Systems & Control Letters 194 (2024) 105950

journal homepage: www.elsevier.com/locate/sysconle

Contents lists available at ScienceDirect

Systems & Control Letters

A continuous-time fundamental lemma and its application in data-driven

optimal control™

Philipp Schmitz **, Timm Faulwasser °, Paolo Rapisarda ¢, Karl Worthmann ?

a Technische Universitdt Ilmenau, Institute of Mathematics, Optimization-based Control Group, Ilmenau, Germany

b Hamburg University of Technology, Institute of Control Systems, Hamburg, Germany
¢ University of Southampton, Southampton, United Kingdom

ARTICLE INFO ABSTRACT

Keywords:

Continuous time
Data-driven control
Differential flatness
Identifiable

Persistency of excitation
Polynomial approximation

Data-driven control of discrete-time and continuous-time systems is of tremendous research interest. In this
paper, we explore data-driven optimal control of continuous-time linear systems using input-output data. Based
on a density result, we rigorously derive error bounds for finite-order polynomial approximations of elements
of the system behavior. To this end, we leverage a link between latent variables and flat outputs of controllable
systems. Combined with a continuous-time counterpart of Willems et al.’s fundamental lemma, we characterize
the suboptimality resulting from polynomial approximations in data-driven linear-quadratic optimal control.

Finally, we draw upon a numerical example to illustrate our results.

1. Introduction

Data-driven control, i.e., the design of controller and feedback laws
directly from measured data, is a topic of ongoing research interest,
see [1,2] and the range of articles in these special issues. A pivotal
result at the core of many developments in linear discrete-time systems
is Willems et al.’s fundamental lemma [3].

Lemma 1 (Discrete-time fundamental lemma). Consider the discrete-time
controllable linear time-invariant system

x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k)+ Du(k)

and let v = col(#, ) be a length-N input—output trajectory of the system
such that i is persistently exciting (cf. [3]) of order n+ L, where L € N\ {0}
and n is the system’s state dimension. Then w = col(u, y) is a length-L
input—output trajectory of the system if and only if

w(k) w(0) W(N - L)

: € im : : .
w(L —1) Ww(L-1) W(N -1)

This lemma enables the parameterization of the external (input—
output) finite-horizon behavior of controllable systems using suffi-
ciently informative data arranged in a Hankel matrix. For more details
and recent advancements, see the survey [4] and the references therein.

The interest in this result has been catalyzed by recent works such
as [5-7]; applications of data-driven control concepts are discussed
in the literature [8-11]. In [12-14] continuous-time extensions of
the fundamental lemma have been proposed. While the former works
require to solve a scalar ODE to compute future trajectories, in the latter
paper an approach to compute a generating representation based on
polynomial series expansions of input—output trajectories is proposed.
However, the latter result has not yet been used to design data-driven
controllers. In the present paper, we address this gap: We extend
the results from [14] by deriving errors bounds for polynomial series
expansions on elements of the behavior. We also prove that the set
of polynomial system trajectories is dense in the set of all system
trajectories. We use the approximation bounds to derive bounds on the
optimality gap resulting from using finite-order polynomials to solve
linear—quadratic regulator (LQR) problem formulated in terms of the
behavior. Finally, we establish a continuous-time fundamental lemma
involving the Gramians of trajectories and, based on this, present a
data-driven approximation for the LQR problem.

The remainder of this paper is structured as follows: In Section 2
we revisit foundational concepts in behavioral systems theory, with
most results rederived to suit our specific setting. Utilizing the con-
nection between flat outputs and latent variables, in Lemma 6, we
derive a specific behavioral representation, which is beneficial for
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subsequent approximation results. Moreover, we recap properties of
Legendre polynomials (Sections 2.2 and 2.3) and analyze their ad-
vantage in the approximation of behavioral elements (Section 2.4)
as shown in Proposition 11. In Section 3, we introduce a version of
the finite-horizon linear—quadratic optimal control problem and its
finite-dimensional approximation in the space of linear combinations of
Legendre polynomials including a convergence analysis. In Section 4,
we define the concept of persistency of excitation (Section 4.1) and we
state a continuous-time fundamental lemma (Theorem 22). Section 4.3
demonstrates how the fundamental lemma can be applied in system
identification. In Section 5, we discuss the application of our results to
the data-driven solution of the finite-horizon optimal control problem
before we conclude the paper in Section 6 pointing out directions of
current and future research.

Notation: Given two sets X and £, the set of functions f : 2 - X is
denoted by X<2. Let T be a real interval; we denote by T the closure
of T. Let d,k € N; then L*(Z,R?) denotes the space of equivalence
classes of square integrable functions f € (RY)! and H*(Z,R?) is the
kth order Sobolev space associated with L*(Z,R?). The scalar product
in L?(Z,R?) and its induced norm are given by (f.g) = [; f(r) g(z)dr
and |||l = V/{f, f). The usual norm in H*(Z,R¢) is denoted by || - || .
For k e N\ {0} and f € H*!(Z,R?) we set

S
A = € LX(I,RM). m
f(k—l)
In particular, || f|l -1 = |A.(f)l. CX(I,RY) is the space of infinitely

differentiable functions from Z to RY and C§°(I,]Rd ) consists of those
functions of C*(Z,R?) with compact support. Given a Hilbert space X,
£%(N, X) is the space of square summable sequences in XV.

The identity operator from a vector space X onto itself is denoted
by Iy or simply I when clear from the context. In the case of a finite
dimensional space X = RY we also write I,. The Euclidean norm in R¢
is denoted by || - [l,. If Ay, ..., A, are matrices with the same number
of columns, we define col(4, ..., 4;) := [Ag AZ] T. We always
identify R? with R?%!. Given a matrix M, we denote by im M and ker M
its image and kernel. Further, MT and M’ denote the transpose and
Moore-Penrose inverse.

Finally, we denote by R[s] the ring of polynomials with real coeffi-
cients in the indeterminate s, and by R8*4[s] the ring of gxg¢ polynomial
matrices with real coefficients.

2. Linear differential systems

We first recapitulate behavioral concepts for linear time-invariant
systems. We then connect this paradigm to polynomial series expan-
sions of trajectories and explore how polynomial trajectories can ap-
proximate system behaviors.

