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Abstract

Improving timeliness is ever more urgent for official statistic, not least
due to the potentials of various non-survey big data that in principle can be
made more quickly available than traditional sample surveys. Taking Retail
Turnover Index as the case-in-point, we develop new approaches of model
learning aimed to achieve flash estimation of acceptable accuracy, as well
as the associated methods of uncertainty assessment, when one does not
have the target observations that would have been required for unbiased
inference by established statistical theories. Applications to the Norwegian
data will be used to demonstrate the efficacy of our proposals.

Keywords: Augmented learning, quasi transfer learning, validation of model
or learning, error prediction

1 Introduction
Using non-survey big data to produce rapid estimates of economic indicators
has attracted attention in the recent years. See Baldacci et al. (2016) and Eu-
rostat (2017) for two early overviews on the relevant background, methods and
challenges, from the perspective of official statistics and under the auspices of
Eurostat and United Nations.

Figure 1 shows the Norwegian Retail Turnover Index (RTI) in the years 2019
and 2020, together with an index calculated from retail transactions directly.
This ‘transaction index’ was made available due to the emergency of the covid
pandemic in 2020. It is based on the payment total of all domestic debit cards
and one major internet payment platform. The ratio Ĩt−1,t/It−1,t between the
month-on-month transaction index Ĩt−1,t and RTI It−1,t, where t denotes month,
is given in Figure 1 and the five largest fluctuations are marked. Although the
two indexes are well correlated, the ratio between them fluctuates too much
for the transaction index to be accepted as official statistics, given its obvious
error sources pertaining to coverage, measurement, business unit delineation
and population domain classification. For instance, by definition retail trade
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Figure 1: Retail Turnover Index (solid) and a transaction index (dashed) in
Norway over 24 months in 2019 and 2020. Five largest fluctuations of month-
on-month index ratio between them (dotted) marked by vertical lines (1, ..., 5).

turnover comprises the total invoiced by the statistical unit during the ref-
erence period. It includes all charges such as packaging and transport but
excludes VAT and similar deductible taxes; but the deductible taxes cannot be
separated from the debit card payment transaction totals.

This exemplifies a situation where some survey data may still be necessary
for producing official statistics, in addition to relevant and timely big data.
However, to shorten the lag between dissemination time point and statistical
period, one may be prepared to ‘give up waiting’ on the sample units that have
not yet responded, if the available non-survey big data can compensate for the
loss of information, thereby making flash estimation or nowcasting possible.
For instance, Fornaro and Luomaranta (2020) combine traffic volume records
with early available firm data for nowcasting Finnish quarterly Gross Domestic
Product and Trend Indicator of Output.

For our focus in this paper, the Norwegian RTI for NACE45-47 is currently
published by the 30th day after the calendar month t, denoted by t+30. NACE
is the statistical classification of economic activities in the European Commu-
nity and is the subject of legislation at the European Union level. By NACE45-
47, we refer to G45 - Wholesale and retail trade and repair of motor vehicles
and motorcycles, G46 - Wholesale trade, except of motor vehicles and motor-
cycles, and G47 - Retail trade, except of motor vehicles and motorcycles. For
each month t, the survey sample has two parts, where st denotes the self-
representing (or take-all) units with inclusion probability one, and rt denotes
the rest take-some units with inclusion probability less than one. The units
in st are larger on average; more importantly, they mostly belong to business
chains, for which the turnover values can be obtained quickly from the chain
headquarters, whereas it takes longer for many units in rt to respond.

Thus, in order to achieve flash estimation at an earlier time point, as well
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as to reduce response burden and processing cost, we propose to investigate
model-based estimation given only the take-all sample in NACE47 and with the
help of all available transactions and administrative data. If feasible, then no
sample units will be needed from outside the take-all units, which amounts to
adopting a purposive sampling design.

Note that we approach flash estimation as a problem of prediction for the
unobserved or out-of-sample units. This allows one to make use of past sur-
vey and non-survey data at the business unit level in a flexible manner, and
enables novel statistical learning approaches. Since the unit-level prediction
errors can be gauged retrospectively, e.g. by comparisons to the VAT turnover
values, the approach provides also means to detect outliers and other anoma-
lies, which can be helpful for the maintaining and updating the purposive sam-
ple that still needs to be surveyed directly.

Note also that the focus on NACE47 at this stage has two reasons. First, the
RTI used to be limited to NACE47 before its scope was extended in 2021, and
many users actually are still interested in the RTI for NACE47. Second, Statis-
tics Norway currently have only access to debit card transactions data, which
have the highest share among all payment transactions in NACE47, while the
other forms of payment have a greater share in NACE45-46. Confidentiality of
personal data is protected as the transactions are aggregated for each business
unit by the debit card payment service operators, and only the totals for each
business unit are delivered to Statistics Norway.

In short, we shall consider the strategy of model-based flash RTI using
purposive sampling and debit card transactions for NACE47. Provided the
turnover values can be obtained from most of the take-all units by t+7, it is
envisaged that the Retail Volume Index for NACE47 can be produced by t+15,
allowing for the necessary post-RTI processing. This will halve the 30-day lag of
dissemination that is common internationally, while at the same time reducing
survey response burden and processing cost.

However, the feasibility of this strategy depends on whether (model) learning
can be organised in a fruitful way in the case of purposive sampling, which
means that no target observations (of turnover) are at all available for the non-
take-all units at the time of flash estimation.

We shall formulate and investigate two new learning approaches. First, by
adapting a loss function that bears some semblance to regularisation, such
as LASSO (Tibshirani, 1996), we devise augmented learning that allows one to
learn from both the past non-take-all units and current take-all units. Next,
taking inspirations from the field of transfer learning (e.g. Pratt, 1996; Ng,
2016), we formulate quasi transfer learning for situations where observations
of the target model can only become available retrospectively.

