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Imaging pollen using a Raspberry Pi and LED with deep learning
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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Current methods of pollen sensing are 
bulky and expensive.

• An LED and Raspberry Pi are used to 
reduce the cost of sensing.

• Lensless imaging and deep learning are 
used to image pollen grains.

• Pollen grains images were generated 
from their scattering patterns.

• Imaging pollen using a Raspberry Pi, 
LED and deep learning can be achieved 
for ~£100.
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A B S T R A C T

The production of low-cost, small footprint imaging sensor would be invaluable for airborne global monitoring of 
pollen, which could allow for mitigation of hay fever symptoms. We demonstrate the use of a white light LED 
(light emitting diode) to illuminate pollen grains and capture their scattering pattern using a Raspberry Pi 
camera. The scattering patterns are transformed into 20× microscope magnification equivalent images using 
deep learning. We show the ability to produce images of pollen from plant species previously unseen by the 
neural network in training. Such a technique could be applied to imaging airborne particulates that contribute to 
air pollution, and could be used in the field of environmental science, health science and agriculture.

1. Introduction

Pollen allergies, also known as hay fever, are a significant health 
concern, affecting an estimated 26 % of adults in the United Kingdom 
(UK) (Scadding et al., 2017), with prevalence been shown to be 
increasing in Denmark over the past 20 years (Leth-Møller et al., 2020), 
and economic cost being €195.6 patient/year in China (Li et al., 2022). 
These allergies can have a substantial impact on an individual's health, 

especially during the spring and summer months (Bauchau and Durham, 
2004). Whilst only specific pollen producing plants cause hay fever, the 
local pollen count can aid in the mitigation of hay fever symptoms, as it 
gives an indication of potential levels of overall pollen in the air. 
However, these counts generally do not consider pollen of plant species, 
which can have degrees of allergenicity (Osborne et al., 2017; Caillaud 
et al., 2014). Therefore, the development of a real-time sensor that can 
identify and quantify pollen of different plant species at a specific 
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location would be extremely beneficial. Although the plant species that 
produce pollen that can lead to hay fever is still unclear (Sousa-Silva 
et al., 2021), and individuals suffering from hay fever should seek 
medical advice to discover more about their allergies, such a device 
could aid individuals in identifying the specific plant taxa causing their 
severe symptoms or even avoid exposure to these pollens. In addition to 
its health benefits, monitoring pollen levels can also provide valuable 
information about the climate (Newnham et al., 2013), insect migration 
patterns (Suchan et al., 2019), and crop production (Fernandez-Men-
saque et al., 1998).

Currently, the techniques available for real-time sensing of pollen 
grains are limited in temporal and spatial resolution. Whilst optical 
particle counters can detect particles of a certain size in real-time, they 
cannot identify the species of particle (i.e., smoke, pollen, cement dust) 
(Grant-Jacob and Mills, 2022). Pollen collected using Burkard traps 
(Levetin et al., 2000) (kettle-sized traps or larger depending on type) 
requires subsequent laboratory analysis to determine the family or 
species (Pashley et al., 2015). Some analysis techniques can identify 
pollen up to plant species level whereas others do not go further than 
family or genus. Light microscopy techniques often only allow identifi-
cation up to the family or genus level, since many pollen grains have 
similar morphological characteristics, making it difficult to distinguish 
between species within the same family or genus. Acetolysis is a tech-
nique used to process pollen and prepare it for morphological identifi-
cation via light microscopy (Warcup and Roberton, 2023), by removing 
unwanted substances from the grains, revealing important morpholog-
ical features of the grains. Pollen grains can also be stained prior to light 
microscopy analysis to allow better contrast with the background, 
providing greater detail of the exine and ornamentation (Alexander, 
1980). FTIR (Fourier Transform Infrared Spectroscopy) is a method that 
uses infrared light to observe chemical properties of pollen grains and 
can help in distinguishing between different taxa, and even species in 
some cases (Zimmermann and Kohler, 2014). Another method, DNA 
(deoxyribonucleic acid) Metabarcoding utilises DNA extraction, 
sequencing, and analysis for plant species level identification of pollen 
(Sickel et al., 2015).

