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Abstract—Modern wireless communication systems are ex-
pected to provide improved latency and reliability. To meet these
expectations, a short packet length is needed, which makes the
first-order Shannon rate an inaccurate performance metric for
such communication systems. A more accurate approximation of
the achievable rates of finite-block-length (FBL) coding regimes
is known as the normal approximation (NA). It is therefore of
substantial interest to study the optimization of the FBL rate
in multi-user multiple-input multiple-output (MIMO) systems,
in which each user may transmit and/or receive multiple data
streams. Hence, we formulate a general optimization problem
for improving the spectral and energy efficiency of multi-user
MIMO-aided ultra-reliable low-latency communication (URLLC)
systems, which are assisted by reconfigurable intelligent surfaces
(RISs). We show that an RIS is capable of substantially improving
the performance of multi-user MIMO-aided URLLC systems.
Moreover, the benefits of RIS increase as the packet length and/or
the tolerable bit error rate are reduced. This reveals that RISs
can be even more beneficial in URLLC systems for improving
the FBL rates than in conventional systems approaching Shannon
rates.

Index Terms—Energy efficiency, MIMO broadcast chan-
nels, reconfigurable intelligent surface, spectral efficiency, ultra-
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reliable low-latency communication.

I. INTRODUCTON

The sixth generation (6G) of wireless communication sys-
tems is expected to significantly improve the spectral effi-
ciency (SE), energy efficiency (EE), and reliability of the
existing systems, despite of providing a lower latency than
5G [1], [2]. Thus, 6G should employ radical new technologies
such as reconfigurable intelligent surface (RIS) to meet these
expectations. Moreover, 6G has to support a large variety
of applications, which require ultra-reliable and low-latency
communications (URLLC) [1], [2]. To attain low latency,
realistic finite block length (FBL) codes have to be employed.
In this content, the classic Shannon rate is an inaccurate
performance metric for URLLC systems. Indeed, the FBL
rate is more challenging to optimize than the Shannon rate,
especially in multiple-input multiple-output (MIMO) systems,
when multi-stream communication is targeted. In fact, to
the best of our knowledge, resource allocation has not been
designed for multi-user MIMO (MU-MIMO) systems relying
on FBL coding in the open literature for the scenario of mul-
tiple streams per user. Developing suitable resource allocation
schemes is even more challenging in RIS-assisted systems
since this requires the joint optimization of the transmit
covariance matrices and the channels, which depend on the
RIS elements. To close this knowledge gap, we derive a
closed-form expression for the rates of users in MU-MIMO
systems using realistic FBL coding when multiple streams
are allowed. Then, we develop an optimization framework for
MU-MIMO RIS-assisted URLLC systems and show that an
RIS can substantially improve the SE and EE. Our results show
that an RIS can be even more beneficial in MIMO URLLC
systems than in systems approaching the classic Shannon rate,
since an RIS provides higher gains for short packets and/or for
low tolerable bit error rates (BERs).

A. Literature Review

A main goal of 6G is to drastically enhance the SE and
EE, which are even more vital for applications related to
FBL coding. To realize this goal, 6G has to employ powerful
emerging technologies such as RISs as well as existing MIMO
solutions [3], [4]. An RIS was shown to be able to substantially
enhance the EE and SE [5]–[10], when studying different
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performance metrics such as the sum rate, minimum rate,
total power consumption required for achieving a specific
quality of service (QoS), minimum signal-to-interference-plus-
noise ratio (SINR), global EE (GEE), and interference leakage.
For instance in [5], the authors proposed algorithms for
increasing the GEE and sum rate of a multiple-input single-
output (MISO) broadcast channel (BC). In [6], it was shown
that an RIS reduces the power consumption of the single-cell
MISO BC when a minimum SINR per user has to be ensured.
Moreover, the authors of [7] showed that an RIS is capable
of increasing the minimum SINR of a single-cell MISO BC
for a given power budget. The benefit of RIS in terms of both
the minimum rate and the minimum EE was studied in [8]
for a multi-cell MISO BC employing non-orthogonal multiple
access (NOMA). In a multi-cell BC, each user is associated
with only a single base station (BS) at a time. In [11]–[13], it
was shown that RISs can also improve the performance of cell-
free systems in which each user simultaneously communicates
with several access points, rather than a single BS.

The performance of RIS relying on the Shannon capacity
achieving codes has been studied in [5]–[9], but naturally, an
RIS can also be beneficial in multi-user systems using FBL
coding, as shown in [14]–[19]. For instance, in [14], resource
allocation schemes were developed for MISO URLLC sys-
tems, assisted by simultaneously transmit and reflect (STAR-)
RIS, and it was shown that an RIS (either STAR or purely
reflective) substantially improves the SE and EE of URLLC
systems. In [15], it was demonstrated that RIS and rate
splitting can be mutually beneficial tools of enhancing the EE
and SE performance of interference-limited URLLC systems.
In [17], the advantage of employing an RIS and NOMA in
a two-user single-input single-output (SISO) URLLC BC was
shown.

The papers [14]–[19] studied multi-user RIS-assisted
URLLC systems, but only supported single-stream data trans-
mission per user. However, RIS can also improve the system
performance when parallel frequency-domain channels are em-
ployed along with FBL coding [20]. Nevertheless, resource al-
location has not been designed for multi-user MIMO URLLC
systems supporting multiple streams per user in the open
literature. This is particularly challenging for RIS-assisted
systems. Indeed, only a few treatises exist in multiple-stream
data transmission in MIMO systems, which mainly studied a
single-user scenario without considering RISs [21]–[23]. Thus,
multi-user MIMO systems both with and without RISs require
further investigations. MIMO systems support multiple-stream
data transmissions per user, which exploit the spectrum ef-
ficiently and improve the EE at a specific QoS. Below, we
briefly describe the challenges of optimizing the FBL rates
when multiple-stream data transmission is supported.

In the FBL regime, the achievable rate depends not only on
the Shannon rate, C, but also on the channel’s dispersion, V ,
the packet length, nt, and the tolerable bit error rate ϵ. An
accurate approximation for the achievable rate of FBL coding
in parallel channels is the normal approximation (NA)1, which

1Note that the NA may not be accurate when the packet length is
extremely short, and/or the tolerable bit error rate is extremely low. For further
discussions regarding the accuracy of the NA, please refer to [24]–[26].

TABLE I: Overview of most closely related works on RIS-assisted
URLLC systems.

This paper [15] [30] [16]–[20], [31] [32], [33]
Multi-user

√ √ √ √
-

Ch. disp. in [34]
√ √ √

- -
EE

√ √
- - -

MIMO
√

- - - -
Multiple streams

√
- - - -

STAR-RIS
√

- - - -
Transmission delay

√
- - - -

is given by [27, Theorem 78]

r =

I∑
i=1

Ci −Q−1(ϵ)

√∑I
i=1 Vi
nt

, (1)

where Q−1 is the inverse of the well-known Q function
of Gaussian distributions, I is the number of parallel chan-
nels, Ci and Vi are, respectively, the Shannon rate and the
channel dispersion of the i-th parallel channel. Note that
the channel dispersion and Shannon rate of parallel channels
are, respectively, a summation of the channel dispersions and
Shannon rates of all individual channels, i.e., C =

∑I
i=1 Ci

and
∑I

i=1 Vi. The Shannon rate of MIMO systems can also
be represented in a closed-form matrix format, and there
are already existing contributions on optimizing the Shannon
rates in MIMO RIS-assisted systems [28], [29]. However, the
achievable channel dispersion term for Gaussian signals has
a fractional structure, which is more challenging to optimize,
and its closed-form matrix format has not been derived in the
related works. Hence, resource allocation for parallel channels
relying on FBL coding can be much more complicated than
for single-stream channels. Moreover, the channel’s dispersion
term makes it impossible to reuse the existing solutions for
MIMO RIS-assisted systems, when FBL coding is employed.
In the next subsection, we provide a critical review of the
existing works on RIS-assisted URLLC systems and discuss
the open topics that merit further investigations.

