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Abstract — Feasibility software for photovoltaic (PV) systems leverage decomposition-transposition model pairs to approximate Plane-of-Array (POA) irradiance. 
This study analyses the accuracy of 15 optical model pairs, using minute input irradiance, to assess POA predictions in a temperate setting by comparing to 

measured POA for both an actuator-based tracker and a 55° south-facing tilted system. Using the Mean Absolute error (MAE) of ≤5% as the benchmark, significant 

variations were revealed across diverse sky conditions. Model estimates showcased a broad range of errors from the measured data, from 2.67% to 51.07%, 
influenced by variables such as Kt and system type. For the tracking system, the evaluation showed that in clear conditions, ten model pairs maintained errors 

within the range. However, this success diminished under intermediate skies, with only five models remaining within range, and further reduced to two models in 

overcast conditions. The fixed tilt system demonstrated similar trends but with fewer models meeting the required thresholds; four models in clear conditions, and 
only two in intermediate conditions. Remarkably, only the DISC-SO model pair met the threshold in overcast conditions, exhibiting an MAE of 2.67%. Thus, the 

DISC-SO model pair consistently met the threshold for both systems under all conditions, making it a preferred choice for transposing horizontal irradiance. 

However, R2 values (0.5034, 0.5379, 0.5083 for clear, intermediate, and overcast conditions, respectively) highlighted challenges due to the high temporal resolution 
of input data and the hourly data-based SO transposition model. Moreover, the study also examined the impact of decomposition and transposition models on 

percentage errors. Decomposition changes caused discrepancies of up to 2.43% for tracking systems and 5.34% for fixed-tilt systems. In contrast, transposition 

model changes resulted in errors of 8.53% and 11.51%, respectively. Additionally, using hourly solar irradiance data yielded lower errors compared to minute data, 
with 1.44% in intermediate conditions, -2.15%, and 2.35%  in overcast and clear conditions, likely due to the models being developed empirically with hourly data. 

Index Terms— Solar irradiance, Temperate Climates, Sky Clearness Index, Decomposition Models, Transposition Models. 

I. INTRODUCTION 

According to the 2022 IPCC report, the goal of maintaining global warming below 1.5 °C is contingent on two factors: a 45% 

reduction in carbon emissions before 2030, and renewable energy sources supplying between 70% and 85% of power by 2050 

[1][2]. Consequently, the British energy security policy commits to increasing solar energy deployment by fivefold to 70 GW by 

2035 [3]. For enhancing the deployment of photovoltaic (PV) systems, it is critical to minimize the error in PV simulation software 

(herein after named feasibility software). Primarily, this involves the task of validating the mathematical models embedded within 

these software solutions, particularly in temperate climate zones where the empirical nature of such models becomes paramount. 

These mathematical constructs serve a pivotal role in estimating the Plane-of-Array (POA) irradiance; the amount of sunlight 

available for collection at a particular panel orientation. 

Thus, an accurate appraisal of PV performance is central to the economic viability of systems [6]. The large variety of model pairs 

available can introduce error and therefore increase risk in the PV deployment process. Feasibility software offers a multitude of 

model combinations, but there is no established standard for their use [22]. Previous research indicate that applying the same 

meteorological information and system definitions can lead to differing POA irradiance predictions [49]. POA is crucial for making 

knowledgeable choices, spanning various domains from analyzing shade effects to assessing economic feasibility. 

The International Technology Roadmap for Photovoltaic (ITRPV) estimates that by 2030, 40% of photovoltaic (PV) systems will 

incorporate tracking technologies [4]. Reinforcing this, the International Energy Agency (IEA) highlights the growing use of 

single-axis trackers in the USA, surpassing Fixed-Tilt (FT) systems within PV farms. Moreover, it demonstrates the growing global 

market for PV trackers. The pursuit of tracking technologies in the PV landscape holds the potential for enhanced energy output 

and therefore reduction in the number of modules required per kWh [5][43]. However, tracking solutions in PV systems often 

necessitate increased physical space, which could be a hurdle in space-limited areas [54]. Therefore, precise modelling is essential 

to ensure that the benefits provided by these solutions surpass their spatial needs. Furthermore, the use of trackers introduces 

concerns about return on investment [6]. 