2.1. Behaviors

In the following, we deal with dynamical systems given by the time
interval T = (=1, 1),' the signal space R? and a behavior B c (R%)L. We
focus on linear differential behaviors, i.e. the set of solutions to a system
of linear, constant-coefficient differential equations

R(%)wzo, @

where R(s) = Rys® + - + R,s” is a polynomial matrix in R8*9[s]. In this

way (2) is to be understood as Y/_, R,-d(;—[‘,” = 0. Here, the solution w of

1 We choose such interval purely for simplicity of notation; with
straightforward modifications, any other bounded open interval can be used.
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(2) is meant in the sense of weak solutions, i.e., w € L3*(I,R%) and it
satisfies

r :
0=%(_1)f/leR,T% dt 3)
pe

for all test functions ¢ € C*(Z,R8). Given w € C®(I,RY) integration
by parts shows that (3) is valid if and only (2) holds pointwise.

Given our choice of solution set, we need to slightly generalize and
prove some well-known results from [15], where the solutions of (2) are
assumed to be infinitely differentiable. In particular, the equivalence
of the different representations of behaviors, established essentially for
smooth functions in [15], requires verification in the context of weak
L?-solutions.

Lemma 2. The behavior

B::{weLz(I,RQ)‘R(g)wﬂ} )

is closed in L*(I,R9).

Proof. Consider a sequence (w,),cy in B which converges to some
w € L%*(I,R%). Note that for each ¢ € C&(Z,R$) the right hand side
in (3) defines a linear, continuous functional f,, : L*(I,RY%) — R. By
continuity 0 = lim,_,, f,(w,) = f4(w) for every ¢ € CX(I,R#), that is
w solves (2) and w e B. [

We recall the notion of behavioral controllability, cf.
Definition 5.2.2 in [15]. The behavior B is controllable if for each two
trajectories w,, w, € B there is ¢; € (0, 1) and w € B such that

()= {wo(t) if 1 € (=1,0], -
w (t—1t) ifte(o,1).

Partitioning R compatibly with a known selection of inputs and
outputs w = col(u, y) € B, cf. Definition 3.3.1 in [15], one obtains the
input—output representation

(2)=0(2)x

where P € R?[s] can be assumed to be nonsingular and Q € RP™"[s]
with g =m+ p.

A linear differential behavior B also admits an input-state-output
representation (see [16]), i.e., there are matrices A € R™", B € R™",
C € R D € RP*" such that for all w = col(u,y) € BNC ®(7,RY) there
exists x € Cw(f, R") with

ix = Ax + Bu
dr @

y=Cx+ Du.
The following result relates the external behavior described by (6),
consisting of all input-output trajectories, and its input-state-output

counterpart in the terms of closed L2-subspaces.

Lemma 3. Given an input-state-output representation (7) of B, one has

B= {col(u, y) € LX(I,R"*P) ®)

Ixe HY(I,R"
s.t. (7) holds ’

Proof. Denote the set on the right hand side of (8) by B. We show that
B is a closed subspace of L*>(I, R™*?). To this end consider the solution
operator S : L*(I,R™) - H'(I,R") defined by

t
Su)@) := / exp(A(t — 7))Bu(r) dz. 9
-1
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From the definition of 3 it follows that col(u,y) € B if and only if there
exists xO € R? such that x = exp(A(- + 1)x* + Su with y = Cx + Du.
Therefore, B is the direct sum of the finite-dimensional space

By := {col(0, Cexp(A(- + 1)x%) | x* € R"}
and
B, := {col(w,(CS + Dyu) | u € L*(I,R™)}. (10)

The space l§1 is closed in L?(Z,R™*?) as it is the graph of the bounded
linear operator (CS + D) : L*(Z,R™) — L2(I,RP). This shows the
closedness.

The assertion follows with BN C®(Z,R"t?) = Bn C®(I,R™P) and a
density argument. []

Remark 4. Obtaining a kernel representation (2) from an input-state-
output one can be achieved by elimination of the state variable x, see
Section 6.2.2 of [15].

In this paper we use a couple of integer system invariants. The
McMillan degree of B, denoted n(B), is the minimal dimension of the
state space among all possible input-state-output representations (7) of
B. If the state space dimension equals n(/3), this particular input-state-
output representation is said to be minimal. Define

C ifk=0

O, = ; 11
k Ocrl if > a1
C Ak

the system lag, denoted [(B), is defined by
[(B) :=min{k € N |rank O, =rank O,_;}.

Evidently, [(B) < n(B). Further, [(B) is the highest order of differentia-
tion in a “shortest lag” description of B, see pp. 569-570 of [17].

Given an input-state-output representation of B the state variable
x is called observable, if it can be recovered from the input—output
trajectory, i.e., there is a polynomial matrix F € R™4[s] such that for
all w = col(u, y) € BN C®(I,RY)

x=F(%)w. a2)

Observability of the state variable is equivalent to (A, C) being observ-
able in the usual sense (see e.g. [18]), which is satisfied if Oy = 1.
For an observable pair (4, C), the lag [(B) is the observability index of
the pair.

In a manner akin to observability, a connection between behavioral
controllability and controllability of the pair (A, B) can be established
in terms of input-state-output representations, see, e.g., [18].

Lemma 5. Suppose B is controllable and consider a minimal input-state-
output representation (7) of B. Then (A, B) is controllable and (A, C) is
observable.

Proof. An input-state-output representation of 53 is minimal if and only
if (A, C) is observable the input-state-output representation is state trim,
i.e., for all x° € R" there is col(u, y) € BN C®(Z,R%) and x € C®(I,R")
such that (7) and x(0) = x° hold, cf. [16]. We only need to show the
controllability of (4, B), that is for arbitrary initial value x € R” and
terminal value x! € R” there is a control input « and a time instance
t; € (0,1) such that the state solution x of %x = Ax + Bu satisfies
x(0) = x¥ and x(¢;) = x!. By state trimness we find w, = col(ug, yo), W, =
col(uy,y;) € Bn Cm(f, RY) and corresponding states x(,x; € C°°(f, R™)
with x,(0) = x° and x,(0) = x!. Since B is controllable, there further
exists w = col(u,y) € Bn C®(I,R") and t, € (0,1) satisfying (5), cf.
Theorem 5.2.9 in [15]. With the observability of the state (12) we see

x(0) = (F(w) ) = (F(uy ) 0) = x(0) = 2,
x(t)) = (F(%)w)(tl) = (F(%)wl) ©=x0=x". O
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For a linear differential behavior controllability is equivalent to the
existence of an image representation (see Theorem 6.6.1 p. 229 in [15],
i.e., there exists a polynomial matrix M € R"™+P*"[s] such that w €
BN C®(T,R™*P) if and only if there exists a latent variable trajectory
¢ € C*(I,R™) such that

w=M(%)t’. a3)

A flat output of a differentially flat system leads to a specific image
representation endowed with helpful characteristics.

