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A B S T R A C T

Data-driven control of discrete-time and continuous-time systems is of tremendous research interest. In this
paper, we explore data-driven optimal control of continuous-time linear systems using input–output data. Based
on a density result, we rigorously derive error bounds for finite-order polynomial approximations of elements
of the system behavior. To this end, we leverage a link between latent variables and flat outputs of controllable
systems. Combined with a continuous-time counterpart of Willems et al.’s fundamental lemma, we characterize
the suboptimality resulting from polynomial approximations in data-driven linear–quadratic optimal control.
Finally, we draw upon a numerical example to illustrate our results.
1. Introduction

Data-driven control, i.e., the design of controller and feedback laws
directly from measured data, is a topic of ongoing research interest,
see [1,2] and the range of articles in these special issues. A pivotal
result at the core of many developments in linear discrete-time systems
is Willems et al.’s fundamental lemma [3].

Lemma 1 (Discrete-time fundamental lemma). Consider the discrete-time
controllable linear time-invariant system

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵 𝑢(𝑘), 𝑦(𝑘) = 𝐶 𝑥(𝑘) +𝐷 𝑢(𝑘)
and let �̂� = col(�̂�, �̂�) be a length-𝑁 input–output trajectory of the system
such that �̂� is persistently exciting (cf. [3]) of order 𝑛+𝐿, where 𝐿 ∈ N⧵{0}
and 𝑛 is the system’s state dimension. Then 𝑤 = col(𝑢, 𝑦) is a length-𝐿
input–output trajectory of the system if and only if
⎡

⎢

⎢

⎣

𝑤(𝑘)
⋮

𝑤(𝐿 − 1)

⎤

⎥

⎥

⎦

∈ im
⎡

⎢

⎢

⎣

�̂�(0) … �̂�(𝑁 − 𝐿)
⋮ ⋮

�̂�(𝐿 − 1) … �̂�(𝑁 − 1)

⎤

⎥

⎥

⎦

.

This lemma enables the parameterization of the external (input–
output) finite-horizon behavior of controllable systems using suffi-
ciently informative data arranged in a Hankel matrix. For more details
and recent advancements, see the survey [4] and the references therein.
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The interest in this result has been catalyzed by recent works such
as [5–7]; applications of data-driven control concepts are discussed
in the literature [8–11]. In [12–14] continuous-time extensions of
the fundamental lemma have been proposed. While the former works
require to solve a scalar ODE to compute future trajectories, in the latter
paper an approach to compute a generating representation based on
polynomial series expansions of input–output trajectories is proposed.
However, the latter result has not yet been used to design data-driven
controllers. In the present paper, we address this gap: We extend
the results from [14] by deriving errors bounds for polynomial series
expansions on elements of the behavior. We also prove that the set
of polynomial system trajectories is dense in the set of all system
trajectories. We use the approximation bounds to derive bounds on the
optimality gap resulting from using finite-order polynomials to solve
linear–quadratic regulator (LQR) problem formulated in terms of the
behavior. Finally, we establish a continuous-time fundamental lemma
involving the Gramians of trajectories and, based on this, present a
data-driven approximation for the LQR problem.

The remainder of this paper is structured as follows: In Section 2
we revisit foundational concepts in behavioral systems theory, with
most results rederived to suit our specific setting. Utilizing the con-
nection between flat outputs and latent variables, in Lemma 6, we
derive a specific behavioral representation, which is beneficial for
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subsequent approximation results. Moreover, we recap properties of
egendre polynomials (Sections 2.2 and 2.3) and analyze their ad-

vantage in the approximation of behavioral elements (Section 2.4)
s shown in Proposition 11. In Section 3, we introduce a version of
he finite-horizon linear–quadratic optimal control problem and its
inite-dimensional approximation in the space of linear combinations of
egendre polynomials including a convergence analysis. In Section 4,

we define the concept of persistency of excitation (Section 4.1) and we
state a continuous-time fundamental lemma (Theorem 22). Section 4.3
demonstrates how the fundamental lemma can be applied in system
dentification. In Section 5, we discuss the application of our results to

the data-driven solution of the finite-horizon optimal control problem
before we conclude the paper in Section 6 pointing out directions of
urrent and future research.

Notation: Given two sets 𝑋 and 𝛺, the set of functions 𝑓 ∶ 𝛺 → 𝑋 is
denoted by 𝑋𝛺. Let  be a real interval; we denote by  the closure
of . Let 𝑑 , 𝑘 ∈ N; then 𝐿2(,R𝑑 ) denotes the space of equivalence
classes of square integrable functions 𝑓 ∈ (R𝑑 ) and 𝐻𝑘(,R𝑑 ) is the
𝑘th order Sobolev space associated with 𝐿2(,R𝑑 ). The scalar product
in 𝐿2(,R𝑑 ) and its induced norm are given by ⟨𝑓 , 𝑔⟩ = ∫ 𝑓 (𝜏)

⊤𝑔(𝜏) d𝜏
and ‖𝑓‖ =

√

⟨𝑓 , 𝑓⟩. The usual norm in 𝐻𝑘(,R𝑑 ) is denoted by ‖ ⋅ ‖𝐻𝑘 .
For 𝑘 ∈ N ⧵ {0} and 𝑓 ∈ 𝐻𝑘−1(,R𝑑 ) we set

𝛬𝑘(𝑓 ) =
⎡

⎢

⎢

⎣

𝑓
⋮

𝑓 (𝑘−1)

⎤

⎥

⎥

⎦

∈ 𝐿2(,R𝑘⋅𝑑 ). (1)

In particular, ‖𝑓‖𝐻𝑘−1 = ‖𝛬𝑘(𝑓 )‖. ∞(,R𝑑 ) is the space of infinitely
differentiable functions from  to R𝑑 and ∞

c (,R𝑑 ) consists of those
functions of ∞(,R𝑑 ) with compact support. Given a Hilbert space 𝑋,
𝓁2(N, 𝑋) is the space of square summable sequences in 𝑋N.

The identity operator from a vector space 𝑋 onto itself is denoted
y 𝐼𝑋 or simply 𝐼 when clear from the context. In the case of a finite
imensional space 𝑋 = R𝑑 we also write 𝐼𝑑 . The Euclidean norm in R𝑑

s denoted by ‖ ⋅ ‖2. If 𝐴0,… , 𝐴𝑘 are matrices with the same number
f columns, we define col(𝐴0,… , 𝐴𝑘) ∶=

[

𝐴⊤
0 … 𝐴⊤

𝑘
] ⊤. We always

dentify R𝑑 with R𝑑×1. Given a matrix 𝑀 , we denote by im𝑀 and k er𝑀
ts image and kernel. Further, 𝑀⊤ and 𝑀† denote the transpose and
oore–Penrose inverse.

Finally, we denote by R[𝑠] the ring of polynomials with real coeffi-
ients in the indeterminate 𝑠, and by R𝑔×𝑞[𝑠] the ring of 𝑔×𝑞 polynomial
atrices with real coefficients.

2. Linear differential systems

We first recapitulate behavioral concepts for linear time-invariant
ystems. We then connect this paradigm to polynomial series expan-
ions of trajectories and explore how polynomial trajectories can ap-
roximate system behaviors.

2.1. Behaviors

In the following, we deal with dynamical systems given by the time
nterval  = (−1, 1),1 the signal space R𝑞 and a behavior  ⊂ (R𝑞) . We
ocus on linear differential behaviors, i.e. the set of solutions to a system
f linear, constant-coefficient differential equations

𝑅
( d
d𝑡

)

𝑤 = 0, (2)

where 𝑅(𝑠) = 𝑅0𝑠0 +⋯+𝑅𝑟𝑠𝑟 is a polynomial matrix in R𝑔×𝑞[𝑠]. In this
ay (2) is to be understood as ∑𝑟

𝑖=0 𝑅𝑖
d𝑖𝑤
d𝑡𝑖 = 0. Here, the solution 𝑤 of

1 We choose such interval purely for simplicity of notation; with
traightforward modifications, any other bounded open interval can be used.
2 
(2) is meant in the sense of weak solutions, i.e., 𝑤 ∈ 𝐿2(,R𝑞) and it
atisfies

0 =
𝑟
∑

𝑖=0
(−1)𝑖 ∫

𝑤⊤𝑅⊤
𝑖
d𝑖𝜙
d𝑡𝑖 d𝑡 (3)

for all test functions 𝜙 ∈ ∞
c (,R𝑔). Given 𝑤 ∈ ∞(,R𝑞) integration

by parts shows that (3) is valid if and only (2) holds pointwise.
Given our choice of solution set, we need to slightly generalize and

prove some well-known results from [15], where the solutions of (2) are
ssumed to be infinitely differentiable. In particular, the equivalence
f the different representations of behaviors, established essentially for

smooth functions in [15], requires verification in the context of weak
𝐿2-solutions.

Lemma 2. The behavior

 ∶=
{

𝑤 ∈ 𝐿2(,R𝑞) ||
|

𝑅
(

d
d𝑡

)

𝑤 = 0
}

(4)

is closed in 𝐿2(,R𝑞).

Proof. Consider a sequence (𝑤𝑛)𝑛∈N in  which converges to some
𝑤 ∈ 𝐿2(,R𝑞). Note that for each 𝜙 ∈ ∞

c (,R𝑔) the right hand side
in (3) defines a linear, continuous functional 𝑓𝜙 ∶ 𝐿2(,R𝑞) → R. By
ontinuity 0 = lim𝑛→∞ 𝑓𝜙(𝑤𝑛) = 𝑓𝜙(𝑤) for every 𝜙 ∈ ∞

c (,R𝑔), that is
solves (2) and 𝑤 ∈ . □

We recall the notion of behavioral controllability, cf.
Definition 5.2.2 in [15]. The behavior  is controllable if for each two
rajectories 𝑤0, 𝑤1 ∈  there is 𝑡1 ∈ (0, 1) and 𝑤 ∈  such that

𝑤(𝑡) =
{

𝑤0(𝑡) if 𝑡 ∈ (−1, 0],
𝑤1(𝑡 − 𝑡1) if 𝑡 ∈ [0, 1). (5)

Partitioning 𝑅 compatibly with a known selection of inputs and
outputs 𝑤 = col(𝑢, 𝑦) ∈ , cf. Definition 3.3.1 in [15], one obtains the
nput–output representation

𝑃
( d
d𝑡

)

𝑦 = 𝑄
( d
d𝑡

)

𝑢, (6)

where 𝑃 ∈ R𝑝×𝑝[𝑠] can be assumed to be nonsingular and 𝑄 ∈ R𝑝×𝑚[𝑠]
with 𝑞 = 𝑚 + 𝑝.

