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The aim of this report is to derive the governing equations for a new compressible Navier-
Stokes solver in general cylindrical coordinates, i.e. the streamwise and radial directions
are mapped to general coordinates. A literature review revealed that simulations of com-
plex cylindrical geometries have mostly been conducted using general curvilinear coordi-
nates (e.g. DeBonis & Scott, 2002). The method presented in this report is chosen over
three-dimensional general curvilinear coordinates as it requires a smaller number of terms
to be computed. Furthermore, only two-dimensional metric terms need to be stored,
reducing the required allocated memory and therefore resulting in a more efficient code.

1 Governing equations in cylindrical coordinates

The compressible Navier-Stokes equations consist of conservation of mass, momentum
and total energy. The flow is assumed to be an ideal gas with constant specific heat
coefficients. All quantities are made dimensionless using the flow quantities at a reference
location in the flow; here the free-stream/inflow location is used. The radius of the body
is chosen as the reference length. The non-dimensionalization results in the following
dimensionless parameters:

Re =
ρ∗∞u∗∞r∗

µ∗∞
, M =

u∗∞
a∗∞

, P r =
µ∗∞c∗p
κ∗∞

.

With z, r, θ denoting the streamwise, radial and azimuthal directions, respectively, and
u, v, w denoting the velocity components in z, r, θ directions, respectively, the non-dimensional
compressible Navier–Stokes equations in cylindrical coordinates are

∂U

∂t
+

∂A

∂z
+

∂B

∂r
+

1

r

∂C

∂θ
+

1

r
D = 0 (1)

U =




ρ
ρu
ρv
ρw
ρE




(2)

A =




ρu
ρuu + p− τzz

ρuv − τrz

ρuw − τθz

ρuH + qz − uτzz − vτrz − wτθz




B =




ρv
ρuv − τrz

ρvv + p− τrr

ρvw − τθr

ρvH + qr − uτrz − vτrr − wτθr




C =




ρw
ρuw − τθz

ρvw − τθr

ρww + p− τθθ

ρwH + qθ − uτθz − vτθr − wτθθ




D =




ρv
ρuv − τrz

ρvv − ρww − τrr + τθθ

2ρvw − 2τθr

ρvH + qr − uτrz − vτrr − wτθr




,

where the total energy is defined as E = T/[γ(γ − 1)M2] + 1/2uiui with γ = 1.4, and the
total enthalpy is H = E + p/ρ.
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The molecular stress tensor components are

τzz =
2µ

3Re

[
2
∂u

∂z
− ∂v

∂r
− 1

r

(
∂w

∂θ
+ v

)]
(3)

τrr =
2µ

3Re

[
−∂u

∂z
+ 2

∂v

∂r
− 1

r

(
∂w

∂θ
+ v

)]
(4)

τθθ =
2µ

3Re

[
−∂u

∂z
− ∂v

∂r
+ 2

1

r

(
∂w

∂θ
+ v

)]
(5)

τrz =
µ

Re

[
∂u

∂r
+

∂v

∂z

]
(6)

τθz =
µ

Re

[
∂w

∂z
+

1

r

∂u

∂θ

]
(7)

τθr =
µ

Re

[
1

r

(
∂v

∂θ
− w

)
+

∂w

∂r

]
. (8)

The heat-flux vector components are

qz =
−µ

Pr(γ − 1)M2Re

∂T

∂z
(9)

qr =
−µ

Pr(γ − 1)M2Re

∂T

∂r
(10)

qθ =
−µ

Pr(γ − 1)M2Re

1

r

∂T

∂θ
, (11)

where the Prandtl number is assumed to be constant at Pr = 0.72. The molecular
viscosity µ is computed using Sutherland’s law (c.f. White, 1991), setting the ratio of
the Sutherland constant over freestream temperature to 0.36867. To close the system
of equations, the pressure is obtained from the non-dimensional equation of state p =
(ρT )/(γM2).