Lemma 6. Suppose that B is controllable. Then there exists M € R [s]
with deg(M) < n(B) + 1 such that

3¢ e L*1,R™) }

14
s.t. (13) holds a9

B= {col(u, y) € LX(I,R"P)

Moreover, given w € H*(I,R9) for some k € N the latent variable in (13)
satisfies £ € H*'(I,R™).

Proof. We consider a minimal input-state-output representation (7) of
B, that is n = n()3) and (A4, B) is controllable. Then there is a flat output
defined by

¢ =Cx (15)

with output matrix C € R™", see pp. 84—ff. in [19] and Remark 2 p.
72 of [20]. In more detail, there are polynomial matrices X € R™"[s],
U € R™"M[s] with deg(X) < n and deg(U) < n + 1 such that, given
w = col(u, y) € BN C®(T,RY) with corresponding state x € C®(I,R"),

Xx=X($), u=U, y=(CX(3)+DUS).

The associated image representation (13) is established through

U
M= [CX + DU] (16)

and the flat output # serves as latent variable.

We derive (14) for this particular M. Denote the set on the right side
of (14) by B. We show that 3 is closed in L*(Z,R9). Let (col(ug, yi)ken
be a sequence in B which converges in L2(Z,RY) to some col(u, y). The
state and latent variable corresponding to col(u,, y;) are denoted by x,
and 7, respectively. As the latent variable is given via a flat output
(see (15)) we find

= ka = aSuk

where S is the solution operator defined in the proof of Lemma 3. The
convergence of (u;),cy and the boundedness of S imply that (£);en
converges to some # € L>(I,R™). With Lemma 2 we know that

B, = {col(u, y,#) € L*(Z,R¥*™) | (13) holds}

is closed in L*(Z,R4*™). Therefore, col(u,y,#) € B, and col(u,y) € B.
Since B N C*(Z,R%) and B n C®(Z,RY) coincide, a density argument
yields (14).

Moreover, if col(u,y) € H¥(I,RY), then the corresponding state
satisfies x = Su € H*1(Z,R") and, thus, £ = Cx € H*'(I,R™). [J

The flatness-based image representation (16) provides key insights
into the smoothness of external trajectories, as determined by the
differentiability of latent variables. This understanding is crucial for
assessing how effectively polynomial approximations can capture the
system behavior, as explored in the following subsections.

2.2. Polynomial lift
Let (7;),cr be the sequence of Legendre polynomials with normal-

ization z,(1) = 1, i € N, which forms an orthogonal basis of L*(Z,R).
Recall that zy(r) =1, 7;() =t and for i =1, ...
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2i+1 .
() = T tr;(t) — im;_y (2).
Given f € L*(I,R) there is a unique series expansion
=Y fim. 17)
ieN
where f, := (f,z)||lz||™? and f := (f,);en. From Bessel’s theorem it

follows that f € £2(N, R).
Any function f € L?(I,R¢Y) with dimension d > 1 can be repre-
sented with coefficients defined by

d-1
fi = Z L"Z»ek’ (18)
k=0 ”7[1”

where {e),...e,_;} is the canonical basis of R? and f = (f)ey €
2(N,R?). We define

m: L*I1,RY > 2N, RY), [ f, 19)

which is an isometric isomorphism.

The differential operator % on H'(Z,R?) can be represented as an
operator D acting in #2(N,R?), [2/1\, Equation (2.3.18)]. For functions
fe H'(TRY with f =IT1f and 7O := H% one has

Oy =@f) =i+ Y, ;. i€N, (20)
Jj=i+l
i+j odd

or equivalently written by means of an infinite matrix

GO o 1 o 1 o0 I 7
— 0 31 0 3 0 .
QY]
e 0 51 0 5I fj . (©4))
/2

(f M), 0 71 0

Similarly to the differential operator % one can define powers and
polynomials of D.

Employing the kernel representation (2) we find the following
characterization of the behavior.

Lemma 7 (Behavioral Lift). Let w € C®(I, R™*7). Then w € B if and only
if
R(D)Tw = 0. (22)

Example 8 (No Finite Expansion). We show for the linear time-invariant
system described by (7) with A = C = I and B = D = 0 that its
trajectories with nontrivial output have no series expansion involving
only finitely many polynomials z;. Let col(u, y) € B and assume that y
has a finite expansion, i.e. there is some N € N such that y, = 0 for
i > N. It is no restriction to assume col(u,y) € BN C w(f, RY). Note that

the kernel representation (2) of B is given via R(s) = [0 (s— DI].

With Lemma 7 and the definition of D in (20) we see that

y =Dy, =Qi+1) Y §. ieN (23)
Ao

The finiteness of the expansion yields that for i = N —1 all summands on
the right hand side in (23) vanish and, hence, y5_; = 0. It is not difficult
to see that this successively implies y; = 0 for all i € N. Therefore y is
trivial. [

In Example 8 we illustrated the case when the dynamics of a
particular linear time-invariant system (7) cannot be described by a
finite representation in terms of Legendre polynomials. This is a generic
situation: the Legendre series representation of exponential functions
e*, 1 # 0 (generically present in the solution of (7), e.g. in the free
response), involve an infinite number of terms (see e.g. p. 39 of [22]).
Such considerations lead naturally to working with truncated Legendre
expansions of solutions of (7).
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2.3. Truncated expansion

In the light of Example 8, we study approximation bounds when
considering truncated series of Legendre polynomials. To this end we
introduce the orthogonal projection Py LX(I,RY) — L*I,RY)

defined by
Pyf =) fim (24)
i<N

Note that im Py coincides with the N-dimensional space of R9[s]-
polynomials of degree up to N — 1, which is spanned by =, ..., 7y_;.
Since (r;);cy is an orthogonal basis, Py f converges to f as N — o
with respect to the L?-norm. The speed of convergence is related to
the smoothness of f, as we discuss in the following.

