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1. Current methods of pollen sensing are bulky and expensive. 6 

2. An LED and Raspberry Pi are used to reduce the cost of sensing. 7 
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4. Pollen grains images were generated from their scattering patterns. 9 

5. Imaging pollen using a Raspberry Pi, LED and deep learning can be achieved for ~£100. 10 
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Abstract 13 

The production of low-cost, small footprint imaging sensor would be invaluable for airborne global 14 

monitoring of pollen, which could allow for mitigation of hay fever symptoms. We demonstrate the use 15 

of a white light LED (light emitting diode) to illuminate pollen grains and capture their scattering pattern 16 

using a Raspberry Pi camera. The scattering patterns are transformed into 20× microscope magnification 17 

equivalent images using deep learning. We show the ability to produce images of pollen from plant 18 

species previously unseen by the neural network in training. Such a technique could be applied to imaging 19 

airborne particulates that contribute to air pollution, and could be used in the field of environmental 20 

science, health science and agriculture. 21 
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1 Introduction 22 

Pollen allergies, also known as hay fever, are a significant health concern, affecting an estimated 26% of 23 

adults in the UK [1], with prevalence been shown to be increasing in Denmark over the past 20 years [2], 24 

and economic cost being €195.6 patient/year in China [3] These allergies can have a substantial impact 25 

on an individual’s health, especially during the spring and summer months [4]. Whilst only specific pollen 26 

producing plants cause hay fever, the local pollen count can aid in the mitigation of hay fever symptoms, 27 

as it gives an indication of potential levels of overall pollen in the air. However, these counts generally do 28 

not consider pollen of plant species, which can have degrees of allergenicity [5,6]. Therefore, the 29 

development of a real-time sensor that can identify and quantify pollen of different plant species at a 30 

specific location would be extremely beneficial. Whilst the plant species that produce pollen that can lead 31 

to hay fever is still unclear [7], and individuals suffering from hay fever should seek medical advice to 32 

discover more about their allergies, such a device could aid individuals in identifying the specific plant 33 

taxa causing their severe symptoms or even avoid exposure to these pollens. In addition to its health 34 

benefits, monitoring pollen levels can also provide valuable information about the climate [8], insect 35 

migration patterns [9], and crop production [10]. 36 

Currently, the techniques available for real-time sensing of pollen grains are limited in temporal and 37 

spatial resolution. Whilst optical particle counters can detect particles of a certain size in real-time, they 38 

cannot identify the species of particle (i.e., smoke, pollen, cement dust) [11]. Pollen collected using 39 

Burkard traps [12] (kettle-sized traps or larger depending on type) requires subsequent laboratory analysis 40 

to determine the family or species [13].  Some analysis techniques can identify pollen up to plant species 41 

level whereas others do not come further than family or genus. Light microscopy techniques often only 42 

allow identification up to the family or genus level, since many pollen grains have similar morphological 43 

characteristics, making it difficult to distinguish between species within the same family or genus. 44 
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Acetolysis is a technique used to process pollen and prepare it for morphological identification via light 45 

microscopy [14], by removing unwanted substances from the grains, revealing important morphological 46 

features of the grains. Pollen grains can also be stained prior to light microscopy analysis to allow better 47 

contrast with the background, providing greater detail of the exine and ornamentation [15]. FTIR (Fourier 48 

Transform Infrared Spectroscopy) is a method that uses infrared light to observe chemical properties of 49 

pollen grains and can help in distinguishing between different taxa, and even species in some cases [16]. 50 

Another method, DNA Metabarcoding utilises DNA extraction, sequencing, and analysis for plant species 51 

level identification of pollen [17]. 52 

Recently, automated methods for identifying pollen from traps have been developed using light-based 53 

techniques such as optical and laser-based fluorescence imaging [18–21]. However, these devices can be 54 

quite large, and so a sensor capable of imaging a pollen grain with cost-effective and minimal optics, and 55 

with a small footprint (such as a lensless-based Raspberry Pi [22]) would be invaluable for mass 56 

deployment in practice on a national or international scale. A method that uses minimal optics is lensless 57 

imaging, which images via capturing and processing the light scattered from an object (i.e., the image of 58 

its scattering pattern). This scattering pattern image contains information about the object's morphology 59 

and chemical composition [23,24], and can be converted into an image of the sample using methods such 60 

as phase retrieval and ptychography [25–27], or more recently using deep learning neural networks [28–61 