B. Motivation

The most closely related treatises on RIS-assisted URLLC
system designs are compared in Table I, based on the system
model, network scenario, performance metrics, and the chan-
nel dispersion encountered in multi-user systems. As shown
in the table, most of the studies on FBL transmission in RIS-
assisted systems have focused on SISO/MISO systems, when
only a single-stream data transmission per user is allowed.
Additionally, there is a limited number of contributions on EE
in RIS-assisted URLLC systems and EE metrics have not been
studied in multi-user MIMO systems using FBL coding. Note
that in URLLC systems, the EE can be even more vital, since
in some applications, it might be impossible to replace the
battery of users/nodes, and consequently, the network must be
as energy efficient as possible.

Moreover, there is no work on multi-user MIMO systems
with FBL considering the achievable channel dispersion term
in [34], even for systems without RIS. It should be emphasized
that Gaussian signaling cannot achieve the optimal channel
dispersion in the presence of interference in multi-user sys-
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tems. Hence, when employing Gaussian signaling, it is more
accurate to consider the suboptimal channel dispersion term in
[34] instead of the optimal one since the channel dispersion in
[34] can be attained through Gaussian signals in the presence
of both interference and white additive Gaussian noise in
multi-user systems.

To sum up, resource allocation schemes should be de-
veloped for multi-user RIS-assisted URLLC MIMO systems
with more emphasis on EE and by allowing multiple-data-
stream transmissions per user and considering the achievable
channel dispersion term for Gaussian signals. Thus, a general
optimization framework for multi-user RIS-assisted MIMO
systems with FBL coding can facilitate future studies in this
field.

C. Contribution

We propose a general optimization framework for maximiz-
ing the SE and EE of multi-user MIMO RIS-aided URLLC
systems. To the best of our knowledge, this is the first
paper on the resource allocation of MU-MIMO RIS-aided
URLLC systems supporting multiple stream per users. To
develop a general framework, we first formulate a closed-
form expression for the channel dispersion of MIMO systems
in the presence of interference, based on both the optimal
channel dispersion as well as on the channel dispersion term
in [34]. Then, we propose specific schemes for optimizing
the FBL rate expressions by employing majorization mini-
mization (MM), alternating optimization (AO), and fractional
programming (FP) tools such as Dinkelbach-based algorithms.
As indicated in Section I-A, due to the channel dispersion
term, which has a fractional structure, the FBL rates are much
more challenging to optimize than the classic Shannon rates.
Moreover, it is impossible to adapt the established works on
MIMO RIS-assisted systems with Shannon rates to the systems
with FBL coding, and to evaluate how the reliability and
latency constraints influence the effectiveness of RISs. Thus,
the main novelty of this treatise is the derivation of closed-
form expressions for the channel dispersion, followed by the
development of algorithms to optimize over the FBL rates,
including the dispersion term.

To elaborate, our optimization framework is flexible and can
be utilized in a wide range of MU-MIMO URLLC system
aided by RISs. Additionally, the framework may be used
for solving a broad spectrum of optimization problems for
which the objective function and/or constraints can be, but
are not limited to, linear functions of the rates and/or EE of
users. The convergence of our framework is ensured towards
a stationary point for the general optimization problem, when
the feasibility set for the RIS elements conforms to a convex
set. We consider a multi-cell MIMO BC as an example of the
networks that our framework can be applied to. Furthermore,
we consider both the EE and SE metrics as well as the
transmission delay for investigating the performance of RIS in
MU-MIMO URLLC systems. For the SE metric, we consider
the sum rate and the minimum rate of the users, which
are among the most common performance metrics for SE.
Moreover, we evaluate the EE by optimizing the GEE and the

minimum EE of users. Note that the sum rate and global EE
are pivotal overall system performance metrics. By contrast,
the minimum rate and the EE of specific users consider
the individual performance of the users and can provide
reasonable rate/EE-fairness among the users since typically
all the users are allocated similar rate/EE when the minimum
rate/EE is maximized. Thus, considering all these metrics can
provide a complete picture of the performance of MU-MIMO
URLLC systems aided by RISs. Moreover, we make realistic
assumptions regarding the channel models and the feasible
sets of the RIS coefficients for appropriately examining the
RIS performance.

In addition to passive and reflective RISs, we also consider
simultaneously transmitting and reflecting (STAR) RIS, which
provides a full 360◦ coverage. Moreover, we show that RISs
can significantly enhance the EE and SE of a multi-user
MIMO URLLC BC. Notably, the advantages of RISs escalate
with shorter packet lengths and/or more stringent reliability
constraints. This implies that the benefits of RIS can be higher
in MU-MIMO URLLC systems. However, it should be noted
that the performance of the system may become degraded, if
the RIS elements are inaccurately optimized.

D. Organization and Notations

The structure of the paper is outlined in the following.
Section II describes our network scenario, RIS model, and
signal model as well as the rate and EE expressions. More-
over, in Section II, we formulate the optimization problem
considered. Section III presents the optimization framework
proposed. Section IV presents our numerical results. Finally,
Section V concludes the paper.

The trace and determinant of the matrix X are, respectively,
denoted as Tr(X) and |X|. We represent the conjugate of
complex variable/vector/matrix x/x/X as x∗/x∗/X∗. The
mathematical expectation is denoted as E{·}. The identity
matrix is represented as I. Moreover, O[·] is the big-O notation
for representing the computational complexity of algorithms.

II. SYSTEM MODEL

Our proposed framework can be applied to a large family
of RIS-assisted MU-MIMO URLLC systems that treat inter-
ference as noise at the receivers. As an example of such MU-
MIMO systems, we consider a multicell MIMO RIS-assisted
downlink (DL) BC comprising L BSs, as shown in Fig. 1.
We assume that BS l has NBS,l the DL transmission antennas
(TAs) and serves Kl multiple-antenna users. The k-th user
associated to BS l, denoted as Ulk, has Nu,lk receive antennas
(RAs). Additionally, we assume that there are M reflective
passive RISs to assist the BSs, and the m-th RIS has NRIS,m

elements. Furthermore, we assume perfect, instantaneous, and
global CSI, consistent with many other studies on RISs [5],
[6], [8], [28], [35], [36]. This assumption is also commonly
used in the development of resource allocation solutions for
URLLC systems [14], [31], [37]–[40]. These solutions are
particularly applicable in systems with large channel coherence
time, where the channel state remains stable for extended
periods, making channel estimation easier and more accurate.
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Fig. 1: A multicell BC assisted by RISs.

In such systems, resource allocation solutions can be reused
across multiple time slots, and the pilot overhead required
for acquiring CSI and computing the solutions is relatively
low. Additionally, investigating the performance of RISs under
the assumption of perfect CSI helps to illustrate the essential
tradeoffs in system design and provides an upper bound of the
system performance.

A. RIS Model

We consider two nearly-passive RIS architectures, namely
reflective RIS and STAR-RIS, and employ the RIS model of
[35] for the MIMO multicell BC.

1) Reflective RIS: The channel matrix between BS i and
Ulk as a function of the RIS matrices is given by

Hlk,i({Ψ})=
M∑

m=1

Glk,mΨmGm,i︸ ︷︷ ︸
Link through RIS

+Flk,i︸︷︷︸
Direct link

∈ CNu,lk×NBS,l, (2)

where Flk,i ∈ CNu,lk×NBS,i is the channel matrix between
the i-th BS and Ulk, Glk,m ∈ CNu,lk×NRIS,m is the chan-
nel matrix between the m-th RIS and Ulk, and Gm,i ∈
CNRIS,m×NBS,i is the channel matrix between the i-th BS and
the m-th RIS. Additionally, {Ψ} = {Ψm}Mm=1 denotes the set
of all coefficients of RISs, where Ψm ∈ CNRIS,m×NRIS,m is a
diagonal matrix, containing the vector of reflecting coefficients
of the m-th RIS

Ψm = diag
(
ψm1

, ψm2
, · · · , ψmNRIS,m

)
.

Assuming having nearly passive RISs, the absolute value of
the RIS coefficients cannot be greater than 1, which results in
the following set for the feasible RIS coefficients [3, Eq. (11)]

TU =
{
ψmn : |ψmn |2 ≤ 1 ∀m,n

}
. (3)

In this feasibility set, the amplitude and phase of each RIS
element are assumed to be independent optimization variables,
which might not be realistic. Another common assumption is
that the RIS coefficients have to adhere to the unit modulus
constraint [3], [4], [6], [7], [35], [41], [42], which leads to

TI = {ψmn
: |ψmn

| = 1 ∀m,n} . (4)

In this feasibility set, the amplitude of each RIS coefficient is
assumed to be equal to 1, while the phases can be optimized.
As TI ⊂ TU , it can be expected that the algorithms for TU
outperform the algorithms for TI .

