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The crossover from quantum to semiclassical behavior in the seminal Rabi model of light-matter
interaction still, surprisingly, lacks a complete and rigorous understanding. A formalism for deriving
the semiclassical model directly from the quantum Hamiltonian is developed here. Working in a
displaced Fock-state basis |α, n⟩, the semiclassical limit is obtained by taking |α| → ∞ and the
coupling to zero. This resolves the discrepancy between coherent-state dynamics and semiclassical
Rabi oscillations in both standard and ultrastrong coupling/driving regimes. Furthermore, it pro-
vides a framework for studying the quantum-to-semiclassical transition, with potential applications
in quantum technologies.

Studies of the physics of a two-level system interacting
with an electromagnetic field, as typified by the semi-
classical and quantum Rabi models, date back to the
1960s [1–3]. Both models have been studied extensively
and their predictions are well known. Likewise, it is well
known that taking the limit of large photon numbers in
the quantum model does not straightforwardly reproduce
the semiclassical results, in an apparent contradiction of
the correspondence principle [4–8]. Despite its long and
illustrious history, this puzzle in quantum optics has yet
to be resolved in a way that is mathematically and phys-
ically satisfactory.

For a field alone, defining the transition from quan-
tum to classical is straightforward. The coherent state
is known to be the ‘most classical’ of the quantum field
states, and its behavior becomes more classical as the av-
erage number of photons increases [9]. When the field is
coupled to a discrete quantum system, however, the ques-
tion of correspondence between the quantum and classi-
cal models for the field becomes more complicated [10].
The semiclassical Rabi model within the rotating-wave
approximation (RWA) predicts simple sinusoidal Rabi os-
cillations of the two-level system. In the corresponding
quantum model, taking the field to be in a ‘classical’
coherent state famously produces complex collapse and
revival dynamics [11, 12]. It is instead the highly nonclas-
sical photon number states, known as Fock states, that
lead to sinusoidal oscillations resembling the predictions
of the semiclassical theory [4, 5, 7, 13, 14].

Further discrepancies between the quantum and semi-
classical results appear in parameter regimes beyond the
validity of the RWA, particularly when the quantum cou-
pling and the classical drive amplitude become large. For
a high-frequency field, the semiclassical Hamiltonian may

be written in terms of Bessel functions that depend on
the drive strength [15–18], while the quantum energy lev-
els are characterized by Laguerre polynomials in the cou-
pling strength [17, 19, 20]. An asymptotic relationship
between the Laugerre polynomials and the Bessel func-
tions is often invoked to reconcile the quantum and semi-
classical predictions [21–23]; however, as discussed later,
this is questionable on both mathematical and physical
grounds. A more rigorous approach requires the assump-
tion of certain statistical properties for the quantum field,
resembling those of a coherent state, in order to repro-
duce the semiclassical results [15, 24, 25]. Comparing
this with the RWA regime, where coherent states lead to
highly non-classical dynamics, highlights a further dis-
crepancy in the existing understanding of the quantum-
to-semiclassical correspondence.

With the rise of quantum technology, the distinction
between quantum and classical behavior of a field in-
teracting with a two-level system, or qubit, is freighted
with practical significance. Engineered quantum devices
now routinely operate in regimes where strong single-
photon coupling at the quantum level is readily achiev-
able [26–28]. Both ultrastrong classical driving [29–32]
and ultrastrong quantum coupling [33–35] have been ex-
perimentally demonstrated. These achievements open up
the possibility of studying the quantum-to-semiclassical
transition in unprecedented detail.

In this Letter, we develop a methodology that resolves
the question of how to reconcile the quantum and semi-
classical predictions. Applying a unitary transformation
often used in the ultrastrong coupling regime, we show
that the quantum Rabi Hamiltonian may be recast in
terms of operator-valued Bessel functions. The appear-
ance of normal ordering in this expression suggests a
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connection to the semiclassical limit by way of coher-
ent states. Rather than working with coherent states
alone, we write the Hamiltonian in terms of displaced
Fock states, an orthonormal basis set that serves as a gen-
eralization of the coherent states. Taking the displace-
ment amplitude to infinity and the coupling strength to
zero, keeping their product finite, recovers the semiclas-
sical Rabi Hamiltonian while preserving the full quan-
tum Hilbert space structure. The same technique may
be applied equally well to the untransformed Rabi model,
with or without the RWA; however, working in the trans-
formed basis exposes the central importance of the small-
coupling limit in the quantum-to-semiclassical transition.
We argue that this constitutes a general formalism for
defining the semiclassical limit at the Hamiltonian level
that is unambiguous, mathematically rigorous, and phys-
ically intuitive. What is more, it provides a mathematical
framework that will allow the transition to be studied in
detail.

The semiclassical Rabi Hamiltonian is

Ĥsc(t) =
1
2Ωσ̂z + 2Aσ̂x cosω0t, (1)

where Ω is the two-level system frequency, σ̂x,z are Pauli
matrices describing the two-level system, ω0 is the field
frequency, and A is the classical drive amplitude [36].

In the case of strong driving at high frequency, the dy-
namics of the two-level system exhibits a Bessel-function
dependence on the drive amplitude. This result may be
obtained by several means, of which Shirley’s applica-
tion of Floquet theory [15] is perhaps the best known.
For our purposes, however, the most useful approach is
a unitary transformation technique [16–18]. The deriva-
tion is briefly outlined here; a full version may be found
in the Supplemental Material [37]. A transformation is
made to a rotating frame with the operator

Ûsc(t) = exp[−i(2A/ω0)σ̂x sinω0t], (2)

which represents the exact solution for the time-evolution
operator with Ω = 0 [38]. Expanding in terms of Bessel
functions, the Hamiltonian becomes

H̃sc(t) =
1
2Ωσ̂zJ0(4A/ω0)

+ 1
2Ω

∞∑
p=1

σ̂z(−σ̂x)pJp(4A/ω0)[e
ipω0t + (−1)pe−ipω0t].