31]. 62 

The capability of airborne imaging of pollen would allow plant pollen family verification, and identification 63 

of the size and shape of pollen (all of which are useful for understanding crop health and the 64 

environment). For example, a study suggests that pollen grain size could potentially be used as a proxy 65 

for long-term climate change [32], particularly in relation to changes in moisture availability. Another 66 

study found that both soil fertility and mycorrhizal infection had significant effects on the male traits of 67 
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the plants, including pollen production and pollen grain size [33], suggesting that changes in the 68 

environment, such as nutrient availability in the soil, could influence the characteristics of pollen.   69 

Whilst deep learning CNNs have been also successful in identifying pollen from scattering patterns 70 

[34,35], these works involve the use of CNNs for identification and not for image generation. The setups 71 

in the papers included the use of expensive imaging cameras (~£500 each) to capture the scattering 72 

patterns, and so a cheaper camera such as a Raspberry Pi camera (~£50) would be more desirable. In 73 

addition, these previous works used lasers for creating scattering patterns in lensless imaging, but a 74 

cheaper light source like an LED (light emitting diode) could enable even lower cost sensing (potentially 75 

100× lower cost for the light source). In general, lasers are used for lensless imaging due to their higher 76 

spatial coherence, which provides diffraction patterns with structure that the deep learning neural 77 

networks can interpret. In this work, we use a white light LED coupled with an aperture (for spatial filtering 78 

of the light), to produce a scattering pattern from the pollen grains onto a Raspberry Pi camera sensor 79 

and subsequently use deep learning to transform that scattering pattern into an image of the pollen grain. 80 

Different from CNNs, we use a conditional generative adversarial network (cGAN), which rather than 81 

reduces an image to a single or vector output, such architecture is a U-net structure such that it reduces 82 

the image, but then increases it again to an image the same size as the input, transforming it in the 83 

process.  The ability to link a scattering pattern from a pollen grain to its microscope image negates the 84 

need to produce microscope images, thus significantly reducing costs and saving time. Critically, the ability 85 

to image a pollen grain can allow for shape, size, and colour of the pollen grains to be determined, in 86 

addition to identification of the species producing the pollen.  87 

2 Materials and Methods 88 

2.1 Sample preparation 89 
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The taxa used in this experiment were pollen that had a variety of shapes and sizes (to allow the neural 90 

network to learn from a diverse dataset) and were available on the university campus or available to 91 

order. Iva xanthiifolia and Populus deltoides pollen grains were procured from Sigma Aldrich. Allium 92 

ursinum, Narcissus pseudonarcissus, Tulipa saxatilis, Ranunculus repens and Taraxacum officinale pollen 93 

grains were collected from the University of Southampton grounds. From this point forward, we shall only 94 

use the genus of the plant for ease of reading. Two substrates (25 mm × 75 mm × 1 mm thick pre-cleaned 95 

soda-lime glass slide by J. Melvin Freed Brand) were used. These glass slides were cleaned using acetone 96 

and lens tissue, and allowed to dry before pollen from each species was sequentially deposited onto them 97 

using a laboratory grade cotton bud (RS.com). The pollen grains were sprinkled over the surface of the 98 

glass slide, covering approximately a 25 mm × 25 mm area, at a density of ~3 pollen per mm2. The pollen 99 

used were dry and did not contain any staining chemicals, nor was acetolysis used. Iva, Populus, Narcissus 100 

and Ranunculus pollen grains were deposited onto the first substrate (for neural network training and 101 

testing), whilst Tulipa, Allium and Taraxacum pollen grains were deposited onto the second substrate (for 102 

neural network testing only).  103 

2.2 Experimental setup 104 

The experimental setup is presented in figure 1a). To image the pollen grains, we used a Nikon ECLIPSE 105 