2) STAR-RIS: STAR-RIS provides an omni-directional
360◦ full-place coverage. In STAR-RIS, each component can
operate in both reflection and transmission mode [43], [44].
Thus, there are two complex-valued optimization parameters
per element, when STAR-RIS is employed. We denote the
reflection/transmission coefficient for the n-th element of the
m-th RIS as ψr

mn
/ψt

mn
. Based on the position of the user

with respect to STAR-RIS, the STAR-RIS can optimize the
channel of the user only through the reflection or transmission
coefficients. Therefore, the channel between BS i and Ulk is

Hlk,i ({Ψ}) =
M∑

m=1

Glk,mΨt/r
m Gm,i + Flk,i, (5)

where we have Ψr
m = diag

(
ψr
m1
, ψr

m2
, · · · , ψmr

NRIS,m

)
and

Ψt
m = diag

(
ψt
m1
, ψt

m2
, · · · , ψmt

NRIS,m

)
. Assuming operat-

ing in a passive mode, the absolute values of the reflection
and transmission coefficients have to satisfy

|ψr
mn

|2 + |ψt
mn

|2 ≤ 1, ∀mn, (6)

which yields the set

TSU =
{
ψr
mn
, ψt

mn
: |ψr

mn
|2 + |ψt

mn
|2 ≤ 1 ∀m,n

}
. (7)

Assuming operating in the passive mode with equal input and
output powers, we have

|ψr
mn

|2 + |ψt
mn

|2 = 1, ∀m,n, (8)

which results in

TSI =
{
ψr
mn
, ψt

mn
: |ψr

mn
|2 + |ψt

mn
|2 = 1 ∀m,n

}
. (9)

There are three different STAR-RIS schemes, including the
energy splitting (ES), mode switching (MS) and time switch-
ing (TS) schemes [44], [45]. Since the main focus of this work
is on evaluating the impact of employing multiple streams per
user regimes, we consider only the MS scheme. Note that the
MS scheme has a lower implementation complexity than the
ES scheme, but its performance may be comparable to that of
the ES scheme as shown in, e.g., [46]–[48]. The framework
proposed in this treatise can be extended to include the ES and
TS schemes by following an approach similar to [47], [48].

3) Brief comparison of reflective RIS and STAR-RIS: The
main difference between a reflective RIS and a STAR-RIS is
in the coverage area of these RIS architectures, which makes
each suitable for a different set of applications. STAR-RIS
can provide omni-directional coverage, while reflective RIS
can assist the communication between a BS and a user only
if they are in the reflection space of the RIS. Thus, when the
RIS can be positioned for ensuring that all the transceivers
are in the reflection space of the RIS, a reflective RIS could
be a more suitable option. However, when the BS is located
outdoors and supports both indoor and outdoor users, STAR-
RISs are preferable.
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From an optimization point of view, each STAR-RIS el-
ement has two complex-valued coefficients. Thus, if the ES
scheme is employed, algorithms conceived for STAR-RIS
could have slightly higher computational complexities com-
pared to reflective RIS. However, MS or TS schemes are
utilized, each RIS element operates either in the reflection
mode or in the transmission mode. Thus, only one coefficient
for each STAR-RIS element is optimized, which reduces
the computational complexity to the same order as that of
reflective RIS algorithms.

The channel matrices are assumed to be linear/affine func-
tions of the RIS elements in both reflective RIS and STAR-
RIS. To simplify the notations/equations, we remove this
dependency and subsequently denote the channels as Hlk,i

for all l, k, i, hereafter. Additionally, we denote the set of
the feasible RIS elements as T , unless we refer to a specific
set. Note that there are other RIS technologies and/or more
practical feasibility sets for STAR/reflective RIS as mentioned
in [3], [49], which should be considered in future studies.

B. Signal Model

We assume that BS l broadcasts the signal

xl =

Kl∑
k=1

xlk ∈ CNBS,l×1, (10)

where xlk is the signal intended for user Ulk, which is a zero-
mean complex Gaussian random vector with covariance Plk =
E{xlkx

H
lk}, where E{x} is the mathematical expectation of

x. We assume that the zero-mean signals xlk are independent
from each other, i.e., E{xlkx

H
ij} = 0 for i ̸= l and/or j ̸= k.

Additionally, we denote the covariance matrix of xl by Pl =
E{xlx

H
l }. Since the signal xlk are zero-mean and independent

random vectors, we have Pl =
∑

k Plk. The set containing
all the feasible transmit covariance matrices is denoted as P
and it is given by

P = {Plk : Tr (Pl) ≤ pl,Plk ≽ 0, ∀l, k} , (11)

where pl is the power budget of the l-th BS.
The received signal at Ulk is given by

ylk =
∑
i

Hlk,ixi + nlk,

= Hlk,lxlk︸ ︷︷ ︸
Desired Signal

+
∑
j ̸=k

Hlk,lxlj︸ ︷︷ ︸
Intra-cell Interference

+
∑
i ̸=l

Hlk,ixi︸ ︷︷ ︸
Intercell Interference

+ nlk︸︷︷︸
Noise

,

(12)

where nlk is the zero-mean additive white Gaussian noise
at Ulk with covariance matrix σ2I, where I denotes the
identity matrix. Note that, in (12), the differences between
the intercell and intracell links are carefully taken into account,
and each user is indeed affected by both intercell and intracell
interference. In this paper, we treat interference as noise,
which is optimal for maximizing the sum rate [50] or the
generalized degree of freedom [51] when the interference is
weak. An alternative strategy for treating interference as noise
(TIN) is to detect and cancel interference, which is known as

successive interference cancellation (SIC), and it is optimal
when the interference is strong. SIC requires more advanced
user devices as well as more sophisticated signaling design.
Moreover, to detect and cancel interference at the users takes
some time, which may lead to violating the latency constraint
in URLLC-related applications.

Note that we employ Gaussian signaling in this work similar
to most studies of wireless communication systems both with
and without RISs. In practice, typically discrete constellations
are employed. Studies based on Gaussian signaling are nev-
ertheless important since they provide valuable insights into
the system performance and represent an upper bound for the
performance of the technologies studied. Additionally, there
are studies on the comparison of Gaussian signals and discrete
constellations, e.g., [52]–[54]. The performance gap between
the discrete constellations and Gaussian signals grows as the
number of bits/symbols in the discrete constellations increases,
but it eventually saturates. To account for this performance gap
and the idealized assumption, one can employ a signal-to-noise
ratio (SNR) offset.

C. Channel Dispersion, Rate and EE Expressions

A MIMO channel can be modeled as a set of parallel
AWGN channels, and [27, Theorem 78] can be employed
to obtain the achievable rate of MIMO channels associated
with FBL coding. Note that [27, Theorem 78] is based
on the optimal power allocation for a point-to-point MIMO
communication link; however, the FBL rate expressions can
be formulated for any arbitrary power allocation as shown in
[27, Section 4.5.4]. In the following lemma, we calculate the
achievable FBL rate of users, when the interference is treated
as noise for decoding the corresponding signal at the receivers.

Lemma 1 ( [27]). The second-order rate of user Ulk for FBL
coding along with the normal approximation (NA) is given by

rlk = log
∣∣I+D−1

lk Slk

∣∣︸ ︷︷ ︸
Shannon Rate

−Q−1(ϵ)

√
Vlk
nt
, (13)

where nt is the packet length, Slk = Hlk,lPlkH
H
lk,l is the

covariance matrix of the desired signal at the user Ulk, while
Dlk is the covariance matrix of the interfering signals plus
noise, given by

Dlk=σ
2I+

L∑
i=1,i̸=l

Hlk,iPiH
H
lk,i+

K∑
j=1,j ̸=k

Hlk,lPljH
H
lk,l. (14)

Here, the first-order Shannon rate can also be written as

Clk=log
∣∣I+D−1

lk Slk

∣∣=log |I+Λlk|=
I∑

i=1

log(1+λlki), (15)

where Λlk = diag (λlk1, λlk2, · · · , λlkI) is a diagonal matrix,
containing the non-zero eigenvalues of the positive semidefinite
(PSD) matrix D−1

lk Slk, and I ≤ min(NBS,l, Nu,lk) is
equal to the rank of Hlk,lPlkH

H
lk,l, which also represents the

number of parallel channels. The parameter λlki is actually
the signal-to-interference-plus-noise ratio (SINR) at the i-th
parallel channel of user Ulk. Finally, Vlk =

∑I
i=1 Vlki is the
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channel dispersion of Ulk, where Vlki is the channel dispersion
of the i-th parallel channel of user Ulk.