Recall that #; is an eigenfunction corresponding to the ith eigen-
value A; :=i(i + 1) of the Sturm-Liouville operator

__d/d —(1-7
f = -2 (p3s) P=0-1),
fipfV e ACT,R),
D(C) =1 feria,c (% (p%f)) € I(1,0),

@eHVED =ENHPM =0

see [23, Theorem 3.6]. Here, AC(Z,C) denotes the space of locally
absolutely continuous functions from I to C. Let £* for s € (0, )
denote the sth power the self-adjoint operator £, defined via functional
calculus, see e.g. Section 5.3 in [24].

Lemma 9. If f € D(L®) for some s > 0, then

I =PI = L FIONT) (N — o). (25)

k
Moreover, H*(I,C) c D(L?2) for k € N.

Proof. Let 7#; = x;/||x;ll, i.e. (%;);cy form an orthonormal basis in
L3*(Z,C). For f € D(L*) we have

I =PI = |7 = X ma|f

i<N
= H Z<f»ﬁi>ifi H2 = H Z ﬂi_s(faﬁxiiﬁiuz
i>N i>N
- H 3o, i,.)ﬁi”?
N
Since (4,);ey is an increasing sequence, we find

PRI EAA

i>N

< (NN + D)7 )es|2,

(T = PFIP < A3 2

which shows the first claim. .

We show the inclusion H¥(Z,C) ¢ D(£2), k € N. For k = 0 there
is nothing to prove. For k = 1 we find that D(L?) = {f € L*(I,C)n
AC,C) | \/pfV € L*(1,C)} by [25, Theorem 6.8.5 (i)]. With the
uniform boundedness of p on [—1, 1] this shows H'(Z,C) c D(E%).

We continue with the case of even k > 2. Let f € H*(Z,C). Then
it is clear that f, pf e AC(Z,C) and #f € L%(Z,C). Moreover, f(
is bounded on [-1,1] as f(V € H'(Z,C). Consequently, f € D(£) and
Lf € H**(I,C). Repeating this argument yields f D(Eg), showing
HX(I,C) c D(Cg) for even k.

Finally, we consider f € H*!(Z,C) for evenkk > 2 kFrom
the previous observations we know that f € D(£2) and L2 f €
HI(IAC) C D(L2). Therefore, f € D(£%), which shows H*(1,C) c
DL O
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Corollary 10. If f € H¥(I,R?) for some k € N, then
(I = Py)fIl=ONT*) (N - ). (26)

2.4. Polynomial trajectories

Next we show that the space of polynomial trajectories
BN Jyeyim Py is dense in Bn H*(I,RY), s € N, and, particularly,
in B.

Proposition 11. Suppose B is controllable and let w € B N H"P+s+k
(Z,R™P) for some s € N\ {0}, ke N. Foral N e N, N >n(B)+s+1,
there is w™ € Bnim Py such that

AN —w)(=1)=0
satisfying

lw =N et = ONTF) (N - o). (27)

The integers k € N and s € N\ {0} in Proposition 11 determine
the convergence order and the highest derivative up to which the
asymptotic behavior is valid, cf. (27). These can be considered as user
specifiable, provided w is sufficiently smooth.

Proof of Proposition 11. Controllability of B implies the existence
of an image representation (13). Here we consider a particular image
representation given by a flat output, see Lemma 6. Let w € B n
H"B+s+k(T R™+P). Then there is £ € H"B)+s+k+1(T R™) such that

ven(8)e

holds. We construct a polynomial which approximates # and its deriva-
tives up to order y := n(3) + s + 1, while matching the initial values.
Let U;V := Py_,#%). Then by Corollary 10 as N — co one has

oy =90 =1t = Py )¢l = ON ). 29)
Define
1
o () = f<i>(-1)+/ o, (@dr, i=0,..,y-1 (30)
-1

By construction (v)))® = o), @HP(=1) =N (-1) = £0(-1), i.e.
A vy = £)(=1)=0. (61
Moreover, one sees with the Cauchy-Schwarz inequality
129 = (wpHPI* = /I )/] £ (@) — (YD (1) dr ®dr
< 4|2+ (U(])V)(i+1)”2
and, thus,
€ =0 Il gy = ONT). (32)
By construction vé" € im Py. Recall that the polynomial matrix M in

(28) satisfies deg(M) < n(B)+1. Let wN = M(%)v(’)", which is an element
of Bnim Py. Now, (31) and (32) yield

AN —w)(=1) = A (ME)w) - H) =1 =0
and

lwV = wll st = IME) @Y = Ol =N, O

3. The LQR problem and its approximation

Our aim is to solve the quadratic optimal control problem

Systems & Control Letters 194 (2024) 105950

weg‘niﬂir?gffm) J(w) s.t. (33a)
Ay w)(=1) = &, (33b)
with the cost function

J@w) = IyI* + 1" P12, w = col(u, y) € B. (34

The initial condition (33b) uniquely determines the latent state, pro-
vided the latter is observable from the inputs and the outputs. Includ-
ing the higher-order derivative term of the input into the objective
function (34) ensures feasibility of the LQR problem.

Lemma 12. Problem (33) has a unique solution w*, and w* € C®(I,R9).
Moreover, every feasible trajectory w satisfies

J(w—w*) <2(J(w) - J(w*)). (35)

Proof. We fix a minimal input-state-output representation (7), that is
(A, C) is observable. Consider any w = col(x, y) € Bn H'®. Then there
is x € H'(I,R") satisfying (7). With
D if k=0,
T = [ D
Or1B Ty

36
] ifk>1, (36)
with O, being the Kalman observability matrix defined in (38) one has
A1 () = Opx + T Ay () (37)
and by employing observability
x= Ot(B)—l (A = Tig1 A @) (38)
Inserting (38) into (37) for k = [(3) by rearranging terms one obtains
a linear auxiliary system
d - -
—E=Af+ B 39
3 15 &+ Bv 39)

with state & = Ay (w), input v = u"®). Note that (33) is equivalent to
the LQR problem

minéimize / EOTQEW) + v(t) Tv(r) dr,
SV I

where Q = diag(0, I 0., 0), subject to the dynamics (39) and the
initial condition £(—1) = £°. By standard LQR theory the latter problem
has a solution (¢*,v*), which is infinitely differentiable as v* is a
state feedback involving a solution of a Riccati differential equation.
In particular, w* := diag(],,, 1,,0,... L0)E* € C°°(f, R?) solves (33).