Although in concept neither form of learning can yield unbiased prediction
for the unobserved units, they may be able to reduce the errors of learning
only from the purposive sample (which is also biased generally). Moreover, in
addition to explaining how the chosen model and learning approach can be
validated retrospectively based on relevant VAT data from tax administration,
we shall develop a novel approach to real-time error prediction for the flash RTI.
In particular, two key points of this error prediction approach applies generally
to flash estimation: (a) error prediction is a distinct learning task to outcome
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prediction because, in the absence of relevant target observations, one cannot
pretend that the adopted model would yield unbiased prediction of the target
outcome (such as turnover here) and derive the associated uncertainty as a by-
product of the outcome model, (b) to improve the efficiency of error prediction
one should utilise observed unit-level prediction errors in the past just like one
would use observed past outcomes for outcome prediction.

The ideas above will be developed in Section 2 and applied in Section 3 to the
Norwegian data in years 2019-2022. Some final remarks on implementation
and future research topics will be given in Section 4.

2 Methods
We shall consider the following generic setup for flash estimation. Denote by y
the target outcome and x the associated features. Denote by µ(x, s) a predictor
for any unit with features x, which is learned from {(yi, xi) : i ∈ s}, where s
is the training sample of observations. Denote by R a target set of units with
known xj, ∀j ∈ R and s∩R = ∅, for which the predicted y-values are of interest.
However, it is known that µ(x, s) is biased for {yj : j ∈ R}, because yj for j ∈ R
and yi for i ∈ s do not have the same distribution conditional on xj and xi.

In terms of the Norwegian RTI, y is the retail turnover value excluding VAT,
whereas one may include in x turnover values according to the VAT register
and debit card payment totals. The transactions data improve the timeliness
of feature since VAT turnover values are only available with a delay of several
months, whilst the payment transaction totals are available for the month t
before t+7. (More details of these features will be given in Section 2.2.) Notice
that for a unit that has both observed VAT turnover and transaction total,
its survey turnover value often differs to its VAT turnover value reported to
the tax authority, and both these turnovers will surely differ to the payment
transaction total that includes VAT or other surcharges.

As a simplistic approach of learning for flash estimation, one may obtain
µ(x, st) only based on the take-all units that are available by t+7, which yields
ŷj = µ(xj, st) for any j /∈ st. The approach is called simplistic not only because
µ(x, st) is known to be biased for the units outside st but also because it provides
naturally a baseline of comparison. Below we consider two learning approaches
that aim to reduce the bias of the simplistic approach.

2.1 Augmented Learning
Given a constant γ > 0, let the augmented loss function be

L(s ∪ r∗; γ) =
∑
i∈s

{µ(xi)− yi}2 + γ
∑
j∈r∗

{µ(xj)− y∗j}2 (1)

where r∗ denotes a set of units that are similar to or even overlap with those in
R, but y∗j is a proxy to the target observation yj including when j ∈ r∗ ∩R. The
values {(xj, y

∗
j ) : j ∈ r∗} may either be contemporaneous with {(xi, yi) : i ∈ s} or

from some earlier time points. For predicting {yj : j ∈ R}, where s ∩ R = ∅, we
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would like to investigate whether µ(x) obtained from minimising L(s∪r∗; γ) may
improve simplistic learning that minimises the loss function

L(s) =
∑
i∈s

{µ(xi)− yi}2 (2)

Note that the augmented loss (1) is not a form of regularisation (e.g. Hastie
et al., 2001), because the second term involving γ is not a penalty introduced to
reduce the variance of unconstrained learning from s, such as when the size of
s is small compared to the number of unknowns in µ(x). Rather, augmenting
s by r∗ in (1) primarily aims to reduce the bias of learning only from s, by
incorporating the additional observations {(xj, y

∗
j ) : j ∈ r∗} that may resemble

the unobserved {(xj, yj) : j ∈ R} for the purpose of model learning.
Now, in the case of linear predictor µ(x) = x⊤β, the estimator β̂ minimising

(1) is given by

β̂ = (
∑
i∈s

xix
⊤
i + γ

∑
j∈r∗

xjx
⊤
j )

−1(
∑
i∈s

xiyi + γ
∑
j∈r∗

xjy
∗
j ) (3)

This is the same as minimising (2) based on an augmented sample

s∗ = r∗ ∪ s ∪ · · · ∪ s

instead of s, where s is duplicated γ−1 times in s∗ (if practically possible).
The equivalence between working with the augmented loss L(s∪r∗; γ) and the

simple loss L(s∗) based on an augmented sample can be exploited practically.
For an arbitrary model or algorithm µ, one can obtain µ(x, s∗) by training on
an augmented sample s∗ using standard softwares, instead of working with
L(s∪ r∗; γ) which may require weighting the observations or other adjustments
that are not necessarily implemented by the available software. Instead of
choosing a value for γ, one can directly experiment with how to mix s with
other units that may be relevant. We refer to this as augmented learning, i.e.
minimise L(s∗) given by (2) based on

s∗ = s ∪ r∗, {(xi, yi) : i ∈ s}, {(xj, y
∗
j ) : j ∈ r∗}. (4)

2.2 Turnover flash estimation by augmented learning
To obtain a turnover flash estimator for each month t, consider augmented
learning that is targeted at the units in Rt = Ut \ st immediately after {yi : i ∈ st}
become available, where Ut denotes the target population for month t (whether
or not it is actually held fixed over any given period in practice).

Let yti be the turnover of business unit i in month t. Let the associated
feature vector xti be selected from the VAT turnovers and debit card payment
totals. The VAT register is updated every two months in Norway. At a given
month t, the 6 most recent VAT turnover values would cover a 12-month period,
which dates backwards from 3 or 4 months before t. The debit card payment
total is available on a daily basis, including the month t of interest.
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Next, for each month t, let the augmented sample be given as

s∗t = st ∪ r∗t (5)

There are two settings for r∗t . In setting-I, where take-some units are sampled
but rt is not ready for month-t flash estimation, we may e.g. consider

r∗t = rt′ , r∗t = rt−1 or r∗t = rt′ ∪ rt−1 (6)

where rt′ denotes the r-sample (of take-some units) for the same month in the
previous year, and rt−1 denotes the r-sample for the previous month. The value
y∗j for j ∈ r∗t is a past survey turnover value, which is available by month t even
in case it was unavailable for month-(t− 1) flash estimation.

