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Ultrastrong coupling (USC) in the quantum Rabi model, characterized by the breakdown of the rotating-wave
approximation (RWA), has emerged as a topic of considerable interest and study. This critical reevaluation of the
validity of the RWA concludes that the accepted definition of USC in terms of a fixed ratio of coupling to field
frequency is inadequate. Connecting an improved spectral validity criterion with the derivation of the semiclassi-
cal limit suggests that the dynamical validity of the quantum RWA should be linked to that of the corresponding
semiclassical model. This, however, is not supported by numerical calculations of coherent-state dynamics, which
unambiguously demonstrate that spectral validity does not imply dynamical validity and reveal surprisingly
complicated dependence on coupling and field amplitude.
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1. INTRODUCTION

Over the past 60 years, the quantum Rabi model has become
deeply rooted in theoretical physics. The essence of the interac-
tion between light and matter is distilled into its simplest form:
a two-level system (TLS) coupled to a single electromagnetic
field mode. A semiclassical form of the model that now bears his
name was developed by I. I. Rabi to describe the dynamics of
a spin in a classical rotating magnetic field [1]. In 1963, Jaynes
and Cummings introduced a version of the model in which
the field was treated quantum mechanically to describe the
ammonia beam maser and carried out a comparison of the quan-
tum and semiclassical theories [2]. Although they applied the
simplifying approximations now known as the rotating-wave
approximations (RWAs) in both the quantum and the semi-
classical treatments, it is the exactly solvable quantum model
within the RWA that has become most commonly termed the
‘Jaynes-Cummings model’.

In the decades that followed, the Jaynes-Cummings model
became synonymous with quantum optics and particularly with
experiments in cavity quantum electrodynamics (QED) [3,4].
With typical ratios of coupling strength λ to field frequency
ω0 on the order of 10−7

−10−6 [5,6], cavity QED with natural
atoms lies well within the domain of the RWA. Around the
turn of the millennium, advances in nanotechnology inspired
the development of engineered solid-state devices exhibiting
coherent quantum behavior: superconducting circuits [7,8],

nanomechanical resonators [9], and quantum-well intersub-
band microcavities [10], to name but a few. These platforms
brought coupling strengths and detunings previously undreamt
of in quantum optics into experimental reach. Stimulated by the
new capabilities, interest in the quantum Rabi model began to
branch out rapidly in new directions.

Much research in the last two decades has centered on
the regimes of ultrastrong coupling (USC) and deep strong
coupling (DSC) [11–13]. Ultrastrong coupling is generally con-
sidered to begin where the RWA breaks down [12–15]. (When
defining the ultrastrong and deep strong coupling regimes, the
spin and field are usually assumed to be on or near resonance.
Allowing for large detuning adds another dimension to the ques-
tion of defining parameter regimes within the Rabi model. Here,
however, we consider only the resonant case.) This, of course,
necessitates defining the limits of validity of the RWA. A conven-
tion has arisen in the USC/DSC community that ultrastrong
coupling is reached when λ/ω0

>
∼ 0.1; see, e.g., Refs. [12–14].

In a recent review paper, the authors go so far as to state, “The
lower limit [λ/ω0 = 0.1] has been by now well established as
the regime where effects related to the counterrotating terms
become sizable and, hence, observable” [12].

However, going back to the 1980s, various authors have
observed that the dynamics of the TLS population in the full
Rabi model differs noticeably from the RWA predictions even
for parameters that satisfy the condition λ/ω0

<
∼ 0.1 [16–24].
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More recent work reflects an increasing recognition that the
condition for spectral validity of the RWA does not necessarily
justify its application for dynamical calculations [25–30],
especially in scenarios involving extensions or generalizations of
the original Rabi model [24,31–34].

In this work we revisit the question of how to assess and quan-
tify the validity of both the quantum RWA (qRWA) and the
semiclassical RWA (scRWA), utilizing a combination of numeri-
cal computations and heuristic arguments. Two definitions of
validity, spectral and dynamical validity, are distinguished. We
show that the scaling of the spectral validity with excitation
number predicts that the validity of the qRWA for a coherent
field state |α〉 is determined not by the magnitude of the cou-
pling λ itself but by the product λ|α|. Taken together with
the recently developed mathematical formalism for deriving
the semiclassical Rabi model as a limiting case of the quantum
Hamiltonian expressed in a displaced Fock basis [35], the spec-
tral validity condition suggests that the qRWA validity is linked
to the validity of the corresponding scRWA. This is tested by car-
rying out extensive numerical solutions of the system dynamics
for various coupling strengths and state amplitudes. Examining
several measures of dynamical validity clearly shows that spectral
validity does not adequately predict the accuracy of the qRWA
for calculations of dynamics. The dynamical validity, in fact,
displays complicated dependence on λ and |α| individually.
We also illustrate numerically the convergence of quantum
to semiclassical dynamics and show that non-RWA behavior
can be obtained in the semiclassical limit even for values of
λ/ω0 ∼ 10−4.