Let w be any trajectory. It is not difficult to see that J satisfies the
parallelogram identity

J(%(w* +w)) + J(%(w* -w) = %J(w*) + %J(w).

Convexity of the feasibility region together with J(w*) < J (%(w* +w))
yield

J(%(w* —w) < %(J(w) - J(w")).

This shows (35). [

Instead of solving the OCP (33) directly, given N € N, we solve the
problem restricted to polynomial trajectories, i.e.,

minimize J(w) s.t. (40a)
weBNIm Py
A w) =1 = &". (40b)

Observe that the restriction w € B n im Py enforces polynomial
trajectories of degree at most N — 1. In the following we show that
solving (40) leads to an approximately optimal control and, as N — oo,
the optimality gap decays at an polynomial rate of arbitrary order.
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Theorem 13 (Convergence of Optima). For given approximation order N,
N € N, let w* and w" be the solutions to the OCPs (33) and (40),
respectively. For every k € N one has

0<Jw™)—Jw*)=ON) (41)
and

llw* —wN || = ON*) (42)
as N — oo.

Proof. Recall that the solution w* € C®(Z, R"*?), see Lemma 12. Thus,
by Proposition 11 for arbitrary k € N there is vV € B nim Py with
Aysyw* —vN)(=1) =0 and

lw* = Nl gim = ON ). (43)
As w* and w" are solutions of (33) and (40), respectively, one has
Jw*) < JwN)<J@N), NEeN,
which shows the left-hand-side inequality in (41). Further, by the
reverse triangle inequality
TN = 3@ | <T@V = w < oN - 0,
which together with (43) implies
TNy = T (w?) = 207 (JN)T = J@h)?) + (J0M)7 = Jw*)7)’

=O(N7).
Next we show (42). Let col(u*,y*) = w* and col@",yV) = w™. By
Ay (w* —wN)(=1) = 0. We find
@)Y — @D = /1 ) / lr(u*><f+”<r> @y drf de

<A@ — @)U

for all j =0,...,((B) — 1. Thus,
lw* = wN |2 < 4P J* — wh).

This together with (35) in Lemma 12 and (41) yields (43). [

Remark 14. Similar to the above approach, one can handle a cost
function given by any quadratic differential form, see [26],
(B)
Jw)= Y @@, ;uw?, 44
ij=0
with matrices @, ; € R™ such that @;; = <I7’.T,. and
@ 0]

‘p[(B),[(B) = [0 0 (45)

where & € R™m corresponding to u'®) is invertible.

Remark 15. In the case where the state is directly observable at the out-
put, i.e. C =1, and D = 0 in the input-state-output representation (7),
Lemma 12 and Theorem 13 likewise apply to the LQR problem

minimize ||x||> + [lu]®> s.t. (46a)
col(u,x)eB
x(=1) = x° (46b)

and its restrictions to polynomial trajectories.

4. A “fundamental lemma”

The main result of this section is a parametrization of the trajecto-
ries of a controllable linear differential system in terms of a constant
matrix obtained from “sufficiently-informative” data. To this end, we
first define some new concepts and notation and state some preliminary
results.
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4.1. Persistency of excitation

Given L € N\ {0} and f € HL-1(Z,R?), we define the Gramian
Ii(f) = / AL(NALN)T de. 47)
1

Definition 16. Let L € N\ {0}. A function f : T — RY is called
persistently exciting of order L, if f € H'!(Z,R?) and the Gramian
I'; (f) in (47) is positive definite.

This definition is reminiscent of the notion of excitation in [27,
Definition 2]. In the following result we relate it to the concept of
persistency of excitation used in [28], specifically property (iii) in the
lemma below.

Lemma 17. For f € H!YW(I,R?%) with L € N\ {0}, the following
statements are equivalent:

(i) f is persistently exciting of order L;
(i) ker(I (L)) = {0};
(i) If n € R is such that n" A;(f) = 0 a.e., then n = 0;
(iv) The functions f,fD, ..., fL~D are linearly independent in L>
(I,R9).

Proof. We show only the equivalence of (ii) and (iii), as the equivalence
of (i) and (ii) as well as (iii) and (iv) are straightforward. Observe that
n € ker(I'; (f)) if and only if

0=n"I(fn = / IALCHOTAIE di = AL (HTalP,
I

which shows the equivalence of (ii) and (iii). [J

Example 18. Let / : T — R be a monic polynomial of degree L — 1
with L € N\ {0}. Then f® for k = 0,...,L — 1 is a polynomial of
degree L —1— k. Therefore, it is clear that £, f, ..., fL~D are linearly
independent functions in L?(Z,R), and, thus, f is persistently exciting
of order L by Lemma 17.

Remark 19 (Discrete-Time Excitation Analogue). The above concept of
persistency of excitation in continuous time aligns seamlessly with
its discrete-time counterpart (see [3]). In discrete time, the time-shift
operator serves as the analogue to differentiation, whereas summation
corresponds to integration. With this in mind, given a discrete-time
signal f : {0,...,N — 1} » R?, we define

AN = [T STa+L-1]7
and consider the Hankel matrix
H(f) := [AL()O) AL(fXN - L)].

Now, the corresponding Gramian
N-L
I (f) = Z AL @D AL @) = Hp @) Hpw)"
j=0
is positive definite if and only if H;(u) has full row rank, i.e. f is
persistently exciting of order L, cf. [3].