In setting-II, where non-take-all units are not sampled at all, we may e.g.
consider

r∗t = R∗
t′ , r∗t = R∗

t−d or r∗t = R∗
t′ ∪R∗

t−d (7)

where R∗
t′ contains all the non-take-all units with VAT turnover values for the

same month in the previous year, and R∗
t−d denotes this rest population for

month t− d. We can choose d = 4 in Norway to ensure that the associated VAT
turnover values y∗j have become available for any j ∈ r∗t .

Notice that in either setting, there will be many units in r∗t selected from
the past that still belong to the population at time t. While we do not observe
yti for such a unit at the time, we may have either its past survey turnovers
in setting-I or VAT turnovers in setting-II. The idea of augmented learning is
to incorporate these observations to train the model for prediction at time t,
which can be helpful if yti relates to xti in a similar manner as y∗t∗i relates to xt∗i

given sensible choice t∗ or composition of r∗t ,

2.3 Quasi transfer learning
Denote by µ(x; β) a target model with unknown parameters β. Suppose there
exists a relevant source model for a different though similar population, which
has been estimated separately, denoted by µ(x; θ̂), where the two models belong
to the same family with different parameter values β and θ. Transfer learning
in such a setting aims to improve the estimation of β by leveraging θ̂.

For instance, one may estimate β based on the target observations that are
associated with the units in s, subject to a chosen penalty of the discrepancy
between β and θ̂, such as minimising

∆(β) =
∑
i∈s

{yi − µ(xi; β)}2 + γ∥β − θ̂∥2 (8)

given γ > 0. Although the resulting estimator of β is biased generally due to the
penalty term, the variance of estimation is reduced compared to estimating β
only based on s. One can thus view the approach as a form of regularisation,
which has shown to be especially helpful in cases with insufficient number of
target observations (e.g. Li et al. 2020; Gu et al., 2023).

However, there is an essential difference to our setting for flash estimation
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outlined at the beginning of Section 2, in that we have no target observations
at all from R and the model trained on s is biased for predicting the units in R.
We therefore formulate an approach that will be referred to as quasi transfer
learning. Let the learning for RTI flash estimation target the model for

qt = st ∪ rt or qt = st ∪Rt (9)

which is partially covered by the available st although by stipulation st is not
‘representative’ of qt. Let the choice of rt or Rt in qt vary if the take-some sample
rt is only unavailable for flash estimation or abolished altogether. The term
“quasi” indicates that we are aiming at something that is not the target model
of interest directly but close to it.

A.
µ(x, s∗t ) µ(x, s∗b)

⇐=

µ(x, qt) µ(x, qb)

ĝ(·) ĝ(·)

B.

µ(x, s∗t ) µ(x, s∗b)

⇓

µ(x, qt) µ(x, qb)

ĝ(·)

ĝ(·)

1

Figure 2: Two schemes of quasi transfer learning

Let a relevant source model be fitted to s∗t , as given by (5), denoted by µ(x, s∗t ).
To leverage it for µ(x, qt), choose additionally two source models µ(x, s∗b) and
µ(x, qb) in the same setup as µ(x, s∗t ) and µ(x, qt) but for some time point b in the
past, and a transfer scheme such as the two illustrated in Figure 2.

In scheme A, the estimated relationship g(·) between µ(x, s∗b) and µ(x, qb) at
the past time point b is transferred to the current time point t. For instance,
one can introduce a model where µ(x, s∗b) either figures simply as an offset or
is used as a feature generally, i.e.

E{µ(x, qb)} = µ(x, s∗b) + g(x) (10a)

E{µ(x, qb)} = g
(
x, µ(x, s∗b)

)
(10b)

In scheme B, the estimated relationship g(·) between µ(x, s∗t ) and µ(x, s∗b) over
the time points (t, b) is transferred to that between µ(x, qt) and µ(x, qb) over the
same (t, b). One can introduce two models similarly to (10a) and (10b), i.e.

E{µ(x, s∗t )} = µ(x, s∗b) + g(x) (11a)

E{µ(x, s∗t )} = g
(
x, µ(x, s∗b)

)
(11b)

The scheme A requires the relationship between s∗t and qt to be stable over
time. This may be possible for populations that evolve slowly over time, but
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it is likely to be unrealistic for short-term Turnover Statistics. The scheme
B requires the relationship between s∗t and s∗b over the chosen time lag to be
similar to that between qt and qb over the same time lag, where s∗t and s∗b have
the same sample composition and likewise for qt and qb. Moreover, at any given
time point t, s∗t and qt overlap each other in terms of st, while the units s∗t \ st
and qt \ st are comparable and possibly overlapping as well.

2.4 Retrospective validation
As shown in Figure 3, the survey-based Norwegian RTI tends to agree closely
with the ‘VAT index’ calculated from the VAT turnover values, although the two
turnover values often disagree with each other at the unit level.

Figure 3: RTI (solid) and VAT index (dotted) in Norway over 2020-2022

The VAT register data can therefore provide trustworthy means of validation
retrospectively. In particular, one should be able to tell if the chosen model
and learning approach for flash estimation have worked satisfactorily, till as
recently as d months ago, had VAT turnover been the target measure. Such an
approach of retrospective validation is described below.

To fix the idea, let µ(x) be the adopted working model (say, linear regression)
with selected features, and let µt(x) be the predictor applied to the units in Rt,
which is obtained by the chosen learning approach (say, augmented learning).
For validation purposes, we would like to separate the linear model from the
setup of augmented learning (such as the choice of s∗t ).