LV150L with a 20× Nikon objective (NA = 0.4, WD = 13 mm), a 10× ocular lens, a 0.55× TV lens and a colour 106 

camera (Basler acA3088-57uc, 6MP IMX178 sensor, 3088 × 2064 pixels, RGB), giving a 110× total image 107 

magnification. A pollen covered glass slide was attached to motorized XYZ Zaber stages that could 108 

translate the pollen beneath the microscope in a raster scanning motion in X and Y to acquire images, and 109 

could then translate to the Raspberry Pi scattering setup. The step size of the X and Y stages was 0.047 110 

µm, having an accuracy of 15 µm, repeatability of <3 µm. The Raspberry Pi setup illumination/scattering 111 

Z-axis was approximately 85 mm away from the centre of the microscope imaging Z-axis. This combination 112 
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of two adjacent experimental systems allowed the collection of both microscope images of the sample 113 

and the associated scattering patterns, which was key for training the neural network to transform 114 

scattering patterns into microscope images. However, it is important to realise that whilst two systems 115 

were used here, once the neural network is trained, only the low-cost Raspberry Pi sensor system would 116 

be needed for in practice implementation. As demonstrated in previous work, the Raspberry Pi itself could 117 

also run the trained neural network [36]. This means that one can duplicate the Raspberry Pi setup for 118 

capturing scattering patterns, and transform the scattering patterns into microscope images without the 119 

need for an expansive microscope (~£10,000), or even microscope objectives (~£1000) to image the 120 

pollen grains. 121 

The Raspberry Pi sensor setup consisted of a white light LED. The LED was followed by an aperture (<1mm 122 

diameter) placed approximately 2 cm after the end of the LED to spatially filter the light from the LED, 123 

and therefore enhance the fringe visibility in the scattering patterns, hence enhancing the likelihood of a 124 

neural network being able to transform a scattering pattern image correctly into an image of the pollen 125 

grain. Following this, the light was focussed onto a pollen grain using a moulded plastic aspheric lens (6 126 

mm, NA=0.38), and the light scattered from the pollen grain was then captured using an HQ Pi camera 127 

(4056 × 3040 pixels, RGB), which was connected to a Raspberry Pi 4. The Raspberry Pi scattering setup 128 

cost approximately £100. 129 

Data from the Raspberry Pi camera were acquired remotely via an ethernet cable connected to a Dell 130 

Precision 7865 Windows 10 workstation consisting of an Intel(R) Xeon(R) Gold 5222 CPU @ 3.80GHz   3.79 131 

GHz (2 processors) and 3× NVIDIA RTX A4500 (20 GB VRAM, 184 tensor cores each) graphics processing 132 

unit (GPU). The workstation also controlled the Zaber XYZ stages and the microscope’s Basler camera. The 133 

stages and imaging of both the Basler and Pi cameras was automated using Python code. 134 

2.3 Data collection 135 
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The first sample was raster scanned using XYZ stages (Zaber X-LSM050A-E03, X-LSM100A, X-VSR20A-E01) 136 

beneath the objective over a total of approximately 500 mm2. Each raster scanning step was 550 microns 137 

to minimise any overlapping of images and minimise the time of data collection. Individual and 138 

agglomerated pollen grains were located and imaged such that each pollen grain was at the centre of the 139 

camera sensor, after which the images were cropped. The corresponding scattering patterns were 140 

collected for training and testing of the neural network. The images of the scatting patterns were cropped 141 

to 1024 × 1024 pixels then resized to 256 × 256 pixels to match the size of the cropped microscope images. 142 

Subsequently, the pollen grains from the second slide were imaged and scattering patterns were 143 

recorded, purely to test the capability of the neural network to generate images of not just unseen pollen 144 

grains but pollen grains from previously unseen plant species. In total, 1800 images were collected, but 145 

agglomeration of pollen grains that extended beyond the cropped and resized 256 x 256 pixels image size 146 

were discarded. As such, 935 pairs of images (microscope image and scattering pattern) were used for 147 

training and 31 used for testing from the first slide with 100 used for testing from the second slide.  148 

