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Abstract

Data-driven control of discrete-time and continuous-time systems is of tremendous research interest. In this paper,
we explore data-driven optimal control of continuous-time linear systems using input-output data. Based on a density
result, we rigorously derive error bounds for finite-order polynomial approximations of elements of the system behavior.
To this end, we leverage a link between latent variables and flat outputs of controllable systems. Combined with a
continuous-time counterpart of Willems et al.’s fundamental lemma, we characterize the suboptimality resulting from
polynomial approximations in data-driven linear-quadratic optimal control. Finally, we draw upon a numerical example
to illustrate our results.
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1. Introduction

Data-driven control, i.e., the design of controller and
feedback laws directly from measured data, is a topic of
ongoing research interest, see [1, 2] and the range of articles
in these special issues. A pivotal result at the core of many
developments in linear discrete-time systems is Willems et
al.’s fundamental lemma [3].

Lemma 1 (Discrete-time fundamental lemma). Consider
the discrete-time controllable linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k)

and let ŵ = col(û, ŷ) be a length-N input-output trajectory
of the system such that û is persistently exciting (cf. [3]) of
oder n+ L, where L ∈ N \ {0} and n is the systems’ state
dimension. Then w = col(u, y) is a length-L input-output
trajectory of the system if and only if w(k)

...
w(L− 1)

 ∈ im

 ŵ(0) . . . ŵ(N − L)
...

...
ŵ(L− 1) . . . ŵ(N − 1)

 .
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This lemma enables the parameterization of the external
(input-output) finite-horizon behavior of controllable sys-
tems using sufficiently informative data arranged in a Han-
kel matrix. For more details and recent advancements,
see the survey [4] and the references therein. The inter-
est in this result has been catalyzed by recent works such
as [5, 6, 7]; applications of data-driven control concepts
are discussed in the literature [8, 9, 10, 11]. In [12, 13]
and [14] continuous-time extensions of the fundamental
lemma have been proposed. While the former works re-
quire to solve a scalar ODE to compute future trajectories,
in the latter paper an approach to compute a generating
representation based on polynomial series expansions of
input-output trajectories is proposed. However, the latter
result has not yet been used to design data-driven con-
trollers. In the present paper, we address this gap: We
extend the results from [14] by deriving errors bounds for
polynomial series expansions on elements of the behavior.
We also prove that the set of polynomial system trajecto-
ries is dense in the set of all system trajectories. We use
the approximation bounds to derive bounds on the opti-
mality gap resulting from using finite-order polynomials
to solve linear–quadratic regulator (LQR) problem formu-
lated in terms of the behavior. Finally, we establish a
continuous-time fundamental lemma involving the Grami-
ans of trajectories and, based on this, present a data-driven
approximation for the LQR problem.

The remainder of this paper is structured as follows: In
Section 2 we revisit foundational concepts in behavioral
systems theory, with most results rederived to suit our
specific setting. Utilizing the connection between flat out-
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puts and latent variables, in Lemma 6, we derive a specific
behavioral representation, which is beneficial for subse-
quent approximation results. Moreover, we recap proper-
ties of Legendre polynomials (Subsections 2.2 and 2.3) and
analyze their advantage in the approximation of behav-
ioral elements (Subsection 2.4) as shown in Proposition 11.
In Section 3, we introduce a version of the finite-horizon
linear-quadratic optimal control problem and its finite-
dimensional approximation in the space of linear combi-
nations of Legendre polynomials including a convergence
analysis. In Section 4, we define the concept of persistency
of excitation (Subsection 4.1) and we state a continuous-
time fundamental lemma (Theorem 22). Subsection 4.3
demonstrates how the fundamental lemma can be applied
in system identification. In Section 5, we discuss the ap-
plication of our results to the data-driven solution of the
finite-horizon optimal control problem before we conclude
the paper in Section 6 pointing out directions of current
and future research.

Notation: Given two sets X and Ω, the set of functions
f : Ω → X is denoted by XΩ. Let I be a real inter-
val; we denote by I the closure of I. Let d, k ∈ N; then
L2(I,Rd) denotes the space of equivalence classes of square
integrable functions f ∈ (Rd)I and Hk(I,Rd) is the kth
order Sobolev space associated with L2(I,Rd). The scalar
product in L2(I,Rd) and its induced norm are given by
⟨f, g⟩ =

∫
I f(τ)⊤g(τ) dτ and ∥f∥ =

√
⟨f, f⟩. The usual

norm in Hk(I,Rd) is denoted by ∥ · ∥Hk . For k ∈ N \ {0}
and f ∈ Hk−1(I,Rd) we set

Λk(f) =

 f
...

f (k−1)

 ∈ L2(I,Rk·d). (1)

In particular, ∥f∥Hk−1 = ∥Λk(f)∥. C∞(I,Rd) is the space
of infinitely differentiable functions from I to Rd and
C∞
c (I,Rd) consists of those functions of C∞(I,Rd) with

compact support. Given a Hilbert space X, ℓ2(N, X) is
the space of square summable sequences in XN.
The identity operator from a vector space X onto itself

is denoted by IX or simply I when clear from the con-
text. In the case of a finite dimensional space X = Rd we
also write Id. The Euclidean norm in Rd is denoted by
∥ · ∥2. If A0, . . . , Ak are matrices with the same number of
columns, we define col(A0, . . . , Ak) :=

[
A⊤

0 . . . A⊤
k

]⊤.

We always identify Rd with Rd×1. Given a matrix M , we
denote by imM and kerM its image and kernel. Further,
M⊤ and M† denote the transpose and Moore–Penrose in-
verse.

Finally, we denote by R[s] the ring of polynomials with
real coefficients in the indeterminate s, and by Rg×q[s] the
ring of g × q polynomial matrices with real coefficients.

2. Linear differential systems

We first recapitulate behavioral concepts for linear time-
invariant systems. We then connect this paradigm to poly-

nomial series expansions of trajectories and explore how
polynomial trajectories can approximate system behav-
iors.

2.1. Behaviors

In the following, we deal with dynamical systems given
by the time interval I = (−1, 1)1, the signal space Rq

and a behavior B ⊂ (Rq)I . We focus on linear differential
behaviors, i.e. the set of solutions to a system of linear,
constant-coefficient differential equations

R

(
d

dt

)
w = 0, (2)

where R(s) = R0s
0 + · · · + Rrs

r is a polynomial ma-
trix in Rg×q[s]. In this way (2) is to be understood as∑r

i=0 Ri
diw
dti = 0. Here, the solution w of (2) is meant

in the sense of weak solutions, i.e., w ∈ L2(I,Rq) and it
satisfies

0 =

r∑
i=0

(−1)i
∫
I
w⊤R⊤

i
diϕ
dti dt (3)

for all test functions ϕ ∈ C∞
c (I,Rg). Given w ∈ C∞(I,Rq)

integration by parts shows that (3) is valid if and only (2)
holds pointwise.

Given our choice of solution set, we need to slightly gen-
eralize and prove some well-known results from [15], where
the solutions of (2) are assumed to be infinitely differen-
tiable. In particular, the equivalence of the different repre-
sentations of behaviors, established essentially for smooth
functions in [15], requires verification in the context of
weak L2-solutions.

Lemma 2. The behavior

B := {w ∈ L2(I,Rq) |R( d
dt )w = 0} (4)

is closed in L2(I,Rq).

Proof. Consider a sequence (wn)n∈N in B which converges
to some w ∈ L2(I,Rq). Note that for each ϕ ∈ C∞

c (I,Rg)
the right hand side in (3) defines a linear, continuous
functional fϕ : L2(I,Rq) → R. By continuity 0 =
limn→∞ fϕ(wn) = fϕ(w) for every ϕ ∈ C∞

c (I,Rg), that
is w solves (2) and w ∈ B.