To check the goodness-of-fit of the linear model, we can simply fit it to the
population data {(xt−d,i, y

∗
t−d,i) : i ∈ U∗

t−d}, where y∗t−d,i is the VAT turnover value
of unit i pertaining to month t − d, and xt−d,i contains the relevant features,
and U∗

t−d is the population of units for which (xt−d,i, y
∗
t−d,i) are available at the

time point t. The time series of any relevant goodness-of-fit measure, such
as R2 or mean squared residuals, can provide a basis for assessing how the
linear model tracks the population data over time. More directly, let µ̃t−d(x) be
the fitted linear model, one can simply calculate a model-predicted VAT index,
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based on the population total estimate

Ỹ ∗
t−d =

∑
i∈st−d

y∗t−d,i +
∑

j∈U∗
t−d\st−d

µ̃t−d(xj) (12)

and compare it to the VAT index based on Y ∗
t−d =

∑
i∈U∗

t−d
y∗t−d,i.

To evaluate the adopted learning approach, let µt−d(x) be the linear model
actually obtained by augmented learning from s∗t−d = st−d∪ r∗t−d, based on using
survey turnover values yt−d,i for the units in st−d and VAT turnover values in r∗t
according to the definition of r∗t . One can calculate a learned proxy-RTI index,
based on the population total estimate

Ŷ ∗
t−d =

∑
i∈st−d

yt−d,i +
∑

j∈U∗
t−d\st−d

µt−d(xj) (13)

and compare this learned index to the observed proxy-RTI index based on

τt−d =
∑

i∈st−d

yt−d,i +
∑

j∈U∗
t−d\st−d

y∗t−d,j (14)

Notice that the estimate Ŷ ∗
t−d would have been equal to the actual flash turnover

estimate, had U∗
t−d been equal to Ut−d defined for RTI in month t− d.

Should the learned index under-perform against the observed index, the
additional indexes above based on (Ỹ ∗

t−d, Y
∗
t−d) allows one to potentially detect

whether the problem may be attributed to ‘model drift’ or ‘learning drift’.

2.5 Uncertainty assessment
Let I∗t be the retrospectively observed index for month t based on the totals τt
given above, i.e. using {yti : i ∈ st} ∪ {y∗tj : j ∈ sct} where sct = U∗

t \ st and y∗ti is the
VAT turnover value of unit i in month t. Let Ît be the corresponding flash RTI
actually produced for month t. For uncertainty assessment we aim to estimate
a prediction interval for I∗t at a time when we only have Ît but not I∗t .

Since we observe Ît−I∗t retrospectively, it is possible to consider the problem
as one of time series forecasting provided a sufficient number of observations
of Ît − I∗t . This is, however, not the case here given the short history of debit
card transactions data. Below we consider two feasible approaches.

2.5.1 Empirical method

One can simply produce a prediction interval with calibrated empirical coverage
over the most recent time window, denoted by {t−d, ..., t−D}. Let the prediction
interval for month t be given as

[Ît − δt, Ît + δt]

9



where

δt = argmin
δ

δ>0

( t−D∑
b=t−d

I(Îb − δ ≤ I∗b ≤ Îb + δ) = 1− 1

D − d+ 1

)
(15)

i.e. δt is the minimum positive value of δ such that the interval [Îb − δ, Îb + δ]
achieves the specified coverage over the time window b ∈ {t− d, ..., t−D}.

For example, if D−d+1 = 12, then the empirical coverage specified by (15) is
91.7%. Though simple, this empirical method is unlikely to be efficient because
it does not make use of the VAT turnover values at the unit level.

2.5.2 Error prediction

To fix the idea, let µ(x, s∗t ) be obtained by augmented learning and µ(xtj, s
∗
t ) is

the predicted turnover value in month t for any j /∈ st. Let

etj = µ(xtj, s
∗
t )− y∗tj (16)

be the error (against the VAT turnover value y∗tj) that can be observed with
a delay. In case µ(x, s∗t ) is an unbiased predictor and the prediction error is
independent over the units outside of st, we have

σ2
t = V

(∑
j /∈st

etj

)
=

∑
j /∈st

E(e2tj) (17)

In order to estimate σ2
t at the population total level, we now devise an error

prediction approach that can be viewed as a form of quasi transfer learning.
First, denote the unit-level e2-predictor by

ê2 = η(x, s̃ct) (18)

i.e. a chosen model η trained on the data associated with the units in s̃ct, such
that an estimate of σ2

t follows as

σ̂2
t =

∑
j /∈st

η(xtj, s̃
c
t) (19)

Next, for any t, we can only train the model (18) based on historical data,
since the most recent VAT turnover value refers to month t − d instead of t.
For a specific description, suppose the setups for outcome prediction of ytj (by
augmented learning) and error prediction of etj are such that

r∗t = s̃ct = R∗
t′ ∪R∗

t−d

Notice that the predictor (18) trained on the observed errors for past time points
is transferred to the current t for error prediction, and the squared error e2bj
is calculated against the VAT turnover value y∗bj instead of the survey turnover
value ybj, where b = t′ or t − d. Error prediction by (18) is therefore a form of
quasi transfer learning.

To illustrate, suppose t = September 2022 (Table 1). Outcome prediction of
ytj by augmented learning uses r∗t containing the non-take-all units in Septem-
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Table 1: Illustration of learning setup for error prediction given d = 4

t t′ t− d t′′ t′ − d (t− d)′ (t− d)− d
Sept ’22 Sept ’21 May ’22 Sept ’20 May ’21 May ’21 Jan ’22

b b′ b− d b′′ b′ − d (b− d)′ (b− d)− d
May ’22 May ’21 Jan ’22 May ’20 Jan ’21 Jan ’21 Sept ’21

ber 2021 (i.e. t′) and May 2022 (i.e. t − d) given d = 4. Given the same setup
of s̃ct for associated error prediction by (18), the VAT turnover values needed to
calculate the relevant e2-observations are from September 2021 and May 2022.
Moreover, to obtain the predictor µ(x) for t′, we need augmented learning using
data from September 2020 (i.e. t′′) and May 2021 (i.e. t′−d); whereas, to obtain
that for t− d, we need data from May 2021 (i.e. (t− d)′) and January 2022 (i.e.
(t− d)− d). Similarly for month-b flash estimation in Table 1.