The economic viability of PV systems, be they categorized as FT or tracking, largely relies on accurate POA estimations. This 

evaluation is typically executed using a view-factor method [6], implemented through feasibility software. At present, satellite 

imagery is employed to collect Global Horizontal Irradiance (GHI) [47], which is then separated into its direct and diffuse 

components (Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI)) through decomposition models. These 

models, through mathematical regression, use empirical constants and differing parameters [7]. Transposition models, which draw 

on empirical data at different tilts (𝛽) and system azimuth (𝜓𝑠𝑦𝑠𝑡𝑒𝑚) from diverse latitudes (φ) and periods, further this process by 

predicting POA [8][48]. Different software utilise combinations of these models – a list of commonly used model pairs is given in 

Table 1. 

Transposition models can be divided into two categories: isotropic and anisotropic. Isotropic models depict Diffuse Horizontal 

Irradiance (DHI) as a consistent distribution of rays across the entire sky dome, signifying equal irradiance in every direction. On 

the other hand, anisotropic models (e.g. Perez [14]), are considerably more intricate as they break away from the restrictive 

assumption of complete isotropy. They divide solar irradiance into distinct elements: circumsolar (rays within a spherical cone 
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with a 25o  half angle), and horizon brightening (rays emanating from a planar beam) built on top of an isotropic foundation. 

Therefore, during the incorporation of both decomposition and transposition models, as carried out in feasibility software, errors 

tends to escalate. This is attributable to a cascading effect where an underestimated DHI stemming from decomposition models, 

could result in an overestimated DNI, and subsequently, POA when these irradiance components are transposed. Conversely, an 

overestimated DHI would yield the opposite behaviour. 

II. LITERATURE REVIEW 

There are numerous studies evaluating decomposition-transposition model pairs. For example, Lave et al. examined two model 

pairs across 9 locations in the US for FT systems (predominantly with a south-facing 𝛽 = 25o), concluding that regardless of the 

decomposition model used,  the choice of transposition model resulted in differing outcomes; the Hay model showed less error 

compared to its Perez counterpart [23]. In their research, Sun et al. implemented the Orgill and Hollands decomposition model 

[50], coupled with the Perez transposition model. Their validation exercises focused solely on FT systems set at 𝛽 = 15° and 30° 

at 𝜑 = 35°, revealing a variation in modelled irradiance Bifacial Gain (BG) of 6.40% compared to measurements [24]. Furthermore, 

the DIRINT-Perez model pairing was leveraged in an additional investigation [6], wherein Levelised Cost of Electricity 

calculations served as a validation criterion. An identical model pairing was used across six locations for an irradiance BG study 

[25].  

The collection of 6 sites involved a Single Axis Tracker (SAT) and south-facing FT at 𝜑 = 35°, resulting in a 6% error from 

modelled BG. The setup at location 2 compromised an FT system of 𝛽 = 34°, supplemented by two SATS at 𝜑 = 37.5°, resulting 

in a 5% error from the model. Location 3 was near the equator and featured a 10° 𝛽. Location 4 maintained 𝛽=24°, identical to its 

𝜑, whereas location 5  (𝜑 = 51° ) featured an FT setup with 𝛽 = 35°. The BG from locations 3, 4, and 5 showed considerable 

consistency with the model, displaying errors of only 1%, 3.16%, and 1.65% respectively.  

Yang et al. assessed ten transposition and five decomposition models under tropical conditions at 𝜑 = 1.3°. It was discovered that 

combining both types of models leads to increased prediction errors when converting irradiance from horizontal to tilted surfaces, 

with the error magnifying as 𝛽 increases. This highlights the need to explore the percentage error in the modelling results at higher 

tilts, which is important for bifacial systems or monofacial systems requiring greater 𝛽 for optimal incident angle [52]. Maani et 

al. noted that limiting studies to a single model combination might result in less accurate model chain indicators [55]. Roberts et 

al conducted a year-long study at 𝜑 = 52.7°, analyzing 16 pairs of optical models using hourly data. Their research highlighted that 

the DISC decomposition model paired with the Liu-Jordan isotropic model delivered superior accuracy compared to other 

combinations; validated on a FT system (𝛽 = 45° with 𝜓𝑠𝑦𝑠𝑡𝑒𝑚 of 12° relative to the South). It was recommended that future research 

delve into the empirical derating factors employed in PV modeling today, considering diverse system configurations with various 

𝛽 -𝜓𝑠𝑦𝑠𝑡𝑒𝑚   combinations [56]. 

Despite these findings, it is notable that the majority of the optical model pair validation studies use hourly data and FT systems. 