(3)

Various approximation schemes may then be employed to
derive solutions of the transformed Hamiltonian [16–18,
39]. To lowest order (i.e., neglecting the time-dependent
terms [16, 17]), the frequency Ω of the two-level system
is renormalized by the coupling to the field, becoming
Ωsc

r = ΩJ0(4A/ω0).
An analogous approach can be used to study the quan-

tum version of the Rabi Hamiltonian,

Ĥq = ω0â
†â+ 1

2Ωσ̂z + λσ̂x(â
† + â), (4)

where â†(â) is the raising (lowering) operator for the
quantum field and λ is the coupling strength between
the two-level system and the field [40]. Solving the Ω = 0
case yields the spin-dependent displacement transforma-
tion [19, 20]

D̂
(
− λ

ω0
σ̂x

)
= exp

[
− λ

ω0
σ̂x(â

† − â)
]
. (5)

Under this transformation, the matrix elements of the
quantum Hamiltonian in the Fock-state basis become [19,
20]

⟨n+ k|D̂†ĤqD̂|n⟩ =
(
nω0 − λ2

ω0

)
δk,0

+ 1
2Ωe

−2λ2/ω2
0
(
− 2λ

ω0

)k√ n!
(n+k)!L

k
n

(
4λ2

ω2
0

)
σ̂zσ̂

k
x,

(6)

for k = 0, 1, 2, . . . [41]. Again taking a lowest-order ap-
proximation [42], the renormalized frequency of the two-

level system Ωq
r = Ωe−2λ2/ω2

0Ln(4λ
2/ω2

0) now depends on
the state |n⟩ of the field. The quantum model is char-
acterized by Laguerre polynomials in place of the Bessel
functions of the semiclassical model.
According to the broadly accepted interpretation of

the correspondence principle, the predictions of the semi-
classical and quantum models should agree in the limit
of large photon numbers [43, 44]. In the literature, a
common approach to reconciling the quantum and semi-
classical Rabi predictions is to take n → ∞ and ap-
ply the asymptotic relation [45] limn→∞ n−pLp

n(x/n) =
x−p/2Jp(2

√
x) [21–23]. Provided that λ is scaled as

A/
√
n, where A is identified as the classical drive ampli-

tude, the renormalized frequencies found above become
mathematically equivalent. However, simply compar-
ing the frequencies of the two-level system derived from
lowest-order approximations is far from a complete cor-
respondence. Attempting to apply a similar argument to
the Hamiltonian itself results in both mathematical and
conceptual conundrums, as discussed later.
As we now show, a more transparent and rigorous con-

nection between the quantum and semiclassical equations
at the Hamiltonian level can be made. The similarities
are emphasised by working in a rotating frame with re-
spect to the field. By putting the displacement operator
[Eq. (5)] into normal-ordered form [25, 46], the trans-
formed Rabi Hamiltonian may, after some algebra (see
Supplemental Material [37] for details), be written as

H̃q(t) = −λ2

ω0
+ 1

2Ωe
−2λ2/ω2

0 σ̂z :J0(4λ
√
â†â/ω0):

+ 1
2Ωe

−2λ2/ω2
0 σ̂z

∞∑
p=1

(−σ̂x)p :
Jp(4λ

√
â†â/ω0)

(
√
â†â)p

× [eipω0tâ†p + (−1)pe−ipω0tâp]:,

(7)

where :: denotes normal-ordering without the use of com-
mutators, e.g. :ââ†: = â†â. This represents an expan-
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sion of the transformed Hamiltonian in terms of multi-
photon transitions within the displaced basis, with tem-
poral frequencies determined by the number of photons
exchanged. Up to this point, no approximations have
been made; Eq. (7) is completely equivalent to the orig-
inal Rabi Hamiltonian. The form of this equation is, to
our knowledge, a new result. Its similarity to the semi-
classical Hamiltonian in Eq. (3) is immediately evident.

At this point, the textbook recipe for reducing the
quantum Hamiltonian to its semiclassical counterpart
dictates replacing the quantum field operators â and â†

by their classical expectation values α and α∗ and iden-
tifying the classical drive amplitude A with λ|α| = λ

√
n̄,

where n̄ is the average photon number [1, 7, 47–49]. It is
readily seen that the untransformed semiclassical Hamil-
tonian (1) may be obtained from its quantum counter-
part (4) in this way. However, applying this recipe to
the transformed Hamiltonian (7) reveals a problem: the
corresponding semiclassical model (3) is not exactly re-

produced. The two differ by a factor of e−2λ2/ω2
0 and

a constant term −λ2/ω0, which originate from the non-
commutativity of â and â† and thus are purely quan-
tum effects that should not persist in the semiclassical
limit [50].

We propose a more rigorous procedure for taking
the semiclassical limit, inspired by an approach intro-
duced by Mollow [51] for calculating radiation scat-

tering and later discussed by Pegg [52] and used by
Knight and Radmore [53] and Berman and Ooi [54] to
study coherent-state collapse and revival dynamics in
the Jaynes-Cummings model. A unitary transformation
D̂(α) = exp[αâ†−α∗â)] is applied directly to the Hamil-
tonian. This generates a displacement of the field, which
may be interpreted as a classical drive [51]. The vacuum
field state |0⟩ in this picture corresponds to the coher-
ent state |α⟩ in the original basis. Mathematically, this
is equivalent to writing the Hamiltonian in the displaced
Fock-state basis |α, n⟩ ≡ D̂(α)|n⟩. The quantum Rabi
Hamiltonian (in the rotating frame) transforms as

D̂†(α)Ĥq(t)D̂(α) = 1
2Ωσ̂z + λσ̂x(e

iω0tα∗ + e−iω0tα)

+ λσ̂x(e
iω0tâ† + e−iω0tâ).