4.2. Fundamental lemma

In the following, we also need Gramians constructed from input-
state trajectories of a system (7). Given u € H'~(Z,R") and x €
HX=1(1,R") for some L, K € N\ {0}, we extend the notation of stacked
derivatives (1) to
A L(u)]

48
A () (48)

Ap g, x) 1= [
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We define the Gramian I x(x,u) by

Iy g, x) = / Ap g x)AL g, x)7 dr. (49)
a

We now state some results instrumental to establishing a
continuous-time fundamental lemma. To this end, we consider an
input-state-output representation (7). Then, for fixed L € N\ {0}, we
define for i € N

Lyiim ifi=0
Ci(A,B):=4|A" A"lB ... B 0 i1 (50)
I 2>
0 0 e 0 Iy,

Lemma 20. Consider an input-state-output representation (7) of B and
let col(u, x) be an input-state trajectory with u € H*"(I,R™). For i =
0,...,n— 1, the following equalities hold:

[Al(x(i))] —C(AB) [ Ay (x) ] .

) 51
AL @®) Apai@) G

Proof. The case i = 0 is trivial. To prove (51) in the case i > 1, use the
equation

i-1
X0 = Alx+ Y AT B, O

Jj=0

The next result is analogous to [28, Proposition 1]; since the proof
needs to be adapted to the language and notation of this paper, we
provide it in full detail.

Proposition 21. Suppose that B is controllable and consider a minimal
input-state-output representation (7) of 1B such that (A, B) is controllable.
Let col(x, u) be a input-state trajectory. Assume that u is persistently exciting
of order at least n + L, with L € N\ {0}. Then

@) If & e RLm+n satisfies
ETAL (,x)=0 (52)

almost everywhere on 1, then & = 0;
(ii) I'p(u,x) is positive definite.

Proof. The second statement follows in a straightforward way from
the first one, cf. proof of Lemma 17. We show . Let &7 = [;1 4‘],
n=[n np_1], with g, € R>™, j =0,...,L -1, and ¢ € R™",
Differentiating (52) i times, i =0, ...,n, we conclude that

A (x(i))
&l [A1L<u<f>> =0

almost everywhere on 7 for i =0,...,n.
Using Eq. (51) established in the proof of Lemma 20, we conclude
that for i =0, ..., n it that

A
)

holds almost everywhere on 7. Now define

0=[cA" .. ¢B

Wy = [C Mo Nr—1 Onm]
wy = [CA B ny .. Mo O(n—l)m]
w, = [CA"... (B 1 np_1] -

From (53) we have that the following equations hold true almost
everywhere on 7:

Ay (x) _ .
w; [AL+n(u)] =0,i=0,...,n (54)
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Since u is persistently exciting of order at least L + n, using state-
ment 3 of Lemma 17 we conclude that the vector-valued function
[A0)T  Ap,,@T]T has at most n “almost everywhere annihilators”
on I: it follows that the n + 1 vectors w;, i = 0,...,n are linearly
dependent.

Since the last components of the w;’s are zero, i = 0,...,n, we
conclude that #;_; = 0, then n;_, = 0, and so on until 5, = 0.
Consequently

Wy = [C Ol><(n+L)m]

w; = [gA {B 01x(n+L—1)m]
wy = [CA? CAB (B Oppr_om)
w, = [¢cA" ¢A™'B CB Oppm] -

Denote by a;, i = 0...,n the coefficients of the characteristic polynomial
of A, and using )" ) A'e; = 0 conclude that )7 | w;e; equals
[ElotAla, X e¢A™'B (B Opcrp]

= [0 X, {xAT'B (B Opepm] -

By construction, almost everywhere on 7 it holds that

XL, a;¢A'B a,{B] A, () =0;

since u is persistently exciting of order at least L + n, we conclude that
[, a¢ATIB Y 0, (AT2B a,{B] =0.

It follows from the last m equations that «,{ B = 0; since the highest co-
efficient «, of the characteristic polynomial of A equals 1, we conclude
that ¢{ B = 0. The previous m-dimensional block-entry of the vector is
a,_1¢B + a,{AB = 0 + a,{AB = 0. We conclude that {AB = 0. The
same argument can be used to prove (A'B =0, i =0,...,n— 1. Since
the pair (A, B) is controllable we conclude that ¢ = 0 and consequently
that statement is true. []

We now have all the necessary ingredients to formulate a
continuous-time ”fundamental lemma*“.

Theorem 22 (Continuous-Time ”Fundamental Lemma*). Suppose that B
is controllable. Let col(u,y) € B be such that u is persistently exciting of
order L +n(B), with L > () + 1. For col(u,y) € H-"1(I,R%) and K € N,
[(B) +1 < K < L, the following statements are equivalent:

(D col(u,y) € B;
(ii) There exists g € L*(I, REm+Kpy such that

Ap @ y) =Ty @, ¥)g. (55)

Moreover, rank I'y x(4,y) = Lm +n(B).

Proof. Fix a minimal input-state-representation (7) of B and let
1 0
Spx=|["* ] , (56)
LK [TK—I Ok_1

where Oy is the Kalman observability matrix, see (11), and Ty is
defined as in (36). Then given col(u,y) € B with corresponding state
x satisfies

Ap kW, y) = Sp g Ap 1 (u, ). (57)

Let X be the state corresponding to col(u, y). In a first step we show

imS; g =im I} @) (58)
Note that in order to show (58) it suffices to prove
ker ST, =ker I', (@, 7). (59)

The former equality then follows by taking the orthogonal complements
of the null spaces and employing the symmetry of I'; x(u,y). With (49)
and (57) one has

Iy @) =Syl @S] g (60)



P. Schmitz et al.

By Proposition 21 the matrix I'; ;(u,X) is positive definite. This shows
(59), cf. Observation 7.1.8 in [29]. In particular,

rank I'y g (u,y) =rank Sy g = Lm +rank Og_; = Lm + n(B).

We show the implication (i) to . Let col(x, y) € Bn H(Z,R"™*?) with
state x. Then (57) holds. Therefore, with (58) the function A; g(u,y)
maps pointwise a.e. into im I'; x(4,y) and, thus, g := FL’K(E,E)TAL,K
(u, y) satisfies (55).

We show the converse implication. Assume that (55) holds. We con-
sider a input-output representation (6) of B with polynomial matrices
Q and P. It is no restriction to assume that the degree of Q and P is
bounded by I(B), i.e. O(s) = ¥'® 0, s* and P(s) = X' P, sk. Define

o k=0
0:=[0) - QO Opmr-wn-| -
P:=[Py ... P Oppk—in-nl-

Since col(u,y) € B, it holds that

[0 P|A x@%)=0

and, consequently,

[0 P|ILx@®=0.

