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Abstract
Improving timeliness is ever more urgent for official statistics, not least due to the potentials of
various non-survey big data that in principle can be made more quickly available than traditional
sample surveys. Taking Retail Turnover Index as the case-in-point, we develop new approaches of
model learning aimed to achieve flash estimation of acceptable accuracy, as well as the associated
methods of uncertainty assessment, when one does not have the target observations that would
have been required for unbiased inference by established statistical theories. Applications to the
Norwegian data will be used to demonstrate the efficacy of our proposals.
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1. Introduction

Using non-survey big data to produce rapid estimates of economic indicators has
attracted attention in recent years. See Baldacci et al. (2016) and Eurostat (2017)
for two early overviews on the relevant background, methods, and challenges, from
the perspective of official statistics and under the auspices of Eurostat and United
Nations.

Figure 1 shows the Norwegian Retail Turnover Index (RTI) in the years 2019
and 2020, together with an index calculated from retail transactions directly. This
‘‘transaction index’’ was made available due to the emergency of the covid
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pandemic in 2020. It is based on the payment total of all domestic debit cards and
one major internet payment platform. The ratio ~It�1, t=It�1, t between the month-on-
month transaction index ~It�1, t and RTI It�1, t, where t denotes month, is given in
Figure 1 and the five largest fluctuations are marked. Although the two indexes
are well correlated, the ratio between them fluctuates too much for the transaction
index to be accepted as official statistics, given its obvious error sources pertaining
to coverage, measurement, business unit delineation, and population domain clas-
sification. For instance, by definition retail trade turnover comprises the total
invoiced by the statistical unit during the reference period. It includes all charges
such as packaging and transport but excludes VAT and similar deductible taxes;
but the deductible taxes cannot be separated from the debit card payment transac-
tion totals.

This exemplifies a situation where some survey data may still be necessary for
producing official statistics, in addition to relevant and timely big data. However,
to shorten the lag between dissemination time point and statistical period, one may
be prepared to ‘‘give up waiting’’ on the sample units that have not yet responded,
if the available non-survey big data can compensate for the loss of information,
thereby making flash estimation or nowcasting possible. For instance, Fornaro and
Luomaranta (2020) combine traffic volume records with early available firm data
for nowcasting Finnish quarterly Gross Domestic Product and Trend Indicator of
Output.

For our focus in this paper, the Norwegian RTI for NACE45-47 is currently
published by the 30th day after the calendar month t, denoted by t + 30. NACE is
the statistical classification of economic activities in the European Community and
is the subject of legislation at the European Union level. By NACE45-47, we refer
to G45—Wholesale and retail trade and repair of motor vehicles and motorcycles,
G46—Wholesale trade, except of motor vehicles and motorcycles, and G47—

Figure 1. Retail Turnover Index (solid line) and a transaction index (dashed line) in Norway
over twenty-four months in 2019 and 2020. Five largest fluctuations of month-on-month index
ratio between them (dotted line) marked by vertical lines (1, ., 5).
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Retail trade, except of motor vehicles and motorcycles. For each month t, the sur-
vey sample has two parts, where st denotes the self-representing (or take-all) units
with inclusion probability one, and rt denotes the rest take-some units with inclu-
sion probability less than one. The units in st are larger on average; more impor-
tantly, they mostly belong to business chains, for which the turnover values can be
obtained quickly from the chain headquarters, whereas it takes longer for many
units in rt to respond.

Thus, in order to achieve flash estimation at an earlier time point, as well as to
reduce response burden and processing cost, we propose to investigate model-based
estimation given only the take-all sample in NACE47 and with the help of all avail-
able transactions and administrative data. If feasible, then no sample units will be
needed from outside the take-all units, which amounts to adopting a purposive
sampling design.

Note that we approach flash estimation as a problem of prediction for the unob-
served or out-of-sample units. This allows one to make use of past survey and non-
survey data at the business unit level in a flexible manner, and enables novel statisti-
cal learning approaches. Since the unit-level prediction errors can be gauged retro-
spectively, for example, by comparisons to the VAT turnover values, the approach
provides also means to detect outliers and other anomalies, which can be helpful
for the maintaining and updating the purposive sample that still needs to be sur-
veyed directly.

Note also that the focus on NACE47 at this stage has two reasons. First, the
RTI used to be limited to NACE47 before its scope was extended in 2021, and
many users actually are still interested in the RTI for NACE47. Second, Statistics
Norway currently have only access to debit card transactions data, which have the
highest share among all payment transactions in NACE47, while the other forms
of payment have a greater share in NACE45-46. Confidentiality of personal data
is protected as the transactions are aggregated for each business unit by the debit
card payment service operators, and only the totals for each business unit are deliv-
ered to Statistics Norway.

In short, we shall consider the strategy of model-based flash RTI using purpo-
sive sampling and debit card transactions for NACE47. Provided the turnover val-
ues can be obtained from most of the take-all units by t+ 7, it is envisaged that the
Retail Volume Index for NACE47 can be produced by t + 15, allowing for the nec-
essary post-RTI processing. This will halve the thirty-day lag of dissemination that
is common internationally, while at the same time reducing survey response burden
and processing cost.

However, the feasibility of this strategy depends on whether (model) learning
can be organized in a fruitful way in the case of purposive sampling, which means
that no target observations (of turnover) are at all available for the non-take-all
units at the time of flash estimation.