A linear differential behavior  also admits an input-state-output
epresentation (see [16]), i.e., there are matrices 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑛,
∈ R𝑝×𝑛, 𝐷 ∈ R𝑝×𝑚 such that for all 𝑤 = col(𝑢, 𝑦) ∈ ∩∞(,R𝑞) there

xists 𝑥 ∈ ∞(,R𝑛) with

d
d𝑡
𝑥 = 𝐴𝑥 + 𝐵 𝑢
𝑦 = 𝐶 𝑥 +𝐷 𝑢.

(7)

The following result relates the external behavior described by (6),
onsisting of all input–output trajectories, and its input-state-output
ounterpart in the terms of closed 𝐿2-subspaces.

Lemma 3. Given an input-state-output representation (7) of , one has

 =

{

col(𝑢, 𝑦) ∈ 𝐿2(,R𝑚+𝑝)
|

|

|

|

|

∃ 𝑥 ∈ 𝐻1(,R𝑛)

s.t. (7) holds

}

. (8)

Proof. Denote the set on the right hand side of (8) by ̃. We show that
̃ is a closed subspace of 𝐿2(,R𝑚+𝑝). To this end consider the solution
operator 𝑆 ∶ 𝐿2(,R𝑚) → 𝐻1(,R𝑛) defined by

(𝑆 𝑢)(𝑡) ∶=
𝑡
exp(𝐴(𝑡 − 𝜏))𝐵 𝑢(𝜏) d𝜏 . (9)
∫−1
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From the definition of ̃ it follows that col(𝑢, 𝑦) ∈ ̃ if and only if there
xists 𝑥0 ∈ R𝑑 such that 𝑥 = exp(𝐴(⋅ + 1))𝑥0 + 𝑆 𝑢 with 𝑦 = 𝐶 𝑥 + 𝐷 𝑢.
herefore, ̃ is the direct sum of the finite-dimensional space

̃0 ∶= {col(0, 𝐶 exp(𝐴(⋅ + 1))𝑥0) ∣ 𝑥0 ∈ R𝑛}

and

̃1 ∶= {col(𝑢, (𝐶 𝑆 +𝐷)𝑢) ∣ 𝑢 ∈ 𝐿2(,R𝑚)}. (10)

The space ̃1 is closed in 𝐿2(,R𝑚+𝑝) as it is the graph of the bounded
linear operator (𝐶 𝑆 + 𝐷) ∶ 𝐿2(,R𝑚) → 𝐿2(,R𝑝). This shows the
closedness.

The assertion follows with ∩∞(,R𝑚+𝑝) = ̃∩∞(,R𝑚+𝑝) and a
density argument. □

Remark 4. Obtaining a kernel representation (2) from an input-state-
output one can be achieved by elimination of the state variable 𝑥, see
ection 6.2.2 of [15].

In this paper we use a couple of integer system invariants. The
cMillan degree of , denoted n(), is the minimal dimension of the

state space among all possible input-state-output representations (7) of
. If the state space dimension equals n(), this particular input-state-
output representation is said to be minimal. Define

𝑘 ∶=

⎧

⎪

⎨

⎪

⎩

𝐶 if 𝑘 = 0
[

𝑘−1

𝐶 𝐴𝑘

]

if 𝑘 ≥ 1
; (11)

the system lag, denoted l(), is defined by

l() ∶= min{𝑘 ∈ N ∣ r ank 𝑘 = r ank 𝑘−1}.

Evidently, l() ≤ n(). Further, l() is the highest order of differentia-
tion in a ‘‘shortest lag’’ description of , see pp. 569–570 of [17].

Given an input-state-output representation of  the state variable
𝑥 is called observable, if it can be recovered from the input–output
trajectory, i.e., there is a polynomial matrix 𝐹 ∈ R𝑛×𝑞[𝑠] such that for
all 𝑤 = col(𝑢, 𝑦) ∈  ∩ ∞(,R𝑞)

𝑥 = 𝐹
( d
d𝑡

)

𝑤. (12)

Observability of the state variable is equivalent to (𝐴, 𝐶) being observ-
able in the usual sense (see e.g. [18]), which is satisfied if (𝑛−1) = 𝑛.
or an observable pair (𝐴, 𝐶), the lag l() is the observability index of

the pair.
In a manner akin to observability, a connection between behavioral

ontrollability and controllability of the pair (𝐴, 𝐵) can be established
n terms of input-state-output representations, see, e.g., [18].

Lemma 5. Suppose  is controllable and consider a minimal input-state-
output representation (7) of . Then (𝐴, 𝐵) is controllable and (𝐴, 𝐶) is
observable.

Proof. An input-state-output representation of  is minimal if and only
if (𝐴, 𝐶) is observable the input-state-output representation is state trim,
i.e., for all 𝑥0 ∈ R𝑛 there is col(𝑢, 𝑦) ∈  ∩ ∞(,R𝑞) and 𝑥 ∈ ∞(,R𝑛)
such that (7) and 𝑥(0) = 𝑥0 hold, cf. [16]. We only need to show the
controllability of (𝐴, 𝐵), that is for arbitrary initial value 𝑥0 ∈ R𝑛 and
terminal value 𝑥1 ∈ R𝑛 there is a control input 𝑢 and a time instance
𝑡1 ∈ (0, 1) such that the state solution 𝑥 of d

d𝑡𝑥 = 𝐴𝑥 + 𝐵 𝑢 satisfies
𝑥(0) = 𝑥0 and 𝑥(𝑡1) = 𝑥1. By state trimness we find 𝑤0 = col(𝑢0, 𝑦0), 𝑤1 =
col(𝑢1, 𝑦1) ∈  ∩ ∞(,R𝑞) and corresponding states 𝑥0, 𝑥1 ∈ ∞(,R𝑛)
with 𝑥0(0) = 𝑥0 and 𝑥1(0) = 𝑥1. Since  is controllable, there further
exists 𝑤 = col(𝑢, 𝑦) ∈  ∩ ∞(,R𝑛) and 𝑡1 ∈ (0, 1) satisfying (5), cf.

heorem 5.2.9 in [15]. With the observability of the state (12) we see

𝑥(0) =
(

𝐹 ( d
d𝑡 )𝑤

)

(0) =
(

𝐹 ( d
d𝑡 )𝑤0

)

(0) = 𝑥(0) = 𝑥0,

(𝑡1) =
(

𝐹 ( d
d𝑡 )𝑤

)

(𝑡1) =
(

𝐹 ( d
d𝑡 )𝑤1

)

(0) = 𝑥1(0) = 𝑥1. □
R

3 
For a linear differential behavior controllability is equivalent to the
xistence of an image representation (see Theorem 6.6.1 p. 229 in [15],

i.e., there exists a polynomial matrix 𝑀 ∈ R(𝑚+𝑝)×𝑚[𝑠] such that 𝑤 ∈
 ∩ ∞(,R𝑚+𝑝) if and only if there exists a latent variable trajectory
𝓁 ∈ ∞(,R𝑚) such that

𝑤 = 𝑀
( d
d𝑡

)

𝓁. (13)

A flat output of a differentially flat system leads to a specific image
representation endowed with helpful characteristics.

Lemma 6. Suppose that  is controllable. Then there exists 𝑀 ∈ R𝑞×𝑚[𝑠]
with deg(𝑀) ≤ n() + 1 such that

 =

{

col(𝑢, 𝑦) ∈ 𝐿2(,R𝑚+𝑝)
|

|

|

|

|

∃ 𝓁 ∈ 𝐿2(,R𝑚)

s.t. (13) holds

}

. (14)

Moreover, given 𝑤 ∈ 𝐻𝑘(,R𝑞) for some 𝑘 ∈ N the latent variable in (13)
satisfies 𝓁 ∈ 𝐻𝑘+1(,R𝑚).

Proof. We consider a minimal input-state-output representation (7) of
, that is 𝑛 = n() and (𝐴, 𝐵) is controllable. Then there is a flat output
efined by

𝓁 = 𝐶 𝑥 (15)

with output matrix 𝐶 ∈ R𝑚×𝑛, see pp. 84–ff. in [19] and Remark 2 p.
72 of [20]. In more detail, there are polynomial matrices 𝑋 ∈ R𝑛×𝑚[𝑠],

∈ R𝑚×𝑚[𝑠] with deg(𝑋) ≤ 𝑛 and deg(𝑈 ) ≤ 𝑛 + 1 such that, given
𝑤 = col(𝑢, 𝑦) ∈  ∩ ∞(,R𝑞) with corresponding state 𝑥 ∈ ∞(,R𝑛),

𝑥 = 𝑋( d
d𝑡 )𝓁, 𝑢 = 𝑈 ( d

d𝑡 )𝓁, 𝑦 = (𝐶 𝑋( d
d𝑡 ) +𝐷 𝑈 ( d

d𝑡 ))𝓁.