The optimal channel dispersion of the i-th parallel channel
is given by [34]

Vlki = 1− 1

(1 + λlki)2
, (16)

where is λlki is given in Lemma 1. Unfortunately, the optimal
channel dispersion attains the minimum value of Vlki for all l,
k, and i, but Gaussian signals cannot achieve it in the presence
of interference. In [34], a coding scheme was proposed for
independent, identically distributed (iid) Gaussian signals in
interference channels, which has the following channel dis-
persion

Vlki = 2

(
1− 1

1 + λlki

)
. (17)

In the following lemma, we present closed-form matrix ex-
pressions for the optimal channel dispersion and the achievable
channel dispersion in (13).

Lemma 2. The optimal channel dispersion can be written as

Vlk = Tr
(
I− (I+D−1

lk Slk)
−2

)
. (18)

Additionally, the achievable channel dispersion for the scheme
proposed in [34] can be written in the following matrix format

Vlk = 2Tr
(
I− (I+D−1

lk Slk)
−1

)
(19)

= 2Tr
(
I−Dlk(Dlk + Slk)

−1
)

(20)

= 2Tr
(
Slk(Dlk + Slk)

−1
)
. (21)

Proof. It is widely exploited that the trace of a positive semi-
definite matrix is equal to the summation of its eigenvalues.
It can be readily verified that the non-zero eigenvalues of
(I+D−1

lk Slk)
−2 are equal to (1 + λlki)

−2, i ∈ {1, 2, · · · , I},
which proves the equality in (18). Note that if X is a positive
semi-definite matrix with non-zero eigenvalues λi, then its
pseudo-inverse, denoted as X−1, is also a positive semi-
definite matrix, and its non-zero eigenvalues are λ−1

i .
Similarly, it can be readily verified that the eigenvalues of

(I+D−1
lk Slk)

−1 are equal to (1 + λlki)
−1, i ∈ {1, 2, · · · , I},

which yields (19). Employing a simple matrix factorization, it
can be easily verified that (19), (20), and (21) are equivalent.

Remark 1. The reliability constraint is modeled by utilizing
the maximum tolerable error rate, ϵ, in the FBL rates. More-
over, the coding length nt should be proportional to the toler-
able latency. Indeed, a more stringent latency constraint leads
to employing a shorter block length [55], [56]. Additionally,
the latency constraint can be modeled as a constraint on the
minimum rate as discussed in [57, Remark 1], [15, Sec. II.D],
[58].

The EE of Ulk is defined as [59]

elk =
rlk

pc + ηTr (Plk)
, (22)

where η−1 is the power efficiency of the transmit devices at
the BSs, pc is the constant power consumption of the system

(including the devices of the BSs, RISs and Ulk) to transmit
data to a user, which is given by [28, Eq. (27)], and rlk is
given by Lemma 1. Note that to compute pc, the constant
power of the devices of the BSs and RISs is normalized by
the number of users served. Moreover, the global EE (GEE)
of the network is defined as [59]

g =

∑
lk rlk

LKpc + η
∑

l Tr (Pl)
, (23)

which quantifies how energy efficient the network is. Finally,
the transmission delay of Ulk upon transmitting a packet with
length nt is dlk = nt

rlk
.

D. Problem Statement

We consider a general optimization problem for URLLC
systems formulated as follows

max
{P}∈P,{Ψ}∈T

f0({P},{Ψ}) (24a)

s.t. fi ({P},{Ψ}) ≥ 0, ∀i, (24b)

rlk ≥ rth, ∀l, k, (24c)

where constraint (24c) can be interpreted as a latency con-
straint for each user, as discussed in [14, Sec. II.D]. Moreover,
functions fi, ∀i are, in general, non-linear functions of the
optimization variables. These functions can be, but are not
restricted to, linear functions of the rates/EEs and/or trans-
mit/receive powers. For instance, fi can be a function of
the sum rate, minimum rate/EE, transmission/receive power,
interference temperature at a user, transmission delay and
so on. Additionally, fi can be a non-linear function of the
rates/EEs such as the geometric mean of the rates as in [60].
Note that (24) may also include minimization problems such
as the total power minimization subject to a given rate target,
maximum transmission delay minimization, and interference
temperature minimization. In this case, fi can be chosen as,
e.g., −

∑
l Tr(Pl) or −max∀lk{dlk}. Therefore, the general

problem in (24) can include an extensive range of optimization
scenarios, encompassing the maximization of the minimum
weighted rate, sum rate, global EE and minimum EE. We refer
the reader to [36, Sec. II.B] for more discussions on the format
of the functions fis as well as of the family of optimization
problems that can be formulated as (24).

III. PROPOSED OPTIMIZATION FRAMEWORK

In this section, we propose iterative schemes for solving (24)
by leveraging AO, MM-based, and FP algorithms. Specifically,
we first fix the RIS coefficients to {Ψ(t−1)} and update the
transmit covariance matrices as {P(t)} by solving (24). We
then alternate and update the RIS coefficients, while {P} is
fixed to {P(t)}. We iterate this procedure until convergence
is reached. Unfortunately, the optimization problems are non-
convex and complicated even when the RIS elements (or
covariance matrices) are fixed. Thus, we propose a suboptimal
scheme based on MM to solve the corresponding problems.
Below, we present our solutions for updating the transmit
covariance matrices and RIS elements in separate subsections.
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A. Updating Transmit Covariance Matrices

To update {P}, we introduce a new set of variables {Q} =
{Qlk}∀lk, where Qlk is a positive semi-definite matrix and
Plk = QlkQ

H
lk . Equivalently, we can compute Qlk as P

1/2
lk .

To attain a suboptimal solution for (24), we leverage an MM-
based technique. More specifically, we first obtain suitable
concave surrogate functions for the rates. Then, we update
P

(t)
lk = Q

(t)
lk Q

(t)H

lk , ∀l, k, by solving the corresponding surro-
gate optimization problems. To derive concave lower bounds
for the FBL rates, we utilize the bounds in the following
lemmas.

Lemma 3. Consider the arbitrary matrices Λ, Λ̄ and positive
semi-definite matrices Υ, Ῡ. Then, the following inequality
holds for all feasible Λ, Λ̄, Υ, and Ῡ:

f (Λ,Υ) = Tr
(
Υ−1ΛΛH

)
≥ 2R

{
Tr

(
Ῡ−1Λ̄ΛH

)}
− Tr

(
Ῡ−1Λ̄Λ̄HῩ−1Υ

)
, (25)

where R{x} returns the real value of x.

Proof. Function f (Λ,Υ) is jointly convex in Λ and Υ [61].
Thus, we can employ the first-order Taylor expansion to obtain
an affine lower-bound for f(·) as follows

f (Λ,Υ) ≥ f
(
Λ̄, Ῡ

)
+ 2R

{
∂f (Λ,Υ)

∂Λ
|Λ̄,Ῡ

(
Λ− Λ̄

)
+
∂f (Λ,Υ)

∂Υ
|Λ̄,Ῡ

(
Υ− Ῡ

)}
, (26)

where Λ̄ and Ῡ are any arbitrary feasible points, and
∂f(Λ,Υ)

∂Λ |Λ̄,Ῡ (or ∂f(Λ,Υ)
∂Υ |Λ̄,Ῡ) is the derivative of f(·) with

respect to Λ (or Υ) at Λ̄ and Ῡ. Replacing the corresponding
derivatives in (26) and simplifying the equation results in
(25).

Lemma 4 ( [28]). Consider the arbitrary matrices Λ and Λ̄,
and positive definite matrices Υ and Ῡ. Then, we have:

ln
∣∣I+Υ−1ΛΛH

∣∣ ≥ ln
∣∣I+Υ−1Λ̄Λ̄H

∣∣
− Tr

(
Ῡ−1Λ̄Λ̄H

)
+ 2R

{
Tr

(
Ῡ−1Λ̄ΛH

)}
− Tr

(
(Ῡ−1 − (Λ̄Λ̄H + Ῡ)−1)H(ΛΛH +Υ)

)
. (27)

Upon employing the concave lower bounds in Lemma 3 and
Lemma 4, we can obtain a concave lower bound for the FBL
rates with the NA approximation as presented in the following
lemma.