We shall formulate and investigate two new learning approaches. First, by
adapting a loss function that bears some semblance to regularization, such as
LASSO (Tibshirani 1996), we devise augmented learning that allows one to learn
from both the past non-take-all units and current take-all units. Next, taking

384 Journal of Official Statistics 41(1)



inspirations from the field of transfer learning (e.g., Ng 2016; Pratt 1993), we for-
mulate quasi transfer learning for situations where observations of the target
model can only become available retrospectively.

Although in concept neither form of learning can yield unbiased prediction for
the unobserved units, they may be able to reduce the errors of learning only from
the purposive sample (which is also biased generally). Moreover, in addition to
explaining how the chosen model and learning approach can be validated retro-
spectively based on relevant VAT data from tax administration, we shall develop a
novel approach to real-time error prediction for the flash RTI. In particular, two
key points of this error prediction approach applies generally to flash estimation:
(a) error prediction is a distinct learning task to outcome prediction because, in the
absence of relevant target observations, one cannot pretend that the adopted model
would yield unbiased prediction of the target outcome (such as turnover here) and
derive the associated uncertainty as a by-product of the outcome model, (b) to
improve the efficiency of error prediction one should utilize observed unit-level pre-
diction errors in the past just like one would use observed past outcomes for out-
come prediction.

The ideas above will be developed in Section 2 and applied in Section 3 to the
Norwegian data in years 2019 to 2022. Some final remarks on implementation and
future research topics will be given in Section 4.

2. Methods

We shall consider the following generic setup for flash estimation. Denote by y the
target outcome and x the associated features. Denote by m(x, s) a predictor for any
unit with features x, which is learned from f(yi, xi) : i 2 sg, where s is the training
sample of observations. Denote by R a target set of units with known xj, 8j 2 R and
s \ R= ;, for which the predicted y-values are of interest. However, it is known
that m(x, s) is biased for fyj : j 2 Rg, because yj for j 2 R and yi for i 2 s do not have
the same distribution conditional on xj and xi.

In terms of the Norwegian RTI, y is the retail turnover value excluding VAT,
whereas one may include in x turnover values according to the VAT register and
debit card payment totals. The transactions data improve the timeliness of feature
since VAT turnover values are only available with a delay of several months, whilst
the payment transaction totals are available for the month t before t+7. (More
details of these features will be given in Section 2.2.) Notice that for a unit that has
both observed VAT turnover and transaction total, its survey turnover value often
differs to its VAT turnover value reported to the tax authority, and both these turn-
overs will surely differ to the payment transaction total that includes VAT or other
surcharges.

As a simplistic approach of learning for flash estimation, one may obtain
m(x, st) only based on the take-all units that are available by t + 7, which yields
ŷj =m(xj, st) for any j 62 st. The approach is called simplistic not only because
m(x, st) is known to be biased for the units outside st but also because it provides
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naturally a baseline of comparison. Below we consider two learning approaches
that aim to reduce the bias of the simplistic approach.

2.1. Augmented Learning

Given a constant g.0, let the augmented loss function be

L(s [ r�; g)=
X
i2s

fm(xi)� yig2 + g
X
j2r�
fm(xj)� y�j g

2 ð1Þ

where r� denotes a set of units that are similar to or even overlap with those in R,
but y�j is a proxy to the target observation yj including when j 2 r� \ R. The values
f(xj, y

�
j ) : j 2 r�g may either be contemporaneous with f(xi, yi) : i 2 sg or from some

earlier time points. For predicting fyj : j 2 Rg, where s \ R= ;, we would like to
investigate whether m(x) obtained from minimizing L(s [ r�; g) may improve sim-
plistic learning that minimizes the loss function

L(s)=
X
i2s

fm(xi)� yig2 ð2Þ

Note that the augmented loss Equation (1) is not a form of regularization (e.g.,
Hastie et al. 2009), because the second term involving g is not a penalty introduced
to reduce the variance of unconstrained learning from s, such as when the size of s

is small compared to the number of unknowns in m(x). Rather, augmenting s by r�

in (1) primarily aims to reduce the bias of learning only from s, by incorporating
the additional observations f(xj, y

�
j ) : j 2 r�g that may resemble the unobserved

f(xj, yj) : j 2 Rg for the purpose of model learning.
Now, in the case of linear predictor m(x)= xTb, the estimator b̂ minimizing

Equation (1) is given by

b̂=(
X
i2s

xix
T
i + g

X
j2r�

xjx
T
j )
�1(
X
i2s

xiyi + g
X
j2r�

xjy
�
j ) ð3Þ

This is the same as minimizing Equation (2) based on an augmented sample

s�= r� [ s [ � � � [ s

instead of s, where s is duplicated g�1 times in s� (if practically possible).
The equivalence between working with the augmented loss L(s [ r�; g) and the

simple loss L(s�) based on an augmented sample can be exploited practically. For
an arbitrary model or algorithm m, one can obtain m(x, s�) by training on an aug-
mented sample s� using standard softwares, instead of working with L(s [ r�; g)
which may require weighting the observations or other adjustments that are not
necessarily implemented by the available software. Instead of choosing a value for
g, one can directly experiment with how to mix s with other units that may be rele-
vant. We refer to this as augmented learning, that is, minimize L(s�) given by
Equation (2) based on
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s�= s [ r�, f(xi, yi) : i 2 sg, f(xj, y�j ) : j 2 r�g: ð4Þ

2.2. Turnover Flash Estimation by Augmented Learning

To obtain a turnover flash estimator for each month t, consider augmented learn-
ing that is targeted at the units in Rt =Utnst immediately after fyi : i 2 stg become
available, where Ut denotes the target population for month t (whether or not it is
actually held fixed over any given period in practice).