We recall the notion of behavioral controllability, cf. Def-
inition 5.2.2 in [15]. The behavior B is controllable if for
each two trajectories w0, w1 ∈ B there is t1 ∈ (0, 1) and
w ∈ B such that

w(t) =

{
w0(t) if t ∈ (−1, 0],

w1(t− t1) if t ∈ [0, 1).
(5)

1We choose such interval purely for simplicity of notation; with
straightforward modifications, any other bounded open interval can
be used.
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Partitioning R compatibly with a known selection of
inputs and outputs w = col(u, y) ∈ B, cf. Definition 3.3.1
in [15], one obtains the input-output representation

P

(
d

dt

)
y = Q

(
d

dt

)
u, (6)

where P ∈ Rp×p[s] can be assumed to be nonsingular and
Q ∈ Rp×m[s] with q = m+ p.

A linear differential behavior B also admits an input-
state-output representation (see [16]), i.e., there are matri-
ces A ∈ Rn×n, B ∈ Rn×n, C ∈ Rp×n, D ∈ Rp×m such
that for all w = col(u, y) ∈ B ∩ C∞(I,Rq) there exists
x ∈ C∞(I,Rn) with

d

dt
x = Ax+Bu

y = Cx+Du.
(7)

The following result relates the external behavior de-
scribed by (6), consisting of all input-output trajectories,
and its input-state-output counterpart in the terms of
closed L2-subspaces.

Lemma 3. Given an input-state-output representation (7)
of B, one has

B =

{
col(u, y) ∈ L2(I,Rm+p)

∣∣∣∣∣∃ x ∈ H1(I,Rn)

s.t. (7) holds

}
. (8)

Proof. Denote the set on the right hand side of (8) by B̃.
We show that B̃ is a closed subspace of L2(I,Rm+p). To
this end consider the solution operator S : L2(I,Rm) →
H1(I,Rn) defined by

(Su)(t) :=

∫ t

−1

exp(A(t− τ))Bu(τ) dτ. (9)

From the definition of B̃ it follows that col(u, y) ∈ B̃ if
and only if there exists x0 ∈ Rd such that x = exp(A(· +
1))x0 + Su with y = Cx+Du. Therefore, B̃ is the direct
sum of the finite-dimensional space

B̃0 := {col(0, C exp(A(·+ 1))x0) |x0 ∈ Rn}

and

B̃1 := {col(u, (CS +D)u) |u ∈ L2(I,Rm)}. (10)

The space B̃1 is closed in L2(I,Rm+p) as it is the graph
of the bounded linear operator (CS + D) : L2(I,Rm) →
L2(I,Rp). This shows the closedness.

The assertion follows with B ∩ C∞(I,Rm+p) = B̃ ∩
C∞(I,Rm+p) and a density argument.

Remark 4. Obtaining a kernel representation (2) from
an input-state-output one can be achieved by elimination
of the state variable x, see Section 6.2.2 of [15].

In this paper we use a couple of integer system invari-
ants. The McMillan degree of B, denoted n(B), is the
minimal dimension of the state space among all possible
input-state-output representations (7) of B. If the state
space dimension equals n(B), this particular input-state-
output representation is said to be minimal. Define

Ok :=


C if k = 0[
Ok−1

CAk

]
if k ≥ 1

; (11)

the system lag, denoted l(B), is defined by

l(B) := min{k ∈ N | rank Ok = rank Ok−1} .

Evidently, l(B) ≤ n(B). Further, l(B) is the highest order
of differentiation in a “shortest lag” description of B, see
pp. 569-570 of [17].

Given an input-state-output representation of B the
state variable x is called observable, if it can be recovered
from the input-output trajectory, i.e., there is a polyno-
mial matrix F ∈ Rn×q[s] such that for all w = col(u, y) ∈
B ∩ C∞(I,Rq)

x = F

(
d

dt

)
w. (12)

Observability of the state variable is equivalent to (A,C)
being observable in the usual sense (see e.g. [18]), which is
satisfied if O(n−1) = n. For an observable pair (A,C), the
lag l(B) is the observability index of the pair.

In a manner akin to observability, a connection between
behavioral controllability and controllability of the pair
(A,B) can be established in terms of input-state-output
representations, see, e.g., [18].

Lemma 5. Suppose B is controllable and consider a min-
imal input-state-output representation (7) of B. Then
(A,B) is controllable and (A,C) is observable.

Proof. An input-state-output representation of B is min-
imal if and only if (A,C) is observable the input-state-
output representation is state trim, i.e., for all x0 ∈ Rn

there is col(u, y) ∈ B ∩ C∞(I,Rq) and x ∈ C∞(I,Rn)
such that (7) and x(0) = x0 hold, cf. [16]. We only
need to show the controllability of (A,B), that is for ar-
bitrary initial value x0 ∈ Rn and terminal value x1 ∈ Rn

there is a control input u and a time instance t1 ∈ (0, 1)
such that the state solution x of d

dtx = Ax + Bu satis-
fies x(0) = x0 and x(t1) = x1. By state trimness we find
w0 = col(u0, y0), w1 = col(u1, y1) ∈ B ∩ C∞(I,Rq) and
corresponding states x0, x1 ∈ C∞(I,Rn) with x0(0) = x0

and x1(0) = x1. Since B is controllable, there further
exists w = col(u, y) ∈ B ∩ C∞(I,Rn) and t1 ∈ (0, 1) satis-
fying (5), cf. Theorem 5.2.9 in [15]. With the observability
of the state (12) we see

x(0) =
(
F ( d

dt )w
)
(0) =

(
F ( d

dt )w0

)
(0) = x(0) = x0,

x(t1) =
(
F ( d

dt )w
)
(t1) =

(
F ( d

dt )w1

)
(0) = x1(0) = x1.
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For a linear differential behavior controllability is equiv-
alent to the existence of an image representation (see The-
orem 6.6.1 p. 229 in [15], i.e., there exists a polynomial
matrix M ∈ R(m+p)×m[s] such that w ∈ B ∩ C∞(I,Rm+p)
if and only if there exists a latent variable trajectory
ℓ ∈ C∞(I,Rm) such that

w = M

(
d

dt

)
ℓ. (13)

A flat output of a differentially flat system leads to a
specific image representation endowed with helpful char-
acteristics.

Lemma 6. Suppose that B is controllable. Then there
exists M ∈ Rq×m[s] with deg(M) ≤ n(B) + 1 such that

B =

{
col(u, y) ∈ L2(I,Rm+p)

∣∣∣∣∣ ∃ ℓ ∈ L2(I,Rm)

s.t. (13) holds

}
. (14)

Moreover, given w ∈ Hk(I,Rq) for some k ∈ N the latent
variable in (13) satisfies ℓ ∈ Hk+1(I,Rm).

Proof. We consider a minimal input-state-output repre-
sentation (7) of B, that is n = n(B) and (A,B) is control-
lable. Then there is a flat output defined by

ℓ = C̃x (15)

with output matrix C̃ ∈ Rm×n, see pp. 84–ff. in [19]
and Remark 2 p. 72 of [20]. In more detail, there are
polynomial matrices X ∈ Rn×m[s], U ∈ Rm×m[s] with
deg(X) ≤ n and deg(U) ≤ n + 1 such that, given
w = col(u, y) ∈ B ∩ C∞(I,Rq) with corresponding state
x ∈ C∞(I,Rn),

x = X( d
dt )ℓ, u = U( d

dt )ℓ, y = (CX( d
dt ) +DU( d

dt ))ℓ.