Recently, automated methods for identifying pollen from traps have 
been developed using light-based techniques such as optical and laser- 
based fluorescence imaging (Kawashima et al., 2017; Schiele et al., 
2019; Crouzy et al., 2016; Mitsumoto et al., 2009). However, these de-
vices can be quite large, and so a sensor capable of imaging a pollen 
grain with cost-effective and minimal optics, and with a small footprint 
(such as a lensless-based Raspberry Pi (Grant-Jacob et al., 2019a)) 
would be invaluable for mass deployment in practice on a national or 
international scale. A method that uses minimal optics is lensless im-
aging, which images via capturing and processing the light scattered 
from an object (i.e., the image of its scattering pattern). This scattering 
pattern image contains information about the object's morphology and 
chemical composition (Bohren and Huffman, 2008; Wiscombe, 1980), 
and can be converted into an image of the sample using methods such as 
phase retrieval and ptychography (Maiden et al., 2011; Fienup, 1982; 
Pfeiffer et al., 2006), or more recently using deep learning neural net-
works (Grant-Jacob et al., 2020; Nguyen et al., 2018; Goy et al., 2018; 
Kemp, 2018).

The capability of airborne imaging of pollen would allow plant 
pollen family verification, and identification of the size and shape of 
pollen (all of which are useful for understanding crop health and the 
environment). For example, a study suggests that pollen grain size could 
potentially be used as a proxy for long-term climate change (Griener and 
Warny, 2015), particularly in relation to changes in moisture avail-
ability. Another study found that both soil fertility and mycorrhizal 
infection had significant effects on the male traits of the plants, 
including pollen production and pollen grain size (Lau et al., 1995), 
suggesting that changes in the environment, such as nutrient availability 
in the soil, could influence the characteristics of pollen.

Whilst deep learning convolutional neural networks (CNNs) have 

been successful in identifying pollen from scattering patterns (Grant- 
Jacob et al., 2018; Grant-Jacob et al., 2019b), these works involve the 
use of CNNs for identification and not for image generation. The setups 
in the papers included the use of expensive imaging cameras (~£500 
each) to capture the scattering patterns, and so a cheaper camera such as 
a Raspberry Pi camera (~£50) would be more desirable. In addition, 
these previous works used lasers for creating scattering patterns in 
lensless imaging, but a cheaper light source like an LED (light emitting 
diode) could enable even lower cost sensing (potentially 100× lower 
cost for the light source). In general, lasers are used for lensless imaging 
due to their higher spatial coherence, which provides diffraction pat-
terns with structure that the deep learning neural networks can inter-
pret. In this work, we use a white light LED coupled with an aperture (for 
spatial filtering of the light), to produce a scattering pattern from the 
pollen grains onto a Raspberry Pi camera sensor and subsequently use 
deep learning to transform that scattering pattern into an image of the 
pollen grain. Different from CNNs, we use a conditional generative 
adversarial network (cGAN), which rather than reduces an image to a 
single or vector output, such architecture is a U-Net structure such that it 
reduces the image, but then increases it again to an image the same size 
as the input, transforming it in the process. The ability to link a scat-
tering pattern from a pollen grain to its microscope image negates the 
need to produce microscope images, thus significantly reducing costs 
and saving time. Critically, the ability to image a pollen grain can allow 
for shape, size, and colour of the pollen grains to be determined, in 
addition to identification of the species producing the pollen.