Let yti be the turnover of business unit i in month t. Let the associated feature
vector xti be selected from the VAT turnovers and debit card payment totals. The
VAT register is updated every two months in Norway. At a given month t, the six
most recent VAT turnover values would cover a twelve-month period, which dates
backwards from three or four months before t. The debit card payment total is
available on a daily basis, including the month t of interest.

Next, for each month t, let the augmented sample be given as

s�t = st [ r�t ð5Þ

There are two settings for r�t . In setting-I, where take-some units are sampled but rt

is not ready for month-t flash estimation, we may for example, consider

r�t = rt0 , r�t = rt�1 or r�t = rt0 [ rt�1 ð6Þ

where rt0 denotes the r-sample (of take-some units) for the same month in the pre-
vious year, and rt�1 denotes the r-sample for the previous month. The value y�j for
j 2 r�t is a past survey turnover value, which is available by month t even in case it
was unavailable for month-(t � 1) flash estimation.

In setting-II, where non-take-all units are not sampled at all, we may for exam-
ple, consider

r�t =R�t0 , r�t =R�t�d or r�t =R�t0 [ R�t�d ð7Þ

where R�t0 contains all the non-take-all units with VAT turnover values for the same
month in the previous year, and R�t�d denotes this rest population for month t � d.
We can choose d = 4 in Norway to ensure that the associated VAT turnover values
y�j have become available for any j 2 r�t .

Notice that in either setting, there will be many units in r�t selected from the past
that still belong to the population at time t. While we do not observe yti for such a
unit at the time, we may have either its past survey turnovers in setting-I or VAT
turnovers in setting-II. The idea of augmented learning is to incorporate these
observations to train the model for prediction at time t, which can be helpful if yti

relates to xti in a similar manner as y�t�i relates to xt�i given sensible choice t� or com-
position of r�t ,
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2.3. Quasi Transfer Learning

Denote by m(x; b) a target model with unknown parameters b. Suppose there exists
a relevant source model for a different though similar population, which has been
estimated separately, denoted by m(x; û), where the two models belong to the same
family with different parameter values b and u. Transfer learning in such a setting
aims to improve the estimation of b by leveraging û.

For instance, one may estimate b based on the target observations that are asso-
ciated with the units in s, subject to a chosen penalty of the discrepancy between b

and û, such as minimizing

D(b)=
X
i2s

fyi � m(xi; b)g2 + g k b� ûk2 ð8Þ

given g.0. Although the resulting estimator of b is biased generally due to the
penalty term, the variance of estimation is reduced compared to estimating b only
based on s. One can thus view the approach as a form of regularization, which has
shown to be especially helpful in cases with insufficient number of target observa-
tions (e.g., Gu et al. 2023; Li et al. 2020).

However, there is an essential difference to our setting for flash estimation out-
lined at the beginning of Section 2, in that we have no target observations at all
from R and the model trained on s is biased for predicting the units in R. We there-
fore formulate an approach that will be referred to as quasi transfer learning. Let
the learning for RTI flash estimation target the model for

qt = st [ rt or qt = st [ Rt ð9Þ

which is partially covered by the available st although by stipulation st is not ‘‘rep-
resentative’’ of qt. Let the choice of rt or Rt in qt vary if the take-some sample rt is
only unavailable for flash estimation or abolished altogether. The term ‘‘quasi’’
indicates that we are aiming at something that is not the target model of interest
directly but close to it.

Let a relevant source model be fitted to s�t , as given by Equation (5), denoted by
m(x, s�t ). To leverage it for m(x, qt), choose additionally two source models m(x, s�b)
and m(x, qb) in the same setup as m(x, s�t ) and m(x, qt) but for some time point b in
the past, and a transfer scheme such as the two illustrated in Figure 2.

In scheme A, the estimated relationship g( � ) between m(x, s�b) and m(x, qb) at the
past time point b is transferred to the current time point t. For instance, one can
introduce a model where m(x, s�b) either figures simply as an offset or is used as a
feature generally, that is,

Efm(x, qb)g=m(x, s�b)+ g(x) ð10aÞ

Efm(x, qb)g= g(x,m(x, s�b)) ð10bÞ

In scheme B, the estimated relationship g( � ) between m(x, s�t ) and m(x, s�b) over
the time points (t, b) is transferred to that between m(x, qt) and m(x, qb) over the
same (t, b). One can introduce two models similarly to (10a) and (10b), that is,
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Efm(x, s�t )g=m(x, s�b)+ g(x) ð11aÞ

Efm(x, s�t )g= g(x,m(x, s�b)) ð11bÞ

The scheme A requires the relationship between s�t and qt to be stable over time.
This may be possible for populations that evolve slowly over time, but it is likely
to be unrealistic for short-term Turnover Statistics. The scheme B requires the rela-
tionship between s�t and s�b over the chosen time lag to be similar to that between qt

and qb over the same time lag, where s�t and s�b have the same sample composition
and likewise for qt and qb. Moreover, at any given time point t, s�t and qt overlap
each other in terms of st, while the units s�t nst and qtnst are comparable and possi-
bly overlapping as well.