To establish the concepts and notation, Section 2 begins by
briefly reviewing the quantum and semiclassical Rabi models
and the derivation of their respective RWA equivalents, together
with an outline of the semiclassical limiting procedure of Ref.
[35]. Various approaches to defining the limits of the spectral
validity of the RWA are discussed in Section 3 and shown to
concur in their predictions of the scaling behavior with excita-
tion number. Section 4 takes up the question of how to assess
the dynamical validity of both the quantum and semiclassical
RWAs. Convergence of the quantum dynamics and qRWA
validity to the semiclassical limit is discussed in Section 5.
Conclusions, open questions, and outlook for future work are
discussed in Section 6.

2. QUANTUM AND SEMICLASSICAL RWAs

The quantum Rabi Hamiltonian is given by

Ĥq =
�

2
σ̂z +ω0â †â + λ(â †

+ â)σ̂x , (1)

where � is the frequency of the two-level system or spin, ω0

is the frequency of the field, and λ is the coupling strength
between them. Within the rotating-wave approximation, the
Hamiltonian becomes

ĤRWA
q =

�

2
σ̂z +ω0â †â + λ(â †σ̂− + â σ̂+), (2)

where the spin raising and lowering operators are defined as
σ̂± = σ̂x ± i σ̂y . This is often derived by transforming Ĥq to an
interaction picture with respect to Ĥ0 =

�
2 σ̂z +ω0â †â :

Ĥ I
q = λ[e

i(ω0−�)t â †σ̂− + e−i(ω0−�)t â σ̂+]

+ λ[e i(ω0+�)t â †σ̂+ + e−i(ω0+�)t â σ̂−]. (3)

The terms in the first and second sets of brackets are known
as the ‘co-rotating’ and ‘counter-rotating’ terms, respectively.
Near resonance (�≈ω0), the co-rotating terms have a slow
time dependence, while the counter-rotating terms oscillate
rapidly. On timescales determined by the spin and field frequen-
cies, these fast oscillations tend to average out and hence have
only a small effect on the dynamics. The qRWA consists of
neglecting the counter-rotating terms. Alternatively, the qRWA
may be viewed as the zeroth-order correction in degenerate
perturbation theory with λ as the perturbation parameter.
The degeneracies occur between | + z〉|n〉 and | − z〉|n + 1〉,
where σ̂z| ± z〉 =±| ± z〉 and â †â |n〉 = n|n〉 (n = 0, 1, 2, . . .)
denote the eigenstates of the bare Hamiltonians for the spin
and field, respectively. Therefore, the qRWA is expected to hold
when the spin and field are near resonance (|ω0 −�| �ω0, �)
and weakly coupled (λ�ω0, �). The resulting Hamiltonian
is easily solved. For�=ω0, the ground state remains | − z〉|0〉
with energy E g =−�/2, while the excited states and their
energies are given by

|ψRWA
n,± 〉 =

1
√

2
(| + z〉|n〉 ± | − z〉|n + 1〉), (4)

E RWA
n,± = (n + 1)ω0 ± λ

√
n + 1. (5)

In the semiclassical version of the Rabi model, the field is
represented as a classical time-dependent driving term with
frequency ω0 and amplitude A, so the system Hamiltonian
becomes

Ĥsc =
�

2
σ̂z + 2A cos(ω0t)σ̂x . (6)

Transforming to an interaction picture, this time with respect
to the spin term alone, the Hamiltonian may be written as

Ĥ I
sc = A[e i(ω0−�)t σ̂− + e−i(ω0−�)t σ̂+]

+ A[e i(ω0+�)t σ̂+ + e−i(ω0+�)t σ̂−]. (7)

Co-rotating and counter-rotating terms may be identified as
before. Neglecting the latter and transforming back to the origi-
nal frame, the semiclassical RWA Hamiltonian is obtained:

ĤRWA
sc =

�

2
σ̂z + A(e iω0t σ̂− + e−iω0t σ̂+). (8)

The scRWA is valid under conditions of near-resonance and
weak driving (A�ω0, �).