This leaves a knowledge gap concerning their utility for a range of angles, a prerequisite for tracking systems, along with a higher 

temporal resolution and under temperate climates. Additionally, Gueymard showed that most of the error in predicting POA 

irradiance at a sunny location stems from the empirical separation of direct and diffuse components when these are not measured 

locally [51]. Hofmann et al. noted that decomposition models tend to produce a broader range of outcomes, whereas transposition 

models significantly influence these results. Nevertheless, additional validation is necessary for areas with diffuse climates, and a 

range of 𝛽 needs to be considered [53]. These findings raise a critical question about whether similar conclusions can be drawn for 

locations with high levels of diffuse light, and which has a greater impact on POA irradiance: the decomposition or the transposition 

aspect. 

 

 

 

 

 

 

 

 

 

 

The goal of this study is to investigate 15 decomposition models partnered with transposition models which are integrated with 

feasibility software using a full year's worth of data, at 𝜑 = 51.1°. It analyses the errorbetween modelled and measured POA 

Table 1: Various model pairs deployed in different feasibility software [44][45]. 
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irradiance. An overview of the methodology used to estimate POA is provided in this paper. The description of the different tilted 

components that make up the POA will be introduced, using GHI for the reflected component (RT), DNI for the beam component 

(BT), and DHI from the decomposition model. Afterward, the diffuse tilted component (DT) is acquired by transposing them. To 

facilitate the review of the distinct optical model pairings, the sky clarity is divided into clear, intermediate, and overcast categories.  

Firstly, the error in the 15 optical model pairs for a tracked and FT system concerning diverse sky conditions is analysed. This 

analysis can highlight discrepancies derived from overpredicting or underpredicting DHI, subsequently leading to a flawed 

representation of POA [21]. Furthermore, it is essential to quantify which factor has a more pronounced impact on the model 

performance: decomposition or transposition.  After choosing the best-performing pair among the 15, which showed minimal error, 

this model is used to assess the performance of the optical model pair in a tracking system. The aim is to map horizontal irradiance 

minutely and convert these measurements to POA irradiance under varying weather conditions. The concluding assessment is to 

examine the impact of temporal resolution on the top-performing model pair. By comparing the error percentages between hourly 

and minute-by-minute data inputs, it can be determined whether high temporal resolution data yields consistent results 

III. METHODOLOGY 

A. Models 

A total of 5 distinct decomposition models are in use (see Table 1) [9-13]. All of these models rely significantly on the sky clearness 

index (Kt) for assessing sky conditions, which is derived by taking the ratio of the GHI to the extraterrestrial horizontal irradiance, 

Ea, as depicted in equation 1.  

 
𝐾𝑡 =

𝐺𝐻𝐼

𝐸𝑎

 
(1) 

 
𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 cos(𝑆𝑍𝐴) (2) 

The DIRINT and DISC models [46] utilize GHI and Kt, among other parameters (i.e., dew point temperature). Moreover, the BRL 

model incorporates the Zenith angle (SZA) and the apparent solar time. Both models yield DNI rather than DHI, but regardless, 

all decomposition models effectively generate estimates of both DHI and DNI for conversion using the closure equation in Equation 

2. 

 

POA irradiance is then estimated using DT with BT and RT as per Equation 3, with BT calculated using the angle of incidence (AOI) 

and DNI (Equation 4). The 7 transposition models listed calculate DT [14-20]. These models vary in complexity, ranging from a 

basic isotropic representation of the sky (LJ [15]) to complex empirical correlations incorporating look-up table integrations, as in 

the Perez model.  
 

 
𝑃𝑂𝐴 = 𝐵𝑇 + 𝐷𝑇 + 𝑅𝑇 (3) 

 
𝐵𝑇 = 𝐷𝑁𝐼 cos(𝐴𝑂𝐼) (4) 

 

As for RT, it operates under isotropic conditions, signifying that all rays maintain uniform intensity (see equation 5). 

𝑅𝑇 = 𝐺𝐻𝐼 ∙ 𝜌 ∙ (
1 − cos(𝛽)

2
) 

(5) 

The simplistic reflection of ground rays is processed as though from a Lambertian surface, where the quantity of ground re-emission 

depends on the albedo (ρ) [68]. For the purpose of this study, given the presence of grass on the site,  ρ was set at 0.20. This value 

aligns with the default value for vegetated terrains in feasibility software [27]. Furthermore, the assumption here is that the 

foreground is infinitely extensive and unobstructed by shade. However, it should be noted that ρ varies based on numerous factors, 

such as the nature of the surface, i.e. whether it is a water-logged surface following rain, or simply an expanse of green grass. This 

variation could lead to compensatory or augmentative effects on error relative to other uncertainty  

sources in the optical model pair. As a result, the reliance on reflected irradiance remains unchanged and is set as the default in 

feasibility software. 
 