2.4. Retrospective Validation

As shown in Figure 3, the survey-based Norwegian RTI tends to agree closely with
the ‘‘VAT index’’ calculated from the VAT turnover values, although the two turn-
over values often disagree with each other at the unit level.

The VAT register data can therefore provide trustworthy means of validation
retrospectively. In particular, one should be able to tell if the chosen model and
learning approach for flash estimation have worked satisfactorily, till as recently as
d months ago, had VAT turnover been the target measure. Such an approach of
retrospective validation is described below.

To fix the idea, let m(x) be the adopted working model (say, linear regression)
with selected features, and let mt(x) be the predictor applied to the units in Rt, which
is obtained by the chosen learning approach (say, augmented learning). For

Figure 2. Two schemes of quasi transfer learning.
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validation purposes, we would like to separate the linear model from the setup of
augmented learning (such as the choice of s�t ).

To check the goodness-of-fit of the linear model, we can simply fit it to the popu-
lation data f(xt�d, i, y

�
t�d, i) : i 2 U�t�dg, where y�t�d, i is the VAT turnover value of unit

i pertaining to month t � d, and xt�d, i contains the relevant features, and U�t�d is the
population of units for which (xt�d, i, y

�
t�d, i) are available at the time point t. The

time series of any relevant goodness-of-fit measure, such as R2 or mean squared
residuals, can provide a basis for assessing how the linear model tracks the popula-
tion data over time. More directly, let ~mt�d(x) be the fitted linear model, one can
simply calculate a model-predicted VAT index, based on the population total
estimate

~Y �t�d =
X

i2st�d

y�t�d, i +
X

j2U�
t�d
nst�d

~mt�d(xj) ð12Þ

and compare it to the VAT index based on Y �t�d =
P

i2U�
t�d

y�t�d, i.
To evaluate the adopted learning approach, let mt�d(x) be the linear model actu-

ally obtained by augmented learning from s�t�d = st�d [ r�t�d , based on using survey
turnover values yt�d, i for the units in st�d and VAT turnover values in r�t according
to the definition of r�t . One can calculate a learned proxy-RTI index, based on the
population total estimate

Ŷ �t�d =
X

i2st�d

yt�d, i +
X

j2U�
t�d
nst�d

mt�d(xj) ð13Þ

and compare this learned index to the observed proxy-RTI index based on

tt�d =
X

i2st�d

yt�d, i +
X

j2U�
t�d
nst�d

y�t�d, j ð14Þ

Notice that the estimate Ŷ �t�d would have been equal to the actual flash turnover
estimate, had U�t�d been equal to Ut�d defined for RTI in month t � d.

Figure 3. RTI (solid line) and VAT index (dotted line) in Norway over 2020 to 2022.
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Should the learned index under-perform against the observed index, the addi-
tional indexes above based on (~Y �t�d , Y

�
t�d) allows one to potentially detect whether

the problem may be attributed to ‘‘model drift’’ or ‘‘learning drift.’’

2.5. Uncertainty Assessment

Let I�t be the retrospectively observed index for month t based on the totals tt given
above, that is, using fyti : i 2 stg [ fy�tj : j 2 sc

t g where sc
t =U�t nst and y�ti is the VAT

turnover value of unit i in month t. Let Ît be the corresponding flash RTI actually
produced for month t. For uncertainty assessment we aim to estimate a prediction
interval for I�t at a time when we only have Ît but not I�t .

Since we observe Ît � I�t retrospectively, it is possible to consider the problem as
one of time series forecasting provided a sufficient number of observations of
Ît � I�t . This is, however, not the case here given the short history of debit card
transactions data. Below we consider two feasible approaches.

2.5.1. Empirical Method. One can simply produce a prediction interval with calibrated
empirical coverage over the most recent time window, denoted by ft � d, :::, t � Dg.
Let the prediction interval for month t be given as

½Ît � dt, Ît + dt�

where

dt = argmin
d

d.0

Xt�D

b= t�d

I(Î b � d < I�b < Î b + d)= 1� 1

D� d + 1

 !
ð15Þ

That is, dt is the minimum positive value of d such that the interval ½Îb � d, Îb + d�
achieves the specified coverage over the time window b 2 ft � d, :::, t � Dg.

For example, if D� d + 1= 12, then the empirical coverage specified by (15) is
91.7%. Though simple, this empirical method is unlikely to be efficient because it
does not make use of the VAT turnover values at the unit level.

2.5.2. Error Prediction. To fix the idea, let m(x, s�t ) be obtained by augmented learning
and m(xtj, s

�
t ) is the predicted turnover value in month t for any j 62 st. Let

etj =m(xtj, s�t )� y�tj ð16Þ

be the error (against the VAT turnover value y�tj) that can be observed with a delay.
In case m(x, s�t ) is an unbiased predictor and the prediction error is independent over
the units outside of st, we have

s2
t =V

X
j 62st

etj

 !
=
X
j 62st

E(e2
tj) ð17Þ

In order to estimate s2
t at the population total level, we now devise an error predic-

tion approach that can be viewed as a form of quasi transfer learning.
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First, denote the unit-level e2-predictor by

ê2 =h(x,~sc
t ) ð18Þ

That is, a chosen model h trained on the data associated with the units in ~sc
t , such

that an estimate of s2
t follows as

ŝ2
t =

X
j 62st

h(xtj,~s
c
t ) ð19Þ

Next, for any t, we can only train the model Equation (18) based on historical
data, since the most recent VAT turnover value refers to month t � d instead of t.
For a specific description, suppose the setups for outcome prediction of ytj (by aug-
mented learning) and error prediction of etj are such that

r�t =~sc
t =R�t0 [ R�t�d

Notice that the predictor Equation (18) trained on the observed errors for past time
points is transferred to the current t for error prediction, and the squared error e2

bj

is calculated against the VAT turnover value y�bj instead of the survey turnover
value ybj, where b= t0 or t � d. Error prediction by (18) is therefore a form of quasi
transfer learning.

