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Abstract  –  We demonstrate shape classification of deeply subwavelength objects with accuracy 

exceeding 90% by machine learning analysis of far-field scattering patterns. 

 

Reconstruction of an object based on its far-field scattering pattern is an ill-posed problem placing 

fundamental limits in imaging and microscopy. Recently, artificial intelligence approaches have been put 

forward as means to surpass such limitations, promising imaging at resolution orders of magnitude beyond the 

~λ/2 diffraction limit [1]. Here, we show that a neural network processing of far-field scattering patterns allows 

shape classification of deeply subwavelength objects (<λ/2) with accuracy better than 90%.  

We demonstrate shape classification by numerical experiments, in which a plane wave is scattered through an 

aperture of unknown size and shape in an opaque screen (see Fig. 1a).  The size of the aperture ranges between 

λ/10 and λ/2, while its shape is selected from 11 different geometrical shapes: circle, equilateral triangle, square, 

hexagon, ellipsis, zigzag, line, rectangle, ring, star and Y-shape. The aperture is positioned at the center of the 

opaque screen and is illuminated with a linearly polarised monochromatic plane wave. A dataset of 50,000 two-

dimensional diffraction patterns is then recorded at a distance of 2λ with a field of view of 15λx15λ. 

Classification of geometry shapes is performed by a fully-connected neural network, which contains 8 dense 

layers. 80% of data (40,000 samples) was used for training, 10% (5,000 samples) - for validation and the 

remaining 10% (5,000) - for testing. Typical diffraction patterns for different objects of size λ/3 are depicted in 

Fig. 1b. Although the diffraction patterns for all three objects appear similar, a closer look reveals differences in 

the scattered field distribution (see Fig. 1b right column). 

 

 
 

Fig. 1. (a) Schematic illustration of the subwavelength object classification process. An aperture of randomly selected 
geometrical shape in an opaque screen is illuminated with an x-polarized plane wave. The diffraction pattern is collected at 
the distance z=2λ away from the object and then fed into a neural network, which retrieves the shape of the object. (b) 
Diffraction patterns from three different objects (circle, triangle and square of the same size λ/3 placed at the centre of the 
field of view (FOV)) and their differences from the reference (circle of size λ/3). All diffraction patterns and differences are 
normalized to their maximum value. The FOV is 15λx15λ. 
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Results of the shape classification are presented in the form of a confusion matrix. The horizontal axis represents 

the predicted shapes, and the vertical axis represents the true labels. For example, the first row (hexagon) 

indicates that 82% of the images labelled as hexagon are correctly classified, while 18% were wrongly classified 

as stars. All elements in each row are normalised to the number of true shapes corresponding to this row. 

Overall, the accuracy of the classification process, i.e. the number of correctly classified objects over the total 

number of objects in the dataset, is 95%. Here we see that the most challenging task for the network is to 

distinguish hexagons from stars, which we attribute to the hexagonal symmetry of both shapes and the finite 

spatial resolution in our numerical calculations (λ/40). On the other hand, lines, zigzags and rings are the most 

distinguishable shapes. To further characterize the performance of our approach, we employ precision and recall 

as metrics. Precision for a given class (shape) is defined as the ratio of the number of objects correctly classified 

in the given class (true positives) over the total number of objects, correctly and incorrectly classified in the 

given class (true positives and false positives). Similarly, recall for a given class is defined as the ratio of thea 

number of objects correctly classified in the given class (true positives) over the total number of objects 

belonging to the given class (true positives and false negatives). To understand the limits of the technique we 

studied how the performance of the method depends on the number of shapes and the dataset size. The results of 

this study are depicted in Fig. 2b. The overall accuracy decreases with the growing number of geometry shapes 

and increases with the dataset size (number of samples for training, validation and test, added together). Thus, to 

achieve overall accuracy over 90% for two shapes a dataset of 1,000 samples is needed, while for 5 and 10 

shapes the required dataset size grows to 5,000 and 50,000, respectively. 

 

 
 

Fig. 2. (a) Performance of the shape classification process quantified by accuracy (left) and precision and recall (right). 
The classification was performed for the dataset of 11 different shapes containing 5,000 samples (test dataset). The number of 
samples of each shape is different within 10%. (b) Dependence of accuracy on the dataset size and the number of shapes. 
Shapes were arranged in the datasets in the following order: circle and square were in the initial dataset of 2 shapes, then, 
subsequently, triangle, rectangle, ellipsis, hexagon, zigzag, line, ring, star and Y-shape were added. 

 

In conclusion, we demonstrate the classification of deeply subwavelength objects in terms of their geometrical 

shape with accuracy better than 90%. Our approach is based on processing far-field diffraction patterns by 

artificial intelligence. The proposed technique may find applications in biomedical sciences and nanotechnology. 
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