The associated image representation (13) is established through

𝑀 =
[

𝑈
𝐶 𝑋 +𝐷 𝑈

]

(16)

and the flat output 𝓁 serves as latent variable.
We derive (14) for this particular 𝑀 . Denote the set on the right side

of (14) by ̃. We show that ̃ is closed in 𝐿2(,R𝑞). Let (col(𝑢𝑘, 𝑦𝑘))𝑘∈N
e a sequence in ̃ which converges in 𝐿2(,R𝑞) to some col(𝑢, 𝑦). The
tate and latent variable corresponding to col(𝑢𝑘, 𝑦𝑘) are denoted by 𝑥𝑘
nd 𝓁𝑘, respectively. As the latent variable is given via a flat output
see (15)) we find

𝓁𝑘 = 𝐶 𝑥𝑘 = 𝐶 𝑆 𝑢𝑘
where 𝑆 is the solution operator defined in the proof of Lemma 3. The
onvergence of (𝑢𝑘)𝑘∈N and the boundedness of 𝑆 imply that (𝓁𝑘)𝑘∈N
onverges to some 𝓁 ∈ 𝐿2(,R𝑚). With Lemma 2 we know that

𝓁 = {col(𝑢, 𝑦,𝓁) ∈ 𝐿2(,R𝑞+𝑚) ∣ (13) holds}

is closed in 𝐿2(,R𝑞+𝑚). Therefore, col(𝑢, 𝑦,𝓁) ∈ 𝓁 and col(𝑢, 𝑦) ∈ ̃.
ince ̃ ∩ ∞(,R𝑞) and  ∩ ∞(,R𝑞) coincide, a density argument

yields (14).
Moreover, if col(𝑢, 𝑦) ∈ 𝐻𝑘(,R𝑞), then the corresponding state

atisfies 𝑥 = 𝑆 𝑢 ∈ 𝐻𝑘+1(,R𝑛) and, thus, 𝓁 = 𝐶 𝑥 ∈ 𝐻𝑘+1(,R𝑚). □

The flatness-based image representation (16) provides key insights
into the smoothness of external trajectories, as determined by the
ifferentiability of latent variables. This understanding is crucial for

assessing how effectively polynomial approximations can capture the
ystem behavior, as explored in the following subsections.

2.2. Polynomial lift

Let (𝜋𝑖)𝑖∈R be the sequence of Legendre polynomials with normal-
ization 𝜋𝑖(1) = 1, 𝑖 ∈ N, which forms an orthogonal basis of 𝐿2(,R).

ecall that 𝜋 (𝑡) = 1, 𝜋 (𝑡) = 𝑡 and for 𝑖 = 1,…
0 1
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𝜋𝑖+1(𝑡) = 2𝑖 + 1
𝑖 + 1 𝑡𝜋𝑖(𝑡) − 𝑖𝜋𝑖−1(𝑡).

Given 𝑓 ∈ 𝐿2(,R) there is a unique series expansion

𝑓 =
∑

𝑖∈N
𝑓𝑖𝜋𝑖, (17)

where 𝑓𝑖 ∶= ⟨𝑓 , 𝜋𝑖⟩‖𝜋𝑖‖−2 and 𝑓 ∶= (𝑓𝑖)𝑖∈N. From Bessel’s theorem it
follows that 𝑓 ∈ 𝓁2(N,R).

Any function 𝑓 ∈ 𝐿2(,R𝑑 ) with dimension 𝑑 ≥ 1 can be repre-
sented with coefficients defined by

�̂� ∶=
𝑑−1
∑

𝑘=0

⟨𝑓 , 𝑒𝑘𝜋𝑖⟩
‖𝜋𝑖‖2

𝑒𝑘, (18)

where {𝑒0,… 𝑒𝑑−1} is the canonical basis of R𝑑 and 𝑓 = (𝑓𝑖)𝑖∈N ∈
𝓁2(N,R𝑑 ). We define

𝛱 ∶ 𝐿2(,R𝑑 ) → 𝓁2(N,R𝑑 ), 𝑓 ↦ 𝑓 , (19)

which is an isometric isomorphism.
The differential operator d

d𝑡 on 𝐻1(,R𝑑 ) can be represented as an
operator  acting in 𝓁2(N,R𝑑 ), [21, Equation (2.3.18)]. For functions
𝑓 ∈ 𝐻1(,R𝑑 ) with 𝑓 = 𝛱 𝑓 and 𝑓 (1) ∶= 𝛱 d𝑓

d𝑡 one has

(𝑓 (1))𝑖 = (𝑓 )𝑖 ∶= (2𝑖 + 1)
∞
∑

𝑗=𝑖+1
𝑖+𝑗 odd

𝑓𝑗 , 𝑖 ∈ N, (20)

or equivalently written by means of an infinite matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(𝑓 (1))0
(𝑓 (1))1
(𝑓 (1))2

⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 𝐼 0 𝐼 0 𝐼 …
0 3𝐼 0 3𝐼 0 …

0 5𝐼 0 5𝐼 …
0 7𝐼 0 …

⋱ ⋱ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑓0
𝑓1
𝑓2
⋮

⎤

⎥

⎥

⎥

⎥

⎦

. (21)

Similarly to the differential operator d
d𝑡 one can define powers and

olynomials of .
Employing the kernel representation (2) we find the following

characterization of the behavior.

Lemma 7 (Behavioral Lift). Let 𝑤 ∈ ∞(,R𝑚+𝑝). Then 𝑤 ∈  if and only
f

𝑅()𝛱 𝑤 = 0. (22)

Example 8 (No Finite Expansion). We show for the linear time-invariant
ystem described by (7) with 𝐴 = 𝐶 = 𝐼 and 𝐵 = 𝐷 = 0 that its
rajectories with nontrivial output have no series expansion involving

only finitely many polynomials 𝜋𝑖. Let col(𝑢, 𝑦) ∈  and assume that 𝑦
as a finite expansion, i.e. there is some 𝑁 ∈ N such that �̂�𝑖 = 0 for
≥ 𝑁 . It is no restriction to assume col(𝑢, 𝑦) ∈  ∩ ∞(,R𝑞). Note that

the kernel representation (2) of  is given via 𝑅(𝑠) = [

0 (𝑠 − 1)𝐼].
ith Lemma 7 and the definition of  in (20) we see that

�̂�𝑖 = (�̂�)𝑖 = (2𝑖 + 1)
∞
∑

𝑗=𝑖+1
𝑖+𝑗 odd

�̂�𝑗 , 𝑖 ∈ N. (23)

The finiteness of the expansion yields that for 𝑖 = 𝑁− 1 all summands on
he right hand side in (23) vanish and, hence, �̂�𝑁−1 = 0. It is not difficult

to see that this successively implies �̂�𝑖 = 0 for all 𝑖 ∈ N. Therefore 𝑦 is
trivial. □

In Example 8 we illustrated the case when the dynamics of a
articular linear time-invariant system (7) cannot be described by a
inite representation in terms of Legendre polynomials. This is a generic
ituation: the Legendre series representation of exponential functions
𝜆𝑡, 𝜆 ≠ 0 (generically present in the solution of (7), e.g. in the free
esponse), involve an infinite number of terms (see e.g. p. 39 of [22]).

Such considerations lead naturally to working with truncated Legendre
expansions of solutions of (7).
4 
2.3. Truncated expansion

In the light of Example 8, we study approximation bounds when
considering truncated series of Legendre polynomials. To this end we
introduce the orthogonal projection 𝑃𝑁 ∶ 𝐿2(,R𝑑 ) → 𝐿2(,R𝑑 )
defined by

𝑃𝑁𝑓 ∶=
∑

𝑖<𝑁
𝑓𝑖𝜋𝑖, (24)

Note that im𝑃𝑁 coincides with the 𝑁-dimensional space of R𝑑 [𝑠]-
olynomials of degree up to 𝑁 − 1, which is spanned by 𝜋0,… , 𝜋𝑁−1.

Since (𝜋𝑖)𝑖∈N is an orthogonal basis, 𝑃𝑁𝑓 converges to 𝑓 as 𝑁 → ∞
with respect to the 𝐿2-norm. The speed of convergence is related to
the smoothness of 𝑓 , as we discuss in the following.

Recall that 𝜋𝑖 is an eigenfunction corresponding to the 𝑖th eigen-
value 𝜆𝑖 ∶= 𝑖(𝑖 + 1) of the Sturm–Liouville operator

𝑓 ∶= − d
d𝑡

(

𝑝 d
d𝑡
𝑓
)

, 𝑝(𝑡) = (1 − 𝑡2),

𝐷() ∶=
⎧

⎪

⎨

⎪

⎩

𝑓 ∈ 𝐿2(,C)

|

|

|

|

|

|

|

|

𝑓 , 𝑝𝑓 (1) ∈ (,R),
(

d
d𝑡

(

𝑝 d
d𝑡𝑓

))

∈ 𝐿2(,C),
(𝑝𝑓 )(1)(−1) = (𝑝𝑓 )(1)(1) = 0

⎫

⎪

⎬

⎪

⎭

see [23, Theorem 3.6]. Here, (,C) denotes the space of locally
bsolutely continuous functions from  to C. Let 𝑠 for 𝑠 ∈ (0,∞)
enote the 𝑠th power the self-adjoint operator , defined via functional
alculus, see e.g. Section 5.3 in [24].

Lemma 9. If 𝑓 ∈ 𝐷(𝑠) for some 𝑠 > 0, then

‖(𝐼 − 𝑃𝑁 )𝑓‖ = ‖𝑠𝑓‖(𝑁−2𝑠) (𝑁 → ∞). (25)

Moreover, 𝐻𝑘(,C) ⊂ 𝐷(
𝑘
2 ) for 𝑘 ∈ N.

Proof. Let �̃�𝑖 = 𝜋𝑖∕‖𝜋𝑖‖, i.e. (�̃�𝑖)𝑖∈N form an orthonormal basis in
2(,C). For 𝑓 ∈ 𝐷(𝑠) we have

‖(𝐼 − 𝑃𝑁 )𝑓‖2 = ‖

‖

‖

𝑓 −
∑

𝑖<𝑁
⟨𝑓 , �̃�𝑖⟩�̃�𝑖‖‖

‖

2

= ‖

‖

‖

∑

𝑖≥𝑁
⟨𝑓 , �̃�𝑖⟩�̃�𝑖‖‖

‖

2 = ‖

‖

‖

∑

𝑖≥𝑁
𝜆−𝑠𝑖 ⟨𝑓 ,𝑠�̃�𝑖⟩�̃�𝑖

‖

‖

‖

2

= ‖

‖

‖

∑

𝑖≥𝑁
𝜆−𝑠𝑖 ⟨𝑠𝑓 , �̃�𝑖⟩�̃�𝑖‖‖

‖

2.

