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Abstract: Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular 18 
crystals by predicting the stable crystalline arrangements along with their functions of interest. Here, we 19 
compute ESF maps for a series of rigid molecules that comprise either a triptycene or a spiro-biphenyl 20 
core, functionalized with six different hydrogen-bonding moieties. We show that the positioning of the 21 
hydrogen-bonding sites, as well as their number, has a profound influence on the shape of the resulting 22 
ESF maps, revealing promising structure–function spaces for future experiments. We also demonstrate a 23 
simple and general approach to representing and inspecting the high-dimensional data of an ESF map, 24 
enabling an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically 25 
favourable or functionally interesting. This is a step toward the automated analysis of ESF maps, an 26 
important goal for closed-loop, autonomous searches for molecular crystals with useful functions. 27 
  28 
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Introduction 29 
Hydrogen bonding is widely used for controlling supramolecular assembly of organic building blocks1,2 30 
because it is directional and relatively strong for a non-covalent interaction. Molecules that combine 31 
hydrogen-bonding interactions and geometries that hinder close packing are known to promote porosity 32 
in crystalline molecular networks.3,4,5,6 Indeed, there is a rapidly growing class of hydrogen-bonded 33 
organic frameworks (HOFs) with potential applications in gas storage and separation,7,8 molecular 34 
recognition,9,10 ion conduction,11,12 and catalysis.13 35 
 36 
Porous bonded frameworks such as metal–organic frameworks (MOFs) and covalent organic 37 
frameworks (COFs) are assembled according to strong and predictable bonding patterns.14 By contrast, 38 
porous molecular crystals are defined by the balance of many weak intermolecular interactions, such as 39 
hydrogen bonding and π–π stacking. As a result, small changes to the molecular structure can drastically 40 
change the crystalline packing of the molecule and its propensity for polymorphism, as well as the 41 
resultant physical properties. It is a long-standing challenge to control the crystallization of organic 42 
molecules to achieve specific structures with desired functions. The introduction of hydrogen-bonding 43 
groups, such as carboxylic acids, to create directional molecular building blocks or “tectons”15 is one 44 
popular route for this, but such routes may also introduce synthetic complexity or chemical 45 
characteristics that are not aligned with the intended function (e.g., rigid, polar polyaromatic molecules 46 
can have very poor solubility). In the absence of a predictive understanding of molecular assembly in 47 
the solid state, it is challenging to rationally select or design appropriate molecular tectons for the 48 
synthesis of new functional molecular crystals—this is in sharp contrast to MOFs and COFs, for 49 
example, where intuitive isoreticular design strategies have proved powerful.14 50 
 51 
Recently, we proposed the concept of energy–structure–function (ESF) maps to aid the discovery of 52 
porous molecular crystals with arresting properties.3 To generate ESF maps, we combine crystal 53 
structure prediction (CSP), which determines the stable crystalline arrangements that are available to a 54 
molecule, with predictions of materials properties of interest. ESF maps, which are constructed using 55 
the molecular structure as the only input, reveal the possible structures and properties that are available 56 
for the molecule within the energetically accessible regions of its lattice energy surface. This de novo 57 
strategy of exploring potential molecules using their predicted ESF maps is therefore applicable to both 58 
known and hypothetical molecules, and to any materials properties that can be computed from crystal 59 
structures such as gas adsorption and charge transport.16 ESF maps can also be used to computationally 60 
pre-screen multiple candidate molecules for target applications to focus experimental efforts, which can 61 
often require months of synthetic work to access new molecular tectons. ESF maps have been shown to 62 
help guide synthetic control over pore size in isostructural porous organic cages17-19 and to enable the 63 
discovery of new ‘hidden’ porous polymorphs of trimesic acid and adamantane-1,3,5,7-tetracarboxylic 64 
acid, two archetypal molecules that had been studied for decades by crystal engineers.20 The potential of 65 
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small organic molecules to give rise to promising molecular photocatalysts13 and electronics16,21 may 66 
also be evaluated a priori by ESF maps.  67 
 68 
Going forward, the fast yet accurate generation of ESF maps, as well as visualization and interpretation 69 
of the data, will require further development of techniques in fields that span computational chemistry, 70 
machine learning, and algorithms. First, the computational expense involved with CSP increases 71 
dramatically with the size and complexity of the molecule. For example, large, flexible molecules 72 
require extensive sampling of their coupled inter- and intra-molecular phase spaces in the search of 73 
stable crystal structures.13,22,23 Second, materials properties that derive from the crystal structure’s 74 
electronic structure (e.g., band gap) or that require a long system equilibration (e.g., gas selectivity) can 75 
be very expensive to evaluate for large numbers of predicted structures, which is commonplace for the 76 
CSP landscapes of organic molecules. Third, it is challenging to explore the high-dimensional energetic, 77 
structural, and functional landscapes defined by an ESF map – in this respect, they differ from two-78 
dimensional geographical maps.  79 
 80 
Until now, ESF maps have usually been represented by projecting onto their corresponding CSP 81 
landscapes; that is, onto a plot of the crystal lattice energy as a function of the crystal density. This has 82 
proved powerful in highlighting functionally interesting structures that are also energetically favourable; 83 
for example, when there are pronounced local minima that are well separated from the bulk of the CSP 84 