To illustrate, suppose t = September 2022 (Table 1). Outcome prediction of ytj

by augmented learning uses r�t containing the non-take-all units in September 2021
(i.e., t0) and May 2022 (i.e., t � d) given d = 4. Given the same setup of ~sc

t for associ-
ated error prediction by (18), the VAT turnover values needed to calculate the rele-
vant e2-observations are from September 2021 and May 2022. Moreover, to obtain
the predictor m(x) for t0, we need augmented learning using data from September
2020 (i.e., t00) and May 2021 (i.e., t0 � d); whereas, to obtain that for t � d, we need
data from May 2021 (i.e., (t � d)0) and January 2022 (i.e., (t � d)� d). Similarly for
month-b flash estimation in Table 1.

Note that this setup for Equation (18) requires two years of data backwards
from t. While the demand on past data is greater compared to uncertainty assess-
ment for the survey sampling estimator, it is much less than what would have been
usual for a time series forecasting approach.

To derive a prediction interval using ŝ2
t obtained in this way, let Y c

t =
P

j 62st
y�tj

and let Ŷ c
t =

P
j62st

m(xtj, s
�
t ) be its flash estimator. Similarly to Equation (15), an

empirically coverage-calibrated prediction interval for Y c
t is given by

Table 1. Illustration of Learning Setup for Error Prediction Given d = 4.

t t0 t� d t00 t0 � d (t� d)0 (t� d)� d

Sept ’22 Sept ’21 May ’22 Sept ’20 May ’21 May ’21 Jan ’22
b b0 b� d b00 b0 � d (b� d)0 (b� d)� d
May ’22 May ’21 Jan ’22 May ’20 Jan ’21 Jan ’21 Sept ’21

392 Journal of Official Statistics 41(1)



½Ŷ c
t � atŝt, Ŷ c

t +atŝt�

where

at = argmin
a

a.0

Xt�D

b= t�d

I(Ŷ c
b � aŝb < Y c

b < Ŷ c
b +aŝb)= 1� 1

D� d + 1

 !
ð20Þ

The corresponding prediction interval for I�t can be derived straightforwardly given
the observed total

P
i2st

yti over st in addition.

3. Application

The NACE47 population has nine major domains (or subdivisions) by 3-digit
NACE classification (Table 2). The domain NACE478 will be excluded here
because it has separate data collection to the main survey.

The left part of Figure 4 shows the estimated share of total turnover in the given
period over 2021 and 2022, where each layer corresponds to one of the eight
domains. The domain NACE471 including all the supermarkets has clearly the
largest share of total turnover. The next two largest domains are NACE475 and
NACE477. The smallest domain is NACE474.

The right part of Figure 4 shows the sample and population proportion of the
take-all units over the same period, that is, jstj=jst [ rtj and jstj=jUtj respectively, as
well as their population share of the estimated total turnover, that is, Y (st)=Ŷ (Ut).
The take-all units clearly command a dominant share of the total turnover in
NACE47. This is an important premise for the traditional sample survey approach
to RTI, as well as the potential success of flash estimation. In other words, the
challenge would have been completely different, had one stopped surveying these
units altogether.

Below we first show some detailed results comparing alternative models and
learning approaches. Next, we report the flash estimates of the Norwegian RTI for
NACE47, which are obtained by the chosen random forest model and augmented
learning approach. Random forest is obtained by bootstrap aggregating (Breiman
1996a, 1996b) of tree models, where each tree model is generated by data-driven

Table 2. Major Subdivisions of NACE47—Retail Sales.

471 Non-specialized stores
472 Food, beverages, and tobacco in specialized stores
473 Automotive fuel in specialized stores
474 Information and communication equipment in specialized stores
475 Other household equipment in specialized stores
476 Cultural and recreation goods in specialized stores
477 Other goods in specialized stores
478 Via stalls and markets
479 Not in stores, stalls, or markets
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recursive partitioning of the feature space. See for example, Hastie et al. (2009) for
more explanations of random forest models, as well as some other machine learn-
ing models that are potentially applicable. Our focus here is how to organize the
available data for model learning, rather than how such models may be modified
or improved themselves. Finally, retrospective validation and real-time uncertainty
estimation are demonstrated.

3.1. Model and Learning Approach

For this part of the analysis we extracted the relevant data over 2021 and 2022.
After various trials, we choose to let the feature vector of each unit contain its
debit card payment total in month t as well as its VAT turnover values in the most
recent twelve months that are available at t. The results to be reported below are
not noticeably improved by including past transaction totals as features, but the
results would have deteriorated to various extent over time had the concurrent
transactions total been removed as a feature.

In particular, we notice that including a binary indicator for whether a unit
belongs to st or not would actually lead to worse prediction results.