Since (𝜆𝑖)𝑖∈N is an increasing sequence, we find

‖(𝐼 − 𝑃𝑁 )𝑓‖2 ≤ 𝜆−2𝑠𝑁
‖

‖

‖

∑

𝑖≥𝑁
⟨𝑠𝑓 , �̃�𝑖⟩�̃�𝑖‖‖

‖

2

≤
(

𝑁(𝑁 + 1))−2𝑠‖𝑠
‖

2,

which shows the first claim.
We show the inclusion 𝐻𝑘(,C) ⊂ 𝐷(

𝑘
2 ), 𝑘 ∈ N. For 𝑘 = 0 there

is nothing to prove. For 𝑘 = 1 we find that 𝐷(
1
2 ) = {𝑓 ∈ 𝐿2(,C) ∩

(,C) ∣ √

𝑝𝑓 (1) ∈ 𝐿2(,C)} by [25, Theorem 6.8.5 (i)]. With the
niform boundedness of 𝑝 on [−1, 1] this shows 𝐻1(,C) ⊂ 𝐷(

1
2 ).

We continue with the case of even 𝑘 ≥ 2. Let 𝑓 ∈ 𝐻𝑘(,C). Then
t is clear that 𝑓 , 𝑝𝑓 (1) ∈ (,C) and 𝓁𝑓 ∈ 𝐿2(,C). Moreover, 𝑓 (1)

s bounded on [−1, 1] as 𝑓 (1) ∈ 𝐻1(,C). Consequently, 𝑓 ∈ 𝐷() and
𝑓 ∈ 𝐻𝑘−2(,C). Repeating this argument yields 𝑓 ∈ 𝐷(

𝑘
2 ), showing

𝐻𝑘(,C) ⊂ 𝐷(
𝑘
2 ) for even 𝑘.

Finally, we consider 𝑓 ∈ 𝐻𝑘+1(,C) for even 𝑘 ≥ 2. From
he previous observations we know that 𝑓 ∈ 𝐷(

𝑘
2 ) and 

𝑘
2 𝑓 ∈

𝐻1(,C) ⊂ 𝐷(
1
2 ). Therefore, 𝑓 ∈ 𝐷(

𝑘+1
2 ), which shows 𝐻𝑘+1(,C) ⊂

(
𝑘+1
2 ). □
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Corollary 10. If 𝑓 ∈ 𝐻𝑘(,R𝑑 ) for some 𝑘 ∈ N, then

‖(𝐼 − 𝑃𝑁 )𝑓‖ = (𝑁−𝑘) (𝑁 → ∞). (26)

2.4. Polynomial trajectories

Next we show that the space of polynomial trajectories
∩
⋃

𝑁∈N im𝑃𝑁 is dense in  ∩ 𝐻𝑠(,R𝑞), 𝑠 ∈ N, and, particularly,
in .

Proposition 11. Suppose  is controllable and let 𝑤 ∈  ∩ 𝐻n()+𝑠+𝑘

,R𝑚+𝑝) for some 𝑠 ∈ N ⧵ {0}, 𝑘 ∈ N. For all 𝑁 ∈ N, 𝑁 ≥ n() + 𝑠 + 1,
here is 𝑤𝑁 ∈  ∩ im𝑃𝑁 such that

𝛬𝑠(𝑤𝑁 −𝑤)(−1) = 0
satisfying

‖𝑤 −𝑤𝑁
‖𝐻𝑠−1 = (𝑁−𝑘) (𝑁 → ∞). (27)

The integers 𝑘 ∈ N and 𝑠 ∈ N ⧵ {0} in Proposition 11 determine
the convergence order and the highest derivative up to which the
asymptotic behavior is valid, cf. (27). These can be considered as user
specifiable, provided 𝑤 is sufficiently smooth.

Proof of Proposition 11. Controllability of  implies the existence
of an image representation (13). Here we consider a particular image
representation given by a flat output, see Lemma 6. Let 𝑤 ∈  ∩

n()+𝑠+𝑘(,R𝑚+𝑝). Then there is 𝓁 ∈ 𝐻n()+𝑠+𝑘+1(,R𝑚) such that

𝑤 = 𝑀
( d
d𝑡

)

𝓁 (28)

holds. We construct a polynomial which approximates 𝓁 and its deriva-
ives up to order 𝛾 ∶= n() + 𝑠 + 1, while matching the initial values.
et 𝑣𝑁𝛾 ∶= 𝑃𝑁−𝛾𝓁

(𝛾). Then by Corollary 10 as 𝑁 → ∞ one has

‖𝑣𝑁𝛾 − 𝓁(𝛾)
‖ = ‖(𝐼 − 𝑃𝑁−𝛾 )𝓁(𝛾)

‖ = (𝑁−𝑘). (29)

Define

𝑣𝑁𝑖 (𝑡) ∶= 𝓁(𝑖)(−1) + ∫

𝑡

−1
𝑣𝑁𝑖+1(𝜏) d𝜏 , 𝑖 = 0,… , 𝛾 − 1. (30)

By construction (𝑣𝑁0 )(𝑖) = 𝑣𝑁𝑖 , (𝑣𝑁0 )(𝑖)(−1) = 𝑣𝑁𝑖 (−1) = 𝓁(𝑖)(−1), i.e.

𝛬𝛾 (𝑣𝑁0 − 𝓁)(−1) = 0. (31)

Moreover, one sees with the Cauchy–Schwarz inequality

‖𝓁(𝑖) − (𝑣𝑁0 )(𝑖)‖2 = ∫
|

|

|∫

𝜏

−1
𝓁(𝑖+1)(𝑡) − (𝑣𝑁0 )(𝑖+1)(𝑡) d𝑡||

|

2
d𝜏

≤ 4‖𝓁(𝑖+1) − (𝑣𝑁0 )(𝑖+1)‖2

and, thus,

‖𝓁 − 𝑣𝑁0 ‖𝐻𝛾 = (𝑁−𝑘). (32)

By construction 𝑣𝑁0 ∈ im𝑃𝑁 . Recall that the polynomial matrix 𝑀 in
28) satisfies deg(𝑀) ≤ n() + 1. Let 𝑤𝑁 = 𝑀( d

d𝑡 )𝑣
𝑁
0 , which is an element

of  ∩ im𝑃𝑁 . Now, (31) and (32) yield

𝛬𝑠(𝑤𝑁 −𝑤)(−1) = 𝛬𝑠
(

𝑀( d
d𝑡 )(𝑣

𝑁
0 − 𝓁)

)

(−1) = 0
and

‖𝑤𝑁 −𝑤‖𝐻𝑠−1 = ‖𝑀( d
d𝑡 )(𝑣

𝑁
0 − 𝓁)‖𝐻𝑠−1 = (𝑁−𝑘). □

3. The LQR problem and its approximation

Our aim is to solve the quadratic optimal control problem
5 
minimize
𝑤∈∩𝐻l()(,R𝑞 )

𝐽 (𝑤) s.t. (33a)

l()(𝑤)(−1) = 𝜉0, (33b)

with the cost function

𝐽 (𝑤) ∶= ‖𝑦‖2 + ‖𝑢(l())‖2, 𝑤 = col(𝑢, 𝑦) ∈ . (34)

The initial condition (33b) uniquely determines the latent state, pro-
ided the latter is observable from the inputs and the outputs. Includ-
ng the higher-order derivative term of the input into the objective
unction (34) ensures feasibility of the LQR problem.

Lemma 12. Problem (33) has a unique solution 𝑤⋆, and 𝑤⋆ ∈ ∞(,R𝑞).
oreover, every feasible trajectory 𝑤 satisfies

𝐽 (𝑤 −𝑤⋆) ≤ 2
(

𝐽 (𝑤) − 𝐽 (𝑤⋆)
)

. (35)

Proof. We fix a minimal input-state-output representation (7), that is
(𝐴, 𝐶) is observable. Consider any 𝑤 = col(𝑢, 𝑦) ∈  ∩𝐻 l(). Then there
s 𝑥 ∈ 𝐻1(,R𝑛) satisfying (7). With

𝑘 ∶=

⎧

⎪

⎨

⎪

⎩

𝐷 if 𝑘 = 0,
[

𝐷
𝑘−1𝐵 𝑘−1

]

if 𝑘 ≥ 1,
(36)

with 𝑘 being the Kalman observability matrix defined in (38) one has

𝛬𝑘+1(𝑦) = 𝑘𝑥 + 𝑘𝛬𝑘+1(𝑢) (37)

and by employing observability

𝑥 = †
l()−1

(

𝛬l()(𝑦) − l()−1𝛬l()(𝑢)
)

. (38)

Inserting (38) into (37) for 𝑘 = l() by rearranging terms one obtains
a linear auxiliary system
d
d𝑡
𝜉 = �̃�𝜉 + �̃� 𝜈 (39)

with state 𝜉 = 𝛬l()(𝑤), input 𝜈 = 𝑢(l()). Note that (33) is equivalent to
the LQR problem

minimize
𝜉 ,𝜈 ∫

𝜉(𝑡)⊤𝜉(𝑡) + 𝜈(𝑡)⊤𝜈(𝑡) d𝑡,

where  = diag(0, 𝐼𝑝, 0,… , 0), subject to the dynamics (39) and the
initial condition 𝜉(−1) = 𝜉0. By standard LQR theory the latter problem
has a solution (𝜉⋆, 𝜈⋆), which is infinitely differentiable as 𝜈⋆ is a
state feedback involving a solution of a Riccati differential equation.
In particular, 𝑤⋆ ∶= diag(𝐼𝑚, 𝐼𝑝, 0,… , 0)𝜉⋆ ∈ ∞(,R𝑞) solves (33).

Let 𝑤 be any trajectory. It is not difficult to see that 𝐽 satisfies the
arallelogram identity

𝐽
( 1
2 (𝑤

⋆ +𝑤)
)

+ 𝐽
( 1
2 (𝑤

⋆ −𝑤)
)

= 1
2𝐽 (𝑤

⋆) + 1
2𝐽 (𝑤).

Convexity of the feasibility region together with 𝐽 (𝑤⋆) ≤ 𝐽 ( 12 (𝑤
⋆ +𝑤))

yield

𝐽
( 1
2 (𝑤

⋆ −𝑤)
)

≤ 1
2

(

𝐽 (𝑤) − 𝐽 (𝑤⋆)
)

.