landscape, sometimes referred to as “spikes”.3 However, minima, or spikes, in the original high-85 
dimensional ESF space could also be hidden in a simple one-dimensional representation, such as 86 
landscapes plotted against the crystal density or the pore surface area. One solution is to generate 87 
multiple ESF maps by ‘cutting’ through the ESF space along individual dimensions. Alternatively, more 88 
sophisticated structural representations—such as smooth overlap of atomic positions (SOAP) 89 
representations of atomic environments24,25 and persistent homology barcodes of pore structures26—90 
have been combined with machine learning techniques to learn two-dimensional representations of ESF 91 
maps. 92 
 93 
Here, we explored the in silico computational design of a series of molecular tectons that comprise 94 
either a triptycene or a spiro-biphenyl core, functionalized with various different hydrogen-bonding 95 
moieties. Hydrogen bonding and π–π stacking were quantitatively analysed for all the structures on the 96 
ESF maps to reveal how the maps evolve based on the different balance of intermolecular interactions in 97 
the various tectons. We show that the number of hydrogen bonding sites, as well as their position, has a 98 
profound influence on the resulting ESF maps. By applying unsupervised learning to pore descriptors, 99 
as well as SOAP representations, two-dimensional embeddings of the high-dimensional ESF data could 100 
be learned, which are human interpretable. ESF maps represented in this way enable the navigation of 101 
the complex ESF space within a unified framework, rather than using more traditional heuristics. 102 
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 103 
Results 104 
Crystal structure prediction landscapes 105 
We studied a series of awkwardly shaped molecules with different hydrogen-bonding functionalities 106 
(Figure 1, Supplementary Figure 2). Following our previous study,3,27 we chose triptycene and spiro-107 
biphenyl cores with the aim of frustrating close packing of the molecules in the solid state. To influence 108 
crystal packing, the molecular cores were functionalized by different hydrogen-bonding moieties. 109 
Benzimidazolones T2 and S2 are included here for comparison; T2 was shown previously to afford 110 
stable, porous crystals. We also studied five six-membered-ring-based hydrogen-bonding moieties: 4-111 
pyridone, 2-pyridone, 2,6(1H,3H)-pyridinedione, 2,4(1H,3H)-pyrimidinedione and 1,4(2H,3H)-112 
pyrazinedione. In combination with the triptycene core, five new molecules were generated: quinolones 113 
TH1 and TH2; isoquinolinedione TH3; quinazolinediones TH4 and TH5 (Figure 1). For the spiro-114 
biphenyl core, only two molecules were considered: quinolone SH1 and quinazolinediones SH2 115 
(Supplementary Figure 2). These seven molecules bear different numbers and ratios of hydrogen-bond 116 
donors and acceptors, offering a potentially diverse array of options for intermolecular hydrogen 117 
bonding and crystal packing.  118 
 119 
TH5 has been synthesized before,28 while TH1 to TH4, SH1 and SH2 are, in theory, accessible 120 
experimentally via known organic reactions (Supplementary Figures 16–21). However, we envisage that 121 
some syntheses might be elaborate and challenging—for example, in terms of isolating specific 122 
isomers—and also because these rigid aromatic molecules often have poor solubility. As such, 123 
computational pre-screening prior to experiments has significant value. Molecules TH1 to TH5, SH1 124 
and SH2 may undergo keto–lactam to enol–lactim tautomerization via intra- or inter-molecular proton 125 
transfer. In solution, the lactam–lactim equilibrium is dependent on the solvent polarity, which is shifted 126 
to lactam in polar solvents.29 In the solid state, the lactam form is often found to dominate;30 specifically, 127 
the molecular arms of TH1 to TH5 have been reported in their corresponding lactam form in the 128 
Cambridge Structural Database (deposition numbers: 643895, 787295, 1178376, 702449 and 1178443). 129 
We did not attempt any organic synthesis in this study, but we offer these systems and the associated 130 
predictions as experimental targets for the future. 131 
 132 
Computational methods for crystal structure prediction (CSP) involve a global exploration of the 133 
multidimensional lattice energy surface for stable energy minima, followed by an assessment of the 134 
relative stabilities of the resulting structures. Here, unbiased searches of the lattice energy surface31 were 135 
used to determine the stable crystalline arrangements that are available to each of the molecules (Figure 136 
1, Supplementary Figure 3). Organic molecules tend to pack densely to maximize their intermolecular 137 
interactions, reducing the energetic cost of void space in a solid. As such, generating porosity in 138 
molecular crystals remains a challenging task for crystal engineering. Having a rigid and contorted 139 
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molecular shape may not always be sufficient to prevent dense packing. Indeed, most low-energy 140 
structures of triptycene are non-porous and the lower edge of the energy–density distribution decreases 141 
nearly monotonically, as is typical for most organic molecules.3 The ‘leading edge’ of a CSP landscape 142 
comprises structures with the lowest energy at a given density, and stable porous structures have 143 
previously been realized experimentally in this region.3  144 
 145 

 146 
Figure 1: Energy–structure–function maps. a–f, Crystal structure prediction energy–density plots for the 147 
molecular building blocks shown in the figure: TH1 (a), TH2 (b), TH3 (c), TH4 (d), TH5 (e) and T2 (f). Each 148 
point corresponds to a computed crystal structure. The symbols are colour-coded by the dimensionality of the 149 
pore channels, assessed using a probe radius of 1.7Å; see Supplementary Figure 1 for alternative plots with 150 
shuffled plotting orders for the points. Molecules TH1–4 each have two isomers arising from the arrangement of 151 
the hydrogen-bonding moieties on the triptycene core; only the higher-symmetry isomers were considered here. 152 
Arrows indicate the spikes that are referred to in the text.  153 
 154 
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The CSP landscape for T2 is markedly different to that of triptycene, with multiple low-density 155 
