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A B S T R A C T

Regio- and stereo-selective synthetic routes to 2-deoxy-2-fluoro-D-mannose building blocks are often experimentally challenging when using Selectfluor with the 
corresponding glycal. We targeted a late-stage method to introduce fluorine in a stereospecific manner using inversion via a triflate. Accordingly, synthesis of a 
conventionally protected 2-deoxy-2-fluoro-D-mannose β-thioglycoside donor, directly applicable to oligosaccharide synthesis, was attempted using C2-triflate 
inversion of the corresponding D-glucoside with TBAF. Unexpectedly, an anomeric pyridinium salt was isolated when attempting to form the C2-triflate using 
Tf2O in pyridine. Indicatively, this proceeds via a 1 → 2 S-migration delivering a 1,2-trans product with α-D-manno configuration and the anomeric pyridinium in a 
pseudo-equatorial position. The structure of this unexpected intermediate was confirmed in the solid-state using X-ray crystallography. Omission of the pyridine 
solvent led to dimer formation. Switching the aglycone to an O-para-methoxyphenyl enabled smooth C2 inversion to the desired 2-deoxy-2-fluoro D-mannose system, 
suitably equipped for further anomeric manipulation.

1. Introduction

Fluorinated carbohydrates have proven highly valuable tools for the 
study of carbohydrate processing enzymes [1]. The large stereo-
electronic changes induced in such molecules through the electronega-
tivity of fluorine and the utility of 19F as an NMR reporter have 
facilitated their widespread development as probes and inhibitors [2–8], 
and for manipulating glycopolymer properties [9–13]. Fluorinated 
carbohydrates are not naturally occurring and various approaches to 
introduce the halogen into requisite building blocks have therefore been 
developed [14–16]. As part of a wider program targeting the synthesis of 
mimetic D-mannose and D-mannuronate containing systems [17–22], 
including fluorinated derivatives, we required synthetic access to an 
appropriately protected 2-deoxy-2-fluoro-D-manno glycosyl donor. 
Methods for the synthesis of 2-deoxy-2-fluoro-D-mannose have been 
developed using a variety of approaches [23,24], including early 
methods using F2 and XeF2 as fluorine sources [25,26]. The most 
widespread method involves the reaction of an appropriately protected 
D-glucal with an electrophilic fluorinating agent (commonly Select-
fluor®), to afford separable hemi-acetal mixtures of 2-deoxy-2-fluor-
o-D-mannose and the C2-epimer 2-deoxy-2-fluoro-D-glucose [27–30] 
(Scheme 1a). The efficiency of this approach, even at the early stage of a 

target synthesis, is not ideal, with the procedure often taking several 
days and being further complicated by practical difficulties encountered 
when separating C2 epimeric hemiacetal mixtures by chromatography, 
frequently necessitating bringing such compound mixtures through 
further transformations until separation becomes feasible.

The use of a nucleophilic fluoride source displacing a triflate in an 
SN2 reaction has been adapted for the synthesis of many fluorinated 
carbohydrates, however the use of this approach for the synthesis of 2- 
deoxy-2-fluoro-D-mannose has been limited to anomeric methyl glyco-
sides [31]. This restricts the immediate tractability of such compounds 
for the synthesis of glycan targets as it often requires harsh conditions to 
hydrolyse the O-glycoside and access malleable donors. In this work we 
aimed to develop the synthesis of a tractable 2-deoxy-2-fluor-
o-D-mannose building block using the triflate inversion approach 
(Scheme 1b), with the wider aim of providing glycosyl donors for 
oligosaccharide synthesis. We have developed a similar approach for the 
synthesis of a 4-SAc modified D-glucose [32].

2. Results and discussion

We initiated our synthesis to install fluorine at C2 of D-mannose as 
outlined in Scheme 2. Upon consulting the literature, we were unable to 
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find examples of a direct D-glucose to D-mannose inversion using DAST, 
although examples for D-mannose to D-glucose are known, alongside 
other pyranoses [33–35]. Indeed, Crich and colleagues noted that for the 
synthesis of the α-thioglycoside form of target compound 6, DAST 
treatment of the corresponding glucoside failed, producing mixtures of 
furanoses and elimination compounds [36]. Their material was ulti-
mately accessed via the aforementioned glycal chemistry, as compound 
6 has been [23]. We envisaged using a two-step inversion of the corre-
sponding glucose thioglycoside via a C2 triflate, completing nucleophilic 
displacement with appropriate fluoride source (e.g., TBAF) to effect a 
stereocontrolled inversion (see Scheme 1b).