Note that this setup for (18) requires two years of data backwards from t.
While the demand on past data is greater compared to uncertainty assessment
for the survey sampling estimator, it is much less than what would have been
usual for a time series forecasting approach.

To derive a prediction interval using σ̂2
t obtained in this way, let Y c

t =
∑

j /∈st y
∗
tj

and let Ŷ c
t =

∑
j /∈st µ(xtj, s

∗
t ) be its flash estimator. Similarly to (15), an empiri-

cally coverage-calibrated prediction interval for Y c
t is given by

[Ŷ c
t − αtσ̂t, Ŷ c

t + αtσ̂t]

where

αt = argmin
α

α>0

( t−D∑
b=t−d

I
(
Ŷ c
b − ασ̂b ≤ Y c

b ≤ Ŷ c
b + ασ̂b

)
= 1− 1

D − d+ 1

)
(20)

The corresponding prediction interval for I∗t can be derived straightforwardly
given the observed total

∑
i∈st yti over st in addition.

3 Application
The NACE47 population has 9 major domains (or subdivisions) by 3-digit NACE
classification (Table 2). The domain NACE478 will be excluded here because it
has separate data collection to the main survey.

The left part of Figure 4 shows the estimated share of total turnover in the
given period over 2021 and 2022, where each layer corresponds to one of the
8 domains. The domain NACE471 including all the supermarkets has clearly
the largest share of total turnover. The next two largest domains are NACE475
and NACE477. The smallest domain is NACE474.

The right part of Figure 4 shows the sample and population proportion of the
take-all units over the same period, i.e. |st|/|st ∪ rt| and |st|/|Ut| respectively, as
well as their population share of the estimated total turnover, i.e. Y (st)/Ŷ (Ut).
The take-all units clearly command a dominant share of the total turnover
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Table 2: Major subdivisions of NACE47 - Retail sales
471 Non-specialised stores
472 Food, beverages and tobacco in specialised stores
473 Automotive fuel in specialised stores
474 Information and communication equipment in specialised stores
475 Other household equipment in specialised stores
476 Cultural and recreation goods in specialised stores
477 Other goods in specialised stores
478 Via stalls and markets
479 Not in stores, stalls or markets

in NACE47. This is an important premise for the traditional sample survey
approach to RTI, as well as the potential success of flash estimation. In other
words, the challenge would have been completely different, had one stopped
surveying these units altogether.

Figure 4: Left, estimated turnover share of 8 domains of NACE47, each layer
for a domain. Right, turnover share (solid), sample proportion (dashed), popu-
lation proportion (dotted) of take-all units. Period: April 2021 to July 2022.

Below we first show some detailed results comparing alternative models and
learning approaches. Next, we report the flash estimates of the Norwegian RTI
for NACE47, which are obtained by the chosen random forest model and aug-
mented learning approach. Random forest is obtained by bootstrap aggregating
(Breiman, 1996a, 1996b) of tree models, where each tree model is generated
by data-driven recursive partitioning of the feature space. See e.g. Hastie et al.
(2001) for more explanations of random forest models, as well as some other
machine learning models that are potentially applicable. Our focus here is how
to organise the available data for model learning, rather than how such models
may be modified or improved themselves. Finally, retrospective validation and
real-time uncertainty estimation are demonstrated.

3.1 Model and learning approach
For this part of the analysis we extracted the relevant data over 2021 and 2022.
After various trials, we choose to let the feature vector of each unit contain its
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debit card payment total in month t as well as its VAT turnover values in the
most recent 12 months that are available at t. The results to be reported below
are not noticeably improved by including past transaction totals as features,
but the results would have deteriorated to various extent over time had the
concurrent transactions total been removed as a feature.

In particular, we notice that including a binary indicator for whether a unit
belongs to st or not would actually lead to worse prediction results.

Linear regression and random forest have been compared for all the choices
of feature vector we have explored. Only the results obtained with the final
choice of feature vector are given here to save space.

Setting-I For each month t, let the mean squared error (MSE) of a model be
calculated from the take-some units in rt, i.e.

∑
j∈rt{µ(xtj) − ytj}2/|rt|. Table

3 shows the average MSE over the 12 months of 2022 in the three largest
domains, relative to that of the simplistic learning approach of only using st.
The three choices of r∗t in (6) are considered for augmented learning, as well
as the hypothetical setting of training the models on st ∪ rt as if they were all
available for flash estimation. Although ‘mean squared residual’ would have
been a more appropriate term when a model trained on st ∪ rt is applied to rt,
we shall only use the term MSE for simplicity of description.

Table 3: Relative average MSE in 2022 using survey turnover
Sample for learning

NACE471 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear regression 1 1.00 1.00 1.00 1.00
Random forest 1 0.99 0.65 0.65 0.24
NACE475 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear regression 1 1.02 0.93 0.94 0.86
Random forest 1 1.04 0.86 0.92 0.21
NACE477 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear regression 1 0.92 0.83 0.77 0.78
Random forest 1 0.54 0.52 0.47 0.28

Clearly, with suitable choice of r∗t , augmented learning by random forest can
yield much greater reductions of MSE compared to linear regression in any of
the NCAE domains. Although the average MSE by augmented learning is larger
than learning based on the true sample st ∪ rt, augmented learning is able to
improve the simplistic approach of only using st.