This shows (35). □

Instead of solving the OCP (33) directly, given 𝑁 ∈ N, we solve the
roblem restricted to polynomial trajectories, i.e.,

minimize
𝑤∈∩im𝑃𝑁

𝐽 (𝑤) s.t. (40a)

𝛬l()(𝑤)(−1) = 𝜉0. (40b)

Observe that the restriction 𝑤 ∈  ∩ im𝑃𝑁 enforces polynomial
rajectories of degree at most 𝑁 − 1. In the following we show that
olving (40) leads to an approximately optimal control and, as 𝑁 → ∞,

the optimality gap decays at an polynomial rate of arbitrary order.
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Theorem 13 (Convergence of Optima). For given approximation order 𝑁 ,
𝑁 ∈ N, let 𝑤⋆ and 𝑤𝑁 be the solutions to the OCPs (33) and (40),
respectively. For every 𝑘 ∈ N one has

0 ≤ 𝐽 (𝑤𝑁 ) − 𝐽 (𝑤⋆) = (𝑁−𝑘) (41)

and

‖𝑤⋆ −𝑤𝑁
‖ = (𝑁−𝑘) (42)

as 𝑁 → ∞.

Proof. Recall that the solution 𝑤⋆ ∈ ∞(,R𝑚+𝑝), see Lemma 12. Thus,
by Proposition 11 for arbitrary 𝑘 ∈ N there is 𝑣𝑁 ∈  ∩ im𝑃𝑁 with
𝛬l()(𝑤⋆ − 𝑣𝑁 )(−1) = 0 and

‖𝑤⋆ − 𝑣𝑁‖𝐻l(𝐵) = (𝑁−𝑘). (43)

As 𝑤⋆ and 𝑤𝑁 are solutions of (33) and (40), respectively, one has

𝐽 (𝑤⋆) ≤ 𝐽 (𝑤𝑁 ) ≤ 𝐽 (𝑣𝑁 ), 𝑁 ∈ N,

which shows the left-hand-side inequality in (41). Further, by the
reverse triangle inequality
|

|

|

𝐽 (𝑣𝑁 )
1
2 − 𝐽 (𝑤⋆)

1
2
|

|

|

≤ 𝐽 (𝑣𝑁 −𝑤⋆)
1
2 ≤ ‖𝑣𝑁 −𝑤⋆

‖𝐻l() ,

which together with (43) implies

𝐽 (𝑣𝑁 ) − 𝐽 (𝑤⋆) = 2𝐽 (𝑤⋆)
1
2
(

𝐽 (𝑣𝑁 )
1
2 − 𝐽 (𝑤⋆)

1
2
)

+
(

𝐽 (𝑣𝑁 )
1
2 − 𝐽 (𝑤⋆)

1
2
)2

= (𝑁−𝑘).

Next we show (42). Let col(𝑢⋆, 𝑦⋆) = 𝑤⋆ and col(𝑢𝑁 , 𝑦𝑁 ) = 𝑤𝑁 . By
l()(𝑤⋆ −𝑤𝑁 )(−1) = 0. We find

‖(𝑢⋆)(𝑗) − (𝑢𝑁 )(𝑗)‖2 = ∫
|

|

|∫

𝜏

−1
(𝑢⋆)(𝑗+1)(𝑡) − (𝑢𝑁 )(+1)(𝑡) d𝑡||

|

2
d𝜏

≤ 4‖(𝑢⋆)(𝑗+1) − (𝑢𝑁 )(𝑗+1)‖2

for all 𝑗 = 0,… , l() − 1. Thus,

‖𝑤⋆ −𝑤𝑁
‖

2 ≤ 4l()𝐽 (𝑤⋆ −𝑤𝑁 ).

This together with (35) in Lemma 12 and (41) yields (43). □

Remark 14. Similar to the above approach, one can handle a cost
function given by any quadratic differential form, see [26],

𝐽 (𝑤) =
l()
∑

𝑖,𝑗=0
(𝑤(𝑖))⊤𝛷𝑖,𝑗𝑤

(𝑗), (44)

with matrices 𝛷𝑖,𝑗 ∈ R𝑞×𝑞 such that 𝛷𝑖,𝑖 = 𝛷⊤
𝑖,𝑖 and

𝛷l(),l() =
[

�̃� 0
0 0

]

, (45)

where �̃� ∈ R𝑚×𝑚 corresponding to 𝑢(l()) is invertible.

Remark 15. In the case where the state is directly observable at the out-
put, i.e. 𝐶 = 𝐼𝑛 and 𝐷 = 0 in the input-state-output representation (7),
Lemma 12 and Theorem 13 likewise apply to the LQR problem

minimize
col(𝑢,𝑥)∈

‖𝑥‖2 + ‖𝑢‖2 s.t. (46a)

𝑥(−1) = 𝑥0 (46b)

and its restrictions to polynomial trajectories.

4. A ‘‘fundamental lemma’’

The main result of this section is a parametrization of the trajecto-
ies of a controllable linear differential system in terms of a constant
atrix obtained from ‘‘sufficiently-informative’’ data. To this end, we

irst define some new concepts and notation and state some preliminary

esults.

6 
4.1. Persistency of excitation

Given 𝐿 ∈ N ⧵ {0} and 𝑓 ∈ 𝐻𝐿−1(,R𝑑 ), we define the Gramian

𝛤𝐿(𝑓 ) ∶= ∫
𝛬𝐿(𝑓 )𝛬𝐿(𝑓 )⊤ d𝑡. (47)

Definition 16. Let 𝐿 ∈ N ⧵ {0}. A function 𝑓 ∶  → R𝑑 is called
persistently exciting of order 𝐿, if 𝑓 ∈ 𝐻𝐿−1(,R𝑑 ) and the Gramian
𝛤𝐿(𝑓 ) in (47) is positive definite.

This definition is reminiscent of the notion of excitation in [27,
Definition 2]. In the following result we relate it to the concept of
persistency of excitation used in [28], specifically property (iii) in the
emma below.

Lemma 17. For 𝑓 ∈ 𝐻𝐿−1(,R𝑑 ) with 𝐿 ∈ N ⧵ {0}, the following
tatements are equivalent:

(i) 𝑓 is persistently exciting of order 𝐿;
(ii) k er (𝛤𝑘(𝐿)) = {0};
(iii) If 𝜂 ∈ R𝐿𝑑 is such that 𝜂⊤𝛬𝐿(𝑓 ) = 0 a.e., then 𝜂 = 0;
(iv) The functions 𝑓 , 𝑓 (1),… , 𝑓 (𝐿−1) are linearly independent in 𝐿2

(,R𝑑 ).

Proof. We show only the equivalence of (ii) and (iii), as the equivalence
of (i) and (ii) as well as (iii) and (iv) are straightforward. Observe that
∈ k er (𝛤𝐿(𝑓 )) if and only if

0 = 𝜂⊤𝛤𝐿(𝑓 )𝜂 = ∫
‖𝛬𝐿(𝑓 )(𝑡)⊤𝜂‖22 d𝑡 = ‖𝛬𝐿(𝑓 )⊤𝜂‖2,

which shows the equivalence of (ii) and (iii). □

Example 18. Let 𝑓 ∶  → R be a monic polynomial of degree 𝐿 − 1
with 𝐿 ∈ N ⧵ {0}. Then 𝑓 (𝑘) for 𝑘 = 0,… , 𝐿 − 1 is a polynomial of
degree 𝐿− 1 −𝑘. Therefore, it is clear that 𝑓 , 𝑓 (1),… , 𝑓 (𝐿−1) are linearly
independent functions in 𝐿2(,R), and, thus, 𝑓 is persistently exciting
of order 𝐿 by Lemma 17.

Remark 19 (Discrete-Time Excitation Analogue). The above concept of
persistency of excitation in continuous time aligns seamlessly with
its discrete-time counterpart (see [3]). In discrete time, the time-shift
perator serves as the analogue to differentiation, whereas summation

corresponds to integration. With this in mind, given a discrete-time
signal 𝑓 ∶ {0,… , 𝑁 − 1} → R𝑑 , we define

𝛬𝐿(𝑓 )(𝑡) ∶=
[

𝑓⊤(𝑡) … 𝑓⊤(𝑡 + 𝐿 − 1)] ⊤

and consider the Hankel matrix

𝐻𝐿(𝑓 ) ∶=
[

𝛬𝐿(𝑓 )(0) … 𝛬𝐿(𝑓 )(𝑁 − 𝐿)
]

.

Now, the corresponding Gramian

𝛤𝐿(𝑓 ) ∶=
𝑁−𝐿
∑

𝑗=0
𝛬𝐿(𝑢)(𝑗)𝛬𝐿(𝑢)(𝑗)⊤ = 𝐻𝐿(𝑢)𝐻𝐿(𝑢)⊤

is positive definite if and only if 𝐻𝐿(𝑢) has full row rank, i.e. 𝑓 is
persistently exciting of order 𝐿, cf. [3].

4.2. Fundamental lemma

In the following, we also need Gramians constructed from input-
state trajectories of a system (7). Given 𝑢 ∈ 𝐻𝐿−1(,R𝑚) and 𝑥 ∈
𝐻𝐾−1(,R𝑛) for some 𝐿, 𝐾 ∈ N⧵{0}, we extend the notation of stacked
derivatives (1) to

𝛬𝐿,𝐾 (𝑢, 𝑥) ∶=
[

𝛬𝐿(𝑢)
]

(48)

𝛬𝐾 (𝑥)
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We define the Gramian 𝛤𝐿,𝐾 (𝑥, 𝑢) by

𝛤𝐿,𝐾 (𝑢, 𝑥) ∶= ∫
𝛬𝐿,𝐾 (𝑢, 𝑥)𝛬𝐿,𝐾 (𝑢, 𝑥)⊤ d𝑡. (49)

We now state some results instrumental to establishing a
ontinuous-time fundamental lemma. To this end, we consider an
nput-state-output representation (7). Then, for fixed 𝐿 ∈ N ⧵ {0}, we
efine for 𝑖 ∈ N

𝑖(𝐴, 𝐵) ∶=
⎧

⎪

⎨

⎪

⎩

𝐼𝑛+𝐿𝑚 if 𝑖 = 0
[

𝐴𝑖 𝐴𝑖−1𝐵 … 𝐵 0
0 0 … 0 𝐼𝐿𝑚

]

if 𝑖 ≥ 1
. (50)

Lemma 20. Consider an input-state-output representation (7) of  and
et col(𝑢, 𝑥) be an input-state trajectory with 𝑢 ∈ 𝐻𝐿+𝑛(,R𝑚). For 𝑖 =
0,… , 𝑛 − 1, the following equalities hold:
[

𝛬1(𝑥(𝑖))
𝛬𝐿(𝑢(𝑖))

]

= 𝑖(𝐴, 𝐵)
[

𝛬1(𝑥)
𝛬𝐿+𝑖(𝑢)

]

. (51)

Proof. The case 𝑖 = 0 is trivial. To prove (51) in the case 𝑖 ≥ 1, use the
quation

𝑥(𝑖) = 𝐴𝑖𝑥 +
𝑖−1
∑

𝑗=0
𝐴𝑖−1−𝑗𝐵 𝑢(𝑗). □

The next result is analogous to [28, Proposition 1]; since the proof
needs to be adapted to the language and notation of this paper, we
provide it in full detail.

