
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Algorithms for Coalition
Formation in Multi-Agent Systems

by

Talal Rahwan

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

August 2007

http://www.soton.ac.uk
mailto:tr03r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

ii

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Talal Rahwan

Coalition formation is a fundamental form of interaction that allows the creation of co-
herent groupings of distinct, autonomous, agents in order to efficiently achieve their
individual or collective goals. Forming effective coalitions is a major research chal-
lenge in the field of multi-agent systems. Central to this endeavour is the problem of
determining which of the possible coalitions to form in order to achieve some goal. This
usually requires calculating a value for every possible coalition, known as the coalition

value, which indicates how beneficial that coalition would be if it was formed. Now
since the number of possible coalitions grows exponentially with the number of agents
involved, then, instead of having a single agent calculate all these values, it would be
more efficient to distribute this calculation among all agents, thus, exploiting all com-
putational resources that are available to the system, and preventing the existence of a
single point of failure.

Against this background, we develop a novel algorithm for distributing the value calcu-
lation among the cooperative agents. Specifically, by using our algorithm, each agent
is assigned some part of the calculation such that the agents’ shares are exhaustive and
disjoint. Moreover, the algorithm is decentralized, requires no communication between
the agents, has minimal memory requirements, and can reflect variations in the compu-
tational speeds of the agents. To evaluate the effectiveness of our algorithm we compare
it with the only other algorithm available in the literature for distributing the coalitional
value calculations (due to Shehory and Kraus). This shows that for the case of 25 agents,
the distribution process of our algorithm took less than 0.02% of the time, the values
were calculated using 0.000006% of the memory, the calculation redundancy was re-
duced from 383229848 to 0, and the total number of bytes sent between the agents
dropped from 1146989648 to 0. Note that for larger numbers of agents, these improve-
ments become exponentially better.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:tr03r@ecs.soton.ac.uk

iii

Once the coalitional values are calculated, the agents usually need to find a combination
of coalitions in which every agent belongs to exactly one coalition, and by which the
overall outcome of the system is maximized. This problem, which is widely known as
the coalition structure generation problem, is extremely challenging due to the number
of possible combinations which grows very quickly as the number of agents increases,
making it impossible to go through the entire search space, even for small numbers of
agents. Given this, many algorithms have been proposed to solve this problem using
different techniques, ranging from dynamic programming, to integer programming, to
stochastic search, all of which suffer from major limitations relating to execution time,
solution quality, and memory requirements.

With this in mind, we develop a novel, anytime algorithm for solving the coalition
structure generation problem. Specifically, the algorithm can generate solutions by par-
titioning the space of all potential coalition structures into sub-spaces containing coali-
tion structures that are similar, according to some criterion, such that these sub-spaces
can be pruned by identifying their bounds. Using this representation, the algorithm can
then search through the selected sub-space(s) very efficiently using a branch-and-bound
technique. We empirically show that we are able to find solutions that are optimal in
0.082% of the time required by the fastest available algorithm in the literature (for 27
agents), and that is using only 33% of the memory required by that algorithm. Moreover,
our algorithm is the first to be able to solve the coalition structure generation problem
for numbers of agents bigger than 27 in reasonable time (less than 90 minutes for 30
agents as opposed to around 2 months for the current state of the art). The algorithm is
anytime, and if interrupted before it would have normally terminated, it can still provide
a solution that is guaranteed to be within a bound from the optimal one. Moreover, the
guarantees we provide on the quality of the solution are significantly better than those
provided by the previous state of the art algorithms designed for this purpose. For exam-
ple, given 21 agents, and after only 0.0000002% of the search space has been searched,
our algorithm usually guarantees that the solution quality is no worse than 91% of opti-
mal value, while previous algorithms only guarantees 9.52%. Moreover, our guarantee
usually reaches 100% after 0.0000019% of the space has been searched, while the guar-
antee provided by other algorithms can never go beyond 50% until the whole space has
been searched. Again note that these improvements become exponentially better given
larger numbers of agents.

Contents

Nomenclature ix

Acknowledgements xii

1 Introduction 1
1.1 Coalition Formation in Multi-Agent Systems 3

1.1.1 Coalitional Value Calculation 4
1.1.2 Coalition Structure Generation 5
1.1.3 Payoff Distribution . 7

1.2 Research Objectives . 8
1.3 Research Contributions . 12
1.4 Thesis Structure . 16

2 Literature Review 18
2.1 Distributing the Coalitional Value Calculations 18
2.2 Solving the Coalition Structure Generation Problem 21

2.2.1 Low Complexity Algorithms that return an Optimal Solution . . 22
2.2.2 Fast Algorithms that provide no Guarantees on their Solutions . 27
2.2.3 Anytime Algorithms that return Solutions within a Bound from

the Optimal . 29
2.3 Summary . 40

3 Distributing the Coalitional Value Calculations 42
3.1 The DCVC Algorithm . 42

3.1.1 The Basic Algorithm . 43
3.1.2 Modifying the Coalitions to which an Agent is Assigned 52
3.1.3 Considering Different Computational Speeds 56

3.2 Generalizing DCVC to deal with Subsets of Agents 58
3.2.1 Searching through P . 59
3.2.2 Repeating the Entire Distribution Process 62
3.2.3 Comparing the Distribution Efficiency 63

3.3 Computational Complexity . 64
3.3.1 Searching through P . 66
3.3.2 Repeating the Entire Distribution Process 73

3.4 Performance Evaluation . 74

iv

CONTENTS v

3.4.1 Distributing P . 77
3.4.1.1 Distribution Time 77
3.4.1.2 Communications between the Agents 78
3.4.1.3 Redundant Calculations Performed 78
3.4.1.4 Memory Requirements 79
3.4.1.5 Equality of the Agents’ Shares 80

3.4.2 Distributing P ∗ . 81
3.4.2.1 Distribution Time 81
3.4.2.2 Communications Between the Agents 82
3.4.2.3 Redundant Calculations Performed 83
3.4.2.4 Memory Requirements 83
3.4.2.5 Equality of the Agents’ Shares 84

3.5 Summary . 85

4 Solving the Coalition Structure Generation Problem 87
4.1 Search Space Representation . 87

4.1.1 Partitioning the Search Space 88
4.1.2 Computing Bounds for Sub-Spaces 89

4.2 The Anytime Integer-Partition based Algorithm (AIPA) 92
4.2.1 Step 1: Computing Bounds . 93
4.2.2 Step 2: Selecting and Searching F−1[{G}] 95

4.2.2.1 Selecting F−1[{G}]. 95
4.2.2.2 Searching within F−1[{G}]. 97

4.3 Experimental Evaluation . 105
4.3.1 Experimental Setup . 106
4.3.2 Results . 106

4.4 Summary . 110

5 Conclusions and Future Work 112

List of Figures

2.1 Shehory and Kraus’s distribution algorithm. 19
2.2 Example of how Shehory and Kraus’s distribution algorithm works (given

5 agents). 20
2.3 The DP algorithm for coalition structure generation. 24
2.4 Example of how the DP algorithm performs, given a set of agents A =

{1, 2, 3, 4}. Here, the arrows show some of the cases where a solution
of a subsubproblem is used to find the solution of a subproblem 25

2.5 The coalition structure graph for 4 agents. 30
2.6 Sandholm et al.’s algorithm for coalition structure generation. 31
2.7 Showing how the bound provided by Sandholm et al.’s algorithm im-

proves with the number of coalition structures examined (given 24 agents). 33
2.8 Dang and Jennings’s algorithm for coalition structure generation. 34
2.9 Comparison of the searching path between Dang and Jennings’s and

Sandholm et al.’s algorithms. 35
2.10 Showing how the bound provided by the two algorithms improves with

the number of coalition structures examined (given 24 agents). 36
2.11 Showing how the bound provided by different algorithms improves with

the number of coalition structures examined (given 24 agents). Here,
the X values are plotted on a log-scale. 37

2.12 Showing the number of coalitions structures searched every time a new
bound is established (given 24 agents). Here, the X values are plotted
on a log scale. 38

3.1 The DCVC algorithm (basic version). 45
3.2 Setting M to the coalition located at indexs,i in Ls. 48
3.3 Finding a coalition at index = 46 in the list L5 of coalitions of 9 agents. 49
3.4 The resulting distribution for all possible coalitions of 6 agents. 52
3.5 Example for setting M to the coalition before it in the list L5 of 9 agents. 53
3.6 For the case of 7 agents, the figure shows how a2 and a6 set M from

one coalition to another through the lists L4,2 and L4,6 respectively. . . . 53
3.7 For the case of 31 agents with equal computational speeds, the figure

shows the time required for each agent to set M to the coalitions in its
share. (A) shows the case where each agent’s share consists of a set
of sequential coalitions, while (B) shows the case where each agent’s
share is divided into two sub-lists. 54

3.8 The DCVC algorithm (final version). 65

vi

LIST OF FIGURES vii

3.9 The total number of operations required for distributing P ∗, and that
is given 30 agents, where each agent ai searches through Pi without
maintaining its share of P ∗. 68

3.10 Given that Ā∗
removed = φ, and Ā∗

added 6= φ, the figure shows the total
number of operations required to distribute P ∗, and that is given 30
agents, where each agent maintains its share of P as well as P ∗. 71

3.11 Given that Ā∗
removed 6= φ, and Ā∗

added = φ, the figure shows the total
number of operations required to distribute P ∗, and that is given 30
agents, where each agent maintains its share of P as well as P ∗. 72

3.12 The number of operations required for distributing P ∗ given 30 agents,
and that is using different distribution methods. 75

3.13 For the case of 25 agents, the figure shows the time required to distribute
P ∗ among A∗, given different values of n̄∗. 83

4.1 Representing the space using G and F−1[{G}] and the lists of coali-
tions Ls. The different levels represent layers used in previous rep-
resentations where worst case bounds can be established by searching
particular layers. The numbers represent the indices of the agents (e.g.
1 for a1, 4 for a4). 90

4.2 Example of how sub-spaces are pruned based on the bounds calculated.
Here, each box represents a sub-space, and the width of each box rep-
resents the relative number of coalition structures within the sub-space. 94

4.3 A naive technique for cycling through the coalition structures within
F−1[{G}]. 96

4.4 A naive technique for cycling through the coalition structures within
F−1[{G}]. 99

4.5 Example of how the basic cyclation technique results in a number of in-
valid combinations being examined, as well as redundant combinations
being generated, and that is given A = {a1, a2, a3, a4, a5, a6, a7} and
G = {2, 2, 3}. 100

4.6 Example of our novel cyclation technique, given A = {a1, a2, a3, a4, a5, a6, a7}
and G = {2, 2, 3}. 102

4.7 Applying branch-and-bound while searching through the coalition struc-
tures within F−1[{G}]. 105

4.8 Running times for CSG algorithms for 15 to 27 agents (log scale). . . . 107
4.9 Space pruned for each distribution type (for 21 agents). 108
4.10 Quality of the solution obtained during the search (for 21 agents). . . . 109
4.11 Quality of the bound provided by AIPA during the search (for 21 agents). 110

List of Tables

3.1 The lists of possible coalitions for 6 agents. 44
3.2 For the case of 30 agents, the table shows the difference between the

agent that had the biggest share of calculations and the one that had the
smallest, given different values of n∗. 66

3.3 The time required (in seconds) for the distribution process. 77
3.4 The total number of bytes that had to be sent between the agents. 78
3.5 The total number of redundant values that were calculated. 79
3.6 The minimum number of bytes required per agent to save the necessary

coalitions. 80
3.7 The difference between the agent that had the biggest share of calcula-

tions and the one that had the smallest. 81
3.8 For the case of 25 agents, the total number of redundant values that were

calculated, given different values of n̄∗. 84
3.9 For the case of 25 agents, the table shows the difference between the

agent that had the biggest share of the calculations and the one that had
the smallest, given different values of n̄∗. 85

viii

Nomenclature

Chapter 2
A the set of agents

ai the ith agent in A

n the number of agents in A

v(C) the coalitional value of coalition C

CS a coalition structure
Ci the ith coalition in a coalition structure
CS∗ an optimal coalition structure

C∗ a coalition in CS∗

CS∗
q the best of all the coalition structures that do not include any coalition of size s > q

CS ′
q the best solution found by Shehory and Kraus’s CSG algorithm

I the size of largest coalition in CS ′
q

q the maximum size of coalitions considered by the SK algorithm

Sq
i the set of coalitions that include up to q agents including ai

Sq
ij the subset of the coalitions in Sq

i in which aj is a member

Pi the long-term commitment list for an agent ai using the SK algorithm

f1(C) the optimal way of splitting coalition C into two coalitions

f2(C) the value of f1(C)

B the bound on the quality of the solution found

Li the ith level in the coalition structure graph

SL(n, k, c)
the set of all coalition strucutres whose cardinality is equal to k, and contain at
least one coalition whose cardinality is not less than c

SL(n, c)
the set of all coalition structures whose cardinality is between 3 and n − 1, and
contain at least one of these coalition whose cardinality is not less that c

Z an n× 2n matrix of zeros and ones
X a vector containing 2n binary variables

eT a vector of n ones

ix

NOMENCLATURE x

Chapter 3
S the set of permitted coalitional sizes in DCVC

Ls an ordered list of possible coalitions of size s

Ns the number of coalitions in Ls

Ci,s the coalition located at index i in the list Ls

cj
i,s the jth element in Ci,s

Ls,i agent ai’s share of Ls

Ns,i the number of coalitions in Ls,i

indexs,i the index in Ls at which Ls,i ends

Lj
s,i the jth sub-list of Ls,i

N j
s,i the number of coalitions in Lj

s,i

indexj
s,i the index in Ls at which Lj

s,i ends
N ′ the number of additional coalitions that are not covered by the agents’ equal shares

A′ the sequence of agents in which each agent calculate one additional value

α a value maintained by the agents to determine the elements of A′

n! n factorial
Cn

s the number of all possible coalitions of size s out of n agents

M a space of memory that is sufficient to maintain one coalition at a time

mi the ith element in M

β
the point in M after which all the values need to be updated to shift M one step in
the list of coalitions

pascal the Pascal matrix
ti the time required for ai to perform a pre-determined amount of operations

V the space of vectors in which, for every vector
→
v∈ V , we have

∑n
i=1 vi = Ns

A∗ the set of agents that are currently able to join any coalition

n∗ the number of agents in A∗

A∗
prev the previous value of A∗

n∗prev
the number of agents in A∗

prev

Ā∗ the set of agents that are currently not able to join other coalitions

ā∗i the ith agent in Ā∗

n̄∗ the number of agents in Ā∗

op(n̄∗) the number of required operations given n̄∗

Ā∗
prev

the set of agents that were not able to join other coalitions during the previous

re-calculation process

n̄∗prev the number of agents in Ā∗
prev

NOMENCLATURE xi

Ā∗
removed the set of agents that belong to Ā∗

prev, but do not belong to Ā∗

n̄∗removed the number of agents in Ā∗
removed

Ā∗
added the set of agents that belong to Ā∗, but do not belong to Ā∗

prev

n̄∗added the number of agents in Ā∗
added

P the set of coalitions taken into consideration
P ∗ the subset of P in which every coalition contains only members of A∗

P ∗
prev the previous value of P ∗

tempi a temporary list used to maintain ai’s share of P ∗

Chapter 4
maxs the maximum value of the coalitions of size s

mins the minimum value of the coalitions of size s

avgs the average value of the coalitions of size s

V (CS) the value of coalition structure CS

P(A) the set of possible coalition structures

F (CS) the cardinality of the coalitions of CS

G coalition structure configuration

gi the ith element in G

G(s) the multiplicity of s in G

G the set of possible coalition structure configurations

F−1[{G}] the pre-image of a configuration G

SG the cartesian product of the coalition lists Ls, where s ∈ G

CS∗
G the best coalition structure in F−1[{G}]

UBG upper bound for the values of the coalition structures contained in F−1[{G}]
UBmax the maximum of all upper bounds of the sub-spaces in F−1[{G}], where G ∈ G
AV GG the average of the values of the coalition structures contained in F−1[{G}]
G2 the set of configurations containing two elements

AV G∗
G2 the maximum of all average values of the sub-spaces in F−1[{G}], where G ∈ G2

CS ′ the best coalition structure obtained by scanning the input as specified in AIPA

E(G) the underlying set of elements of G

M a space of memory that is sufficient to maintain one coalition structure at a time

Mi the ith element of M

Ak the set of agents that are not members of C1, . . . , Ck−1

LCi
s the list of possible combinations of size s taken from the set {1, 2, . . . , i}

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Professor
Nick Jennings, who has helped me shape my research from the very first day, and who
has always been supportive and patient throughout the whole period of my study until
the very last day before submission.

I would like to thank my family, starting with my wife, Shaza, who had to go through
difficult times to help me fulfill my dream, and for being so kind, patient, loving, caring,
cheerful, and most importantly, for being the greatest mother for my baby child, Ameer.
I would like to thank my brother, Iyad, for believing in me, and for helping me apply for
the scholarship that got me this far. I would also like to thank my twin brother, Tarek,
who would always understand me and cheer me up whenever I felt uneasy. I would also
like to thank my parents for their endless support.

I would like to express my gratitude to the people with whom I co-authored a num-
ber of papers during the period of my study, namely Sarvapali Ramchurn, Viet Dung
Dang, and Andrea Guovanucci. I would also like to thank all my colleagues at work for
creating such an enjoyable working environment.

I am also grateful to the anonymous reviewers of AAAI-05, IJCAI-07, AAAI-07, and
AIJ, for giving us much useful feedback. I would also like to thank Tuomas Sandholm,
Onn Shehory, and Gal A. Kaminka for their helpful comments.

Last but not least, I would like to acknowledge the DIF-DTC project (8.6) on Agent-
Based Control for funding me during the years of my study.

xii

To my wife, Shaza, for being by my side when I needed her
the most.

xiii

Chapter 1

Introduction

Open distributed computing applications are becoming increasingly common-place in
our society. In most cases, these applications are composed of multiple actors or agents,
each with its own aims and objectives. In such complex systems, dependencies between
these multiple agents are inevitable, and generally speaking, they cannot all be predicted
in advance.

In this context, an agent can be defined as a computer system that is situated in some
environment, and that is capable of autonomous action in this environment in order to
meet its design objectives [Wooldridge and Jennings, 1995]. Here, autonomy refers
to the agent’s ability to act without the intervention of humans or other systems. An
agent usually has a repertoire of actions by which it can influence its environment, and
the key problem facing the agent is then to decide which of these actions to perform
in order to meet its design objectives [Wooldridge, 2000]. An agent is considered to
be intelligent if it is capable of flexible autonomous action. In this context, flexibility
refers to the agent’s ability to be reactive (i.e. respond in a timely fashion to changes
in the environment), proactive (i.e. exhibit goal-directed behaviour and take initiative
where appropriate), and social (i.e. interact with other agents and, possibly, humans).1

As is currently the case in most existing research on multi-agent systems, we implicitly
assume that the agents we deal with are intelligent. Therefore, throughout this thesis,
we will use the term “agent” as an abbreviation for “intelligent agent”.

Given this background, a multi-agent system is a system that consists of a number of
agents, situated within the same environment, carrying out their activities within that
common environment. Typically, these agents need to interact with each other in order

1For more details, see Wooldridge [2002].

1

Chapter 1 Introduction 2

to fulfill their objectives or improve their performance. This is because of the inevitable
interdependencies that exist between the agents’ environment and design objectives.
Such interactions typically involve a form of cooperation, coordination, and/or negoti-
ation. In fact, it is the agents’ ability to interact with one another, and compensate for
each other’s deficiencies, that makes the multi-agent systems applicable to a wide vari-
ety of applications, ranging from industrial (e.g. process control and air traffic control
[Jennings et al., 1995; Kinny et al., 1996]), to commercial (e.g. electronic commerce
and business management [Chavez and Maes, 1996; Jennings et al., 2000]), to medical
(e.g. patient monitoring and health care [Hayes-Roth et al., 1989; Huang et al., 1995]),
to entertainment (e.g. games and interactive theater and Cinema [Wavish and Graham,
1996; Hayes-Roth et al., 1988]). It is also used in conjunction with other technologies
such as semantic web and web services [Berners-Lee et al., 2001; Huhns, 2003].

Now, within these applications, the agents could belong to a single designer, in which
case they are considered to be cooperative (i.e. each agent is concerned with maximiz-
ing the social welfare of the entire system, even if this does not necessarily maximize
its own utility). Other applications could involve a number of agents representing dif-
ferent stakeholders, each with its own goals and preferences. In this case, the agents are
considered to be self-interested (i.e. they act in a way that maximizes their own utility,
regardless of the consequences this could have on other agents’ utilities). Note that the
designer of such systems typically requires an enforcement mechanism in order to in-
centivize these self-interested agents to act in a cooperative manner.2 In this thesis, we
are primarily concerned with cooperative systems, but the algorithms we develop could
be applied in a self-interested environment if an appropriate enforcement mechanism
was developed. However, such extensions are beyond the scope of this thesis.

Moreover, in both the cooperative and the selfish cases, the system designer needs to
ensure that the agents are organized such that the roles, relationships, and authority
structures which govern the agents’ behaviour are clearly defined [Horling and Lesser,
2005]. Different organizational paradigms include hierarchies, teams, federations, and
many others. Each of these paradigms has its own strengths and weaknesses, making
it more suitable for some problems, and less suitable for others. Among the organi-
zational paradigms that are becoming increasingly important in multi-agent systems is
the coalitional organization (formally defined in Section 1.1). This is because of its its
natural fit to most scenarios where there may be no central authority to resolve possible

2A sub-field of game theory, known as mechanism design, deals with setting up the rules that incen-
tivize self-interested players to behave as the designer intends. For more details on this topic, see e.g.
Dash et al. [2003].

Chapter 1 Introduction 3

conflicts among the agents involved. Several applications of coalitional organizations
have emerged in areas such as sensor networks, e-commerce, and distributed vehicle
routing (see Section 1.1 for more details). However, many challenges lie in the way
of creating coalitional organizations, and in this thesis we present solutions to some of
these challenges that significantly improve upon previous attempts.

The remainder of this chapter sets the basic background for our work, and outlines
the aims and contributions of this thesis. In particular, Section 1.1 introduces the area
of coalition formation in multi-agent systems, and identifies the challenges that need
to be overcome in order to facilitate the coalition formation process. Building upon
this, Section 1.2 identifies the research aims and motivations of the work presented in
this thesis, and Section 1.3 outlines our contributions to the state of the art. Finally, in
Section 1.4, we give the overall structure of this thesis.

1.1 Coalition Formation in Multi-Agent Systems

Horling and Lesser [2005] specify the main characteristics that distinguish coalitions
from other organizations as follows:

“Coalitions in general are goal-directed and short-lived; they are formed

with a purpose in mind and dissolve when that purpose no longer exists, or

when they cease to suit their designed purpose, or when the profitability is

lost as agents depart.”

Another defining feature of coalitional organizations is that, within each coalition, the
agents coordinate their activities in order to achieve the coalition’s goal(s), but no coor-
dination takes place among agents belonging to different coalitions (except if the coali-
tions’ goals interact). Moreover, the organizational structure within each coalition is
usually flat (although there could be a coalition leader acting as a representative for the
group as a whole).

Given this background, coalition formation has received a considerable amount of at-
tention in recent research, and has proven to be useful in a number of real-world scenar-
ios and multi-agent systems. For example, in e-commerce, buyers can form coalitions
to purchase a product in bulk and take advantage of price discounts [Tsvetovat et al.,
2000]. In e-business, groups of agents can be formed in order to satisfy particular mar-
ket niches [Norman et al., 2004]. In distributed sensor networks, coalitions of sensors

Chapter 1 Introduction 4

can work together to track targets of interest [Dang et al., 2006]. In distributed vehicle
routing, coalitions of delivery companies can be formed to reduce the transportation
costs by sharing deliveries [Sandholm and Lesser, 1997]. Coalition formation can also
be used for information gathering, where several information servers form coalitions to
answer queries [Klusch and Shehory, 1996].

In all of these cases, however, the coalition formation process can generally be con-
sidered to include three main activities:

1. Coalitional Value Calculation – compute the value of every possible coalition that
can be formed.

2. Coalition Structure Generation – compute the set of disjoint coalitions that have
the maximum total value.

3. Payoff Distribution – determine the rewards that each agent in a coalition should
obtain as a result of the actions taken by the coalition as a whole.

We deal with each of these activities in the following subsections.

1.1.1 Coalitional Value Calculation

A number of coalition formation algorithms have been developed to determine which
of the potential coalitions should actually be formed. To do so, they typically calculate
a value for each coalition, known as the coalition value, which provides an indication of
the expected outcome that could be derived if that coalition was formed. Then, having
computed all the coalitional values, the decision about the optimal coalition(s) to form
can be taken. The way this value is calculated depends on the problem under investi-
gation, and the complexity of this calculation varies correspondingly from linear (e.g.
[Shehory and Kraus, 1998]) to exponential (e.g. [Sandholm and Lesser, 1997]). In an
electronic marketplace, for example, the value of a coalition of buyers can be calculated
as the difference between the sum of the reservation costs of the coalition members and
the minimum cost needed to satisfy the requests of all the members [Li and Sycara,
2002]. In information gathering, the coalition value can be designed to represent a mea-
sure of how closely the information agents’ domains are related [Klusch and Shehory,
1996]. In cases where the agents’ rationality is bounded due to computational complex-
ity, the value of a coalition may represent the best outcome it can achieve given limited
computational resources for solving the problem [Sandholm and Lesser, 1997].

Chapter 1 Introduction 5

One of the main challenges here, however, lies in the number of values to be calculated,
which is exponential in the number of agents. One way to combat this computational
explosion is to distribute this calculation among the agents, rather than having it done
centrally by one agent (as is the case in most extant work). In this way, the calculation
process can be done faster, and the agents can share the burden of the computations.
In order to do so, however, we need an algorithm that specifies exactly how these cal-
culations are to be carried out in an efficiently distributed manner. To date, the only
algorithm in the literature designed specifically for this purpose suffers from major lim-
itations that make it inapplicable, particularly given large numbers of agents. These
include a considerable number of computations being redundantly carried out, a large
number of messages being sent among the agents, and infeasibly large memory require-
ments (see Section 2.1 for more details). This motivates the development of an efficient
distribution algorithm that avoids all of these limitations.

1.1.2 Coalition Structure Generation

Another challenging problem that arises in the coalition formation process is that of
coalition structure generation (CSG). That is, given the coalitional values, how to parti-
tion the set of agents into exhaustive and disjoint coalitions. Such a partition is called a
coalition structure. For example, given a set of agents A = {a1, a2, a3}, there exist five
possible coalition structures: {{a1} , {a2} , {a3}}, {{a1} , {a2, a3}}, {{a2} , {a1, a3}},
{{a3} , {a1, a2}}, {{a1, a2, a3}}.

To this end, it is usually assumed that every coalition performs equally well, given
any coalition structure containing it (i.e. the value of a coalition does not depend on
the actions of nonmembers). Such settings are known as characteristic function games

(CFGs), where the value of a coalition is given by a characteristic function.3 Of course,
not all settings are CFGs; in some cases, the value of a coalition might well depend on
nonmembers’ actions due to positive and negative externalities:

“Negative externalities between a coalition and nonmembers are often caused

by shared resources. Once nonmembers are using a portion of the resource,

not enough of that resource is available to agents in the coalition to carry

out the planned solution at the minimum cost. Negative externalities can

3Note that knowing that the values are given by some characteristic function does not necessarily
imply that the function itself is known.

Chapter 1 Introduction 6

also be caused by conflicting goals. In satisfying their own goals, nonmem-

bers may actually move the world further from the coalition’s goal state(s)

[Rosenschein and Zlotkin, 1994]. Positive externalities are often caused

by partially overlapping goals. In satisfying their goals, nonmembers may

actually move the world closer to the coalition’s goal state(s). From there

the coalition can reach its goals at less expense than it could have without

the actions of nonmembers” [Sandholm et al., 1999]

The more general case, in which coalition values depend on the actions of non-members,
is known as normal form games (NFGs). Note that CFGs are a strict subset of NFGs.
However, many (but clearly not all) real-world multi-agent problems happen to be
CFGs, see, e.g. [Sandholm and Lesser, 1997]. This is because in many real-world set-
tings, a coalition’s possible actions and payoff are unaffected by the actions of nonmem-
bers [Sandholm et al., 1999]. Moreover, most studies in economics consider games in
characteristic forms as they tend to capture the most important properties of the agents’
interactions and permit an easy systematic analysis of the properties of these interac-
tions [Mas-Colell et al., 1995].

Given the settings we deal with (i.e. CFGs), the coalition structure generation problem
becomes a complete set partitioning problem [Rahwan et al., 2007b]. In more detail,
given a collection of subsets of a ground set, and given a weight associated to each of
these subsets, the set partitioning problem is to find an optimal4 way to partition the
ground set. This is similar to our CSG problem since we also need to find an optimal
way to partition the set of agents given a number of coalitions (i.e. subsets) and given
a value associated to each of these coalitions. The complete set partitioning problem
(where every possible subset is included in the input [Lin and Salkin, 1983]) is particu-
larly similar to our CSG problem, since we also take into consideration every possible
coalition. Based on this, any algorithm that is designed to solve one of these problems
can also be applied to solve the other.

The CSG problem is also similar to another problem in combinatorial auctions, namely
that of winner determination [Sandholm et al., 1999]. Such auctions involve a number
of assets being simultaneously auctioned, and a number of bidders that are allowed to
place bids on combinations of these assets (hence the term “combinatorial auction”).
Once the auction is closed, the auctioneer needs to partition the set of assets, given the
placed bid on (i.e. the weight of) every combination (i.e. subset) of these assets, such

4We call such a solution an optimal solution to the problem, as opposed to the optimal solution, since
there may be several solutions that achieve the same optimal value.