2 Transformation to general cylindrical coordinates

In order to allow for complex geometries, the (r, z) plane is mapped to general coordinates
(ξ, η). Hence, streamwise and radial derivatives need to be expressed in terms of the new
variables. By using the chain rule, the following expressions can be derived

∂

∂z
=

1

J

[
∂r

∂η

∂

∂ξ
− ∂r

∂ξ

∂

∂η

]
= r∗η

∂

∂ξ
− r∗ξ

∂

∂η
, (12)

∂

∂r
=

1

J

[
−∂z

∂η

∂

∂ξ
+

∂z

∂ξ

∂

∂η

]
= z∗ξ

∂

∂η
− z∗η

∂

∂ξ
, (13)

where J is the determinant of the coordinate transformation. For conciseness, the metric
terms are abbreviated as, e.g., rη = ∂r

∂η
so that J = zξrη − zηrξ, and the asterisk denotes

a metric term already divided by J .
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Following Anderson (1995), the r and z derivatives of equation (1) can be transformed as
follows (provided that the grid transformation does not vary in time)

∂U

∂t
= − 1

J

[
∂

∂ξ
(Arη −Bzη) +

∂

∂η
(−Arξ + Bzξ)

]
− 1

r

∂C

∂θ
− 1

r
D (14)

Unfortunately, it is not straightforward to plug in the vectors A and B into (14), as
they contain terms that are pre-multiplied by 1/r. As r = r(ξ, η), when taking ξ and η
derivatives of A and B the chain rule needs to be applied. To illustrate this procedure,
the derivation of the radial momentum equation is chosen as example. Here, we only
focus on the derivatives in the ξ and η directions,

∂

∂ξ

[
(ρuv − τrz) rη − (ρvv + p− τrr) zη

]

− ∂

∂η

[
(ρuv − τrz) rξ − (ρvv + p− τrr) zξ

]
. (15)

The only term containing 1/r is the stress tensor component τrr. Therefore, the equation
is separated into

∂

∂ξ

[
(ρuv − τrz) rη −

(
ρvv + p− 2µ

3Re

[
−∂u

∂z
+ 2

∂v

∂r

])
zη

]
− ∂

∂ξ

[
1

r

2µ

3Re

(
∂w

∂θ
+ v

)
zη

]

− ∂

∂η

[
(ρuv − τrz) rξ −

(
ρvv + p− 2µ

3Re

[
−∂u

∂z
+ 2

∂v

∂r

])
zξ

]
+

∂

∂η

[
1

r

2µ

3Re

(
∂w

∂θ
+ v

)
zξ

]
.

(16)

Applying the chain rule to the last term of each row results in

∂

∂ξ

[
1

r

2µ

3Re

(
∂w

∂θ
+ v

)
zη

]
=

1

r

∂

∂ξ

[
2µ

3Re

(
∂w

∂θ
+ v

)
zη

]
− 1

r2
rξzη

2µ

3Re

(
∂w

∂θ
+ v

)

∂

∂η

[
1

r

2µ

3Re

(
∂w

∂θ
+ v

)
zξ

]
=

1

r

∂

∂η

[
2µ

3Re

(
∂w

∂θ
+ v

)
zξ

]
− 1

r2
rηzξ

2µ

3Re

(
∂w

∂θ
+ v

)

Substituting these two expressions into (16) yields

∂

∂ξ

[
(ρuv − τrz) rη −

(
ρvv + p− 2µ

3Re

[
−∂u

∂z
+ 2

∂v

∂r

])
zη

]

− ∂

∂η

[
(ρuv − τrz) rξ −

(
ρvv + p− 2µ

3Re

[
−∂u

∂z
+ 2

∂v

∂r

])
zξ

]

−1

r

∂

∂ξ

[
2µ

3Re

(
∂w

∂θ
+ v

)
zη

]
+

1

r

∂

∂η

[
2µ

3Re

(
∂w

∂θ
+ v

)
zξ

]

+
1

r2

2µ

3Re

(
∂w

∂θ
+ v

)
(rξzη − rηzξ)︸ ︷︷ ︸

−J

. (17)

The last term of (17) occurs because of the partial derivative with respect to r of τrr. In
the case of streamwise derivatives ∂

∂z
, we get (rξrη − rηrξ) = 0, hence 1/r2 terms cancel.

The resulting governing equations are now summarized. For brevity, the inner derivatives
are not written in terms of ξ, η, however the streamwise and radial derivatives need to be
computed with equations (12) and (13).
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2.1 Continuity equation

∂ρ

∂t
= − 1

J

[
∂

∂ξ
(ρurη − ρvzη) +

∂

∂η
(−ρurξ + ρvzξ)

]
− 1

r

∂(ρw)

∂θ
− (ρv)

r
(18)

2.2 Streamwise momentum equation

∂(ρu)

∂t
= − 1

J

{
∂

∂ξ

[(
ρuu + p− 2µ

3Re

[
2
∂u

∂z
− ∂v

∂r

])
rη − (ρuv − τrz) zη

]
(19)

− ∂

∂η

[(
ρuu + p− 2µ

3Re

[
2
∂u

∂z
− ∂v

∂r

])
rξ − (ρuv − τrz) zξ

]