structures predicted to be substantially lower in energy than the bulk of the landscape, forming the so-156 
called ‘spikes’ (Figure 1f). The emergence of spikes from the bulk of a CSP landscape indicates that the 157 
molecule may form unusually stable crystalline structures for their respective densities, and the shape of 158 
the energy-density distribution suggests a large energetic barrier separating these structures from higher 159 
density regions of the landscape. For T2, the minimum-energy structures within the two spikes at 160 
densities of about 0.4 g cm-3 and 0.8 g cm-3—T2-γ and T2-β, respectively—can be accessed 161 
experimentally by solvent stabilization, even though they are about 50 kJ mol-1 above the global energy 162 
minimum.3 Despite using a smaller selection of space groups for CSP here than previously (we used 23 163 
out of the 89 space groups used in ref 4; see Methods section), the partial energy–density landscape of 164 
T2 shown in Figure 1f captures the same key features as the landscape sampled more exhaustively, 165 
including the major ‘spikes’ and the four experimental polymorphs (T2-σ, T2-β, T2-γ and T2-δ). We 166 
therefore carried out CSP in these 23 space groups for all the other molecules in order to reduce 167 
computational costs. 168 
 169 
The leading edge of the energy–density landscape of TH1 decreases nearly monotonically, with no 170 
structures having a density below 0.5 g cm-3 located within 100 kJ mol-1 above the global energy 171 
minimum (Figure 1a). TH2 is a positional isomer of TH1: this arrangement of hydrogen-bonding sites 172 
broadens the density distribution of the predicted structure landscape to lower densities and a spike 173 
appears at around 0.65 g cm-3 (Figure 1b). The isoquinolinedione, TH3, has one extra carbonyl group 174 
per arm compared to TH1 and TH2, and a methylene unit in the 6-membered ring. The addition of three 175 
additional hydrogen-bond accepting groups in TH3 with respect to TH2 does not seem to promote low-176 
density, stable structures (Figure 1c). By contrast, the energy–density distribution for TH4 (Figure 1d) 177 
is reminiscent of that for T2 (Figure 1f) and shows multiple low-energy spikes. Three spikes are 178 
apparent at densities of about 0.5 g cm-3, 0.7 g cm-3, and 1.1 g cm-3, which are 63.9 kJ mol-1, 30.0 kJ 179 
mol-1, and 13.6 kJ mol-1 above the global energy minimum, respectively. By analogy with T2, these 180 
structures fall in an energy range that we would expect might be accessible via solvent stabilization. T2 181 
does not have any predicted structures with one-dimensional (1D) channels (red points in Figure 1) 182 
within 30 kJ mol-1 above the global minimum (Figure 1f; see also Figure 2c in ref 4). By contrast, the 183 
plot for TH4 shows a significant number of structures with 1D pore channels in the density range 1.25–184 
1.35 g cm-3; the minimum-energy structure among these is just 5.1 kJ mol-1 above the global minimum. 185 
The spikes on the landscape of TH4 can also be recognized at similar density regions on the landscape 186 
of TH2, although they are less pronounced. Among the four triptycene-based molecules, the positioning 187 
of the hydrogen-bonding groups (TH2 vs. TH1) appears to play a more significant role in promoting 188 
porosity than their number (TH2 vs. TH3).  189 
 190 
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TH5 is a positional isomer of TH4 and has a higher point symmetry of D3h (c.f., C3v for TH4). Two 191 
pronounced spikes emerge from the landscape at densities of about 0.35 g cm-3 and 0.7 g cm-3 (Figure 192 
1e), with the minimum-energy structure in the lowest density spike being only 46.0 kJ mol-1 above the 193 
global energy minimum. This energy gap is comparable to that (47.6 kJ mol-1) for the lowest-density 194 
experimental polymorph of T2, T2-γ (minimum-energy structure in the spike at 0.5 g cm-3), indicating 195 
the possibility of realizing this low-density structure of TH5. In contrast to TH2, TH4 and T2, where 196 
the spikes mainly contain structures with 1D pore channels, structures in the spikes for TH5 show 197 
higher (2D or 3D) pore connectivity (Figure 1e). 198 
 199 
The energy–density landscapes for SH1 and SH2 (Supplementary Figure 3) show far fewer predicted 200 
structures within 100 kJ mol-1 of the global energy minimum than their triptycene counterparts bearing 201 
the same hydrogen-bonding motifs (TH2 and TH4, respectively). Likewise, S2, having the same 202 
hydrogen-bonding moieties as T2, does not show unusually stable low-density structures. This suggests 203 
that spiro-linked tetrahedral geometries are less effective at generating porosity. 204 
 205 
Hydrogen bonds stabilize porous structures 206 
Analysis of the intermolecular hydrogen bonding in the leading-edge T2 structures revealed that 207 
structures within the spikes feature hydrogen bonded networks with 2D rings propagating along a third 208 
direction to form one-dimensional pore channels.3 Here, we set out to perform quantitative analyses of 209 
the hydrogen bonding in the predicted structures of all the molecules studied here (Figure 2a,c,e and 210 
Supplementary Figure 4). A hydrogen bond is defined here for an interacting system of three atoms N–211 
H•••O—where, the hydrogen atom (H) is covalently bonded to the nitrogen atom (N) and is interacting 212 
with the oxygen atom (O)—when the distance between H and O is shorter than the sum of their van der 213 
Waals radii minus 0.1 � and the angle formed by N–H•••O, centred on H, is larger than 100°.3  214 
 215 
Figure 2a,c,e shows the CSP landscapes of T2, TH4 and TH5, colour-coded by the number of hydrogen 216 
bonds each molecule forms in the corresponding crystal structure; this number is (by definition) the 217 
same for all the molecules in a given crystal structure because only one unique molecule was considered 218 
in these CSP calculations (Z’ = 1). The analogous results for the other molecules studied are shown in 219 
Supplementary Figure 4. The number of hydrogen bonds for a molecule accounts for both cases when 220 
carbonyl groups act as a hydrogen-bond acceptor and when N-H groups act as a hydrogen-bond donor. 221 
For example, the maximum value of the number of hydrogen bonds for a single T2 molecule is 12: that 222 