2. Materials and methods

2.1. Sample preparation

The taxa used in this experiment were pollen that had a variety of 
shapes and sizes (to allow the neural network to learn from a diverse 
dataset) and were available on the University of Southampton campus or 
available to order. Iva xanthiifolia and Populus deltoides pollen grains 
were procured from Sigma Aldrich. Allium ursinum, Narcissus pseudo-
narcissus, Tulipa saxatilis, Ranunculus repens and Taraxacum officinale 
pollen grains were collected from the campus. From this point forward, 
we shall only use the genus of the plant for ease of reading. Two sub-
strates (25 mm × 75 mm × 1 mm thick pre-cleaned soda-lime glass slide 
by J. Melvin Freed Brand) were used. These glass slides were cleaned 
using acetone and lens tissue, and allowed to dry before pollen from 
each species was sequentially deposited onto them using a laboratory 
grade cotton bud (RS.com). The pollen grains were sprinkled over the 
surface of the glass slide, covering approximately a 25 mm × 25 mm 
area, at a density of ~3 pollen per mm2. The pollen used were dry and 
did not contain any staining chemicals, nor was acetolysis used. Iva, 
Populus, Narcissus and Ranunculus pollen grains were deposited onto the 
first substrate (for neural network training and testing), whilst Tulipa, 
Allium and Taraxacum pollen grains were deposited onto the second 
substrate (for neural network testing only).

2.2. Experimental setup

The experimental setup is presented in Fig. 1a). To image the pollen 
grains, we used a Nikon ECLIPSE LV150L with a 20× Nikon objective 
(NA = 0.4, WD = 13 mm), a 10× ocular lens, a 0.55× TV lens and a 
colour camera (Basler acA3088-57uc, 6MP IMX178 sensor, 3088 × 2064 
pixels, RGB), giving a 110× total image magnification. A pollen covered 
glass slide was attached to motorized XYZ Zaber stages (Zaber X- 
LSM050A-E03, X-LSM100A, X-VSR20A-E01) that could translate the 
pollen beneath the microscope in a raster scanning motion in X and Y to 
acquire images, and could then translate to the Raspberry Pi scattering 
setup. The step size of the X and Y stages was 0.047 μm, having an ac-
curacy of 15 μm, repeatability of <3 μm. The Raspberry Pi setup illu-
mination/scattering Z-axis was approximately 85 mm away from the 
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centre of the microscope imaging Z-axis. This combination of two 
adjacent experimental systems allowed the collection of both micro-
scope images of the sample and the associated scattering patterns, which 
was key for training the neural network to transform scattering patterns 
into microscope images. However, it is important to realize that whilst 
two systems were used here, once the neural network is trained, only the 
low-cost Raspberry Pi sensor system would be needed for in practice 
implementation. As demonstrated in previous work, the Raspberry Pi 
itself could also run the trained neural network (Grant-Jacob et al., 
2019a). This means that one can duplicate the Raspberry Pi setup for 
capturing scattering patterns, and transform the scattering patterns into 
microscope images without the need for an expansive microscope (~ 
£10,000), or even microscope objectives (~£1000) to image the pollen 
grains.

The Raspberry Pi sensor setup consisted of a white light LED. The 
LED was followed by an aperture (<1 mm diameter) placed approxi-
mately 2 cm after the end of the LED to spatially filter the light from the 
LED, and therefore enhance the fringe visibility in the scattering pat-
terns, hence enhancing the likelihood of a neural network being able to 
transform a scattering pattern image correctly into an image of the 
pollen grain. Following this, the light was focused onto a pollen grain 
using a moulded plastic aspheric lens (6 mm, NA = 0.38), and the light 
scattered from the pollen grain was then captured using an HQ Pi 
camera (4056 × 3040 pixels, RGB), which was connected to a Raspberry 
Pi 4. The Raspberry Pi scattering setup cost approximately £100.

Data from the Raspberry Pi camera were acquired remotely via an 
ethernet cable connected to a Dell Precision 7865 Windows 10 work-
station consisting of an Intel(R) Xeon(R) Gold 5222 CPU @ 3.80GHz 
3.79 GHz (2 processors) and 3× NVIDIA RTX A4500 (20 GB VRAM, 184 
tensor cores each) graphics processing unit (GPU). The workstation also 
controlled the Zaber XYZ stages and the microscope's Basler camera. The 
stages and imaging of both the Basler and Pi cameras was automated 
using Python code.