+
1

r

∂

∂ξ

[
2µ

3Re

(
∂w

∂θ
+ v

)
rη

]
− 1

r

∂

∂η

[
2µ

3Re

(
∂w

∂θ
+ v

)
rξ

] }

−1

r

∂

∂θ

[
ρuw − τθz

]
− 1

r

[
ρuv − τrz

]

2.3 Radial momentum equation

∂(ρv)

∂t
= − 1

J

{
∂

∂ξ

[
(ρuv − τrz) rη −

(
ρvv + p− 2µ

3Re

[
−∂u

∂z
+ 2

∂v

∂r

])
zη

]
(20)

− ∂

∂η

[
(ρuv − τrz) rξ −

(
ρvv + p− 2µ

3Re

[
−∂u

∂z
+ 2

∂v

∂r

])
zξ

]

−1

r

∂

∂ξ

[
2µ

3Re

(
∂w

∂θ
+ v

)
zη

]
+

1

r

∂

∂η

[
2µ

3Re

(
∂w

∂θ
+ v

)
zξ

] }

+
1

r2

2µ

3Re

(
∂w

∂θ
+ v

)

−1

r

∂

∂θ

[
ρvw − τθr

]
− 1

r

[
ρ(vv − ww)− 2µ

Re

(
∂v

∂r
− 1

r

(
∂w

∂θ
+ v

))]
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2.4 Azimuthal momentum equation

∂(ρw)

∂t
= − 1

J

{
∂

∂ξ

[(
ρuw − µ

Re

∂w

∂z

)
rη −

(
ρvw − µ

Re

∂w

∂r

)
zη

]
(21)

− ∂

∂η

[(
ρuw − µ

Re

∂w

∂z

)
rξ −

(
ρvw − µ

Re

∂w

∂r

)
zξ

]

−1

r

∂

∂ξ

[
µ

Re

(
∂u

∂θ
rη −

(
∂v

∂θ
− w

)
zη

)]
+

1

r

∂

∂η

[
µ

Re

(
∂u

∂θ
rξ −

(
∂v

∂θ
− w

)
zξ

)] }

− 1

r2

µ

Re

(
∂v

∂θ
− w

)

−1

r

∂

∂θ

[
ρww + p− τθθ

]
− 1

r

[
2ρvw − 2τθr

]

2.5 Energy equation

∂(ρE)

∂t
= − 1

J

{
∂

∂ξ

[(
ρuH + qz − u

2µ

3Re

[
2
∂u

∂z
− ∂v

∂r

]
− vτrz − w

µ

Re

∂w

∂z

)
rη (22)

−
(
ρvH + qr − uτrz − v

2µ

3Re

[
2
∂v

∂r
− ∂u

∂z

]
− w

µ

Re

∂w

∂r

)
zη

]

− ∂

∂η

[(
ρuH + qz − u

2µ

3Re

[
2
∂u

∂z
− ∂v

∂r

]
− vτrz − w

µ

Re

∂w

∂z

)
rξ

−
(
ρvH + qr − uτrz − v

2µ

3Re

[
2
∂v

∂r
− ∂u

∂z

]
− w

µ

Re

∂w

∂r

)
zξ

]

+
1

r

∂

∂ξ

[
µ

Re

[
u

2

3

(
∂w

∂θ
+ v

)
− w

∂u

∂θ

]
rη

− µ

Re

[
2

3
v

(
∂w

∂θ
+ v

)
− w

(
∂v

∂θ
− w

)]
zη

]

−1

r

∂

∂η

[
µ

Re

[
u

2

3

(
∂w

∂θ
+ v

)
− w

∂u

∂θ

]
rξ

− µ

Re

[
2

3
v

(
∂w

∂θ
+ v

)
− w

(
∂v

∂θ
− w

)]
zξ

] }

+
1

r2

µ

Re

[
2

3
v

(
∂w

∂θ
+ v

)
− w

(
∂v

∂θ
− w

)]

−1

r

∂

∂θ

[
ρwH + qθ − uτθz − vτθr − wτθθ

]
− 1

r

[
ρvH + qr − uτrz − vτrr − wτθr

]
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3 Vector form of general cylindrical coordinates

The equations in general cylindrical coordinates can be written as

∂U

∂t
= − 1

J
{

[
∂

∂ξ

(
Ârη − B̂zη

)
+

∂

∂η

(
−Ârξ + B̂zξ

)]