The squared mean error (SME), i.e. {|rt|−1
∑

j∈rt µ(xtj)− ytj}2, is more relevant
for RTI than MSE. Table 4 shows the average SME over the 12 months of 2022
in the three NACE domains, by the same models and learning approaches.
Random forest yields greatly reduced SME compared to linear regression in
all the domains. Notice that the relative improvement of augmented learning
to simplistic learning only from st is more pronounced than in terms of MSE,
e.g. 37/118 < 0.47 for the corresponding cells in the last row of Table 4 or 3.
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Table 4: Average SME (×102) in 2022 using survey turnover
Sample for learning

NACE 471 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear regression 310 306 309 305 308
Random forest 268 214 167 157 58
NACE 475 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear regression 201 192 113 117 132
Random forest 260 108 220 161 16
NACE 477 st st ∪ rt′ st ∪ rt−1 st ∪ rt′ ∪ rt−1 st ∪ rt

Linear regression 161 263 133 188 107
Random forest 118 56 37 37 8

Finally, the relative performance of training random forest on st ∪ rt instead of
st ∪ rt′ ∪ rt−1 may have been exaggerated here, due to the use of residuals in the
former case, since training the linear model (that is less prone to overfitting)
does not always lead to as impressive SME reductions.

Setting-II Augmented learning in setting-I above enables flash estimation
without the sample units rt. Purposive sampling achieves further reduction
of burden and resource, whereby the non-take-all units are dropped from the
survey altogether. Since this also removes all the survey turnover observations
of the cutoff units, augmented learning would depend on proxy values.

Table 5: Average SME (×102) in 2022 using VAT turnover
Sample for learning

NACE 471 st st ∪ rt′ st ∪ rt−4 st ∪ rt′ ∪ rt−4 st ∪ rt

Linear regression 310 298 307 297 309
Random forest 254 200 226 188 235
NACE 475 st st ∪ rt′ st ∪ rt−4 st ∪ rt′ ∪ rt−4 st ∪ rt

Linear regression 201 156 206 168 155
Random forest 266 110 188 93 123
NACE 477 st st ∪ rt′ st ∪ rt−4 st ∪ rt′ ∪ rt−4 st ∪ rt

Linear regression 161 264 203 246 116
Random forest 109 38 38 18 34

All the non-take-all VAT units can be used for augmented learning by (7).
However, here we shall present augmented learning based on past r-samples
associated with VAT turnover values instead of the observed survey turnovers,
as well as in rt for the hypothetical setting of training on st ∪ rt. Since the most
recent VAT turnovers at t refer to t − d, we use rt−4 instead of rt−1 in r∗t given
d = 4 in Norway. In this way, the differences to the results above would only
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be due to the use of VAT turnovers that replace the survey turnovers, without
the additional effects of including more units in r∗t .

The SME results are given in Table 5 in the same way as Table 4. Random
forest remains much better than linear regression. Regarding the learning
approach, we conclude the following for augmented learning.

• Augmented learning can reduce the SME compared to simplistic learning
only from the take-all sample st.

• Comparing Table 5 to 4, one sees that augmented learning from mixing
contemporaneous survey turnover and historic VAT turnover can perform
as well as augmented learning fully based on survey turnover observations.
This provides a justification for purposive sampling.

• Training models on st ∪ rt does not reduce SME compared to augmented
learning using suitable st ∪ r∗t , if VAT turnover is used as the y-values in rt.
Augmenting sample with past units is justified.

• In particular, the setup s∗t = st ∪ rt′ ∪ rt−4 seems to be a robust choice, which
uses both the year-on-year and the most recent VAT-turnovers.

Quasi transfer learning The scheme A requires transferring a past source
model to the current time t. It performs poorly for the same data above, which is
not surprising given the dynamic nature of RTI. The results below are obtained
by the scheme B, given either (11a) or (11b), where the target set is qt = st ∪ rt
and the source time point is b = t − 1, and survey turnover values are used
everywhere. The results are directly comparable to those of Table 4.

Table 6: Average SME (×102) over February - December 2022
Augmented Quasi transfer Target

Random forest st ∪ rt′ ∪ rt−1 Model (11a) Model (11b) st ∪ rt

NACE 471 162 146 172 61
NACE 475 164 288 173 18
NACE 477 38 72 42 8

Since the sample s∗b for quasi transfer learning dates further back in time
than s∗t for augmented learning, the results is only available for February to
December 2022 based on the same data above. Table 6 shows the average
SME over these 11 months, together with the results for augmented learning
(using r∗t = rt′ ∪ rt−1) and target learning (using st ∪ rt), which are comparable to
those in Table 4 averaged over 12 months.

It can be seen that the SME of the model (11a) varies more across the NACE
domains than that of the model (11b). Quasi transfer learning using the model
(11b) yields slightly larger SME compared to augmented learning. It might
be possible to fine-tune the choice of b for the past source models (Figure 2),
so as to improve the results of quasi transfer learning. However, given the
relative simplicity and intuitiveness of augmented learning, we conclude that
augmented learning is the preferred learning approach for flash RTI in Norway.
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3.2 Flash RTI
Figure 5 shows flash RTI estimation results for NACE47 (excluding NACE478)
over the relevant months in 2021 and 2022, based on purposive sampling and
using debit card transactions data, both in terms of the monthly and the year-
on-year indices. The chosen random forest model is trained by augmented
learning based on st ∪ Rt′ ∪ Rt−4, with associated {(xti, yti) : i ∈ st}, {(xt′i, y

∗
t′i) :

i ∈ Rt′} and {(xt−4,i, y
∗
t−4,i) : i ∈ Rt−4}. In addition, the flash RTI by the simplistic

learning only from st is given, as well as the hypothetical flash RTI that uses
the random forest model learned from rt to predict for Rt.

Figure 5: Existing RTI (solid) for NACE47 over periods of 2021 - 2022, flash RTI
by simplistic learning (dotted), augmented learning (dashed) or hypothetical
learning from rt (cross). Top: monthly index; bottom: year-on-year index.