Recent work has established that the semiclassical Rabi model
can be rigorously derived from the quantum Hamiltonian [35].
The quantum Hamiltonian is first transformed to a rotating
frame with respect to the field term ω0â †â , then expressed
in an orthonormal basis comprised of the displaced field
states |α, n〉 = D̂(α)|n〉. By taking the joint limit λ/ω0→ 0,
|α|→∞while keepingλ|α| constant,

Ĥq → Ĥsc ⊗ Î f , (9)
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where Ĥsc is given by Eq. (6). The quantum Hamiltonian sepa-
rates into a tensor product of the semiclassical Hamiltonian for
the spin and the identity operator Î f for the quantum field, with
the product λ|α| identified as the semiclassical drive amplitude
A. Noting that the state |α, 0〉 is just the standard coherent state
|α〉; this derivation demonstrates that the time evolution of a
spin under the Rabi Hamiltonian with the field initialized in a
coherent state reduces to the semiclassical spin dynamics in the
limit of small coupling and large field amplitude.

Despite involving a small coupling limit, this semiclassical
limiting procedure does not necessarily lead to RWA dynam-
ics. In Ref. [35] it is proven that the same procedure can be
applied in a polaron-transformed basis often used for study-
ing USC/DSC regimes, which leads to the well-known Bessel
function dependence on A for strong off-resonant driving in the
semiclassical limit [36–39].

Throughout the rest of this paper, we consider the case
of exact resonance, with ω0 =�= 1. The coherent-state
amplitudeα is taken to be real without loss of generality.

3. SPECTRAL VALIDITY

While the typical statement of validity for the RWA as
λ/ω0

<
∼ 0.1 can be useful as a rule of thumb, a comparison of

the energy spectra of the quantum Rabi model with and with-
out the qRWA, plotted in Fig. 1, shows that it is reasonable
only for the lowest few energy levels. (An alternative argument
leading to the same criterion is made in Ref. [40].) The range of
coupling strengths over which the RWA holds decreases as the
levels go up in energy. For physical situations involving higher
energy levels, this dependence needs to be taken into account
when assessing the validity of the RWA.

Examining the two spectra suggests that the RWA roughly
holds for coupling strengths up to the point where the two states
ψRWA

n,+ and ψRWA
n+1,− cross, which we denote λRWA

c [41–43]. This
crossing point can easily be expressed analytically:

λRWA
c

ω0
=

1
√

n +
√

n + 1
≈

1

2
√

n
, (10)

Fig. 1. Numerically determined energy spectra for the quantum
Rabi model. Solid lines correspond to the full model, with states of
opposite parities indicated as blue and green. RWA energies are shown
as dotted lines; red and orange denote the upper and lower states in
each pair. The individual points indicate different definitions for the
point λc where the RWA breaks down: λRWA

c (◦), λpUSC
c (×), λn,+

s (+),
λn,−

s (�).

where the approximation holds in the limit of large n.
Alternatively, the left-hand expression may be derived by calcu-
lating the perturbative corrections from the counter-rotating
terms [44].

The degeneracies between energy levels in the full Rabi
model, known as Juddian points or exceptional eigenvalues,
are more difficult to determine. In principle they may be found
exactly using recursion relations [45]; in practice this requires
numerical evaluation. An approximation was obtained in Ref.
[46], which the authors use to define the upper boundary of
the ‘perturbative ultrastrong coupling’ (pUSC) regime. Their
expression is

λ
pUSC
c

ω0
=

1
√

2(2n + 1)
. (11)

As shown by the spectral plots, this converges rapidly to the
RWA crossing point as n increases.

To complement these two analytical approximations, we
numerically evaluate the differences between the quantum
and RWA spectra. The ‘splitting point’ λs for each eigenvalue
is defined as the point where the difference between the full
quantum model and its RWA counterpart exceeds a predefined
threshold δλ. (In the plots shown, δλ/ω0 = 0.05; the conclu-
sions remain similar for any sensible choice.) Curiously, this
analysis reveals a discrepancy in the λs values between the two
levels involved in the first crossing. For the levels with an initial
downward slope, which in the RWA are given by |ψRWA

n,− 〉, the
splitting point λn,−

s is consistently larger than the values λn,+
s

and λn+1,+
s associated with the adjacent upward-sloping levels.