Lemma 5. A concave lower bound for rlk is given by

rlk ≥ r̃lk = alk + 2
∑
ij

R
{

Tr
(
Alk,ijQ

H
ij H̄

H
lk,i

)}
− Tr

(
Blk(Hlk,lQlkQ

H
lkH

H
lk,l +Dlk)

)
(28)

where

alk=ln
∣∣I+D̄−1

lk S̄lk

∣∣−Tr
(
D̄−1

lk S̄lk

)
−Q−1(ϵ)(V̄lk+2I)

2
√
ntV̄lk

,

Alk,ij=

{
D̄−1

lk H̄lk,lQ̄lk if i = l, j = k,
Q−1(ϵ)√
ntV̄lk

(S̄lk + D̄lk)
−1H̄lk,iQ̄ij otherwise,

Blk= D̄−1
lk −(S̄lk + D̄lk)

−1

+
Q−1(ϵ)√
ntV̄lk

(S̄lk + D̄lk)
−1D̄lk(S̄lk + D̄lk)

−1,

where D̄lk, S̄lk, Q̄ij , V̄lk, and H̄lk,i, ∀l, k, i, j are, respec-
tively, the initial values of Dlk, Slk, Qij , Vlk, and Hlk,i at
the current step, which are obtained upon replacing {P} by
{P(t−1)} and {Ψ} by {Ψ(t−1)}.

Proof. Upon employing Lemma 4, a concave lower bound can
be obtained for the first-order Shannon rate as∣∣I+D−1

lk Slk

∣∣ ≥ ln
∣∣I+ D̄−1

lk S̄lk

∣∣− Tr
(
D̄−1

lk S̄lk

)
+ 2R

{
Tr

(
Q̄H

lkD̄
−1
lk Qlk

)}
− Tr

(
(D̄−1

lk − (S̄lk+D̄lk)
−1)H(H̄lk,lQlkQ

H
lkH̄

H
lk,l+Dlk)

)
.

(29)

Next, we obtain a concave lower bound for −Q−1(ϵ)
√

Vlk

nt
,

which is equivalent to obtaining a convex upper bound for√
Vlk. To this end, we first employ the following inequality√

Vlk ≤
√
V̄lk
2

+
Vlk

2
√
V̄lk

, (30)

which is non-convex since Vlk is not convex in {Q}. Upon
employing Lemma 3, a convex upper bound for Vlk(·) can be
obtained as

Vlk ≤ 2Tr(I)− 4
∑

[ij ]̸=[lk]

R
{

Tr
(
Alk,ijQ

H
ij H̄

H
lk,i

)}
+ 2Tr

(
((S̄lk + D̄lk)

−1)−1D̄lk(S̄lk + D̄lk)
−1)−1

× (Hlk,lQlk(Hlk,lQlk)
H+Dlk)

)
, (31)

where [ij] ̸= [lk] includes all possible i, j pairs, except for
the case where i = l and simultaneously j = k. Substituting
the concave lower bound in (29) and the convex upper bound
in (31) into the FBL rate expression proves the lemma.

Remark 2. The concave lower bound in Lemma 4 is quadratic
in {Q}, and consists of a constant term, a linear/affine term,
and a quadratic term.

We denote the surrogate functions for fi by f̃i, which are
obtained by substituting the concave lower bounds r̃lk in (24).
For instance, if fi is equal to the sum rate, then f̃i =

∑
∀lk r̃lk.

Moreover, if fi represents the EE of Ulk, then we have

f̃i = ẽlk =
r̃lk

pc + ηTr
(
QlkQH

lk

) , (32)

which is a fractional function of {Q} with a concave numer-
ator and convex denominator. Moreover, if fi is a function of
the transmission delay, then we have f̃i = − nt

r̃lk
. Note that

although the surrogate lower bounds for the rates in Lemma
5 are concave, the f̃is are not necessarily concave, since they
might be a linear function of the EE metrics. Substituting the
fis by the f̃is leads to

max
{Q}

f̃0

(
{Q},{Ψ(t−1)}

)
(33a)

s.t. f̃i
(
{Q},{Ψ(t−1)}

)
≥ 0, ∀i, (33b)
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r̃lk ≥ rth, ∀l, k, (33c)∑
k

Tr
(
QlkQ

H
lk

)
≤ pl,∀l. (33d)

The optimization problem (33) is convex for the maximization
of the minimum and/or sum rates. Hence, it can be efficiently
solved by existing numerical tools. Note that our framework
can also optimize other SE metrics, such as the geometric
mean of users. As shown in [60], the maximization of the
geometric mean of the users can be solved by solving a
sequence of weighted sum rate maximization problems, which
can be efficiently handled by our framework.

Unfortunately, (33) is non-convex for GEE maximization as
well as for the maximization of the minimum weighted EE of
the users, since the EE and/or GEE functions are not concave
in {Q}. Fortunately, a solution of the minimum weighted
EE of the users and/or GEE maximization problems can be
obtained by Dinkelbach-based algorithms, since the numerator
of ẽlk (or g̃) is concave, while its denominator is convex. The
problem in (33) is not convex, when minimizing the maximum
transmission delay of the users, which can be considered as
a latency metric from a physical layer point of view. In the
following, we solve (33) for the maximization of the minimum
weighted EE of the users, the maximization of the GEE and
the minimization of the maximum transmission delay.

1) Maximization of the Minimum EE: In this case, (33) can
be written as

max
{Q},e

e, s.t. ẽlk =
r̃lk

pc + ηTr
(
QlkQH

lk

) ≥ e, ∀i, (34a)

(33c), (33d). (34b)

Upon employing the generalized Dinkelbach algorithm
(GDA), we can derive the globally optimal solution of (34)
by iteratively solving the convex optimization problem [59]

max
{Q},e

e, s.t. r̃lk−µ(n)
(
pc+ηTr

(
QlkQ

H
lk

))
≥ e, ∀i, (35a)

(33c), (33d), (35b)

and updating µ(n) as

µ(n)=min
lk

{̃
e
(n−1)
lk

}
=min

lk

 r̃lk

(
Q

(n−1)
lk

)
pc+ηTr

(
Q

(n−1)
lk Q

(n−1)H

lk

)
. (36)

Note that n is the number of iterations in the inner loop, i.e.,
the number of GDA iterations.

2) Maximization of the GEE: In this case, (33) is equivalent
to

max
{Q}

∑
l,k r̃lk∑

l,k

(
pc + ηTr

(
QlkQH

lk

)) s.t. (33c), (33d). (37)

Employing the Dinkelbach algorithm, a globally optimal so-
lution of (37) can be found by iteratively solving [59]

max
{Q}

∑
l,k

r̃lk−µ(n)
∑
l,k

(
pc + ηTr

(
QlkQ

H
lk

))
s.t. (33c), (33d),

and updating µ(n) as

µ(n)= g̃
(n−1)
lk =

∑
l,k r̃lk

(
Q

(n−1)
lk

)
∑

l,k

(
pc+ηTr

(
Q

(n−1)
lk Q

(n−1)H

lk

)).
3) Minimization of the maximum transmission delay: To

minimize the maximum delay, we have to solve

min
{Q}

max
∀lk

{
nt
r̃lk

}
s.t. (33c), (33d), (38)

which is equivalent to maximizing the minimum rate of users
as

max
{Q}

min
∀lk

{r̃lk} s.t. (33c), (33d), (39)

which is a convex optimization problem. Note that the trans-
mission delay dlk is a monotonically decreasing function of
rlk, and it is minimized when rlk is maximized, which makes
the solution of (38) equivalent to (39).

4) Discussion on Single-stream Data Transmission: In this
case, the rank of matrix Plk for all l, k is equal to one. This
means that matrix Plk can be written as Plk = qlkq

H
lk , where

qlk ∈ CNBS,l×1. In other words, when single-stream data
transmission is employed, the BSs perform only beamforming
to transmit data, and we have to optimize the beamforming
vectors instead of transmit covariance matrices. Therefore, the
computational complexity of single-stream data transmission
is lower than that of employing multiple streams. However,
this lower computational complexity is attained at the cost of
a significant performance loss, especially when the maximum
number of streams, i.e., min(NBS,l, Nu,lk) for Ulk, increases.
Indeed, as the network size increases, more advanced trans-
mission and resource allocation techniques, involving higher
complexities, are needed to provide satisfactory performance.