B. System Configuration 

 

 

 

 

 

 

 

 

The tracker in this study uses an actuator control system to adjust the solar panel array's tilt angle along the East-West axis. It 

aligns the panels based on the sun's altitude and azimuth within a two-dimensional coordinate system. Due to limitations in actuator 

Table 2: Specifications of the actuator-based tracker and the FT system. 

System Type 
Experimental 

Duration 

𝝍𝒔𝒚𝒔𝒕𝒆𝒎 

(°) 

𝜷 

(°) 

1 Tracker 

Apr 14 2023 – Apr 13 2024 

126 -247 33 - 68 

2 FT 180 55 
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lengths, the system consistently aims the panels at the sun within predefined boundaries during its tracking cycle, as detailed in 

Table 2. 

 

The study utilized Spectrally Flat Class A pyranometers (CMP10) to measure POA and GHI, in accordance with the International 

Electrotechnical Commission (IEC) 61724 standards [26]. These standards encompass everything from calibration to sensor 

placement, ensuring consistent and accurate data collection. Further, the examination of the optical model pairs is also performed 

at one-minute intervals, an approach designed to seize the variety inherent in the tracking combinations (i.e., 𝛽 − 𝜓𝑠𝑦𝑠𝑡𝑒𝑚) that an 

hourly computation would not facilitate [47].  
 
 

C. Sky Categorisation 

 

 

 

 

 

 

 

 

 

The classification of sky conditions into clear and overcast conditions is achieved via Equation 1, utilizing NREL’s Solar Positon 

Algorithm (SPA) [30] to ascertain the solar position. Page et al. noted the typical decrease in K t values at higher 𝜑, and provided 

ranges for sky classification in the context of the UK climate, as illustrated in Table 3 [31]. The computations were based using 

equation 1 corresponding to the 𝜑 under investigation. SZA was kept under the limit of 75°, and a daily Kt average was obtained 

to minimize errors attributable to the uncertainty threshold of the pyranometers.  

 

Employing the average Kt permits each day to be classified under a specific condition. At 𝜑 = 51.1°, where the prevailing Kt was 

found to be 0.48, clear conditions were observed on 31 of the 364 days, with an average K t of 0.70, while overcast conditions 

(average Kt = 0.19) were reported on 101 days. 
 

D. Employing the Error Threshold  

The uncertainty in the energy output over time, as well as the error in determining the best design parameters of PV systems, 

heavily depends on the accuracy of the incident irradiance measurements or models. Therefore, the purpose is to assess the 

performance of various optical model pairs in estimating the POA irradiance. Therefore, a benchmark was set for the Mean 

Absolute Error (MAE) of <5%. MAE is depicted in Equation 6. Here, 𝑃𝑂𝐴𝑀 refers to the measured POA irradiance from the 

pyranometer, whereas 𝑃𝑂𝐴𝑆  pertains to the modelled POA irradiance calculated using the decomposition-transposition model pair 

for the i-th data point. The number of data points is depicted as n.  

 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =
1

𝑛
∑ |

𝑃𝑂𝐴𝑀 − 𝑃𝑂𝐴𝑆

𝑃𝑂𝐴𝑀

|

𝑛

𝑖=1

× 100 (6) 

 

E. Limitations of the Presented Study 

The pyranometers (having an uncertainty of ±1.44%) used are calibrated under specific conditions (i.e., SZA ≈45°) leading to 

increased measurement uncertainty during periods of low irradiance, such as overcast conditions. This may affect the accuracy of 

the data gathered, especially when solar irradiance is diminished. Additionally, this study did not incorporate ρ measurements but 

instead specified a constant ρ = 0.20 for grassy surfaces within the feasibility software. This could influence the comparative 

performance of the model pairs, particularly the FT system which is affected by its steep AOI. Unfortunately, this limitation is 

dictated by the constraints of the feasibility software, hence its adoption in our methodology. Moreover, the results presented here 

are based on standalone data from a single location. Another drawback is that the measurements focus solely on global in-plane 

POA, excluding diffuse and/or direct. This exclusion makes it challenging to determine the extent to which DHI or DNI contribute 

to errors in the analysis of in-plane POA. 