(8)

The coupling splits into two terms, the first of which is
the standard semiclassical driving term while the second
is the quantum interaction term. Taking the limit λ→ 0
while letting α → ∞ eliminates the quantum coupling
term, reproducing the semiclassical Hamiltonian [55] [56].
Less trivially, the same idea may be applied to

the Bessel function form of the quantum Hamilto-
nian, Eq. (7). The matrix elements H̃n+k,n

q (t) =

⟨α, n+ k|H̃q(t)|α, n⟩ (k = 0, 1, . . . ) are given by (see
derivation in Supplemental Material [37])

H̃n+k,n
q (t) = −λ2

ω0
δk,0 +

1
2Ωe

−2λ2/ω2
0
(
− 2λ

ω0

)k√ n!
(n+k)!L

k
n

(
4λ2

ω2
0

)
×
{
σ̂z

(
α
|α|

)k

Jk(4λ|α|/ω0)

+

∞∑
p=1

σ̂z(−σ̂x)p
[
(−1)keipω0t

(
α∗

|α|

)p−k

Jp−k

( 4λ|α|
ω0

)
+ (−1)pe−ipω0t

(
α
|α|

)p+k

Jp+k

( 4λ|α|
ω0

)]}
.

(9)

Both quantum and semiclassical features may be identi-
fied in this expression. The Laguerre polynomials arise
from the quantum model: as |α| → 0, Jk(4λ|α|/ω0) →
δk,0 and the Hamiltonian in the standard Fock-state ba-
sis is recovered. The Bessel functions, as previously dis-
cussed, are characteristic of semiclassical behavior.

Taking the limit λ→ 0, |α| → ∞ with λ|α| held fixed,
the off-diagonal terms of Eq. (9) vanish (see Supplemen-
tal Material [37]) and Eq. (9) reduces to a tensor product
of the semiclassical Hamiltonian with the identity oper-
ator Îf for the quantum field:

H̃q(t) → H̃sc(t)⊗
∞∑

n=0

|α, n⟩⟨α, n| = H̃sc(t)⊗ Îf . (10)

The full Hilbert space structure of the quantum model is
preserved, but the two-level system now obeys an effec-
tive semiclassical Hamiltonian independent of the quan-
tum state of the field.

Based on these results, we propose a new recipe for
reducing the quantum Rabi Hamiltonian to the corre-
sponding semiclassical model:

1. Transform to a rotating frame with respect to the
field mode.

2. Expand in the displaced Fock-state basis |α, n⟩.

3. Take the limit λ → 0, |α| → ∞ such that λ|α| re-
mains constant. The semiclassical drive amplitude
A corresponds to λ|α|.

The semiclassical Hamiltonian is thus obtained directly
from the quantum Hamiltonian, without specifying a par-
ticular initial state for the quantum field or imposing
assumptions about its statistical properties. Since the
Hilbert space structure is maintained and the procedure
involves a well-defined mathematical limit, this approach
opens up the possibility of studying the crossover from
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quantum to semiclassical behavior by examining quan-
tum perturbations to the semiclassical Hamiltonian.

The two key ingredients are the choice of basis states
and the form of the mathematical limits. As coherent
states are the most classical states of a quantized field, it
is natural to expect them to be involved. The displaced
Fock states |α, n⟩may be viewed as interpolating between
the semiclassical coherent states |α⟩ and the eigenstates
|n⟩ of the quantized field. Unlike the overcomplete set
of coherent states, the set {|α, n⟩} with fixed α forms
an orthonormal basis set with properties similar to the
Fock state basis. For n > 0 these states are distinctly
nonclassical. Nevertheless, we argue that the displaced
Fock states constitute the correct basis for carrying out
the semiclassical limit [57].

To support this claim, let us first examine the
time evolution of |α, n⟩. Upon transforming back
out of the rotating frame with respect to the
field Hamiltonian, the states become time dependent:

e−iω0tâ
†â|α, n⟩ = e−inω0t|αe−iω0t, n⟩. Defining a gen-

eral time-dependent state vector for the field |ψ(t)⟩ =∑
m cm(t)e−imω0t|αe−iω0t,m⟩ and a spin state |ϕ⟩, the

time evolution generated by the correspondingly trans-
formed Hamiltonian may be expressed in terms of the
matrix elements given in Eq. (9):

∞∑
m=0

iċm(t)|αe−iω0t,m⟩|ϕ⟩

=

∞∑
m=0

cm(t)H̃m,m
q (t)|αe−iω0t,m⟩|ϕ⟩

+

∞∑
m=0

∞∑
k=1

cm(t)e−ikω0tH̃m+k,m
q (t)|αe−iω0t,m+ k⟩|ϕ⟩

+

∞∑
m=0

m∑
k=1

cm(t)eikω0tH̃m−k,m
q (t)|αe−iω0t,m− k⟩|ϕ⟩.

(11)

An initial state |αe−iω0t, n⟩ will evolve over time into a
superposition of displaced Fock states. In the semiclas-
sical limit, however, the off-diagonal terms of H̃q vanish
and the basis states |αe−iω0t,m⟩ become uncoupled. A
field state |αe−iω0t, n⟩ then undergoes intrinsic time evo-
lution corresponding to a rotation in phase space – such
that the expectation values of operators obey the classi-
cal harmonic oscillator equations of motion – but its am-
plitude remains constant. Meanwhile, the spin obeys an
effective Hamiltonian that is independent of the quantum
state of the field. The spin and field remain in a separa-
ble state at all times: precisely the expected semiclassical
behavior.