+
1

r

[
∂

∂ξ

(
Ârrη − B̂rzη

)
+

∂

∂η

(
−Ârrξ + B̂rzξ

)]}

−1

r

∂C

∂θ
− 1

r
D − 1

r2
B̂rr , (23)

where

Â =




ρu

ρuu + p− 2µ
3Re

[
2∂u

∂z
− ∂v

∂r

]

ρuv − τrz

ρuw − µ
Re

∂w
∂z

ρuH + qz − u 2µ
3Re

[
2∂u

∂z
− ∂v

∂r

]
− vτrz − w µ

Re
∂w
∂z




,

B̂ =




ρv
ρuv − τrz

ρvv + p− 2µ
3Re

[
−∂u

∂z
+ 2∂v

∂r

]

ρvw − µ
Re

∂w
∂r

ρvH + qr − uτrz − v 2µ
3Re

[
−∂u

∂z
+ 2∂v

∂r

]
− w µ

Re
∂w
∂r




,

Âr =




0
2µ
3Re

(
∂w
∂θ

+ v
)

0
− µ

Re
∂u
∂θ

µ
Re

[
u2

3

(
∂w
∂θ

+ v
)
− w ∂u

∂θ

]




, B̂r =




0
0

2µ
3Re

(
∂w
∂θ

+ v
)

− µ
Re

(
∂v
∂θ
− w

)

µ
Re

[
2
3
v

(
∂w
∂θ

+ v
)
− w

(
∂v
∂θ
− w

)]




,

B̂rr =




0
0

− 2µ
3Re

(
∂w
∂θ

+ v
)

µ
Re

(
∂v
∂θ
− w

)

µ
Re

[
w

(
∂v
∂θ
− w

)
− 2

3
v

(
∂w
∂θ

+ v
)]




.

In order to make the new code most efficient, a good compromise between the number
of arithmetic operations and the number of three dimensional arrays stored needs to be
found. The emphasis here lies on reducing the number of stored arrays to a minimum
while minimizing the number of repeated operations. One choice is to simply store all
nine velocity derivatives. However, for this option, the number of operations is high as the
stress tensor components constantly need to be reassembled. The most efficient choice of
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arrays to store appears to be the following set

1) τ̃zz =
2µ

3Re

(
2
∂u

∂z
− ∂v

∂r

)
2) τrz =

µ

Re

(
∂u

∂r
+

∂v

∂z

)
3) τ̃θz =

µ

Re

∂w

∂z

4) τ̃rr =
2µ

3Re

(
2
∂v

∂r
− ∂u

∂z

)
5) τ̃θr =

µ

Re

∂w

∂r
6) τ1 =

2µ

3Re

(
∂w

∂θ
+ v

)

7) τ2 =
µ

Re

∂u

∂θ
8) τ3 =

µ

Re

(
∂v

∂θ
− w

)
.

Using these eight arrays in addition to the primitive variables and the heat-flux vector,
Â, B̂, Âr, B̂r and B̂rr can be assembled. In order to evaluate C and D, the following
relations can be used

τθz = τ̃θz +
1

r
τ2 , τθr = τ̃θr +

1

r
τ3 , τrr = τ̃rr − 1

r
τ1 , τθθ = −τ̃zz − τ̃rr +

2

r
τ1 . (24)

Finally, all vectors required for (23) can be written as

Â =




ρu
ρuu + p− τ̃zz

ρuv − τrz

ρuw − τ̃θz

ρuH + qz − uτ̃zz − vτrz − wτ̃θz




, B̂ =




ρv
ρuv − τrz

ρvv + p− τ̃rr

ρvw − τ̃θr

ρvH + qr − uτrz − vτ̃rr − wτ̃θr




,

Âr =




0
τ1

0
−τ2

uτ1 − wτ2




, B̂r =




0
0
τ1

−τ3

vτ1 − wτ3




, B̂rr =




0
0
−τ1

τ3

wτ3 − vτ1




,

C =




ρw
ρuw − (τ̃θz + 1

r
τ2)

ρvw − (τ̃θr + 1
r
τ3)

ρww + p− (−τ̃zz − τ̃rr + 2
r
τ1)

ρwH + qθ − u(τ̃θz + 1
r
τ2)− v(τ̃θr + 1

r
τ3)− w(−τ̃zz − τ̃rr + 2

r
τ1)




,

D =




ρv
ρuv − τrz

ρvv − ρww − (τ̃rr − 1
r
τ1) + (−τ̃zz − τ̃rr + 2

r
τ1)

2ρvw − 2(τ̃θr + 1
r
τ3)

ρvH + qr − uτrz − v(τ̃rr − 1
r
τ1)− w(τ̃θr + 1

r
τ3)




.
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