition 4.1(4),
we have w, y  @n“has a hat” and u, y  @n“has a hat” for each agent
y ∈ {a, b}. a

Lemma 9.2. w, a 1 @nB“has a hat”.

Proof. Note that u, b 1 “has a hat”. Thus, w, b 1 B“has a hat”, by
Definition 4.1(5) and because wRbu. Hence, w, ewa (n) 1 B“has a hat” by
equation (1). So, w, a 1 @nB“has a hat”, by Definition 4.1(4). a

By Definition 9.2, to prove that the Insertion inference rule is not
derivable in system L−, it suffices to construct a theory S of L− which
is not closed with respect to the Insertion rule.

Definition 9.4. S = {ϕ ∈ Φ | ∀x ∈ {w, u} ∀y ∈ {a, b}(x, y  ϕ)}.
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The next lemma essentially states that the axioms of L− are sound
with respect to the model with non-rigid names depicted in Figure 1. Its
proof consists of straightforward verification of the validity of the axioms
in the model.

Lemma 9.3. The set S contains each instance of each axiom of L−.

Lemma 9.4. The set S is closed with respect to the Modus Ponens infer-
ence rule and the Necessitation inference rules for modalities B and @.

Proof. The proof of this lemma is also straightforward. For example, in
order to show that S is closed with respect to the Necessitation inference
rule for B, it suffices to observe that if a formula ϕ is satisfied for each
agent in each world of the model depicted in Figure 1, then Bϕ is also
satisfied for each agent in each world of the model depicted in Figure 1.

a

Lemma 9.5. The set S is not closed with respect to the Insertion infer-
ence rule.

Proof. Note that @n“has a hat” ∈ S, by Lemma 9.1 and Definition 9.4.
At the same time @nB“has a hat” /∈ S, by Lemma 9.2 and Definition 9.4.

a

Theorem 9.1. The Insertion rule is not derivable in logical system L−.

Proof. By Definition 9.1, Lemma 9.3 and Lemma 9.4 imply that S is a
theory of system L−. Then, the Insertion inference rule is not derivable
in L− by Definition 9.2 and Lemma 9.5. a

10. Other Possible Extensions

10.1. Partial Names

In the main part of this article, we assumed that function ea(n) is total.
In other words, for each name n and each agent a there is somebody to
whom a refers by name n. One can generalise our work to the setting
where function ea(n) is partial. In such a setting, there are two ways to
define modality @:
• w, a  @nϕ, if either the value ea(n) is not defined or w, ea(n)  ϕ.
• w, a  @?

nϕ, if ea(n) is defined and w, ea(n)  ϕ.
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Note that, as the lemma below shows, these two modalities are ex-
pressible through each other.

Lemma 10.1. 1. w, a  @?
nϕ iff w, a  @nϕ ∧ ¬@n⊥.

2. w, a  @nϕ iff w, a  @?
nϕ ∨ ¬@?

n>.

Our attempts to generalise our results to partial names led us to a
belief that although it is probably possible, the resulting axiomatisation
and completeness proof will not be as elegant as those that are presented
in the current article. Here, for example, is an additional inference rule
that we needed to carry out the completeness argument:∧

i @αi
⊥ ∧

∧
j ¬@βj

⊥ → @γϕ∧
i @αi

⊥ ∧
∧
j ¬@βj

⊥ → @γBϕ

Informally, the assumption of this rule states that in each model and each
world-agent combination, if all names αi are not defined and all names
βi are defined, then an agent γ must have a property ϕ. The conclusion
states that in the same situation, γ must believe that she has ϕ.

10.2. Common Names

So far, we assumed that each name uniquely identifies a single agent
(or, in the case of partial names at most one agent). Such names are
known as proper. On the other hand, common names might be used by
a given agent to refer to several agents. An example of a common name
is “parent”. Common names can be modelled in our setting by assuming
that function ea(n) returns a set of agents. In this setting, modality @
has two distinct versions:
• w, a  @∀nϕ, if w, b  ϕ for each agent b ∈ ea(n),
• w, a  @∃nϕ, if w, b  ϕ for some agent b ∈ ea(n).

These two versions of @ have been studied in [14–16]. A possible di-
rection of future research is to combine these modalities with the belief
modality B.

11. Conclusion

In this article, we proposed a logical system that combines the ego-
centric setting with the standard plausibility-based semantics of beliefs.
Our main technical result is a sound and complete logical system that
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describes the interplay between @ and B. The most interesting inference
rule of this system is the Insertion rule. Using a non-standard semantics
with non-rigid names, we have shown that this rule is not derivable in
the logical system obtained from ours by replacing this rule with the
Necessitation rule for @.
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A. The Proof of Deduction Lemma

Lemma 5.6. If X,ϕ ` ψ, then X ` ϕ→ ψ.

Proof. Suppose that sequence ψ1, . . . , ψn is a proof from a set X ∪{ϕ}
and the theorems of our logical system that uses the Modus Ponens
inference rule only. In other words, for each k ¬ n,
1. either ` ψk, or
2. ψk ∈ X, or
3. ψk is equal to ϕ, or
4. there are i, j < k such that formula ψj is equal to ψi → ψk.

It suffices to show that X ` ϕ → ψk for each k ¬ n. We prove this by
induction on k by considering the four cases above separately.

Case 1 : ` ψk. Note that ψk → (ϕ→ ψk) is a propositional tautology,
and thus, is an axiom of our logical system. Hence, ` ϕ → ψk by the
Modus Ponens inference rule. Therefore, X ` ϕ→ ψk.

https://doi.org/10.1017/jsl.2023.45
http://dx.doi.org/10.2307/2214717
https://doi.org/10.1016/j.jal.2010.08.006
https://doi.org/10.1007/978-3-642-18026-2_15
https://doi.org/10.1007/978-3-642-18026-2_15


Egocentric doxastic logic 23

Case 2 : ψk ∈ X. Note again that ψk → (ϕ→ ψk) is a propositional
tautology, and thus, is an axiom of our logical system. Therefore, by the
Modus Ponens inference rule, X ` ϕ→ ψk.

Case 3 : formula ψk is equal to ϕ. Thus, ϕ → ψk is a propositional
tautology. Therefore, X ` ϕ→ ψk.

Case 4 : formula ψj is equal to ψi → ψk for some i, j < k. Thus,
by the induction hypothesis, X ` ϕ → ψi and X ` ϕ → (ψi → ψk).
Note that the formula (ϕ→ ψi)→ ((ϕ→ (ψi → ψk))→ (ϕ→ ψk)) is a
propositional tautology. Therefore, X ` ϕ→ ψk by applying the Modus
Ponens inference rule twice. a
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