  149 

 150 

Fig. 1. A) Diagram of experimental setup showing the imaging setup consisting of a 20× microscope 151 

objective connected to a microscope, next to the Raspberry Pi-based sensing setup. The pollen covered 152 
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glass microscope slide was translated between setups using motorised XYZ stages. B) Example of a 153 

microscope image (green outline) from the imaging setup and associated scattering pattern (red 154 

outline) captured by the Pi camera from the sensing setup. c) Schematic of transforming scattering 155 

pattern (red outline) using a neural network (yellow box), trained on a Windows workstation, into a 156 

generated image of the pollen grains (blue outline). 157 

A total of 935 pollen images and scattering patterns (divided over 4 different species, Iva, Populus, 158 

Narcissus and Ranunculus) from the first slide were used to train the neural network (see table 1). The 159 

number of plants that Iva and Populus were collected from is unknown as they were purchased from 160 

Sigma Aldrich, but since the bottles are 1 g and 500 mg, respectively, to obtain such a quantity of pollen 161 

would require pollen to be sourced from a large quantity of flowers. Pollen was collected from 4× 162 

Ranunculus, 4× Taraxacum, 3× Tulipa, 3× Allium. However, whilst multiple flowers were collected, due to 163 

the sparsity of such pollen from the plants, the numbers used in training and testing were low. It should 164 

be noted that some pollen grains were fragmented, and blank images were also included in the data, 165 

hence have been assigned the unknown column in table 1. Even though more pollen from Iva were used 166 

in training, and it has been shown that a varied dataset is necessary for overfitting [37], the key part for 167 

accurate image generation is to have enough varied data, such as pollen grains of different orientation, 168 

sizes and agglomerations. The pollen size distribution of the training data was calculated by binarizing the 169 

images and calculating the white pixels that represented the pollen. This showed that pollen grains in the 170 

training set had a distribution with a mean area of 2341.8 pixels² (383.3 microns²) and a standard 171 

deviation of 1757 pixels² (287.6 microns²), indicating significant variability. The distribution is strongly 172 

right-skewed (skewness = 1.95) with heavy tails (kurtosis = 7.63), suggesting the presence of large outliers. 173 

A lognormal distribution with parameters μ = 5.24 and σ = 3.46 provides a good fit to the data, which is 174 

typical for naturally occurring size distributions. Table 1 shows the number of pollen grains from different 175 

species used in training and testing.  176 
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 178 

 179 

Table 1 Number of pollen grains from each plant species used in training and testing the neural network. 180 

  Ranunculus Populus  Narcissus Iva Tulipa Allium Taraxacum Unknown 

Training 91  47 137 650 0 0 0 10 

Testing 5 2 10 13 47 30 23 1 

 181 

2.4 Neural network 182 

Deep learning convolutional neural networks (CNNs) are designed to mimic the visual cortex and use 183 

convolutional layers to process features in images. They have proven to be very successful at identifying 184 

objects in images, and have been used in the automatic identification of pollen in images [37,38]. Unlike 185 

CNNs, we utilise a conditional generative adversarial network (cGAN) with a U-net architecture. Instead 186 

of reducing an image to a single value or vector output, this structure reduces the image and then 187 

reconstructs it to the produce another image that is the same size as the input, transforming it in the 188 

process. We used a cGAN architecture known as Pix2pix [39], using a workstation running Windows 10 189 

and equipped with an AMD Ryzen Threadripper PRO 5975WX and two NVIDIA A6000 GPUs (48 GB VRAM). 190 

The cGAN framework described and illustrated in more detail in [40]  had a generator network with a 7-191 

layer architecture in order to enable an image resolution of 256 × 256 pixels and had a learning rate of 192 