is, the six N–H groups can each participate in one hydrogen bond, while the three O atoms can each 223 
participate in two hydrogen bonds. In a similar way, we also quantified the extent of intermolecular 224 
stacking in each predicted crystal structure (Figure 2b,d,f and Supplementary Figure 5) by counting the 225 ߨ–ߨ stacking modes formed between the arms of the various molecules. Here, we only consider co-226 
facial and parallel-displaced stacking conformations but not T-shaped ones.  227 
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 228 
Across the whole series of molecules, intermolecular hydrogen-bonding and intermolecular stacking 229 
(see Methods section for the specific definitions used in this study) are found to be mostly competing or 230 
orthogonal forces in driving the solid-state packing of these molecules (Figure 2 and Supplementary 231 
Figures 4, 5): that is, most structures—particularly in the bulk of the CSP landscape—do not 232 
simultaneously show a large number of hydrogen bonds and a large number of ߨ–stacked molecular 233 
arms. This results from the positioning of the hydrogen-bonding motifs in the molecule, together with 234 
the contorted molecular core. However, this simple picture is more mixed for structures that are close to 235 
the leading edge of the landscape or within the spikes. For T2 and TH5, such structures are primarily 236 
stabilized by extensive hydrogen bonding (Figure 2a,e), except for some T2 structures in the medium 237 
density range (around 0.8 g cm-3) that show enhanced but still moderate stacking between the molecular 238 
arms (Figure 2b). By contrast, the leading-edge structures of TH4 benefit from both strong hydrogen 239 
bonding and moderate to strong molecular stacking (Figure 2c,d), except for the lowest-density spike (< 240 
0.4 g cm-3) where structures only exhibit strong hydrogen bonding. For all the molecules, densely 241 
packed structures in the bulk of the landscape are characterized by increased levels of intermolecular 242 
stacking and decreased levels of intermolecular hydrogen bonding. The conclusions for the spiro-linked 243 
SH1, SH2 and S2 molecules are broadly the same as for their triptycene analogues (Supplementary 244 
Figures 4 and 5).  245 
 246 
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 247 
Figure 2: ESF maps for intermolecular hydrogen bonding and intermolecular stacking. CSP energy–density 248 
landscapes, colour-coded by the number of intermolecular hydrogen bonds (HB; a, c and e) or the number of 249 
intermolecular stacking modes (ߨ–ߨ; b, d and f; defined as face-to-face stacking between two molecular arms) 250 
formed by one molecule with its neighbours in the crystal structure: T2 (a,b), TH4 (c,d) and TH5 (e,f). Arrows 251 
indicate the spikes that are referred to in the text. 252 
 253 
ESF data mapped onto individual structural descriptors 254 
Energy–structure–function (ESF) maps combine crystal structure prediction (CSP), which determines 255 
the stable crystalline arrangements available to a molecule, with predictions of materials properties of 256 
interest, using the molecular structure as the only input (see Methods section for details). 257 
Conventionally—and intuitively—ESF maps are projected on their corresponding CSP energy–density 258 
landscapes, with each point on the ‘map’ representing a predicted crystal structure with its colour coded 259 
to one of its physical or functional properties; for example, the pore topologies are colour-coded in 260 
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Figure 1. This is not the only possible representation: more generally, an ESF map can be projected onto 261 
many different structural parameters. Figure 3 shows ESF maps projected onto three different structural 262 
descriptors: crystal density, largest free sphere diameter, and accessible surface area. 263 
 264 

 265 
Figure 3: ESF maps for individual structural descriptors. ESF maps for TH4 (a–c) and TH2 (e–g), plotted 266 
against the crystal density (a, e), the largest free sphere diameter (Df; b, f) or the accessible surface area (c, g); 267 
symbols are colour-coded by the number of hydrogen bonds formed by each molecule in the crystal structure. 268 
Selected TH4 ‘landmark’ structures A–F are displayed in (d) and labelled in (a–c), with their TH2 analogues 269 
labelled in (e–g).  270 
 271 
For TH4, spikes emerge from the bulk of the landscape on all three ESF maps, as shown in Figure 3a–c. 272 
Low-energy structures within these spikes show complete or almost complete saturation of the 273 
hydrogen-bonding sites of the TH4 molecule, showing that extensive intermolecular hydrogen bonding 274 
serves to facilitate stable porous structures. The minimum-energy structure of each pronounced spike in 275 
the energy–density landscape is shown in Figure 3d; these structures are also found on the leading edge 276 
of the landscape when plotted against the largest free sphere diameter (Figure 3b) or the accessible 277 
surface area (Figure 3c). These landmark structures (Figure 3d; A–F) all exhibit extended hydrogen-278 
bonded chains along the pore channels. In TH4-A, molecules pack ‘head-to-head’ to form two 279 
dimensional layers, using the hydrogen-bonding sites at the tip of each arm (Supplementary Figure 6a); 280 
these layers stack along the third direction, forming linear hydrogen bonds between the edges of the 281 
molecules. Similar hydrogen-bonding patterns also appear in the other landmark structures (Figure 3d), 282 
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with stacking between the molecular arms becoming more extensive as the structure gets denser 283 
(Supplementary Figure 6).  284 
 285 

 286 

Figure 4: ESF maps predict a highly porous solid for TH5. Solvent accessible surfaces (left) of TH5-A (a) and 287 
T2-γ (b). TH5-A shows a three-dimensionally interconnected pore space within the structure. Unlike for T2-γ, 288 
the 1D hexagonal pore channels in TH5-A are predicted to be connected by apertures in the pore walls that are 289 
orthogonal to the direction of the channels; one such aperture is indicated by the black circle on the right-hand-290 
side figure. Predicted surface area for TH5-A = 4447 m2 g-1 (c.f., 3199 m2 g-1 predicted for T2-γ).  291 
 292 
TH5 is predicted to yield landmark structures A, B, C1 and D2 (Supplementary Figure 8) that are 293 