Note that if the transmitter and/or the receiver are equipped
with only a single antenna, we are restricted to single-stream
data transmissions. Obviously, the single-stream scheme be-
comes increasingly suboptimal, when the maximum number
of streams grows. To derive single-stream data transmission
solutions, we only have to replace matrices Qlk by vectors
qlk and employ the lower bounds in Lemma 5. Indeed, the
schemes proposed in this subsection can be applied for both
single- and multiple-stream data transmission.

B. Optimizing the RIS Elements

Now, we update {Ψ} by solving (24) for fixed {P(t)}, i.e.,

max
{Ψ}∈T

f0

({
P(t)

}
,{Ψ}

)
(40a)

s.t. fi
({

P(t)
}
,{Ψ}

)
≥ 0, ∀i, (40b)

rlk ≥ rth, ∀l, k, (40c)

which is non-convex since the rates are not concave in {Ψ}
and the set T might be non-convex. Note that as discussed in
Section III-A, the minimization of the maximum transmission
delay is equivalent to the maximization of the minimum rate.
Hence, our focus in this subsection is on the SE and EE
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metrics. In the following, we first consider reflective RISs and
then, describe how the solution can be applied to the more
sophisticated STAR-RIS, utilizing the MS scheme.

1) Reflective RISs: To find a suboptimal solution for (40),
we leverage an approach based on MM. Specifically, we
first obtain a suitable concave lower bound for the rates and
then, convexify T if it is not already a convex set. Since
the rates have similar structures in {Q} and in {Ψ}, we
can utilize the concave lower bounds in Lemma 5 to attain
concave lower bounds for the rates and construct suitable
surrogate optimization problems for updating {Ψ}. In the
subsequent corollary, we provide the concave lower bounds
for the rates.The proof of this corollary closely resembles that
of Lemma 5, and thus, we omit it here.

Corollary 1. A concave lower bound for rlk is given by

rlk ≥ r̂lk = alk + 2
∑
ij

R
{

Tr
(
Alk,ijQ

(t)H

ij HH
lk,i

)}
− Tr

(
Blk(Hlk,lQ

(t)
lk (Hlk,lQ

(t)
lk )H +Dlk)

)
, (41)

where the constant parameters alk, Alk,ij , and Blk are defined
as in Lemma 5.

Substituting the surrogate functions for the rates, i.e., the
r̂lks, in (40) yields

max
{Ψ}∈T

f̂0

({
P(t)

}
,{Ψ}

)
(42a)

s.t. f̂i
({

P(t)
}
,{Ψ}

)
≥ 0, ∀i, (42b)

r̂lk

({
P(t)

}
,{Ψ}

)
≥ rth, ∀l, k, (42c)

which is convex if T is a convex set, i.e. when TU is con-
sidered. For TU , the proposed scheme achieves convergence
to a stationary point of (24). Note that the surrogate functions
f̂i
({

P(t)
}
,{Ψ}

)
are concave in {Ψ} even if they are linear

functions of the EE metrics. The reason is that the powers
(transmit covariance matrices) are fixed, and thus, the EE
metrics are not fractional functions of {Ψ}.

Now, we convexify TI . The unit modulus constraint
|ψmn

| = 1 is equivalent to

|ψmn
|2 ≤ 1, (43)

|ψmn
|2 ≥ 1. (44)

The constraint |ψmn
|2 ≤ 1 is convex; however, |ψmn

|2 ≥ 1 is
not, which makes (42) a non-convex problem. Thus, we have
to approximate (44) with a convex constraint to make (42)
convex. To this end, we employ the convex-concave procedure
(CCP) and rewrite (44) as

|ψmn
|2 ≥ |ψ(t−1)

mn
|2 − 2R{ψ(t−1)∗

mn
(ψmn

− ψ(t−1)
mn

)} ≥ 1.
(45)

To avoid potential numerical errors and speed up the conver-
gence, we relax (45) as

|ψ(t−1)
mn

|2 − 2R{ψ(t−1)∗

mn
(ψmn

− ψ(t−1)
mn

)} ≥ 1− δ, (46)

where δ > 0. Now, we can approximate (42) as

max
{Ψ}

f̂0

({
P(t)

}
,{Ψ}

)
s.t. (42b), (42c), (47a)

(43), (46), ∀m,n, (47b)

which is convex. We denote the solution of (47) as {Ψ(⋆)} =

{Ψ(⋆)
1 ,Ψ

(⋆)
2 , · · · ,Ψ(⋆)

M }. Because of the relaxation in (46), it
may happen that ψ(⋆)

mn , i.e., the n-th coefficient of the diagonal
matrix Ψ

(⋆)
m , does not satisfy |ψmn

| = 1. Therefore, we
normalize {Ψ(⋆)} as

ψ̂mn
=

ψ
(⋆)
mn

|ψ(⋆)
mn |

, ∀m,n. (48)

To guarantee the convergence, we update {Ψ} as

{Ψ(t)} =


{Ψ̂} if f0

({
P(t)

}
, {Ψ̂}

)
≥

f0
({

P(t)
}
, {Ψ(t−1)}

)
{Ψ(t−1)} otherwise.

(49)

For T = TI , our proposed framework converges since a
non-decreasing sequence of objective functions (OF) f0 is
generated. For T = TU , our framework converges to a
stationary point of (24) because TU is convex. We summarize
our algorithm for maximizing the minimum EE with TU in
Algorithm I.

Algorithm I Maximization of the minimum EE for TU .
Initialization
Set γ1, γ2, t = 1, {P} = {P(0)}, and{Ψ} = {Ψ(0)}
While

(
min
∀lk

e
(t)
lk −min

∀lk
e
(t−1)
lk

)
/min

∀lk
e
(t−1)
lk ≥ γ1

Optimizing over {P} by fixing {Ψ(t−1)}
Derive r̃lk according to Lemma 5
Derive ẽlk based on (32)
Compute {Q} by solving (34), i.e., by running
While

(
min
∀lk

ẽ
(n)
lk −min

∀lk
ẽ
(n−1)
lk

)
/min

∀lk
ẽ
(n−1)
lk ≥ γ2

Update µ(n) based on (36)
Update {Q} by solving (35)

Compute {P(t)} as P
(t)
lk = Q

(t)
lk Q

(t)H

lk ∀lk
Optimizing over {Ψ} by fixing {P(t−1)}

Derive r̂
(t)
lk according to Corollary 1

Calculate {Ψ(t)} by solving (42)
t = t+ 1

End (While)
Return {P(⋆)} and {Ψ(⋆)}.

2) STAR-RIS using the MS scheme: The solution of (40) for
STAR-RIS with the MS scheme is very similar to the solution
for a reflective RIS. In this case, we can still use the surrogate
functions in Corollary 1 to make the rates a jointly concave
function of the STAR-RIS coefficients, i.e., {Ψt} and {Ψr}.
For TSU , we can update the STAR-RIS parameters by solving
(42), and the algorithm obtains a stationary point of (24). For
TSI , we have to “convexify” the constraint in (8), which can be
done by rewriting it as the two convex constraints in [36, Eq.
(34)] and [36, Eq. (36)]. Then we can update the STAR-RIS
coefficients similar to the proposed scheme for the reflective
RIS.
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C. Computational Complexity Analysis

Our optimization framework operates iteratively, with the
actual computational complexity and runtime contingent upon
the specific implementation of the algorithms. In this subsec-
tion, we calculate an approximate upper bound for the number
of multiplications imposed by running our algorithms. To this
end, we consider the maximization of the minimum rate with
the feasibility set TU . The computational complexity of other
optimization problems, including the weighted sum rate, the
minimum EE, and global EE, can be similarly computed.

Each iteration of our proposed framework consists of two
steps. In the first step, we optimize the transmit covariance
matrices by solving (33), which is convex when the minimum
rates of the users are maximized. We solve the convex problem
in (33) by numerical optimization tools. To numerically solve a
convex optimization problem, the number of Newton iterations
increases proportionally with the square root of the number of
its constraints [62, Chapter 11], which is equal to

∑
l(Kl+1)

in (33) for the maximization of the minimum rate. Note that
the maximization of the minimum rate can be written as in [14,
Eq. (30)] and thus, has

∑
l(Kl+1) constraints, considering the

power budget in (33d). Now, we provide an approximate upper
bound for the number of multiplications to find a solution in
each Newton iteration. To solve each Newton iteration,

∑
lKl

surrogate functions have to be computed for the rates, r̃lk.
The surrogate rates r̃lk in Lemma 5 are quadratic in {Q}, and
the computational complexity to compute each surrogate rate
can be approximated as O

[∑
l

∑
kN

2
BS,l(2NBS,l +Nu,lk)

]
.