This may be seen from the points plotted in Fig. 1. In Fig. 2
the splitting points are plotted as a function of n, with λn,±

s
indicated separately. The solid lines are fits of the form 1/

√
n

(lower states) and 1/
√

n + 1 (upper states); the difference is due
to how the excitation number n is defined. The discrepancy in
λs between the two sets of states is clearly visible. Understanding
the origin of this effect is beyond the scope of the present work,
but we note it as an interesting avenue for future exploration.
For our purposes, the key point is that the fits capture the scaling
behavior ofλs for large n.

All of these approaches agree that the couplingλc at which the
RWA breaks down scales as λc/ω0 ≈ 1/(2

√
n) for large values

Fig. 2. Numerically determined splitting points λn,−
s (red squares)

and λn,+
s (orange crosses); the colors and point styles are the same as in

Fig. 1. The solid curves are fits with functional dependence 1/
√

n (red)
and 1/

√
n + 1 (orange).
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of n, with the differences becoming small even for n ∼ 10. A
coherent state |α〉 of the field contains a distribution of Fock
states, with average photon number n̄ = |α|2. For large α, the
distribution is sharply peaked around this average. Provided
that λ/ω0� 1/(2

√
n̄), all the eigenstates with significant

probability amplitude in the coherent state will fall below their
individual values of λc . Spectral validity, then, predicts that the
qRWA will hold for a coherent state |α〉 if λ/ω0� 1/(2|α|).
In turn, this condition may be connected with the semiclas-
sical model by noting that λ|α| ≡ A in the derivation of the
semiclassical limit from the quantum model. This implies that
requiring the qRWA to hold for the eigenstates that make up
the initial coherent state automatically satisfies the condition
A/ω0� 1; conversely, if the condition A/ω0� 1 for the valid-
ity of the scRWA in the corresponding semiclassical case is met,
the qRWA will be valid for any coherent state |α〉. Put another
way, spectral validity of the qRWA predicts that the validity of
the RWA for a coherent state of the field should depend only on
the product λ|α|. In the following section, we examine whether
this prediction proves correct.

4. DYNAMICAL VALIDITY

Although it is not so widely recognized in the field, reserva-
tions about the validity of the RWA for dynamical calculations
date back to long before the advent of the modern USC/DSC
terminology. In one influential example, Zaheer and Zubairy
showed substantial deviations from RWA dynamics for exact
resonance with coupling λ/ω0 = 0.2/

√
10≈ 0.06 [17]. The

initial state of the field was taken to be a coherent state of ampli-
tude |α| =

√
10, corresponding to A/ω0 = 0.2. Figure 3 shows

the time evolution of the excited-state population under the full
and RWA Hamiltonians, in both the semiclassical and quantum
versions of the Rabi model, calculated by numerical solution of
the Schrödinger equation. The parameters are the same as those
in Ref. [17], except that the maximum time has been extended.
Significant deviations between the full and RWA quantum
dynamics can be seen, particularly the fast oscillations within
the ‘quiescent region’ following the initial collapse of Rabi oscil-
lations. Similar results were found in Ref. [23] with the smaller
value λ/ω0 = 0.02. More recent work has also highlighted
the failure of the RWA for dynamics even when the standard
validity conditions are met [24–34]. Physically, of course, the
dynamical evolution is determined by the eigenstates as well as

Fig. 3. Dynamics of the excited-state spin population in the full Rabi model (solid lines) and RWA (dashed lines). The middle panel, together with
the two zoomed-in regions above, shows the semiclassical case; the bottom panel shows the quantum case. The spin is initially in the excited state
| + z〉. The semiclassical field amplitude A/ω0 = 0.2; the quantum field begins in a coherent state |α〉 with α =

√
10 and the coupling is λ/ω0 =

0.2/
√

10≈ 0.06.
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their energies. This leads us to consider the dynamical validity of
the approximation.

Defining an appropriate figure of merit for quantifying the
dynamical validity is not straightforward. The dynamics of
both spin and field are complicated, with multiple compet-
ing timescales. Conclusions regarding the applicability of the
RWA have often been based on qualitative examinations of
numerically evaluated spin dynamics [16–19]. Furthermore, it
is generally acknowledged that the goodness of the approxima-
tion depends on the timescale of interest. The spectral validity
condition λ

√
n̄�ω0 can also be derived from time-dependent

perturbation theory [47], which is suggestive that it may only
hold over short times.