Aligning pyranometers with the POA is challenging, often resulting in alignment errors of several degrees. These errors increase 

as the AOI to the POA widens. Consequently, systems with a lower AOI, such as the tracker system, tend to exhibit fewer errors 

percentage from POA and pyranometer misalignment compared to FT  system. However, it's important to acknowledge the impact 

of different elevation heights and the inherent nature of movement in tracking systems contributing to unavoidable errors in systems 

with varying AOI. 

Table 3: Sky conditions and corresponding sky clarity ranges. 

Sky Condition Range 

Overcast 𝐾𝑡 < 0.30 

Intermediate 0.30 ≤ 𝐾𝑡 ≤ 0.68 

Clear 𝐾𝑡 > 0.68 
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IV. RESULTS AND DISCUSSION 

A. Examining Pairs in Clear Conditions 

The percentage errors for the 15 model pairs, across the three conditions for both the tracked and FT systems, are presented in 

Table 4. The performance seems to hinge on the fundamental aspects of either the initiation of the decomposition segment or the 

implementation of the transposition component within the optical model combination.  A total of 4 models conform to MAE < 5% 

for the FT setup, with MAE fluctuating between 3.21% and 25.45%.  

Both Erbs and Reindl employ similar equations, exhibiting a negative linear gradient for the latter and a negative exponential-like 

shape for the former in clear instances. Comparing Erbs-Perez and Reindl-Perez, it is evident that their errors to measurement are 

closely aligned at 5.11% and 3.21%, respectively. The same can be observed with Skartviet Olseth (referred to as SO), where the 

Erbs model results in  MAE of 17.25% and the Reindl model yields 14.88%.  

 

 

 

 

 

 

 

 

 

 

 

Examining the empirical origins of transposition models reveals insights into their performance. For example, the Bugler model 

defines sky clarity using DHI, making DHI computation integral to transposition. This accounts for the error of 15.27% in the FT 

system, due to the lower number of cos(AOI). At higher values of cos(AOI), like that of the tracker, the percentage error is lower 

by nearly half, at 8.08%. Similarly, the Temp-Coulson (TC) model also includes the cos(AOI) but raises it to a power of two and 

a cubic function of sin(SZA). This explains the better performance of that model for the tracker (8.36%) compared with the FT 

system 16.44%). The Willmot model employs an empirical quadratic equation as a function of 𝛽. Thus, a FT outside of its empirical 

range (i.e., 𝛽 = 55°) results in a high percentage error from measurement (25.45%). On a tracker, though still large, the error for 

Erbs-Willmot is reduced to 13.92%. 

For the tracker, 10 of the 15 models conform to the figure of merit. Using a simple isotropic transposition model (in this case, Liu-

Jordan or LJ) offers a more accurate portrayal of POA; mainly due to DHI being minimal, resulting in a low error from the 

measurement. Still, all models using Perez as the transposition part, adhere to the threshold, albeit producing overestimations rather 

than underestimations possibly due to the mathematical contributions of the model coefficients of the sky clearness bins found 

within the lookup table of the Perez model. 

B. Examining Pairs in Overcast Conditions 

Overcast conditions, by their nature, imply that a considerable segment of total irradiance will originate from DHI. Hence, the role 

of decomposition models becomes similar to their function in clear conditions but reversed -  now focusing on DT. According to 

Table 4, all combinations for the FT system except for the DISC-SO pair have MAE >5%. Moreover, the range of percentage 

errors for the tracked system extends from 3.23% to 51.07%, while for FT, it spans 2.67% to 40.47%. For the tracked system, the 

number of models meeting the error threshold in overcast conditions decreased from 10 to 2. This reduction is primarily because 

the function of cos(AOI) nears one in clear conditions, where BT dominates. Notably, employing LJ in the transposition role 

performs similarly in overcast conditions. Comparing BRL-LJ and Erbs-LJ, both assume 𝐷𝑇 computation is uniformly distributed 

over the sky and their percentage errors to the measurement for the tracked system are quite similar, with a difference of only 

0.24%. This further validates the use of isotropic models under overcast conditions, where diffuse irradiance scatters 

homogeneously.  