The associated image representation (13) is established
through

M =

[
U

CX +DU

]
(16)

and the flat output ℓ serves as latent variable.
We derive (14) for this particular M . Denote the set on

the right side of (14) by B̃. We show that B̃ is closed in

L2(I,Rq). Let (col(uk, yk))k∈N be a sequence in B̃ which
converges in L2(I,Rq) to some col(u, y). The state and
latent variable corresponding to col(uk, yk) are denoted by
xk and ℓk, respectively. As the latent variable is given via
a flat output (see (15)) we find

ℓk = C̃xk = C̃Suk

where S is the solution operator defined in the proof of
Lemma 3. The convergence of (uk)k∈N and the bound-
edness of S imply that (ℓk)k∈N converges to some ℓ ∈
L2(I,Rm). With Lemma 2 we know that

Bℓ = {col(u, y, ℓ) ∈ L2(I,Rq+m) | (13) holds}

is closed in L2(I,Rq+m). Therefore, col(u, y, ℓ) ∈ Bℓ and

col(u, y) ∈ B̃. Since B̃ ∩ C∞(I,Rq) and B ∩ C∞(I,Rq)
coincide, a density argument yields (14).

Moreover, if col(u, y) ∈ Hk(I,Rq), then the correspond-
ing state satisfies x = Su ∈ Hk+1(I,Rn) and, thus,

ℓ = C̃x ∈ Hk+1(I,Rm).

The flatness-based image representation (16) provides key
insights into the smoothness of external trajectories, as de-
termined by the differentiability of latent variables. This
understanding is crucial for assessing how effectively poly-
nomial approximations can capture the system behavior,
as explored in the following subsections.

2.2. Polynomial lift

Let (πi)i∈R be the sequence of Legendre polynomials
with normalization πi(1) = 1, i ∈ N, which forms an or-
thogonal basis of L2(I,R). Recall that π0(t) = 1, π1(t) = t
and for i = 1, . . .

πi+1(t) =
2i+ 1

i+ 1
tπi(t)− iπi−1(t) .

Given f ∈ L2(I,R) there is a unique series expansion

f =
∑
i∈N

f̂iπi, (17)

where f̂i := ⟨f, πi⟩∥πi∥−2 and f̂ := (f̂i)i∈N. From Bessel’s

theorem it follows that f̂ ∈ ℓ2(N,R).
Any function f ∈ L2(I,Rd) with dimension d ≥ 1 can

be represented with coefficients defined by

f̂i :=

d−1∑
k=0

⟨f, ekπi⟩
∥πi∥2

ek, (18)

where {e0, . . . ed−1} is the canonical basis of Rd and f̂ =
(fi)i∈N ∈ ℓ2(N,Rd). We define

Π : L2(I,Rd) → ℓ2(N,Rd), f 7→ f̂ , (19)

which is an isometric isomorphism.
The differential operator d

dt on H1(I,Rd) can be rep-
resented as an operator D acting in ℓ2(N,Rd), [21, Equa-

tion (2.3.18)]. For functions f ∈ H1(I,Rd) with f̂ = Πf

and f̂ (1) := Πdf
dt one has

(f̂ (1))i = (Df̂)i := (2i+ 1)

∞∑
j=i+1
i+j odd

f̂j , i ∈ N, (20)

or equivalently written by means of an infinite matrix
(f̂ (1))0

(f̂ (1))1

(f̂ (1))2
...

 =


0 I 0 I 0 I . . .

0 3I 0 3I 0 . . .
0 5I 0 5I . . .

0 7I 0 . . .
. . .

. . .
. . .



f̂0
f̂1
f̂2
...

 . (21)
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Similarly to the differential operator d
dt one can define

powers and polynomials of D.

Employing the kernel representation (2) we find the fol-
lowing characterization of the behavior.

Lemma 7 (Behavioral lift). Let w ∈ C∞(I,Rm+p). Then
w ∈ B if and only if

R(D)Πw = 0. (22)

Example 8 (No finite expansion). We show for the linear
time-invariant system described by (7) with A = C = I
and B = D = 0 that its trajectories with nontrivial out-
put have no series expansion involving only finitely many
polynomials πi. Let col(u, y) ∈ B and assume that y
has a finite expansion, i.e. there is some N ∈ N such
that ŷi = 0 for i ≥ N . It is no restriction to assume
col(u, y) ∈ B ∩ C∞(I,Rq). Note that the kernel represen-
tation (2) of B is given via R(s) =

[
0 (s− 1)I

]
. With

Lemma 7 and the definition of D in (20) we see that

ŷi = (Dŷ)i = (2i+ 1)

∞∑
j=i+1
i+j odd

ŷj , i ∈ N. (23)

The finiteness of the expansion yields that for i = N − 1
all summands on the right hand side in (23) vanish and,
hence, ŷN−1 = 0. It is not difficult to see that this suc-
cessively implies ŷi = 0 for all i ∈ N. Therefore y is triv-
ial.

In Example 8 we illustrated the case when the dynamics
of a particular linear time-invariant system (7) cannot be
described by a finite representation in terms of Legendre
polynomials. This is a generic situation: the Legendre
series representation of exponential functions eλt, λ ̸= 0
(generically present in the solution of (7), e.g. in the free
response), involve an infinite number of terms (see e.g. p.
39 of [22]). Such considerations lead naturally to working
with truncated Legendre expansions of solutions of (7).

2.3. Truncated expansion

In the light of Example 8, we study approximation
bounds when considering truncated series of Legendre
polynomials. To this end we introduce the orthogonal pro-
jection PN : L2(I,Rd) → L2(I,Rd) defined by

PNf :=
∑
i<N

f̂iπi, (24)

Note that imPN coincides with theN -dimensional space of
Rd[s]-polynomials of degree up to N −1, which is spanned
by π0, . . . , πN−1. Since (πi)i∈N is an orthogonal basis, PNf
converges to f as N → ∞ with respect to the L2-norm.
The speed of convergence is related to the smoothness of f ,
as we discuss in the following.

Recall that πi is an eigenfunction corresponding to the
ith eigenvalue λi := i(i+1) of the Sturm–Liouville opera-
tor

Lf = ℓf := − d

dt

(
p
d

dt
f

)
, p(t) = (1− t2),

D(L) :=

f ∈ L2(I,C)

∣∣∣∣∣∣∣
f, pf (1) ∈ AC(I,R),

ℓ ∈ L2(I,C),
pf (1)(−1) = pf (1)(1) = 0

 ,

see [23, Theorem 3.6]. Here, AC(I,C) denotes the space of
locally absolutely continuous functions from I to C. Let
Ls for s ∈ (0,∞) denote the sth power the self-adjoint
operator L, defined via functional calculus, see e.g. Sec-
tion 5.3 in [24].

Lemma 9. If f ∈ D(Ls) for some s > 0, then

∥(I − PN )f∥ = ∥Lsf∥O(N−2s) (N → ∞). (25)

Moreover, Hk(I,C) ⊂ D(L k
2 ) for k ∈ N.

Proof. Let π̃i = πi/∥πi∥, i.e. (π̃i)i∈N form an orthonormal
basis in L2(I,C). For f ∈ D(Ls) we have

∥(I − PN )f∥2 =

∥∥∥∥∥f −
∑
i<N

⟨f, π̃i⟩π̃i

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i≥N

⟨f, π̃i⟩π̃i

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i≥N

λ−s
i ⟨f,Lsπ̃i⟩π̃i

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i≥N

λ−s
i ⟨Lsf, π̃i⟩π̃i

∥∥∥∥∥
2

.