Therefore,

[0 PlA xwy=[0 P|I x@xg=0.
that is (6) holds and col(u,y) € B. []

Remark 23. Instead of using the data matrix I'; x(u.y), any other
matrix with the same image is suitable in the description of trajec-
tories (55). One advantageous approach, especially from a numerical
perspective, is to utilize the reduced singular value decomposition of
I't(u,y),ie.

FL(E.T’) = U121V]T,

with ¥| nonsingular of dimension equal to the rank of I'; (u,y). Observe
that the columns of U, form an orthogonal basis for im I'; (u, y).

In the absence of a feedthrough term (i.e., D = 0 in the input-state-
output representation), the constraint K < L in Theorem 22 can be
relaxed to K < L + 1. If, in addition, the state is directly observable
(i.e. C = 1I,), we get the following statement.

Corollary 24. Suppose
B= {col(u, x) € ALR™) | 4x = Ax+ Bu} (61)

is controllable. Let col(u,x) € B such that u is persistently exciting of order
2 + n. Consider the partition
FM

Iy [=1I,@x)

X

I

X

with I, € R™m20 1 Ty € R™+20 Then, for u € L*(I,R") and
x € HY(I,R") the following statements are equivalent:

@) col(u,x) € B;
(ii) There exists g € L*(I, R"*2") such that

u=rg x=Ig (g =Tlaog (62)

Moreover, rank I'y ,(#,X) = m +n.

Corollary 24 allows for an complete description of /3 based only on
sufficiently informative data, without knowledge of the system matrices
A and B. Note that, however, the verification of condition (55) involves
solving a system of linear equations. The solution of a system of linear
differential equations (with time-varying coefficients) arises also in the
version of the fundamental lemma in [12], see Theorem 2 therein.
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4.3. System identification

The data matrix, as applied in the fundamental lemma, enables
the reconstruction of behavioral representations. Suppose that the as-
sumptions of Corollary 24 hold. The representation (62) is equivalent
to

> d _ 5, d
R(a)col(u, X) = M(a)g, (63)
where R and M are polynomial matrices given by
0 0 FX(]) - SFX
R(s)=|(1, 0], M(s)= r, . (64)
0 1 T

n X

Observe, that g serves as a latent variable in the representation (63).
We are going to eliminate the latent variable g, cf. Theorem 6.2.6.
in [15] Let

+
- T ~ -
[B ,Z] = Fx(“ [ru] , Be Rnxm, A e R™", (65)
X
Note that

rank Iy (u, X) = rank Iy ; (4, X) = m +n,

cf. Proposition 21 and Corollary 24, and I () is a submatrix of
Iy 5(u,x). Therefore, the rows of I are linearly dependent on those

of [T IT]T. As a consequence, multiplication with the unimodular
matrix U,
I, -B (sI,—A)
Us)=|o 1, o | (66)
0 0 I,
yields
-B (sI,-A) 0
U(s) [R(s) M(s)] =|1, 0 r,|. 67)
0 I, r,

Finally, using the first n rows in U(s)R(s), a kernel representation (2)
of B is obtained,

R(s)=[-B (1, - A)] (68)

It is not difficult to see that A and B (together with C = I,, D = 0) are
suitable matrices for the input-state-output model of (7).

4.4. Expansion-based formulation

Employing the polynomial lift, see Section 2.2, we obtain the fol-
lowing two corollaries of Theorem 22 and Corollary 24, respectively.

Corollary 25. Let the assumption of Theorem 22 hold. Consider the
partition

I,

u

I

u'

Ly
Ty

Iy

= FL,K(E,ﬁ,

[ Ly
where I, € R™mKp)j = 0, L -1, and Iy € RP<Lm+Kp),
k=0,...,K—1. For col(u,y) € HL"Y(Z,R9) with &t = ITu, = Iy the
following statements are equivalent:

(i) col(u,y) € B;
(ii) There exists § € £2(N,REL"+Kpy such that

i=T,0é,

y=T08

I (69)
DU G-v8)=T,p8 Jj=1,..,L—-1,
DI'yw-18) =TIyws k=1,....K-1,
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where D is defined as in (20).

In this case the kth derivative of u is given by u® = Y, (Iwé)m;
similarly for derivatives of y.

Corollary 26. Let the assumption of Corollary 24 hold. Let For u €
L*(I,R™) and x € HY(I,R") with i = Hu, ¥ = Ix the following
statements are equivalent:

(D col(u,y) € B;
(ii) There exists § € £2(N, R"+2") such that

D (Fxg) =TI .mng, (70)

ﬁ:Fug’ )?fog, X

where D is defined as in (20).

Conditions (69) and (70) are formulated in terms of infinite series,
meaning that each coefficients g, for i € N must satisfy specific
linear equations. This complicates numerical computations. Limiting
considerations on polynomial trajectories, i.e. col(u,y) € B N im Py,
this infinite equation system is equivalently reduced to a finite one,
assuming g; =0 for all i > N.

5. Data-driven optimal control

Finally, utilizing the approximation result of Section 3 in conjunc-
tion with the fundamental lemma, we propose a data-driven approach
for optimal control of input-output systems (see also [30] for a re-
cent application of orthogonal bases of functions in iteratively solving
finite-length continuous-time tracking problems).

5.1. Data-driven formulation

Let the assumptions of Theorem 22 and Corollary 25 (with K = L =
[(B) + 1) hold. We consider the optimization problem

minimize - 3, (1502113 + 1700 &15) I 1 (71a)
’ i<N
subject to
8 =0, i> N, (71b)
DI yu-18) = ILwé, (71¢c)
D -n8) = Iwé, k=1,...,[(B), (71d)
Lo
| Lo
L=y i e (71e)
<N Lam-n
I (um-1)

y
Note, that the relationship between optimization problems (40) and
(71) is established by

Hu=ia=T,g Hy=9=I08

u®) = Z(Fu(k)gi)ﬂ',-, w0 = Z(Fy(k)gi)”r 72
i<N i<N

Constraints (71c¢) and (71d) ensure that w = col(u, y) € B, while con-
straint (71b) guarantees w € im Py. The initial condition A w)(=1) =
&0 is reflected by (71e), where z;(—1) = (=1)' is used.