 

The only model pair within the established threshold in both systems is the DISC-SO combination. However, it is important to 

note that the optimal estimation of DHI does not necessarily come from the DISC among the 5 decomposition models, as other 

transposition models using DISC still display substantial errors from the measured POA. In addition, regardless of the 

decomposition model used or the system type examined, combinations incorporating Perez consistently perform poorly. Extreme 

Table 4: The performance of 15 different decomposition-transposition model 

pairs is evaluated across clear, intermediate, and overcast conditions. Green 

highlights signify the pair meets the specified threshold MAE < 5%. 
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MAE ranges from 25.76% to 45.22%, possibly due to unsuitable constants defined in the lookup function for low sky brightness 

coefficients, suggesting a calibration necessity. The TC transposition model also presents the most significant POA percentage 

errors in both systems, with 51.07% for the tracker and 40.47% for the FT setup, respectively.  The cause of this low performance 

is not attributed to the Erbs component, but primarily to the transposition aspect. The methodology is simplified, which can lead 

to inadequate results when horizons are darker during overcast conditions. The TC model results from an integrated segment of 

the sky, exposed to these specified 𝛽 − 𝜓𝑠𝑦𝑠𝑡𝑒𝑚  combinations. However, only a limited set of measurements from the 49 

combinations in clear skies were taken, specifically from late January to early April at a 𝜑 < 50°. 

C. Examining Pairs in Intermediate Conditions 

Similar to the conditions of both clear and overcast conditions, the number of model pairs meeting the threshold is higher in the 

tracked system compared to the FT setup. The tracked system features 5 model pairs with MAE within 5%, while the FT system 

includes only 2. For the FT system, these are DISC-Perez, which falls just 0.01% within the threshold, and DISC-SO with MAE 

of 2.87%. Meanwhile, the tracked system also includes these two pairs, in addition to DIRINT, DISC, and Reindl paired with 

Perez. 

  

The Erbs-Willmot and Erbs-TC model combinations had the most significant percentage errors relative to the measured POA. The 

former had 7.14% and 17.31% for the tracker and FT system, respectively, while the latter combination showcased a percentage 

variance of 12.95% and 19.35%. The TC model employs trigonometric principles to track DT variability rooted in solar position, 

while the Willmot model showcases a modification of the Hay model, incorporating its unique sky clarity definition and a second-

order polynomial as a function of 𝛽. The conception of both the Willmot and TC models accepts that enhancements can better the 

approximations for dispersed clouds, as brightening on the horizon in these circumstances stem from a seemingly larger sky 

coverage due to clouds overlapping near the horizon. Naturally, the error percentage of Willmot and TC is reduced in a tracked 

system because the 𝛽 − 𝜓𝑠𝑦𝑠𝑡𝑒𝑚 leads to angles upon which they have been validated. A certain consistency is noticeable when the 

Perez transposition model is applied. In the tracked system, the discrepancy between models employing Perez is marginal, with 

only a difference of 1.09% between the highest and lowest MAE (i.e., all fall within the 3.38% to 4.37% margin). However, the 

FT system does not exhibit a similar pattern, having a more significant percentage difference; i.e., 4.10% between 4.99% and 

9.09%. This may suggest that the Perez model functions well under intermediate conditions and that with accurate DHI estimation, 

it may yield smaller percentage differences. Its coefficients seem better suited due to two primary factors: the selected coefficients 

align better with the average intermediate sky, and the SZA parameter may inadvertently contribute to intermediate conditions 

being aligned with brightness coefficients. 

 

Moreover, during intermediate conditions, which account for the majority of the experiment's duration with an average K t of 0.48, 

the roles of the decomposition and transposition models become equivalent as both BT and DT contribute similarly to the POA. For 

the tracked system, employing an isotropic transposition model (LJ) leads to an overestimation of 7.20% if BRL is the 

 
Figure 1: The given illustration shows a side-by-side comparison of POA irradiance recorded every minute but displayed in 15-minute slots against the time of 

day. This includes both measured and the DISC-SO model for the tracked system under clear (a), intermediate (b), and overcast (c) conditions. Additionally, a 
scatter plot provides a comparison of per-minute irradiance over the selected period between the measured and modelled POA for clear (d), intermediate (e), and 

overcast (f) conditions. The R2 values show the coefficient of determination. 
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decomposition basis or 5.62% if Erbs is chosen. By assuming an isotropic sky, models can effectively capture scattering. However, 

FT showcases a two-fold increase in MAE from measurement with BRL-LJ and Erbs-LJ compared to its tracking counterpart as 

the tracker observes sky variations under different cloud accumulations owing to its 𝛽 − 𝜓𝑠𝑦𝑠𝑡𝑒𝑚  combinations. The decomposition 

models used for LJ (i.e., Erbs and BRL) may require adjustments in intermediate conditions due to their inverse sigmoid function, 

elucidating the estimation sign change when transitioning to a tracking system. The DISC-SO pair indicates the most suitable 

performance across both systems.  