Chapter 1 Introduction 7

that the overall sum of bids (i.e. the auctioneer’s revenue) is maximized [Carmton et al.,
2007]. Now in case the bids were allowed on every possible combination of assets, then
this again becomes very similar to the CSG problem.

In all of these problems, however, the space of possible solutions grows very rapidly
with the number of elements involved, making it extremely challenging to find an op-
timal solution. In particular, Sandholm et al. [1999] proved that finding an optimal
solution is NP-complete. To combat this complexity, a number of algorithms have been
developed in the past few years, using different search techniques (e.g. dynamic pro-
gramming, integer programming, and stochastic search). These algorithms, however,
suffer from major limitations that make them either inefficient or inapplicable, partic-
ularly given large numbers of agents (see Section 2.2 for more details). Against this
background, we need an algorithm that can efficiently search the space of possible so-
lutions. Here, by efficient, we mean satisfying a number of properties that are specified
in the following section.

Finally, note that an optimal solution to the CSG problem is one that maximizes the so-
cial welfare. Moreover, unlike cooperative environments, where the agents are mainly
concerned with maximizing the social welfare, the agents in a selfish environment are
only concerned with maximizing their own utility. This, however, does not mean that
a CSG algorithm cannot be applied in selfish multi-agent systems. This is because the
designer of such systems is usually concerned with raising the overall efficiency of the
system, and in many cases, this corresponds to maximizing the social welfare. Thus, by
knowing the optimal coalition structure, the designer can incentivize the selfish agents
to form that structure. Moreover, knowing the value of the optimal coalition structure,
or knowing a value that is within a bound from that optimal, allows the designer to eval-
uate the relative effectiveness of the coalition structure currently formed in the system.

1.1.3 Payoff Distribution

Having determined which coalitions should be formed, it is important to determine the
rewards that each agent should get in order to stay in a coalition such that the coalition
may be considered to be stable. Here, stability refers to the state where the agents have
no incentive to deviate from the coalitions to which they belong (or little incentive in
weaker types of stability). This is desirable because it ensures that the agents will de-
vote their resources to their chosen coalition rather than negotiating with and moving
to other coalitions. This ensures that coalitions can last long enough to actually achieve

Chapter 1 Introduction 8

their goals. The analysis of such incentives has long been studied within the realm of
cooperative game theory. In this context, many solutions have been proposed based on
different stability concepts. These include the Core, the Shapley value, and the Kernel

(for more details, see [Osborne and Rubinstein, 1994]). Moreover, transfer schemes
have been developed to transfer non-stable payoff distributions to stable ones while
keeping the coalition structure unchanged (Kahan and Rapoport [1984] provide a com-
prehensive review on stability concepts and transfer schemes in game theory). Note,
however, that in the case of cooperative environments, the agents are concerned with
maximizing the system outcome, and thus are willing to join the coalition that max-
imizes the social welfare, regardless of their share of the coalition value. Therefore,
payoff distribution is less important, and the main concern is generating a coalition
structure so as to maximize the social welfare.

Furthermore, it is important to note that game theory is more concerned with analysing
the outcomes of interactions and the strategies of the agents rather than providing al-
gorithms that the agents can use in order to actually form the coalitions. Moreover,
game theoretic approaches typically assume that the coalition formation process is cen-
tralized, and do not take into consideration the resource constraints of a computational
environment (such as communication bandwidth and limited computation time). Given
our focus on computational multi-agent systems, this is a serious shortcoming. More-
over, much of the research on coalition formation in game theory has focused on super-

additive environments, in which any combination of two groups of agents into a new
group is beneficial [Zlotkin and Rosenschein, 1994; Kahan and Rapoport, 1984]. In
such environments, the process of searching for the coalition that maximizes the system
welfare is trivial, since this coalition will be the one in which every agent is a member
(commonly known as the grand coalition). This assumption, however, does not hold
for many real-world applications, due to the intra-coalition coordination and communi-
cation costs which increase with the size of the coalition [Sandholm and Lesser, 1997],
and therefore, our focus in this thesis is mainly on non-super additive environments.

1.2 Research Objectives

As mentioned earlier, there is a need to develop an efficient algorithm for distributing
the coalitional value calculations among the agents. With this in mind, our first aim is
to develop such an algorithm that could meet the following design objectives:

Chapter 1 Introduction 9

1. The distribution process should be decentralized.5 That is, no one decision maker
should be required to decide which agent calculates which values. This is because
the existence of a central agent can slow down the performance of the system, and
reduce its overall robustness. Specifically, having one agent in charge of handling
the communication with, and coordinating the activities of, all other agents could
result in a performance bottleneck. Moreover, a centralized system would have
a single point of failure; if the centre fails then the whole system could crash.
On the other hand, if control and responsibilities are sufficiently shared among
different agents, the system can tolerate the failure of one or more of the agents.

2. Communication between the agents should be minimized. This is particularly
important when the agents have limited communication bandwidth.

3. The coalitional values of all the desired coalitions should be computed (i.e., the
distribution process must ensure that every value is calculated at least once) and
the agents should minimize the number of calculations that are redundantly car-
ried out (i.e., it would be desirable if every value is calculated exactly once).

4. In order to minimize the time taken, the computational load should be balanced
among the agents. In other words, if the agents have equal processing capabili-
ties, each one of them should compute an equal number of values, and if they have
unequal capabilities, the faster computational agents should take on a greater bur-
den of the calculations. This causes all the agents to finish their calculations at
broadly the same time, rather than having some agents finish and wait for oth-
ers who have not yet finished (which corresponds to having some of the system
resources not being fully exploited).

5. The amount of memory that is required to execute the algorithm should be mini-
mized. This is because the number of coalitions to be distributed grows exponen-
tially with the number of agents involved. Therefore, any distribution algorithm
that requires each agent to maintain its entire share in memory would require
infeasibly large amounts of memory (e.g. maintaining a list of all the possible
coalitions of 40 agents requires a total of 5120 GB of memory).

6. In most practical situations, the agents continuously form coalitions whenever
new ones are necessary, and formed coalitions are dissolved whenever it is ben-
eficial to do so. As a result of this continuous change, the process of calculating

5Note that just because a system is distributed does not necessarily mean that it is decentralized. A
simple example of a distributed system with a centralized topology would be a client/server network in
which the server acts as a centre of the system.

Chapter 1 Introduction 10

the coalitional values is not a one-shot activity. For example, forming a coalition
might correspond to a task being assigned to the coalition, or might correspond
to a change in the set of resources that are available to the agents. In either case,
the values need to be re-calculated to take these changes into consideration. Note
that this re-calculation process might differ from the initial calculation process in
that some of the agents might no longer be able to join subsequent coalitions. For
example, in cases where the coalitions are not allowed to overlap (e.g. Shehory
and Kraus [1995]), then after a coalition is formed, every agent that has joined
that coalition is no longer available to join other coalitions (until that coalition is
dissolved). Another example is in the case where each agent requires a certain
number of resources in order to join a coalition (e.g. Shehory and Kraus [1998,
1996]). In this case, the agents that have now used all of their resources in one or
more coalitions, can no longer be considered. Based on this, whenever a coalition
needs to be formed, the algorithm must only take into consideration the subset of
agents which is currently available and eligible.

7. It is desirable if the algorithm could distribute the calculations among any given
subset of agents (i.e., it would be desirable if the algorithm makes no assumptions
about the set of agents among which the calculations are to be distributed). This
is because different cases require distributing the calculations among different
sets of agents. For example, in case the tasks that are assigned to the coalitions
were complex, and require a significant amount of computational effort from its
members, then it might be more efficient to distribute the value calculations only
among the agents that have not yet joined any coalition. On the other hand, if the
coalition tasks were relatively simple, then it might be desirable for all the agents
to take part in the value calculation process. After all, the agents are assumed
to be cooperative, and are, therefore, willing to help each other, even if some of
them were not able to join any of the coalitions for which the values are being cal-
culated. In any case, having control over which agents carry out the calculations
results in a more flexible distribution process.

The second aim of this thesis is motivated by the need to develop efficient algorithms
for solving the coalition structure generation problem. Next, we outline a number of
desiderata that are necessary, if such an algorithm is to be practically applicable:

1. When the execution of the CSG algorithm is completed, the algorithm must be
able to always return an optimal solution, or, at least, be guaranteed to provide
worst-case guarantees on the quality of its solution. Otherwise, the solution pro-
vided by the algorithm could always be arbitrarily worse than the optimal one.

Chapter 1 Introduction 11

2. Since the search space grows very quickly as the number of agents increases, it
is extremely difficult to perform an exhaustive search (i.e. a brute-force search)
where every possible candidate for the solution is examined (e.g. given 20 agents,
the number of possible coalition structures becomes 51,724,158,235,372). There-
fore, it is critical for the algorithm to avoid searching as much of this space as
possible, and yet still be guaranteed to return an optimal solution. This can be
done by identifying sub-spaces that have no potential of containing an optimal
solution, and then pruning these sub-spaces before they are searched. Moreover,
whenever an optimal solution is found, it is critical to have the ability to con-
firm that this is indeed the optimal, and to stop the search accordingly, instead of
proceeding with the search in the hope that a better solution can be found.

3. Since the agents are usually limited in their computational resources, and have
limited memory space, then the CSG process should have minimal memory and
computational requirements. For example, we wouldn’t want the agents to main-
tain in memory every possible coalition structure, because this would require in-
feasibly large amounts of memory (for example, maintaining in memory every
possible coalition structure for 20 agents would require 538,600 GB)

4. It is desirable for the algorithm to be anytime. That is, it would be desirable if the
algorithm can quickly return an initial solution, and then improve the quality of its
solution as it searches more and more of the space, until it finds an optimal one.
This is particularly important since the search space grows exponentially with the
number of agents involved, meaning that the agents might not always have suf-
ficient time to run the algorithm to completion. Moreover, being anytime makes
the algorithm more robust against failure; if the execution is stopped before the
algorithm would have normally terminated, then it would still provide the agents
with a solution that is better than the initial solution, or any other intermediate
one.

5. It is desirable for an anytime algorithm to have the ability to establish worst-
case guarantees on the quality of the solution found so far. In other words, it is
desirable if the algorithm can guarantee that the solution it provides is within a
bound from the optimal solution that could have been found if the whole search
space was searched. Having such a bound provides an accurate evaluation of the
quality of the solution. Another advantage is that the agents can better evaluate
the trade-off between the solution quality and the search time. That is, the agent
can determine whether it is worthwhile to continue searching for a better solution.
For example, if the quality of the current solution is guaranteed to be no worse

Chapter 1 Introduction 12

than, say, 98% of the optimal solution, and if there are still millions of coalition
structures that still need to be searched, then one could decide to stop the search
simply because this small improvement is not worth the effort. Of course, for this
to happen, we would need the bound to be as small as possible6 (for example,
if the algorithm was only able to guarantee that the solution quality is not worse
than, say, 1% of the optimal solution, then the agents would most likely carry on
with the search, because the guarantee is simply not good enough).

With the current state-of-the-art algorithms, we consider the formation of optimal coali-
tion structures to be theoretically applicable, but practically infeasible, particularly
given large numbers of agents. Therefore, by developing algorithms that meet the design
objectives specified earlier, we aim at making coalition formation techniques applicable
to a wider range of practical situations and real-world scenarios.

1.3 Research Contributions

Against the research aims outlined above, this thesis makes significant contributions to
the state of the art in two of the main stages of the coalition formation process, namely,
the coalitional value calculation stage, and the coalition structure generation stage. First,
we shall outline the contributions made to the coalitional value calculation stage:

1. We developed a novel algorithm, called DCVC, for Distributing the Coalitional
Value Calculations among cooperative agents [Rahwan and Jennings, 2005, 2007].
In more detail, DCVC ensures that each agent is assigned some part of the cal-
culations such that the agents’ shares are exhaustive and disjoint.7 Moreover, the
algorithm is decentralized, requires no communication between the agents, and
distributes the calculations equally among the agents.8 The algorithm also en-
ables each agent to perform its share of calculations without having to maintain
in memory more than one coalition. Finally, the algorithm makes no assump-
tions about the agents that need to take part in the calculation process (i.e. it can
distribute the calculation among any given set of agents).

6Here, the smaller the bound, the better it is, and the smallest possible bound is 1, which corresponds
to the solution being an optimal one.

7In other words, the agents’ shares are guaranteed to cover the entire set of values to be calculated,
and every value is guaranteed to be calculated by no more than one agent.

8In case the total number of coalitions was not be divisible by the number of agents, the size of the
agents’ shares will differ by one, however this additional calculation is assigned to the agents such that
the average size of the shares is exactly equal. Therefore, throughout this thesis, we will refer to the
agents’ shares as being equal.

Chapter 1 Introduction 13

2. We discuss why, in order to let the agents finish their calculations at the same
time, it is not sufficient to consider how many coalitions an agent is assigned, but
also which coalitions an agent is assigned. We also show how this can improve
the performance of our algorithm.

3. We show how DCVC can be modified to reflect the variations in the agents’ com-
putational speeds, and prove that the resulting distribution minimizes the compu-
tation time.

4. We analyse the different cases in which only a subset of agents is available or
eligible to join a coalition, and discuss a number of methods for distributing this
subset. We then calculate the exact number of operations required by each of
these methods, and show that the one adopted by DCVC requires significantly
fewer operations, compared to the other methods.

5. We analyse the different cases in which only a subset of agents is available or
eligible to join new coalitions. We also discuss a number of methods for han-
dling the distribution process in such cases. Moreover, we provide equations for
calculating the exact number of operations required by each of these methods,
and show that the one adopted by DCVC requires significantly fewer operations
compared to the other methods.

6. To benchmark the effectiveness of our algorithm, we compare it with the only
other algorithm available in the literature [Shehory and Kraus, 1998]. In so doing,
we show that for the case of 25 agents, the distribution process of our algorithm
took less than 0.02% of the time, the values were calculated using 0.000006% of
the memory, the calculation redundancy was reduced from 383229848 to 0, and
the total number of bytes sent between the agents dropped from 1146989648 to 0.
Note that for larger numbers of agents, these improvements become exponentially
better.

Having outlined our contributions to the coalitional value calculation stage, we now
highlight the following specific contributions to the coalition structure generation stage:

1. We provide a new representation of the space of possible coalition structures.
This representation partitions the space into much smaller, disjoint sub-spaces
that can be explored independently to find an optimal solution. As opposed to
the other widely-used representation [Sandholm et al., 1999; Dang and Jennings,
2004], by which the coalition structures are categorized based on the number

Chapter 1 Introduction 14

of coalitions they contain, our representation categorizes the coalition structures
into sub-spaces based on the size of the coalitions they contain. One advantage
of this representation is that, immediately after scanning the input, the agents
can compute the average value of the coalition structures within each sub-space.
Moreover, by scanning the input, the agents can also compute an upper and a
lower bound on the best value within each sub-space. This allows the agents to
immediately prune some of the sub-spaces without searching any of them, and
that is simply by comparing their bounds. Another advantage of this representa-
tion is that it allows the agents to analyse the trade-off between the size of (i.e. the
number of coalition structures within) a sub-space and the improvement it may
bring to the actual solution by virtue of its bounds. Hence, rather than constrain-
ing the solution to fixed sizes, as per Shehory and Kraus [1998], agents using our
representation can make a more informed decision about the sizes of coalitions to
choose (since each of the sub-spaces are defined by the sizes of coalitions within
the coalition structures).

2. We develop a novel Anytime Integer-Partition based Algorithm (AIPA) for coali-
tions structure generation which uses the representation discussed above [Rahwan
et al., 2007a,b]. Specifically, AIPA returns solutions anytime, and provides very
high worst-case guarantees on the quality of its solutions very quickly (almost
immediately after scanning the input, the solution quality is usually guaranteed to
be above 90% of the optimal). Moreover, AIPA is guaranteed to return an optimal
solution when run to completion, and the optimal solution is usually found after
searching extremely small portions of the search space (e.g. 0.0000019% of the
space for 21 agents). This is because most of the sub-spaces are usually pruned
before they are searched, and whenever a sub-space is searched, the algorithm
applies branch-and-bound techniques, thus, ensuring that only a few of the coali-
tion structures within the sub-space are examined. In addition, AIPA has minimal
memory requirements, compared to other CSG algorithms.

3. When evaluating the time required to return an optimal solution, we benchmark
the AIPA algorithm against the fastest of all the algorithms that are guaranteed to
return an optimal solution (i.e. the dynamic programming algorithm [Yeh, 1986;
Rothkopf et al., 1995]). This comparison shows that AIPA is significantly faster.
In more detail, AIPA is empirically shown to find an optimal solution in 0.082%
of the time taken by the other algorithm (for 27 agents), using 33% of the memory.
Moreover, AIPA is the first algorithm to be able to find optimal solutions for more
than 20 agents in reasonable time (less than 90 minutes for 27 agents, as opposed

Chapter 1 Introduction 15

to around 2 months for the best previous solution). Note that these improvements
become significantly better as the number of agents increases.

4. When evaluating the quality of the bounds that AIPA provides, we compare them
with those provided by other state-of-the-art anytime CSG algorithms [Sandholm
et al., 1999; Dang and Jennings, 2004]. In so doing, we show that AIPA provides
significantly better bounds. In more detail, we empirically show that, given 21
agents, the quality of its initial solution is usually guaranteed to be at least 92%

of the optimal, as opposed to 9.52% for both Sandholm et al.’s algorithm and
Dang and Jennings’s algorithm. Moreover, after searching through 0.000002%

of the search space, the guarantees provided by AIPA reach 100%, as opposed to
14.28% for both Sandholm et al.’s and Dang and Jennings’s algorithm.

Next, we outline the main papers that have been published in support of these contribu-
tions:

1. T. Rahwan and N. R. Jennings. (2005) Distributing coalitional value calculations
among cooperating agents. In Proceedings of the 25th national conference on

artificial intelligence (AAAI-05) in Pittsburgh, USA. Pages 152-157.

2. T. Rahwan and N. R. Jennings. (2007) An algorithm for distributing coalitional
value calculations among cooperating agents. Artificial Intelligence (AIJ). 171(8-
9). Pages 535-567.

3. T. Rahwan, S. D. Ramchurn, V. D. Dang and N. R. Jennings. (2007) Near-optimal
anytime coalition structure generation. In Proceedings of the 20th International

Joint Conference on Artificial Intelligence (IJCAI-07) in Hyderabad, India. Pages
2365-2371.

4. T. Rahwan, S. D. Ramchurn, A. Giovannucci, V. D. Dang and N. R. Jennings.
(2007) Anytime optimal coalition structure generation. In Proceedings of the

22nd conference on artificial intelligence (AAAI-07) in Vancouver, Canada. Pages
1184-1190.

Specifically, the second paper in the list (which is a revised and extended version of the
first one) presents our contributions to the coalitional value calculation stage, while the
fourth paper (which is an extended version of the third one) presents our contributions to
the coalition structure generation stage. A journal version of this is also in preparation.

Chapter 1 Introduction 16

1.4 Thesis Structure

In the remainder of this thesis, we describe the algorithms available in the literature,
and then present our algorithm for distributing the coalitional value calculations among
cooperative agents, as well as our algorithm for solving the coalition structure genera-
tion problem. This is achieved through the course of the remaining chapters, which are
structured as follows:

• In chapter 2, we describe, in detail, the algorithms that are currently available
in the literature for distributing the coalitional value calculation, as well as those
available for solving the coalition structure generation problem. We also discuss
their limitations against the requirements that we placed earlier in this chapter,
thus, motivating the work that we present later in the proceeding chapters.

• In chapter 3, we start by presenting a basic version of our algorithm for distribut-
ing the coalitional value calculations (DCVC), where the agents are assumed to be
homogeneous, and every agent is assumed to be able to join new coalition(s). We
later show how the algorithm can be modified to reflect variations in the agents’
computational capabilities so that the distribution is optimal, and show how the
algorithm can be generalized to the case where some agents might no longer be
able/allowed to join new coalitions. We also discuss different approaches to the
value re-recalculation process, analyse their computational complexity, and show
that our approach significantly outperforms other approaches. Finally, we bench-
mark our algorithm against the only other algorithm available in the literature for
this purpose, and explain the reasons that make our algorithm significantly better
in terms of execution time, communication and memory requirements, distribu-
tion quality, and number of redundant calculations performed.

• In chapter 4, we present our novel representation of the search space, and explain
the reasons that make it better than the representation used in previous state-of-
the-art algorithms. We show how the bounds can be calculated for each sub-space,
and propose different functions for selecting which sub-space to search. We then
present our Anytime Integer-Partition based Algorithm (AIPA), which uses our
representation of the search space, and can search through any sub-space without
having to go through invalid or redundant coalition structures, using a branch-
and-bound technique. When evaluating the time required for our algorithm to
find an optimal solution, we compare it with the fastest available algorithm in
the literature, and show that it is significantly faster. Moreover, we evaluate the

Chapter 1 Introduction 17

quality of the worst-case guarantees provided by our algorithm, we compare it
with the state of the art algorithms designed for this purpose, and show that our
guarantees are significantly better.

• Finally, chapter 5 concludes this thesis, focusing on the contributions and limita-
tions of the algorithms that we have developed, and finally, outlines future work
that can be carried out to extend and enhance the proposed algorithms.

Chapter 2

Literature Review

In this chapter, we discuss the existing literature and highlight the limitations of each
of the available algorithms, thus, motivating the research objectives of this thesis. In
more detail, Section 2.l discusses the only algorithm in the literature that is designed
specifically for distributing the coalitional value calculations among cooperative agents,
while Section 2.2 identifies the different approaches to the coalition structure generation
problem. Section 2.3 summarizes this work.

2.1 Distributing the Coalitional Value Calculations

As mentioned earlier, there has been no work reported in the multi-agent systems litera-
ture, either centralized or decentralized, on this problem apart from that due to Shehory
and Kraus [1998] (henceforth called SK).1 A slightly modified version of this algorithm
also appears in [Shehory and Kraus, 1995, 1996]. The algorithm works by making the
agents negotiate about which of them performs which of the calculations. In particular,
Figure 2.1 details exactly how the algorithm works. Note that the figure only shows the
steps that are required for each agent to know its share of calculations (i.e. the figure
does not show the steps that are performed to calculate the coalitional values them-
selves), and that is because we are only interested in the distribution process. Also note
that Shehory and Kraus assume that the coalitions are only allowed to contain up to q

agents. This is desirable since there could be cases where only coalitions of particular
sizes need to be taken into consideration (e.g. if it was known in advance that each of
the tasks to be performed requires at least 3 agents, and at most 5 agents, then there

1In addition to this distribution algorithm, Shehory and Kraus [1998] present an algorithm for coali-
tion structure generation. This algorithm, however, is discussed later in Section 2.2.

18

Chapter 2 Literature Review 19

would be no need to consider any of the possible coalitions of sizes {1, 2, 6, 7, . . . , n}).
Figure 2.2 shows an example of how the algorithm works given 5 agents.

1: Each agent ai should perform the following:

2: • Put in Sq
i every potential coalition that includes up to q agents including ai.

3: • While Sq
i is not empty do:

4: – Contact an agent aj that is a member of a potential coalition in Sq
i .

5: – Commit to the calculation of the values of a subset Sq
ij of the common

potential coalitions (i.e. a subset of the coalitions in Sq
i in which ai

and aj are members).

6: – Subtract Sq
ij from Sq

i . Add Sq
ij to your long-term commitment list Pi.

7: – For each agent ak that has contacted you, subtract from Sq
i the set Sq

ki

of the potential coalitions it had committed to calculate values for.

8: – Calculate the values for the coalitions you have committed to (Sq
ij).

9: – Repeat contacting other agents until Sq
i = ai (i.e., no more agents to

contact).

FIGURE 2.1: Shehory and Kraus’s distribution algorithm.

The main advantage of this algorithm is that it operates in a decentralized manner. How-
ever, the algorithm suffers from the following major limitations:

• The algorithm requires many messages to be sent between the agents, most of
which are exponentially large. This is because each agent ai contacts the same
agents several times,2 and every time an agent (ai) contacts another (aj), it has to
send an exponentially large list of coalitions, which is Sq

ij (see step 7 in Figure
2.1).

• Although the algorithm guarantees that every value is calculated at least once,
it does not guarantee that each value is calculated exactly once. In fact, when
calculating the number of values that were redundantly carried out, we found
that this number was exponentially large (see Section 3.4 for more details). This
is mainly because the agents have very limited information about each others’
commitments. For example, given 5 agents: a1, a2, a3, a4, a5, then if a1 contacts

2The reason behind this is that when ai contacts aj , it commits to a subset of the coalitions in Sq
i that

contain aj , meaning that ai might later contact aj again, and commit to another subset of the common
coalitions, and so on.

Chapter 2 Literature Review 20

FIGURE 2.2: Example of how Shehory and Kraus’s distribution algorithm works
(given 5 agents).

Chapter 2 Literature Review 21

a2 and commits to calculate the values of some common coalitions, including
{a1, a2, a3, a4}, and at the same time, a3 contacts a4 and commits to calculate the
values of some common coalitions, including {a1, a2, a3, a4}, then the value of
{a1, a2, a3, a4} would have been calculated twice.

• The memory requirements grow exponentially with the number of agents in-
volved. This is because each agent ai needs to maintain the set of potential
coalitions in which it is a member, which is Sq

i (see step 2 in Figure 2.1), as
well as the lists that are being received from other agents. Note that each agent
might receive several lists simultaneously (a worst-case scenario involves receiv-
ing messages from every other agent in the system), in which case the agent needs
to have sufficient memory space to maintain all of these lists.

• The algorithm provides no guarantees on the quality of its distribution. Specifi-
cally, given homogeneous agents, the algorithm does not guarantee that the agents’
shares are equal, and given heterogeneous agents (i.e. with different computa-
tional speeds), the algorithm does not guarantee that these differences are effi-
ciently reflected in the distribution.

These limitations make the algorithm both inefficient and inapplicable for large numbers
of agents. Against this background, Chapter 3 presents a distribution algorithm that
avoids all of these limitations, and meets all of the design objectives that were specified
earlier in Section 1.2 (a comparison between this and the SK algorithm can be seen in
Section 3.4).

2.2 Solving the Coalition Structure Generation Prob-
lem

In this section, we provide a classification of the different algorithms that exist for solv-
ing the coalition structure generation problem. Specifically, we identify the following
classes:

• Low complexity algorithms that return an optimal solution.

• Fast algorithms that provide no guarantees on their solutions.

• Anytime algorithms that return solutions within a bound from the optimal.

Chapter 2 Literature Review 22

In the remainder of this section, we discuss both the advantages and the limitations for
each of these classes, and provide examples from the existing literature.

2.2.1 Low Complexity Algorithms that return an Optimal Solution

This class of algorithms is designed to return an optimal solution while minimizing the
computational complexity. Note that the emphasis, here, is on providing a guarantee on
the performance of the algorithm in worst-case scenarios. One might intuitively think
of this class as being the most preferable of all classes. After all, what we are usually
interested in is to find an optimal solution and minimize the computational complex-
ity, which is exactly what defines this class of algorithms. However, if such algorithms
are to be feasibly applicable, then there is an additional requirement that could even be
more crucial than the aforementioned ones, and that is to return a solution as quickly as

possible. This is mainly because we are dealing, here, with an exponentially growing
search space, meaning that the algorithm, given large numbers of agents, might require
a significant amount of time before returning a solution. Based on this, the agents might
prefer to use an algorithm that returns a “good” solution very quickly, instead of using
an algorithm for which the agents have no time to run to completion. In other words,
the agents might be willing to make a trade-off between the quality of the solution, and
the time required to run the algorithm.

Having identified this class, we shall discuss the state of the art algorithms that belong
to it. Note that the time required to run these algorithms depends solely on the number
of agents involved (i.e. given the same number of agents, and given different coalition
values, the algorithm performs exactly the same number of operations, regardless of the
differences in the values). Before going into the details of how these algorithms work,
we shall first explain the basic method upon which these algorithms are built, namely
dynamic programming, and identify the problems that can generally be solved using
this method.

Dynamic programming is a method for solving problems that exhibit the properties
of optimal substructure and overlapping subproblems [Cormen et al., 2001]:

• Optimal substructure (also known as the principle of optimality [Bellman, 1957])
means that, in order to solve a problem, we can break it into subproblems, solve
them recursively, and then combine the results to solve the original problem.

Chapter 2 Literature Review 23

• Overlapping subproblems means that the subproblems are not independent, that
is, subproblems share subsubproblems.

A dynamic programming algorithm solves every subsubproblem just once and saves
its answer in a table, thereby avoiding the work of recomputing the answer every time
the subsubproblem is encountered [Cormen et al., 2001]. In our case, the optimization
problem is to find the optimal partition of the set of agents A, and the subproblem is to
find the optimal partition of a subset of A.

In this context, Yeh [1986] developed a dynamic programming algorithm for solving
the complete set partitioning problem. A very similar algorithm was later developed by
Rothkopf et al. [1995] for solving the winner determination problem in combinatorial
auctions. Note that both algorithms can directly be applied to find optimal coalition
structures, since the problems they were originally designed to solve are very similar to
the CSG problem (see Section 1.1). Also note that both algorithms are very similar in
that they use the same techniques, and have the same complexity. Moreover, explaining
how one of them works is sufficient to understand how the other one works. Therefore,
we shall only discuss one of these algorithms, namely the one developed by Rothkopf et
al. (henceforth called DP). We chose this one because it is relatively simpler and easier
to implement).

The algorithm is detailed in Figure 2.3, and the way it operates is based on the fol-
lowing observation:

.