2.3. Data collection

The first sample was raster scanned using the XYZ stages beneath the 
objective over a total of approximately 500 mm2. Each raster scanning 
step was 550 μm to minimise any overlapping of images and minimise 
the time of data collection. Individual and agglomerated pollen grains 
were located and imaged such that each pollen grain was at the centre of 
the camera sensor, after which the images were cropped. The corre-
sponding scattering patterns were collected for training and testing of 
the neural network. The images of the scatting patterns were cropped to 
1024 × 1024 pixels then resized to 256 × 256 pixels to match the size of 
the cropped microscope images. Subsequently, the pollen grains from 
the second slide were imaged and scattering patterns were recorded, 
purely to test the capability of the neural network to generate images of 
not just unseen pollen grains but pollen grains from previously unseen 
plant species. In total, 1800 images were collected, but agglomeration of 
pollen grains that extended beyond the cropped and resized 256 × 256 
pixels image size were discarded. As such, 935 pairs of images (micro-
scope image and scattering pattern) were used for training and 31 used 
for testing from the first slide with 100 used for testing from the second 
slide.

A total of 935 pollen images and scattering patterns (divided over 4 
different species, Iva, Populus, Narcissus and Ranunculus) from the first 
slide were used to train the neural network (see Table 1). The number of 
plants that Iva and Populus were collected from is unknown as they were 
purchased from Sigma Aldrich, but since the bottles are 1 g and 500 mg, 
respectively, to obtain such a quantity of pollen would require pollen to 
be sourced from a large quantity of flowers. Pollen was collected from 
4× Ranunculus, 4× Taraxacum, 3× Tulipa, 3× Allium. However, whilst 
multiple flowers were collected, due to the sparsity of such pollen from 
the plants, the numbers used in training and testing were low. It should 
be noted that some pollen grains were fragmented, and blank images 
were also included in the data, hence have been assigned the unknown 
column in Table 1. Even though more pollen from Iva were used in 
training, and it has been shown that a varied dataset is necessary for 
overfitting (Li et al., 2023), the key part for accurate image generation is 

Fig. 1. A) Diagram of experimental setup showing the imaging setup consisting of a 20× microscope objective connected to a microscope, next to the Raspberry Pi- 
based sensing setup. The pollen covered glass microscope slide was translated between setups using motorized XYZ stages. B) Example of a microscope image (green 
outline) from the imaging setup and associated scattering pattern (red outline) captured by the Pi camera from the sensing setup. c) Schematic of transforming 
scattering pattern (red outline) using a neural network (yellow box), trained on a Windows workstation, into a generated image of the pollen grains (blue outline).
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to have enough varied data, such as pollen grains of different orienta-
tion, sizes and agglomerations. The pollen size distribution of the 
training data was calculated by binarizing the images and calculating 
the white pixels that represented the pollen. This showed that pollen 
grains in the training set had a distribution with a mean area of 2341.8 
pixels2 (383.3 μm2) and a standard deviation of 1757 pixels2 (287.6 
μm2), indicating significant variability. The distribution is strongly 
right-skewed (skewness = 1.95) with heavy tails (kurtosis = 7.63), 
suggesting the presence of large outliers. A lognormal distribution with 
parameters μ = 5.24 and σ = 3.46 provides a good fit to the data, which 
is typical for naturally occurring size distributions. Table 1 shows the 

number of pollen grains from different species used in training and 
testing.

2.4. Neural network

Deep learning CNNs are designed to mimic the visual cortex and use 
convolutional layers to process features in images. They have proven to 
be very successful at identifying objects in images, and have been used in 
the automatic identification of pollen in images (Li et al., 2023; Polling 
et al., 2021). Unlike CNNs, we utilise a cGAN with a U-Net architecture 
that is designed to transform one image to another. We used a cGAN 

Table 1 
Number of pollen grains from each plant species used in training and testing the neural network.