Proposition 21. Suppose that  is controllable and consider a minimal
input-state-output representation (7) of  such that (𝐴, 𝐵) is controllable.
Let col(𝑥, 𝑢) be a input-state trajectory. Assume that 𝑢 is persistently exciting
of order at least 𝑛 + 𝐿, with 𝐿 ∈ N ⧵ {0}. Then

(i) If 𝜉 ∈ R𝐿𝑚+𝑛 satisfies

𝜉⊤𝛬𝐿,1(𝑢, 𝑥) = 0 (52)

almost everywhere on , then 𝜉 = 0;
(ii) 𝛤𝐿,1(𝑢, 𝑥) is positive definite.

Proof. The second statement follows in a straightforward way from
he first one, cf. proof of Lemma 17. We show . Let 𝜉⊤ =

[

𝜂 𝜁
]

,
𝜂 =

[

𝜂0 … 𝜂𝐿−1
]

, with 𝜂𝑘 ∈ R1×𝑚, 𝑗 = 0,… , 𝐿 − 1, and 𝜁 ∈ R1×𝑛.
Differentiating (52) 𝑖 times, 𝑖 = 0,… , 𝑛, we conclude that
[

𝜁 𝜂
]

[

𝛬1(𝑥(𝑖))
𝛬𝐿(𝑢(𝑖))

]

= 0 ,

almost everywhere on  for 𝑖 = 0,… , 𝑛.
Using Eq. (51) established in the proof of Lemma 20, we conclude

that for 𝑖 = 0,… , 𝑛 it that

0 = [

𝜁 𝐴𝑖 … 𝜁 𝐵 𝜂0 … 𝜂𝐿−1
]

[

𝛬1(𝑥)
𝛬𝐿+𝑖(𝑢)

]

, (53)

holds almost everywhere on . Now define

𝑤0 ∶=
[

𝜁 𝜂0 … 𝜂𝐿−1 0𝑛𝑚
]

1 ∶=
[

𝜁 𝐴 𝜁 𝐵 𝜂0 … 𝜂𝐿−1 0(𝑛−1)𝑚
]

⋮

𝑤𝑛 ∶=
[

𝜁 𝐴𝑛 … 𝜁 𝐵 𝜂0 … 𝜂𝐿−1
]

.

From (53) we have that the following equations hold true almost
everywhere on :

𝑤𝑖

[

𝛬1(𝑥)
]

= 0 , 𝑖 = 0,… , 𝑛. (54)

𝛬𝐿+𝑛(𝑢)

7 
Since 𝑢 is persistently exciting of order at least 𝐿 + 𝑛, using state-
ent 3 of Lemma 17 we conclude that the vector-valued function
𝛬1(𝑥)⊤ 𝛬𝐿+𝑛(𝑢)⊤

] ⊤ has at most 𝑛 ‘‘almost everywhere annihilators’’
n : it follows that the 𝑛 + 1 vectors 𝑤𝑖, 𝑖 = 0,… , 𝑛 are linearly
ependent.

Since the last components of the 𝑤𝑖’s are zero, 𝑖 = 0,… , 𝑛, we
onclude that 𝜂𝐿−1 = 01×𝑚, then 𝜂𝐿−2 = 0, and so on until 𝜂0 = 0.
onsequently

𝑤0 =
[

𝜁 01×(𝑛+𝐿)𝑚
]

𝑤1 =
[

𝜁 𝐴 𝜁 𝐵 01×(𝑛+𝐿−1)𝑚
]

𝑤2 =
[

𝜁 𝐴2 𝜁 𝐴𝐵 𝜁 𝐵 0(𝑛+𝐿−2)𝑚
]

⋮

𝑤𝑛 =
[

𝜁 𝐴𝑛 𝜁 𝐴𝑛−1𝐵 … 𝜁 𝐵 01×𝐿𝑚
]

.

Denote by 𝛼𝑖, 𝑖 = 0 … , 𝑛 the coefficients of the characteristic polynomial
f 𝐴, and using ∑𝑛

𝑖=0 𝐴
𝑖𝛼𝑖 = 0 conclude that ∑𝑛

𝑖=0 𝑤𝑖𝛼𝑖 equals
[
∑𝑛

𝑖=0 𝜁 𝐴𝑖𝛼𝑖
∑𝑛

𝑖=1 𝛼𝑖𝜁 𝐴𝑖−1𝐵 … 𝜁 𝐵 01×𝐿𝑚
]

=
[

01×𝑛
∑𝑛

𝑖=1 𝜁 𝛼𝑖𝐴𝑖−1𝐵 … 𝜁 𝐵 01×𝐿𝑚
]

.

By construction, almost everywhere on  it holds that
[
∑𝑛

𝑖=1 𝛼𝑖𝜁 𝐴𝑖−1𝐵 … 𝛼𝑛𝜁 𝐵
]

𝛬𝑛(𝑢) = 0 ;
since 𝑢 is persistently exciting of order at least 𝐿+ 𝑛, we conclude that
[
∑𝑛

𝑖=1 𝛼𝑖𝜁 𝐴𝑖−1𝐵
∑𝑛

𝑖=2 𝛼𝑖𝜁 𝐴𝑖−2𝐵 … 𝛼𝑛𝜁 𝐵
]

= 0.
It follows from the last 𝑚 equations that 𝛼𝑛𝜁 𝐵 = 0; since the highest co-
fficient 𝛼𝑛 of the characteristic polynomial of 𝐴 equals 1, we conclude
hat 𝜁 𝐵 = 0. The previous 𝑚-dimensional block-entry of the vector is
𝑛−1𝜁 𝐵 + 𝛼𝑛𝜁 𝐴𝐵 = 0 + 𝛼𝑛𝜁 𝐴𝐵 = 0. We conclude that 𝜁 𝐴𝐵 = 0. The
ame argument can be used to prove 𝜁 𝐴𝑖𝐵 = 0, 𝑖 = 0,… , 𝑛 − 1. Since
he pair (𝐴, 𝐵) is controllable we conclude that 𝜁 = 0 and consequently
hat statement is true. □

We now have all the necessary ingredients to formulate a
continuous-time ’’fundamental lemma‘‘.

Theorem 22 (Continuous-Time ’’Fundamental Lemma‘‘). Suppose that 
s controllable. Let col(𝑢, 𝑦) ∈  be such that 𝑢 is persistently exciting of
rder 𝐿+ n(), with 𝐿 ≥ l() + 1. For col(𝑢, 𝑦) ∈ 𝐻𝐿−1(,R𝑞) and 𝐾 ∈ N,
() + 1 ≤ 𝐾 ≤ 𝐿, the following statements are equivalent:

(i) col(𝑢, 𝑦) ∈ ;
(ii) There exists 𝑔 ∈ 𝐿2(,R𝐿𝑚+𝐾 𝑝) such that

𝛬𝐿,𝐾 (𝑢, 𝑦) = 𝛤𝐿,𝐾 (𝑢, 𝑦)𝑔 . (55)

Moreover, r ank 𝛤𝐿,𝐾 (𝑢, 𝑦) = 𝐿𝑚 + n().

Proof. Fix a minimal input-state-representation (7) of  and let

𝐿,𝐾 =
[

𝐼𝑚𝐿 0
𝐾−1 𝐾−1

]

, (56)

where 𝐾 is the Kalman observability matrix, see (11), and 𝐾 is
defined as in (36). Then given col(𝑢, 𝑦) ∈  with corresponding state
𝑥 satisfies

𝛬𝐿,𝐾 (𝑢, 𝑦) = 𝐿,𝐾𝛬𝐿,1(𝑢, 𝑥). (57)

Let 𝑥 be the state corresponding to col(𝑢, 𝑦). In a first step we show

im𝐿,𝐾 = im𝛤𝐿,𝐾 (𝑢, 𝑦). (58)

Note that in order to show (58) it suffices to prove

k er ⊤
𝐿,𝐾 = k er 𝛤𝐿,𝐾 (𝑢, 𝑦). (59)

The former equality then follows by taking the orthogonal complements
of the null spaces and employing the symmetry of 𝛤𝐿,𝐾 (𝑢, 𝑦). With (49)
and (57) one has

⊤
𝛤𝐿,𝐾 (𝑢, 𝑦) = 𝐿,𝐾𝛤𝐿,1(𝑢, 𝑥)𝐿,𝐾 . (60)
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By Proposition 21 the matrix 𝛤𝐿,1(𝑢, 𝑥) is positive definite. This shows
(59), cf. Observation 7.1.8 in [29]. In particular,

r ank 𝛤𝐿,𝐾 (𝑢, 𝑦) = r ank 𝐿,𝐾 = 𝐿𝑚 + r ank𝐾−1 = 𝐿𝑚 + n().