Since (λi)i∈N is an increasing sequence, we find

∥(I − PN )f∥2 ≤ λ−2s
N

∥∥∥∥∥∑
i≥N

⟨Lsf, π̃i⟩π̃i

∥∥∥∥∥
2

≤
(
N(N + 1)

)−2s∥Ls∥2,

which shows the first claim.
We show the inclusion Hk(I,C) ⊂ D(L k

2 ), k ∈ N. For
k = 0 there is nothing to prove. For k = 1 we find that
D(L 1

2 ) = {f ∈ L2(I,C) ∩ AC(I,C) |√pf (1) ∈ L2(I,C)}
by [25, Theorem 6.8.5 (i)]. With the uniform boundedness

of p on [−1, 1] this shows H1(I,C) ⊂ D(L 1
2 ).

We continue with the case of even k ≥ 2. Let f ∈
Hk(I,C). Then it is clear that f , pf (1) ∈ AC(I,C) and
ℓf ∈ L2(I,C). Moreover, f (1) is bounded on [−1, 1] as
f (1) ∈ H1(I,C). Consequently, f ∈ D(L) and Lf ∈
Hk−2(I,C). Repeating this argument yields f ∈ D(L k

2 ),

showing Hk(I,C) ⊂ D(L k
2 ) for even k.

Finally, we consider f ∈ Hk+1(I,C) for even k ≥ 2.

From the previous observations we know that f ∈ D(L k
2 )

and L k
2 f ∈ H1(I,C) ⊂ D(L 1

2 ). Therefore, f ∈ D(L k+1
2 ),

which shows Hk+1(I,C) ⊂ D(L k+1
2 ).
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Corollary 10. If f ∈ Hk(I,Rd) for some k ∈ N, then

∥(I − PN )f∥ = O(N−k) (N → ∞). (26)

2.4. Polynomial trajectories

Next we show that the space of polynomial trajectories
B ∩

⋃
N∈N imPN is dense in B ∩ Hs(I,Rq), s ∈ N, and,

particularly, in B.

Proposition 11. Suppose B is controllable and let w ∈
B∩Hn(B)+s+k(I,Rm+p) for some s ∈ N \ {0}, k ∈ N. For
all N ∈ N, N ≥ n(B) + s + 1, there is wN ∈ B ∩ imPN

such that
Λs(w

N − w)(−1) = 0

satisfying

∥w − wN∥Hs−1 = O(N−k) (N → ∞). (27)

The integers k ∈ N and s ∈ N \ {0} in Proposition 11
determine the convergence order and the highest deriva-
tive up to which the asymptotic behavior is valid, cf. (27).
These can be considered as user specifiable, provided w is
sufficiently smooth.

Proof of Proposition 11. Controllability of B implies the
existence of an image representation (13). Here we con-
sider a particular image representation given by a flat out-
put, see Lemma 6. Let w ∈ B∩Hn(B)+s+k(I,Rm+p). Then
there is ℓ ∈ Hn(B)+s+k+1(I,Rm) such that

w = M

(
d

dt

)
ℓ (28)

holds. We construct a polynomial which approximates ℓ
and its derivatives up to order γ := n(B) + s + 1, while
matching the initial values. Let vNγ := PN−γℓ

(γ). Then by
Corollary 10 as N → ∞ one has

∥vNγ − ℓ(γ)∥ = ∥(I − PN−γ)ℓ
(γ)∥ = O(N−k). (29)

Define

vNi (t) := ℓ(i)(−1)+

∫ t

−1

vNi+1(τ) dτ, i = 0, . . . , γ−1. (30)

By construction (vN0 )(i) = vNi , (vN0 )(i)(−1) = vNi (−1) =
ℓ(i)(−1), i.e.

Λγ(v
N
0 − ℓ)(−1) = 0. (31)

Moreover, one sees with the Cauchy-Schwarz inequality

∥ℓ(i) − (vN0 )(i)∥2 =

∫
I

∣∣∣∣∫ τ

−1

ℓ(i+1)(t)− (vN0 )(i+1)(t) dt

∣∣∣∣2 dτ
≤ 4∥ℓ(i+1) − (vN0 )(i+1)∥2

and, thus,
∥ℓ− vN0 ∥Hγ = O(N−k). (32)

By construction vN0 ∈ imPN . Recall that the polynomial
matrix M in (28) satisfies deg(M) ≤ n(B) + 1. Let wN =

M( d
dt )v

N
0 , which is an element of B ∩ imPN . Now, (31)

and (32) yield

Λs(w
N − w)(−1) = Λs

(
M( d

dt )(v
N
0 − ℓ)

)
(−1) = 0

and

∥wN − w∥Hs−1 = ∥M( d
dt )(v

N
0 − ℓ)∥Hs−1 = O(N−k).

3. The LQR problem and its approximation

Our aim is to solve the quadratic optimal control prob-
lem

minimize
w∈B∩Hl(B)(I,Rq)

J(w) s.t. (33a)

Λl(B)(w)(−1) = ξ0, (33b)

with the cost function

J(w) := ∥y∥2 + ∥u(l(B))∥2, w = col(u, y) ∈ B. (34)

The initial condition (33b) uniquely determines the latent
state, provided the latter is observable from the inputs and
the outputs. Including the higher-order derivative term of
the input into the objective function (34) ensures feasibil-
ity of the LQR problem.

Lemma 12. Problem (33) has a unique solution w⋆, and
w⋆ ∈ C∞(I,Rq). Moreover, every feasible trajectory w
satisfies

J(w − w⋆) ≤ 2
(
J(w)− J(w⋆)

)
. (35)

Proof. We fix a minimal input-state-output representa-
tion (7), that is (A,C) is observable. Consider any w =
col(u, y) ∈ B ∩H l(B). Then there is x ∈ H1(I,Rn) satis-
fying (7). With

Tk :=


D if k = 0,[

D

Ok−1B Tk−1

]
if k ≥ 1,

(36)

with Ok being the Kalman observability matrix defined in
(38) one has

Λk+1(y) = Okx+ TkΛk+1(u) (37)

and by employing observability

x = O†
l(B)−1

(
Λl(B)(y)− Tl(B)−1Λl(B)(u)

)
. (38)

Inserting (38) into (37) for k = l(B) by rearranging terms
one obtains a linear auxiliary system

d

dt
ξ = Ãξ + B̃ν (39)

with state ξ = Λl(B)(w), input ν = u(l(B)). Note that (33)
is equivalent to the LQR problem

minimize
ξ,ν

∫
I
ξ(t)⊤Qξ(t) + ν(t)⊤ν(t) dt,
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where Q = diag(0, Ip, 0, . . . , 0), subject to the dynam-
ics (39) and the initial condition ξ(−1) = ξ0. By stan-
dard LQR theory the latter problem has a solution (ξ⋆, ν⋆),
which is infinitely differentiable as ν⋆ is a state feedback in-
volving a solution of a Riccati differential equation. In par-
ticular, w⋆ := diag(Im, Ip, 0, . . . , 0)ξ

⋆ ∈ C∞(I,Rq) solves
(33).

Let w be any trajectory. It is not difficult to see that J
satisfies the parallelogram identity

J
(
1
2 (w

⋆ + w)
)
+ J

(
1
2 (w

⋆ − w)
)
= 1

2J(w
⋆) + 1

2J(w).

Convexity of the feasibility region together with J(w⋆) ≤
J( 12 (w

⋆ + w)) yield

J
(
1
2 (w

⋆ − w)
)
≤ 1

2

(
J(w)− J(w⋆)

)
.

This shows (35).