This does not, however, imply that all of the displaced
Fock states may be considered equally ‘classical’. The
dispersion of the position and momentum operators in
|α, n⟩ scales as n, so states with n > 0 exhibit greater
quantum fluctuations than the minimum imposed by the

uncertainty principle; they may also have negative-valued
Wigner functions, another hallmark of nonclassical be-
havior. Off-diagonal terms in H̃q that couple |α, n⟩ with
|α, n+ k⟩ scale as (λ

√
n)k. This suggests that, for finite

values of α and λ, leakage into different states happens
on faster timescales for larger n. Hence the semiclassical
evolution of the displaced Fock states becomes increas-
ingly fragile against quantum corrections as n increases.

Turning next to the limits, taking the field amplitude
(as measured by the average photon number or coherent-
state amplitude) to infinity is widely assumed to cor-
respond to the correct semiclassical limit [5–7, 13, 14,
44, 58]. In our formalism, this is accounted for by the
limit |α| → ∞. (Note, however, that α here serves as a
continuous c-number variable that parameterizes a uni-
tary transformation and cannot, in general, be identified
with the average photon number [59].) By contrast, the
small-coupling limit λ → 0 is widely neglected in the
literature, apart from an occasional mention that this
limit allows the coherent-state dynamics in the Jaynes-
Cummings model to be reconciled with the semiclassical
predictions (e.g. [6, 60, 61]; a more careful discussion is
found in [62]). Working in the transformed basis defined
by Eq. (5) reveals the central necessity of this limit. It
is, in fact, the λ → 0 limit that eliminates the quantum
terms from the Hamiltonian; taking |α| → ∞ is only
needed to ensure that the classical drive amplitude does
not vanish. The physical interpretation is clear and in-
tuitive: in the semiclassical limit, not only must the field
become classical, but the interaction of the two-level sys-
tem with individual photons must become negligible.

Considering these limits clarifies the relationship be-
tween ultrastrong coupling in the quantum model and
ultrastrong driving in the semiclassical model. As the
classical drive amplitude is A = λ|α|, strong driving may
be obtained by taking either the quantum coupling λ or
the field amplitude α (or both) to be large [49]. Within
the theoretical framework established here, λ must go to
zero in the semiclassical limit. Consequently, a semiclas-
sical limit for ultrastrong quantum coupling cannot, in
principle, exist. While the case of strong semiclassical
driving parallels that of strong quantum coupling in the
sense illustrated in Fig. 1, the semiclassical drive must
be provided by a large amplitude field with a vanishingly
small single-photon coupling.

Intriguingly, the same recipe may be used to derive
the semiclassical transformation operator Ûsc(t) from the
quantum operator D̂[(−λ/ω0)σ̂x] (see Supplemental Ma-
terial [37]). This completes the correspondence between
the quantum and semiclassical cases, as summarized in
Fig. 1. It furthermore suggests that the procedure de-
veloped here for the specific case of the Rabi model may
have wider applicability to related models of light-matter
interaction [62].

To conclude, we have developed a mathematically rig-
orous and physically intuitive method for obtaining the
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FIG. 1. Schematic of the transformations and limits employed
here, illustrating the parallels between the quantum and semi-
classical cases. Moving from left to right, solving either the
quantum or the semiclassical Rabi Hamiltonian with Ω = 0
produces a unitary transformation, which can then be applied
to the full Hamiltonian to give H̃q or H̃sc, respectively. The
procedure for taking the semiclassical limit is shown from top
to bottom. This may be applied to the standard Rabi Hamil-
tonian Hq, the transformed version H̃q, or even the trans-
formation operator itself. In each case, the corresponding
semiclassical result is obtained.

semiclassical Rabi model from the underlying quantum
model at the Hamiltonian level. The arguments pre-
sented here indicate that the semiclassical limit emerges
most naturally when the quantum field is expressed in
the basis of displaced Fock states. The time evolution of
these states converges to the expected semiclassical dy-
namics when the appropriate mathematical limit is car-
ried out. This approach appears almost trivial when ap-
plied to the standard form of the Rabi Hamiltonian. A
more compelling case, however, emerges from a trans-
formed model in which the quantum Rabi Hamiltonian
is expressed in terms of operator-valued Bessel functions.
The derivation of this form, which constitutes a notable
result in its own right, parallels the Bessel-function ex-
pansion that has long been known for the semiclassical
model.

The formalism presented here resolves the long-
standing question in quantum optics theory regarding the
emergence of the semiclassical limit from the quantum
Rabi model. Importantly, it is equally applicable in both
the standard parameter regime (including the Jaynes-
Cummings model) and the ultrastrong coupling/driving
regimes that have attracted increasing theoretical and
experimental interest in recent years. As the full quan-
tum Hilbert space structure is preserved in the process
of taking the semiclassical limit, the method provides a
natural framework for calculating quantum corrections
to the semiclassical dynamics. This will enable studies
of the effect of field quantisation on operations where a

classical driving field is usually assumed, a situation of
considerable experimental relevance in cavity and circuit
QED and related quantum technologies.
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SUPPLEMENTAL MATERIAL

Derivation of the semiclassical Bessel-function expansion

Here we show how the Bessel-function form of the semiclassical Rabi Hamiltonian [Eq. (3)] is derived using a unitary
transformation. Transforming Eq. (1) with the operator defined in Eq. (2) produces

H̃sc = Ûsc
†
(t)HscÛsc(t)− iÛsc

†
(t)
dÛsc(t)

dt
= 1

2Ωσ̂z exp[−i(4A/ω0)σ̂x sinω0t].