D. An Analysis of Decomposition Against Transposition 

Identifying appropriate irradiance models is critical, whether for transposition or decomposition purposes. It is particularly 

important to validate these models from various angles (i.e., through the use of a tracker). In terms of decomposition, when 

comparing measured DHI to modelled values, the Erbs and Reindl models displayed MAEs of 18.34% and 19.68%, respectively. 

The BRL model recorded an MAE of 9.02%, while the DISC and DIRINT models demonstrated lower MAEs of 6.89% and 6.56% 

respectively, attributed to their similar mathematical formulations and conceptual similarities. 

 

Transitioning to transposition evaluations, where models are compared against measured DAT POA data throughout the year, both 

the TC and Willmot models showed relatively high MAEs, with Willmot at 13.93% and TC at 13.10%. Employing a simplistic 

isotropic sky approximation (e.g., LJ model) resulted in an MAE of 6.75%, which does not effectively represent intermediate sky 

conditions as mirrored in Table 4. Moreover, the Bugler model showed an MAE of 3.59%. In contrast, the Perez model achieved 

a lower MAE of 2.51%, suggesting that it performs well overall in temperate climates due to its empirical coefficients. However, 

it may require additional validation and fine-tuning for overcast conditions. The Hay model had an MAE of 1.47%, and the SO 

model achieved the lowest MAE of 0.22%, indicating that Hay's adjustments to align with SO's empirical adjustment, suitable for 

temperate, high 𝜑 environments, are effective. 

 

Several feasibility software programs integrate diverse methods that incorporate decomposition models to forecast DHI and then 

DNI (or the other way around), followed by transposing them. The examination underway investigates which factor plays a stronger 

role in percentage discrepancies: the decomposition or the transposition model. Table 5 presents the overall percentage error of the 

15 model pairs on both systems. Notably, the variations display distinct percentage discrepancies. The decomposition model 

employed will contribute to this difference, but the transposition model implementation after the prediction of DHI (and DNI) 

proves to be crucial.  

 

A closer analysis of various combinations indicates that the main variation stems from the choice of the transposition model, 

irrespective of the foundation of the decomposition model. For example, considering the Erbs, DISC, and Reindl models and 

pairing them with Perez, Hay, or SO reveals more apparent differences in the choice of transposition model than in the choice of 

decomposition model. Taking Erbs-Perez as a reference point:  altering the decomposition model leads to a maximum variation of 

2.43% for the tracked system and 2.17% for the FT system among the previously mentioned models. To further corroborate this, 

analyzing the DISC decomposition model combined with Hay, Perez, or SO shows a variation of 6.29% for the FT system and 

7.32% for the tracker system across these three configurations. Moreover, using Hay for transposition while varying the 

decomposition models (such as DISC, Erbs, and Reindl) results in a 5.34% variation for the FT system and 1.47% for the tracker 

system yet again changing the transposition yields to a maximum difference of 11.51% for the tracker system and 8.53% for the 

FT system. In essence, while there is a discernible difference in selecting the decomposition model, it is not as pronounced as when 

choosing the transposition model. This can be attributed to the varied mathematical approaches used by the transposition model to 

estimate the diffuse component based on DHI data. 

 

 

 

 

 

 

 

Table 5: Across the 15 different optical models, the overall percentage error due to the effects of decomposition and transposition is presented. The percentage 

MAE for the fixed-tilt system is indicated in brackets, while the error for the tracked system is shown without brackets. 
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E. Assessing the efficacy of the optimal optical model 

An important aspect of this section is to examine how well an optimal model combination performs. As noted in prior literature, it 

is imperative to examine the scalability of model pairs at different 𝛽 - 𝜓𝑠𝑦𝑠𝑡𝑒𝑚  combinations, thus this section's focus will be solely 

on the actuator-based tracker. Table 4 provides a comprehensive analysis, showing that the pairing of the DISC decomposition 

model with the SO transposition model results in the smallest percentage errors. The DISC model incorporates SZA, and the SO 

model, devised empirically at 𝜑 =60°, includes SZA in its equation in conjunction with the AOI. Figure 1 illustrates the comparison 

between measured and modelled data (DISC-SO), for varying sky conditions. 