isostructural with TH2/4-A to D, respectively, in terms of the 1D channel shapes. In contrast with 294 
TH2/4-A having 1D pore channels, the 1D channels in TH5-A are interconnected through apertures in 295 
the pore ‘walls’, as a result of the packing of TH5 molecules along the channel direction (Figure 4). 296 
Similarly, interconnected 1D channels are present in other TH5 landmark structures, such as B, C1, C2, 297 
D1 and D2 (Supplementary Figure 9). TH5-A has a predicted density of just 0.374 g cm-3, with a 298 
calculated accessible surface area of 4447 m2 g-1, assessed by a probe radius of 1.70 �. This highly 299 
porous structure might be accessible in the laboratory because it is isostructural to T2-γ, which has been 300 
isolated,3,27 and it is predicted to have a similar relative stability (46.0 and 47.6 kJ mol-1 above the 301 
corresponding global minimum for TH5-A and T2-γ, respectively). If it can be prepared and it is stable 302 
to desolvation, TH5-A would be one of the lowest density molecular crystals reported to date. Few (if 303 
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any) desolvated molecular crystals have densities lower than 0.4 g cm-3. Two triptycene-based 304 
hydrogen-bonded organic frameworks, reported by Stoddart and co-workers,32,33 showed ultra-low 305 
framework densities of 0.323 or 0.231 g cm-3, but both of the solved crystal structures were for solvates. 306 
One of these crystals was reported to have a theoretical surface area of 1690 m2 g-1, although the 307 
measured Brunauer–Emmett–Teller surface areas were much lower. We therefore suggest that TH5-A 308 
has the potential to the most porous HOF to date, although its very low predicted density implies that 309 
careful desolvation might be required; for example, by using solvent exchange protocols or supercritical 310 
drying. 311 
 312 
TH2 gives similar ESF maps to those of TH4: spikes emerge from the landscape in the same regions of 313 
the structural descriptor used (Figure 3e–g). This is because TH2 is predicted to generate crystal 314 
structures TH2-A to F that are isostructural with TH4-A to F, respectively, in terms of the shapes of the 315 
one-dimensional pore channels (Figure 3d and Supplementary Figure 7); for example, TH2-A and TH4-316 
A both have hexagonal pore channels. However, in these TH2 landmark structures, molecules do not 317 
pack ‘edge-to-edge’, due to the absence of the hydrogen-bonding sites on the edges of the molecule. 318 
Instead, TH2 molecules tend to form staggered hydrogen-bonded chains along the pore channels: each 319 
molecular arm forms hydrogen bonds with two other arms from two different molecules 320 
(Supplementary Figure 7). This ‘head-to-tail’ hydrogen-bonding motif,34 labelled “type 2” in 321 
Supplementary Figure 7g,h, helps the molecular assembly to extend by repeating the bonding motif. 322 
TH2-A to F are mostly found on the leading edge of the landscape plotted against one of the structural 323 
descriptors (Figure 3e–g); TH2-C is higher in lattice energy than the corresponding region of the 324 
leading edge, for all three ESF maps. In line with the above discussion for TH4, TH2 structures on the 325 
leading edge and within the spikes—particularly low-density, large-pore, or large-surface-area ones—326 
exhibit rich intermolecular hydrogen bonding. All six hydrogen-bonding sites on each TH2 molecule 327 
are used in TH2-A,D, while four hydrogen-bonding sites are used in TH2-B,C,E,F.  328 
 329 
Decomposition of the lattice energy into its physical contributions (Supplementary Figure 10) 330 
corroborates the picture built by simple counting of the intermolecular hydrogen bonds and 331 ߨ–ߨ 
stacking modes. All landmark structures are characterized by strong, stabilizing electrostatic interactions, 332 
with the TH4 structures consistently more stable than their TH2 counterparts thanks to its larger 333 
number of hydrogen-bonding sites than TH2. Structures A, B and D bear (nearly) linear hydrogen 334 
bonds and hence are stabilized by strongly directional electrostatic interactions, while structures E and F 335 
show enhanced dispersion interactions resulting from increased stacking between the molecular arms. 336 
The landmark structures of TH2 and TH4 are reminiscent of the experimental polymorphs of T2: 337 
structures TH2/4-A, C, D and E have isostructural pore channels with T2-γ, α, β and δ, respectively. 338 
Therefore, it is conceivable that these landmark structures—particularly for TH4, whose landmark 339 
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structures are all minimum-energy structures within their corresponding spikes—might be 340 
experimentally accessible should this molecule be synthesized in the future.  341 
 342 
To assist with both the analysis in this study and with future interpretations of ESF maps, we developed 343 
an interactive visualization tool—an ESF Explorer—using TH4 as an example here 344 
(https://www.interactive-esf-maps.app). This tool allows the user to interrogate the correlations, 345 
dependencies, and relationships between the various dimensions of the data. In the ESF Explorer, a 346 
variety of ‘descriptors’ can be chosen as the X-axis, the Y-axis, and as colour-coding in the ESF map. 347 
The predicted crystal structures are displayed interactively when points are selected on the ESF plot. 348 
Our interactive visualization tool was inspired by the pioneering efforts of Moghadam et al. in exploring 349 
high-throughput screening data of metal–organic frameworks.35,36  350 
 351 
Two-dimensional embeddings of the high-dimensional ESF data 352 
While projecting an ESF map onto individual dimensions is a useful way of exploring data, it can be 353 
laborious when many structural and functional properties are associated with 1000s to 10,000s of 354 
structures typically on a single ESF map, even with the help of our interactive ESF Explorer. It is 355 
therefore desirable to devise a simple and general approach to represent the high-dimensional data of 356 
ESF maps, allowing us to systematically identify ‘landmark’ structures on the map, be they either 357 
energetically favourable or functionally interesting structures. To do this, we encoded each of the crystal 358 
structures on an ESF map by a number of pore descriptors including pore diameters, surface areas and 359 