Observation 1.1. Let CS∗ be an optimal coalition structure and let C∗ ∈ CS∗.
Also, let C∗ ⊇ C1 ∪ C2 ∪ . . . ∪ Ck such that these coalitions are pairwise disjoint
(i.e. Ci ∩ Cj = φ for all 1 ≤ i < j ≤ k). Then, v(C∗) ≥

∑k
i=1 v(Ci).

In other words, if a coalition C∗ belongs to the optimal coalition structure CS∗, then
dividing C∗ into smaller coalitions can never result in a better value for CS∗. For
example, if an optimal partition of the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} was as follows:
{{1, 2}, {3, 4, 5}, {6}, {7, 8, 9}}, then the optimal partition of the set {1, 2, 3, 4, 5}must
be {{1, 2}, {3, 4, 5}}, and similarly, the optimal partition of the set {6, 7, 8, 9} must be
{{6}, {7, 8, 9}}. This can be proved by contradiction. Suppose that this was not the
case, and that another partition of {6, 7, 8, 9}, say {{6, 7}, {8, 9}}, had a greater value.
In this case, {{1, 2}, {3, 4, 5}, {6}, {7, 8, 9}} can no longer be an optimal partition of
A, because we could replace {6}, {7, 8, 9} with {6, 7}, {8, 9} and get a greater value
(i.e. the optimal partition of A would then be {{1, 2}, {3, 4, 5}, {6, 7}, {8, 9}}).

Chapter 2 Literature Review 24

Input: v(C) for all C ⊆ A. If no v(C) is specified then v(C) = 0.
Output: the optimal coalition structure, CS∗.
1. For all i ∈ {1, . . . , n}, set f1({ai}) := {ai}, f2(ai) := v({ai})
2. For i := 2 to n, do:

For all C ⊆ A such that |C| = i, do:
(a) f2(C) := max{f2(C\C ′) + f2(C

′) : C ′ ⊆ C and 1 ≤ |C ′| ≤ 1/2 |C|}
(b) If f2(C) ≥ v(C), set f1(C) := C∗ where C∗ maximizes the right hand side of (a)
(c) If f2(C) < v(C), then set f1(C) := C, and f2(C) := v(C).

3. Set CS∗ := {A}.
4. For every C ∈ CS∗, do:

If f1(C) 6= C, then:
(a) Set CS∗ := (CS∗\{C}) ∪ {f1(C), S\f1(C)}.
(b) Goto 4 and start with new CS∗.

FIGURE 2.3: The DP algorithm for coalition structure generation.

The algorithm requires maintaining two tables in memory, namely f1 and f2, each hav-
ing an entry for every possible coalition. Specifically, given a coalition C ⊆ A, f1(C)

would be the optimal partition of C, and f2(C) would be the value of that partition.3

Note that f1 and f2 are initially not known, and the algorithm gradually computes them
as it scans the input, starting from the coalitions of size 2, then 3, then 4, and so on.

To better understand how the algorithm works, let us consider the following example,
where A = {1, 2, 3, 4} (see Figure 2.4). At first, the algorithm goes through the coali-
tions of size 2, and for each of these, determines whether to split the coalition in two, or
keep it as it is. For example, given C = {1, 2}, the algorithm determines whether {1, 2}
is more beneficial than {{1}, {2}}, and that is by comparing the values: v({1, 2}) and
v({1}) + v({2}). Both the solution and its value are kept in f1(C) and f2(C) respec-
tively.4 The algorithm then moves to the coalitions of size 3. Here, the algorithm also
determines whether to split each of these in two, but the decision is now made based
on f2 rather than v. For example, given the coalition {1, 2, 3}, the algorithm compares
its value with the following values: f2({1}) + f2({2, 3}), f2({2}) + f2({1, 3}), and
f2({3}) + f2({1, 2}). Similarly, the algorithm determines whether to split the coalition
of size 4 in two.

3A partition of a coalition C can be defined as a set of coalitions {C1, . . . , Ck} such that ∪k
i=1Ci = C,

and for all 1 ≤ i < j ≤ k, we have Ci ∩ Cj = φ.
4Actually, in case it was more beneficial to split the coalition in two, rather than keep it as it is, then

only one half of the solution needs to be kept in f1. This is because, by knowing one half, the other half
can easily be retrieved. However, to make the example easier to understand, we ignore this fact. Note
that this does not affect the performance analysis.

Chapter 2 Literature Review 25

FIGURE 2.4: Example of how the DP algorithm performs, given a set of agents
A = {1, 2, 3, 4}. Here, the arrows show some of the cases where a solution of a

subsubproblem is used to find the solution of a subproblem

Note that, by considering all the possible ways of splitting a coalition C in two, and by
using f2 instead of v, the optimal partition of C can be found. This comes from Observa-
tion 1.1, which implies that if CS∗ was an optimal partition of A, then by splitting CS∗

into two disjoint sets of coalitions, namely CS∗
1 = {C1,1, . . . , C1,k1} : ∪k1

i=1Ci = A1,
and CS∗

2 = {C2,1, . . . , C2,k2} : ∪k2
i=1Ci = A2, then CS∗

1 must be an optimal partition of
A1, and CS∗

2 must be an optimal partition of A2. In other words, any optimal partitions
(containing more than one coalition) must consist of two optimal partitions of two sub-
problems.

The last stage (step 4 in Figure 2.3) would be to find the optimal coalition structure
of A, given that we have finished computing f1 and f2 for every possible coalition. This
is done as follows. Suppose that the best way to split A in two was the following: (A1,
A2),5 this means that the optimal partition of A can be found by combining the optimal
partition of A1 with the optimal partition of A2. Now, each of these two partitions can
be found in a similar way. For example, suppose that the best way to divide A1 in two
was as follows: (A1,1, A1,2), this means that the optimal partition of A1 can be found
by combining the optimal partition of A1,1 with the optimal partition of A1,2, and so
on. This process is repeated until we find a coalition structure in which f1 for every

5We would know this by looking at f1(A1)) which, in this case, must contain one half of the solution
(i.e., either A1 or A2).

Chapter 2 Literature Review 26

coalition contains the coalition itself. In other words, every coalition is better left as it
is, rather than split in two.

The saving, at this stage, comes from the fact that solutions of subproblems do not
need to be recomputed over and over again. For example, we do not need to evalu-
ate both {{1}, {2, 4}} and {{1}, {2}, {4}}, because we already performed the compar-
ison between {2, 4} and {2}, {4} when calculating the best partition of {2, 4}. Simi-
larly, we do not need to evaluate {{2}, {1, 3, 4}}, {{2}, {1}, {3, 4}}, {{2}, {3}, {1, 4}},
{{2}, {4}, {1, 3}}, {{2}, {1}, {3}, {4}}, because we have already done the comparison
between all the underlined parts before. The arrows in Figure 2.4 show some of the
cases where the solution of a subsubproblem is used to find the solution of a subprob-
lem.

The biggest advantage of this algorithm is that it runs in O(3n) time [Rothkopf et al.,
1995]. This is significantly less than exhaustive enumeration of all coalition structures
(which is O(nn)). In more detail, this makes the algorithm polynomial in the size of the
input. The reason for this is that the input includes 2n values, and the algorithm runs in:

O(3n) = O(2(log23)n) = O((2n)log23) (2.1)

time. Thus the complexity is O(ylog23), where y is the number of values in the input.
Note that no other algorithm in the literature is guaranteed to find the optimal coalition
structure in polynomial time (in the size of the input).

On the other hand, one of the biggest limitations on using this algorithm is that it cannot
generate solutions anytime. This is clearly undesirable, especially given large numbers
of agents, because the time required to return the optimal solution might be longer than
the time available to the agents. Another limitation on this algorithm (and on dynamic
programming in general) is the large number of partial solutions that must be kept in
memory. Specifically, the algorithm requires maintaining 3×2n values in memory. This
is because for every coalition C, the algorithm requires maintaining v(C), f1(C), and
f2(C). These limitations make this class of algorithms only suitable for cases where the
number of agents is small (e.g. 20 agents or less).

Chapter 2 Literature Review 27

2.2.2 Fast Algorithms that provide no Guarantees on their Solu-
tions

These algorithms do not provide any guarantees on finding an optimal solution, nor do
they provide worst-case guarantees on the quality of their solutions. Instead, they sim-
ply return “good” solutions. However, it is the fact that they can return a solution very
quickly, compared to other algorithms, that makes this class of algorithms more appli-
cable, particularly given large numbers of agents. On the other hand, despite the fact
that their solutions are usually described as being “good”, one must never forget that
these solutions can always be arbitrarily worse than the optimal (i.e. it is not accurate
to claim that a solution is “good” just because it was found after a “sufficiently large”

subset has been searched; there can always be solutions lying outside this subset that
are arbitrarily better than any solution within the subset).

In this context, heuristic methods (e.g. simulated annealing, neural networks, and ge-
netic algorithms) provide general ways to search for “good” but not optimal solutions
[Skiena, 1998]. Therefore, any algorithm that applies any of these methods can gen-
erally be considered to belong to this class of algorithms. Next, we shall discuss two
specific examples from the existing literature. In particular, we will first discuss a ge-
netic algorithm that has been developed to solve the CSG problem. After that, we shall
discuss another algorithm that applies a different kind of heuristic (i.e. restricting the
size of the coalitions taken into consideration).

Generally speaking, as long as there is some regularity in the search space (i.e., the
evaluation function is not arbitrary), genetic algorithms have the potential to detect that
regularity and hence find the coalition structures that perform relatively effectively. To
this end, Sen and Dutta [2000] have developed a genetic algorithm for coalition structure
generation. The algorithm starts with an initial set of candidate solutions (i.e. a set of
coalition structures) called a population, which then gradually evolves toward better so-
lutions. This is done using three main steps: evaluation, selection, and re-combination.
In more detail, the algorithm evaluates every member of the current population, selects
members based on their evaluation, and constructs new members from the selected ones
by exchanging and modifying their contents. More details on the implementation can
be found in [Sen and Dutta, 2000].

In addition to being anytime, this algorithm also has additional advantages, compared
to the first class of algorithms:

Chapter 2 Literature Review 28

• It makes no assumption about how the value of a coalition structure is calculated.
In other words, it can be used for CFGs and NFGs.

• It scales up well with an increase in the number of agents and hence the size of
the search space.

As mentioned above, a major limitation on this algorithm (and on genetic algorithms
in general) is that the solutions it provides are not guaranteed to be optimal, or even
guaranteed to be within a finite bound from the optimal. In other words, these solutions
can always be arbitrarily worse than the optimal one. Moreover, even if the algorithm
happens to find an optimal solution, one would not be able to verify that this is, indeed,
the optimal. This is mainly because genetic algorithms may converge toward a local
optima rather than the global optimum of the problem.

Another algorithm that belongs to this class of algorithms is the one developed by She-
hory and Kraus [1998].6 This algorithm is greedy7 and operates in a decentralized
manner. The heuristics they propose (in order to reduce the complexity of finding an
optimal coalition structure) involve adding constraints on the size of the coalitions that
are allowed to be formed. In more detail, Shehory and Kraus prove that, if only coali-
tion up to a certain size q < n are taken into consideration, then the complexity of the
coalition structure generation process can be reduced from exponential to polynomial.

Specifically, the algorithm consists of a number of iterative stages. At each stage, the
coalition that has the highest value of all permitted coalitions is selected to be formed.
The list of permitted coalitions is then updated before another coalition can be selected.
The way this is carried out depends on whether the coalitions are allowed to overlap.
In more detail, if the coalitions are supposed to be disjoint, then, after a coalition is
formed, every other coalition containing members of that coalition are removed from
the list. On the other hand, if the coalitions are allowed to overlap, then the coalitions
that are removed from the list are only those containing agents that have used all of their
resources in previously formed coalitions. Note that the process of selecting the best of
all permitted coalitions is carried out in a distributed manner, using the SK algorithm
which was discussed earlier in Section 2.1.8

6Note that this is different from the SK algorithm of Section 2.1 which appeared in the same pa-
per; this algorithm is for coalition structure generation, while the SK algorithm is for distributing value
calculations.

7A greedy algorithm is one that always makes a locally optimal choice in the hope that this choice
will lead to a globally optimal solution [Cormen et al., 2001].

8However, this process can also be distributed using our DCVC algorithm, and this would, in turn,
improve the overall performance of Shehory and kraus’s algorithm for coalition structure generation.

Chapter 2 Literature Review 29

Compared to other algorithms, this algorithm has the advantage of being decentral-
ized, as well as being able to take into consideration overlapping coalitions. Moreover,
Shehory and Kraus prove that the solution they provide (denoted by CS ′

q) is guaranteed
to be within a bound from the optimal solution (denoted by CS∗

q). However, by optimal,
they mean the best possible combination of all permitted coalitions. On the other hand,
the algorithm provides no guarantees on the quality of its solutions compared to the ac
tual optimal that could be found if all coalitions were taken into consideration.

Moreover, although Shehory and Kraus claim that this bound grows logarithmically
with the size of the coalitions to which the algorithm refers, we argue that this claim
is incorrect. In fact, we can prove that the bound is actually: n/ dn/qe, and that this
bound is tight (i.e. no smaller bound can be established). Specifically, given the limit
on the size of coalitions to be considered (i.e. q), every coalition structure can include
at least dn/qe coalitions, and at most n coalitions. Now, suppose that the solution
provided by Shehory and Kraus’s greedy algorithm (i.e. CS ′

q) included dn/qe coali-
tions, all of which have an equal coalition value v1 = max

C
v(C). In this case, we

have V (CS ′
q) = dn/qe × v1. Now suppose that all singleton coalitions had a value

v2 = v1 − ε, where ε is an infinitely small value. In this case, CS∗
q would contain all

singleton coalitions, and would have a value V (CS∗
q) = n × (v1 − ε). Based on this,

we have:

V (CS∗
q)/V (CS ′

q) =
n× (v1 − ε)

dn/qe × v1

<
n

dn/qe
�

As discussed earlier, the main limitation to this class of algorithms is that it provides no
guarantees on its solution. However, these algorithms scale up well with the increase
in the number of agents, making them particularly suitable for the cases where the
number of agents involved is so large that it is impossible to execute any algorithm with
exponential complexity.

2.2.3 Anytime Algorithms that return Solutions within a Bound
from the Optimal

The reason behind this line of research is that, if the search space was too large to
be fully searched, then the other option does not necessarily have to be applying fast
algorithms that return “good” solutions with absolutely no worst-case guarantees. Be-
tween these two extremes lies a class of anytime algorithms that generate solutions that,

Chapter 2 Literature Review 30

although not optimal, are guaranteed to be within a bound from the optimal, and are
found by searching pre-defined subsets of the space. These algorithms can improve the
quality of their solutions, and establish progressively better bounds, as they search more
and more of the search space, until the entire space has been searched, in which case, the
bound becomes 1 (i.e. the solution is guaranteed to be optimal). Although these algo-
rithms provide a good balance between execution time and solution quality, they suffer
from a major limitation which comes from the fact that no bound can be established
on the quality of any solution unless an exponential number of candidate solutions has
been examined (this is discussed in more detail later in this section). Next, we discuss a
number of algorithm that belong to this class.

Sandholm et al. [1999] were the first to introduce an anytime algorithm for coalition
structure generation that establishes bounds on the quality of the solution found so far.
They view the coalition structure generation process as a search in the coalition struc-

ture graph (see Figure 2.5). In this undirected graph, every node represents a possible
coalition structure. The nodes are categorized into n levels, where level LVi contains
the coalition structures that contain i coalitions. The arcs represent mergers of two
coalitions when followed downward, and splits of a coalition into two coalitions when
followed upward.

FIGURE 2.5: The coalition structure graph for 4 agents.

Sandholm et al. have proved that, in order to establish a bound on the optimal solution,
it is sufficient to search through the first two levels of the coalition structure graph. In

Chapter 2 Literature Review 31

The algorithm proceeds as follows:

• Search the first two levels of the coalition structure graph.

• Continue with a breadth-first search from the bottom of the graph as long as
there is time left, or until the entire graph has been searched (this occurs when
this breadth-first search completes level 3 of the graph).

• Return the coalition structure that has the highest welfare among those seen so
far.

FIGURE 2.6: Sandholm et al.’s algorithm for coalition structure generation.

this case, the bound would be β = n, and the number of coalition structures searched
would be 2n−1. They have also proved that this bound is tight; meaning that no better
bound exists for this search. Moreover, they have proved that no other search algorithm
(other than the one that searches the first two levels) can establish any bound while
searching only 2n−1 coalition structures or fewer. The main reason for this is that, in or-
der to establish any bound, one needs to go through some subset of coalition structures
in which every coalition appears at least once. Otherwise, if a coalition did not appear
in any of those structures, and if it happened to be arbitrarily better than every other
coalition, then any structure containing it can be arbitrarily better than every structure
in the subset. Based on this, the smallest subset of coalition structures that one must
search before a bound can be established is the one in which every coalition appears ex-

actly once, and the only subset in which this occurs is the one containing those coalition
structures that appear in the first two levels (i.e. those containing one or two coalitions).

If the first two levels have been searched, and additional time remains, then it would
be desirable to lower the bound with further search. Sandholm et al. have developed an
algorithm for this purpose, see Figure 2.6:

Sandholm et al. also proved that every time the algorithm finishes searching a particular
level, the bound on the optimal can be improved. Specifically, assume that the algorithm
has just completed searching level LVi, and let h = b(n− i)/2c + 2, then the bound
would be β = dn/he if a ≡ h − 1(modh) and n ≡ i(mod2). Otherwise, the bound
would be β = bn/hc.

What is interesting here is that, by searching the bottom level (which only contains
one coalition structure) the bound drops in half (i.e. β = n/2). Then, to drop β to about
n/3, two more levels levels need to be searched. Roughly speaking, the divisor in the

Chapter 2 Literature Review 32

bound increases by one every time two more levels are searched, but seeing only one
more level helps very little [Sandholm et al., 1999].

Having explained how the algorithm works, we now discuss the advantages and dis-
advantages of this algorithm. Specifically, this algorithm has the advantage of being
anytime, and being able to provide worst case guarantees on the quality of the solution
found so far. However, the algorithm has two major limitations:

• The algorithm needs to search through the entire search space in order for the
bound to become 1. In other words, in order to return a solution that is guaran-
teed to be optimal, the algorithm simply performs a straight-forward brute-force
search. As discussed in Section 1.2, this is intractable even for small numbers of
agents.

• The bounds provided by the algorithm might be too large for practical use. For
example, given 24 agents (i.e. n = 24), and given that the algorithm has fin-
ished searching through levels LV1, LV2, and LV24 (i.e. after searching through
8,388,609 coalition structures) the bound would be β = n/2 = 12. This means
that, in the worst case, the optimal solution can be 12 times better than the current
solution. In other words, the value of the current solution is only guaranteed to
be no worse than 8.33% of the value of the optimal solution. After that, in order
to reduce the bound to β = n/4, four more levels need to be searched, namely
LV23, LV22, LV21, and LV20. This means that by searching through an addi-
tional 119,461,563 coalition structures, the value of the solution is guaranteed to
be no worse than 16.66% of the optimal value. Similarly, to reduce the bound to
β = n/6, the algorithm needs to search through an additional 22,384,498,067,085
coalition structures, and the solution value is then guaranteed to be no worse than
25% of the optimal value.

In more detail, Figure 2.7 shows how the bound drops as the number of searched coali-
tion structures increases. As can be seen, it gradually becomes more and more costly
to reduce the bound. Moreover, the bound does not go below 2 until every coalition
structure has been searched. In other words, if there is just one coalition structure that
still needs to be searched, then the value of the solution can only be guaranteed to be
no worse than half that of the optimal one. Note that these worst-case guarantees (i.e.,
8.33%, 16%, 25%, . . . , 50%) might not be good enough for practical use.

Given the limitations of Sandholm et al.’s algorithm, Dang and Jennings [2004] devel-
oped an anytime algorithm that can also establish a bound on the quality of the solution

Chapter 2 Literature Review 33

FIGURE 2.7: Showing how the bound provided by Sandholm et al.’s algorithm im-
proves with the number of coalition structures examined (given 24 agents).

found so far, but that uses a different search method. Next, we explain how this algo-
rithm works, and then discuss the differences between the two algorithms.

To this end, let SL(n, k, c) be the set of all coalition structures that have exactly k coali-
tions and at least one coalition whose cardinality is not less than c. Also, let SL(n, c)

be the set of all coalition structures whose cardinality is between 3 and n− 1 that have
at least one coalition whose cardinality is not less than c. That is:

SL(n, c) =
n−1⋃
k=3

SL(n, k, c) (2.2)

With these definitions in place, we can express Dang and Jennings’s algorithm (see Fig-
ure 2.8). In more detail, the algorithm starts by searching the top two levels, as well as
the bottom one (as Sandholm et al.’s algorithm does). After that, however, instead of
searching through the remaining levels one by one (as Sandholm et al. do), the algorithm
searches through specific subsets of all remaining levels (see Figure 2.9)9. Specifically,

9Note that this is not exactly similar to the figure provided in [Dang and Jennings, 2004], in which
steps 4, 5, and 6 are shown as subsets that only grow horizontally (i.e. each subset contains solutions
from all remaining levels). This is because the figure provided here gives a better understanding of how
the search proceeds.

Chapter 2 Literature Review 34

The algorithm proceeds as follows:

• Search through the sets LV1, LV2, LVn

• From step 2 onward, search, consequently, through the sets SL(n, dn(d− 1)/de)
with d running from b(n + 1)/4c down to 2.

That is, search SL(n, dn(bn/4c − 1)/ bn/4ce) at step 2, search
SL(n, dn(bn/4c − 2)/(bn/4c − 1)e) at step 3 and so on. Moreover,
from step 3 onward, as SL(n, dnd/(d + 1)e) ⊆ SL(n, dn(d− 1)/de)
(it is easy to see that SL(n, dn(a− 1)/ae) ⊆ SL(n, dn(b− 1)/be)
for every a > b) we only have to search through the set
SL(n, dn(d− 1)/de)\SL(n, dnd/(d + 1)e) in order to search through the
set SL(n, dn(d− 1)/de).

• At each step return the coalition structure with the biggest value (i.e. best social
welfare) so far.

FIGURE 2.8: Dang and Jennings’s algorithm for coalition structure generation.

the algorithm searches the set of all coalition structures that have k coalitions and at
least one coalition structure whose cardinality is not less than dn(d− 1)/de (with d

running from b(n + 1)/4c down to 2). Dang and Jennings show that after searching
SL(n, dn(d− 1)/de), the algorithm can establish a bound B = 2d− 1.

In general, Dang and Jennings’s algorithm has the same advantages and disadvantages
as Sandholm et al.’s. That is, their algorithm is anytime, and provides worst-case guar-
antees on the quality of the solution found so far, but on the other hand, has to search the
entire space in order to verify that the solution found is the optimal one, and the bounds
can still be too large for practical use. However, the performance of both algorithms
differs in the following ways:

• Dang and Jennings claim that their algorithm is faster when smaller bounds are
desirable. In more detail, when calculating the number of coalition structures
that need to be searched in order to reach a particular bound, the numbers were
similar for both algorithms given large bounds. However, as the bounds become
smaller, the search required by Dang and Jennings’s algorithm becomes signifi-
cantly smaller than that required by the other algorithm.10

10Here, by small, they mean 10 or smaller for the case of 50 agents, and 20 or smaller for the case of
500 agents.

Chapter 2 Literature Review 35

FIGURE 2.9: Comparison of the searching path between Dang and Jennings’s and
Sandholm et al.’s algorithms.

• The bounds provided by Dang and Jennings’s algorithm are odd integers,11 while
the bounds provided by Sandholm et al.’s are not necessarily integral.

• While the bound provided by Sandholm et al.’s algorithm does not go below 2
until the whole space has been searched, the bound provided by Dang and Jen-
nings’s algorithm does not go below 3. In other words, since both algorithms
will eventually perform a brute-force search, then, during the final stage of per-
formance, Sandholm et al.’s algorithm would have a smaller (i.e. better) bound,
compared to Dang and Jennings’s algorithm.

To better understand the difference in performance between the two algorithms, we have
calculated the amount of search required by each of the algorithms to establish the spec-
ified bounds. To this end, Figure 2.10 shows a comparison between the two algorithms

11This is true except for the initial stage, which goes through levels 1, 2, n. This is because the bound
first becomes n (which could be an even integer), and then drops to n/2 (which is not an integer).

Chapter 2 Literature Review 36

given 24 agents.12 By looking at the figure, we can see that, as long as the searched por-
tion of the space is smaller than 7.5% of the whole space, the bound provided by Dang
and Jennings’s algorithm would be smaller (i.e. better) than that provided by Sandholm
et al.’s. However, after 7.5% of the space has been searched, the bound provided by both
algorithms becomes very similar, and once 46% of space has been searched, the bound
provided by Sandholm et al.’s algorithm drops below 3, while the bound provided by
the other algorithms remains at 3 until the whole space has been searched.

FIGURE 2.10: Showing how the bound provided by the two algorithms improves with
the number of coalition structures examined (given 24 agents).

Note, however, that both algorithms were not meant for the case where the entire space
will eventually be searched. This is because if we had enough time to perform this
search, then we would have used the dynamic programming algorithm, which performs
this search very quickly. Instead, these algorithms were mainly developed for the cases
where the space is too large to be fully searched, even when the dynamic programming
algorithm is being used. This means that when evaluating the performance of these
algorithms, we are mainly interested in reducing the bound as quickly as possible. In
other words, we are mainly interested in the early stages of the performance. Figure

12We picked the case of 24 agents because it was discussed in the previous subsection. However, when
comparing the two algorithms given different numbers of agents, similar results were observed.

Chapter 2 Literature Review 37

2.11 is similar to Figure 2.10, except that the number of searched coalition structures is
now plotted on a log scale. This makes the figure much more suitable for evaluating the
performance of these algorithms, because it gives more weight to the earlier stages of
performance. By looking at the figure we can see that, unlike what we have initially ex-
pected, both algorithms perform in a broadly similar fashion. However, since the bound
provided by Sandholm et al. goes up to 2, as opposed to 3 as per the other algorithm, we
consider Sandholm et al.’s algorithm to be the state of the art in this class of algorithms.

FIGURE 2.11: Showing how the bound provided by different algorithms improves
with the number of coalition structures examined (given 24 agents). Here, the X values

are plotted on a log-scale.

Finally, note that if we only show the amount of search required every time a new bound
is established (as in Dang and Jennings [2004]), then we would get the impression that
the bound provided by Dang and Jennings is always lower than that provided by the
other algorithm (see Figure 2.12). The reason for this confusion is that the number of
steps taken by Dang and Jennings’s algorithm is less than that taken by Sandholm et al.’s
algorithm, but the reduction in the bound at each step is greater. Therefore, once the
bound provided by Dang and Jennings drops, it almost always becomes lower than that
provided by the other algorithm. However, since the number of steps is less, the bound
remains the same (i.e. the line remains flat) for longer periods, and it is this particular

Chapter 2 Literature Review 38

information that is missing from Figure 2.12.

FIGURE 2.12: Showing the number of coalitions structures searched every time a new
bound is established (given 24 agents). Here, the X values are plotted on a log scale.

Having discussed two algorithms that use similar techniques, we now discuss a different
approach that can also provide solutions anytime, and establish worst-case guarantees
on the quality of its solution. This is the linear programming (LP) approach. In the
remainder of this subsection, we shall give an overview on LP in general, and specify
how it can be applied to solve the CSG problem.

Generally speaking, LP problems are optimization problems in which both the objec-
tive function and the constraints are linear [Cormen et al., 2001]. Integer programming

problems are a special case of linear programming problems in which the decision vari-

ables take integer, rather than real, values. The coalition structure generation problem
can be formulated as a binary integer programming problem (or a 0-1 integer program-
ming problem), since it only contains binary variables. Specifically, given n agents, the
integer model for the CSG problem can be formulated as follows:

Maximize
2n∑
i=1

v(Ci)× xi

Chapter 2 Literature Review 39

subject to Z ×X = eT

X ∈ {1, 0}n

where Z is an n × 2n matrix of zeros and ones, X is a vector containing 2n binary
variables, and eT is the vector of n ones. In more detail, every line in Z represents an
agent, and every column represents a possible coalition. As for X , having an element
xi = 1 corresponds to coalition Ci being selected in the coalition structure. The first
constraint ensures that the selected coalitions are both disjoint and exhaustive.

Several techniques have been developed to efficiently solve LP problems (e.g. the dual

simplex method, and the interior-point algorithm).13 On the other hand, integer pro-
gramming problems are much harder to solve. These problems are typically solved
by applying linear relaxation coupled with branch-and-bound [Hillier and Lieberman,
2005]. In more detail, the linear relaxation of the problem is obtained simply by delet-
ing (“relaxing”) the integrality constraint, thus ending up with a LP problem (which can
be solved quickly using the techniques mentioned earlier). Now if the solution hap-
pens to be integral, the problem is solved. Otherwise, two new problems are created by
choosing some variable that has a non integer value, and restricting that variable to 1
for one problem, and to 0 for the other. The process is then repeated on each of the new
problems.

The integer programming approach has an important advantage, which is the fact that it
can be applied given any set of coalitions as an input, even if it does not include every
possible coalition (i.e., it can applied to both complete and incomplete set partitioning
problems). This is particularly useful in cases where only coalitions meeting certain
conditions need to be taken into consideration (e.g. if a coalition is only allowed to be
formed if it has a certain amount of resources).

One the other hand, this approach has a major disadvantage, especially in our case,
where the input includes every possible coalition, and that is the huge memory space
required to save the search tree. This makes it only applicable for relatively small num-
bers of agents (see Section 4.3 for more details).