Recently, some efforts have been made to mathematically
bound the dynamical validity of the RWA. In the semiclassical
case, Angelo and Wreszinski considered the difference between
a state ψ(t) evolving under the full Rabi Hamiltonian and
the corresponding state ψRWA(t) in the RWA, taking as their
measure the norm of the difference between the state vectors and
showing that

‖ψ(t)−ψRWA(t)‖2 =O(2Aτ) 0≤ t ≤O(1/(2Aτ)),
(12)

where τ = 2π/ω0 and we use ‖ · ‖2 to denote the Euclidean or
`2 norm in the spinor space [26,27]. [Here we have simply trans-
lated Angelo and Wreszinski’s result into our notation. It should
be noted that 1/(2Aτ) does not have units of time; however, as
the bound has been stated only up to a constant, this makes no
significant difference.] Burgarth and coworkers have taken a dif-
ferent approach, based on bounding the approximation in terms
of propagators [29,30]. For the semiclassical case, their estimate
for the error of the RWA in a time period T becomes, for exact
resonance,

‖U(t)−URWA(t)‖sp ≤
|A|
ω0
(1+ 4AT) 0≤ t ≤ T,

(13)
where U(t) and URWA(t) denote the propagators corresponding
to the full and RWA Hamiltonians, respectively, and ‖ · ‖sp

denotes the spectral norm for operators [29]. Generalizing these
methods to the quantum case, Ref. [30] provides both upper
and lower bounds on the error of the approximation in terms of
the state vectors. However, the lower bound is restricted to very
short times, t ≤ π/ω0, rendering it of limited use in practical
applications. The upper bound, again for exact resonance, is
stated as

‖(U(t)−URWA(t))9‖2 ≤
λ

ω0

[
‖(â †â + 2)

1/2
9‖2

+ |t|
(

3λ‖((â †â + 2)(â †â + 3))
1/2
9‖2

)]
(14)

for all times t , where9 is an arbitrary initial state of the coupled
quantum system. Note that the left-hand side of Eq. (14) is
equivalent to the norm difference between the state vectors, the
same measure used in Eq. (12).

However, these bounds fail to capture the full picture of the
dynamical validity of the RWA, either semiclassical or quantum.
A numerical evaluation of the norm of the difference between
state vectors described by Eqs. (12) and (14) is shown in Fig. 4,
for the same set of parameters as Fig. 3. The semiclassical results
for both short and long times are shown in the top panels.
Vertical dashed lines indicate t = {τR , 2τR}, where τR = π/A
is the Rabi period in the semiclassical RWA; horizontal dashed
lines correspond to {A, 2A}. These lines provide a guide for
comparing the numerical results in Fig. 4 with the relation given
in Eq. (12). While the results indicate that Eq. (12) is satisfied,
the relation is of limited usefulness in describing the actual
behavior of ‖ψ(t)−ψRWA(t)‖2. The corresponding results
for the fully quantum model are plotted in the lower panels of
Fig. 4, with the dashed-dotted line indicating the upper bound
given in Eq. (14). While the bound holds, it is far from tight.
A similar conclusion follows for the bound on the difference
between the semiclassical propagators given by Eq. (13), plotted
in Fig. 5.

A more serious issue with the bounds of Eqs. (12) and (14) is
the choice of the `2 norm of the difference between state vectors
as the measure of validity. This quantity can be expressed as

Fig. 4. Numerical evaluation of the norm of the difference between full and RWA states, ‖ψ(t)−ψRWA(t)‖2, in the semiclassical (upper panels)
and quantum (lower panels) models. Two different timescales are shown. The dotted-dashed orange lines indicate the bound of Eq. (14) [30]. Vertical
dashed lines indicate t = {τR , 2τR }, where τR = π/A is the Rabi period in the semiclassical RWA; horizontal dashed lines correspond to {A, 2A}.
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Fig. 5. Numerical evaluation of the difference between the propagators ‖(U(t)−URWA(t))‖2 for the semiclassical model, together with the
bound of Eq. (13) (orange dashed line) [29].

Fig. 6. Trace distances between the same initial state evolving under the full and RWA models. The top panels show the semiclassical case. The
middle is the trace distance between the full state vectors in the quantum case, while the bottom is the trace distance between the reduced density
matrices for the spin. The dashed lines are the same as in Fig. 4.