Note that the coefficients in (28) can be computed once at the
beginning of the Newton iterations, and there is no need to
recompute them in each Newton iteration to reduce the overall
computational complexity of the framework. Finally, the com-
putational complexity to update {P} can be approximated as
O
[
L
∑

l

∑
kN

2
BS,l

√∑
l(Kl + 1)(2NBS,l +Nu,lk)

]
, where

L =
∑

lKl is the total number of users in the system.
Now, we derive an approximation for the number of the

multiplications needed to update {Ψ}. To this end, we have
to calculate the number of multiplications for solving the
surrogate optimization problem in (42), which is convex for
the feasibility set TU . The number of constraints in (42) is
equal to

∑
lKl +

∑
mNRIS,m. Thus, the number of the

Newton iterations grows with
√∑

lKl +
∑

mNRIS,m. To
solve each Newton iteration, we have to compute L surro-
gate functions for the rates, r̂lk, as well as LL equivalent
channels, according to (2). To compute each channel, Hlk,i,
∀l, k, i, there are approximately

∑
mNu,lkNBS,iNRIS,m mul-

tiplications, since the matrices Ψm are diagonal, which re-
duces the computational complexity. Moreover, the structure
of the rates in (41) is very similar to the rates in (28).
Hence, the computational complexity of calculating r̂lk in
(41) is on the same order of the computational complex-
ity of attaining r̃lk as in (28) and can be approximated
as O

[∑
lKlN

2
BS,l(2NBS,l +Nu,lk)

]
. Finally, the computa-

tional complexity of updating {Ψ} can be approximated as
O[

∑
l L

√∑
lKl +

∑
mNRIS,m(KlN

2
BS,l(2NBS,l+Nu,lk)+∑

mNu,lkNBS,iNRIS,m)]. Assuming that the maximum num-

ber of iterations is equal to T , the computational complexity
of solving the maximization of the minimum rate for TU using
our framework is T times the summation of the computational
complexities of updating {P} and {Ψ}.

D. Discussion on Extending the Framework to Uplink

The framework can also be applied to the SE and EE
maximization of the uplink along with FBL coding, since the
structure of the rates with respect to the beamforming matrices
and channels is very similar to the DL scenario considered in
the paper. The detailed solution for the UL scenario is beyond
the scope of this work. However, we provide some insights on
how the proposed solutions can be modified to maximize the
sum rate in UL communications in a multi-cell multiple-access
channel (MAC), while the intercell interference is treated as
noise. In this case, the sum rate of users associated with BS l
is

rl = log |I+D−1
l Sl| −

Q−1(ϵ)

nt

√
2Tr(I−Dl(Dl + Sl)−1),

(50)
where Sl =

∑
k Hlk,lQlk(Hlk,lQlk)

H is the covariance
matrix of the signals decoded at BS l, and Dl = σ2I +∑

∀ik,i ̸=l Hlk,lQlk(Hlk,lQlk)
H is the covariance matrix of the

noise plus interference, where Qik is the beamforming matrix
at Uik, and Hik,l is the uplink channel between Uik and BS l.
As it can be easily verified, Sl and Dl in (50) are quadratic in
channels and beamforming matrices, which follow a similar
structure as the matrices Slk and Dlk in (13). Thus, to obtain
a quadratic and concave surrogate function for rl, we can
employ the bounds in Lemma 3 and Lemma 4, and follow the
steps in the proof of Lemma 5. Once the surrogate functions
for the rates are calculated, the beamforming matrices and
RIS coefficients can be updated by solving the corresponding
optimization problems according to our proposed framework.

IV. NUMERICAL RESULTS

In this section, we provide numerical results based on
Monte Carlo simulations. To this end, we consider a two-
cell system with one RIS and K users per cell, similar to
[36, Fig. 2]. We also consider that each BS/user/RIS has
NBS/Nu/NRIS TAs/RAs/elements. Moreover, the locations
and heights of the users/BSs/RISs are chosen similar to [36].
We assume that the power budgets of the BSs are equal to
P . To generate the channels, we assume that the links with
respect to the RISs benefit from a line of sight (LoS) for both
BSs and the users that are located in the same cell as the
RIS. Therefore, these links follow Rician fading associated
with a Rician factor of 3. More particularly, these channels
are generated according to [28, (60)-(60)]. On the other hand,
we assume that the direct links between the BSs and the users
as well as the links through the RISs across the cells are of a
non-LoS (NLoS) nature and consequently, follow a Rayleigh
distribution. This means that each entry of the corresponding
channel matrices follows a complex-valued proper Gaussian
distribution with zero mean and unit variance. The large-
scale fading of the links is modeled according to [28, (59)].
The path-loss exponents of the LoS and NLoS links are 2.2
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Fig. 2: Spectral efficiency metrics versus P for NBS = 4, Nu = 4,
K = 2, L = 2, M = 2, nt = 256, ϵ = 10−5, and NRIS = 20.

and 3.75, respectively. The noise power density and channel
bandwidth are, respectively, assumed to be −174 dBm per
Hz and 1.5 MHz. The other simulation parameters are chosen
according to [28], [36].

In the following, we provide numerical results for SE
and EE maximization in Section IV-A and Section IV-B,
respectively. The schemes considered in this section are as
follows:

• RIS (or RISI ): Our algorithms for MIMO RIS-assisted
URLLC systems with multiple data streams per users,
and TU (or TI ).

• No-RIS: The scheme for MIMO URLLC systems with
multiple data streams per users, but without RIS.

• RIS-Rand (or S-RIS-Rand): The algorithm for MIMO
RIS-aided (or STAR-RIS-aided) URLLC systems with
multiple data streams per users, but without optimizing
RIS elements.

• STAR-RIS: Our algorithms for MIMO STAR-RIS-aided
URLLC BCs with multiple data streams per users, TU ,
and the MS scheme.

• SS-RIS: Our algorithms for MIMO RIS-assisted URLLC
systems with single-stream data transmission per users,
and TU .

As emphasized in Section I, there is no other work on multi-
user MIMO RIS-aided systems with FBL coding. Thus, we
compare the performance of our proposed algorithm to a
single-stream data transmission scheme, the multiple-stream
data transmission scheme for systems without RIS, and with
a non-optimized RIS coefficients as benchmarks.

A. Spectral Efficiency Metrics

Here, we present numerical results for SE maximization. To
this end, we consider the maximum of the average minimum
rate and the average sum rate of users as performance metrics.
We refer to the maximum of the minimum achievable rate
of users as the max-min rate. Note that it is likely that all
the users get the same achievable rate when maximizing the
minimum rate, which can provide a reasonable fairness among
the users [63]. Nevertheless, when the sum rate is maximized,
it could be the case that the users with weaker channels
are switched off if QoS constraints are not considered. To
provide a comprehensive analysis, we explore the impact of
various parameters on the system performance, including the
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Fig. 3: Average max-min rate and relative performance improvement
by RIS versus nt for P = 10 dB, NBS = 4, Nu = 3, K = 2,
L = 2, M = 2, ϵ = 10−5, and NRIS = 20.

BS power budgets, packet length, as well as the maximum
tolerable packet error rate.

1) Impact of power budget: In Fig. 2, we show the average
max-min rate and sum rate versus P for NBS = 4, Nu = 4,
K = 2, L = 2, M = 2, nt = 256, ϵ = 10−5, and
NRIS = 20. In this figure, the RISs significantly improve
the min-max rate and the sum rate, when the RIS elements
are optimized. Surprisingly, employing RISs having random
elements degrades the max-min rate. Moreover, we can ob-
serve that the benefits of RIS increase with P for these
examples. Additionally, the multi-stream scheme substantially
improves the SE for these two examples, where even the No-
RIS scheme is slightly better than the single-stream scheme,
especially at high SNRs. In these examples, the maximum
number of streams per user is I = min(NBS , Nu) = 4, which
makes single-stream transmission gravely suboptimal. Indeed,
when the system complexity increases, a more sophisticated
resource allocation scheme should be adopted in order to avoid
performance degradation.