After discussing the different approaches to the coalition structure generation prob-
lem, we could see that each of these approaches suffers from major limitations, making
it either inefficient or inapplicable. This motivates our aim to develop more efficient

13For more details on these, and other techniques, see [Hillier and Lieberman, 2005].

Chapter 2 Literature Review 40

CSG algorithms that can be applied to a wider range of problems, while taking into
consideration the objectives outlined in Section 1.2.

2.3 Summary

In this chapter, we have discussed the available algorithm for distributing the coali-
tional value calculations among cooperative agents (due to Shehory and Kraus), and
have shown that it suffers from major limitations, such as performing a large number
of redundant operations, requiring significant amounts of communications among the
agents, and having infeasibly large memory requirements. These limitations make the
SK algorithm inefficient and inapplicable, particularly given large numbers of agents.
Against this background, Chapter 3 presents an algorithm that can distribute the coali-
tional value calculations and, at the same time, avoid all the limitations of the SK algo-
rithm, and meet all of the design objectives placed in Section 1.2 on such a distribution
algorithm

As for the coalition structure generation problem, we have categorized the available
algorithms in the literature into three distinct classes. For each of these classes, we have
discussed the main advantages and limitations, and provided examples from existing
literature.

• As for the first class (i.e. low complexity algorithms that return an optimal so-
lution), we have discussed one example from the literature, namely the dynamic
programming algorithm [Yeh, 1986; Rothkopf et al., 1995]. Although this is the
only algorithm in the literature that can return an optimal solution in O(3n) time,
the algorithm cannot return solutions anytime, which means that if the agents
did not have the time to run the algorithm to completion, then they would end
up with no solution at their disposal. Moreover, the algorithm requires building
exponentially large tables in memory before it can be executed.

• As for the second class (i.e. fast algorithms that provide no guarantees on their
solutions), we have discussed two examples from the literature. Specifically, the
first example [Sen and Dutta, 2000] uses a genetic algorithm, while the second
example [Shehory and Kraus, 1998] sets limitations on the sizes of the coalitions
to be considered. Although these algorithms scale up well with the increase in
the size of the search space, the solution they provide can always be arbitrarily far
from the optimal.

Chapter 2 Literature Review 41

• As for the third class (i.e. anytime algorithms that return solutions within a bound
from the optimal), we have discussed three examples from the literature. The first
example [Sandholm et al., 1999] provides an anytime algorithm that can provide
worst-case guarantees on the quality of the solution found so far. As for the
second example [Dang and Jennings, 2004], although they claim to outperform
Sandholm et al.’s algorithm by orders of magnitude, we have shown that this is not
entirely true, and that both algorithms perform in a broadly similar fashion, and
have the same advantages and limitations. That is, the algorithms are anytime, and
provide a worst-case guarantee on the quality of their solution, but on the other
hand, need to search the entire space to return an optimal solution, and provide
guarantees that could be too large for practical use. Moving to the third example
in the literature (i.e. integer programming), we have shown that this method can
be applied to both complete and incomplete set partitioning problems. However,
this method requires an infeasibly large memory space, making it only applicable
for relatively small numbers of agents.

With this in mind, we present in Chapter 4 a novel algorithm for solving the coalition
structure generation problem which belongs to the third class of the aforementioned
classification. This algorithm can avoid all the limitations that exist in state-of-the-art
algorithms belonging to this class, and can meet all of the design objectives placed in
Section 1.2 on CSG algorithms.

Chapter 3

Distributing the Coalitional Value
Calculations

In this chapter, we present our DCVC algorithm for distributing the coalitional value
calculations. Here, the agents are assumed to be cooperative (i.e. they carry out their
share of computations and they report the results truthfully). However, the underlying
algorithm can also be applied in environments where the agents are non-cooperative
(i.e. they act to increase their own outcome and may lie about the results if they find
it is beneficial to do so). This can be achieved using an additional enforcement mecha-
nism by which the agents are incentivized to calculate all the values they are assigned
and to announce the true results they find. However, the exact nature of this mechanism
is left for future work at this stage.

This chapter is organized as follows. Section 3.1 deals with the case where every agent
can join new coalition(s), while Section 3.2 deals with the case where only some of the
agents are able/allowed to join new coalitions. The computational complexity of the
algorithm is then calculated in Section 3.3, and its performance is evaluated in Section
3.4. Section 3.5 summarizes this chapter.

3.1 The DCVC Algorithm

For illustrative purposes, we start by presenting a basic version of DCVC in which
the differences between the agents’ shares are minimized (Section 3.1.1). After that,
we show how the required time can be further reduced, by modifying which values
an agent calculates, rather than how many values it calculates (Section 3.1.2). Finally,

42

Chapter 3 Distributing the Coalitional Value Calculations 43

we show how DCVC can be modified for the case where the agents have different
computation speeds, and prove that the resulting distribution minimizes the computation
time (Section 3.1.3). Note that in this section, we assume that every agent is able to join
a coalition (Section 3.2 deals with situations where this is not the case).

3.1.1 The Basic Algorithm

In general, the set of possible coalitions can be divided into subsets, each containing
the coalitions of a particular size. In DCVC, the distribution of all possible coalitions is
carried out by distributing each of these subsets equally among the agents (i.e. agent a1

has x coalitions of size 1 to consider, y of size 2, z of size 3, and so on, and so does a2,
a3, and so on). This has the following advantages:

• An increase in the size of the coalition usually corresponds to an increase in the
number of operations required to calculate its value. Therefore, by distributing
the coalitions of every size equally among the agents, each agent will not only
calculate the same number of values, but also perform the same number of oper-
ations.

• Any relevant limitations can be placed on the size of the coalitions that can be
formed, and this would not affect the distribution quality. The ability to place
such limitations is important since the problem under investigation might only
require the formation of coalitions of particular sizes (as discussed in Section
2.1). This is also important since it makes DCVC applicable for any coalition
formation algorithm that reduces the complexity of the search by limiting the size
of the coalitions (as discussed in Section 2.2).

Now, let A = {a1, a2, . . . , ai, . . . , an} be the set of agents, where n is the number of
agents. In order to allow for any limitations on the coalitional sizes, we assume there
is a set S of the permitted coalitional sizes. Also, let Ls be an ordered list of possible
coalitions of size s ∈ S, and Ns be the number of coalitions in Ls (i.e. Ns = |Ls|).
Finally, let Ci,s = {c1

i,s, c
2
i,s, . . . , c

s
i,s} denote the coalition located at index i in the list

Ls, where each element cj
i,s is an integer representing agent acj

i,s
(For example, Ci,s =

{2, 3, 5} corresponds to the coalition of agents a2, a3, a5). Now, for any s ∈ S, we
define the order in the list Ls as follows:

• The first coalition in the list is: {n− s + 1, . . . , n}.

Chapter 3 Distributing the Coalitional Value Calculations 44

• The last coalition in the list is: {1, . . . , s}.

• Given any coalition Ci,s, the agent can calculate Ci−1,s by checking the values
cs
i,s, c

s−1
i,s , cs−2

i,s , . . . until it finds a value cx
i,s such that cx

i,s < cx
1,s, then:

– ck
i−1,s = ck

i,s : 1 ≤ k < x

– ck
i−1,s = ck

i,s + 1 : k = x

– ck
i−1,s = ck−1

i−1,s + 1 : x < k ≤ s

We assume that the agents know how Ls is ordered, although they do not maintain Ls in
memory. An example of the resulting lists is shown in Table 3.1. Here we have n = 6,
A = {a1, a2, a3, a4, a5, a6}, S = {1, 2, 3, 4, 5, 6} and N1, N2, N3, N4, N5, N6 have the
values 6, 15, 20, 15, 6, 1 respectively.

L1 L2 L3 L4 L5 L6

6 5, 6 4, 5, 6 3, 4, 5, 6 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6
5 4, 6 3, 5, 6 2, 4, 5, 6 1, 3, 4, 5, 6
4 4, 5 3, 4, 6 2, 3, 5, 6 1, 2, 4, 5, 6
3 3, 6 3, 4, 5 2, 3, 4, 6 1, 2, 3, 5, 6
2 3, 5 2, 5, 6 2, 3, 4, 5 1, 2, 3, 4, 6
1 3, 4 2, 4, 6 1, 4, 5, 6 1, 2, 3, 4, 5

2, 6 2, 4, 5 1, 3, 5, 6
2, 5 2, 3, 6 1, 3, 4, 6
2, 4 2, 3, 5 1, 3, 4, 5
2, 3 2, 3, 4 1, 2, 5, 6
1, 6 1, 5, 6 1, 2, 4, 6
1, 5 1, 4, 6 1, 2, 4, 5
1, 4 1, 4, 5 1, 2, 3, 6
1, 3 1, 3, 6 1, 2, 3, 5
1, 2 1, 3, 5 1, 2, 3, 4

1, 3, 4
1, 2, 6
1, 2, 5
1, 2, 4
1, 2, 3

TABLE 3.1: The lists of possible coalitions for 6 agents.

Now, for each agent ai ∈ A, let Ls,i be its share of Ls (i.e. the subset of Ls for which
it will calculate values) and Ns,i be the number of coalitions in Ls,i (i.e. Ns,i = |Ls,i|).
Given this, we can now express our distribution algorithm (see Figure 3.1). Here, each
agent is assumed to know the total number of agents, as well as the set of permitted

Chapter 3 Distributing the Coalitional Value Calculations 45

sizes, we also assume that each agent has a unique global identifier (UID) by which it is
identified by other agents. The existence of such an identifier is a reasonable assumption
since all agents need to be uniquely identifiable so that messages can be routed correctly.

Each agent ai should perform the following:

• Sort the set of agents based on the agents’ UID in an ascending order.

• Set: α = 1.

• For every s ∈ S, do the following:

1. If (Ns ≥ n) then:

1.1. Calculate the size of your share: Ns,i = bNs/nc

1.2. Calculate the index of the last coalition in your share: indexs,i = i×Ns,i

1.3. Calculate the values of each coalition in your share.

1.4. Calculate the number of additional values that need to be calculated: N ′ = Ns − (n×Ns,i)

Otherwise:

1.5. Calculate the number of additional values that need to be calculated: N ′ = Ns

2. If (N ′ > 0) then:

2.1. Find the sequence of agents A′ in which each agent should calculate one additional value,
and if you are a member of A′, then calculate the appropriate value. This is done as follows:

◦ If (α + N ′ − 1 ≤ n) then: A′ = (aα, aα+1, . . . , aα+N ′−1)
else: A′ = (aα, aα+1, . . . , an, a1, . . . , a(α+N ′−1)−n)

◦ If (ai ∈ A′) then calculate one of the additional values based on your position in A′

◦ If (α + N ′ ≤ n) then: α = α + N ′, else: α = α + N ′ − n

FIGURE 3.1: The DCVC algorithm (basic version).

In more detail, each agent starts by sorting the set of agents according to their UID in an
ascending order. Note that this is done using a unique key, which means that each agent
will end up with the same sequence, denoted by

→
A. Moreover, the agents implicitly

agree on
→
A without contacting each other; this is because every agent knows that every

other agent also has
→
A. Note that sorting the set of agents is only performed once. For

the remainder of this chapter, we will denote by ai the agent located at position i of the
resulting sequence

→
A. By having an agreement on

→
A, each agent can know which of the

calculations it should perform based on its position in
→
A, this is done as follows. Each

agent ai starts by calculating the number of coalitions in Ls,i:

Ns,i = bNs/nc (3.1)

Chapter 3 Distributing the Coalitional Value Calculations 46

The agent then calculates the index in Ls at which Ls,i ends (denoted by indexs,i). This
is done as follows:

indexs,i = i×Ns,i

The agent now calculates the values of all the coalitions in Ls,i. This is done without
maintaining Ls in memory, or even maintaining Ls,i. Instead, the agent allocates a space
of memory, denoted by M = {m1, . . . ,mn}, which is sufficient to maintain one coali-
tion at a time. Basically, the agent starts by setting M to the last coalition in Ls,i (i.e. to
the one located at: indexs,i) and calculates its value. After that, the agent sets M to the
coalition before it (i.e. to the coalition located at: indexs,i − 1) and calculates its value,
and so on, until the value of every coalition in Ls,i is calculated.

Note that the agent so far has calculated the number of coalitions in its share, as well
as the index in Ls at which its share ends. This information alone would have been
sufficient for the agent to directly know which coalitions belong to its share, but this
is only if the agent maintained Ls. However, since this is not the case, then knowing
where the coalitions are located in Ls does not imply knowing what those coalitions
are. Now from the way the list is ordered, given a coalition in Ls, the agent can always
find the coalition before it. Based on this, the agent would only need to set M to the last
coalition in Ls,i, and this would be sufficient for it to find all the coalitions in Ls,i. But
again, since the agent does not maintain Ls, then knowing the index of the last coalition
does not give the coalition directly. For this reason, we show how an agent can find a
coalition by only knowing its index in Ls.

Generally, the number of all possible coalitions of size s (i.e. the coalitions that contain
s agents) out of n agents, is given by the following equation. Here, n! represents n

factorial (i.e, if n > 0 then: n! = 1× 2× . . .× n, and if n = 0 then n! = 1):

Cn
s =

n!

(n− s)!× s!
(3.2)

Now let P (i, {i + 1, . . . , n}) be the list of all possible coalitions of agents ai+1, . . . , an

after adding ai in the beginning of each coalition. Also, let Ps(i, {i + 1, . . . , n}) be the
list of all the coalitions in P (i, {i + 1, . . . , n}) that are of size s.1 From 3.2 we find that

1In other words, Ps(i, {i + 1, . . . , n}) would be the list of all possible coalitions of size (s − 1) that
contain agents ai+1, . . . , an, after adding ai in the beginning of each coalition. By this, each coalition in
the list becomes of size s.

Chapter 3 Distributing the Coalitional Value Calculations 47

the number of coalitions in Ps(i, {i + 1, . . . , n}) is:

|Ps(i, {i + 1, . . . , n})| = Cn−i
s−1 (3.3)

Now, since Ls is ordered as specified earlier, then Ls contains Ps(i, {i + 1, . . . , n})
with i running from n − s + 1 down to 1. For example, for 6 agents, L4 will contain
P4(3, {4, 5, 6}), then P4(2, {3, 4, 5, 6}) and finally P4(1, {2, 3, 4, 5, 6}) (see Table 3.1).
Therefore, any coalition in Ls that starts with (n− s + 1)− i + 1 must have an index k

such that:

k >

i−1∑
j=1

|Ps((n− s + 1)− j + 1, {(n− s + 1)− j + 2, . . . , n})|

k ≤
i∑

j=1

|Ps((n− s + 1)− j + 1, {(n− s + 1)− j + 2, . . . , n})|

For example, for 6 agents, any coalition in L4 that starts with 1 must have an index k

such that:

k > |P4(3, {4, 5, 6})|+ |P4(2, {3, 4, 5, 6})| = 1 + 4 = 5

k ≤ |P4(3, {4, 5, 6})|+ |P4(2, {3, 4, 5, 6})|+ |P4(1, {2, 3, 4, 5, 6})| = 1 + 4 + 10 = 15

Therefore, based on 3.3, we know that any coalition in Ls that starts with (n− s + 1)−
i + 1 must have an index k such that:

k >

i∑
j=1

Cs+j−2
s−1

k ≤
i+1∑
j=1

Cs+j−2
s−1

Based on this, we present an algorithm for setting M to the coalition located at indexs,i

without maintaining Ls (see Figure 3.2).

At first, the agents form what we call a Pascal matrix which is of size: (n−1)×(n−1).
The matrix includes values from Pascal’s triangle2 and is calculated as follows:

2More details about Pascal triangles can be found in [Conway and Guy, 1996].

Chapter 3 Distributing the Coalitional Value Calculations 48

1. Set j = 1, index = indexs,i, s1 = s.

2. Check the values: Pascal[s1, 1], Pascal[s1, 2], . . . until you find a value: Pascal[s1, x] ≥ index

3. Set mj = (n− s1 + 1)− x + 1.

4. If (Pascal[s1, x] = index) then:

◦ Set the rest of the coalition as follows: mk+1 = mk + 1 : k = j, . . . , s− 1

Otherwise:

◦ Set: j = j + 1 , index = index− Pascal[s1, x− 1] , s1 = s1 − 1

◦ Move to step 2.

FIGURE 3.2: Setting M to the coalition located at indexs,i in Ls.

Pascal[i, 1] = 1 : ∀i ∈ {1, . . . , n− 1}
Pascal[1, j] = j : ∀i ∈ {2, . . . , n− 1}

Pascal[i, j] = Pascal[i− 1, j]+Pascal[i, j− 1] : ∀i, j ∈ {2, . . . , n− 1}

By this, the following equation holds:

Pascal[s, i] =
i∑

j=1

Cs+j−2
s−1

Therefore, the agent can find the first member in the required coalition by checking
the values: Pascal[s, 1], Pascal[s, 2], . . . until it finds a value Pascal[s, x] such that
Pascal[s, x] ≥ indexs,i. The first member would then be (n− s + 1)− x + 1. (Step 1
in Figure 3.3 shows how to find the first member in a coalition that is located at index
46 in the list L5 for 9 agents).

Since the first member is (n − s + 1) − x + 1, then the coalition we are looking for
must be one of those coalitions that belong to Ls and start with (n − s + 1) − x + 1.
Now if we remove the first element from each of these coalitions (since we already
know what it is), then we would end up with a new list of coalitions that is similar
to Ls−1. The only difference is that it contains Ps(i, {i + 1, . . . , n}) with i running
down to (n − s + 2) − x + 1 instead of running down to 1 (see the list in Figure
3.3, step 2). Note that in this new list, the index of the required coalition becomes:
indexs,i − Pascal[s, x − 1] (in our example, the index of the required coalition be-
comes: 46 − 21 = 25). Based on this, the agent can find the next member in the
coalition by checking the values: Pascal[s − 1, 1], Pascal[s − 1, 2], . . . until it finds a
value Pascal[s− 1, x] ≥ indexs,i − Pascal[s, x− 1], the next member would then be

Chapter 3 Distributing the Coalitional Value Calculations 49

FIGURE 3.3: Finding a coalition at index = 46 in the list L5 of coalitions of 9 agents.

Chapter 3 Distributing the Coalitional Value Calculations 50

(n− (s− 1) + 1)− x + 1.

Similarly, all the members of the coalition can be found. Note that while the agent
is checking the values of the Pascal matrix to find some member mj , if it finds a value
that is equal to the required index, then the agent can find mj , as well as all the members
after it as follows: mk+1 = mk + 1 : k = j, . . . , s − 1. Figure 3.3 shows a complete
example for setting M to the coalition at index = 46 in the list L5 for 9 agents.

Now that each agent ai has set M to the last coalition in Ls,i, it repeatedly performs
the following:

• Calculate the value of M .3

• Set M to the coalition before it. This is done by checking the following values:
ms, ms−1, ms−2, . . . until it finds a value mβ such that mβ < cβ

1,s. Then, the
values mk : k < β remain unchanged, while the remaining values are calculated
as follows:

– mk = mk + 1 : k = β

– mk = mk−1 + 1 : β < k ≤ s

This process should be repeated until all the coalitional values in Ls,i are calculated.
Note that after each agent calculates the values in its share, some values might remain
uncalculated. This is because Ns might not be exactly divisible by the number of agents,
and in this case, the agents’ equal shares will not cover all the required values. In
particular, the number of the remaining values would be:

N ′ = Ns −
n∑

j=1

Ns,j = Ns − (n× bNs/nc) (3.4)

Here, the coalitions that need their values to be calculated would be: CNs−N ′+i,s : i ∈
1, . . . , N ′. Note that N ′ < n, and that each agent so far has calculated the same number
of values. Therefore, in order to calculate these additional values and keep the distribu-
tion as fair as possible, each value needs to be calculated by a different agent. In order to
do so, the agents need to agree on an ordered set A′, containing N ′ agents, so that every
element of A′ calculates one additional value. In more detail, if we denote by a′i the
agent located at index i of A′, then a′i should calculate the value of coalition CNs−N ′+i,s.

3The details of how to calculate a value are left for the developers to decide, based on the problem
under investigation (see Section 1.1 for more details).

Chapter 3 Distributing the Coalitional Value Calculations 51

One way of selecting the elements of A′ would be as follows: A′ = {a1, . . . , aN ′}.
However, since there are more than one list to be distributed, and since each of these
lists might contain additional values, then, after the additional values of the current list
are calculated, it would be preferable if A′ is updated so that the additional values of the
next list, if there are any, are calculated by different agents. This would ensure that the
total number of values calculated by each agent will either be equal, or differ by only
one value. In order to do so, the agents need to maintain a value α based on which they
determine the elements of A′. Specifically, the value α is initially set to 1, and once the
additional values of the current list are calculated, the value α is updated as follows:

If (α + N ′ < n) then α = α + N ′, else α = α + N ′ − n

Using α, the elements A′ can be determined as follows:

If (α + N ′ − 1 < n) then A′ = (aα, aα+1, . . . , aα+N ′−1)

else A′ = (aα, aα+1, . . . , an, a1, . . . , aα+N ′−n)

For example, if we have 6 agents, then from equation 3.4 we find that for the list L2,
we have N ′ = 3. Therefore, A′ would be: (a1, a2, a3) and α becomes 4. Then for L3,
we have N ′ = 2. Therefore, A′ would be (a4, a5) and α becomes 6, and for L4, we
have N ′ = 3. Therefore, A′ would be (a6, a1, a2) and α becomes 3. Finally, for L6, we
have N ′ = 1, and therefore, A′ would be (a3) and α becomes 4 (see A′ in Figure 3.4).
After all the values are calculated, the value of α remains 4 instead of being initialized
to 1. This means that in order to form other coalitions, any additional calculations will
start from a4. By this, the average number of values calculated by each agent becomes
equal.4

To illustrate how DCVC works, Figure 3.4 shows an example of the resulting distri-
bution among 6 agents. As shown in the figure, the agents’ shares are exhaustive and
disjoint. Note that this distribution was done without any communication between the
agents and without any central decision maker. Moreover, each agent only needed to
allocate a space of memory which is sufficient for one coalition.

4Given a large number of agents, the number of additional values would be insignificant, compared
to the total number of values calculated by each agent. However, for a small number of agents, it is
worthwhile to add this extra step of updating A′, rather than simply having A′ = {a1, . . . , aN ′}. For
example, if we have 6 agents, then by using this extra step, the average number of values calculated by
agents: a1, a2, a3, a4, a5, a6 would be: 10.5, 10.5, 10.5, 10.5, 10.5, 10.5 respectively, while it would have
been: 13, 12, 11, 11, 9, 9, 9 given a fixed A′.

Chapter 3 Distributing the Coalitional Value Calculations 52

FIGURE 3.4: The resulting distribution for all possible coalitions of 6 agents.

Finally, note that although DCVC gives every agent the ability to save one coalition at a
time, the agent can still choose to maintain its entire share of coalitions, provided that it
has sufficient memory space. This way, the agent avoids performing the operations re-
quired to set M from one coalition to another, throughout the list, every time a coalition
is formed.

3.1.2 Modifying the Coalitions to which an Agent is Assigned

By using the distribution process specified earlier, any two agents require an equal time
to calculate their share of values. The distribution, however, is done without taking into
consideration the time required for each agent to set M from one coalition to another
(i.e. the time required to shift M up in the list by 1 coalition). In more detail, after
an agent calculates the value of a coalition, it needs to set M to the coalition before it.
This is done by performing a number of comparisons and additions as shown earlier in
Section 3.1.1. Specifically, changing x values in M requires performing x comparisons,
as well as x additions, which gives a total of (2 × x) operations. See Figure 3.5 for an
example.

As shown in the figure, the agent first searches for β, and then changes the values mβ ,
mβ+1, . . . , ms. This means that the agent would perform more operations for smaller
values of β. Note that by ordering Ls as specified earlier in Section 3.1.1, β would

Chapter 3 Distributing the Coalitional Value Calculations 53

FIGURE 3.5: Example for setting M to the coalition before it in the list L5 of 9 agents.

generally have smaller values in the coalitions that are located at smaller indices in Ls.
Now since the distribution is done such that the agents located at smaller indices in

→
A

calculate the values of the coalitions located at smaller indices in Ls, these agents would
generally perform more operations. For example, for the case of 7 agents, Figure 3.6
shows how agents a2 and a6 set M from one coalition to another through the lists L4,2

and L4,6 respectively. As shown in the figure, a2 requires changing a total of 9 values,
and thus performs 18 operations, while a6 requires changing a total of 6 values, and thus
performs only 12 operations. Therefore, although they both calculate the same number
of coalitional values, agent a2 would finish after a6.

FIGURE 3.6: For the case of 7 agents, the figure shows how a2 and a6 set M from one
coalition to another through the lists L4,2 and L4,6 respectively.

The differences between the agents grow with the number of agents involved. For ex-
ample, for the case of 31 agents, Figure 3.7(A) shows the time required for each agent
to set M to the coalitions in its share. As shown in the figure, the required time differs
considerably from one agent to another. Now in order to reduce these differences, the

Chapter 3 Distributing the Coalitional Value Calculations 54

distribution needs to be modified. This involves modifying which values an agent calcu-
lates, rather than how many values it calculates. In more detail, instead of having agent
ai calculate a list of sequential coalitions, ai’s share can be divided into two sub-lists
L1

s,i and L2
s,i, where each sub-list is located at a different position in Ls. This provides

the ability to reduce the differences between the agents by adjusting both the size and
the position of the sub-lists of every agent.

FIGURE 3.7: For the case of 31 agents with equal computational speeds, the figure
shows the time required for each agent to set M to the coalitions in its share. (A) shows
the case where each agent’s share consists of a set of sequential coalitions, while (B)

shows the case where each agent’s share is divided into two sub-lists.

To this end, let N j
s,i be the number of coalitions in Lj

s,i (i.e. N j
s,i = |Lj

s,i|), and let
indexj

s,i be the index in Ls at which Lj
s,i ends. The modification can then be expressed

as follows:

Chapter 3 Distributing the Coalitional Value Calculations 55

• Each agent ai calculates Ns,i using equation 3.1, and then calculates the number
of coalitions in the sub-lists L1

s,i and L2
s,i as follows:5

N1
s,i = bNs,i × 0.4c (3.5)

N2
s,i = dNs,i × 0.6e (3.6)

• After that, the agent calculates N ′ using equation 3.4, and then calculates the
indices at which the sub-lists end; this is done as follows:

index1
s,i = i×N1

s,i

index2
s,i = Ns −N ′ − ((i− 1)×N2

s,i)

• The calculation of the coalitional values is then handled using the same method
specified in Section 3.1.1.

In more detail, the modification works as follows. For each agent ai, the sub-list L1
s,i

is located at the upper part of Ls, and the sub-list L2
s,i is located at the lower part.

Moreover, the higher L1
s,i is, the lower L2

s,i is. By this, the total number of operations
performed for both sub-lists is broadly the same for all the agents. For example, for the
case of 31 agents with equal computational speeds, Figure 3.7(B) shows the modified
distribution, as well as the time required for each agent to set M to the coalitions in
its share.6 As shown in the figure, the differences between the agents were consider-
ably reduced. In particular, the difference between the first agent to finish and the last
dropped from 291 to 17 milliseconds (i.e. it was reduced by 94.2%). Moreover, the time
required for the distribution process dropped from 1.236 to 1.081 (i.e. it was reduced
by 12.5%).

One could argue that the differences between the agents can be further reduced by
having more than two sub-lists. However, since setting M to a coalition located at a
particular index requires more operations than setting M from one coalition to the next,
and since every sub-list requires calculating the index at which it ends, as well as set-
ting M to the coalition located at that index, then, by having more sub-lists, the number
of operations required becomes greater, and adjusting both the size and the position of

5The values 0.4 and 0.6 that are presented in the equations were determined via empirical studies. In
this case, a range of different values were explored for a range of coalition scenarios, and these values
were consistently the most efficient.

6The PC on which we ran our simulations had a processor: Pentium(R)4 2.80 GHz, with 1GB of
RAM.

Chapter 3 Distributing the Coalitional Value Calculations 56

each sub-list becomes more complicated. Based on this, as well as the fact that having
two sub-lists reduces the differences considerably between the agents, we only divide
the agents’ shares into two sub-lists.

3.1.3 Considering Different Computational Speeds

As mentioned earlier, the DCVC algorithm distributes the required calculations such
that each agent gets an equal share (with a possible difference of at most one calcula-
tion). This distribution is efficient if the agents do not need to take into consideration
the differences in computational speeds (e.g. because all agents have the same compu-
tational speed or because the differences are insignificant). However, in the case where
the agents do have significantly different computational speeds, it is inefficient to have
each agent calculate the same number of values. In such cases, the distribution needs
to be done with respect to the agents’ relative computation speed. In order to do so, we
present the required modifications to the algorithm.

After sorting the set of agents, and setting α to 1, each agent calculates the time it
requires to perform a particular number of operations; the number and type of these op-
erations should be pre-determined by the developers. This can then be used to indicate
the agent’s computation speed. For example, the developers can agree on having each
agent perform 100000 additions. Then, if agent ai took a time ti = 20 milliseconds,
while aj took a time tj = 40, then this indicates that ai has a computational speed twice
as fast as aj .