The existing survey sampling approach requires both st and rt and serves
as the performance benchmark. It is seen that simplistic learning from only
st can sometimes deviate quite far from the disseminated RTI. The flash RTI
obtained by augmented learning without rt achieves comparable performance
to hypothetical learning from the target observations in rt, although in principle
unbiased prediction is only possible with the latter but not the former.

Moreover, let Ît be a given flash RTI for month t and let It the official RTI
which is based on the existing sample survey design. Let the difference between
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Figure 6: Difference of monthly change in flash RTI and official RTI for NACE47
over periods of 2021 - 2022. Simplistic learning (dotted), augmented learning
(dashed), hypothetical learning from rt (solid).

the monthly change by the two be given as

Bt = (Ît − Ît−1)− (It − It−1) = (Ît − It)− (Ît−1 − It−1) (21)

Figure 6 shows Bt for the three learning options in Figure 5. Although auto-
correlations exist in all the three times series {It},{Ît}, {Ît − It}, respectively,
one cannot detect any pronounced auto-correlation in the plot of Bt.

The results suggest that, by adopting an appropriate learning approach, one
may be able to drop the take-some sample rt, reduce the response burden and
the processing cost, and greatly improve the timeliness of RTI by halving the
current dissemination time lag, without compromising the accuracy of RTI.

3.3 Validation and uncertainty
First, Figure 7 shows the results of retrospective validation as described in
Section 2.4. The adopted random forest model for flash RTI (described above)
is fitted to the population of VAT units U∗

t relevant to each t, which yields the
model-predicted VAT index derived from Ỹ ∗

t (dashed) in the top plot of Figure 7.
It can be seen that the model fits the VAT population quite well over the period
here, since the discrepancy between the model-predicted VAT index and the
VAT index derived from the observed Y ∗

t (solid) is barely noticeable in the given
period except perhaps for July 2021.

In the bottom plot of Figure 7, the adopted random forest model is trained
by augmented learning (as for the flash RTI), which yields the learned index
derived from Ŷ ∗

t (described in Section 2.4). It tracks closely its target proxy-RTI
index derived from τt, although augmented learning does seem to induce some
discrepancy in addition to that due to modelling (in the top plot).

It is important to notice that the discrepancy between the learned index
(of Ŷ ∗

t ) and the proxy-RTI index (of τt) in Figure 7 reflects well the discrepancy
between the flash RTI (by augmented learning) and the disseminated RTI (by
existing survey sampling) in Figure 5. The proposed retrospective validation
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Figure 7: Retrospective validation of flash RTI given in Figure 5. Top, random
forest model, VAT index observed (solid) or model-predicted (dashed). Bottom,
augmented learning, proxy-RTI index observed (solid) or learned (dashed).

approach can provide a reliable basis for assessing whether the flash RTI has
worked satisfactorily till as recently as d months ago.

Next, for uncertainty estimation, Figure 8 shows the VAT total that is only
available retrospectively (i.e. Y c

t in Section 2.5), together with its prediction
intervals by the empirical or error prediction method and its confidence inter-
vals by survey sampling. Whereas the intervals by the empirical method (15)
and survey sampling are obtained for all the 12 months of 2022, we could only
calculate the intervals for April - December by the error prediction method (20)
given the data available, because this method requires more data backwards
under the adopted setup of augmented learning.

The prediction intervals are empirically calibrated by either (15) or (20) to
the nominal level 91.7% based on a sliding window of 12 months. The nominal
level of the confidence intervals by survey sampling is 95%, which are obtained
as follows. Let Ỹ c

t be the ratio estimator based on the existing subsample rt,
which uses the VAT values from the same month in the previous year as the
auxiliary. Let set be the estimated standard error of this ratio estimator. We
obtain an approximate 95% confidence interval (Ỹ c

t −2set, Ỹ
c
t +2set) by appealing

to the Central Limit Theorem.
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Figure 8: VAT total (solid), prediction interval by empirical method (dotted) or
error prediction (dashed), confidence interval by sampling (long-dashed).

The actual coverage is 100% by both of the prediction intervals during their
respective periods in 2022. The coverage of the 95% confidence intervals based
on survey sampling is 91.7%, which are not calibrated empirically as we do for
the prediction intervals. Notwithstanding the fairly short time span of these
results, the proposed prediction intervals display promising coverage property.
As can be expected, error prediction modelling (18) improves considerably the
efficiency of estimation compared to the simple empirical method, where the
average relative half-length (of prediction interval) is 4.7% by error prediction
(18) and 7.8% by the empirical method (15).

Since the average relative half-length of the confidence intervals by ratio
estimation is 4.6%, flash estimation without subsample rt has been about as
efficient as the sampling-based ratio estimation that requires rt. It seems fair
to conclude that augmented learning can enable flash estimation with greatly
improved timeliness, as well as reduced response burden and processing cost,
without compromising the accuracy of RTI.

4 Final remarks
We have considered a setting for flash estimation, where target observations
necessary for unbiased prediction are not available at all outside a purposive
sample selected with probability one. Rather than simply applying a model
learned from the purposive sample to the rest population units, we propose
two general approaches of model learning that make use of data from relevant
domains outside the target population, called augmented learning and pseudo
transfer learning, respectively. Moreover, retrospective validation of modelling
or learning and real-time prediction interval estimation methods are developed
in the context of Turnover Statistics.

Application to the Norwegian Retail Turnover Survey data shows that it is
possible to obtain flash RTI for NACE47 based on augmented learning, which
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greatly improves the timeliness by halving the current dissemination time lag,
without compromising the accuracy of RTI. The adopted model utilises relevant
auxiliary information in historic VAT reports and contemporaneous debit card
transactions, enabling one to remove the non-self-representing sample units,
thereby reducing the associated response burden and processing cost.

The flash RTI methodology described above and the related production pro-
cesses are being implemented at Statistics Norway. Three broad, interrelated
aspects are worth noting for other countries with a similar interest.