some variants of these in order to capture, to some extent, the heterogeneity of pore/channel sizes within 360 
a given map (see Supplementary Methods). We then used the affinity propagation algorithm37 to cluster 361 
all the crystal structures into unique groups on the porosity space defined by these pore descriptors. For 362 
each group, a landmark structure was identified as the lowest-energy structure within the group; see 363 
Figure 5d–g for where these landmarks are located on the corresponding energy–density landscapes. 364 
 365 
We identified landmark structures for TH2, TH4, TH5 and T2 following the same protocol. Since our 366 
pore descriptors are agnostic to the molecular structure, landmark structures can be compared across the 367 
different molecules in a single projection. For visual comparison, we applied the parametric Uniform 368 
Manifold Approximation and Projection (UMAP)38 technique to learn a mapping from the high-369 
dimensional porosity space to a 2D representation (Figure 5a), where each point represents a crystal 370 
structure and the points are spatially arranged such that the closer the two points are on the plot, the 371 
more similar the two structures are in the porosity space. We further used the k-means algorithm39 to 372 
identify clusters on the 2D UMAP space, which are superposed on the 2D UMAP plot (inset, Figure 5a). 373 
 374 
All four experimental polymorphs of T2, as well as most of the structures highlighted above for TH2, 375 
TH4 (Figure 3) and TH5 (Supplementary Figure 8), were identified as landmarks on the porosity space; 376 
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note that TH2-C,F, and TH5-C2,D2 are not shown in Figure 5a–c because they are not the 377 
representative structure (in this case, the most stable structure) of their corresponding cluster. The 378 
structures that have isostructural pore channels—for example, TH2-A, TH4-A, TH5-A and T2-γ all 379 
have hexagonal pore channels—are located in close proximity on the 2D UMAP representation (Figure 380 
5a). An interactive explorer for the 2D UMAP embeddings of the porosity spaces of TH2, TH4, TH5 381 
and T2 is available in our online visualization app (https://www.interactive-esf-maps.app), which allows 382 
the user to inspect landmark structures identified by having either the lowest lattice energy or the largest 383 
free sphere within the group.  384 
 385 

 386 
Figure 5: Porosity space of the landmark structures of TH2, TH4, TH5 and T2. (a–c) 2D UMAP 387 
embeddings of the porosity spaces of TH2 (diamond), TH4 (circle), TH5 (triangle) and T2 (cross), colour-coded 388 
by the pore dimensionality (a), the number (no.) of hydrogen bonds per hydrogen-bond site (b), or the total 389 
number of π–π stacking modes of the crystal structure (c); the symbol size is scaled by the accessible surface area. 390 
All the points shown in (a–c) are the lowest-energy structures in the respective clusters by affinity propagation 391 
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and are highlighted in red on their corresponding energy–density landscapes: T2 (d), TH2 (e), TH4 (f) and TH5 392 
(g). 393 
 394 
Overall, the structures become more porous, with a higher pore dimensionality and/or a larger accessible 395 
surface area, when going from the bottom-right to the top-left (or from k-means group 1 to group 5; see 396 
inset in Figure 5) of the UMAP embedded porosity space (Supplementary Figure 11). Most landmark 397 
structures exhibit extended hydrogen-bonded networks (Figure 5b), while some structures also benefit 398 
from a complementary stabilization by ߨ–ߨ stacking interactions (Figure 5c). Results for spiro-linked 399 
SH1, SH2 and S2 are shown in Supplementary Figure 12. 400 
 401 
ESF maps are simplified representations of complex, high-dimensional structure-property landscapes, 402 
providing a powerful visualization of the range of properties and stabilities of the associated crystal 403 
structures. However, ESF maps can be challenging to interpret, especially as they become more 404 
complex. Analogies with geographical maps break down when the structure–property relationships are 405 
encoded by a high-dimensional ESF landscape that may have 10,000s of structures on a single map. 406 
Inspecting ESF maps by eye is laborious and increasingly intractable as the maps become larger, more 407 
numerous, and higher-dimensional. The 2D embedding approach shown here makes ESF maps machine 408 
readable. To give one use case: it is often desirable to make comparisons between ESF maps for 409 
different molecules to assess whether two molecules will be functionally similar or not. This unified 410 
embedding approach will be useful for comparing multiple CSP datasets and identifying functionally 411 
similar structures using the encoding representation. This might be used, for example, to select the most 412 
synthetically accessible molecule in a set of candidates that is likely to express the property of interest, 413 
such as a specific pore size. This approach automatically and systematically identifies a small set of 414 
landmark structures (typically, 10’s to 100’s) from the whole CSP landscape (typically, 1,000’s to 415 
10,000’s structures). This allow us to focus more expensive calculations on a smaller set of structures: 416 
for example, to carry out solvent stabilization calculations to better assess the synthetic accessibility of a 417 
specific polymorphs. These calculations are too expensive to perform on entire CSP datasets and more 418 
simplistic filtering methods (e.g., using a lattice energy cut-off) may miss key landmark structures. 419 
 420 
Simple pore descriptors, such as pore diameters and surface areas, do not have the resolution that is 421 
needed to distinguish structures atomistically. By contrast, a range of numerical representations, such as 422 
smooth overlap of atomic positions (SOAP),40 allow for measuring the similarity between atomistic 423 
structures and have been widely used in machine learning tasks.41 Here, we used SOAP descriptors to 424 
encode all the crystal structures of TH4 and, together with a regularized entropy match (REMatch) 425 
kernel,42 to quantify the similarity between every pair of structures. The resulting similarity matrix was 426 
then projected onto a 2D space by a UMAP embedding, as shown in Figure 6a. 427 
 428 