‖ψ1 −ψ2‖2 =
√

2− 〈ψ1|ψ2〉 − 〈ψ2|ψ1〉

=
√

2[1− Re(〈ψ1|ψ2〉)]. (15)

The fact that ‖ψ1 −ψ2‖2 only depends on the real part
of the inner product between the states makes it problem-
atic as a measure. For instance, consider ψ2 = e iφψ1 with φ
real. Physically, ψ1 and ψ2 represent the same state regardless
of the value of φ. The norm of their difference, however, is
‖ψ1 −ψ2‖2 =

√
2(1− cos φ), which varies between zero

and two depending on φ. While the relative phase between
two states does have meaning, the norm of the difference fails
to distinguish a phase difference from a difference in the state
vectors themselves.

We suggest that a better choice for measuring the divergence
between two states is the trace distance between density matrices
ρ1 andρ2,

D(ρ1, ρ2)≡
1
2 tr|ρ1 − ρ2|, (16)

which constitutes a valid metric on quantum states [48]. The
trace distance between state vectors evolving under the full and
RWA Hamiltonians in the semiclassical case is plotted in the top
panels of Fig. 6. Over short timescales, the trace distance closely
resembles the norm difference shown in Fig. 4 (top left). This
may be understood by noting that for pure states |ψ1〉 and |ψ2〉,
the trace distance can be expressed as

D(|ψ1〉〈ψ1|, |ψ2〉〈ψ2|)=
√

1− |〈ψ1|ψ2〉|
2. (17)

For two states that differ by a small amount, 〈ψ1|ψ2〉 =

1− ε,

‖ψ1 −ψ2‖2 =
√

2 Re(ε), (18)

D(|ψ1〉〈ψ1|, |ψ2〉〈ψ2|)=
√

2 Re(ε)+O(ε3/2), (19)
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Fig. 7. Fourier transforms (FFT) of the spin excited-state probability in the full (solid lines) and RWA (dashed lines) versions of the semiclassical
(top) and quantum (bottom) models. Note the differing scales on the y -axes.

so the norm difference and trace distance approximately agree.
Over long times, substantial disagreement emerges; this can
already be seen by comparing the top right panels of Figs. 6
and 4. (Note that the norm difference and trace distance are
defined on different intervals: [0,2] and [0,1], respectively.) In
the quantum case, the trace distance between the state vectors of
the spin–field system, shown in the middle row of Fig. 6, again
resembles the norm difference (Fig. 4, lower panels) for short
times, but increases much less rapidly over a longer timescale.
Here the agreement between the semiclassical and quantum
results is much closer and the differences are more evidently
linked to the collapse and revival behavior in the quantum
model.

A further argument for choosing the trace distance as a
measure is that it can be applied to density matrices as well as
state vectors. In experiments and applications, it is often the
dynamics of the spin alone that is of interest, rather than the
full quantum state of the spin–field system. The trace distance
D(ρs , ρ

RWA
s ), whereρs andρRWA

s are the reduced density matri-
ces of the spin in the full and RWA cases, respectively, is shown in
the bottom row of Fig. 6. Intriguingly, the behavior in this case
differs substantially from that of the semiclassical and quantum
state vectors. The trace distance remains small over a much
longer timescale, with a structure that shows a clear relationship
to the collapse and revival dynamics of the spin population (c.f.
Fig. 3).

While examining the time dependence of the trace distance
is instructive, it is a cumbersome tool to employ for comparing
the validity of the RWA across a range of parameter values. The

contributions of the counter-rotating terms are more readily
identified in the frequency domain. Figure 7 shows the Fourier
transforms (FFTs) of the spin excited-state population dynamics
plotted in Fig. 3. To convert the Fourier spectra into a single
figure of merit, we compute the Pearson correlation coefficient r
between the full and RWA spectra. Since r is always near one for
the relevant parameter ranges, we instead plot 1− r 2 to high-
light small differences from perfect correlation. We refer to this
quantity as the correlation. A contour plot demonstrating how
the quantum correlation 1− r 2

q depends on λ and α is shown in
Fig. 8. Another view of the correlations is shown in Fig. 9, where
both the quantum and semiclassical correlations are plotted as a
function ofλ for several values of A.