We show the implication (i) to . Let col(𝑢, 𝑦) ∈ ∩𝐻𝐿(,R𝑚+𝑝) with
tate 𝑥. Then (57) holds. Therefore, with (58) the function 𝛬𝐿,𝐾 (𝑢, 𝑦)
aps pointwise a.e. into im𝛤𝐿,𝐾 (𝑢, 𝑦) and, thus, 𝑔 ∶= 𝛤𝐿,𝐾 (𝑢, 𝑦)†𝛬𝐿,𝐾

𝑢, 𝑦) satisfies (55).
We show the converse implication. Assume that (55) holds. We con-

sider a input–output representation (6) of  with polynomial matrices
𝑄 and 𝑃 . It is no restriction to assume that the degree of 𝑄 and 𝑃 is
bounded by l(), i.e. 𝑄(𝑠) = ∑l()

𝑘=0 𝑄𝑘𝑠𝑘 and 𝑃 (𝑠) = ∑l()
𝑘=0 𝑃𝑘𝑠𝑘. Define

�̃� ∶=
[

𝑄0 … 𝑄l(𝐵) 0𝑝×𝑚(𝐿−l()−1)
]

,

𝑃 ∶=
[

𝑃0 … 𝑃l() 0𝑝×𝑝(𝐾−l()−1)
]

.

Since col(𝑢, 𝑦) ∈ , it holds that
[

�̃� 𝑃
]

𝛬𝐿,𝐾 (𝑢, 𝑥) = 0
and, consequently,
[

�̃� 𝑃
]

𝛤𝐿,𝐾 (𝑢, 𝑥) = 0.
Therefore,
[

�̃� 𝑃
]

𝛬𝐿,𝐾 (𝑢, 𝑦) =
[

�̃� 𝑃
]

𝛤𝐿,𝐾 (𝑢, 𝑥)𝑔 = 0,
that is (6) holds and col(𝑢, 𝑦) ∈ . □

Remark 23. Instead of using the data matrix 𝛤𝐿,𝐾 (𝑢, 𝑦), any other
matrix with the same image is suitable in the description of trajec-
tories (55). One advantageous approach, especially from a numerical
erspective, is to utilize the reduced singular value decomposition of
𝐿(𝑢, 𝑦), i.e.

𝛤𝐿(𝑢, 𝑦) = 𝑈1𝛴1𝑉
⊤
1 ,

with 𝛴1 nonsingular of dimension equal to the rank of 𝛤𝐿(𝑢, 𝑦). Observe
that the columns of 𝑈1 form an orthogonal basis for im𝛤𝐿(𝑢, 𝑦).

In the absence of a feedthrough term (i.e., 𝐷 = 0 in the input-state-
utput representation), the constraint 𝐾 ≤ 𝐿 in Theorem 22 can be
elaxed to 𝐾 ≤ 𝐿 + 1. If, in addition, the state is directly observable
i.e. 𝐶 = 𝐼𝑛), we get the following statement.

Corollary 24. Suppose

 =
{

col(𝑢, 𝑥) ∈ 𝐿2(,R𝑚+𝑛) ||
|

d
d𝑥 = 𝐴𝑥 + 𝐵 𝑢

}

(61)

is controllable. Let col(𝑢, 𝑥) ∈  such that 𝑢 is persistently exciting of order
2 + 𝑛. Consider the partition
⎡

⎢

⎢

⎣

𝛤𝑢
𝛤𝑥
𝛤𝑥(1)

⎤

⎥

⎥

⎦

= 𝛤1,2(𝑢, 𝑥)

with 𝛤𝑢 ∈ R𝑚×(𝑚+2𝑛), 𝛤𝑥, 𝛤𝑥(1) ∈ R𝑛×(𝑚+2𝑛). Then, for 𝑢 ∈ 𝐿2(,R𝑚) and
𝑥 ∈ 𝐻1(,R𝑛) the following statements are equivalent:

(i) col(𝑢, 𝑥) ∈ ;
(ii) There exists 𝑔 ∈ 𝐿2(,R𝑚+2𝑛) such that

𝑢 = 𝛤𝑢𝑔 , 𝑥 = 𝛤𝑥𝑔 , d
d𝑡

(

𝛤𝑥𝑔
)

= 𝛤𝑥(1)𝑔 . (62)

Moreover, r ank 𝛤1,2(𝑢, 𝑥) = 𝑚 + 𝑛.

Corollary 24 allows for an complete description of  based only on
sufficiently informative data, without knowledge of the system matrices
𝐴 and 𝐵. Note that, however, the verification of condition (55) involves
olving a system of linear equations. The solution of a system of linear
ifferential equations (with time-varying coefficients) arises also in the

version of the fundamental lemma in [12], see Theorem 2 therein.
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4.3. System identification

The data matrix, as applied in the fundamental lemma, enables
the reconstruction of behavioral representations. Suppose that the as-
sumptions of Corollary 24 hold. The representation (62) is equivalent
o

𝑅( d
d𝑡 ) col(𝑢, 𝑥) = 𝑀( d

d𝑡 )𝑔 , (63)

where 𝑅 and 𝑀 are polynomial matrices given by

𝑅(𝑠) =
⎡

⎢

⎢

⎣

0 0
𝐼𝑚 0
0 𝐼𝑛

⎤

⎥

⎥

⎦

, 𝑀(𝑠) =
⎡

⎢

⎢

⎣

𝛤𝑥(1) − 𝑠𝛤𝑥
𝛤𝑢
𝛤𝑥

⎤

⎥

⎥

⎦

. (64)

Observe, that 𝑔 serves as a latent variable in the representation (63).
We are going to eliminate the latent variable 𝑔, cf. Theorem 6.2.6.

in [15] Let
[

𝐵 𝐴
]

= 𝛤𝑥(1)

[

𝛤𝑢
𝛤𝑥

]†

, 𝐵 ∈ R𝑛×𝑚, 𝐴 ∈ R𝑛×𝑛. (65)

Note that

r ank 𝛤1,2(𝑢, 𝑥) = r ank 𝛤1,1(𝑢, 𝑥) = 𝑚 + 𝑛,

cf. Proposition 21 and Corollary 24, and 𝛤1,1(𝑢, 𝑥) is a submatrix of
𝛤1,2(𝑢, 𝑥). Therefore, the rows of 𝛤𝑥(1) are linearly dependent on those
of

[

𝛤⊤
𝑢 𝛤⊤

𝑥
] ⊤. As a consequence, multiplication with the unimodular

matrix 𝑈 ,

𝑈 (𝑠) =
⎡

⎢

⎢

⎣

𝐼𝑛 −𝐵 (𝑠𝐼𝑛 − 𝐴)
0 𝐼𝑚 0
0 0 𝐼𝑛

⎤

⎥

⎥

⎦

, (66)

yields

𝑈 (𝑠)
[

𝑅(𝑠) 𝑀(𝑠)
]

=
⎡

⎢

⎢

⎣

−𝐵 (𝑠𝐼𝑛 − 𝐴) 0
𝐼𝑚 0 𝛤𝑢
0 𝐼𝑛 𝛤𝑥

⎤

⎥

⎥

⎦

. (67)

Finally, using the first 𝑛 rows in 𝑈 (𝑠)𝑅(𝑠), a kernel representation (2)
of  is obtained,

𝑅(𝑠) = [

−𝐵 (𝑠𝐼𝑛 − 𝐴)
]

(68)

It is not difficult to see that 𝐴 and 𝐵 (together with 𝐶 = 𝐼𝑛, 𝐷 = 0) are
suitable matrices for the input-state-output model of (7).

4.4. Expansion-based formulation

Employing the polynomial lift, see Section 2.2, we obtain the fol-
lowing two corollaries of Theorem 22 and Corollary 24, respectively.

Corollary 25. Let the assumption of Theorem 22 hold. Consider the
partition
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛤𝑢
𝛤𝑢(1)

⋮
𝛤𝑢(𝐿−1)

𝛤𝑦
𝛤𝑦(1)

⋮
𝛤𝑦(𝐿−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝛤𝐿,𝐾 (𝑢, 𝑦),

where 𝛤𝑢(𝑗) ∈ R𝑚×(𝐿𝑚+𝐾 𝑝), 𝑗 = 0,… , 𝐿 − 1, and 𝛤𝑦(𝑘) ∈ R𝑝×(𝐿𝑚+𝐾 𝑝),
= 0,… , 𝐾 − 1. For col(𝑢, 𝑦) ∈ 𝐻𝐿−1(,R𝑞) with �̂� = 𝛱 𝑢, �̂� = 𝛱 𝑦 the

ollowing statements are equivalent:

(i) col(𝑢, 𝑦) ∈ ;
(ii) There exists �̂� ∈ 𝓁2(N,R𝐿𝑚+𝐾 𝑝) such that

�̂� = 𝛤𝑢(0) �̂� ,
�̂� = 𝛤𝑦(0) �̂� ,

(𝛤𝑢(𝑗−1) �̂�) = 𝛤𝑢(𝑗) �̂� , 𝑗 = 1,… , 𝐿 − 1, (69)
(𝛤𝑦(𝑘−1) �̂�) = 𝛤𝑦(𝑘) �̂� , 𝑘 = 1,… , 𝐾 − 1,
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where  is defined as in (20).

In this case the 𝑘th derivative of 𝑢 is given by 𝑢(𝑘) =
∑

𝑖∈N(𝛤𝑢(𝑘) �̂�𝑖)𝜋𝑖;
imilarly for derivatives of 𝑦.

Corollary 26. Let the assumption of Corollary 24 hold. Let For 𝑢 ∈
𝐿2(,R𝑚) and 𝑥 ∈ 𝐻1(,R𝑛) with �̂� = 𝛱 𝑢, �̂� = 𝛱 𝑥 the following
statements are equivalent:

(i) col(𝑢, 𝑦) ∈ ;
(ii) There exists �̂� ∈ 𝓁2(N,R𝑚+2𝑛) such that

�̂� = 𝛤𝑢�̂� , �̂� = 𝛤𝑥�̂� , 
(

𝛤𝑥�̂�
)

= 𝛤𝑥(1) �̂� , (70)

where  is defined as in (20).

Conditions (69) and (70) are formulated in terms of infinite series,
meaning that each coefficients �̂�𝑖 for 𝑖 ∈ N must satisfy specific
linear equations. This complicates numerical computations. Limiting
considerations on polynomial trajectories, i.e. col(𝑢, 𝑦) ∈  ∩ im𝑃𝑁 ,
this infinite equation system is equivalently reduced to a finite one,
assuming �̂�𝑖 = 0 for all 𝑖 ≥ 𝑁 .