(12)

Applying the Bessel function identity

exp(iz sin θ) =

∞∑
p=−∞

Jp(z)e
ipθ, (13)

H̃sc may then be written as

H̃sc =
1
2Ωσ̂z

∞∑
p=−∞

Jp

[
−4A

ω0
σ̂x

]
eipω0t. (14)

Since Jp(z) contains only odd (even) powers of z for p odd (even), this simplifies to

H̃sc =
1
2Ωσ̂z

∞∑
p=−∞

J2p(4A/ω0)e
i(2p)ω0t − 1

2Ωσ̂z

∞∑
p=−∞

J2p+1(4A/ω0)e
i(2p+1)ω0tσ̂x. (15)

Finally, using the identity J−p(x) = (−1)pJp(x) for integer p, Eq. (3) is obtained.

Derivation of the quantum Bessel-function expansion

To derive the Bessel-function expansion of the quantum Rabi model, we begin by transforming the Hamiltonian,
Eq. (4) with the spin-dependent displacement operator given in Eq. (5):

H̃q = D̂†
[
− λ

ω0
σ̂x

]
HD̂

[
− λ

ω0
σ̂x

]
= ω0â

†â− λ2

ω0
+ 1

2Ωσ̂zD̂

[
−2λ

ω0
σ̂x

]
.

(16)

https://doi.org/10.1103/PhysRevA.89.033845
https://doi.org/10.1103/PhysRevA.79.032328
https://doi.org/10.1103/PhysRevA.79.032328
https://doi.org/10.1088/978-0-7503-3447-1
https://doi.org/10.1088/978-0-7503-3447-1
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Using the Campbell-Baker-Hausdorff theorem, the remaining displacement operator in Eq. (16) may be written in
the normal-ordered form

D̂

[
−2λ

ω0
σ̂x

]
= exp

[
−2λ

ω0
σ̂x(â

† − â)

]
= e−χ2/2e−χσ̂xâ

†
eχσ̂xâ, (17)

where χ ≡ 2λ/ω0. Expanding the exponentials, the transformed Hamiltonian becomes

H̃q = ω0â
†â− λ2

ω0
+ 1

2Ωσ̂ze
−χ2/2

[
1− χσ̂xâ

† +
1

2!
χ2â†2 − 1

3!
χ3σ̂xâ

†3 + . . .

] [
1 + χσ̂xâ+

1

2!
χ2â2 +

1

3!
χ3σ̂xâ

3 + . . .

]
.

(18)
The last term may be split into two sets of terms: one that depends on σ̂z and one that depends on σ̂y. The
Hamiltonian can then be written simply as

H̃ = ω0â
†â− ω0χ

2

4
+ H̃z + H̃y, (19)

where

H̃z =
1

2
Ωe−χ2/2σ̂z

[
1− χ2â†â+

1

2!
χ2â†2 +

1

2!
χ2â2 +

1

(2!)2
χ4â†2â2 − 1

3!
χ4â†3â− 1

3!
χ4â†â3

+
1

4!
χ4â†4 +

1

4!
χ4â4 +O(χ6)

]
,

(20)

H̃y =
i

2
Ωe−χ2/2σ̂y

[
−χâ† + χâ+

1

2!
χ3â†2â− 1

2!
χ3â†â2 − 1

3!
χ3â†3 +

1

3!
χ3â3 − 1

3!2!
χ5â†3â2 +

1

3!2!
χ5â†2â3

+
1

4!
χ5â†4â− 1

4!
χ5â†â4 − 1

5!
χ5â†5 +

1

5!
χ5â5 +O(χ7)

]
.

(21)

Let us now move to a rotating frame with respect to the field Hamiltonian, using the transformation Û(t) =
exp(iω0tâ

†â). In this frame, H̃z becomes

H̃z(t) = Û(t)H̃zÛ
†(t)

= 1
2Ωe

−χ2/2σ̂z

[
1− χ2â†â+

1

2!
χ2(â†2e2iω0t + â2e−2iω0t) +

1

(2!)2
χ4â†2â2 − 1

3!
χ4(â†3âe2iω0t + â†â3e−2iω0t)

+
1

4!
χ4(â†4e4iω0t + â4e−4iω0t) +O(χ6)

]
.

(22)

Collecting together terms with the same time dependence, it becomes evident that all terms with frequency ±nω0

create a net change of n photons in the field. For example, the time-independent terms in the interaction picture
correspond to zero-photon transitions (in the displaced basis), which simply modify the qubit frequency:

H̃(0)
z (t) = 1

2Ωe
−χ2/2σ̂z

[
1− χ2â†â+

1

(2!)2
χ4â†2â2 +

1

(3!)2
χ6â†3â3 + . . .

]
= 1

2Ωe
−χ2/2σ̂z

∞∑
m=0

(−1)mχ2m

(m!)2
â†mâm.

(23)

The sum can be evaluated in closed form using the identity

Jp(z) =

∞∑
m=0

(−1)m(z/2)2m+p

m!(m+ p)!
, (24)

where Jp(z) is a Bessel function of the first kind. The zero-photon Hamiltonian then becomes

H̃(0)
z (t) = 1

2Ωe
−χ2/2σ̂z :J0(2χ

√
â†â):, (25)
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where :: denotes normal-ordering without the use of commutators, e.g. :ââ†: = â†â. In a similar fashion, the higher
order terms in H̃z(t) can be written in terms of Bessel functions, giving

H̃z(t) =
1
2Ωe

−χ2/2σ̂z :J0(2χ
√
â†â): +1

2Ωe
−χ2/2σ̂z

∞∑
p=1

:
J2p(2χ

√
â†â)

(
√
â†â)2p

[e2ipω0tâ†2p + e−2ipω0tâ2p]: . (26)

H̃y(t) may be treated in the same way, with the result

H̃y(t) = − i
2Ωe

−χ2/2σ̂y

∞∑
p=0

:
J2p+1(2χ

√
â†â)

(
√
â†â)2p+1

[ei(2p+1)ω0tâ†2p+1 − e−i(2p+1)ω0tâ2p+1]: . (27)

These terms may now be put back into Eq. (19). In the rotating frame, the ω0â
†â term is eliminated from the

Hamiltonian. Writing iσ̂y = σ̂zσ̂x and noting that σ̂p
x = 1 for even p, the H̃z(t) and H̃y(t) terms may be combined

into a single summation, giving the Hamiltonian

H̃q(t) = −ω0χ
2

4
+ 1

2Ωe
−χ2/2σ̂z :J0(2χ

√
â†â): + 1

2Ωe
−χ2/2σ̂z

∞∑
p=1

(−σ̂x)p :
Jp(2χ

√
â†â)

(
√
â†â)p

[eipω0tâ†p+(−1)pe−ipω0tâp]: . (28)

Replacing χ by 2λ/ω0 produces the final form given in Eq. (7).