Instead of solving the OCP (33) directly, given N ∈ N,
we solve the problem restricted to polynomial trajectories,
i.e.,

minimize
w∈B∩imPN

J(w) s.t. (40a)

Λl(B)(w)(−1) = ξ0. (40b)

Observe that the restriction w ∈ B ∩ imPN enforces poly-
nomial trajectories of degree at most N −1. In the follow-
ing we show that solving (40) leads to an approximately
optimal control and, as N → ∞, the optimality gap decays
at an polynomial rate of arbitrary order.

Theorem 13 (Convergence of optima). For given approx-
imation order N , N ∈ N, let w⋆ and wN be the solutions
to the OCPs (33) and (40), respectively. For every k ∈ N
one has

0 ≤ J(wN )− J(w⋆) = O(N−k) (41)

and

∥w⋆ − wN∥ = O(N−k) (42)

as N → ∞.

Proof. Recall that the solution w⋆ ∈ C∞(I,Rm+p), see
Lemma 12. Thus, by Proposition 11 for arbitrary k ∈ N
there is vN ∈ B∩ imPN with Λl(B)(w

⋆− vN )(−1) = 0 and

∥w⋆ − vN∥Hl(B) = O(N−k). (43)

As w⋆ and wN are solutions of (33) and (40), respectively,
one has

J(w⋆) ≤ J(wN ) ≤ J(vN ), N ∈ N,

which shows the left-hand-side inequality in (41). Further,
by the reverse triangle inequality∣∣∣J(vN )

1
2 − J(w⋆)

1
2

∣∣∣ ≤ J(vN − w⋆)
1
2 ≤ ∥vN − w⋆∥Hl(B) ,

which together with (43) implies

J(vN )− J(w⋆) = 2J(w⋆)
1
2

(
J(vN )

1
2 − J(w⋆)

1
2

)
+

(
J(vN )

1
2 − J(w⋆)

1
2

)2
= O(N−k).

Next we show (42). Let col(u⋆, y⋆) = w⋆ and
col(uN , yN ) = wN . By Λl(B)(w

⋆ − wN )(−1) = 0. We
find

∥(u⋆)(j) − (uN )(j)∥2

=

∫
I

∣∣∣∣∫ τ

−1

(u⋆)(j+1)(t)− (uN )(+1)(t) dt

∣∣∣∣2 dτ
≤ 4∥(u⋆)(j+1) − (uN )(j+1)∥2

for all j = 0, . . . , l(B)− 1. Thus,

∥w⋆ − wN∥2 ≤ 4l(B)J(w⋆ − wN ).

This together with (35) in Lemma 12 and (41) yields (43).

Remark 14. Similar to the above approach, one can han-
dle a cost function given by any quadratic differential form,
see [26],

J(w) =

l(B)∑
i,j=0

(w(i))⊤Φi,jw
(j), (44)

with matrices Φi,j ∈ Rq×q such that Φi,i = Φ⊤
i,i and

Φl(B),l(B) =

[
Φ̃ 0
0 0

]
, (45)

where Φ̃ ∈ Rm×m corresponding to u(l(B)) is invertible.

Remark 15. In the case where the state is directly ob-
servable at the output, i.e. C = In and D = 0 in the
input-state-output representation (7), Lemma 12 and The-
orem 13 likewise apply to the LQR problem

minimize
col(u,x)∈B

∥x∥2 + ∥u∥2 s.t. (46a)

x(−1) = x0 (46b)

and its restrictions to polynomial trajectories.

4. A “fundamental lemma”

The main result of this section is a parametrization of
the trajectories of a controllable linear differential system
in terms of a constant matrix obtained from “sufficiently-
informative” data. To this end, we first define some new
concepts and notation and state some preliminary results.
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4.1. Persistency of excitation

Given L ∈ N \ {0} and f ∈ HL−1(I,Rd), we define the
Gramian

ΓL(f) :=

∫
I
ΛL(f)ΛL(f)

⊤ dt. (47)

Definition 16. Let L ∈ N\{0}. A function f : I → Rd is
called persistently exciting of order L, if f ∈ HL−1(I,Rd)
and the Gramian ΓL(f) in (47) is positive definite.

This definition is reminiscent of the notion of excitation
in [27, Definition 2]. In the following result we relate it
to the concept of persistency of excitation used in [28],
specifically property (iii) in the lemma below.

Lemma 17. For f ∈ HL−1(I,Rd) with L ∈ N \ {0}, the
following statements are equivalent:

(i) f is persistently exciting of order L;

(ii) ker(Γk(L)) = {0};

(iii) If η ∈ RLd is such that η⊤ΛL(f) = 0 a.e., then η = 0;

(iv) The functions f, f (1), . . . , f (L−1) are linearly indepen-
dent in L2(I,Rd).

Proof. We show only the equivalence of (ii) and (iii), as
the equivalence of (i) and (ii) as well as (iii) and (iv) are
straightforward. Observe that η ∈ ker(ΓL(f)) if and only
if

0 = η⊤ΓL(f)η =

∫
I
∥ΛL(f)(t)

⊤η∥22 dt = ∥ΛL(f)
⊤η∥2,

which shows the equivalence of (ii) and (iii).

Example 18. Let f : I → R be a monic polynomial of
degree L−1 with L ∈ N\{0}. Then f (k) for k = 0, . . . , L−1
is a polynomial of degree L− 1− k. Therefore, it is clear
that f, f (1), . . . , f (L−1) are linearly independent functions
in L2(I,R), and, thus, f is persistently exciting of order
L by Lemma 17.

Remark 19 (Discrete-time excitation analogue). The
above concept of persistency of excitation in continuous
time aligns seamlessly with its discrete-time counterpart
(see [3]). In discrete time, the time-shift operator serves as
the analogue to differentiation, whereas summation corre-
sponds to integration. With this in mind, given a discrete-
time signal f : {0, . . . , N − 1} → Rd, we define

ΛL(f)(t) :=
[
f⊤(t) . . . f⊤(t+ L− 1)

]⊤

and consider the Hankel matrix

HL(f) :=
[
ΛL(f)(0) . . . ΛL(f)(N − L)

]
.

Now, the corresponding Gramian

ΓL(f) :=

N−L∑
j=0

ΛL(u)(j)ΛL(u)(j)
⊤ = HL(u)HL(u)

⊤

is positive definite if and only if HL(u) has full row rank,
i.e. f is persistently exciting of order L, cf. [3].

4.2. Fundamental lemma

In the following, we also need Gramians constructed
from input-state trajectories of a system (7). Given
u ∈ HL−1(I,Rm) and x ∈ HK−1(I,Rn) for some L,K ∈
N \ {0}, we extend the notation of stacked derivatives (1)
to

ΛL,K(u, x) :=

[
ΛL(u)
ΛK(x)

]
(48)

We define the Gramian ΓL,K(x, u) by

ΓL,K(u, x) :=

∫
I
ΛL,K(u, x)ΛL,K(u, x)⊤ dt . (49)

We now state some results instrumental to establishing
a continuous-time fundamental lemma. To this end, we
consider an input-state-output representation (7). Then,
for fixed L ∈ N \ {0}, we define for i ∈ N

Ci(A,B) :=


In+Lm if i = 0[
Ai Ai−1B . . . B 0

0 0 . . . 0 ILm

]
if i ≥ 1

.

(50)

Lemma 20. Consider an input-state-output representa-
tion (7) of B and let col(u, x) be an input-state trajectory
with u ∈ HL+n(I,Rm). For i = 0, . . . , n− 1, the following
equalities hold:[

Λ1(x
(i))

ΛL(u
(i))

]
= Ci(A,B)

[
Λ1(x)

ΛL+i(u)

]
. (51)

Proof. The case i = 0 is trivial. To prove (51) in the case
i ≥ 1, use the equation

x(i) = Aix+

i−1∑
j=0

Ai−1−jBu(j).