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 429 

Figure 6: The ESF data of TH4 mapped onto its SOAP space. (a) 2D UMAP embedding of the SOAP space 430 
of TH4, colour-coded by the pore dimensionality. (b), (c) Energy–density landscapes correspond to the regions 431 
marked out in (a), colour-coded by the pore dimensionality. 432 
 433 
For TH4, the crystal structures are split, broadly speaking, into two disconnected ‘islands’ in the SOAP 434 
space (Figure 6a). Both islands contain structures that span the whole density range (Figure 6b,c). 435 
Tracing structures on each island back to the energy–density landscape reveals that the smaller of the 436 
two islands (blue dotted square) is overwhelmingly dominated by structures exhibiting 1D pore 437 
channels (Figure 6b), while the larger island (red dotted square) has a greater number of structures with 438 
different pore dimensionalities (Figure 6c). All the landmark structures, TH4-A to F, are located on the 439 
smaller, blue island, as well as structures belonging to the spikes and most of the leading-edge structures 440 
on the energy–density landscape (Figure 6b). As discussed above, these structures all feature extended 441 
hydrogen-bonded chains along the 1D channels. Higher-density structures on the blue island show 442 
increased ߨ–ߨ stacking. Almost all structures on the red island are found in the bulk of the energy–443 
structure landscape, featuring diverse packing patterns, which is understandable as it covers a much 444 
larger area in the SOAP space than the smaller blue island. For TH5, the 2D UMAP embedding of the 445 
SOAP space (shown in Supplementary Figure 15) is not clearly separated into ‘islands’ but, like TH4, 446 
the leading-edge structures are mostly located in one region of the embedding.  447 
 448 
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SOAP descriptors, by design, encode atomic neighbour environments within a cut-off radius, and they 449 
are therefore effective at capturing local chemical information such as hydrogen bonding and 450 ߨ–ߨ 
stacking. A larger cut-off radius of 8.0 � (Supplementary Figure 14) results in a similar picture to that 451 
found with a cut-off radius of 6.0 � (Figure 6). By contrast, SOAP descriptors have been shown to not 452 
capture long-range order, such as molecular packing,26 so these projections are complementary to the 453 
pore-based descriptor projections shown in Figure 5. 454 
 455 
Discussion  456 
We have computed ESF maps for a series of molecular tectons that comprise either a triptycene or a 457 
spiro-biphenyl core, functionalized with various different hydrogen-bonding moieties, evaluating their 458 
abilities to generate porosity in the solid state. Through quantitative analyses of the intermolecular 459 
hydrogen bonding and π–π stacking for all the predicted crystal structures, we showed how the ESF 460 
maps evolve arising from the different balance of intermolecular interactions in the various tectons. 461 
Across the whole series of the molecules studied, intermolecular hydrogen bonding and intermolecular 462 
stacking are found to be mostly competing forces in driving the solid-state packing of the molecules. 463 
That is, high-porosity, low-density structures are primarily stabilized by extensive hydrogen bonding 464 
with minimal intermolecular stacking, while densely packed structures exhibit high levels of stacking 465 
but decreased levels of hydrogen bonding. Structures in the intermediate density range are stabilized by 466 
a combination of hydrogen bonding and stacking. This results from the positioning of the hydrogen-467 
bonding sites, as well as the number of them, and the contorted molecular core. TH4 and TH5 have 468 
been identified as promising targets for future experimental efforts, because they are both predicted to 469 
give multiple (highly) porous crystalline structures that may be experimentally accessible, for example 470 
by solvent stabilization. TH5 has been synthesized before,28 and our results suggest that it would be 471 
interesting to re-evaluate this molecule in terms of porosity across a range of crystallization solvents.20 472 
 473 
Inspecting a large and complex multidimensional ESF map can be laborious, even with the help of our 474 
interactive ESF Explorer (https://www.interactive-esf-maps.app). Here, we have demonstrated a simple 475 
and general framework for representing the high-dimensional data of ESF maps and for systematically 476 
identifying ‘landmark’ structures on the map. By applying unsupervised learning to pore descriptors, as 477 
well as SOAP representations, two-dimensional embeddings of the high-dimensional ESF data could be 478 
learned, which are human interpretable. Our approach of encoding, learning, and representing ESP maps 479 
enables an efficient navigation of the complex ESF space within a unified framework, allowing us to 480 
automatically identify energetically favourable or functionally interesting structures across different 481 
systems, as well as revealing complex structure–function correlations that are hidden when inspecting 482 
individual structural features. This marks a step toward an automated analysis of high-throughput 483 
computation of ESF maps, which will be beneficial in facilitating autonomous searches for functional 484 
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molecular crystals in the future – for example, to create machine-readable maps to prioritize automated 485 
robotic searches.43,44 486 
 487 
Methods  488 
Crystal structure prediction (CSP) 489 
Geometries of all the molecules studied were fully optimized at the B3LYP/6-311G(d,p) level of theory, 490 
using the Gaussian16 software,45 followed by frequency calculations to ensure that they are all true local 491 
minima. These molecular geometries were held rigid throughout crystal structure generation and lattice 492 
energy minimization.  493 
 494 
Trial crystal structures were generated with one molecule in the asymmetric unit for the 23 most 495 
common space groups: P21/c (34.4%), ܲ1ത  (24.8%), C2/c (8.4%), P212121 (7.1%), P21 (5.1%), Pbca 496 
(3.3%), Pna21 (1.4%), Pnma (1.1%), Cc (1.0%), P1 (1.0%), C2 (0.8%), Pbcn (0.8%), Pca21 (0.7%), ܴ3ത 497 
(0.7%), P2/c (0.6%), C2/m (0.5%),  P21/m (0.5%), Pc (0.4%), P21212 (0.4%), I41/a (0.4%), Pccn (0.4%), 498 