Now that each agent ai has calculated ti, it sends this value to every other agent. By
this, each agent ai would have tj for every j 6= i. Note that this step is only performed
once. The algorithm then distributes the calculations as follows:

Instead of calculating the number of coalitions in its share, each agent ai calculates
the number of coalitions in every agent’s share. This is done using the following equa-
tion:

Ns,j =

⌊
Ns

tj ×
∑n

k=1 1/tk

⌋

The agent then calculates the values: N1
s,i, N2

s,i using equations 3.5 and 3.6, and then
calculates the values: index1

s,i, index2
s,i using the following equations:

Chapter 3 Distributing the Coalitional Value Calculations 57

index1
s,i =

i∑
j=1

N1
s,j

index2
s,i = Ns −N ′ −

i−1∑
j=1

N2
s,j

After each agent calculates the values of the coalitions in its share, some values might
remain uncalculated. In this case, the number of the remaining coalitions is given as
follows:

N ′ = Ns −
n∑

j=1

Ns,j

The calculation of these values is then handled using the method defined in Section
3.1.1. We now prove that by using the modified algorithm, we minimize the time re-
quired for all the values to be calculated.

Theorem 3.1 For any size s ∈ S, the distribution specified in the DCVC algorithm
minimizes the time required for all the values to be calculated.

Proof. Since the agents perform the calculations in parallel, then the time required
for all the values to be calculated is equal to the time required for the last agent to finish
calculating its share. Therefore, minimizing the required time is equal to minimizing
the value:

n
max
j=1

(tj ×Ns,j). Now since we need to distribute the calculation of Ns values

among n agents, we can define the space of possible solutions as the space of vectors
V ⊆ Rn in which for every vector

→
v∈ V , we have

∑n
i=1 vi = Ns. Then, in order to

minimize the value: maxn
j=1(tj ×Ns,j), we need to find a vector x ∈ V that satisfies the

following condition:

∀(
→
y∈ V)(∃i ∈ {1, .., n}) : ti×yi < ti×xi ⇒ (∃j ∈ {1, .., n}) : tj×yj > tj×xj ≥ ti×xi

(3.7)
That is, decreasing some component xi must be at the expense of increasing some other
component xj such that tj × yj > ti × xi. Now since we have

∑n
i=1 xi = Ns, then

equation 3.7 implies that:

t1 × x1 = t2 × x2 = . . . = tn × xn

Chapter 3 Distributing the Coalitional Value Calculations 58

By solving this equation, we find that xi = Ns/(ti ×
∑n

j=1 1/tj). This means that by
making Ns,i = Ns/(ti ×

∑n
j=1 1/tj) for every i ∈ {1, . . . , n}, we minimize the overall

time of calculations.

Note that the agent’s actual share is
⌊
Ns/(ti ×

∑n
j=1 1/tj)

⌋
with a possibility of one

additional calculation. This difference, however, is very small and is therefore not con-
sidered in the proof.

3.2 Generalizing DCVC to deal with Subsets of Agents

So far, we assumed that every agent is able to join any coalition. However, as discussed
earlier, there are cases where this assumption does not always hold. Now let A∗ ⊆ A

be the set of agents that are currently able to join any coalition, and let n∗ = |A∗|.
Similarly, let Ā∗ = {ā∗1, ā∗2, . . . , ā∗n̄∗} be the set of agents that are not able to join any
coalition, where n̄∗ =

∣∣Ā∗
∣∣ (this means that: Ā∗ = A\A∗, and n̄∗ = n − n∗). Finally,

let P denote the set of all potential coalitions that are of any size s ∈ S, and let P ∗

denote the subset of P in which every coalition contains only members of A∗. Based
on this, every time the agents need to form a coalition, they only need to consider the
coalitions that belong to P ∗. Note that A∗ is continuously changing due to the coalitions
that are being formed. Also note that any change in A∗ corresponds to a change in P ∗,
and whenever A∗ = A, we have: P ∗ = P .

As mentioned earlier, after a particular coalition is formed, the coalitional values might
need to be re-calculated before the agents can form another coalition. Now in order
to perform this re-calculation process in a distributed manner, the set P ∗ must first be
distributed among the agents. This can be done using either of the following methods:

• Searching through P .

• Repeating the entire distribution process.

We will first discuss the first method since this is the way that the SK algorithm han-
dles the problem, and then we will show that simply repeating the distribution process
(which DCVC can do, but SK cannot) is faster and more efficient.

Chapter 3 Distributing the Coalitional Value Calculations 59

3.2.1 Searching through P

In this method, the set P is initially distributed among the agents, and each agent ai

maintains its share of P (denoted by Pi). Then, whenever the coalitional values need to
be re-calculated, each agent ai searches through Pi, and finds the coalitions that belong
to P ∗. These coalitions would then be the agent’s share of P ∗ for which it calculates the
coalitional values. In more detail, based on the memory that is available to the agent,
this can be done using one of the following approaches:

1. Each agent maintains its share of P , but does not maintain its share of P ∗. There-
fore, whenever the coalitional values need to be re-calculated, each agent ai has to
search through Pi, and find the coalitions that belong to P ∗ (and that is even if P ∗

remains unchanged). Specifically, finding the coalitions that belong to P ∗ is done
by finding those that contain only members of A∗. Note that we assume every
coalition to be written in memory using n bits, where each bit indicates whether
an agent is a member of the coalition.7 Therefore, finding whether a coalition
belongs to P ∗ is done by first checking the bit that represents ā∗1, and if it is set
to 1, then the coalition contains a member of Ā∗, and therefore does not belong
to P ∗. On the other hand, if it is set to 0, then the agent must check the bit that
represents ā∗2, and so on. This is repeated until a member of Ā∗ is found in the
coalition, or until all the members of Ā∗ are checked.

2. Each agent ai does not only maintain Pi, but also maintains its share of P ∗ in a
temporary list (denoted by tempi). Obviously, this approach requires allocating a
larger memory space (For example, if there are no limitations on the coalitional
sizes, then this approach would require allocating 50% more memory space).
However, using this approach requires performing fewer operations (see Section
3.3 for details).

To show how tempi can be used, let us first consider Ā∗
prev to be the previous

value of Ā∗ (i.e., Ā∗
prev is the set of agents that were not able to join other coali-

tions during the previous re-calculation process, while Ā∗ is the set of agents that
are currently not able to join other coalitions). Also, consider Ā∗

removed to be the
set of agents that belong to Ā∗

prev, but do not belong to Ā∗, and consider Ā∗
added

7For example, given 8 agents, the coalition {a1, a2, a4, a7, a8} can be written in memory as:
11010011 instead of: 1, 2, 4, 7, 8. This way, writing a coalition in memory requires less space, and
finding whether an agent belongs to the coalition requires checking a single value instead of searching
the entire coalition.

Chapter 3 Distributing the Coalitional Value Calculations 60

to be the set of agents that belong to Ā∗, but do not belong to Ā∗
prev. By this, we

have:

Ā∗ = (Ā∗
prev \ Ā∗

removed) ∪ Ā∗
added : Ā∗

removed ∩ Ā∗
added = φ (3.8)

Now, let n̄∗prev be the number of agents in Ā∗
prev (i.e., n̄∗prev =

∣∣Ā∗
prev

∣∣), and let
n̄∗removed, n̄

∗
added be the number of agents in Ā∗

removed and Ā∗
added respectively. By

this, we have:

n̄∗ = n̄∗prev − n̄∗removed + n̄∗added

Finally, let P ∗
prev be the previous value of P ∗, let A∗

prev be the previous value of
A∗, and let n∗prev =

∣∣A∗
prev

∣∣. Now, whenever the coalitional values need to be
re-calculated, the agents would have one of the following possible cases:

(a) Ā∗
removed = φ, and Ā∗

added 6= φ

(b) Ā∗
removed = φ, and Ā∗

added = φ

(c) Ā∗
removed 6= φ, and Ā∗

added = φ

(d) Ā∗
removed 6= φ, and Ā∗

added 6= φ

Each of these cases needs to be handled differently. Next, for each of these cases,
we show how each agent ai can search through Pi to find the coalitions that belong
to P ∗ (given that it maintains its share of P ∗

prev in tempi). Here, one should bare
in mind that, in order to find the coalitions that belong to P ∗, we need to find the
coalitions that do not contain members of Ā∗.

(a) Ā∗
removed = φ, and Ā∗

added 6= φ :

Here, we have: Ā∗ = Ā∗
prev ∪ Ā∗

added, and in this case: P ∗ ⊆ P ∗
prev. Thus,

in order to find the coalitions that belong to P ∗, it is sufficient to search
through P ∗

prev (in other words, it is sufficient for each agent ai to search
through tempi) Now since we have: Ā∗ = Ā∗

prev ∪ Ā∗
added, and since every

coalition in tempi does not contain members of Ā∗
prev, then in order to know

whether a coalition C ∈ tempi contains members of Ā∗, it is sufficient to
know whether it contains members of Ā∗

added. Now if it doesn’t, then this
coalition belongs to P ∗. Based on this, each agent ai should search through
tempi, and copy the coalitions that do not contain members of Ā∗

added to a
new list, then free the memory allocated to tempi. This new list would then

Chapter 3 Distributing the Coalitional Value Calculations 61

be the new tempi.

(b) Ā∗
removed = φ, and Ā∗

added = φ :

In this case, we have: Ā∗ = Ā∗
prev, which implies that: P ∗ = P ∗

prev. Since
the agents already have their shares of P ∗

prev maintained in memory, then no
search is required.

(c) Ā∗
removed 6= φ, and Ā∗

added = φ :

Here, we have: Ā∗ = Ā∗
prev\Ā∗

removed, and this implies that: P ∗
prev ⊆ P ∗.

In this case, finding the coalitions that belong to P ∗ can be done using two
different methods:

• Since tempi contains the coalitions in Pi that do not contain members of
Ā∗

prev, and since we have: Ā∗
prev = Ā∗ ∪ Ā∗

removed, then tempi contains
the coalitions that do not contain members of Ā∗ and do not contain
members of Ā∗

removed. Therefore, the agent needs to add to tempi the
coalitions that do not contain members of Ā∗ but contain members of
Ā∗

removed. This is done as follows. For every coalition in Pi, the agent
searches for members of Ā∗

removed, and if it finds any, then it searches
for members of Ā∗, and if it does not find any, then it adds the coalition
to tempi.

• This method involves finding the coalitions that belong to P ∗, without
taking into consideration the fact that each agent maintains its share
of P ∗

prev. In more detail, each agent ai starts by emptying tempi. Af-
ter that, the agent searches through Pi, finds the coalitions that do not
contain members of Ā∗, and copies them to tempi.

By using the first method (instead of the second one), any coalition that con-
tains members of Ā∗

removed would always require more operations 8, and any
coalition that does not contain members of Ā∗

removed might also require more
operations.9 Based on this, as well as the fact that the number of coalitions
containing members of Ā∗

removed is often much larger than those that do not,
the agents must then use the second method (i.e. must not take tempi into

8Because instead of searching for members of Ā∗, the agent first has to search for members of
Ā∗

removed, and then search for members of Ā∗.
9Because instead of searching for members of Ā∗, the agent has to search for members of Ā∗

removed,
and the number of the members of Ā∗

removed might be greater than the number of the members of Ā∗.

Chapter 3 Distributing the Coalitional Value Calculations 62

consideration).

(d) Ā∗
removed 6= φ, and Ā∗

added 6= φ :

Here, we have: Ā∗ = (Ā∗
prev\Ā∗

removed) ∪ Ā∗
added. In this case, finding the

coalitions that belong to P ∗ can also be done using two different methods:

• Each agent ai should first search through tempi, find the coalitions that
do not contain members of Ā∗

added, and then copy them to a new list.
This new list would then contain the coalitions in Pi that do not contain
members of (Ā∗ ∪ Ā∗

removed).10 After that, ai should search through
Pi, find the coalitions that do not contain members of Ā∗, but contain
members of Ā∗

removed, and then add them to the new list. Finally, ai

should free the memory allocated to tempi, and the new list would then
be the new tempi.

• This method finds the coalitions that belong to P ∗, without taking into
consideration the fact that each agent maintains its share of P ∗

prev.

Here, using the first method (instead of the second one) requires even more
operations (compared to the case where: Ā∗

removed 6= φ, and Ā∗
added = φ).

This is because the agent must also search through tempi, and find the coali-
tions that do not contain members of Ā∗

added. Therefore, agent ai performs
fewer operations by not taking tempi into consideration.

3.2.2 Repeating the Entire Distribution Process

In this method, the agents simply repeat the entire distribution process of P ∗ when-
ever A∗ is changed. Note that when using the other distribution algorithm (i.e. the SK
algorithm), this method is considered inapplicable, due to the communication that is
required every time the distribution process is repeated, as well as the time required to
re-build in memory the list containing every coalition in which it is a member. How-
ever, when using DCVC, the distribution process can be repeated without any commu-
nications between the agents. Moreover, the agents do not have to re-build any lists
in memory, thus, reducing the required time (for more details, see Section 3.4). This

10This is because tempi contains the coalitions in Pi that do not contain members of A∗
prev . Then,

by finding the coalitions in tempi that do not contain members of Ā∗
added, the agent actually finds the

coalitions in Pi that do not contain members of Ā∗
prev ∪ Ā∗

added. And from equation 3.8, we know that
(Ā∗

prev ∪ Ā∗
added) = (Ā∗ ∪ Ā∗

removed).

Chapter 3 Distributing the Coalitional Value Calculations 63

makes repeating the distribution process a feasible possibility. Note that in order to
distribute P ∗ (instead of P), DCVC should be modified as follows:

• Replace Ns with N∗
s in Figure 3.1. This would be sufficient for calculating the

number of coalitions in each agent’s share of P ∗ (and not P), as well as calcu-
lating the index of the last coalition in the share, and the number of additional
values.

• Replace n with n∗ in Figure 3.2. This would be sufficient for setting M to the
last coalition in each agent’s share.

• Replace n with n∗ when calculating C1,s. By this, C1,s = {n∗− s+1, . . . , n∗−
1, n∗}. This would be sufficient for setting M to the coalition before it (This is
because searching for β is done by comparing values of M with values of C1,s).

Figure 3.8 shows the final version of DCVC, including the modifications mentioned in
sections 3.1.2, 3.1.3, and 3.2.2 (henceforth, all references to DCVC refer to this version
unless stated otherwise). Here, we assume that the required calculations are distributed
among the entire set of agents (A). However, if the distribution is required to be among
a subset of A, then two changes need to be made to the algorithm. The first is to replace
n with the number of agents that are required to take part in the re-calculation process.
The second is to initialize α every time the distribution process is carried out (otherwise,
the agents that did not take part in a previous distribution will not be able to know the
current value of α).

3.2.3 Comparing the Distribution Efficiency

We will now compare both methods (i.e., searching through P and repeating the entire
distribution process) in terms of distribution efficiency (a comparison of both methods,
in terms of computational complexity can be seen in Section 3.3):

• By having each agent ai search through Pi, the set P ∗ will always be distributed
among all of the agents. Note, however, that some agents might have already
joined other coalitions, and these agents might be busy performing the tasks they
were assigned. Therefore, it might be more efficient if they did not take part in the
re-calculation process. Otherwise, if all the agents were always busy performing
the search process as well as the value calculation process, then the members

Chapter 3 Distributing the Coalitional Value Calculations 64

of the formed coalitions might not be able to focus on their assigned tasks long
enough to actually perform them on time. On the other hand, by repeating the
distribution process, the set P ∗ would not necessarily be distributed among all of
the agents. Instead, it can be distributed among any subset of A. For example, it
can be distributed among those that are not members of any coalition.

• When each agent ai searches for the coalitions in Pi that belong to P ∗, some
agents might find significantly more coalitions than others, and thus end up with
larger shares of P ∗. In fact, using this method results in a random distribution
of P ∗. Clearly, this is not optimal since P ∗ needs to be distributed in a way
that minimizes the calculation time. On the other hand, repeating the distribution
process results in an optimal distribution of P ∗.

Although we have advanced qualitative reasons for the relative advantages of repeating
the entire distribution process, we need to provide quantitative results to back this up.
To this end, we tested both methods for the case of 30 agents.11 Here, we assume that
S = {1, .., 30}, and that the agents have equal computational speeds. Initially, each
agent was given an equal share of P . Then, both of the methods were tested given
different sizes of Ā∗ (i.e., given different values of n̄∗, ranging from 0 to 28)12; the
results were taken as an average of running 50 times, and in every case, the members of
Ā∗ were randomly selected from A. Table 3.7 shows the difference between the agent
that had the biggest share of the calculations and the one that had the smallest. As
shown in the table, by having each agent ai search for the coalitions in Pi that belong
to P ∗, the agents ended up with unequal shares. On the other hand, when repeating the
distribution process, the difference between the agents was as small as possible.

3.3 Computational Complexity

As discussed earlier, by repeating the entire distribution process, we obtain an optimal
distribution of P ∗. However, we need to show whether this comes at the expense of an
increase in the number of operations required per agent. Therefore, we calculate the
computational complexity for each of these methods. Here, we consider the compu-
tational complexity to be the number of operations required, given different values of

11Tests with different numbers of agents were carried out and gave broadly similar results and so they
are not shown here.

12This is because having n̄∗ = 29 means that A∗ contains only one agent, which implies that there is
only one potential coalition. In other words, no distribution is required in this case.

Chapter 3 Distributing the Coalitional Value Calculations 65

Each agent ai should first perform the following once:

• Sort the set of agents based on the agents’ UID.

• Set: α = 1.

• If (equal computational speeds = false) then:

1. Calculate ti, and send it to every other agent.

For every coalition that needs to be formed, each agent ai should perform the following:

• For every (s ∈ S, s ≤ n) do the following:

1. If (N∗
s ≥ n) then:

1.1. If (equal computational speeds):

◦ Calculate the size of your share: Ns,i = bN∗
s /nc

◦ Calculate the size of both sub-lists: N1
s,i = bNs,i × 0.4c , N2

s,i = dNs,i × 0.6e

◦ Calculate the number of additional values that need to be calculated: N ′ = N∗
s − n×Ns,i

◦ Calculate the index of the last coalition of each sub-list: index1
s,i = i×N1

s,i

index2
s,i = N∗

s−N ′−((i−1)×N2
s,i)

Otherwise:

◦ Calculate the size of every agent’s share: Ns,j =
⌊

N∗
s

tj×
Pn

k=1 1/tk

⌋
: j = 1, . . . , n

◦ Calculate the size of both sub-lists: N1
s,j = bNs,j × 0.4c , N2

s,j = dNs,j × 0.6e : j =
1, . . . , n

◦ Calculate the number of additional values that need to be calculated: N ′ = N∗
s −

∑n
j=1 Ns,j

◦ Calculate the index of the last coalition of each sub-list: index1
s,i =

∑i
j=1 N1

s,j

index2
s,i = N∗

s −N ′ −
∑i−1

j=1 N2
s,j

1.2. Calculate the values of each coalition in your share.

Otherwise:

1.3. Calculate the number of additional values that need to be calculated: N ′ = N∗
s

2. If (N ′ > 0) then:

2.1. Find the sequence of agents A′ in which each agent should calculate one additional value,
and if you are a member of A′, then calculate the appropriate value. This is done as follows:

◦ If (α + N ′ − 1 ≤ n) then: A′ = (aα, aα+1, . . . , aα+N ′−1)
else: A′ = (aα, aα+1, . . . , an, a1, . . . , a(α+N ′−1)−n)

◦ If (ai ∈ A′) then calculate one of the additional values based on your position in A′

◦ If (α + N ′ ≤ n) then: α = α + N ′, else: α = α + N ′ − n

FIGURE 3.8: The DCVC algorithm (final version).

Chapter 3 Distributing the Coalitional Value Calculations 66

n̄∗ Repeating the Searching each
distribution agent’s share

1 1 4,445,182
2 1 5,105,232
3 1 3,808,067
4 1 1,482,807
5 1 1,120,504
6 1 679,789
7 1 382,358
8 1 213,289
9 1 116,533

10 1 62,869
11 1 31,964
12 1 16,638
13 1 8,290
14 1 4,431
15 1 2,627
16 1 1,402
17 1 681
18 1 350
19 1 197
20 1 106
21 1 59
22 1 29
23 1 16
24 1 9
25 1 4
26 1 3
27 1 2
28 1 1

TABLE 3.2: For the case of 30 agents, the table shows the difference between the
agent that had the biggest share of calculations and the one that had the smallest, given

different values of n∗.

n̄∗. Note that instead of using the big-O notation (which only gives an idea of how the
number of operations grows with n̄∗), we calculate the complexity using equations that
give the exact number of operations required.

3.3.1 Searching through P

Here, each agent ai searches through Pi in order to find the coalitions that belong to the
set P ∗. As mentioned earlier, this can be done using two different approaches:

Chapter 3 Distributing the Coalitional Value Calculations 67

1. If the agents do not maintain their shares of P ∗, then whenever the coalitional
values need to be re-calculated, every agent ai must search through Pi, and find
the coalitions that do not contain members of Ā∗. In this case, the total number
of operations is calculated as follows. For every coalition in P , we calculate the
number of comparisons required to determine whether it contains members of Ā∗.
In more detail, for every size s ∈ S, we have:

• The number of coalitions that require 1 comparison is equivalent to the num-
ber of coalitions in which ā∗1 is a member, and that is: Cn−1

s−1 .

• The number of coalitions that require 2 comparisons is equivalent to the
number of coalitions in which ā∗1 is not a member, and ā∗2 is a member, and
that is: C

(n−1)−1
s−1 = Cn−2

s−1 .

• Similarly, for every i (1 ≤ i < n̄∗), the number of coalitions that require i

comparisons is given as follows: Cn−i
s−1 .

• Finally, the number of coalitions that require n̄∗ comparisons is equivalent
to the number of coalitions in which ā∗1, . . . , ā

∗
n̄∗−1 are not members, and

ā∗n̄∗ is a member (and that is: Cn−n̄∗

s−1), plus the number of coalitions in which
ā∗1, . . . , ā

∗
n̄∗ are not members (and that is: Cn−n̄∗

s).

Note, however, that there are a number of issues that also need to be considered
when calculating the number of comparisons that need to be performed:

• If n̄∗ = 0 (i.e., if all the agents were able to join other coalitions), then we
have P = P ∗, in which case no search is required.

• If 0 < n̄∗ < n, then the agents would only need to search through the
coalitions that are of size: s ∈ S, s ≤ n − n̄∗; this is because A∗ contains
only n−n̄∗ agents (i.e., the agents in A∗ cannot form a coalition that contains
more than n− n̄∗ members).

• If n̄∗ = n, then no coalition can be formed, and therefore no search is
required.

Chapter 3 Distributing the Coalitional Value Calculations 68

Based on this, the number of required operations (denoted by op(n̄∗)) is given in
the following equation:

op(n̄∗) =


∑

s∈S,s≤n−n̄∗
((

n̄∗∑
i=1

i× Cn−i
s−1) + (n̄∗ × Cn−n̄∗

s)) if 0 < n̄∗ < n

0 otherwise

Note that the agents search through the coalitions of size: s ≤ n − n̄∗, and per-
form a maximum of n̄∗ operations per coalition. Therefore, given a larger value
of n̄∗, the search space would be smaller, but the average number of operations
per coalition would be larger. Figure 3.9 shows the total number of operations
required, given different values of n̄∗, and that is for the case of 30 agents.

FIGURE 3.9: The total number of operations required for distributing P ∗, and that is
given 30 agents, where each agent ai searches through Pi without maintaining its share

of P ∗.

As shown in the figure, as long as n̄∗ < 10, the number of operations increases
given larger values of n̄∗. This is because the search space becomes slightly
smaller, while the average number of operations required per coalition becomes
larger. However, when n̄∗ ≥ 10, the number of operations decreases given larger

Chapter 3 Distributing the Coalitional Value Calculations 69

values of n̄∗, and that is because the search space becomes significantly smaller.

2. If each agent maintains its share of P ∗, then whenever the coalitional values need
to be re-calculated, the agents would have one of the following possible cases
(recall that in order to find the coalitions that belong to P ∗, we need to find the
coalitions that do not contain members of Ā∗):

(a) Ā∗
removed = φ, and Ā∗

added 6= φ :

Here, we have: Ā∗ = Ā∗
prev ∪ Ā∗

added. As mentioned earlier in Section
3.2.1, for every coalition in tempi, agent ai must determine whether it con-
tains members of Ā∗

added, and, if not, then the agent must copy it to a new
list. Note that tempi contains the agent’s share of P ∗

prev. Therefore, the
total number of operations is calculated as follows. First, for every coali-
tion in P ∗

prev, we calculate the number of comparisons required to determine
whether it contains members of Ā∗

added. In more detail, for every size s ∈ S,
we have:

• The number of coalitions that require 1 comparison is equivalent to the
number of coalitions in P ∗

prev in which ā∗1 is a member, and that is:
C

n∗prev−1

s−1 .

• The number of coalitions that require i comparisons, where 1 < i <

n̄∗added, is equivalent to the number of coalitions in P ∗
prev in which ā∗1, . . . , ā

∗
i−1

are not members, and ā∗i is a member (and that is: C
n∗prev−i

s−1).

• The number of coalitions that require n̄∗added comparisons is equivalent
to the number of coalitions in P ∗

prev in which ā∗1, . . . , ā
∗
n̄∗added−1 are not

members, and ā∗n̄∗added
is a member (and that is: C

n∗prev−n̄∗added
s−1), plus the

number of coalitions in P ∗
prev in which ā∗1, . . . , ā

∗
n̄∗added

are not members

(and that is: C
n∗prev−n̄∗added
s).

Now, we calculate the number of operations required to copy the coalitions
that are in P ∗

prev and do not contain members of Ā∗
added. Note that every

coalition is maintained in memory using n bits, and that the minimum unit
of memory that can be allocated is one byte. Therefore, we can say that
every coalition is maintained in an array of dn/8e bytes, and thus, copying
a single coalition requires dn/8e operations.

Chapter 3 Distributing the Coalitional Value Calculations 70

Finally, since we have: Ā∗ = Ā∗
prev ∪ Ā∗

added, and since Ā∗
added 6= φ, then:

Ā∗ 6= φ, and this implies that n̄∗ > 0. Therefore, n̄∗ can have one of the
following values: (1, 2, . . . , n), and for any given value of n̄∗, the number of
required operations is given in the following equation:

op(n̄∗) =



0 if n̄∗ = n

∑
s∈S,s≤n−n̄∗

((
n̄∗added∑

i=1

i× C
n∗prev−i

s−1) + ((n̄∗added + dn/8e)× C
n∗prev−n̄∗added
s))

if n̄∗ < n

Now for the case of 30 agents, Figure 3.10 shows the number of opera-
tions required, given different values of n̄∗. Note that we have: n̄∗ =

n̄∗prev + n̄∗added. Therefore, we calculated op(n̄∗) by taking the average of
all possible cases, where n̄∗added = 1, 2, . . . , n̄∗. For example, op(10) was
calculated as an average of the cases where (n̄∗prev = 9, n̄∗added = 1), and
where (n̄∗prev = 8, n̄∗added = 2), and so on. As shown in the figure, except
when n̄∗ < 3, having each agent maintain its share of P ∗ requires fewer
operations, especially given large values of n̄∗. This is because the number
of operations in this case depends mainly on the size of P ∗

prev (which is often
much smaller than P).

(b) Ā∗
removed = φ, and Ā∗

added = φ :

In this case, we have: P ∗ = P ∗
prev. As mentioned earlier, since the agents

already have their shares of P ∗
prev maintained in memory, then no search is

required (i.e. the number of required operations is 0):

op(n̄∗) = 0

(c) Ā∗
removed 6= φ, and Ā∗

added = φ :

As mentioned earlier, finding the coalitions that belong to P ∗ is done with-
out taking into consideration the fact that each agent maintains its share of
P ∗

prev. Instead, each agent ai searches through Pi, and copies the coalitions
that do not contain members of Ā∗ to the list tempi. Based on this, the total

Chapter 3 Distributing the Coalitional Value Calculations 71

FIGURE 3.10: Given that Ā∗
removed = φ, and Ā∗

added 6= φ, the figure shows the total
number of operations required to distribute P ∗, and that is given 30 agents, where each

agent maintains its share of P as well as P ∗.

number of operations is calculated as follows.13 First, for every coalition in
P , we calculate the number of comparisons required to determine whether it
contains members of Ā∗. After that, we calculate the number of operations
required to copy the coalitions that are in P and do not contain members
of Ā∗. Note that we have Ā∗ = Ā∗

prev\Ā∗
removed, and Ā∗

removed 6= φ. This
means that n̄∗ < n̄∗prev, which implies that n̄∗ < n. Based on this, n̄∗ can
have one of the following values: (0, 1, . . . , n− 1), and for any given value,
the number of operations is given as follows:

op(n̄∗) =


∑

s∈S,s≤n−n̄∗
((

n̄∗∑
i=1

i× Cn−i
s−1) + ((n̄∗ + dn/8e)× Cn−n̄∗

s)) if 0 < n̄∗

0 otherwise

Now for the case of 30 agents, Figure 3.11 shows the number of operations

13Note that the agent must first empty tempi. However, this is done using a single operation, and,
therefore, is not considered when calculating the total number of operations required.

Chapter 3 Distributing the Coalitional Value Calculations 72

required, given different values of n̄∗. When compared to the case where the
agents do not maintain their shares of P ∗, we find that unless n̄∗ = 0, this
method would always require more operations.14 However, as shown in the
figure, this difference becomes insignificant when n̄∗ ≥ 8.

FIGURE 3.11: Given that Ā∗
removed 6= φ, and Ā∗

added = φ, the figure shows the total
number of operations required to distribute P ∗, and that is given 30 agents, where each

agent maintains its share of P as well as P ∗.