The next result is analogous to [28, Proposition 1]; since
the proof needs to be adapted to the language and notation
of this paper, we provide it in full detail.

Proposition 21. Suppose that B is controllable and con-
sider a minimal input-state-output representation (7) of B
such that (A,B) is controllable. Let col(x, u) be a input-
state trajectory. Assume that u is persistently exciting of
order at least n+ L, with L ∈ N \ {0}. Then

(i) If ξ ∈ RLm+n satisfies

ξ⊤ΛL,1(u, x) = 0 (52)

almost everywhere on I, then ξ = 0;

(ii) ΓL,1(u, x) is positive definite.

Proof. The second statement follows in a straightforward
way from the first one, cf. proof of Lemma 17. We show (i).
Let ξ⊤ =

[
η ζ

]
, η =

[
η0 . . . ηL−1

]
, with ηk ∈ R1×m,
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j = 0, . . . , L − 1, and ζ ∈ R1×n. Differentiating (52) i
times, i = 0, . . . , n, we conclude that

[
ζ η

] [Λ1(x
(i))

ΛL(u
(i))

]
= 0 ,

almost everywhere on I for i = 0, . . . , n.
Using equation (51) established in the proof of

Lemma 20, we conclude that for i = 0, . . . , n it that

0 =
[
ζAi . . . ζB η0 . . . ηL−1

] [ Λ1(x)
ΛL+i(u)

]
, (53)

holds almost everywhere on I. Now define

w0 :=
[
ζ η0 . . . ηL−1 0nm

]
w1 :=

[
ζA ζB η0 . . . ηL−1 0(n−1)m

]
...

wn :=
[
ζAn . . . ζB η0 . . . ηL−1

]
.

From (53) we have that the following equations hold true
almost everywhere on I:

wi

[
Λ1(x)

ΛL+n(u)

]
= 0 , i = 0, . . . , n . (54)

Since u is persistently exciting of order at least L+ n, us-
ing statement 3 of Lemma 17 we conclude that the vector-
valued function

[
Λ1(x)

⊤ ΛL+n(u)
⊤]⊤ has at most n “al-

most everywhere annihilators” on I: it follows that the
n+ 1 vectors wi, i = 0, . . . , n are linearly dependent.
Since the last components of the wi’s are zero, i =

0, . . . , n, we conclude that ηL−1 = 01×m, then ηL−2 = 0,
and so on until η0 = 0. Consequently

w0 =
[
ζ 01×(n+L)m

]
w1 =

[
ζA ζB 01×(n+L−1)m

]
w2 =

[
ζA2 ζAB ζB 0(n+L−2)m

]
...

wn =
[
ζAn ζAn−1B . . . ζB 01×Lm

]
.

Denote by αi, i = 0 . . . , n the coefficients of the character-
istic polynomial of A, and using

∑n
i=0 A

iαi = 0 conclude
that

∑n
i=0 wiαi equals[∑n
i=0 ζA

iαi

∑n
i=1 αiζA

i−1B . . . ζB 01×Lm

]
=

[
01×n

∑n
i=1 ζαiA

i−1B . . . ζB 01×Lm

]
.

By construction, almost everywhere on I it holds that[∑n
i=1 αiζA

i−1B . . . αnζB
]
Λn(u) = 0 ;

since u is persistently exciting of order at least L+ n, we
conclude that[∑n

i=1 αiζA
i−1B

∑n
i=2 αiζA

i−2B . . . αnζB
]
= 0 .

It follows from the last m equations that αnζB = 0; since
the highest coefficient αn of the characteristic polynomial

of A equals 1, we conclude that ζB = 0. The previ-
ous m-dimensional block-entry of the vector is αn−1ζB +
αnζAB = 0 + αnζAB = 0. We conclude that ζAB = 0.
The same argument can be used to prove ζAiB = 0,
i = 0, . . . , n − 1. Since the pair (A,B) is controllable we
conclude that ζ = 0 and consequently that statement (i)
is true.

We now have all the necessary ingredients to formulate
a continuous-time ”fundamental lemma“.

Theorem 22 (Continuous-time ”fundamental lemma“).
Suppose that B is controllable. Let col(u, y) ∈ B be such
that u is persistently exciting of order L+ n(B), with L ≥
l(B) + 1. For col(u, y) ∈ HL−1(I,Rq) and K ∈ N, l(B) +
1 ≤ K ≤ L, the following statements are equivalent:

(i) col(u, y) ∈ B;

(ii) There exists g ∈ L2(I,RLm+Kp) such that

ΛL,K(u, y) = ΓL,K(u, y)g. (55)

Moreover, rankΓL,K(u, y) = Lm+ n(B).

Proof. Fix a minimal input-state-representation (7) of B
and let

SL,K =

[
ImL 0
TK−1 OK−1

]
, (56)

where OK is the Kalman observability matrix, see (11),
and TK is defined as in (36). Then given col(u, y) ∈ B
with corresponding state x satisfies

ΛL,K(u, y) = SL,KΛL,1(u, x). (57)

Let x be the state corresponding to col(u, y). In a first
step we show

imSL,K = imΓL,K(u, y). (58)

Note that in order to show (58) it suffices to prove

kerS⊤
L,K = ker ΓL,K(u, y). (59)

The former equality then follows by taking the orthogonal
complements of the null spaces and employing the symme-
try of ΓL,K(u, y). With (57) and (49) one has

ΓL,K(u, y) = SL,KΓL,1(u, x)S⊤
L,K . (60)

By Proposition 21 the matrix ΓL,1(u, x) is positive defi-
nite. This shows (59), cf. Observation 7.1.8 in [29]. In
particular,

rankΓL,K(u, y) = rankSL,K = Lm+ rankOK−1

= Lm+ n(B).

We show the implication (i) to (ii). Let col(u, y) ∈
B ∩ HL(I,Rm+p) with state x. Then (57) holds. There-
fore, with (58) the function ΛL,K(u, y) maps pointwise a.e.
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into imΓL,K(u, y) and, thus, g := ΓL,K(u, y)†ΛL,K(u, y)
satisfies (55).

We show the converse implication. Assume that (55)
holds. We consider a input-output representation (6) of B
with polynomial matrices Q and P . It is no restriction to
assume that the degree of Q and P is bounded by l(B),
i.e. Q(s) =

∑l(B)
k=0 Qks

k and P (s) =
∑l(B)

k=0 Pks
k. Define

Q̃ :=
[
Q0 . . . Ql(B) 0p×m(L−l(B)−1)

]
,

P̃ :=
[
P0 . . . Pl(B) 0p×p(K−l(B)−1)

]
.

Since col(u, y) ∈ B, it holds that[
Q̃ P̃

]
ΛL,K(u, x) = 0

and, consequently,[
Q̃ P̃

]
ΓL,K(u, x) = 0 .

Therefore,[
Q̃ P̃

]
ΛL,K(u, y) =

[
Q̃ P̃

]
ΓL,K(u, x)g = 0,

that is (6) holds and col(u, y) ∈ B.

Remark 23. Instead of using the data matrix ΓL,K(u, y),
any other matrix with the same image is suitable in the de-
scription of trajectories (55). One advantageous approach,
especially from a numerical perspective, is to utilize the re-
duced singular value decomposition of ΓL(u, y), i.e.