Ranunculus Populus Narcissus Iva Tulipa Allium Taraxacum Unknown

Training 91 47 137 650 0 0 0 10
Testing 5 2 10 13 47 30 23 1

Fig. 2. Capability of the neural network on previously unseen pollen (Narcissus Populus, Iva and Ranunculus), and on previously unseen pollen from different plant 
species (Tulipa, Alliium and Taraxacum). The first row shows the scattering pattern, the second row shows the generated image, the third shows the experimental 
image, and the fourth shows the difference, where the darker pixels indicate regions of greater error.

B. Mills et al.                                                                                                                                                                                                                                    Science of the Total Environment 955 (2024) 177084 

4 



architecture known as Pix2pix (Isola et al., 2017), using a workstation 
running Windows 10 and equipped with an AMD Ryzen Threadripper 
PRO 5975WX and two NVIDIA A6000 GPUs (48 GB VRAM each). The 
cGAN framework described and illustrated in more detail in (Grant- 
Jacob et al., 2021) had a generator network with a 7-layer architecture 
in order to enable an image resolution of 256 × 256 pixels and had a 
learning rate of 0.0002 and drop-out of 0.5. At the start of training, the 
neuron weightings for the generator were randomly, meaning they 
encoded no information about the training data (experimental images).

The neural network was trained for 160 epochs until the training 
errors reached a minimum, which took nearly 3 h. A total of 935 pollen 
images and scattering patterns from the first slide were used to train the 
neural network. The neural network was then applied to 31 scattering 
patterns from the first slide not used in training. The neural network 
outputted generated images of pollen grains, and were compared to the 
experimentally obtained pollen images. To further test the capability of 
the neural network, we used 100 scattering patterns collected from 
pollen grains on the second slide, since no pollen grains from these plant 
species were used in training, and therefore structures of the pollen 
grains would not have been seen by the neural network in training. This 
illustrates that the neural network has not overfitted to the specific 
scattering patterns it was trained on but has developed a generalized 
understanding that features in the scattering patterns correspond to 
features in the images of pollen grains, hence enabling it to accurately 
recognise and relate features across different examples. Therefore, the 
successful generation of images of previously unseen pollen species 
demonstrates the robustness of the network.

3. Results and discussion

Fig. 2a displays the 10 results of testing the neural network on pre-
viously unseen pollen (Narcissus, Populus, Iva and Ranunculus), whilst 
Fig. 2b shows the results of testing the neural network on 10 pollen 
grains from previously unseen plant species (Tulipa, Allium and Tarax-
acum). The first row shows the experimental scattering pattern, the 
second row shows the images generated by the neural network, the third 
row shows the experimental image, and the fourth row shows the dif-
ference between rows two and three (RGB pixel intensity in generated 
image minus RGB pixel intensity in experimental image). Since the 
image has been inverted for ease of viewing, the darker pixels (low in-
tensity pixel value) indicate regions of greater error. As seen in the 
figure, the quantity of the pollen grains in each generated image is 
correct, as in the case for Iva there being 3 in one instance, and Populus 
and Allium being two, and one pollen for all the others. The orientation 
and size of pollen grains in the generated images are very similar, as can 
be seen in the difference images in the fourth row. Whilst the size and 
orientation are generally correct, the surface texture is generally not. 
This is perhaps due to the higher spatial frequency information con-
tained in the scattering pattern not being distinguishable (and thus 
extractable) due to low spatial coherence of the light source.

Table 2 displays the Structural Similarity Index Measure (1 being 
exactly the same, 0 indicating no similarity and 1 being completely anti- 
correlated), Peak Signal-to-Noise Ratio (PSNR) (higher the value the 
more accurate the generated image), Mean Squared Error (MSE) (lower 
value the greater the similarity) of the generated images compared with 
the experimental images and Perceptual Image Quality Evaluator 
(PIQE), which provides a no-reference metric based on perceptual image 

quality (a smaller score indicates better perceptual quality).
The SSIM assesses the visual impact of image contrast, luminance 

and structure, and was determined using the following formula, 

SSIM(E,G) =
(2μEμG + C1)(2σEG + C2)

(
μ2

E + μ2
G + C1

)(
σ2

E + σ2
G + C2

)

where μE is the mean of E, μG is the mean of G, σE
2 is the variance of E, σG

2 

is the variance of G, σEG is the covariance of E and G, C1 = (0.01 L)2 and 
C2 = (0.03 L)2, where L is the dynamic range of the pixel values.