According to the spectral validity prediction, the quantum
correlation should be constant for a fixed value of A. Clearly,
this is not borne out by the dynamical calculations. Rather,
the dependence of the quantum correlation on λ displays a
surprisingly complicated structure. This is likely a consequence
of basing the calculation on the dynamics of the spin alone.
We speculate that the correlation is particularly sensitive to the
Bloch-Siegert shift, the effect of which tends to be suppressed
by the collapse of the Rabi oscillations. Detailed analysis of the
behavior of the correlation is a subject for future work, however.
Within the scope of this paper, it suffices to observe that the
spectral validity condition is insufficient to determine the good-
ness of the RWA for calculating spin dynamics with a coherent
quantum field.
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Fig. 8. Contour plot of the correlation 1− r 2
q between the full and

RWA Fourier spectra in the quantum model, as a function of the cou-
pling λ and the coherent-state amplitudeα. Solid lines denote constant
values of A= λα = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

5. CONVERGENCE TO THE SEMICLASSICAL
LIMIT

The observant reader may have noticed that Fig. 9 does not show
the quantum correlation converging toward the semiclassical
correlation for small λ, as would be expected from the semiclas-
sical limiting procedure laid out in Ref. [35] and summarized
briefly in Section 2. In this section we elucidate the circum-
stances under which semiclassical convergence is obtained and
illustrate this process with numerical results.

With the field initially in a coherent state, the spin dynamics
in the qRWA (and the full Rabi model as long as λ is not too
large) is complicated by the coexistence of multiple timescales.
Borrowing the well-known approximate results of Eberly et al.

[49] and assuming exact resonance, we can identify the Rabi
period τR ∝ 1/(λα)= 1/A, the collapse time τcol ∝ 1/λ, and
the revival time τrev ∝ α/λ. Recovering semiclassical behavior
requires pushing the collapse and revival times to infinity while
keeping the Rabi period fixed [4,14]; this is precisely what is
achieved by the joint limit λ→ 0 and |α|→∞ with λ|α| kept
constant [35]. The key observation is that the appearance of
semiclassical behavior depends on the timescale over which the
dynamics is measured.

The aim of Figs. 8 and 9 was to compare the validity of the
qRWA, as measured by the correlation, between different
instances of the quantum dynamics. To do this, it is necessary
to resolve all the frequencies in the quantum spectra, which
requires computing the dynamics over long timescales to cap-
ture the full collapse and revival behavior (here, 3τrev). It follows
that neither the dynamics, the spectra, nor the correlations will
appear semiclassical in nature.

To see the emergence of semiclassical behavior, the spin
dynamics is instead calculated over a timescale corresponding
to a fixed number of Rabi periods. Figure 10 illustrates how the
quantum dynamics converges to the semiclassical dynamics
as λ/ω0 is decreased from 10−1 to 10−4, with A fixed at 0.2.
Plots of the trace distance between the full and RWA states
are also shown. The correlation also provides a useful figure of
merit for studying the semiclassical convergence. A plot of the
correlation as a function of λ for different values of A= λα is
shown in Fig. 11. In order to compare the rate of convergence
for different A, the results have been normalized to the corre-
sponding semiclassical correlations. This figure demonstrates
that it is necessary to go out to values of λ/ω0 ∼ 10−4 to see
agreement between the quantum and semiclassical dynamics,
as suggested by Fig. 10. Calculation of the dynamics with such
large coherent states (n̄ = |α|2 ∼ 106) is made computationally
tractable by working in the displaced Fock basis described in
Ref. [35], which maps any initial coherent state to n = 0. As

Fig. 9. Correlations 1− r 2
q as a function of λ for constant values of A, corresponding to the solid lines in Fig. 8. Dashed horizontal lines indicate

the values of the semiclassical correlations; for A> 0.1, these lie well above the y -scale shown. Dotted lines connecting the points are provided as a
guide to the eye.
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Fig. 10. Convergence of the quantum evolution to the semiclassical limit for A= λα = 0.2. From top to bottom: quantum with
λ= 10−1, 10−2, 10−3, 10−4; semiclassical. Left: dynamics of the excited-state spin population in the full model (solid lines) and RWA (dashed
lines). Right: trace distances between the full and RWA states. Solid curves correspond to the trace distance between the state vectors (solid curves);
the dashed magenta curve corresponds to the trace distance between the reduced spin density matrices for the quantum case.