5. Data-driven optimal control

Finally, utilizing the approximation result of Section 3 in conjunc-
tion with the fundamental lemma, we propose a data-driven approach
for optimal control of input–output systems (see also [30] for a re-
ent application of orthogonal bases of functions in iteratively solving
inite-length continuous-time tracking problems).

5.1. Data-driven formulation

Let the assumptions of Theorem 22 and Corollary 25 (with 𝐾 = 𝐿 =
l() + 1) hold. We consider the optimization problem

minimize
�̂�∈𝓁2(N,R𝐿𝑞 )

∑

𝑖<𝑁

(

‖𝛤𝑦(0) �̂�𝑖‖
2
2 + ‖𝛤𝑢(l()) �̂�𝑖‖

2
2
)

‖𝜋𝑖‖
2 (71a)

subject to
�̂�𝑖 = 0, 𝑖 ≥ 𝑁 , (71b)

(𝛤𝑢(𝑘−1) �̂�) = 𝛤𝑢(𝑘) �̂� , (71c)

(𝛤𝑢(𝑘−1) �̂�) = 𝛤𝑢(𝑘) �̂� , 𝑘 = 1,… , l(), (71d)

𝜉0 =
∑

𝑖<𝑁
(−1)𝑖

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛤𝑢(0)

𝛤𝑦(0)

⋮
𝛤𝑢(l()−1)

𝛤𝑦(l()−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

�̂�𝑖. (71e)

Note, that the relationship between optimization problems (40) and
(71) is established by

𝛱 𝑢 = �̂� = 𝛤𝑢(0) �̂� , 𝛱 𝑦 = �̂� = 𝛤𝑦(0) �̂� ,
(𝑘) =

∑

𝑖<𝑁
(𝛤𝑢(𝑘) �̂�𝑖)𝜋𝑖, 𝑦(𝑘) =

∑

𝑖<𝑁
(𝛤𝑦(𝑘) �̂�𝑖)𝜋𝑖.

(72)

Constraints (71c) and (71d) ensure that 𝑤 = col(𝑢, 𝑦) ∈ , while con-
straint (71b) guarantees 𝑤 ∈ im𝑃𝑁 . The initial condition 𝛬l()(𝑤)(−1) =
𝜉0 is reflected by (71e), where 𝜋𝑖(−1) = (−1)𝑖 is used.

The following proposition summarizes the relationship between the
polynomially restricted LQR problem (40) and its data-driven formula-
ion (71).

Proposition 27. Let the assumptions of Theorem 22 and Corollary 25 hold.
hen the polynomially restricted LQR problem (40) and the data-driven LQR

problem (71) are equivalent in the sense that 𝑤 = col(𝑢, 𝑦) solves (40) if
nd only if �̂� is a solution to (71) such that (72) holds. In particular, their

optimal values coincide.
9 
Fig. 1. A schematic overview of the relations of the different LQR formulations.

Proof. Via the relationship (72) the target function in (40) can be
quivalently rewritten into that in (71a). Further, Corollary 25 directly

yields the equivalence of LQR problem (40) and a modified data-driven
formulation of (71), where in the latter problem the constraint (71b) is
replaced by the seemingly more restrictive constraint
[

𝛤𝑢0

𝛤𝑦0

]

�̂�𝑖 = 0, 𝑖 ≥ 𝑁 . (73)

Note that the modified condition (73) in combination with (72) is
equivalent to col(𝑢, 𝑦) ∈ im𝑃𝑁 . Replacing (71b) with (73), however,
oes not affect the feasibility or optimality of a trajectory col(𝑢, 𝑦) with
72). Indeed, this follows form the fact that (73) together with (71c),
71d) implies
[

𝛤𝑢𝑘

𝛤𝑦𝑘

]

�̂�𝑖 = 0, 𝑖 ≥ 𝑁 , 𝑘 = 0,… , l() (74)

and �̂�𝑖 only appears in the modified problem, when accompanied by
𝛤𝑢𝑘 or 𝛤𝑦𝑘 . □

The approximation result in Theorem 13 yields asymptotic bounds
n the optimality gap between the data-driven LQR problem (71)

and the original LQR problem (33). We emphasize that the allowed
polynomial approximation order 𝑁 does not depend in the persistency
of excitation order of the data, that is the same informative data
trajectory (𝑢, 𝑦) can utilized for different 𝑁 . Fig. 1 illustrates how the
arious results in this paper integrate to derive a solution to the LQR

problem (33) via the data-driven LQR formulation (71).
Due to (71b), the optimization problem (71) can be rewritten as

a finite-dimensional quadratic program. In this context,  in con-
traints (71c) and (71d) is replaced with some upper-left square sub-

matrix of the infinite matrix representation of  in (21).
Note, that instead of the polynomially restricted LQR problem (40)

one could likewise derive a data-driven formulation of the unrestricted
LQR problem (33) using Corollary 25. Since the resulting problem
oes not include a condition like (71b), meaning it involves infinitely

many coupled equations, finding a numerical solution, however, seems
intractable.

Similarly to the previous approach, consider the scenario described
n Corollary 24. The LQR problem (46) in Remark 15, constraint to

polynomial trajectories, is equivalent to the data-driven optimization
problem

minimize
∑

(

‖𝛤𝑥�̂�𝑖‖
2
2 + ‖𝛤𝑢�̂�𝑖‖

2
2
)

‖𝜋𝑖‖
2 (75a)
�̂�∈𝓁2(N,R2𝑛+𝑚) 𝑖<𝑁
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Table 1
The error between the optimal value 𝐽⋆ and the optimal value
𝐽𝑁 = 𝐽 (col(𝑢𝑁 , 𝑥𝑁 )) of the data-driven LQR problem with respect
to polynomial trajectories in im𝑃𝑁 .

𝑁 𝐽𝑁 − 𝐽⋆

1 3.59 ⋅ 100

2 4.11 ⋅ 10−1

3 3.36 ⋅ 10−2

4 1.70 ⋅ 10−3

5 4.79 ⋅ 10−5

𝑁 𝐽𝑁 − 𝐽⋆

6 9.58 ⋅ 10−7

7 1.25 ⋅ 10−8

8 1.30 ⋅ 10−10

9 9.72 ⋅ 10−13

10 1.73 ⋅ 10−14
t

e

t

subject to
�̂�𝑖 = 0, 𝑖 ≥ 𝑁 , (75b)

(𝛤𝑥�̂�) = 𝛤𝑥(1) �̂� , (75c)

𝑥0 =
∑

𝑖<𝑁
(−1)𝑖𝛤𝑥�̂�𝑖, (75d)

cf. Corollary 26 and the proof of Proposition 27.

5.2. Numerical example

We illustrate the numerical feasibility of the data-driven optimal
ontrol scheme involving the fundamental lemma consider the LQR

minimize
col(𝑢,𝑥) ∫

1

−1
|𝑢(𝑡)|2 + |𝑥(𝑡)|2 d𝑡 (76a)

d
d𝑡𝑥 = −𝑥 + 𝑢, 𝑥(−1) = 1 . (76b)

By Pontryagin’s minimum principle the optimal trajectory col(𝑢⋆, 𝑥⋆)
to (76) together with its co-variable 𝜆⋆ satisfies
d
d𝑡𝑥

⋆ = −𝑥⋆ + 𝑢⋆, 𝑥⋆(−1) = 1
d
d𝑡𝜆

⋆ = 𝜆⋆ − 𝑥⋆, 𝜆⋆(1) = 0
𝑢⋆ = −𝜆⋆

and one finds

𝑥⋆(𝑡) = 𝛼e−
√

2𝑡 (
√

2 − 2)e2
√

2𝑡 − (
√

2 + 2)e2
√

2
√

2(e2
√

2 − 1)

𝑢⋆(𝑡) = −𝛼e−
√

2𝑡 e2
√

2𝑡 − e2
√

2

e2
√

2 − 1
with a normalization constant 𝛼 to ensure 𝑥⋆(−1) = 1. The optimal
value is 𝐽⋆ ≈ 0.4125.

Note, that the underlying system has McMillan degree n() = 1 and
lag l() = 1. We consider the trajectory col(𝑢, 𝑥),

𝑢(𝑡) = 𝑡2, 𝑥(𝑡) = 𝑡2 − 2𝑡 − 5e−(𝑡+1) + 2, (77)

where 𝑢 is persistently exciting of order 3, see Example 18. The smallest
eigenvalue of 𝛤3(𝑢) is approximately 0.1729. We numerically solve
he polynomially restricted optimal control problem, cf. (40), in its

data-driven formulation (75) for different polynomial orders 𝑁 . The
esulting time-domain trajectories reconstructed from the expansion
oefficients are illustrated in Fig. 2. The deviations between the optimal
alue 𝐽⋆ and the optima of the data-driven problems are presented in

Table 1. The numerical results align with the theoretical convergence
rder described in Theorem 13. The Matlab code that produced the

numerical results is available.2

6. Conclusions

We stated Gramian-based continuous-time versions of Willems
et al.’s fundamental lemma in Theorem 22 and Corollary 24 in the case
of input–output and input-state measurements, respectively. Then, we

2 https://github.com/schmitzph/contDdOC
 P
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Fig. 2. The optimal trajectory 𝑤⋆ = col(𝑢⋆ , 𝑥⋆) (dashed, black) and approximate
optimal trajectories 𝑤𝑁 = col(𝑢𝑁 , 𝑥𝑁 ) for 𝑁 = 2, 3, 4, 5.

applied the derived results to the data-driven simulation problem in
Corollaries 25 and 26.

The evaluation of the performance of our approach in the case of
noisy data is of pressing importance. The extension of our approach
o the nonlinear case, at least for specific classes of systems, is also a

matter of pressing research, especially in the light of recent nonlinear
xtension of the discrete-time fundamental lemma, see [31–34]. For

more general classes of nonlinear systems, one may invoke recent
results on the approximation error for the Koopman generator [35] and
operator [36], which may, then, also be used for data-driven predictive
control, see, e.g., [37,38].
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