Treating the displacement operator as a spin transformation

The spin-dependent displacement operator given in Eq. (5) may be interpreted equivalently as a field-dependent
transformation on the spin operators. Writing it in the form

D̂

[
− λ

ω0
σ̂x

]
= cosh

[
− λ

ω0
σ̂x(â

† − â)

]
+ sinh

[
− λ

ω0
σ̂x(â

† − â)

]
= cosh

[
− λ

ω0
(â† − â)

]
+ σ̂x sinh

[
− λ

ω0
(â† − â)

]
,

(29)

the transformed Hamiltonian in the rotating frame may be expressed as

H̃q = −λ
2

ω0
+ 1

2Ωσ̂z cosh

[
−2λ

ω0
(eiω0tâ† − e−iω0tâ)

]
+ i

2Ωσ̂y sinh

[
−2λ

ω0
(eiω0tâ† − e−iω0tâ)

]
. (30)

Noting that the expectation value ⟨−(2λ/ω0)(e
iω0tâ† − e−iω0tâ)⟩ is a purely imaginary number, this may be thought

of as a rotation of the spin operators, where the angle of the rotation depends on the field.
It is interesting to examine what happens when the ‘standard’ procedure for deriving a corresponding semiclassical

model is used on this form of the quantum Hamiltonian. Apply the replacement â† → α∗, â → α and define
α = |α|e−iϕ, so that

eiω0tâ† − e−iω0tâ→ 2i|α| sinϕ sin(ω0t). (31)

Putting this back into the Hamiltonian and expanding the hyperbolic functions in terms of exponentials,

H̃ = −λ
2

ω0
+ 1

2Ωσ̂z {exp[−4iλ|α| sinϕ sin(ω0t)] + exp[4iλ|α| sinϕ sin(ω0t)]}

+ i
2Ωσ̂y {exp[−4iλ|α| sinϕ sin(ω0t)]− exp[4iλ|α| sinϕ sin(ω0t)]} .

(32)

Utilising the Bessel function identity (13) and noting again that Jp(−x) = (−1)pJp(x) and that σ̂zσ̂
p
x = σx for p even

and iσ̂y for p odd, the Hamiltonian becomes

H̃ = −λ
2

ω0
+ 1

2Ωσ̂zJ0(4λ|α|/ω0) +
1
2Ωσ̂z

∞∑
p=1

(−σ̂x)pJp(4λ|α|/ω0)[e
ipϕeipω0t + (−1)pe−ipϕe−ipω0t]. (33)
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Comparing with Eq. (3), it is evident that ϕ = 0 corresponds to the same choice of phase for the driving field as in
the original semiclassical Hamiltonian, Eq. (1).

Interestingly, this form differs from both Eq. (3) and Eq. (7). The constant term −λ2/ω0 originates from the appli-
cation of the quantum displacement transformation and hence appears in Eqs. (33) and (7) but not in Eq. (3), which
was derived directly from the semiclassical Rabi Hamiltonian via the semiclassical transformation (2). As discussed

in the main text, Eq. (7) contains an additional factor of e−2λ2/ω2
0 arising from the normal-ordering procedure.

We see, then, that two mathematically equivalent forms of the quantum Hamiltonian, which differ only in the
ordering of the quantum field operators, give rise to different semiclassical Hamiltonians when the standard recipe is
followed. There is no a priori reason for preferring one ordering over another. One might suppose normal ordering
to be associated with the semiclassical limit given that taking the expectation value ⟨α|f (N)(â, â†)|α⟩ of a normal-
ordered function f (N)(â, â†) in a coherent state |α⟩ is equivalent to replacing â (â†) by α (α∗) [63], but this is only
indicative and does not provide a mathematically rigorous justification for using this replacement procedure to derive
the semiclassical model. The discrepancies between the three forms may be resolved by letting λ → 0. This further
supports the assertion that a robust procedure for deriving a well-defined semiclassical limit of the quantum model
must include taking the limit of vanishing quantum coupling.

Derivation of matrix elements in the displaced Fock-state basis

In this section we outline the derivation of the matrix elements of the transformed quantum Hamiltonian H̃q in the
displaced Fock-state basis |α, n⟩. For simplicity, here we work with the time-independent version of the Hamiltonian.
Several identities and relations will be used in the following derivation. The displaced Fock state |α, n⟩ may be

equivalently expressed as

|α, n⟩ = D̂(α)|n⟩ = D̂(α)
(â†)n√
n!

|0⟩. (34)

The power series form of the normal-ordered, operator-valued Bessel functions that appear in Eq. (7) is

:
Jp(2χ

√
â†â)

(
√
â†â)p

[
â†p + (−1)pâp

]
: =

∞∑
l=0

(−1)lχ2l+p

l!(l + p)!