 

Figures 1a and 1b demonstrate a close alignment between the modelled and measured POA irradiance, mirroring similar 

fluctuations. This alignment suggests that while the model generally captures the irradiance profile, it occasionally diverges by 

overestimating or underestimating the POA. The coefficients of determination (R2), 0.5034 for clear conditions  and 0.5379 for 

intermediate suggest a scatter in the data points due to the high temporal resolution of the input data and hourly basis of the SO 

model's creation, particularly evident in Figure 1e, which shows dense clustering of data points from 0 to 200 W/m². In overcast 

conditions, as depicted in Figure 1f, there is an initial strong alignment in low irradiance readings, but less so at higher levels, 

explaining the low R2 and variability. 

F. Temporal Resolution Efffect 

Solar radiation data is often required at intervals shorter than the typical hourly break. This demand becomes even more pressing 

in light of the volatile weather typical of temperate regions. Accurate irradiance estimation is crucial, especially in areas with 

significant variations in SZA. Using an hourly timeframe can compromise the reliability of these estimates. However, most 

decomposition and transposition models have been empirically developed using hourly data inputs. Hence, this study investigates 

the effectiveness of the DISC-SO when utilizing both hourly and minute-by-minute input data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Across all the sky conditions, as evident in Figure 2, feeding hourly data into the decomposition and transposition contexts results 

in a lower MAE of the DISC-SO compared to the measured POA. The most significant difference occurs during intermediate 

conditions, where switching from hourly to minute data shows a error of 1.68%. Additionally, in overcast and clear conditions, 

opposite trends are observed. Specifically, under clear conditions, hourly data exhibit MAE of 2.35%, while minute data show 

3.31%. Conversely, during overcast conditions, minute data results in an MAE of 3.23%, whereas hourly data has an MAE of 

2.15%. These variations may be due to the overprediction of DHI at the minute scale, leading to underestimations in POA when 

transposed, and the reverse occurring under clear conditions with minute data.  

 

The search for reliable decomposition models suitable for a wide range of φ within temperate regions remains critical. However, 

an even greater emphasis is placed on identifying suitable, robust transposition models, with the aim of designing a framework 

that seamlessly integrates both mathematical models for more accurate POA estimations. To accurately assess direct and diffuse 

plane POA, specialized instruments are essential. This involves using a pyranometer equipped with a shading disc for precise 

measurement of diffuse POA, alongside a pyrheliometer specifically designed to record in-plane direct POA. However, it's 

important to consider that the pyrheliometer's narrow half-angle of 2.5 degrees may introduce sensitivity issues, potentially 

impacting the accuracy of data under specific environmental conditions. 

V. CONCLUSION 

In conclusion, the study involved analysing 15 different optical model combinations within feasibility software, comparing them 

against measured POA for both a tracking and a south-facing tilted system set at 55° in a sub-hourly context. The error of the 

 

Figure 2: The Mean Absolute Error of the DISC-SO model pair for the tracked 

system, using solar irradiance inputs in both hourly and minute intervals, across 
different sky conditions.
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model-derived POA from that derived from measurement (i.e., the error of the model) ranged drastically, from 2.67% to 51.07%, 

influenced by factors such as Kt and the type of system used. Evaluating the precision of these models, particularly when the mean 

absolute error (MAE) exceeded 5%, revealed inconsistencies across different sky conditions. Specifically, the number of model 

pairs meeting the threshold decreased with diminishing sky clarity: 10 pairs in clear skies (ranging from 2.78% to 4.97%), five 

pairs in intermediate conditions (from 3.12% to 4.37%), and only two pairs under overcast conditions (4.81% and 3.23%) for the 

tracking system. For the fixed tilt system, the numbers were five in clear conditions (from 3.21% to 4.96%) and two in intermediate 

conditions, dropping to just one, DISC-SO, in overcast conditions with an MAE of 2.67%. Furthermore, the impact of 

decomposition versus transposition was examined. While changes in decomposition resulted in a maximum percentage discrepancy 

of 2.43% for tracking systems and 5.34% for fixed-tilt systems, altering the transposition model led to a percentage error of 11.51% 

for tracking systems and 8.53% for fixed-tilt systems. Additionally, the DISC-SO pair was analyzed to assess the effect of temporal 

resolution in input solar irradiance data. It was found that using hourly input data resulted in lower MAE, with values of 1.44% 

under intermediate conditions, 2.15% in overcast conditions, and 2.35% in clear conditions, performing better than minute data. 

This may be due to the empirical definition of the model combination, as the models were developed using hourly data rather than 

minute data. Yet, there is a pressing need for irradiance estimations in the sub-hourly context. Given the varied estimation errors, 

future work should establish a robust benchmarking framework for selecting suitable decomposition models, and then coupling 

them with appropriate transposition models. 
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