First, greater uses of historic VAT reports can benefit from improvements of
the underlying statistical database. For instance, the bimonthly VAT reports
have been apportioned to create a statistical database of monthly VAT turnover
values for the local units which can be used for flash RTI estimation, the details
of which have been left out to save space. Similar apportioning of available VAT
register data may be relevant in other countries, in order to harmonise over
the different frequencies and units of VAT reporting that exist. The resulting
statistical database is more ‘complete’ and ‘detailed’ than the raw VAT register,
which can benefit many relevant statistics.

Second, we have made use of debit card transactions that are available to
Statistics Norway, which fundamentally improves the timeliness of auxiliary
information compared to the VAT register that is only available months later.
Other sources of transaction data are also of interest, such as e-invoices and
business-to-business bank transfers. While the different sources have their
distinct challenges of access and processing, they complement each other in
coverage and content, becoming more useful in combination with each other.
This is an area that requires strategic development of knowledge, experience
and capacity at National Statistical Offices. A coordinated program across the
whole spectrum of business statistics would be more impactful than scattered
efforts each focusing on a specific topic.

Third, provided greater access to relevant and timely non-survey big data,
improving the timeliness of economic indicators while reducing the response
burden and processing cost becomes an ever more urgent matter. The flash RTI
exemplifies a situation where some survey data is still necessary to ensure the
relevance and accuracy of official statistics. Combining appropriate purposive
samples with novel modelling and learning approaches requires attention in
practice. Diligent retrospective validation is essential in this respect, in terms
of the adopted model, learning approach, as well as the associated uncertainty
measures such as prediction intervals. The obtained insights should help to
guide the maintenance and updating of the purposive sample, in order to be
able to compensate for the data that are either missing structurally (such as
when the take-some sample is removed altogether) or randomly (e.g. due to
delays of reporting, new or dissolved business units).

Looking ahead we would like to point towards a greater emphasis on novel
learning approaches for official statistics. In the context of flash estimation,
where the absence of target observations is the fundamental challenge, a key
matter of learning is how to organise the data outside the target domain but are
nevertheless relevant (for training any given models). Augmented learning and
quasi transfer learning have been proposed from this perspective. As official
statistics are typically repeated over time and geography, variations of transfer
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learning (with or without target observations) seems a large topic for future
research and application, e.g. beyond the common traditional approach of
allowing for temporally or spatially correlated observations.

Acknowledgement This work would not have been possible without Jan Hen-
rik Wang, Jørgen Vinje Berget and Edvard Garmmanslund at Statistics Norway.
We thank also the referees, the Associated Editor and the Editor-in-Chief for
helpful comments and suggestions.

References
[1] Baldacci, E., Buono, D., Kapetanios, G., Krische, S., Marcellino, M.,

Mazzi, G.L., and Papailias, F. (2016). Big Data and Macroeconomic Now-
casting: From Data Access to Modelling. Eurostat: Statistical Books, Lux-
embourg. doi:10.2785/3605875

[2] Breiman, L. (1996a). Heuristics of instability and stabilization in model
selection. Ann. Statist., 24:2350-2383. DOI:10.1214/aos/1032181158

[3] Breiman, L. (1996b). Bagging predictors. Mach. Learn., 26:123-140.
https://doi.org/10.1007/BF00058655

[4] Eurostat (2017). Handbook on Rapid Estimates. Edited by G. L. Mazzi,
published by European Union and the United Nations, Luxembourg. doi:
10.2785/4887400

[5] Fornaro, P. and Luomaranta, H. (2020). Nowcasting Finnish real eco-
nomic activity: a machine learning approach. Empirical Economics,
58:55-71. https://doi.org/10.1007/s00181-019-01809-y

[6] Gu, T., Han, Y. and Duan, R. (2023). A transfer learning approach based
on random forest with application to breast cancer prediction in un-
derrepresented populations. Pacific Symposium on Biocomputing 2023,
Hawaii. https://pubmed.ncbi.nlm.nih.gov/36540976/

[7] Hastie, T., Tibshirani, R. and Friedman, J. (2023). The Elements of Sta-
tistical Learning. Springer.

[8] Li, S., Cai, T.T. and Li, H. (2020). Transfer learning for high-dimensional
linear regression: Prediction, estimation, and minimax optimality. Jour-
nal of the Royal Statistical Society Series B, 84:149-173. https://doi.org/
10.1111/rssb.12479

[9] Ng, A. (2016). Nuts and Bolts of Building AI Applications Using Deep Learn-
ing. NIPS 2016 tutorial. https://nips.cc/virtual/2016/events/Tutorial

[10] Pratt, L.Y. (1993). Transferring Previously Learned Back-Propagation Neu-
ral Networks to New Learning Tasks. PhD thesis, Rutgers University, also
appeared as Technical Report ML-TR-37. https://dl.acm.org/doi/book/
10.5555/193298

21

doi:10.2785/3605875
DOI: 10.1214/aos/1032181158
https://doi.org/10.1007/BF00058655
doi:10.2785/4887400
doi:10.2785/4887400
https://doi.org/10.1007/s00181-019-01809-y
https://pubmed.ncbi.nlm.nih.gov/36540976/
https://doi.org/10.1111/rssb.12479
https://doi.org/10.1111/rssb.12479
https://nips.cc/virtual/2016/events/Tutorial
https://dl.acm.org/doi/book/10.5555/193298
https://dl.acm.org/doi/book/10.5555/193298


[11] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B. 58:267-288. https://
doi.org/10.1111/j.2517-6161.1996.tb02080.x

22

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

	Introduction
	Methods
	Augmented Learning
	Turnover flash estimation by augmented learning
	Quasi transfer learning
	Retrospective validation
	Uncertainty assessment
	Empirical method
	Error prediction


	Application
	Model and learning approach
	Flash RTI
	Validation and uncertainty

	Final remarks