[
â†l+pâl + (−1)pâ†lâl+p

]
. (35)

A most useful identity for working with field operators in normal ordering is [63]

ânf (N)(â, â†) = :
(
â+

∂

∂â†

)n

f (N)(â, â†):, (36)

where f (N)(â, â†) denotes a normal-ordered function, i.e. all factors of â† appear to the left of all factors of â. After
some manipulation, the relation

âmf (N)(â, â†)â†n = :
(
â+

∂

∂â†

)m
[(
â† +

∂

∂â

)n

f (N)(â, â†)

]
:

=

m∑
j=0

n∑
k=0

m!n!

j!(m− j)!k!(n− k)!
:
∂j

∂â†j

(
â†n−k ∂

k

∂âk
f (N)(â, â†)

)
âm−j :

(37)

may be obtained. The expectation value of f (N)(â, â†) in a coherent state |α⟩ (including the vacuum state |0⟩) may
be computed by simply replacing â (â†) by the coherent-state amplitude α (α∗):

⟨α|f (N)(â, â†)|α⟩ = f (N)(α, α∗). (38)

We wish to calculate the matrix element

Tm,n
p ≡ ⟨α,m| :Jp(2χ

√
â†â)

(
√
â†â)p

(
â†p + (−1)pâp

)
:|α, n⟩. (39)

Inserting the form of the state given in Eq. (34) and the power series form of the operator from Eq. (35), then carrying
out the displacement transformation on the inner set of operators, this becomes

Tm,n
p =

∞∑
l=0

(−1)lχ2l+p

l!(l + p)!
√
m!n!

⟨0|âm
[
(â† + α∗)l+p(â+ α)l + (−1)p(â† + α∗)l(â+ α)l+p

]
â†n|0⟩

= T1 + (−1)pT2.

(40)
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From this point, the strategy is to put the operators into normal order and evaluate the expectation value in the state
|0⟩, then carry out the summations in order to express the matrix element in closed form.
Beginning with T2, applying Eq. (37) gives

⟨0|âm(â† + α∗)l(â+ α)l+pâ†n|0⟩ = ⟨0|
m∑
j=0

n∑
k=0

m!n!

j!(m− j)!k!(n− k)!
:
∂j

∂â†j

[
â†n−k ∂

k

∂âk
(â† + α∗)l(â+ α)l+p

]
âm−j :|0⟩

= ⟨0|
n∑

k=0

n!

k!(n− k)!

∂m

∂â†m
[
â†n−k(â† + α∗)l

] ∂k

∂âk
(â+ α)l+p|0⟩,

(41)

where the second line follows because the term âm−j acting on |0⟩ gives 0 unless m = j. Expanding the â† derivative
term,

⟨0|âm(â† + α∗)l(â+ α)l+pâ†n|0⟩

= ⟨0|
n∑

k=0

n!

k!(n− k)!

m∑
i=0

m!

(m− i)!i!

[
∂i

∂â†i
â†n−k

] [
∂m−i

∂â†m−i
(â† + α∗)l

] [
∂k

∂âk
(â+ α)l+p

]
|0⟩. (42)

For i > n− k, the leftmost derivative evaluates to 0, whereas for i < n− k there will be at least one â† acting on ⟨0|,
causing it to vanish. Hence only the i = n− k term contributes:

⟨0|âm(â† + α∗)l(â+ α)l+pâ†n|0⟩ = ⟨0|
n∑

k=0

n!m!

k!(n− k)!(m− n+ k)!

[
∂m−n+k

∂â†m−n+k
(â† + α∗)l

] [
∂k

∂âk
(â+ α)l+p

]
|0⟩. (43)

Note that the derivative terms will equal zero if m− n+ k > l or k > l+ p. This implies that the lower bound of the
sum on l will be equal to the smaller of k+m−n and k− p when the expectation value is inserted back into T2. The
derivatives may be readily evaluated and the expectation value calculated by replacing â and â† by 0.

Taking the case m− n > p, we now have

T2 =

∞∑
l=k+m−n

(−1)lχ2l+p

l!(l + p)!
√
m!n!

n∑
k=0

n!m!

k!(n− k)!(m− n+ k)!

[
l!

(l −m+ n− k)!
(α∗)l−m+n−k

] [
(l + p)!

(l + p− k)!
αl+p−k

]
.

(44)
Shifting indices to j = l − k −m+ n and rearranging factors leads to

T2 =

√
n!

m!
(−χ)m−n αp+m−n

|α|p+m−n

n∑
k=0

(−1)km!

k!(n− k)!(m− n+ k)!
χ2k

∞∑
j=0

(−1)jχ2j+m−n+p

(j + p+m− n)!j!
(α∗α)j+(p+m−n)/2

=

√
n!

m!
(−χ)m−n αp+m−n

|α|p+m−n
Lm−n
n (χ2)Jp+m−n(2χ|α|),

(45)

where the last line follows from the power series definitions of the Laguerre polynomials and Bessel functions of the
first kind. For p > m− n, an identical expression is obtained as long as m ≥ n.

The calculation for T1 is carried out in the same way, with the result

T1 =

√
n!

m!
χm−n (α

∗)p−m+n

|α|p−m+n
Lm−n
n (χ2)Jp−m+n(2χ|α|). (46)

Having worked out Tm,n
p = T1 + (−1)pT2, the Hamiltonian matrix elements given in Eq. (9) are easily written down.

Examining the limiting procedure in the Fock-state basis

To illustrate the importance of the choice of basis and the particular form of the limits, we examine whether a
similar technique can be applied to the Hamiltonian in the basis of Fock states. In the rotating frame, Eq. (6) becomes
(omitting the constant term for simplicity)

⟨n+ k|D̂†
(
− λ

ω0
σ̂x

)
Ĥq(t)D̂

(
− λ

ω0
σ̂x

)
|n⟩ = 1

2Ωσ̂zσ̂
k
xe

ikω0te−2λ2/ω2
0
(
− 2λ

ω0

)k√ n!
(n+k)!L

k
n

(
4λ2

ω2
0

)
. (47)
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Scaling the coupling as λ = A/
√
n and expanding the square root of the factorial as[

n!