The following proposition summarizes the relationship between the
polynomially restricted LQR problem (40) and its data-driven formula-
tion (71).

Proposition 27. Let the assumptions of Theorem 22 and Corollary 25 hold.
Then the polynomially restricted LQR problem (40) and the data-driven LQR
problem (71) are equivalent in the sense that w = col(u, y) solves (40) if
and only if g is a solution to (71) such that (72) holds. In particular, their
optimal values coincide.
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LOR Eq. (33)
approximation
properties from
Theorem 13
polynomially
restricted
LQR Eq. (40)

“fundamental lemma”
Theorem 22, Corollary 25,
Proposition 27

data-driven
LQR Eq. (71)

Fig. 1. A schematic overview of the relations of the different LQR formulations.

Proof. Via the relationship (72) the target function in (40) can be
equivalently rewritten into that in (71a). Further, Corollary 25 directly
yields the equivalence of LQR problem (40) and a modified data-driven
formulation of (71), where in the latter problem the constraint (71b) is
replaced by the seemingly more restrictive constraint

[’;“] =0, ixN. (73)
yO

Note that the modified condition (73) in combination with (72) is
equivalent to col(u,y) € im Py. Replacing (71b) with (73), however,
does not affect the feasibility or optimality of a trajectory col(u, y) with
(72). Indeed, this follows form the fact that (73) together with (71c),
(71d) implies

[F"k]g,:o, i>N, k=0,..,[(B) 74)

Fyk

and g; only appears in the modified problem, when accompanied by
Iy or I e O

The approximation result in Theorem 13 yields asymptotic bounds
on the optimality gap between the data-driven LQR problem (71)
and the original LQR problem (33). We emphasize that the allowed
polynomial approximation order N does not depend in the persistency
of excitation order of the data, that is the same informative data
trajectory (u,y) can utilized for different N. Fig. 1 illustrates how the
various results in this paper integrate to derive a solution to the LQR
problem (33) via the data-driven LQR formulation (71).

Due to (71b), the optimization problem (71) can be rewritten as
a finite-dimensional quadratic program. In this context, D in con-
straints (71c) and (71d) is replaced with some upper-left square sub-
matrix of the infinite matrix representation of D in (21).

Note, that instead of the polynomially restricted LQR problem (40)
one could likewise derive a data-driven formulation of the unrestricted
LQR problem (33) using Corollary 25. Since the resulting problem
does not include a condition like (71b), meaning it involves infinitely
many coupled equations, finding a numerical solution, however, seems
intractable.

Similarly to the previous approach, consider the scenario described
in Corollary 24. The LQR problem (46) in Remark 15, constraint to
polynomial trajectories, is equivalent to the data-driven optimization

problem
minimize (75a)

& 05 + IT,8115) 11
g2 (N R2m) Z( x&illy udi 2) i

i<N
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Table 1
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The error between the optimal value J* and the optimal value
JN = J(colw",xV)) of the data-driven LQR problem with respect

to polynomial trajectories in im Py .

N JN —J*

100
107!

3.59-
4.11-
3361072
1.70- 1073
4791073

g b wWwnN -

subject to
i>N, (75b)
(75¢)

(75d)

§,~ =0,
D8 =T,é,
=D (1&g
i<N

cf. Corollary 26 and the proof of Proposition 27.
5.2. Numerical example

We illustrate the numerical feasibility of the data-driven optimal
control scheme involving the fundamental lemma consider the LQR

1
/ WO + [x(OI di 762)
-1

minimize
col(u,x)

- x(-D=1.

(76b)

X =-x+u,
By Pontryagin’s minimum principle the optimal trajectory col(u*,x*)
to (76) together with its co-variable A* satisfies

d _x x* -D=1

dy* =
F1)=0

* *
T x"+u”,
doax _ g% _ %
dx}” =1 x,
u* = -1

and one finds

Va (V2= - (V2 + 2V

x*(t) = ae
V2@EeV2 -1y
u*(t) = —ae V2 —62\@ ok
e2V2 1

with a normalization constant a to ensure x*(—1) = 1. The optimal
value is J* ~ 0.4125.

Note, that the underlying system has McMillan degree n(3) = 1 and
lag ((B) = 1. We consider the trajectory col(u, x),

an) =1, X@t)=1>-2t—-5e""D 42 77

where u is persistently exciting of order 3, see Example 18. The smallest
eigenvalue of I'3(u) is approximately 0.1729. We numerically solve
the polynomially restricted optimal control problem, cf. (40), in its
data-driven formulation (75) for different polynomial orders N. The
resulting time-domain trajectories reconstructed from the expansion
coefficients are illustrated in Fig. 2. The deviations between the optimal
value J* and the optima of the data-driven problems are presented in
Table 1. The numerical results align with the theoretical convergence
order described in Theorem 13. The Matlab code that produced the
numerical results is available.”

6. Conclusions
We stated Gramian-based continuous-time versions of Willems

et al.’s fundamental lemma in Theorem 22 and Corollary 24 in the case
of input-output and input-state measurements, respectively. Then, we

2 https://github.com/schmitzph/contDdOC

10

N JN —J*
6 9.58 1077
7 1.25-1078
8 1.30- 10710
9 9.72-10713
10 1731071
-
=1
o
H
[}
=
]
=
7]

\ |
-1 0 1

time

*

Fig. 2. The optimal trajectory w* = col(u*,x*) (dashed, black) and approximate
optimal trajectories w" = col(u™,xV) for N =2,3,4,5.

applied the derived results to the data-driven simulation problem in
Corollaries 25 and 26.

The evaluation of the performance of our approach in the case of
noisy data is of pressing importance. The extension of our approach
to the nonlinear case, at least for specific classes of systems, is also a
matter of pressing research, especially in the light of recent nonlinear
extension of the discrete-time fundamental lemma, see [31-34]. For
more general classes of nonlinear systems, one may invoke recent
results on the approximation error for the Koopman generator [35] and
operator [36], which may, then, also be used for data-driven predictive
control, see, e.g., [37,38].
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