ΓL(u, y) = U1Σ1V
⊤
1 ,

with Σ1 nonsingular of dimension equal to the rank of
ΓL(u, y). Observe that the columns of U1 form an orthog-
onal basis for imΓL(u, y).

In the absence of a feedthrough term (i.e., D = 0 in the
input-state-output representation), the constraint K ≤ L
in Theorem 22 can be relaxed toK ≤ L+1. If, in addition,
the state is directly observable (i.e. C = In), we get the
following statement.

Corollary 24. Suppose

B =
{
col(u, x) ∈ L2(I,Rm+n)

∣∣∣ d
dx = Ax+Bu

}
(61)

is controllable. Let col(u, x) ∈ B such that u is persistently
exciting of order 2 + n. Consider the partition Γu

Γx

Γx(1)

 = Γ1,2(u, x)

with Γu ∈ Rm×(m+2n), Γx,Γx(1) ∈ Rn×(m+2n). Then, for
u ∈ L2(I,Rm) and x ∈ H1(I,Rn) the following statements
are equivalent:

(i) col(u, x) ∈ B;

(ii) There exists g ∈ L2(I,Rm+2n) such that

u = Γug, x = Γxg,
d
dt (Γxg) = Γx(1)g. (62)

Moreover, rankΓ1,2(u, x) = m+ n.

Corollary 24 allows for an complete description of B
based only on sufficiently informative data, without know-
ledge of the system matrices A and B. Note that, however,
the verification of condition (55) involves solving a system
of linear equations. The solution of a system of linear dif-
ferential equations (with time-varying coefficients) arises
also in the version of the fundamental lemma in [12], see
Theorem 2 therein.

4.3. System identification

The data matrix, as applied in the fundamental lemma,
enables the reconstruction of behavioral representations.
Suppose that the assumptions of Corollary 24 hold. The
representation (62) is equivalent to

R̃( d
dt ) col(u, x) = M̃( d

dt )g, (63)

where R̃ and M̃ are polynomial matrices given by

R̃(s) =

 0 0
Im 0
0 In

 , M̃(s) =

Γx(1) − sΓx

Γu

Γx

 . (64)

Observe, that g serves as a latent variable in the represen-
tation (63).

We are going to eliminate the latent variable g, cf. The-
orem 6.2.6. in [15] Let[

B̃ Ã
]
= Γx(1)

[
Γu

Γx

]†
, B̃ ∈ Rn×m, Ã ∈ Rn×n . (65)

Note that

rankΓ1,2(u, x) = rankΓ1,1(u, x) = m+ n,

cf. Proposition 21 and Corollary 24, and Γ1,1(u, x) is a
submatrix of Γ1,2(u, x). Therefore, the rows of Γx(1) are
linearly dependent on those of

[
Γ⊤
u Γ⊤

x

]⊤. As a conse-
quence, multiplication with the unimodular matrix U ,

U(s) =

In −B̃ (sIn − Ã)
0 Im 0
0 0 In

 , (66)

yields

U(s)
[
R̃(s) M̃(s)

]
=

−B̃ (sIn − Ã) 0
Im 0 Γu

0 In Γx

 . (67)

Finally, using the first n rows in U(s)R̃(s), a kernel repre-
sentation (2) of B is obtained,

R(s) =
[
−B̃ (sIn − Ã)

]
(68)

It is not difficult to see that Ã and B̃ (together with
C = In, D = 0) are suitable matrices for the input-state-
output model of (7).
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4.4. Expansion-based formulation

Employing the polynomial lift, see Subsection 2.2, we
obtain the following two corollaries of Theorem 22 and
Corollary 24, respectively.

Corollary 25. Let the assumption of Theorem 22 hold.
Consider the partition

Γu

Γu(1)

...
Γu(L−1)

Γy

Γy(1)

...
Γy(L−1)


= ΓL,K(u, y),

where Γu(j) ∈ Rm×(Lm+Kp), j = 0, . . . , L − 1, and
Γy(k) ∈ Rp×(Lm+Kp), k = 0, . . . ,K − 1. For col(u, y) ∈
HL−1(I,Rq) with û = Πu, ŷ = Πy the following state-
ments are equivalent:

(i) col(u, y) ∈ B;

(ii) There exists ĝ ∈ ℓ2(N,RLm+Kp) such that

û = Γu(0) ĝ,

ŷ = Γy(0) ĝ,

D(Γu(j−1) ĝ) = Γu(j) ĝ, j = 1, . . . , L− 1,

D(Γy(k−1) ĝ) = Γy(k) ĝ, k = 1, . . . ,K − 1,

(69)

where D is defined as in (20).

In this case the k-th derivative of u is given by u(k) =∑
i∈N(Γu(k) ĝi)πi; similarly for derivatives of y.

Corollary 26. Let the assumption of Corollary 24 hold.
Let For u ∈ L2(I,Rm) and x ∈ H1(I,Rn) with û = Πu,
x̂ = Πx the following statements are equivalent:

(i) col(u, y) ∈ B;

(ii) There exists ĝ ∈ ℓ2(N,Rm+2n) such that

û = Γuĝ, x̂ = Γxĝ, D (Γxĝ) = Γx(1) ĝ, (70)

where D is defined as in (20).

Conditions (69) and (70) are formulated in terms of in-
finite series, meaning that each coefficients ĝi for i ∈ N
must satisfy specific linear equations. This complicates
numerical computations. Limiting considerations on poly-
nomial trajectories, i.e. col(u, y) ∈ B ∩ imPN , this infinite
equation system is equivalently reduced to a finite one,
assuming ĝi = 0 for all i ≥ N .

5. Data-driven optimal control

Finally, utilizing the approximation result of Section 3
in conjunction with the fundamental lemma, we propose a
data-driven approach for optimal control of input-output
systems (see also [30] for a recent application of orthog-
onal bases of functions in iteratively solving finite-length
continuous-time tracking problems).

5.1. Data-driven formulatation

Let the assumptions of Theorem 22 and Corollary 25
(with K = L = l(B) + 1) hold. We consider the optimiza-
tion problem

minimize
ĝ∈ℓ2(N,RLq)

∑
i<N

(
∥Γy(0) ĝi∥22 + ∥Γu(l(B)) ĝi∥22

)
∥πi∥2 (71a)

subject to

ĝi = 0, i ≥ N, (71b)

D(Γu(k−1) ĝ) = Γu(k) ĝ, (71c)

D(Γu(k−1) ĝ) = Γu(k) ĝ, k = 1, . . . , l(B), (71d)

ξ0 =
∑
i<N

(−1)i


Γu(0)

Γy(0)

...
Γu(l(B)−1)

Γy(l(B)−1)

 ĝi. (71e)

Note, that the relationship between optimization prob-
lems (71) and (40) is established by

Πu = û = Γu(0) ĝ, Πy = ŷ = Γy(0) ĝ,

u(k) =
∑
i<N

(Γu(k) ĝi)πi, y(k) =
∑
i<N

(Γy(k) ĝi)πi.
(72)

Constraints (71c) and (71d) ensure that w = col(u, y) ∈ B,
while constraint (71b) guarantees w ∈ imPN . The initial
condition Λl(B)(w)(−1) = ξ0 is reflected by (71e), where
πi(−1) = (−1)i is used.
The following proposition summarizes the relationship

between the polynomially restricted LQR problem (40)
and its data-driven formulation (71).

Proposition 27. Let the assumptions of Theorem 22 and
Corollary 25 hold. Then the polynomnially restricted LQR
problem (40) and the data-driven LQR problem (71) are
equivalent in the sense that w = col(u, y) solves (40) if
and only if ĝ is a solution to (71) such that (72) holds. In
particular, their optimal values coincide.