0.0002 and drop-out of 0.5. At the start of training, the neuron weightings for the generator were 193 

randomly initialised, meaning they encoded no information about the training data (experimental 194 

images).  195 
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The neural network was trained for 160 epochs until the training errors reached a minimum, which took 196 

nearly 3 hours. A total of 935 pollen images and scattering patterns from the first slide were used to train 197 

the neural network.  The neural network was then applied to 31 scattering patterns from the first slide 198 

not used in trainings. The neural network outputted generated images of pollen grains, and were 199 

compared to the experimentally obtained pollen images. To further test the capability of the neural 200 

network, we used 100 scattering patterns collected from pollen grains on the second slide, since no pollen 201 

grains from these plant species were used in training, and therefore structures of the pollen grains would 202 

not have been seen by the neural network in training. This illustrates that the neural network has not 203 

overfitted to the specific scattering patterns it was trained on but has developed a generalized 204 

understanding that features in the scattering patterns correspond to features in the images of pollen 205 

grains, hence enabling it to accurately recognise and relate features across different examples. Therefore, 206 

the successful generation of images of previously unseen pollen species demonstrates the robustness of 207 

the network. 208 

3 Results and discussion 209 

Figure 2a displays the 10 results of testing the neural network on previously unseen pollen (Narcissus, 210 

Populus, Iva and Ranunculus,), why Fig. 2b shows the results of testing the neural network on 10 pollen 211 

grains from previously unseen plant species (Tulipa, Allium and Taraxacum). The first row shows the 212 

experimental scattering pattern, the second row shows the images generated by the neural network, the 213 

third row shows the experimental image, and the fourth row shows the difference between rows two and 214 

three (RGB pixel intensity in generated image minus RGB pixel intensity in experimental image). Since the 215 

image has been inverted for ease of viewing, the darker pixels (low intensity pixel value) indicate regions 216 

of greater error. As seen in the figure, the quantity of the pollen grains in each generated image is correct, 217 

as in the case for Iva there being 3 in one instance, and Populus and Allium being two, and one pollen for 218 
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all the others. The orientation and size of pollen grains in the generated images are very similar, as can be 219 

seen in the difference images in the fourth row. Whilst the size and orientation are generally correct, the 220 

surface texture is generally not. This is perhaps due to the higher spatial frequency information contained 221 

in the scattering pattern not being distinguishable (and thus extractable) due to low spatial coherence of 222 

the light source. 223 

Table 2 displays the Structural Similarity Index Measure (1 being exactly the same, 0 indicating no 224 

similarity and -1 being completely anti-correlated), Peak Signal-to-Noise Ratio (PSNR) (higher the value 225 

the more accurate the generated image), Mean Squared Error (MSE) (lower value the greater the 226 

similarity) of the generated images compared with the experimental images and Perceptual Image Quality 227 

Evaluator (PIQE), which provides a no-reference metric based on perceptual image quality (a smaller score 228 

indicates better perceptual quality.  229 

The SSIM assesses the visual impact of image contrast, luminance and structure, and was determined 230 

using the following formula, 231 

𝑆𝑆𝐼𝑀(𝐸, 𝐺) =
(2𝜇𝐸𝜇𝐺 + 𝐶1)(2𝜎𝐸𝐺 + 𝐶2)

(𝜇𝐸
2 + 𝜇𝐺

2 + 𝐶1)(𝜎𝐸
2 + 𝜎𝐺

2 + 𝐶2)
 232 

where μE is the mean of E, μG is the mean of G, σE
2 is the variance of E, σG

2 is the variance of G, σEG is the 233 

covariance of E and G, C1 = (0.01L)2 and C2 = (0.03L)2, where L is the dynamic range of the pixel values. 234 

[41]The PSNR equation used was,  235 

𝑃𝑆𝑁𝑅 = 10 log10(
𝑚𝑎𝑥2(𝐸, 𝐺)