Linear regression and random forest have been compared for all the choices of
feature vector we have explored. Only the results obtained with the final choice of
feature vector are given here to save space.

Setting-I. For each month t, let the mean squared error (MSE) of a model be calcu-
lated from the take-some units in rt, that is,

P
j2rt
fm(xtj)� ytjg2=jrtj. Table 3 shows

the average MSE over the twelve months of 2022 in the three largest domains, rela-
tive to that of the simplistic learning approach of only using st. The three choices of
r�t in (6) are considered for augmented learning, as well as the hypothetical setting
of training the models on st [ rt as if they were all available for flash estimation.
Although ‘‘mean squared residual’’ would have been a more appropriate term when
a model trained on st [ rt is applied to rt, we shall only use the termMSE for simpli-
city of description.

Figure 4. Left, estimated turnover share of eight domains of NACE47, each layer for a domain.
Right, turnover share (solid line), sample proportion (dashed line), population proportion
(dotted line) of take-all units. Period: April 2021 to July 2022.
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Clearly, with suitable choice of r�t , augmented learning by random forest can
yield much greater reductions of MSE compared to linear regression in any of the
NACE domains. Although the average MSE by augmented learning is larger than
learning based on the true sample st [ rt, augmented learning is able to improve
the simplistic approach of only using st.

The squared mean error (SME), that is, fjrtj�1P
j2rt

m(xtj)� ytjg2, is more rele-
vant for RTI than MSE. Table 4 shows the average SME over the twelve months
of 2022 in the three NACE domains, by the same models and learning approaches.
Random forest yields greatly reduced SME compared to linear regression in all the
domains. Notice that the relative improvement of augmented learning to simplistic
learning only from st is more pronounced than in terms of MSE, for example,
37=118\0:47 for the corresponding cells in the last row of Tables 3 or 4. Finally,
the relative performance of training random forest on st [ rt instead of
st [ rt0 [ rt�1 may have been exaggerated here, due to the use of residuals in the for-
mer case, since training the linear model (i.e., less prone to overfitting) does not
always lead to as impressive SME reductions.

Setting-II. Augmented learning in setting-I above enables flash estimation without
the sample units rt. Purposive sampling achieves further reduction of burden and
resource, whereby the non-take-all units are dropped from the survey altogether.
Since this also removes all the survey turnover observations of the cutoff units, aug-
mented learning would depend on proxy values.

All the non-take-all VAT units can be used for augmented learning by Equation
(7). However, here we shall present augmented learning based on past r-samples
associated with VAT turnover values instead of the observed survey turnovers, as
well as in rt for the hypothetical setting of training on st [ rt. Since the most recent
VAT turnovers at t refer to t � d, we use rt�4 instead of rt�1 in r�t given d = 4 in
Norway. In this way, the differences to the results above would only be due to the
use of VAT turnovers that replace the survey turnovers, without the additional
effects of including more units in r�t .

Table 3. Relative Average MSE in 2022 Using Survey Turnover.

Sample for learning

Method st st [ rt0 st [ rt�1 st [ rt0 [ rt�1 st [ rt

NACE471
Linear regression 1 1.00 1.00 1.00 1.00
Random forest 1 0.99 0.65 0.65 0.24

NACE475
Linear regression 1 1.02 0.93 0.94 0.86
Random forest 1 1.04 0.86 0.92 0.21

NACE477
Linear regression 1 0.92 0.83 0.77 0.78
Random forest 1 0.54 0.52 0.47 0.28
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The SME results are given in Table 5 in the same way as Table 4. Random for-
est remains much better than linear regression. Regarding the learning approach,
we conclude the following for augmented learning.

� Augmented learning can reduce the SME compared to simplistic learning
only from the take-all sample st.

� Comparing Table 5 to 4, one sees that augmented learning from mixing con-
temporaneous survey turnover and historic VAT turnover can perform as
well as augmented learning fully based on survey turnover observations.
This provides a justification for purposive sampling.

� Training models on st [ rt does not reduce SME compared to augmented
learning using suitable st [ r�t , if VAT turnover is used as the y-values in rt.
Augmenting sample with past units is justified.

� In particular, the setup s�t = st [ rt0 [ rt�4 seems to be a robust choice, which
uses both the year-on-year and the most recent VAT-turnovers.

Quasi transfer learning. The scheme A requires transferring a past source model to
the current time t. It performs poorly for the same data above, which is not surpris-
ing given the dynamic nature of RTI. The results below are obtained by the scheme
B, given either (11a) or (11b), where the target set is qt = st [ rt and the source time
point is b= t � 1, and survey turnover values are used everywhere. The results are
directly comparable to those of Table 4.

Since the sample s�b for quasi transfer learning dates further back in time than s�t
for augmented learning, the results is only available for February to December
2022 based on the same data above. Table 6 shows the average SME over these ele-
ven months, together with the results for augmented learning (using r�t = rt0 [ rt�1)
and target learning (using st [ rt), which are comparable to those in Table 4 aver-
aged over twelve months.

It can be seen that the SME of the model Equation (11a) varies more across the
NACE domains than that of the model Equation (11b). Quasi transfer learning

Table 4. Average SME 3102
� �

in 2022 Using Survey Turnover.