(n+ k)!

]1/2
= n−k/2

[
1− k(k + 1)

2n
+O(n−2)

]1/2
, (48)

we obtain

⟨n+k|D̂†
(
− λ

ω0
σ̂x

)
Ĥq(t)D̂

(
− λ

ω0
σ̂x

)
|n⟩ = 1

2Ωσ̂zσ̂
k
xe

ikω0te−2A2/nω2
0

(
− 2A√

nω0

)k

n−k/2
[
1 +O(n−1)

]1/2
Lk
n

(
4A2

nω2
0

)
. (49)

Using the asymptotic relation [45] limn→∞[n−pLp
n(x/n)] = x−1/2pJp(2

√
x), the limit of the matrix elements becomes

lim
n→∞

⟨n+ k|D̂†
(
− λ

ω0
σ̂x

)
Ĥq(t)D̂

(
− λ

ω0
σ̂x

)
|n⟩ = 1

2Ωσ̂z(−σ̂x)
keikω0tJk

(
4A
ω0

)
. (50)

While the resulting expressions take the same form as the terms in H̃sc(t), certain conceptual difficulties ensue. Unlike
Eq. (10), Eq. (50) is not diagonal in the field states. Furthermore, the amplitude A depends on the photon number
as λ

√
n, rather than being a constant as one would expect for a semiclassical field.

These points are typically addressed [15, 24, 25] by assuming a field with a large average number of photons n̄ and a
strongly peaked distribution, such as a coherent state. For photon numbers n ≈ n̄,

√
n+ k =

√
n+k/2

√
n+O(n−3/2) ≈√

n̄ for values of k ≪ n̄, so that A becomes approximately independent of n. Furthermore, for a strongly peaked
distribution, the amplitudes of the field components |n + k⟩ drop off rapidly with k, so that in the limit of large n̄
only the diagonal terms contribute substantially to the resulting dynamics of the two-level system. Polonsky and
Cohen-Tannoudji [24] employed such reasoning to show that the semiclassical Bessel-function dynamics of a two-level
system could be derived from the fully quantized model for an initial coherent state of the field, for large n̄ and small
λ.

An additional complication in the Fock-state case is that the asymptotic relationship between the Laguerre poly-
nomials and Bessel functions is not unique. Szegő [64, Eq. (8.22.4)] gives the asymptotic formula

e−x/2xp/2Lp
n(x) = N−p/2Γ(n+ p+ 1)

n!
Jp[2(Nx)

1/2] +O(np/2−3/4), (51)

where N = n + (p + 1)/2. This produces a classical amplitude proportional to
√
n+ (k + 1)/2 rather than

√
n.

Ashhab [49] deduced the same scaling based on numerical comparisons between the semiclassical and quantum Rabi
frequencies for k-photon resonance, although he appears to have been unaware of Szegő’s asymptotic expression.
While it can certainly be argued that n̄ ≫ (1, k) in the semiclassical limit and hence the difference is negligible, the
fact that the argument of the Bessel function depends not only on the (average) photon number but also on the
photon number difference presents a further conceptual sticking point when working in the Fock-state basis.

In our approach, these problems are neatly avoided by working in the displaced basis and taking |α|, rather than
n or n̄, to infinity. All of the relevant statistical properties of the field are contained in the choice of basis, so
no additional assumptions need to be imposed externally. As α is an arbitrary c-number parameter, there is no
mathematical difficulty involved in taking its limit to infinity. The resulting Hamiltonian takes a separable form in
which the quantum field component reduces to the identity; the formal structure of the Hilbert space is preserved,
but the quantization of the field has no effect on the dynamics of the system.

Deriving the semiclassical transformation from the quantum operator

In the rotating frame, Eq. (5) becomes

D̃
(
− λ

ω0
σ̂x

)
= exp

[
− λ

ω0
σ̂x(e

iω0tâ† − e−iω0tâ)
]
. (52)

Applying the displacement,

D̂†(α)D̃
(
− λ

ω0
σ̂x

)
D̂(α) = exp

[
− λ

ω0
σ̂x

(
α∗eiω0t − αe−iω0t

)]
D̃

(
− λ

ω0
σ̂x

)
. (53)

The matrix elements of D̃
(
− λ

ω0
σ̂x

)
are next evaluated in the basis |n⟩ ⊗ |±z⟩, where |n⟩ are Fock states of the field

and σ̂x|±x⟩ = ±|±x⟩:

⟨±x| ⊗ ⟨n+ k|D̃
(
− λ

ω0
σ̂x

)
|n⟩ ⊗ |±x⟩ = e±(λ/ω0)

2/2
(
± λ

ω0

)k √
n!

(n+k)!L
k
n

(
λ2

ω2
0

)
, (54)

⟨∓x| ⊗ ⟨n+ k|D̃
(
− λ

ω0
σ̂x

)
|n⟩ ⊗ |±x⟩ = 0. (55)
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In the limit λ→ 0, the left-hand side of Eq. (54) reduces to δk,0. Hence, the end result of following the procedure is

lim
λ→0,|α|→∞

D̂†(α)D̃
(
− λ

ω0
σ̂x

)
D̂(α) = exp

[
− λ

ω0
σ̂x

(
α∗eiω0t − αe−iω0t

)]
⊗

∑
n

|n⟩⟨n|

= Ûsc(t)⊗ Îf .

(56)

The standard recipe for obtaining the semiclassical equations, applied to Eq. (52), also correctly yields the semiclassical
transformation operator. However, it is interesting to note that if the quantum operator is first written in normal
order, a naive application of the usual method leads to an additional factor e−2λ2/ω2

0 . Taking the limit λ → 0 is
then necessary to resolve the discrepancy (as tangentially noted in [25, pp. 487–8]). No such ambiguity arises in the
procedure outlined here.
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