1
𝑁 ×𝑀

∑ (𝐸(𝑚, 𝑛) − 𝐸(𝑚, 𝑛))2𝑀,𝑁

) 236 
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where N and M are the total number of rows and columns of pixels in the images, max(E,G) is the 237 

maximum intensity value of the experimental image E and the generated image G, and m and n are the 238 

pixels in each row and column. 239 

The mean square error (MSE) was determined by taking the average of the squared intensity differences 240 

between each pixel in the generated image (with intensity values in the 0-255 range) and the 241 

corresponding pixel in the experimental image (also with intensity values in the 0-255 range),  242 

𝑀𝑆𝐸 =
1

𝑁
∑(𝐺𝑖 − 𝐸𝑖)

2

𝑁

𝑖=1

 243 

where N is the number of data points (pixels), Gi is the generated pixel value and Ei is the actual pixel 244 

value, Eimax is the maximum pixel value and Eimin is the minimum pixel value of the experimental image.  245 

The PIQE does not have a simple, closed-form mathematical formula like the MSE, PSNR and SSIM used 246 

for full-reference methods, but instead works by analysing localized distortion such as blocking artifacts, 247 

blur and noise. We use MATLAB’s in built “piqe” found in the “Image Processing Toolbox”[41].The average 248 

SSIM for all 131 test data was 0.88 for all images, whilst the PSNR are all above 27.1 and the average MSE 249 

is 835. Any artifact to the edge of the images might not be accurately reconstructed as limited information 250 

associated with this defect might not have been contained in the scattering pattern due to the size of the 251 

LED beam. It is also evident that the colour of the generated images is generally similar to that of the 252 

experimental microscope images, i.e., either yellow or grey. The SSIM value is high likely due to the large 253 

number of white pixels in the background of t images. However, it is still important to generate this 254 

background correctly. The average PIQE value was 28.96 for all images, indicating a good image quality. 255 

More specifically in Table 2, Narcissus, Tulipa and Taraxacum images had good quality, while Allium and 256 

Populus images had fair image quality.  257 
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The ability to image pollen could allow more precise identification and pollen morphological analysis, and 258 

such a technique could extend to other bioaerosols or airborne particulates. Since testing data was 259 

acquired remotely via an ethernet cable, this technique could be extended to using wireless technology, 260 

which the Raspberry Pi already has, and could be extended for use in real-time with the use of a flow 261 

chamber [42] or an impactor on the surface of a glass slide [43]. The low cost of the proof-of-principle 262 

imaging sensor (~£100) could be taken up by industry where costs could be reduced further. 263 

 264 

Fig. 2. Capability of the neural network on previously unseen pollen (Narcissus Populus, Iva and 265 

Ranunculus), and on previously unseen pollen from different plant species (Tulipa, Alliium and 266 
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Taraxacum). The first row shows the scattering pattern, the second row shows the generated image, the 267 

third shows the experimental image, and the fourth shows the difference, where the darker pixels 268 

indicate regions of greater error.  269 

Table 2 SSIM, PSNR and MSE for the generated and experimental pollen images shown in Fig. 2 (the 270 

number of pollen grain images for each species is indicate in brackets). 271 

 Ranunculus (3) Populus (1) Narcissus (3) Iva (3) Tulipa (4)  Allium (3) Taraxacum (3) 

SSIM 0.94 0.79 0.89 0.93 0.85 0.92 0.91 

PSNR 23.8 12.9 22.4 24.2 18.2 23.0 21.1 

MSE 274.5 3358.0 447.0 247.6 1222.5 512.8 517.9 

PIQE 33.6 41.5 21.0 35.2 20.7 41.2 20.8 

 272 

4 Conclusion 273 

Using a white LED, aperture and a Raspberry Pi camera, we demonstrated the possibility of using deep 274 

learning to transform images of the LED light scattered from a pollen grain to that of an image of a pollen 275 

grain captured using a 20× magnification objective. We were able to show the reconstruction of pollen 276 

grain shape and orientation of pollen from plant species used in training such as Populus and Ranunculus, 277 

and of pollen from plant species exempt from training, such as Tulipa and Allium. The low-cost sensing 278 

technique demonstrated here could be applied to airborne pollen grains and pave the way to cheap 279 

imaging sensors for pollen and airborne particulates. 280 
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