Fdd2 (0.3%), and P42 (<0.3%); the values in the brackets are relative frequencies of the space groups 499 
reported in the Cambridge Structural Database.  500 
 501 
CSP was performed using a quasi-random sampling procedure, as implemented in the Global Lattice 502 
Energy Explorer software.31 The generation of crystal structures involved a low-discrepancy sampling 503 
of all structural variables within each space group: unit cell lengths and angles, and molecular positions 504 
and orientations within the asymmetric unit. Space-group symmetry was then applied, and a geometric 505 
test was performed for overlap between molecules, which was removed by lattice expansion (the SAT-506 
expand method in ref 31). Lattice energy calculations were performed with an anisotropic atom–atom 507 
potential using DMACRYS.46 Electrostatic interactions were modelled using an atomic multipole 508 
description of the molecular charge distribution (up to hexadecapole on all atoms) from the B3LYP/6-509 
311G(d,p)-calculated charge density using a distributed multipole analysis.47 Atom–atom repulsion and 510 
dispersion interactions were modelled using a revised Williams intermolecular potential,48 which has 511 
been benchmarked against accurate, experimentally determined lattice energies for a range of molecular 512 
crystals,49 and was applied successfully in our earlier CSP studies of T2 and the related imide T1, 513 
reproducing the known crystal structures.3 Charge–charge, charge–dipole and dipole–dipole interactions 514 
were calculated using Ewald summation; all other intermolecular interactions were summed to a 25-Å 515 
cut-off between molecular centres-of-mass. All accepted trial structures were lattice-energy-minimized, 516 
and the search was run until a total of 5000 lattice energy minimizations had been performed in each 517 
space group.  518 
 519 
Removal of duplicate structures was performed in two steps. First, all structures within a lattice energy 520 
window of 1.0 kJ mol-1 and within a density window of ±0.05 g cm-3 were compared using powder x-521 
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ray diffraction (PXRD) patterns generated by Platon50 (wavelength: 0.7 �; two-theta range: 20°) using a 522 
constrained dynamic time-warping method to compare pairs of structures. Structures were considered a 523 
match when the Euclidean distance between the PXRD patterns (normalized by area) was < 10. This 524 
was followed by using the COMPACK51 algorithm for clustering: 1.0 kJ mol-1 and ±0.05 g cm-3 525 
selection windows; a distance tolerance of 40% and a maximum value of the RMSD of 0.4 � for 30 526 
molecules.   527 
 528 
Pore-geometry analysis 529 
Topological analysis of the pore space within a crystal structure was performed using the void analysis 530 
tool zeo++.52 The outputs from this analysis included the pore dimensionality (0D, 1D, 2D or 3D), pore 531 
diameters, surface areas and pore volumes. A probe radius of 1.70 Å was used in all calculations. A total 532 
of 18 pore descriptors were used to describe the porosity space of the predicted crystal structures, with 533 
full details of their definitions given in the Supplementary Methods. These 18 descriptors are simple 534 
extensions to four basic pore descriptors: crystal density, largest pore diameter, total surface area and 535 
total pore volume. First, the total surface area and the total pore volume were decomposed into 536 
accessible and non-accessible contributions. Second, to capture some extent of the heterogeneity of the 537 
pore geometry within a structure, several descriptors were derived based on the surface areas and pore 538 
volumes of individual channels and pockets. We found that this set of descriptors satisfactorily captured 539 
different pore shapes, such as those having multiple channels with different pore widths or having both 540 
channels and pockets.  541 
 542 
Hydrogen-bond and ߨ–ߨ stacking analysis 543 
For each predicted crystal structure, hydrogen bonds were identified with the following limits on 544 
geometry: rH···A< [sum(van der Waals radii53 of H and A)] - 0.1 in Å and ∠D–H···A > 100°, where D 545 
and A are the hydrogen-bond donor and acceptor atoms, respectively. Intermolecular stacking was 546 
quantified as the number of face-to-face ߨ–ߨ stacking between two molecular arms, which was 547 
identified by the distance between the centroids of two neighbouring aromatic rings being less than 4.4 548 
Å and the dihedral angle between the two ring planes being less than 35°. The CSD Python Application 549 
Programming Interface, together with in-house scripts, was used to perform these analyses.  550 
 551 
Visualization of the porosity space and the SOAP space  552 
The Uniform Manifold Approximation and Projection (UMAP) technique was used for dimensionality 553 
reduction for mapping high-dimensional data to 2D representations, while preserving both global and 554 
local topological structures of the data in the high-dimensional space as much as possible. That is, the 555 
points are arranged spatially such that the closer the two points are on the 2D plot, the more similar the 556 
two molecules are, as described by the encoding descriptors. For the porosity spaces (Figure 5a, 557 
Supplementary Figures 11–13), the pairwise distances between crystal structures were computed as the 558 
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Euclidean distances between vectors of the pore descriptors. For the SOAP spaces (Figure 6, 559 
Supplementary Figures 14–15), SOAP descriptors were generated for all atoms in the crystal structure, 560 
using the DScribe package.54 The regularized entropy match (REMatch)42 kernel was used to measure 561 
global similarity between crystal structures from SOAP-encoded local atomic environments.  562 
 563 
Data availability  564 
All the predicted crystal structures and properties are available at 565 
https://doi.org/10.5258/SOTON/D1602. Data for the ESF maps of TH4, as well as data for the 2D 566 
embedded porosity spaces and SOAP spaces of TH2, TH4, TH5 and T2, can be visualized online at 567 
https://www.interactive-esf-maps.app.  568 
 569 
Code availability  570 
Python scripts to create interactive visualization tools, like the ESF Explorer shown in this study, are 571 
available at https://github.com/Yuchees/esf_explorer_templates.55    572 
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