(d) Ā∗
removed 6= φ, and Ā∗

added 6= φ :

In this case, finding the coalitions that belong to P ∗ is also done without tak-
ing into consideration the fact that each agent maintains its share of P ∗

prev.
Therefore, op(n̄∗) is calculated just as in the case where Ā∗

removed 6= φ, and
Ā∗

added = φ. Note, however, that we have: (Ā∗ = Ā∗
prev\Ā∗

removed ∪ Ā∗
added :

Ā∗
removed ∩ Ā∗

added 6= φ), and therefore, having: Ā∗
added 6= φ, Ā∗

removed 6= φ,
implies that: 0 < n̄∗ < n. Based on this, the total number of required oper-
ations is given as follows:

14These additional operations would be the ones required to copy the coalitions that do not contain
members of Ā∗.

Chapter 3 Distributing the Coalitional Value Calculations 73

op(n̄∗) =
∑

s∈S,s≤n−n̄∗

((
n̄∗∑
i=1

i× Cn−i
s−1) + ((n̄∗ + dn/8e)× Cn−n̄∗

s))

3.3.2 Repeating the Entire Distribution Process

When repeating the distribution process using DCVC, we distinguish between two dif-
ferent cases, based on the memory that is available to the agent:

• In case the agent has sufficient memory space to maintain Pi, then, by maintain-
ing Pi, the agent can avoid repeating the distribution process whenever n̄∗ = 0,
because repeating the distribution process in this case would only result in the
same share as the one maintained in memory.15.

• In case the memory space is not large enough for agent ai to maintain Pi, then the
agent can only repeat the distribution process, even when n̄∗ = 0.

Next, we calculate the complexity for the second case (the complexity of the first case
can then be calculated easily, by replacing the value with 0 whenever n̄∗ = 0.). Specif-
ically, for every size s ∈ S, we calculate the number of operations required to set M

from one coalition to the next, throughout the list.16 As mentioned earlier, changing x

values in M requires performing x comparisons, as well as x additions, which gives
a total of (2 × x) operations (see Figure 3.5 for an example). Therefore, to calculate
the number of operations required, we calculate the number of comparisons, and then
multiply this number by 2. In more detail, the number of coalitions that require 1 com-
parison is equivalent to the number of coalitions in which a∗n∗ is not a member (i.e.,
Cn∗−1

s), and the number of coalitions that require i comparisons, where 1 ≤ i ≤ s,
is equivalent to the number of coalitions in which a∗n∗ , . . . , a

∗
n∗−(i−1) are not members,

and a∗n∗−i is not a member (i.e, Cn∗−i
s−i+1). Based on this, the total number of operations

required, in order to set M from one coalition to another, is:

op(n̄∗) = 2× (
∑

s∈S, s≤n−n̄∗

s∑
i=1

i× Cn∗−i
s−i+1)

15However, the agent in this case might still need to maintain one coalition (instead of maintaining Pi).
This is because the agent, at some point, might need this space to perform other tasks (e.g., the tasks that
are assigned to the coalition in which it is a member).

16Clearly, these are not the only operations required (e.g. operations are also required to calculate the
size of each agent’s share, the index at which each share ends, ...etc.). However, we will only consider
these when calculating the complexity. This is because we are dealing with an exponential number of
coalitions, and, therefore, we only consider the operations that are performed for every coalition. In other
words, we only count the operations that grow exponentially with the number of agents.

Chapter 3 Distributing the Coalitional Value Calculations 74

We will now compare the number of operations required, given different values of n̄∗,
and that is when searching through P , and when repeating the distribution process using
DCVC. To make this comparison possible, we assume that every agent ai has sufficient
memory space to maintain Pi (otherwise, the agents have no other choice but to repeat
the distribution process using DCVC).

Now, given 30 agents, Figure 3.12 shows the number of operations required to distribute
P ∗ using any of the methods that were discussed earlier. Note that when repeating the
distribution process (using DCVC), the dashed line shows how the number of opera-
tions increases when each agent maintains one coalition (instead of maintaining Pi).
Also note that when searching through P (using tempi), the figure shows the average
number of operations required, and that is for all the different cases of: Ā∗

removed, Ā∗
added.

Unlike what we had initially expected, we found that, on average, repeating the en-
tire distribution process (using DCVC) requires fewer operations, and that is even when
the agents do not maintain Pi. Specifically, when compared to the case where each
agent searches through Pi (without using tempi), we find that if each agent maintains
Pi, then, repeating the distribution process requires 13.8% of the operations, otherwise,
repeating the distribution process requires 27.6% of the operations. Similarly, when
compared to the case where each agent searches through Pi (using tempi), we find that
if each agent maintains Pi, then, repeating the distribution process requires 20.3% of
the operations, otherwise, it requires 40.7% of the operations.

3.4 Performance Evaluation

Having calculated the computational complexity, we now present empirical results against
the SK algorithm. Note that in SK, each agent ai maintains Pi, and whenever the coali-
tional values need to be re-calculated, the agent finds the coalitions that belong to P ∗

by searching through Pi using tempi (in SK, tempi is equivalent to Lcr
i).

As mentioned earlier in Section 3.2, without repeating the entire distribution process,
P ∗ would always be distributed among all the agents in A. However, by using SK, every
coalition in Pi would be a coalition in which ai is a member, and in this case, P ∗ would

Chapter 3 Distributing the Coalitional Value Calculations 75

FIGURE 3.12: The number of operations required for distributing P ∗ given 30 agents,
and that is using different distribution methods.

always be distributed among the members of A∗ instead.17 Note that the agents in Ā∗

might not always be too busy to take part in the re-calculation process. In other words,
it would be more efficient if P ∗ can also be distributed among A whenever necessary (as
in DCVC). However, since SK only distributes P ∗ among A∗, then, when comparing
the performance of both DCVC and SK, we set DCVC to distribute P ∗ only among A∗.

We tested the performance18 of DCVC and SK given different numbers of agents, rang-
ing from 10 to 25 (However, given any number of agents outside this range, the ratio
between the performance of DCVC and SK remains broadly similar). Note that we have
25 agents as a limit, rather than 30 as per the previous sections, because SK requires
each agent to maintain a list of all the potential coalitions in which it is a member, and
for 30 agents, this list would require more memory space than is actually available to

17This is because whenever ai ∈ Ā∗, every coalition in which ai is a member can no longer be formed,
including all the coalitions in Pi. In other words, even if ai was able to take part in the re-calculation
process, it will not find any coalitions in Pi that belong to P ∗.

18The PC on which we ran our simulations had a processor: Pentium(R)4 2.80 GHz, with 1GB of
RAM.

Chapter 3 Distributing the Coalitional Value Calculations 76

the agent in the simulation. In other words, the agent would not be able to run SK, given
N = 30.

Given the desiderata mentioned in Section 1.2, we compare the performance of both
algorithms based on the following metrics:

• Distribution time.

• Communication between the agents.

• Redundant calculations performed.

• Memory requirements.

• Equality of the agents’ shares.

As for SK, all the results (except the memory requirements) were empirically evalu-
ated rather than theoretically proven. This is because they depend heavily on the order
in which the agents contact each other, and there are an exponential number of possi-
ble contact sequences, which makes the results non-deterministic and not amenable to
a theoretical analysis. As for the time requirements, we deliberately chose empirical
evaluation based on clock time; this is because the large memory requirements for SK
affect the computer’s performance speed, and this effect will not appear in a theoretical
analysis that takes into account only the number of operations performed.

As for DCVC, note that when calculating the distribution time, as well as the mem-
ory requirements, we distinguish between the case where each agent maintains one
coalition, and the case where each agent maintains Pi. This is because the issue of
maintaining Pi affects both the distribution time and the memory requirements.

In our simulation, the agents initially distribute P among themselves, and after that,
given different values of n̄∗, they distribute P ∗. The results presented below are for the
case where each agent has the same computational speed, and coalitions of any size are
allowed to be formed (which means in our terms S = {1, . . . , n}, and in SK’s terms:
q = n).19 Section 3.4.1 shows the results for distributing P , while Section 3.4.2 shows
the results for distributing P ∗, given different values of n̄∗.

19Note that if there are any limitations on the coalitional sizes, then P would contain a smaller number
of coalitions. However, the ratio between the performance of DCVC and SK remains broadly the same.

Chapter 3 Distributing the Coalitional Value Calculations 77

3.4.1 Distributing P

Here, given different numbers of agents (ranging from 10 to 25), we show the results
for distributing P among the agents.

3.4.1.1 Distribution Time

The time required to distribute P among the agents is shown in Table 3.3.20 As can be
seen, by using DCVC, the agents performed significantly faster, even when each agent
maintains its share of P . The reason for this is that when using DCVC, each agent
can start processing its share of coalitions immediately, while in SK each agent had to
build a list of all the coalitions in which it is a member, and then repeat the process of
negotiating with other agents and committing to some coalitions and deleting others,
until there are no more agents to contact.

Number of DCVC DCVC SK
Agents (maintain Pi) (99% confidence)

10 < 0.01 < 0.01 0.18 ± 1 %
11 < 0.01 < 0.01 1.11 ± 1.2 %
12 < 0.01 < 0.01 1.54 ± 0.9 %
13 < 0.01 < 0.01 0.16 ± 0.5 %
14 < 0.01 < 0.01 1.73 ± 1.4 %
15 < 0.01 < 0.01 1.83 ± 1 %
16 < 0.01 < 0.01 0.36 ± 0.5 %
17 < 0.01 < 0.01 0.32 ± 2.2 %
18 < 0.01 0.01 0.61 ± 0.3 %
19 < 0.01 0.02 1.68 ± 2 %
20 < 0.01 0.04 2.44 ± 1.1 %
21 < 0.01 0.08 4.81 ± 1.8 %
22 < 0.01 0.16 10.64 ± 1.9 %
23 < 0.01 0.33 21.41 ± 4.8 %
24 0.01 0.67 48.99 ± 1.9 %
25 0.02 1.36 108.72± 3.1 %

TABLE 3.3: The time required (in seconds) for the distribution process.

20Here, we have run the experiments multiple times, and have calculated the standard error of the
mean, as well as the 99% confidence intervals. Thus, showing the results in the form: x± y, means that
we are 99% confident that the true mean (i.e. average) lies within the range of values: x− y to x+ y. For
more details on how to calculate the standard error of the mean, as well as the confidence intervals, see
[Altman et al., 2000].

Chapter 3 Distributing the Coalitional Value Calculations 78

3.4.1.2 Communications between the Agents

Table 3.4 shows the total number of bytes that had to be sent between the agents, in
order for each one of them to know its share of the calculations. As shown in the table,
SK requires sending an exponentially large number of bytes between the agents; this
is mainly because if an agent ai contacts another agent aj , and commits to a set of
coalitions Sq

ij , then aj would have to subtract this set from its list, and in order to do so,
ai would have to send Sq

ij to aj . In contrast, DCVC requires no communication between
the agents because each of them knows its share by using the provided equations, and
not by negotiating with other agents.

Number of DCVC SK
agents (99% confidence)

10 0 8,799 ± 1 %
11 0 20,447 ± 0.8 %
12 0 45,076 ± 1.2 %
13 0 99,538 ± 0.3 %
14 0 217,080 ± 0.5 %
15 0 469,173 ± 0.7 %
16 0 101,1217 ± 0.7 %
17 0 3,242,544 ± 1.5 %
18 0 6,888,787 ± 1.6 %
19 0 14,644,832 ± 2 %
20 0 30,913,264 ± 1.1 %
21 0 65,114,817 ± 0.3 %
22 0 136,877,925 ± 0.2 %
23 0 286,712,976 ± 0.3 %
24 0 573,494,824 ± 0.6 %
25 0 1,146,989,648 ± 0.2 %

TABLE 3.4: The total number of bytes that had to be sent between the agents.

3.4.1.3 Redundant Calculations Performed

Here by redundant we mean having the value of the same coalition calculated by more
than one agent, while it was sufficient for only one agent to calculate it. Table 3.5
shows that using DCVC results in no redundant calculations (because each agent knows
the precise bounding of the calculations it should perform, and these are disjoint). In
contrast, SK results in an exponentially large number of redundant calculations; this is
because each agent’s commitment to a set of coalitions is undertaken with very limited

Chapter 3 Distributing the Coalitional Value Calculations 79

knowledge about the other agent’s commitments. For example, agent ai’s knowledge
about agent aj’s commitments is restricted to the set Sq

ji that aj sends to ai. This means
that ai is not aware of the coalitions to which aj has committed by contacting other
agents. This results in having the agents commit to calculating coalition values without
knowing that other agents have already committed to calculating them.

Number of DCVC SK
agents (99% confidence)

10 0 3,381 ± 1.2 %
11 0 8,182 ± 2 %
12 0 18,449 ± 3 %
13 0 41,584 ± 1.2 %
14 0 92,164 ± 4 %
15 0 201,827 ± 2.1 %
16 0 440,081 ± 1.3 %
17 0 949,783 ± 1.2 %
18 0 2,034,125 ± 0.1 %
19 0 4,357,330 ± 0.3 %
20 0 9,255,853 ± 2.4 %
21 0 19,607,795 ± 1.7 %
22 0 41,431,679 ± 2.1 %
23 0 87,182,393 ± 0.9 %
24 0 182,993,734 ± 3.5 %
25 0 383,229,848 ± 1.2 %

TABLE 3.5: The total number of redundant values that were calculated.

3.4.1.4 Memory Requirements

As mentioned earlier, each coalition is maintained in memory using dn/8e bytes. Given
this, Table 3.6 shows the number of bytes required per agent to maintain the necessary
coalitions.21 As can be seen, the memory requirements grow exponentially for SK.
This is because SK cannot be applied without having each agent start with a list of all
the potential coalitions in which it is a member (line 2 in Figure 2.1), and the number
of such coalitions is (2n−1).22 Note that we did not take into consideration the memory

21Clearly, this is not the only memory space that is required per agent. For example, one could take
into consideration the memory required to save the program that actually performs the algorithm, along
with all the variables that are required for this program, such as: n, S, ...etc. However, these do not grow
exponentially with the number of agents involved, and thus, are considered insignificant.

22This is because in the simulation, we assume no limitations on the coalitional sizes. However, if
there are limitations, then the number of such coalitions becomes:

∑
s∈S Cn−1

s−1 .

Chapter 3 Distributing the Coalitional Value Calculations 80

space required for the agent to maintain the messages that are received from other agents
(which are exponentially large). On the other hand, when using DCVC, each agent only
needs to maintain in memory one coalition at a time. This makes DCVC particularly
suitable for domains where very little memory space is available for the agents (e.g.
agents located on mobile devices).

Number of DCVC DCVC SK
Agents (maintain Pi)

10 2 206 1,024
11 2 374 2,048
12 2 684 4,096
13 2 1,262 8,192
14 2 2,342 1,6384
15 2 4,370 32,768
16 2 8,192 65,536
17 3 23,133 196,608
18 3 43,692 393,216
19 3 82,785 786,432
20 3 157,287 1,572,864
21 3 299,595 3,145,728
22 3 571,953 6,291,456
23 3 1,094,169 12,582,912
24 3 2,097,153 25,165,824
25 4 5,368,712 67,108,864

TABLE 3.6: The minimum number of bytes required per agent to save the necessary
coalitions.

As mentioned earlier, given sufficient memory space, each agent using DCVC can also
maintain its share of P , and that is to avoid repeating the distribution process whenever
P ∗ = P . In this case, the agent would maintain 2n/n coalitions in memory.23 Note that
DCVC would still require allocating a smaller memory space, compared to SK, and
that is given any number of agents n > 2 (for example, given 25 agents, the memory
required by DCVC would only be 8% of that required by SK).

3.4.1.5 Equality of the Agents’ Shares

Since the agents in our simulation are assumed to have equal computational speeds,
then the agents’ shares should be as equal as possible. Table 3.7 shows the difference
between the agent that had the biggest share of the calculations and the one that had the

23Given any limitations on the coalitional sizes, this number becomes:
∑

s∈S Cn−1
s−1 /n.

Chapter 3 Distributing the Coalitional Value Calculations 81

smallest. As can be seen, when using DCVC, the maximum difference is only 1, and
that is only because the total number of values was not divisible by the given numbers
of agents. However with SK, the difference grows exponentially with the number of
agents. This is because the agents’ shares are arbitrarily determined based on the order
in which they contacted each other. Thus, some agents were contacted by more agents
than others, and so removed more coalitions from their list, and ended up with smaller
shares. On the other hand, some agents contacted more agents than others, and thus
committed to more coalitions, and ended up with larger shares.

Number of DCVC SK
agents (99% confidence)

10 1 51 ± 0.4 %
11 1 76 ± 0.4 %
12 1 136 ± 0.4 %
13 1 215 ± 0.4 %
14 1 358 ± 0.5 %
15 1 636 ± 0.5 %
16 1 962 ± 0.7 %
17 1 1,537 ± 1 %
18 1 2,882 ± 1.3 %
19 1 4,441 ± 1.8 %
20 1 7,717 ± 2.8 %
21 1 12,094 ± 3.9 %
22 1 18,243 ± 6 %
23 1 33,568 ± 5.2 %
24 1 54,544 ± 5.7 %
25 1 85,817 ± 4 %

TABLE 3.7: The difference between the agent that had the biggest share of calculations
and the one that had the smallest.

3.4.2 Distributing P ∗

Here, for the case of 25 agents, we show the results for distributing P ∗, given different
values of n̄∗.

3.4.2.1 Distribution Time

Here, given different values of n̄∗, Figure 3.12 shows the time required to distribute P ∗

among A∗. As for DCVC, the dashed line shows how this time increases when each

Chapter 3 Distributing the Coalitional Value Calculations 82

agent maintains one coalition (instead of maintaining Pi). As for SK, the figure shows
the average of all the different cases of: Ā∗

removed and Ā∗
added. As shown in the figure,

using DCVC requires significantly less time, compared to SK. Specifically, by calculat-
ing the average for all the different values of n̄∗, we find that if each agent maintains Pi,
then DCVC requires 0.4% of the time, otherwise DCVC requires 0.8% of the time.

Note that in Section 3.3, when calculating the number of operations performed, using
each of the methods (i.e., repeating the distribution process using DCVC, and searching
through P using tempi as in SK), we found that DCVC requires either 20.3% or 40.7%
of the operations (depending on whether the agents maintain Pi). In other words, the
difference between both methods was smaller than what we have here. The main reason
for this is that when calculating the number of operations required to search through
P , we assumed that the agents are searching through exactly |P | coalitions. However,
when using SK, the total number of coalitions through which the agents had to search
was much larger than |P | (due to the redundancy in the agents’ shares). Another reason
for this is that when using SK, the agents were dealing with an exponentially large space
of memory (while in DCVC, the agents deal with an extremely small space of memory),
and this affects the performance speed. As we mentioned earlier, this effect does not ap-
pear when theoretically calculating the number of operations required. Moreover, when
using SK, the required operations were not distributed equally among the agents, unlike
in DCVC (see Section 3.4.2.5 for details). Note that having unequal shares does not af-
fect the total number of operations performed. However, it does affect the required time.

Finally, note that in our simulation, the set P ∗ was distributed among A∗. However,
by using DCVC, the set P ∗ can also be distributed among A whenever applicable. By
having more agents taking part in the distribution process, the required time would be
even less (for example, given that n = 25 and |A∗| = 10, distributing P ∗ among all the
agents would only take 40% of the time required to distribute it among A∗).

3.4.2.2 Communications Between the Agents

Here, note that distributing P ∗, using either of the two algorithms, is done without any
communication between the agents.

Chapter 3 Distributing the Coalitional Value Calculations 83

FIGURE 3.13: For the case of 25 agents, the figure shows the time required to distribute
P ∗ among A∗, given different values of n̄∗.

3.4.2.3 Redundant Calculations Performed

Table 3.8 shows the total number of redundant values that were calculated, and that is
given different values of n̄∗. As shown in the table, DCVC results in no redundant cal-
culations (because each agent knows the precise bounding of the calculations it should
perform, and these are disjoint). In contrast, when using SK, the number of redundant
calculations becomes exponentially large (because the agents’ shares of P ∗ are subsets
of their shares of P , and these are not disjoint). Note, however, that for smaller values
of n̄∗, the redundancy becomes smaller, since P ∗ becomes smaller.

3.4.2.4 Memory Requirements

Note that by memory requirements, we mean the minimum memory space that must
be available to the agent in order for it to perform the distribution algorithm. As for
DCVC, distributing P ∗ (instead of P) does not change the fact that the agent still needs
to maintain one coalition at a time (and that the agent might also maintain Pi to avoid
repeating the distribution process whenever P ∗ = P). As for SK, when searching

Chapter 3 Distributing the Coalitional Value Calculations 84

n̄∗ DCVC SK (99% confidence)
0 0 383,229,848 ± 0 %
1 0 183,341,930 ± 0 %
2 0 87,514,975 ± 0 %
3 0 41,671,477 ± 0 %
4 0 19,792,110 ± 0 %
5 0 9,374,041 ± 0 %
6 0 4,424,080 ± 0 %
7 0 2,080,256 ± 0 %
8 0 974,435 ± 0 %
9 0 454,271 ± 0 %

10 0 210,717 ± 0 %
11 0 97,156 ± 0 %
12 0 44,459 ± 0 %
13 0 20,093 ± 0 %
14 0 8,987 ± 0.1 %
15 0 3,960 ± 0.1 %
16 0 1,713 ± 0.2 %
17 0 725 ± 0.2 %
18 0 297 ± 0.4 %
19 0 113 ± 0.6 %
20 0 40 ± 1.4 %
21 0 13 ± 2.5 %
22 0 4 ± 4.8 %
23 0 0 ± 11.7 %

TABLE 3.8: For the case of 25 agents, the total number of redundant values that were
calculated, given different values of n̄∗.

for the coalitions that belong to P ∗, the agent will not be using a memory space that
is sufficient to maintain every potential coalition in which it is a member (as when
initially distributing P). However, this does not change the fact that without having
this memory space available, the agent will not be able to use SK. Based on this, the
memory requirements remain as in Section 3.4.1.4.

3.4.2.5 Equality of the Agents’ Shares

Table 3.9 shows the difference between the agent that had the biggest share of the calcu-
lations and the one that had the smallest, and that is given different values of n̄∗. As can
be seen, when using DCVC, the maximum difference is only 1 (and that is only because
the total number of values was not divisible by n̄∗). On the other hand, when using SK,
the difference becomes much larger. This is because when each agent ai searches for
the coalitions in Pi that belong to P ∗, some agents find more coalitions than others, and

Chapter 3 Distributing the Coalitional Value Calculations 85

thus end up with larger shares of P ∗. Note that for smaller values of n̄∗, the difference
between the agents becomes smaller, because P ∗ becomes smaller.

n̄∗ DCVC SK (99% confidence)
0 1 85,817 ± 4 %
1 1 58,485 ± 5.1 %
2 1 35,973 ± 4.8 %
3 1 20,738 ± 4.4 %
4 1 11,580 ± 4.1 %
5 1 6,237 ± 3.5 %
6 1 3,301 ± 3 %
7 1 1,814 ± 3.2 %
8 1 936 ± 3.9 %
9 1 498 ± 4 %

10 1 259 ± 3.9 %
11 1 132 ± 3.8 %
12 1 67 ± 4.8 %
13 1 45 ± 4.9 %
14 1 28 ± 5.7 %
15 1 19 ± 6.5 %
16 1 13 ± 6.7 %
17 1 8 ± 6 %
18 1 6 ± 6.6 %
19 1 5 ± 6.8 %
20 1 3 ± 7.4 %
21 1 2 ± 9 %
22 1 1 ± 11.8 %
23 1 1 ± 12.7 %

TABLE 3.9: For the case of 25 agents, the table shows the difference between the agent
that had the biggest share of the calculations and the one that had the smallest, given

different values of n̄∗.

3.5 Summary

In this chapter, we have presented a basic version of our DCVC algorithm for distribut-
ing the coalitional value calculations among cooperative agents. We have shown that
the time required to execute DCVC can be reduced by modifying the contents of every
agent’s share. We have also shown how DCVC can be modified to reflect any varia-
tions in the agents’ computational speeds. After that, we have discussed two different
approaches for distributing the value calculations when only a subset of agents can join

Chapter 3 Distributing the Coalitional Value Calculations 86

new coalitions. The first approach involves distributing the whole set of possible coali-
tions just once, and then having each agent search through its share to find the relevant
coalitions that need to be taken into consideration. The second approach is to simply
repeat the entire distribution. As we have shown, somewhat surprisingly, the second
approach (which DCVC can apply, but SK cannot) is much faster and more efficient.
Specifically, it allows the values to be distributed among any set of agents, and guar-
antees that the distribution is always optimal. We have also presented equations for
calculating the exact number of operations required by each of these approaches. Fi-
nally, we have benchmarked the performance of DCVC against the SK algorithm, and
have shown that our algorithm significantly outperforms it on all relevant dimensions.

Chapter 4

Solving the Coalition Structure
Generation Problem

In this chapter, we present our Anytime Integer-Partition based Algorithm (AIPA) for
coalition structure generation. Specifically, assuming that the value of every coalition
is given by a characteristic function v(C) ∈ R+ ∪ {0}, and that the value of every
coalition structure is given by the function V (CS) =

∑
C∈CS v(C), our goal is then

to search through the set of possible coalition structures (noted as P(A) = {CS ∈
2A| ∪C∈CS C = A ∧ ∀C, C ′ ∈ CS C ∩ C ′ = ∅}) in order to find an optimal coalition
structure (noted as CS∗ = arg maxCS∈P(A) V (CS)), given v(C),∀C ⊆ A.

This chapter is organized as follows. In Section 4.1, we describe our novel represen-
tation for the search space. In Section 4.2, we detail the AIPA algorithm, and show
how it can use this representation to prune the search space and find the optimal coali-
tion structure using a branch-and-bound technique. After that, we provide an empirical
evaluation of AIPA in Section 4.3. Finally, we summarize the work in Section 4.4.

4.1 Search Space Representation

Recall that the search space representation employed by most existing state-of-the-
art anytime algorithms is an undirected graph (see Figure 2.5 for an example), where
the vertices represent coalition structures [Sandholm et al., 1999; Dang and Jennings,
2004]. This representation, however, forces all valid solutions to be explored in order
to guarantee that the optimal has been found. In contrast, the dynamic programming

87

Chapter 4 Solving the Coalition Structure Generation Problem 88

approach (DP) employs a more efficient representation, where solutions of subprob-
lems do not need to be recomputed over and over again [Yeh, 1986; Rothkopf et al.,
1995]. This representation, however, does not allow solutions to be generated anytime,
which makes it unsuitable when there is insufficient time to wait for an optimal solution.

Given the above, we believe an ideal representation for the search space should al-
low the computation of solutions anytime, while establishing bounds on their quality,
and should allow the pruning of the space to speed up the search. With this objective
in mind, in this section we describe just such a representation. In particular, it supports
an efficient search for the following reasons. First, it partitions the space into smaller
independent sub-spaces, for which we can identify upper and lower bounds, and thus,
compute a bound on the solutions found during the search. Second, we can prune most
of these sub-spaces since we can identify the ones that cannot contain a solution bet-
ter than the one found so far. Third, since the representation pre-determines the size
of coalitions present in each sub-space, agents can balance their preference for certain
coalition sizes against the cost of computing the solution for these sub-spaces. Next,
we formally define our representation of the search space, and describe its algebraic
properties, and, finally, describe worst case bounds on the quality of the solution that
our representation allows us to generate.

4.1.1 Partitioning the Search Space

We partition the search space P(A) by defining sub-spaces that contain coalition struc-
tures that are similar according to some criterion. The particular criterion we spec-
ify here is based on the integer partitions of the number of agents (i.e. n).1 These
integer partitions, of an integer n, are the sets of positive integers that add up to ex-
actly n [Skiena, 1998]. For example, the five distinct partitions of the number 4 are
{4}, {3, 1}, {2, 2}, {2, 1, 1}, and {1, 1, 1, 1}. It can easily be shown that the different
ways in which a set of 4 elements can be partitioned can be directly mapped to the in-
teger partitions of the number 4. For instance, partitions (or coalition structures) of the
set of four agents, {{a1, a2}, {a3}, {a4}} ∈ P(A), and {{a4, a1}, {a2}, {a3}} ∈ P(A)

are associated with the integer partition {2, 1, 1}, where the parts (or elements) of the
integer partition correspond to the cardinality of the elements (i.e. the size of the coali-
tions) of the set partition (i.e. the coalition structure). For example, for the coalition

1Other criteria could be developed to further partition the space into smaller sub-spaces, but the one
we develop here allows us to choose coalition structures with certain properties as we show later.

Chapter 4 Solving the Coalition Structure Generation Problem 89

structure {{a4, a1}, {a2}, {a3}} ∈ P(A), the elements of its configuration can be ob-
tained as follows: |{a4, a1}| = 2, |{a2}| = 1, and |{a3}| = 1. Note that the number
of possible integer partions grows exponentially. However, this number is insignificant
compared to the number of possible coalitions or coalition structures. For example,
given 24 agents, the number of possible integer partitions is only 1575, while the num-
ber of possible coalitions is 16, 777, 215., and the number of possible coalition strucutres
is 445, 958, 869, 294, 805, 289.

Here, we precisely define this mapping by the function F : P(A) → G, where G is
the set of integer partitions of n. Thus, F defines an equivalence relation ∼ on P(A)

such that CS ∼ CS ′ iff F (CS) = F (CS ′) (i.e. the cardinality of the elements of CS

are the same as those of CS ′). Given this, for the remainder of this chapter, we will
refer to an integer partition as a coalition structure configuration. Then, the pre-image2

of a configuration G, noted as F−1[{G}], contains all coalition structures with the same
configuration G. Figure 4.1 depicts the pre-image F−1[{G}] as the set of coalition struc-
tures corresponding to each configuration G from a set of four agents. We describe the
procedure to obtain these pre-images later in this chapter. Note that the levels LVi of the
previous representation (i.e. the one used by Sandholm et al. and Dang and Jennings)
can easily be obtained as follows: LVi = ∪G∈G,|G|=iF

−1[{G}]. Next, we describe how
we can compute bounds for each sub-space F−1[{G}].