Beginning with commercial glucose penta-O-acetate 8, we installed 
an anomeric β-thioglycoside and 4,6-O-benzylidine acetal using stan-
dard transformations, affording C2,C3-diol 9 in 48 % yield over three 
steps (Scheme 2). A C3 regioselective O-benzylation was completed next 
using tin acetal chemistry [37], affording the desired C2-alcohol 4 in 77 
% yield. Overall, the conversion of 8 to 4 required no chromatography 
and was completed on multigram scale. With alcohol 4 to hand, we 
treated this material with 2.1 equivalents of Tf2O using pyridine as 
solvent. TLC showed complete consumption of 4 after 1 hour and for-
mation of a new spot which remained on the baseline in a 100 % EtOAc 
TLC solvent system. Following aqueous workup, the resulting off-white 
solid was recrystallised from EtOH to afford a white crystalline solid in 
59 % yield (no other products were isolated). Upon NMR characterisa-
tion and inspection of the appropriate scalar coupling constants it 
became apparent that the desired C2-trilfate 10 had not formed: H1 was 
observed at δ = 6.18 ppm, significantly downfield of what would be 

expected for an anomeric thioglycoside. The 13C NMR chemical shift of 
C2, δ = 51.1 ppm, was different to that expected of carbon bonded to 
triflate. Whilst the 3J coupling constant for H1–H2 was indicative of a 1, 
2-trans relationship (3JH1-H2 = 9.8 Hz), the comparative H3–H4 coupling 
was smaller than expected (3JH3-H4 = 4.9 Hz), indicating a 4C1 
D-mannose conformation was not present. Finally, the 1JC-H coupling 
constant (176 Hz) was significantly larger than observed for related 
β-thioglycosides (~155 Hz).

Fortunately, the as yet unidentified product of this reaction was 
crystalline, and we completed X-Ray diffraction, confirming the struc-
ture to be an unusual anomeric pyridinium salt 11, where the thiophenyl 
group had migrated to C2 and the D-manno configuration was formed. 
An indicative mechanism of formation for triflate salt 11 is shown in 
Scheme 2, alongside the X-Ray crystal structure. Similar 1 → 2 S-mi-
grations have been observed in pyranose and furanose systems [36,
38–43], and during C2–OH DAST fluorination of protected D-mannose 
methyl glycosides [34]. The conformation of 11 in the solid state is 
unusual, not corresponding to conventional pyranose systems (e.g., 4C1, 
1C4). The 4,6-O-benzylidene ring retains its expected chair conformation 
whilst within the pyranose ring C1–O5–C3–C4 appear coplanar in a B2,5 
conformation. The RMSD (root mean squared deviation) provides a 
measure of how much each of the component atoms (O5, C1, C3 and C4) 
in 11 used to generate the plane of the solid-state structure deviate from 
the best fit plane. The RMSD of the four atoms of the plane is 0.114 Å, 
whereas the C2-plane distance is 0.642(7) Å and C5-plane distance is 
0.617(6) Å.

Despite the anomeric pyridinium group being α-linked and trans to 
the S-phenyl group, the ring distortion meant it adopted a pseudo- 
equatorial orientation. The preference for anomeric cationic nitrogen 
substituents to adopt an equatorial orientation in pyranoses is well re-
ported and results in 1C4 or 4C1 chair conformations [44–46]. There has 
been significant debate about the origin of this effect with the existence 
of a stereoelectronic “reverse anomeric effect” being proposed and 
disputed [44,47–51]. This effect is now usually rationalised as resulting 
from steric hindrance to solvation of the positive charge when the 
cationic substituent is axial [52]. In the case of 11, ring flip to afford an 
equatorial pyridinium is prevented by the 4,6-O-benzylidene and a 
pseudo equatorial orientation is instead achieved through the observed 
B2,5 conformation. To the best of our knowledge this is the first disclo-
sure characterising bicyclic system 11 in both solution and solid state.

In order to try to prevent the formation of salt 11, we changed sol-
vent from pyridine to dichloromethane and repeated the reaction using 
the same equivalents of Tf2O, alongside four equivalents of DIPEA as a 
non-nucleophilic base to neutralise the TfOH formed (Scheme 3). Upon 

Scheme 1. a) Common glycal functionalisation approach to access D-gluco and 
D-manno configured C2-fluoro sugars b) This work, targeting C2–F D-mannose 
using SN2 inversion from the corresponding C2-D-glucose triflate.