Fig. 11. Correlations 1− r 2
q for the quantum dynamics over 20 Rabi periods, as a function of the quantum coupling λ. For each value of A, the

points have been normalized to the value of the corresponding semiclassical correlation, so the gray dashed line at 1 indicates where 1− r 2
q = 1− r 2

sc.
Dotted lines connecting the points are provided as a guide to the eye.
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α increases, the rate at which the field state changes becomes
slower relative to the Rabi frequency, so for a moderate number
of Rabi oscillations the dynamics may be accurately simulated
with reasonable matrix sizes.

The plots in Figs. 10 and 11 both demonstrate the con-
vergence of the quantum dynamics to the semiclassical result
as λ/ω0→∞. Surprisingly, even for values of λ/ω0 three
orders of magnitude smaller than the standard USC bound-
ary, the qRWA does not necessarily hold. Rather, the degree of
validity of the qRWA converges to that of the corresponding
scRWA. Applying the semiclassical limiting procedure to the full
quantum Hamiltonian Hq gives back Hsc, which is only approx-
imated by HRWA

sc if A satisfies A/ω0� 1. However, HRWA
sc

may be directly obtained as the limit of HRWA
q . It can be seen

from Fig. 10 with λ= 10−4 that the full quantum model agrees
with the full semiclassical model and the qRWA agrees with the
scRWA, despite the clearly discernible differences between the
full and RWA dynamics. Looking at the trace distance plots, it is
evident that both the trace distance between the full and RWA
quantum state vectors and the trace distance between the corre-
sponding reduced spin matrices tend toward the semiclassical
result shown in the bottom panels of Fig. 10. This reflects the
reduction of the joint spin-field dynamics to the tensor product
form of Eq. (9).

Figure 11 also shows that the convergence to the semiclassical
limit as λ is decreased is slower for smaller values of A. This
may be understood by considering the relation between the
Rabi frequency and the collapse timescale. The collapse time
depends only onλ, while the Rabi frequency is given by A= λα.
Therefore, for smaller values of A, fewer Rabi oscillations occur
within the collapse time; over a fixed number of Rabi oscilla-
tions the effect of the collapse is more pronounced, resulting
in a greater divergence between the quantum and semiclassical
dynamics.

6. CONCLUSIONS

The analysis presented here demonstrates that even when the
field and spin are exactly resonant, the accepted statements of
the regimes in which the qRWA is a good approximation to the
full quantum Rabi model are far from capturing the full picture.
The conventional definition of the ultrastrong coupling regime
in terms of a fixed threshold λc/ω0 = 0.1 only applies for the
lowest energy levels in the spectrum. Comparing several defini-
tions of the coupling at which the full and RWA energies diverge,
we find they consistently predict that λc/ω0 scales as 1/(2

√
n)

for larger n. This distinction becomes important for calculations
of dynamics with large-amplitude fields. With a coherent state
as the initial state of the field, the spectral validity condition,
together with the definition of the semiclassical limit, implies
that the validity of the RWA for dynamics should be solely
determined by the scRWA validity condition A= λ|α| � 1.

Testing this prediction necessitates having a definition for
the dynamical validity of the RWA. Assessing the few existing
measures and bounds against our numerical calculations of
dynamics reveals that they are inadequate at best. As alterna-
tives, we have considered the trace distance and the correlation
between Fourier spectra as measures to study the dependence of
the dynamical validity of the qRWA onλ and |α|. Contradicting

the prediction from spectral validity, the dynamical validity
exhibits a complicated dependence on the two parameters
independently, not just on their product. Convergence to the
semiclassical limit, for both dynamics and validity measures,
is only achieved in the limit of small coupling and large field
amplitude and over suitably small timescales. This is consistent
with the derivation of the semiclassical limit in Ref. [35] and
nicely illustrates how the limit is approached. We conclude that
the spectral validity and dynamical validity should be delineated
as distinct concepts.

In many ways, this work raises more questions than it
answers. The trace distance and Fourier correlations display
a surprisingly rich structure, and the origin of all their features is
not yet fully understood. Neither is it established that these are
the best choices of measures for the dynamical validity of either
the qRWA or the scRWA. Identifying bounds on the dynamical
validity that can be put to practical uses is another major open
topic for future work. Once again, the quantum Rabi model
throws up a surprising degree of complexity despite its apparent
simplicity. This characteristic of the Rabi model, alongside its
many and varied physical realizations, has fascinated physicists
for the last 60 years. There is every reason to believe that it will
continue to do so for many years to come.
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