4.1.2 Computing Bounds for Sub-Spaces

For each sub-space F−1[{G}], it is possible to compute an upper and a lower bound.
To this end, we denote by Ls = {C ⊆ A : |C| = s} the list of coalitions of the
size s ∈ {1, . . . , n}. Moreover, we denote by maxs, mins, and avgs, the maximum,
minimum, and average value of coalitions of a given size s. Now, given a configu-
ration G, we define a set SG =

∏
s∈G(Ls)

G(s) which is the cartesian product of the
coalition lists Ls, where G(s) returns the multiplicity of s in G. For example, given
G = {5, 4, 4, 4, 1, 1}, we have SG = (L5)

1× (L4)
3× (L1)

2. Notice that the set SG con-
tains many combinations of coalitions that are considered invalid coalition structures
(because they may contain overlapping coalitions). For example, a combination of the
following coalitions {a1, a2}, {a1},{a3} is not a valid coalition structure because agent
a1 appears in two coalitions.

2Recall that the pre-image or inverse image of a set G ⊆ G under F : P(A) → G is the subset of
P(A) defined by F−1[{G}] = {CS ∈ P(A)|F (CS) = G}.

Chapter 4 Solving the Coalition Structure Generation Problem 90

FIGURE 4.1: Representing the space using G and F−1[{G}] and the lists of coalitions
Ls. The different levels represent layers used in previous representations where worst
case bounds can be established by searching particular layers. The numbers represent

the indices of the agents (e.g. 1 for a1, 4 for a4).

Now, consider the value UBG obtained by summing the maximum value of each coali-
tion list involved in a set SG. Formally, UBG =

∑
s∈G G(s) ·maxs. For example, given

G = {5, 4, 4, 1, 1, 1}, we have UBG = max5 + (2×max4) + (3×max1). Now since
UBG defines the maximum value of the elements in SG, it is easy to demonstrate that
UBG is an upper bound for the maximum value of the coalition structures in F−1[{G}]
(since F−1[{G}] is a subset of SG). In a similar way, it is possible to compute a lower
bound. Intuitively, one would expect to select

∑
s∈G G(s) · mins (i.e., the minimum

value of the elements in SG) as a lower bound for the maximum value of the coalition
structures contained in F−1[{G}]. However, a better lower bound would be the average

of the values of these coalition structures.3 This is because the average value is very
likely to be much greater than the minimum one (depending on the distribution of val-
ues), and having a greater lower bound allows more pruning of the search space. The
key point to note, here, is that the average value of a sub-space can be obtained without
having to go through any coalition structure. Instead, we can obtain this average by
summing the averages of the coalition lists (i.e., AV GG =

∑
s∈G G(s) ·avgs) and these

3Generally speaking, an average value can always be considered as a lower bound of the maximum
(i.e. optimal) one. This is because the maximum value is at least as good as the average one.

Chapter 4 Solving the Coalition Structure Generation Problem 91

can be computed with very little cost by only scanning the input which is much smaller
than the space of coalition structures.

Theorem 4.1. Let G be a configuration, G = {g1, . . . , gi, . . . , g|G|}. Let AV GG be
the average of all coalition structures in F−1[{G}] and avggi

be the average of all coali-
tions in Lgi

, for every 1 ≤ i ≤ |G|. Then the following holds:

AV GG =
∑
gi∈G

avggi

Proof. Let Ḡ = (g1, g2, . . . , gk) contain the elements of G with a natural ordering
on them, and let F̄−1[{Ḡ}] return all ordered coalition structures (C1,gi

, . . . , Ck,gi
),

Cj,gi
∈ Lgi

, where the natural ordering of the elements Cj,gi
of each coalition structure

is taken into consideration. For example, with n = 4 and G = {1, 1, 2}, Ḡ = {1, 1, 2};
then considering ordered coalition structures in F̄−1[{Ḡ}], we have two possibilities:
({a1}, {a2}, {a3, a4}) and ({a2}, {a1}, {a3, a4}) that correspond to one coalition struc-
ture {{a1}, {a2}, {a3, a4}} in F−1[{G}]. Now since the number of repetitions of differ-
ent coalition structures of F−1[{G}] in F̄−1[{Ḡ}] is always the same (e.g., in the above
example with Ḡ = {1, 1, 2}, all coalition structures in F−1[{G}] will appear twice in
F̄−1[{Ḡ}]), then we have:

AV GG = AV GḠ (4.1)

where AV GḠ is the average of coalition structures in F̄−1[{Ḡ}]. Now, if we denote
by Nn(g1, g2, . . . , gk) the number of ordered coalition structures in F̄−1[{Ḡ}], then we
have:

AV GḠ =
1

Nn(g1, g2, . . . , gk)

∑
CS∈F̄−1[{Ḡ}]

V (CS)

=
1

Nn(g1, g2, . . . , gk)

∑
CS∈F̄−1[{Ḡ}]

k∑
i=1,Ci∈CS

v(Ci)

Moreover, for every coalition Cj,gi
∈ Lgi

, there are: Nn−gi
(g1, g2, . . . , gi−1, gi+1, . . . , gk)

ordered coalition structures where Cj,gi
happens to be the jth coalition. Based on this,

we have:

Nn(g1, g2, . . . , gk) = |Lgi
| ·Nn−gi

(g1, . . . , gi−1, gi+1, . . . , gk) (4.2)

Moreover, the number of times that v(Cj,gi
) occurs in the jth position of the sum of all

coalition values in F−1[{Ḡ}] is Nn−gi
(g1, . . . , gi−1, gi+1, . . . , gk). Given this, we next

Chapter 4 Solving the Coalition Structure Generation Problem 92

compute AV GḠ as follows:

AV GḠ =
1

Nn(g1, g2, . . . , gk)
k∑

i=1

∑
Cj,gi

∈Lgi

Nn−gi
(g1, . . . , gi−1, gi+1, . . . , gk) · v(Cj,gi

)

=
k∑

i=1

∑
Cj,gi

∈Lgi

Nn−gi
(g1, . . . , gi−1, gi+1, . . . , gk)

Nn(g1, g2, . . . , gk)
· v(Cj,gi

)

=
k∑

i=1

∑
Cj,gi

∈Lgi

1

|Lgi
|
· v(Cj,gi

) (following equation (4.2))

=
k∑

i=1

 1

|Lgi
|

∑
Cj,gi

∈Lgi

· v(Cj,gi
)


=

k∑
i=1

avggi

As AV GG = AV GḠ (equation (4.1)), we have:

AV GG =
k∑

i=1

avggi

�

4.2 The Anytime Integer-Partition based Algorithm (AIPA)

Having described our representation of the search space, we now describe the main two steps

that AIPA requires in order to search the space using this representation:

1. The first step involves obtaining bounds UBG and AV GG for every F−1[{G}]. While

doing so, we can also find the best coalition structures within particular sub-spaces (at a

very small cost), and, at the same time, establish a worst-case bound on the quality of the

solution found so far, and prune parts of the search space.

2. The second step involves searching within the remaining sub-spaces using a branch-and-

bound technique to reduce the number of coalition structures that we need to go through,

while further pruning the space.

Chapter 4 Solving the Coalition Structure Generation Problem 93

Next, we describe each of these steps in more detail.

4.2.1 Step 1: Computing Bounds

The input to the coalition structure generation problem is the value associated to each coalition

(i.e. v(C) for all C ∈ 2|A|). One way of representing this input is to use a table containing every

coalition along with its value. Another way of representing it is to agree on an ordering of the

coalitions, and to use a list containing only the values of these ordered coalitions (i.e. the first

value in the list corresponds to the first coalition, the second value corresponds to the second

coalition, and so on). We use the second representation since it does not require maintaining the

coalitions themselves in memory. To this end, we assume that the input is partitioned into lists

based on the size of the coalitions (i.e. for every size s, we have a list of values Ls correspond-

ing to the coalitions of that size). Moreover, we assume that the coalitions of any given size

are ordered both horizontally and vertically (in descending and ascending order respectively) in

the list. For example, coalition {a1, a2, a4} has its elements ordered according to their indices

and the coalition itself is found above {a1, a2, a3} and below {a1, a3, a4} in the list L3. This

ordering can easily be generated using the techniques applied in DCVC (see Section 3.1.1 for

more details). Next, we specify how this input can be scanned.

At first, we scan the value of the one coalition of size n (i.e. the grand coalition). This would

be the value of the only coalition structure corresponding to G = {n} (i.e. the only coalition

structure in LV1). After that, we scan the values of the coalitions of size 1 (i.e. singleton coali-

tions). By summing these values, we get the value of the only coalition structure corresponding

to G = {1, 1, . . . , 1} (i.e. the only coalition structure in LVn). Next, having searched through

levels LV1 and LVn, we show how to search through level LV2 at a very low cost during the

scanning process.

To this end, let G2 = {G ∈ G : |G| = 2} be the set of configurations where the number of

elements in a given G is equal to 2. Then we note that, as a result of the ordering we employ,

the two complementary coalitions C and C ′ within any CS ∈ F−1[{G}], where G ∈ G2, are

always diametrically positioned in the coalition lists L|C| and L|C′|. For example, coalitions

{1} and {2, 3, 4} (see Figure 4.1) are diametrically positioned in the list L1 and L3 respectively.

Moreover, when |C| = |C ′|, then the coalitions are diametrically positioned in the same list.

For example, coalitions {1, 2} and {3, 4} (see Figure 4.1) can be found at the bottom and top

respectively in the list L2. Given this, we can compute the value of all coalition structures with

configurations G ∈ G∈ by simply summing the values of the coalitions while scanning the lists

Ls and Ln−s, starting at different extremities for each list. In so doing, we search through every

coalition structure in level LV2 (since we have LV2 = ∪G∈G2F−1[{G}]). Note that we can

record maxs and avgs (and maxn−s and avgn−s) as we are scanning the input. Also note that

this process is O(m) where m = 2n − 1 is the size of the input.

Chapter 4 Solving the Coalition Structure Generation Problem 94

Having computed maxs and avgs for each sub-space, we can now compute the upper bound

(UBG) and the lower bound (AV GG) of the maximum value of the elements of every sub-

space, and that is as described in Section 4.1.2. After that, we can assign the lower bound of

the optimal to LB = max(AV G∗
G, V (CS′)), where AV G∗

G = arg maxG∈G(AV GG) is the

highest lower bound of the sub-spaces, and V (CS′) is the value of the best coalition struc-

ture CS′ obtained by scanning the input as above. Hence, all sub-spaces with UBG < LB

can be pruned straightaway. For example, as shown in Figure 4.2, sub-spaces corresponding to

G = {4}, G = {2, 2}, and G = {1, 1, 1, 1} can be pruned since their upper bounds are less

than the lower bound (in this case established by the average of the sub-space corresponding to

G = {1, 3}).

FIGURE 4.2: Example of how sub-spaces are pruned based on the bounds calculated.
Here, each box represents a sub-space, and the width of each box represents the relative

number of coalition structures within the sub-space.

After scanning the input, and searching through levels LV1, LV2, LVn, we can establish a worst-

case bound B = n
2 on the quality of the solution found so far (according to Sandholm et al.

Chapter 4 Solving the Coalition Structure Generation Problem 95

[1999]). However, we can also specify a worst-case bound equal to UBmax

AV G∗
G2

, where UBmax =

maxG∈G(UBG) and AV G∗
G2 = arg maxG∈G2(AV GG). This is because the optimal value is at

best equal to UBmax, and the best value found so far is at worst equal to the maximum of all

average values AV GG of the sub-spaces searched so far (including F−1[{G}] for all G ∈ G2).

Hence, the best (i.e. the smallest) of the two measures can be taken as the worst case bound on

the value found so far. Note that UBmax

AV G∗
G2

could be much smaller than n
2 (depending on the dis-

tribution of values). In fact, it could be as small as 1 (in which case no further search is required

because the best solution found so far is guaranteed to be an optimal one).

So far, by only scanning the input, we have calculated maxs and avgs for all s ∈ {1, . . . , n}, we

have searched levels LV1, LV2, LVn, we have calculated UBG and AV GG for all the sub-spaces

within the remaining levels (i.e. LV3, ..., LVn), we have pruned some of these sub-spaces, and

we have established a worst-case bound on the quality of the solution found so far. Next, we

specify how the remaining sub-spaces (if there are any) are searched.

4.2.2 Step 2: Selecting and Searching F−1[{G}]

Given a set of promising sub-spaces obtained after scanning the input, we need to select the

one sub-space F−1[{G}] to search and then search for the best coalition structure within it

(i.e., CS∗
G). These operations are performed repeatedly, one after the other, until either of the

following termination conditions are reached, at which point the optimal solution is obtained

(i.e., CS∗ = CS∗
G):

1. V (CS∗
G) = UBmax (in which case no better coalition structure can exist).

2. All nodes have been searched or the remaining sub-spaces have been pruned.

As can be seen, unlike previous CSG algorithms, the speed with which AIPA reaches the op-

timal value depends on the closeness of the upper bound to the optimal value. This closeness

is determined by the spread of the distribution of the coalition values (e.g., a larger variance

means that the upper bound is more representative of the maximum and conversely for a tighter

variance). Hence, later in this chapter, we will evaluate the robustness of AIPA against a number

of distributions. In the next subsection we describe how we select the next sub-space to search.

4.2.2.1 Selecting F−1[{G}].

To this end, we note that if CS∗ happens to be located in some sub-space F−1[{G∗}], then the

only way to find CS∗, and to verify that it is indeed an optimal solution, is to search through

F−1[{G∗}] as well as every other sub-space F−1[{G}] that has an upper bound UBG ≥ UBG∗ .

Chapter 4 Solving the Coalition Structure Generation Problem 96

What would be desirable, then, is to avoid searching through the remaining sub-spaces (i.e.

F−1[{G}] where UBG < UBG∗). A key point to note, here, is that, although G∗ is not known

in advance, we can still avoid searching through those sub-spaces, and that is by always selecting

the next sub-space to search using the following rule:

Select F−1[{G}], where G = arg max
G∈G

(UBG)

This selection rule also ensures that, after each sub-space is searched, the upper bound of the

optimal (i.e. UB∗) will be reduced (unless if there are several sub-spaces with equal upper

bounds). This is illustrated in Figure 4.3. In more detail, the figure shows an example of 10 sub-

spaces (s1, s2, ..., s10) which are sorted based on their upper bounds, where s1 is the one with

the highest upper bound, and s10 is the one with the lowest upper bound. In this example, the

optimal solution is located in s3. This information, however, is not known in advance. Initially,

UB∗ would be equal to the upper bound of s1, and based on the above rule, the first sub-space

to be searched would be s1. Once s1 is searched, UB∗ becomes equal to the upper bound of

s2, and once s2 is searched, UB∗ becomes equal to the upper bound of s3, and so on. Once s4

is searched, all the remaining sub-spaces (e.g. s5, ..., s10) will be pruned because they have an

upper bound lower than the value of the best solution found so far.

FIGURE 4.3: A naive technique for cycling through the coalition structures within
F−1[{G}].

Another reason for using this selection rule is that AIPA only terminates if, either there are no

sub-spaces left to be searched or the maximum upper bound has been reached. Either condition

can only be reached if the sub-space with the highest UBG (i.e. UBmax) is searched. Note

that this rule, which implies best-first search, applies only if we are seeking an optimal solu-

tion. In case we are after a near-optimal solution where a bound B ∈ [0, 1] is specified (e.g.,

B = 0.95 means that the solution sought only needs to be 95% efficient in the worst case),

then the selection function will be different since we do not need to search the sub-space with

UBG = UBmax in order to return a possible solution at any time. Rather, we need to search

sub-spaces that are smaller but could give a value close to B × UBmax. The point to note is

Chapter 4 Solving the Coalition Structure Generation Problem 97

that, given our representation, we can specify B in cases where computing the optimal solution

would be too costly and, given this, we can modify the selection function accordingly to speed

up the search.

Another advantage of being able to control the configuration selected for the search is that

agents can choose what type of coalition structures to build according to their computational

resources or private preferences [Sandholm et al., 1999; Shehory and Kraus, 1998]. For exam-

ple, it has been argued that the computation time could be reduced if we could limit the size of

the coalitions that could be chosen. However, this is a very costly self-imposed constraint since

it possibly means neglecting a number of highly efficient solutions. Instead, by using AIPA,

it is possible to determine, ex-ante (before performing the search), which coalition structure

configurations are most promising according to their upper and lower bounds. Therefore the

computation time can be focused on these configurations and the gains can be traded-off against

the computation time since the size of a given sub-space can be exactly computed using the

following equation:

|F−1[{G}]| =
Cn

g1
× Cn−g1

g2 × . . .× C
n−

Pk−2
i=1 gi

gk−1∏n
i=1,i∈E(G) G(i)!

(4.3)

where E(G) is the underlying set4 of elements of G = {g1, . . . , gk}, and G(i) is the multiplicity

of i in G. In cases where agents do prefer coalition structures of particular types (e.g., containing

bigger or smaller coalitions), they can now, a priori, balance such preferences with the quality of

the solutions (bounded by AV GG) that can be obtained from such coalition structures. Indeed,

this is because, in our case, it is possible to determine the worst-case bound from the optimal

that the search of a given subspace will generate (i.e. UBmax
AV GG

). We next describe how we search

the elements of the chosen sub-space F−1[{G}].

4.2.2.2 Searching within F−1[{G}].

The key point to note, here, is that we are not interested in maintaining a list of every possible

coalition structure within the selected F−1[{G}]. Instead, we are only interested in maintaining

the coalition structure that has the maximum value.5 Therefore, we only allocate a space in

memory, denoted by M = {M1,M2, . . . ,M|G|}, which is sufficient to maintain one coalition

structure at a time. Then, we use M to cycle through F−1[{G}] as follows. First, we assign M

to one of the coalition structures in F−1[{G}] and calculate its value. After that, we assign M

to another coalition structure in F−1[{G}] and calculate its value, and so on. This is repeated

until every coalition structure in F−1[{G}] has been examined. While doing so, we record the

4For example {1, 2} is the underlying set of {1, 1, 2}.
5This is mainly because maintaining every possible coalition structure requires an infeasibly large

memory space (e.g. given 20 agents, one would require 538,600 GB of memory in order to maintain
every possible coalition structure).

Chapter 4 Solving the Coalition Structure Generation Problem 98

coalition structure that has the maximum value found so far.

Intuitively, one could perform this cyclation process as shown in Figure 4.4. In more detail,

M1 is assigned to one of the coalitions in Lg1 . After that, M2 is used to cycle through Lg2

until a coalition that does not overlap with M1 is found. After that, M3 is used to cycle through

Lg3 until a coalition that does not overlap with {M1,M2} is found. This is repeated until ev-

ery Mk ∈ M is assigned to a coalition in Lgk
. In this case, M would be a valid coalition

structure belonging to F−1[{G}]. The value of this coalition structure is then calculated and

compared with the maximum value found so far. After that, the coalitions in M are updated

so as to make M equal to another coalition structure in F−1[{G}]. Here, we only update Mk

once we have examined all the possible instances of {Mk+1, . . . , , M|G|} that do not overlap

with {M1, . . . ,Mk}. For example, in Figure 4.4, we only update M2 (step 5 in the figure) once

we have examined all the possible instance of M3 that do not overlap with {M1,M2} (steps 2,

3, 4 in the figure). This ensures that M is assigned to different coalition structures, and that,

eventually, every possible coalition structures in F−1[{G}] is examined.

Intuitively, one might consider this cyclation technique to be efficient. After all, what we need

is to find the coalition structure in F−1[{G}] that has the maximum value, and this technique

guarantees to find such a coalition structure. However, this technique suffers from the following

major limitations:

• This cyclation technique works by generating combinations of coalitions, and check-

ing whether each of these combinations is a valid coalition structure. In other words, it

searches through the space of possible combinations of coalitions. This is a major lim-

itation since the space of coalition structures is already exponentially large, and the last

thing we want is to search for it in an even bigger space. For example, given 28 agents,

and given G = {1, 2, 3, 4, 5, 6, 7}, the number of coalition structures is only 7.8 × 10−9

of the number of possible combinations. Note that the difference in size between the two

spaces grows exponentially with the number of agents involved. Therefore, as long as

we are dealing with the space of possible combinations, we will never be able to return

solutions in a timely fashion.

• Although this technique does not generate the same combination twice, it generates mul-

tiple combinations containing the same coalitions, but ordered differently. For example,

given n = 7, it could generate the following combinations: {{1, 2}, {3, 4}, {5, 6, 7}} and

{{3, 4}, {1, 2}, {5, 6, 7}}). These combinations, however, correspond to the same coali-

tion structure (because the ordering of coalitions within a coalition structure is not taken

into consideration). Note that we need to find the coalition structure with the maximum

value, and in order to do so, it is sufficient to examine the value of every coalition struc-

ture once. In other words, any operation that results in the same coalition structure being

generated more than once is considered to be redundant.

Chapter 4 Solving the Coalition Structure Generation Problem 99

FIGURE 4.4: A naive technique for cycling through the coalition structures within
F−1[{G}].

Chapter 4 Solving the Coalition Structure Generation Problem 100

These limitations are made clearer in the example shown in Figure 4.5. In more detail, given

A = {a1, a2, a3, a4, a5, a6, a7}, and G = {2, 2, 3}, the figure shows that, after assigning M1

to {1, 6}, we had to go through a number of invalid coalitions in L2 before we could find one

that does not overlap with M1. Similarly, after assigning M2 to {2, 3}, we had to go through a

number of invalid coalitions in L3 before we could find one that does not overlap with M1 and

M2. The figure also shows an example of different combinations of coalitions corresponding to

the same coalitions structure (see the dashed line in the figure).

FIGURE 4.5: Example of how the basic cyclation technique results in a number of
invalid combinations being examined, as well as redundant combinations being gener-

ated, and that is given A = {a1, a2, a3, a4, a5, a6, a7} and G = {2, 2, 3}.

What would be desirable, then, is to find a way to cycle through the lists Lg1 , . . . , Lg|G| such

that only valid combinations are generated. In other words, it would be desirable if Mk only

cycles through the valid coalitions in Lgk
, rather than going through every coalition in Lgk

, and

verifying whether it overlaps with {M1, . . . ,Mk−1}. Moreover, in order to avoid performing

any redundant operations, it would be desirable if the cyclation process is guaranteed never to

go through the same coalition structure more than once. In what follows, we present a novel

cyclation technique that can meet these requirements, and then describe a branch-and-bound

approach that avoids generating coalition structures that are known to have a value lower than

the maximum one found so far.

Chapter 4 Solving the Coalition Structure Generation Problem 101

(1) Avoiding invalid coalition structures:

Given G = {g1, . . . , g|G|}, we define the following sets of agents: A1, . . . , A|G|, where A1

contains n agents, and Ak : 2 ≤ k ≤ |G| contains n −
∑k−1

i=1 gi agents. Moreover, we define

LCi
s as the list of possible combinations of size s taken from the set {1, 2, . . . , i}.6 For example,

the list LC3
2 would contain the following combinations {1, 2}, {1, 3}, and {2, 3}. Given these

definitions, we now outline the main differences between our cyclation technique, and the naive

one (i.e. the one shown in Figure 4.4):

• When using the naive technique, Mk is used to cycle through the list Lgk
. On the other

hand, when using our technique, Mk cycles through the list LC
|Ak|
gk .

• In the naive technique, having Mk = {Mk,1, . . . ,Mk,gk
} implies that Ck = {aMk,1

, . . . , aMk,gk
}.

On the other hand, when using our technique, it implies that Ck = {Ak,1, . . . , Ak,gk
}.

For example, having M2 = {1, 3, 5} does not imply that C2 = {a1, a3, a5}. Instead, it

implies that C2 contains the 1st, the 3rd, and the 5th element of A2.

These differences ensure that Mk cycles through all the possible coalitions of size gk taken from

Ak. 7 Based on this, if we set Ak to contain the agents that are not members of C1, . . . , Ck−1,

then we ensure that any instance of Ck can never overlap with C1, . . . , Ck−1.

Figure 4.6 shows an example of our cyclation technique, given A = {a1, a2, a3, a4, a5, a6, a7}
and G = {2, 2, 3}. As can be seen, having M1 = {1, 6} implies that C1 contains the 1st and 6th

elements of A1 (i.e. it implies that C1 = {1, 6}). By knowing the agents that belong to C1, we

can then assign A2 to those that do not belong to C1 (i.e. A2 = {2, 3, 4, 5, 7}). As mentioned

earlier, M2 would then cycle through all the possible coalitions of size 2 out of A2, and none

of these coalitions would ever overlap with C1. Similarly, having M2 = {3, 5} implies that C2

contains the 3rd and 5th elements of A2 (i.e. it implies that C2 = {4, 7}), and by knowing the

agents that belong to C2, we can then assign A3 to those that do not belong to C1 or C2 (i.e.

A3 = {2, 3, 5}), and so on. Note that Mk always cycles through the same list (i.e. LC
|Ak|
gk).

However, every time Ak is updated, the same combination in LC
|A|
gk would represent a different

6Note that, throughout this thesis, we use the term “coalition” to represent a combination of agents.
Here, however, the elements of the set (i.e. 1, 2, . . . , i) are not used to represent agents (i.e. element i is
not used to represent agent ai). Therefore, we use the term “combination” instead of the term “coalition”.

7For example, given A4 = {5, 7, 8} and given g4 = 2, M4 is used to cycle through the list LC
|A4|
g4

(i.e. it is used to cycle through LC3
2 which contains the combinations {1, 2}, {1, 3}, and {2, 3}). In

more detail, M4 is first assigned to the combination {1, 2}, and this implies that C4 contains the 1st and
2nd elements of A4 (i.e. it implies that C2 = {5, 7}). After that, M4 is assigned to {1, 3}, and this
implies that C4 contains the 1st and 3rd elements of A4 (i.e. it implies that C4 = {5, 8}). Finally, M4 is
assigned to {2, 3}, and this implies that C4 contains the 2nd and 3rd elements of A4 (i.e. it implies that
C4 = {7, 8}). As can be seen, when M4 finishes cycling through LC3

2 , all the possible coalitions of size
2 out of A4 (i.e. {5, 7}, {5, 8}, {7, 8}) will be examined.

Chapter 4 Solving the Coalition Structure Generation Problem 102

coalition. Moreover, note that, in order to make Mk cycle efficiently through LC
|A|
gk , we apply

the same procedure that we have developed for our DCVC algorithm (see Section 3.1 for more

details).

FIGURE 4.6: Example of our novel cyclation technique, given A =
{a1, a2, a3, a4, a5, a6, a7} and G = {2, 2, 3}.

This cyclation technique ensures that only valid combinations of coalitions (i.e. coalition struc-

tures) are generated. Moreover, it ensures that the same combination is never generated twice.

However, this cyclation technique can still generate two different combinations containing the

same coalitions, but ordered differently. For example, it can still generate the following two

valid combinations {{1, 2}, {3, 4}, {5, 6, 7}} and {{3, 4}, {1, 2}, {5, 6, 7}} which correspond

to the same coalition structure. As mentioned earlier, this is not desirable because it involves

performing redundant operations. Therefore, our cyclation technique needs to be modified so as

to guarantee that every coalition structure is only generated once. Next, we show how this can

be done.

(2) Avoiding redundant coalition structures:

We note that, by using our cyclation technique, the same coalition structure can only be gen-

erated twice if there are repeated coalition sizes in the configuration (e.g. G = {1, 2, 2, 3}
or G = {1, 4, 4, 4, 6}). This is because any coalition structure CS = {C1, . . . , C|G|} that is

generated using our cyclation technique is guaranteed to match the given configuration G. In

other words, |Ck| is always equal to gk. Therefore, if a coalition structure CS is generated us-

ing our technique, it would be impossible to change the ordering of the coalitions within CS,

Chapter 4 Solving the Coalition Structure Generation Problem 103

and still have |Ck| = gk for every 1 ≤ k ≤ |G|, unless if gk = gj where k 6= j. For ex-

ample, given G = {1, 2, 4}, our cyclation technique can never generate the coalition structure

CS = {{1}, {2, 3}, {4, 5, 6, 7, 8}} twice. This is because there is no way to change the ordering

of the coalitions within CS, and still have |C1| = 1, |C2| = 2, and |C3| = 5. Based on this,

our cyclation technique only needs to be modified whenever we have repeated coalition sizes

within G. Note, however, that this is still a serious problem since most of the coalition structures

usually contain repeated coalition sizes (e.g. given 20 agents, 99.6% of the possible coalition

structures would contain repeated coalition sizes).

Here, we assume that the elements within Ak : 1 ≤ k ≤ |G| are listed in an ascending or-

der (see Figure 4.6 where the elements within A1, A2, and A3 are ordered ascendingly). Then,

assuming that gk = gk+1, we need to ensure that the same coalitions structure is never gener-

ated twice (Figure 4.6 shows an example where g1 = g2 = 2). To this end, note that Mk cycles

through LC
|Ak|
gk starting from the combinations that contain 1, and then moves to those that do

not contain 1 but contain 2, and then to those that do not contain 1 or 2 but contain 3, and so on

(see Figure 4.6 where the arrow moves from the elements in LC7
2 that start with 1 to those that

start with 2 and so on). Next, we go through each of these cases in detail:

• At first, Mk goes through the combinations in LC
|Ak|
gk that contain 1. For each of these

combinations, Ck would contain the 1st element in Ak (i.e. it would contain Ak,1). More-

over, for each of these combinations, Mk+1 would go through all the combinations in

LC
|Ak+1|
gk+1 . As mentioned earlier, this is done such that Ck+1 never overlaps with Ck. As

a result, Ck+1 would not contain Ak,1 (otherwise it would overlap with Ck). By the time

Mk finishes cycling through the combinations in LC
|Ak|
gk that contain 1, we would have

examined all the coalition structures that contain two coalitions of size gk, where one of

them contains Ak,1, and the other does not.