Sample for learning

Method st st [ rt0 st [ rt�1 st [ rt0 [ rt�1 st [ rt

NACE 471
Linear regression 310 306 309 305 308
Random forest 268 214 167 157 58

NACE 475
Linear regression 201 192 113 117 132
Random forest 260 108 220 161 16

NACE 477
Linear regression 161 263 133 188 107
Random forest 118 56 37 37 8

396 Journal of Official Statistics 41(1)



using the model Equation (11b) yields slightly larger SME compared to augmented
learning. It might be possible to fine-tune the choice of b for the past source models
(Figure 2), so as to improve the results of quasi transfer learning. However, given
the relative simplicity and intuitiveness of augmented learning, we conclude that
augmented learning is the preferred learning approach for flash RTI in Norway.

3.2. Flash RTI

Figure 5 shows flash RTI estimation results for NACE47 (excluding NACE478)
over the relevant months in 2021 and 2022, based on purposive sampling and using
debit card transactions data, both in terms of the monthly and the year-on-year
indices. The chosen random forest model is trained by augmented learning based
on st [ Rt0 [ Rt�4, with associated f(xti, yti) : i 2 stg, f(xt0i, y�t0i) : i 2 Rt0 g, and
f(xt�4, i, y

�
t�4, i) : i 2 Rt�4g. In addition, the flash RTI by the simplistic learning only

from st is given, as well as the hypothetical flash RTI that uses the random forest
model learned from rt to predict for Rt.

The existing survey sampling approach requires both st and rt and serves as the
performance benchmark. It is seen that simplistic learning from only st can some-
times deviate quite far from the disseminated RTI. The flash RTI obtained by aug-
mented learning without rt achieves comparable performance to hypothetical

Table 5. Average SME 3102
� �

in 2022 Using VAT Turnover.

Sample for learning

Method st st [ rt0 st [ rt�4 st [ rt0 [ rt�4 st [ rt

NACE 471
Linear regression 310 298 307 297 309
Random forest 254 200 226 188 235

NACE 475
Linear regression 201 156 206 168 155
Random forest 266 110 188 93 123

NACE 477
Linear regression 161 264 203 246 116
Random forest 109 38 38 18 34

Table 6. Average SME 3102
� �

Over February to December 2022.

Random forest Augmented Quasi transfer Target

st [ rt0 [ rt�1 Model (11a) Model (11b) st [ rt

NACE 471 162 146 172 61
NACE 475 164 288 173 18
NACE 477 38 72 42 8
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learning from the target observations in rt, although in principle unbiased predic-
tion is only possible with the latter but not the former.

Moreover, let Ît be a given flash RTI for month t and let It the official RTI
which is based on the existing sample survey design. Let the difference between the
monthly change by the two be given as

Bt =(Ît � Ît�1)� (It � It�1)= (Ît � It)� (Ît�1 � It�1) ð21Þ

Figure 6 shows Bt for the three learning options in Figure 5. Although auto-
correlations exist in all the three times series fItg, fÎtg, fÎt � Itg, respectively, one
cannot detect any pronounced auto-correlation in the plot of Bt.

The results suggest that, by adopting an appropriate learning approach, one
may be able to drop the take-some sample rt, reduce the response burden and the
processing cost, and greatly improve the timeliness of RTI by halving the current
dissemination time lag, without compromising the accuracy of RTI.

3.3. Validation and Uncertainty

First, Figure 7 shows the results of retrospective validation as described in
Subsection 2.4. The adopted random forest model for flash RTI (described above)
is fitted to the population of VAT units U�t relevant to each t, which yields the
model-predicted VAT index derived from ~Y �t (dashed) in the left plot of Figure 7.
It can be seen that the model fits the VAT population quite well over the period
here, since the discrepancy between the model-predicted VAT index and the VAT
index derived from the observed Y �t (solid) is barely noticeable in the given period
except perhaps for July 2021.

In the right plot of Figure 7, the adopted random forest model is trained by aug-
mented learning (as for the flash RTI), which yields the learned index derived from
Ŷ �t (described in Subsection 2.4). It tracks closely its target proxy-RTI index derived
from tt, although augmented learning does seem to induce some discrepancy in
addition to that due to modeling (in the left plot).

Figure 5. Existing RTI (solid line) for NACE47 over periods of 2021 to 2022, flash RTI by
simplistic learning (dotted line), augmented learning (dashed line), or hypothetical learning from
rt (cross line). Left: monthly index; right: year-on-year index.
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It is important to notice that the discrepancy between the learned index (of Ŷ �t )
and the proxy-RTI index (of tt) in Figure 7 reflects well the discrepancy between
the flash RTI (by augmented learning) and the disseminated RTI (by existing sur-
vey sampling) in Figure 5. The proposed retrospective validation approach can pro-
vide a reliable basis for assessing whether the flash RTI has worked satisfactorily
till as recently as d months ago.

Next, for uncertainty estimation, Figure 8 shows the VAT total that is only
available retrospectively (i.e., Y c

t in Subsection 2.5), together with its prediction
intervals by the empirical or error prediction method and its confidence intervals
by survey sampling. Whereas the intervals by the empirical method Equation (15)
and survey sampling are obtained for all the twelve months of 2022, we could only
calculate the intervals for April to December by the error prediction method
Equation (20) given the data available, because this method requires more data
backwards under the adopted setup of augmented learning.

Figure 6. Difference of monthly change in flash RTI and official RTI for NACE47 over periods
of 2021 to 2022. Simplistic learning (dotted line), augmented learning (dashed line), hypothetical
learning from rt (solid line).