Proof. Via the relationship (72) the target function in (40)
can be equivalently rewritten into that in (71a). Further,
Corollary 25 directly yields the equivalence of LQR prob-
lem (40) and a modified data-driven formulation of (71),
where in the latter problem the constraint (71b) is replaced
by the seemingly more restrictive constraint[

Γu0

Γy0

]
ĝi = 0, i ≥ N. (73)
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Note that the modified condition (73) in combination with
(72) is equivalent to col(u, y) ∈ imPN . Replacing (71b)
with (73), however, does not affect the feasibility or op-
timality of a trajectory col(u, y) with (72). Indeed, this
follows form the fact that (73) together with (71c), (71d)
implies[

Γuk

Γyk

]
ĝi = 0, i ≥ N, k = 0, . . . , l(B) (74)

and ĝi only appears in the modified problem, when accom-
panied by Γuk or Γyk .

The approximation result in Theorem 13 yields asymp-
totic bounds on the optimality gap between the data-
driven LQR problem (71) and the original LQR prob-
lem (33). We emphasize that the allowed polynomial ap-
proximation order N does not depend in the persistency of
excitation order of the data, that is the same informative
data trajectory (u, y) can utilized for different N . Figure 1
illustrates how the various results in this paper integrate
to derive a solution to the LQR problem (33) via the data-
driven LQR formulation (71).

LQR (33)

polynomially
restricted
LQR (40)

data-driven
LQR (71)

approximation
properties from
Theorem 13

“fundamental lemma”
Theorem 22,
Corollary 25,
Proposition 27

Figure 1: A schematic overview of the relations of the different LQR
formulations.

Due to (71b), the optimization problem (71) can be
rewritten as a finite-dimensional quadratic program. In
this context, D in constraints (71c) and (71d) is replaced
with some upper-left square submatrix of the infinite ma-
trix representation of D in (21).

Note, that instead of the polynomially restricted LQR
problem (40) one could likewise derive a data-driven for-
mulation of the unrestricted LQR problem (33) using
Corollary 25. Since the resulting problem does not include
a condition like (71b), meaning it involves infinitely many
coupled equations, finding a numerical solution, however,
seems intractable.

Similarly to the previous approach, consider the sce-
nario described in Corollary 24. The LQR problem (46) in

Remark 15, constraint to polynomial trajectories, is equiv-
alent to the data-driven optimization problem

minimize
ĝ∈ℓ2(N,R2n+m)

∑
i<N

(
∥Γxĝi∥22 + ∥Γuĝi∥22

)
∥πi∥2 (75a)

subject to

ĝi = 0, i ≥ N, (75b)

D(Γxĝ) = Γx(1) ĝ, (75c)

x0 =
∑
i<N

(−1)iΓxĝi, (75d)

cf. Corollary 26 and the proof of Proposition 27.

5.2. Numerical example

We illustrate the numerical feasibility of the data-driven
optimal control scheme involving the fundamental lemma
consider the LQR

minimize
col(u,x)

∫ 1

−1

|u(t)|2 + |x(t)|2 dt (76a)

d
dtx = −x+ u, x(−1) = 1 . (76b)

By Pontryagin’s minimum principle the optimal trajectory
col(u⋆, x⋆) to (76) together with its co-variable λ⋆ satisfies

d
dtx

⋆ = −x⋆ + u⋆, x⋆(−1) = 1
d
dtλ

⋆ = λ⋆ − x⋆, λ⋆(1) = 0

u⋆ = −λ⋆

and one finds

x⋆(t) = αe−
√
2t (

√
2− 2)e2

√
2t − (

√
2 + 2)e2

√
2

√
2(e2

√
2 − 1)

u⋆(t) = −αe−
√
2t e

2
√
2t − e2

√
2

e2
√
2 − 1

with a normalization constant α to ensure x⋆(−1) = 1.
The optimal value is J⋆ ≈ 0.4125.
Note, that the underlying system has McMillan degree

n(B) = 1 and lag l(B) = 1. We consider the trajectory
col(u, x),

u(t) = t2, x(t) = t2 − 2t− 5e−(t+1) + 2, (77)

where u is persistently exciting of order 3, see Exam-
ple 18. The smallest eigenvalue of Γ3(u) is approximately
0.1729. We numerically solve the polynomially restricted
optimal control problem, cf. (40), in its data-driven formu-
lation (75) for different polynomial orders N . The result-
ing time-domain trajectories reconstructed from the ex-
pansion coefficients are illustrated in Figure 2. The devia-
tions between the optimal value J⋆ and the optima of the
data-driven problems are presented in Table 1. The nu-
merical results align with the theoretical convergence order
described in Theorem 13. The Matlab code that produced
the numerical results is available.2

2https://github.com/schmitzph/contDdOC
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N JN − J⋆

1 3.59 · 100
2 4.11 · 10−1

3 3.36 · 10−2

4 1.70 · 10−3

5 4.79 · 10−5

N JN − J⋆

6 9.58 · 10−7

7 1.25 · 10−8

8 1.30 · 10−10

9 9.72 · 10−13

10 1.73 · 10−14

Table 1: The error between the optimal value J⋆ and the optimal
value JN = J(col(uN , xN )) of the data-driven LQR problem with
respect to polynomial trajectories in imPN .

−1 0 1

−0.5

0

0.5

u2

u3

u4
u5

in
p
u
t

u⋆

−1 0 1

0

0.5

1

x2

x3

x4

x5

time

st
at
e

x⋆

Figure 2: The optimal trajectory w⋆ = col(u⋆, x⋆) (dashed, black)
and approximate optimal trajectories wN = col(uN , xN ) for N =
2, 3, 4, 5.

6. Conclusions

We stated Gramian-based continuous-time versions of
Willems et al.’s fundamental lemma in Theorem 22 and
Corollary 24 in the case of input-output and input-state
measurements, respectively. Then, we applied the derived
results to the data-driven simulation problem in Corollar-
ies 25 and 26.

The evaluation of the performance of our approach in
the case of noisy data is of pressing importance. The ex-
tension of our approach to the nonlinear case, at least
for specific classes of systems, is also a matter of press-
ing research, especially in the light of recent nonlinear
extension of the discrete-time fundamental lemma, see
[31, 32, 33, 34]. For more general classes of nonlinear sys-
tems, one may invoke recent results on the approximation
error for the Koopman generator [35] and operator [36],
which may, then, also be used for data-driven predictive
control, see, e.g., [37, 38].
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control of nonlinear systems: An experimental result,” IFAC-
PapersOnLine, vol. 56, no. 2, pp. 2263–2268, 2023.

[12] V. G. Lopez and M. A. Müller, “On a continuous-time version
of Willems’ lemma,” in 61st IEEE Conference on Decision and
Control (CDC), 2022, pp. 2759–2764.

[13] V. G. Lopez, M. A. Müller, and P. Rapisarda, “An Input-
Output Continuous-Time Version of Willems’ Lemma,” IEEE
Control Systems Letters, vol. 8, pp. 916–921, 2024.

[14] P. Rapisarda, H. van Waarde, and M. Çamlibel, “A “funda-
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Müller, “Data-driven nonlinear predictive control for feedback
linearizable systems,” IFAC-PapersOnLine, vol. 56, no. 2, pp.
617–624, 2023.

[33] O. Molodchyk and T. Faulwasser, “Exploring the links between
the fundamental lemma and kernel regression,” IEEE Control
Systems Letters, 2024.

[34] M. Lazar, “Basis functions nonlinear data-enabled predictive
control: Consistent and computationally efficient formulations,”
arXiv preprint arXiv:2311.05360, 2023.
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