• After that, Mk moves to the combinations in LC
|Ak|
gk that do not contain 1 but contain

2. For each of these combinations, Ck would not contain Ak,1, but would contain Ak,2.

Now since we have Ak+1 = Ak\Ck, then Ak,1 would be an element of Ak+1. In fact,

Ak,1 would be the first element in Ak+1.8 Based on this, whenever Mk+1 cycles through

the combinations in LC
|Ak+1|
gk+1 that contain 1, Ck+1 would contain the 1st element in

Ak+1 (i.e. it would contain Ak,1). This would, in turn, certainly lead to a repeated

coalition structure, because we have already examined all the coalition structures that

contain two coalitions of size gk, where one of them contains Ak,1, and the other does

not. To avoid generating these coalition structures twice, we need to make sure that Ck+1

does not contain Ak,1. This can be done by having Mk+1 cycle through the combinations

in LC
|Ak+1|
gk+1 that do not contain 1 (see Figure 4.6 where the combinations in LC7

2 that

8This comes from the fact that the elements within Ak are ordered ascendingly (which means that
Ak,1 is the smallest element in Ak), and the fact that Ak+1 is a subset of Ak that contains Ak,1 (which
means that Ak,1 is also the smallest element in Ak+1, and would, therefore, be the first element in it).

Chapter 4 Solving the Coalition Structure Generation Problem 104

start with 2 are contained in a box, and this box is only connected to the combinations in

LC5
2 that start with 2, 3, or 4, meaning that whenever M1 cycles through the combinations

in LC7
2 that start with 2, M2 will only cycle through the combinations in LC5

2 that start

with 2, 3, or 4). By the time Mk finishes cycling through the combinations in LC
|Ak|
gk that

contain 2, we would have examined all the coalition structures that contain two coalitions

of size gk, where one of them contains Ak,2, and the other does not.

• Similarly, when Mk moves to the combinations in LC
|Ak|
gk that do not contain 1 or 2 but

contain 3, Ck would not contain Ak,1 nor Ak,2, but would contain Ak,3. As a result,

Ak,1 and Ak,2 would be the first two elements in Ak+1. Based on this, whenever Mk+1

cycles through the combinations in LC
|Ak+1|
gk+1 that contain 1 or 2, Ck+1 would contain the

1st or the 2nd element in Ak+1 respectively (i.e. it would contain Ak,1 or Ak,2). This

would, in turn, certainly lead to a repeated coalition structure, because we have already

examined all the coalition structures that contain two coalitions of size gk, where one of

them contains Ak,1 or Ak,1, and the other does not. In a similar way, this repetition can be

avoided by making Mk+1 cycle through the combinations in LC
|Ak+1|
gk+1 that do not contain

1 or 2 (see Figure 4.6 where the combinations in LC7
2 that start with 3 are contained in a

box, and this box is only connected to the combinations in LC5
2 that start with 3, or 4).

Based on this, whenever Mk cycles through the combinations in LC
|Ak|
gk that start with j, Mk+1

must only cycle through the combinations in LC
|Ak+1|
gk+1 that start with j or higher values. As

a result, Mk can only cycle through the combinations in LC
|Ak|
gk that start with j such that

1 ≤ j ≤ (|Ak+1| − gk+1 + 1). Otherwise, if j > (|Ak+1| − gk+1 + 1), then there would

be no combinations in LC
|Ak+1|
gk+1 that start with j or higher values (e.g. in Figure 4.6, we have

(|A2| − g2 + 1) = (5 − 2 + 1) = 4. Based on this, M1 can only cycle through the com-

bination in LC7
2 that start with 1, . . . , 4, because there are no combinations in LC5

2 that start

with 5 or 6). Similarly, if we have more than two coalitions of the same size (i.e. if we have

gk = gk+1 = . . . = gk+x), then Mk can only cycle through the combinations in LC
|Ak|
gk that

start with j such that 1 ≤ j ≤ (|Ak+x| − gk+x + 1).

These modifications ensure that our cyclation technique generates every possible coalition struc-

tures within the selected F−1[{G}] exactly once. However, it would be even more desirable if

we can avoid generating the coalition structures that cannot have a value greater than the max-

imum value found so far. Next, we show how this can be done using branch-and-bound tech-

niques.

(3) Applying Branch-and-Bound:

As mentioned earlier, when cycling through the coalition structures within F−1[{G}], we only

update Mk once we have examined all the possible instances of {Ck+1, . . . , C|G|} that do

not overlap with {C1, . . . , Ck}. In other words, we only update Mk once we have examined

Chapter 4 Solving the Coalition Structure Generation Problem 105

all the possible coalition structures that start with {C1, . . . , Ck}. However, if we knew that

none of these coalition structures could have a value greater than the maximum value found

so far, then we could update Mk straight away (i.e. without having to go through any of the

possible instances of {Ck+1, . . . , C|G|}). In order to do so, we calculate an upper bound on

the value of the coalitions that can be added to {Ck+1, . . . , C|G|}. Specifically, having com-

puted maxs for every possible coalition size s ∈ {1, 2, . . . , n}, we can then calculate such

an upper bound as follows: UB{gk+1,...,g|G|} =
∑|G|

i=k+1 maxgi . Now, let LB be the value of

the current best solution found so far, and let V (C1, . . . , Ck) =
∑k

i=1 v(Ci). Then, having

LB > V (C1, . . . , Ck) + UB{gk+1,...,g|G|} implies that none of the coalition structures that start

with {C1, . . . , Ck} and end with coalitions of sizes gk+1, . . . , g|G| can have a value greater than

the best value found so far. On the other hand, having LB ≤ V (C1, . . . , Ck) + UB{gk+1,...,g|G|}

does not necessarily imply that all of these coalition structures need to be examined. This is be-

cause, for every coalition Ck+j , we can still have: LB > V (C1, . . . , Ck+j)+UB{gk+j+1,...,g|G|}.

Graphically, this is expressed by avoiding the move to the rightmost lists as in Figure 4.7.

FIGURE 4.7: Applying branch-and-bound while searching through the coalition struc-
tures within F−1[{G}].

4.3 Experimental Evaluation

In this section, we empirically evaluate and benchmark the AIPA algorithm. The general hy-

pothesis is that it should perform better than those that have previously been developed for this

Chapter 4 Solving the Coalition Structure Generation Problem 106

task. However, a potential criticism that can be leveled against AIPA is that, contrary to the

other approaches, it is dependent on computing upper and lower bounds that are relatively close

to the actual optimal value in order to prune large parts of the space and so guarantee that the

optimal value has been found. Since this closeness to the optimal is determined by the spread of

the distribution of the values of the coalitions, it is crucial that AIPA is tested against different

distributions of input values and shown to be robust to all of them. However, we also aim to

determine which types of inputs allow us to clearly delineate the most promising sub-spaces

very quickly. We next describe the experimental setup.

4.3.1 Experimental Setup

We test our algorithm with four well known value distributions, also used by Larson and Sand-

holm [2000], to benchmark CSG algorithms, namely:

1. Normal. v(C) = max(0, |C| × p), where p ∈ N(µ, σ)), where µ = 1 and σ = 0.1.

2. Uniform. v(C) = max(0, |C| × p), where p ∈ U(a, b)), where a = 0 and b = 1.

3. Sub-additive. v(C) ≤ v(C ′)+v(C ′′) where C = C ′ ⋃ C ′′ and v(C) is uniform as above.

In this case it turns out that the singleton coalitions form the optimal structure.

4. Super-additive. v(C) ≥ v(C ′) + v(C ′′), where C ′, C ′′ and v(C) are as defined above. In

this case, it turns out that the grand coalition is the optimal coalition structure.

Using the same input, we tested the other state-of-the art algorithms, namely DP (as per Section

2.2.1) and Integer Programming using ILOG’s CPLEX (as per Section 2.2.2). We do not exper-

iment with the other anytime algorithms since they need to search the whole space to find the

optimal value and this is not generally feasible within reasonable time, even for small numbers

of agents.

4.3.2 Results

Given the above setup, we ran DP, CPLEX and AIPA 20 times for n ∈ {15, 16, . . . , 26, 27} and

recorded the clock time9 taken to find the optimal value. The DP algorithm has a deterministic

running time since it always performs the same operations which grow in O(3n) (see Section

2.2.1). Hence, we computed the results for DP up to 20 agents and extrapolated the rest of the

points (since the DP algorithm takes an unreasonable amount of time and runs out of memory

for higher values). The sample size for each point was 25, over which we computed the 95%

9The experiments were carried out on a Xeon dual-core PC with 2GB of RAM. The algorithms were
implemented in Java 1.5.

Chapter 4 Solving the Coalition Structure Generation Problem 107

confidence interval. These are plotted as error bars on the graphs.

FIGURE 4.8: Running times for CSG algorithms for 15 to 27 agents (log scale).

As can be seen from Figure 4.8 (in log scale), AIPA always finds the optimal value for all dis-

tributions faster than the other algorithms. In the worst case, it finds the solution for 27 agents

in 4.69 × 103 seconds (i.e. 1.3 hours), while the DP algorithm takes 5.67 × 106 seconds (i.e

around 2 months), which means that AIPA takes 0.082% of the time DP takes for 27 agents

(an improvement that gets exponentially better with increasing numbers of agents). Moreover,

CPLEX is found to be slower than DP and runs out of memory when there are more than 17

agents.

AIPA performs worst, comparatively speaking, when the input is a normal distribution of val-

ues. This corroborates our initial expectations about the relationship between the spread of the

distribution and the time it takes to find the optimal. Indeed, compared to the uniform distribu-

tion (against which our algorithm has a slowly increasing running time), the normal distribution

concentrates most values around the mean. This means that there are very few values at the

upper tail of the distribution that will fit into a valid coalition structure. It can also be noted that

the sub-additive and super-additive distributions are solved nearly instantaneously (right after

scanning the input; that is, after 1.241 seconds for 27 agents). This means that, in the best case,

Chapter 4 Solving the Coalition Structure Generation Problem 108

AIPA takes 2.2 × 10−5% of the time of the DP algorithm. In the sub and super-additive case,

it is easy to verify that AIPA, by virtue of its computation of upper and lower bounds, identifies

the optimal solution straight after scanning the input since the upper bound of the sub-spaces in

these cases (without knowing whether the input is super or sub-additive) are always lower than

the grand coalition (in the super additive case) or the coalitions of single agents (in the sub addi-

tive case). For the uniform distribution, it is noted that the optimal value is found much quicker

than the normal distribution and, as the number of agents grows beyond 24, the optimal value is

found as fast as in the sub or super-additive case. Moreover, in the uniform case, we can expect

most of the optimal coalition structures within a sub-space to have values close to the upper

bound. This results in either the most promising sub-space being indentified with a relatively

high degree of accuracy or in the sub-space being pruned right after scanning the input.

FIGURE 4.9: Space pruned for each distribution type (for 21 agents).

To further support our claim regarding the relationship between the distribution type and the

pruning of the search space, we studied the space remaining to be searched, as well as the qual-

ity of the solution found during the search (see Figure 4.9 for the 21 agents case, other values

gave similar patterns). To this end, we recorded the percentage of the space remaining at each

pruning attempt, as well as the value of the ratio of the best solution found to the optimal value

during the search. As can be seen, the major drops in the space left to be searched indicate

Chapter 4 Solving the Coalition Structure Generation Problem 109

that large sub-spaces are being pruned, while when the graph is flat, branch-and-bound is being

applied within sub-spaces to reduce the solving time. In more detail, AIPA tends to be less

able to prune the space in the case of the normal distribution. In fact, in such cases most of the

time is spent searching extremely small portions of the space (since the graph is flat most of the

time) for a long time until the optimal value can be confirmed. During this search, the solution

does not improve as much, as can be seen from Figure 4.10. In the case of the sub-additive and

super-additive distributions, the solution is found nearly instantaneously right after scanning the

input. For the uniform case, AIPA can prune most of the space right from the beginning and,

after that, it takes some time to find the optimal. From Figure 4.10 we can see that the optimal is

found fairly quickly and most of the time is spent confirming that it is indeed optimal. It is also

to be noted that the intermediate solutions found during the search become near-optimal very

rapidly (> 95% of the optimal). This shows that AIPA rapidly zooms in on the most promising

sub-spaces and finds good solutions quickly within these.

FIGURE 4.10: Quality of the solution obtained during the search (for 21 agents).

Figure 4.11 shows the quality of the bound that AIPA provides on the quality of its solutions.

As can be seen, immediately after the input is scanned, this bound drops to 1.089, which im-

plies that the solution is guaranteed to be, at worse, 91.83% of the optimal. This is considered

very low compared to the initial bound provided by the state of the art anytime algorithms (i.e.

Chapter 4 Solving the Coalition Structure Generation Problem 110

Sandholm et al.’s and Dang and Jennings’s algorithms) which is 10.5, meaning that the value is

only guaranteed to be 9.52% of the optimal. Moreover, after searching through 0.0000019% of

the space, the bound reaches 1, meaning that the optimal solution is found. This is a significant

improvement to the bound provided by previous algorithms, which, after searching this amount

of the space, only reaches 7, meaning that the solution is only guaranteed to be 14.28% of the

optimal. Recall that, unless the whole space is searched, the guarantees provided by Sandholm

et al.’s algorithm never goes beyond 50%, and that provided by Dang and Jennings’s algorithm

never goes beyond 33%.

FIGURE 4.11: Quality of the bound provided by AIPA during the search (for 21
agents).

4.4 Summary

In this chapter, we have described our novel representation of the space of possible coalition

structures. Specifically, this representation categorizes the coalition structures based on the size

of the coalitions they contain. Thus, each category (i.e. sub-space) can be represented by a

unique integer partition of the number of agents involved. Within each of these sub-spaces,

we can then compute an upper bound on the values of the coalition structures, as well as the

average of these values (which can be considered as a lower bound), and that is immediately

Chapter 4 Solving the Coalition Structure Generation Problem 111

after the input is scanned. Moreover, as we scan the input, we can, at a very small cost, search

through levels L1, L2, and Ln, of the coalition structure graph. This allows us to establish a

bound B = n
2 on the quality of the solution found so far. Moreover, we can establish another

bound B = UBmax

AV G∗
G2

, where UBmax is the maximum of all the upper bounds of the sub-spaces,

and AV G∗
G2 is the maximum of all the average values of the sub-spaces that correspond to the

integer partitions with two parts. This bound could be as low as 1 (depending on the distribution

of values), in which case no further search is required. In case this bound happens to be greater

than 1, we compare the bounds of the sub-spaces that have not yet been searched, and prune the

ones that have an upper bound smaller than the maximum lower bound.

As for the sub-spaces that have not been pruned, we select one of them, and search for the

best coalition structure in it, and then prune any of the remaining sub-spaces that have an upper

bound lower than the value of this coalition structure. This process is repeated until all sub-

spaces have either been searched or pruned, or until a coalition structure CS has been found

such that V (CS) = UBmax. Our rule for selecting the next sub-space to search is to simply

select the one with the highest upper bound. This ensures that we never search through any of

the sub-spaces that have an upper bound lower than the actual optimal value (even if this value

is not known in advance). In order to search for the best coalition structure within the selected

sub-space, we have developed a novel cyclation technique that only goes through valid coalition

structures, without going through the same coalition structure more than once. We have also

specified how to apply branch-and-bound so as to speed up the cyclation process.

To evaluate the efficiency of our AIPA algorithm, we have tested it with a number of well-

known value distributions, and have benchmarked its performance against DP and CPLEX. This

analysis shows that AIPA avoids searching most of the search space, and therefore, requires sig-

nificantly less time, compared to the other algorithms, in order to return an optimal solution.

Moreover, if AIPA is interrupted before an optimal value is found, it can still return solutions

that are very close to the optimal (usually above 95% of the optimal), with very high worst-case

guarantees on them (usually above 90%).

Chapter 5

Conclusions and Future Work

Coalition formation, the process by which a group of software agents come together and agree to

coordinate and cooperate in the performance of a set of tasks, is an important form of interaction

in multi-agent systems. Such coalitions can improve the performance of the individual agents

and/or the system as a whole, especially when tasks cannot be performed by a single agent, or

when a group of agents performs the tasks more efficiently.

The coalition formation process includes three main activities: coalitional value calculation,

coalition structure generation, and payoff distribution, and in this thesis, we have looked mainly

at the first two of these activities. In more detail,we have highlighted the limitations of the state-

of-the-art algorithm for distributing the coalitional value calculations. In addition, have provided

a classification of the existing algorithms for coalition structure generation. The advantages and

disadvantages of each of these classes have also been discussed, and examples from existing

literature have been provided.

Moreover, we have developed a novel algorithm (DCVC) for distributing the coalitional value

calculations among cooperative agents. We have shown how DCVC can be modified to re-

flect variations in the agents’ computational speed, analysed the case in which only a subset

of agents can form a coalition, calculated the computational complexity of the algorithm, and

benchmarked its performance against the only available one in the literature. This comparison

showed that DCVC is significantly faster, requires significantly less memory space, and requires

infinitely less communication. These improvements stem from the fact that our algorithm per-

forms no redundant calculations and distributes the calculations equally among the agents (in

cases where there are differences in the agents’ computational speeds, the equality refers to the

time taken for the calculations, rather than the number of calculations performed). Thus, our

algorithm can be seen to represent a significant advance in the state of the art.

In addition, we have developed and evaluated an Anytime Integer-Partition based Algorithm

112

Chapter 5 Conclusions and Future Work 113

(AIPA) for coalition structure generation. Specifically, AIPA can find optimal solutions much

faster than any previous algorithm designed for this purpose. The strength of our approach is

founded upon two main components:

• First, we use a novel representation of the search space which partitions it into smaller,

disjoint sub-spaces that can be explored independently to find optimal solutions. This

representation, which is based on the integer partitions of the number of agents involved,

allows the agents to balance the trade-offs between their preferences for certain coalition

sizes against the computation required to find the solution. Moreover, such trade-offs can

be made in an informed manner since since we can compute bounds on sub-spaces of the

search space. These bounds allow us to prune the search space and guarantee the quality

of the solution found during the search. They may also, depending on the distribution of

the input values, allow us to obtain the optimal solution by only scanning the input.

• Second, we devise a technique that allows us to cycle through the list of coalition struc-

tures within a given sub-space. Unlike a naive cyclation technique, which generates com-

binations of coalitions, and verifies whether each of these combinations is a valid coalition

structure, our cyclation technique only generates valid coalition structures (thus, avoiding

the search through the space of possible combinations of coalitions, which is exponen-

tially larger than the space of coalition structures). In addition, the cyclation technique is

guaranteed never to generate the same coalition structure more than once (thus, avoiding

the performance of redundant operations). Finally, by applying branch-and-bound tech-

niques, we are able to identify the coalition structures that cannot improve on the quality

of the solution found so far, and thus, avoid generating such coalition structures.

Altogether, these components allow us to make significant performance gains over other existing

approaches. In more detail, the experiments show that we are able to find an optimal coalition

structure after searching through 0.0000019% of the search space (given 21 agents). This has

allowed us to find optimal coalition structures much faster than the state-of-the-art DP algorithm

(e.g. in 0.082% of the time required by DP given 27 agents). Moreover, our approach uses 33%

of the memory required by DP. These improvements become exponentially bigger for larger

numbers of agents.

For future work, we will concentrate on the following:

• We would like to develop an enforcement mechanism so that DCVC can be applied in

environments where the agents are selfish. In such cases, the agents might not necessarily

perform all the calculations they are assigned or they might lie about the results they

found in order to improve the outcome for themselves. The enforcement mechanism

should motivate the agents to calculate the values they are assigned and to truthfully

Chapter 5 Conclusions and Future Work 114

reveal the results they find. The basic idea behind this mechanism is to distribute the

coalitions among the agents such, for every agent ai ∈ A, the share of ai does not include

any coalition in which ai is a member, thus, reducing the incentive of ai to lie about the

results it finds.

• We would like to relax the assumption of having a fixed number of agents in the system.

In particular, we would like to specify how the agents should react to events such as the

appearance or disappearance of agents in the agent society. For example, if an agent

enters the society during the value calculation process, then the agents should be able

to decide whether to restart the whole distribution and calculation process to take into

consideration the arrival of the new agent or continue with the ongoing process and have

the new agent perform some of the remaining calculations.

• We would like to look at more specific worst case distributions for AIPA in order to fully

assess the robustness of our approach. We will also look at distributing AIPA among

multiple agents since our representation easily allows us to assign each of them an inde-

pendent portion of the space to search. Moreover, we aim to devise more refined represen-

tations of sub-spaces in order to improve the bounds to be used by our branch-and-bound

algorithm since most of the search time is spent in this phase. Finally, we aim to de-

termine the degree to which AIPA can be used to solve other common incomplete set

partitioning problems which occur in combinatorial auctions [Rothkopf et al., 1995] or

crew scheduling [Hoffman and Padberg, 1993].

• We would like to develop a hybrid algorithm that combines the techniques used in AIPA

with those used in DP. We believe this could exploit the strength of both approaches,

resulting in an improved performance.

Bibliography

Altman, D. G., Machin, D., Bryant, T. N., and Gardner, M. J. (2000). Statistics with Confidence:

Confidence Intervals and Statistical Guidelines. BMJ publishing group, London, UK.

Bellman, R. (1957). Dynamic programming. Princeton University Pr, New Jersey, USA.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific American,

284(5):34–43.

Carmton, P., Shoham, Y., and Steinberg, R. (2007). Combinatorial Auctions. MIT Press, Mas-

sachusetts, USA.

Chavez, A. and Maes, P. (1996). Kasbah: An agent marketplace for buying and selling goods. In

Proceedings of the First International Conference on the Practical Application of Intelligent

Agents and Multi-Agent Technology (PAAM’96), pages 75–90.

Conway, J. H. and Guy, R. K. (1996). The Book of Numbers. Springer, New York, USA.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to algorithms,

second edition. The MIT Press, Massachusetts, USA.

Dang, V. D., Dash, R. K., Rogers, A., and Jennings, N. R. (2006). Overlapping coalition for-

mation for efficient data fusion in multi-sensor networks. In Proceedings of The Twenty First

National Conference on Artificial Intelligence (AAAI-06), pages 635–640.

Dang, V. D. and Jennings, N. R. (2004). Generating coalition structures with finite bound from

the optimal guarantees. In Proceedings of the Third International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), pages 564–571.

Dash, R. K., Jennings, N. R., and Parkes, D. C. (2003). Computational-mechanism design: A

call to arms. IEEE Intelligent Systems, 18(6):40–47.

Hayes-Roth, B., Hewett, M., Washington, R., Hewett, R., and Seiver, A. (1988). Distributing

intelligence within an individual. Distributed Artificial Intelligence, II:385–412.

Hayes-Roth, B., Washington, R., Hewett, R., Hewett, M., M., and Seive, A. (1989). Intelli-

gent real-time monitoring and control. In Proceedings of the Eleventh International Joint

Conference on Artificial Intelligence.

115

BIBLIOGRAPHY 116

Hillier, F. S. and Lieberman, G. J. (2005). Introduction to operations research. McGraw-Hill,

New York, USA.

Hoffman, K. L. and Padberg, M. (1993). Solving airline crew scheduling problems by branch-

and-cut. Manage. Sci., 39(6):657–682.

Horling, B. and Lesser, V. (2005). A survey of multi-agent organizational paradigms. The

Knowledge Engineering Review, 19(4):281–316.

Huang, J., Jennings, N. R., and Fox, J. (1995). An agent architecture for distributed medical

care. In Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890),

pages 219–232. Springer-Verlag, Heidelberg, Germany.

Huhns, M. N. (2003). Agents as web services. IEEE Internet Computing, 6(4):93–95.

Jennings, N. R., Corera, J., and Laresgoiti, I. (1995). Developing industrial multi-agent systems.

In Proceedings of 1st International Conference on Multi-Agent Systems (ICMAS ’95), pages

423–430.

Jennings, N. R., Faratin, P., Norman, T. J., O’Brien, P., Odgers, B., and Alty, J. L. (2000).

Implementing a business process management system using adept: A real-world case study.

International Journal of Applied Artificial Intelligence, 14(5):421–465.

Kahan, J. and Rapoport, A. (1984). Theories of Coalition Formation. Lawrence Erlbaum Asso-

ciates Publishers, New Jersey, USA.

Kinny, D., Georgeff, M., and Rao, A. (1996). A methodology and modelling technique for

systems of BDI agents. In Proceedings of the Seventh European Workshop on Modelling

Autonomous Agents in a Multi-Agent World (MAAMAW96), pages 56–71.

Klusch, M. and Shehory, O. (1996). A polynomial kernel-oriented coalition formation algorithm

for rational information agents. In Proceedings of International Conference on Multi-Agent

Systems (ICMAS-96), pages 157–164.

Larson, K. and Sandholm, T. (2000). Anytime coalition structure generation: an average case

study. J. Exp. and Theor. Artif. Intell., 12(1):23–42.

Li, C. and Sycara, K. P. (2002). Algorithm for combinatorial coalition formation and payoff divi-

sion in an electronic marketplace. In Proceedings of the First International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS), pages 120–127.

Lin, C. M. and Salkin, H. M. (1983). An efficient algorithm for the complete set partitioning

problem. Discrete Applied Mathematics, 6:149–156.

Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995). Microeconomic Theory, chapter 18.

Oxford University Press, USA.

BIBLIOGRAPHY 117

Norman, T. J., Preece, A. D., Chalmers, S., Jennings, N. R., Luck, M., Dang, V. D., Nguyen,

T. D., V. Deora, J. S., Gray, W. A., and Fiddian, N. J. (2004). Agent-based formation of

virtual organisations. International Journal of Knowledge Based Systems, 17(2–4):103–111.

Osborne, M. J. and Rubinstein, A. (1994). A Course in Game Theory. MIT Press, Cambridge

MA, USA.

Rahwan, T. and Jennings, N. R. (2005). Distributing coalitional value calculations among coop-

erating agents. In Proceedings of The Twentieth National Conference on Artificial Intelligence

(AAAI-05), pages 152–157.

Rahwan, T. and Jennings, N. R. (2007). An algorithm for distributing coalitional value calcula-

tions among cooperative agents. Artificial Intelligence (AIJ), 171(8–9):535–567.

Rahwan, T., Ramchurn, S. D., Dang, V. D., and Jennings, N. R. (2007a). Near-optimal anytime

coalition structure generation. In Proceedings of the Twentieth International Joint Conference

on Artificial Intelligence (IJCAI-07), pages 2365–2371.

Rahwan, T., Ramchurn, S. D., Giovannucci, V. D., Dang, V. D., and Jennings, N. R. (2007b).

Anytime optimal coalition structure generation. In Proceedings of the Twenty Cecond Con-

ference on Artificial Intelligence (AAAI-07), pages 1184–1190.

Rosenschein, J. S. and Zlotkin, G. (1994). Rules of Encounter: Designing Conventions for

Automated Negotiation among Computers. MIT Press, Massachusetts, USA.

Rothkopf, M. H., Pekec, A., and Harstad, R. M. (1995). Computationally manageable combi-

natorial auctions. Management Science, 44(8):1131–1147.

Sandholm, T. W., Larson, K., Andersson, M., Shehory, O., and Tohme, F. (1999). Coalition

structure generation with worst case guarantees. Artificial Intelligence, 111(1–2):209–238.

Sandholm, T. W. and Lesser, V. R. (1997). Coalitions among computationally bounded agents.

Artificial Intelligence, 94(1):99–137.

Sen, S. and Dutta, P. (2000). Searching for optimal coalition structures. In Proceedings of the

Fourth International Conference on Multiagent Systems, pages 286–292.

Shehory, O. and Kraus, S. (1995). Task allocation via coalition formation among autonomous

agents. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-

gence (IJCAI-95), pages 655–661.

Shehory, O. and Kraus, S. (1996). Formation of overlapping coalitions for precedence-ordered

task-execution among autonomous agents. In Proceedings of International Conference on

Multi-Agent Systems (ICMAS-96), pages 330–337.

BIBLIOGRAPHY 118

Shehory, O. and Kraus, S. (1998). Methods for task allocation via agent coalition formation.

Artificial Intelligence, 101(1–2):165–200.

Skiena, S. S. (1998). The Algorithm Design Manual. Springer-Verlag, New York, USA.

Tsvetovat, M., Sycara, K. P., Chen, Y., and Ying, J. (2000). Customer coalitions in the electronic

marketplace. In Proceedings of the Fourth International Conference on Autonomous Agents,

pages 263–264.

Wavish, P. and Graham, M. (1996). Situated action approach to implementing characters in

computer games. Applied Artificial Intelligence, 10(1):53–74.

Wooldridge, M. (2000). Intelligent agents. In Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence, pages 27–77. MIT Press, Massachusetts, USA.

Wooldridge, M. (2002). An Introduction to Multiagent Systems. John Wiley & Sons, Chichester,

England.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice. The

knowledge engineering review, 10(2):115–152.

Yeh, D. Y. (1986). A dynamic programming approach to the complete set partitioning problem.

BIT Numerical Mathematics, 26(4):467–474.

Zlotkin, G. and Rosenschein, J. S. (1994). Coalition, cryptography and stability: Mechanisms

for coalition formation in task oriented domains. In Proceedings of the Twelfth National

Conference on Artificial Intelligence, pages 432–437.