Figure 7. Retrospective validation of flash RTI given in Figure 5. Left, random forest model,
VAT index observed (solid line) or model-predicted (dashed line). Right, augmented learning,
proxy-RTI index observed (solid line) or learned (dashed line).
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The prediction intervals are empirically calibrated by either Equation (15) or
Equation (20) to the nominal level 91.7% based on a sliding window of twelve
months. The nominal level of the confidence intervals by survey sampling is 95%,
which are obtained as follows. Let ~Y c

t be the ratio estimator based on the existing
subsample rt, which uses the VAT values from the same month in the previous year
as the auxiliary. Let se t be the estimated standard error of this ratio estimator. We
obtain an approximate 95% confidence interval (~Y c

t � 2se t, ~Y c
t + 2se t) by appeal-

ing to the Central Limit Theorem.
The actual coverage is 100% by both of the prediction intervals during their

respective periods in 2022. The coverage of the 95% confidence intervals based on
survey sampling is 91.7%, which are not calibrated empirically as we do for the
prediction intervals. Notwithstanding the fairly short time span of these results, the
proposed prediction intervals display promising coverage property. As can be
expected, error prediction modeling Equation (18) improves considerably the effi-
ciency of estimation compared to the simple empirical method, where the average
relative half-length (of prediction interval) is 4.7% by error prediction Equation
(18) and 7.8% by the empirical method Equation (15).

Since the average relative half-length of the confidence intervals by ratio estima-
tion is 4.6%, flash estimation without subsample rt has been about as efficient as
the sampling-based ratio estimation that requires rt. It seems fair to conclude that
augmented learning can enable flash estimation with greatly improved timeliness,
as well as reduced response burden and processing cost, without compromising the
accuracy of RTI.

4. Final Remarks

We have considered a setting for flash estimation, where target observations neces-
sary for unbiased prediction are not available at all outside a purposive sample
selected with probability one. Rather than simply applying a model learned from
the purposive sample to the rest population units, we propose two general

Figure 8. VAT total (solid line), prediction interval by empirical method (dotted line) or error
prediction (dashed line), confidence interval by sampling (long-dashed line).
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approaches of model learning that make use of data from relevant domains outside
the target population, called augmented learning and pseudo transfer learning,
respectively. Moreover, retrospective validation of modeling or learning and real-
time prediction interval estimation methods are developed in the context of
Turnover Statistics.

Application to the Norwegian Retail Turnover Survey data shows that it is pos-
sible to obtain flash RTI for NACE47 based on augmented learning, which greatly
improves the timeliness by halving the current dissemination time lag, without
compromising the accuracy of RTI. The adopted model utilizes relevant auxiliary
information in historic VAT reports and contemporaneous debit card transactions,
enabling one to remove the non-self-representing sample units, thereby reducing
the associated response burden and processing cost.

The flash RTI methodology described above and the related production pro-
cesses are being implemented at Statistics Norway. Three broad, interrelated
aspects are worth noting for other countries with a similar interest.

First, greater uses of historic VAT reports can benefit from improvements of the
underlying statistical database. For instance, the bimonthly VAT reports have been
apportioned to create a statistical database of monthly VAT turnover values for the
local units which can be used for flash RTI estimation, the details of which have been
left out to save space. Similar apportioning of available VAT register data may be rel-
evant in other countries, in order to harmonize over the different frequencies and units
of VAT reporting that exist. The resulting statistical database is more ‘‘complete’’ and
‘‘detailed’’ than the raw VAT register, which can benefit many relevant statistics.

Second, we have made use of debit card transactions that are available to
Statistics Norway, which fundamentally improves the timeliness of auxiliary infor-
mation compared to the VAT register that is only available months later. Other
sources of transaction data are also of interest, such as e-invoices and business-to-
business bank transfers. While the different sources have their distinct challenges of
access and processing, they complement each other in coverage and content,
becoming more useful in combination with each other. This is an area that requires
strategic development of knowledge, experience and capacity at National Statistical
Offices. A coordinated program across the whole spectrum of business statistics
would be more impactful than scattered efforts each focusing on a specific topic.

Third, provided greater access to relevant and timely non-survey big data,
improving the timeliness of economic indicators while reducing the response burden
and processing cost becomes an ever more urgent matter. The flash RTI exemplifies
a situation where some survey data is still necessary to ensure the relevance and
accuracy of official statistics. Combining appropriate purposive samples with novel
modeling and learning approaches requires attention in practice. Diligent retrospec-
tive validation is essential in this respect, in terms of the adopted model, learning
approach, as well as the associated uncertainty measures such as prediction inter-
vals. The obtained insights should help to guide the maintenance and updating of
the purposive sample, in order to be able to compensate for the data that are either
missing structurally (such as when the take-some sample is removed altogether) or
randomly (e.g., due to delays of reporting, new or dissolved business units).
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Looking ahead we would like to point toward a greater emphasis on novel
learning approaches for official statistics. In the context of flash estimation, where
the absence of target observations is the fundamental challenge, a key matter of
learning is how to organize the data outside the target domain but are nevertheless
relevant (for training any given models). Augmented learning and quasi transfer
learning have been proposed from this perspective. As official statistics are typi-
cally repeated over time and geography, variations of transfer learning (with or
without target observations) seems a large topic for future research and applica-
tion, for example, beyond the common traditional approach of allowing for tem-
porally or spatially correlated observations.
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