The PSNR equation used was, 

PSNR = 10log10

⎛

⎜
⎜
⎜
⎝

max2(E,G)
1

N×M
∑

M,N
(E(m, n) − E(m, n) )2

⎞

⎟
⎟
⎟
⎠

where N and M are the total number of rows and columns of pixels in the 
images, max(E,G) is the maximum intensity value of the experimental 
image E and the generated image G, and m and n are the pixels in each 
row and column.

The mean square error (MSE) was determined by taking the average 
of the squared intensity differences between each pixel in the generated 
image (with intensity values in the 0–255 range) and the corresponding 
pixel in the experimental image (also with intensity values in the 0–255 
range), 

MSE =
1
N
∑N

i=1
(Gi − Ei)

2 

where N is the number of data points (pixels), Gi is the generated pixel 
value and Ei is the actual pixel value, Eimax is the maximum pixel value 
and Eimin is the minimum pixel value of the experimental image.

The PIQE does not have a simple, closed-form mathematical formula 
like the MSE, PSNR and SSIM used for full-reference methods, but 
instead works by analysing localized distortion such as blocking arti-
facts, blur and noise. We use MATLAB's in built “piqe” found in the 
“Image Processing Toolbox” (Venkatanath et al., 2015). The average 
SSIM for all 131 test data was 0.88, whilst the average PSNR was 21.4 
and the average MSE was 835. Any artifact to the edge of the images 
might not be accurately reconstructed as limited information associated 
with this defect might not have been contained in the scattering pattern 
due to the size of the LED beam. It is also evident that the colour of the 
generated images is generally similar to that of the experimental mi-
croscope images, i.e., either yellow or grey. The SSIM value is high likely 
due to the large number of white pixels in the background of the images. 
However, it is still important to generate this background correctly. The 
average PIQE value was 35.2 for all images, indicating good image 
quality. More specifically in Table 2, Narcissus, Populus, Tulipa and 
Taraxacum images had good quality, whilst Allium images had fair image 
quality on average.

The ability to image pollen could allow more precise identification 
and pollen morphological analysis, and such a technique could extend to 
other bioaerosols or airborne particulates. Since testing data was ac-
quired remotely via an ethernet cable, this technique could be extended 
to using wireless technology, which the Raspberry Pi already has, and 
could be extended for use in real-time with the use of a flow chamber 
(Wang and Muth, 2017) or an impactor on the surface of a glass slide 
(Luo et al., 2022). The low cost of the proof-of-principle imaging sensor 

Table 2 
SSIM, PSNR and MSE for the generated and experimental pollen images shown in Fig. 2 (the number of pollen grain images for each species is indicate in brackets).

Ranunculus (3) Populus (1) Narcissus (3) Iva (3) Tulipa (4) Allium (3) Taraxacum (3)

SSIM 0.94 0.79 0.89 0.93 0.85 0.92 0.91
PSNR 23.8 12.9 22.4 24.2 18.2 23.0 21.1
MSE 274.5 3358.0 447.0 247.6 1222.5 512.8 517.9
PIQE 33.6 17.7 21.0 35.2 26.7 41.2 20.8
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(~£100) could be taken up by industry where costs could be reduced 
further.

4. Conclusion

Using a white LED, aperture and a Raspberry Pi camera, we 
demonstrated the possibility of using deep learning to transform images 
of the LED light scattered from a pollen grain to that of an image of a 
pollen grain captured using a 20× magnification objective. We were 
able to show the reconstruction of pollen grain shape and orientation of 
pollen from plant species used in training such as Populus and Ranun-
culus, and of pollen from plant species exempt from training, such as 
Tulipa and Allium. The low-cost sensing technique demonstrated here 
could be applied to airborne pollen grains and pave the way to cheap 
imaging sensors for pollen and airborne particulates.
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