Scheme 2. Synthesis of C2–OH glucose thioglycoside 4, attempted triflate formation to form 10 and isolation of pyridinium salt 11 as the reaction product. An 
indicative mechanism to form 11 from 4 is shown inside the black box. The blue bordered box shows the B2,5 solid state structure of 11 with the ring atoms coloured, 
the remainder paled out for clarity and the O1–C1–C3–C4 plane in blue. The C1–N+ bond length is 1.483(6) Å and the O5–C1 is 1.406(6) Å.
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workup and isolation of the material we again observed an unexpected 
product. Using a combination of 1D and 2D NMR alongside HRMS, we 
assigned the product structure as dimer 13, indicating that in the 
absence of pyridine the only available nucleophile to intercept an in-
termediate of type 12 (Scheme 2) was alcohol 4. The low yield (43 %) 
was attributed to formation of several other degradation products which 
were observable by TLC. Table 1 records a full NMR assignment of dimer 
13, including 1H and 13C NMR chemical shifts and coupling constants. A 
similar dimerisation reaction with formation of a 1→2-linked disac-
charide was previously reported by Roy [53].

Given the migration issue encountered using thioglycoside 4 and an 
observed competing nucleophilicity towards dimer formation, we 
switched the aglycone to para-methoxyphenyl, thus introducing less 
nucleophilic oxygen and advocating that this group could later be 
removed selectively under oxidative conditions (e.g., CAN [37,54]) and 
then manipulated to an appropriate donor. Accordingly, we returned to 
compound 8 and completed a similar series of reactions through diol 14 

to alcohol 5 (Scheme 4). Upon treatment with Tf2O compound 5 was 
smoothly converted to the desired triflate 15 in 94 % yield. The chemical 
shift of C2 increased significantly to δ = 84.1 ppm (compared to δ = 73.6 
ppm in 5) and a 19F NMR chemical shift was observed at δ = − 74.1 ppm, 
indicative of triflate formation. From here the material was inverted at 
C2 using TBAF, affording the desired C2–F D-mannose configured 
glycoside 7 in 81 % yield. 19F NMR showed the presence of a new 
chemical shift at δ = − 218.3 ppm and loss of triflate. C2 was a doublet 
with a large coupling constant of 191.4 Hz, typical of geminal C–F 
coupling, whilst C3 was also a doublet with a smaller coupling constant 
(16.9 Hz). This route to fluorinated D-mannoside 7 proved scalable, with 
10 g quantities prepared routinely.

3. Conclusion

During the development of a synthesis towards a 2-deoxy-2-fluoro-D- 
mannose donor using nucleophilic substitution of an appropriate triflate 

Scheme 3. a) Formation of D-manno-D-gluco dimer 13. Reaction conditions: i) Tf2O, DIPEA, CH2Cl2 b) HMBC NMR (400 × 100 MHz) highlighting through bond 
correlations to support assignment of structure.

Table 1 
NMR assignment of D-manno-D-gluco dimer 13. The β-thioglycoside is denoted as the reducing end sugar.

Ring No.  1 2 3 4 5 6
δ (ppm) 13C 88.5 77.8 80.3 82.0 70.2 68.5/68.6
δ (ppm) 1H 4.58 3.65–3.55 3.82–3.64 3.82–3.64 3.46 4.36 3.82–3.64
 Multiplicity d m m m dddd dd m
 J (Hz) 9.6    9.2, 4.7, 4.7, 4.6 10.5, 5.0 

Ring No.  1′ 2′ 3′ 4′ 5′ 6′
δ (ppm) 13C 102.4 55.4 74.4 79.8 64.8 68.5/68.6
δ (ppm) 1H 5.59 3.90 4.30–4.19 4.09 4.30–4.19 3.93 3.82–3.64
 Multiplicity d dd m dd m dd m
 J (Hz) 1.3 4.9, 1.6  9.7, 9.7  10.1, 4.8 

Scheme 4. Successful synthesis of C2–F D-mannose glycoside 7.
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with fluoride we observed and characterised an unexpected 1,2-SPh 
migration product, in the form of an anomeric pyridinium triflate salt. 
X-Ray crystallographic analysis of this material confirmed an unusual 
pyranose conformation where the endocyclic oxygen and anomeric 
carbon are above a plane constituted by the remaining pyranose ring 
carbons. The distortion from the expected chair conformation enables 
the anomeric pyridinium to adopt a pseudo equatorial position on the 
lower face of the ring, trans to the migrated SPh group at C2. Modifying 
the anomeric substituent to an O-para-methoxyphenyl group enables 
efficient synthesis of the desired 2-deoxy-2-fluoro-D-mannose-O-glyco-
side in six steps and 22 % overall yield from commercial material.
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