2) Impact of packet length: Fig. 3 shows the average max-
min rate and the relative performance improvement by RIS
versus nt for P = 10 dB, NBS = 4, Nu = 3, K = 2, L = 2,
M = 2, ϵ = 10−5, and NRIS = 20. Observe that an RIS can
substantially increase the average max-min rate. The benefits
of deploying RISs decrease with nt. Indeed, the shorter the
packet length is, the higher the relative improvements provided
by RISs can be. As indicated, the packet length correlates
with the level of stringency in the latency constraint. Shorter
packet lengths are needed, when the latency constraint is
more stringent. Thus, this result shows that the RIS benefits
increase as the latency constraint becomes more stringent. In
other words, RISs can even be more beneficial for URLLC
systems. Moreover, the rates increase with nt and converge
to the Shannon rate when nt becomes higher. Furthermore,
we can observe that employing multi-stream data transmission
substantially increases the average max-min rate for all the
values of nt. Note that the benefits of multi-stream data
transmission in this figure is lower than in Fig. 2 since the
maximum number of streams per users, I , is 3 in this example,
which is less than I in Fig. 2, and the benefits of multi-stream
schemes grows with I .

Fig. 4 shows the average sum rate versus nt for P = 10
dB, L = 2, M = 2, ϵ = 10−5 and for different values of
NBS , Nu, K and NRIS . In this figure, RISs substantially
enhance the average sum rate. However, the benefits of RISs
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Fig. 4: Average sum rate versus nt for P = 10 dB, L = 2, M = 2,
and ϵ = 10−5.
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Fig. 5: Average max-min rate and relative performance improvement
by RIS versus ϵ for P = 10 dB, NBS = 4, Nu = 3, K = 2, L = 2,
M = 2, nt = 256 bits, and NRIS = 20.

are much more significant when there are less users in the
system (Fig. 4a). Moreover, we can observe that the impact
of decreasing the packet length is more severe in the system
for a higher number of users. This may show the importance
of employing effective interference-management techniques,
which should be addressed in future studies. In Fig. 4a, we also
observe that the algorithm conceived for the multi-stream data
transmission per user outperforms the beamforming scheme,
which employs a single-stream data transmission.

3) Impact of the reliability constraint: Fig. 5 shows the
average max-min rate and relative performance improvement
enabled by the deployment of RISs versus ϵ for P = 10 dB,
NBS = 4, Nu = 3, K = 2, L = 2, M = 2, nt = 256 bits, and
NRIS = 20. In this example, RIS significantly enhances the
average max-min rate for all the ϵ considered. As expected, the
average max-min rate decreases when the reliability constraint
is more stringent. In other words, we have to transmit at
a lower rate to reduce the decoding error rate. Moreover,
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Fig. 6: Average sum rate versus ϵ for P = 10 dB, L = 2, M = 2,
and nt = 256 bits.

the multi-stream scheme significantly outperforms the single-
stream data transmission. Furthermore, we can observe in
Fig. 5b that the benefits of RIS increase when ϵ decreases.
Thus, RISs can be even more beneficial when more reliable
communication is required.

Fig. 6 shows the average sum rate versus ϵ for P = 10 dB,
L = 2, M = 2, nt = 256 bits and different NBS , Nu, K
and NRIS . As it can be observed, RISs enhance the average
sum rate in both networks, if the RIS elements are optimized.
However, RISs with random coefficients decrease the average
sum rate in these two examples. We can also observe that
the impact of varying ϵ is higher in the system supporting
more users. Additionally, we can note a significantly greater
advantage from RISs when there are fewer users in the
network. Moreover, we can observe that the average sum
rate substantially increases, if we employ multi-stream data
transmission.

4) Comparison of reflective RIS and STAR-RIS: A reflective
RIS has the same performance as a STAR-RIS if all the users
are in the reflection half-space of the reflective/STAR-RIS.
Thus, to evaluate the performance differences between these
two technologies, we consider a single-cell 2 × 2 MIMO
BC in which one of the users is in the reflection space,
and the other one is in the transmission space. As shown
in Fig. 7, STAR-RIS using the MS scheme can significantly
outperform reflective RIS in this example. For instance, STAR-
RIS provides about 25% higher average max-min rate at
P = 10 dB compared to the reflective RIS.

5) Convergence behavior: Fig. 8 shows the average max-
min rate versus the number of iterations for NBS = 4, Nu = 3,
K = 2, ϵ = 10−4, nt = 256 bits and NRIS = 20. This figure
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illustrates the convergence of the considered algorithms, from
which the performance-complexity tradeoff may be inferred.
In this example, our scheme proposed for RIS-aided systems
employing multiple streams per user outperforms the final
solution of the other algorithms after as few as four iterations.
Indeed, the lower computational complexity of these alterna-
tive algorithms results in significant performance degradation,
where to achieve a certain target performance, the RIS scheme
requires substantially fewer iterations. Additionally, the No-
RIS, RIS-Rand, and SS-RIS algorithms may not support a
specific max-min rate, while our framework can achieve it with
a reasonable number of iterations. For instance, while the No-
RIS, RIS-Rand, and SS-RIS algorithms struggle to support a
max-min rate of 8 b/s/Hz, our framework achieves it in only
nine iterations.

B. Energy Efficiency Metrics

Now we investigate the EE of RIS in MU-MIMO URLLC
BCs. To this end, we consider the impact of Pc, ϵ, and nt. In
the examples provided in this subsection, we assume that each
RIS consumes 1 W power. Thus, to make a fair comparison,
we consider a lower constant power (Pc) for the systems
operating without RISs. Moreover, we assume that the power
budget of the BSs is P = 10 dB.

1) Impact of Pc: Fig. 9 shows the average max-min EE
and GEE versus Pc for NBS = 5, Nu = 5, K = 2, L = 2,
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Fig. 9: Energy efficiency metrics versus Pc for NBS = 5, Nu = 5,
K = 2, L = 2, M = 2, nt = 256, ϵ = 10−5, and NRIS = 20.
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Fig. 10: Average max-min EE versus ϵ for P = 10 dB, NBS = 4,
Nu = 4, K = 2, L = 1, M = 1, nt = 256 bits, and NRIS = 20.

M = 2, nt = 256 bits, ϵ = 10−5, and NRIS = 20. Note that
we use the term max-min EE to refer to the highest minimum
EE. As it can be observed, RISs significantly increase the
average max-min EE and GEE with FBL. Interestingly, RISs
may reduce the EE, if their elements are random. However,
our proposed algorithms can statistically enhance the EE of
RIS-aided scenarios. For instance, in the particular example
of Fig. 9a, an RIS provides more than 10% improvements
over the systems disregarding the RISs for all the values of
Pc considered. Additionally, the multi-stream scheme signifi-
cantly outperforms the single-stream data transmission in the
both examples.

2) Impact of the reliability constraint: Fig. 10 shows the
average max-min EE versus ϵ for P = 10 dB, NBS = 4,
Nu = 4, K = 2, L = 1, M = 1, nt = 256 bits, and
NRIS = 20. In this example, the RIS providea a significant
gain, which increases with ϵ. Again, RIS decreases the max-
min EE when its elements are random. Moreover, we can
observe that single-stream data transmission is suboptimal in
this 4 × 4 MIMO system. Indeed, the multi-stream systems
communicating without RIS outperforms the RIS-aided single-
stream data transmission.

Fig. 11 shows the average EE performance improvement
attained by RISs versus ϵ for P = 10 dB, NBS = 2, Nu = 2,
K = 2, L = 2, M = 2, nt = 256 bits, and NRIS = 20. In
this example, the RIS substantially increases the average max-
min for all values of ϵ. Moreover, higher gains are achieved
by RISs, when the tolerable bit error rate is lower. Thus, the
more reliable the communication has to be, the more energy
efficient the RIS-aided systems becomes.
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Fig. 11: Average EE performance improvement by RIS versus ϵ for
P = 10 dB, NBS = 2, Nu = 2, K = 2, L = 2, M = 2, nt = 256
bits, and NRIS = 20.
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Fig. 12: Average max-min EE versus nt for P = 10 dB, NBS = 4,
Nu = 4, K = 2, L = 1, M = 1, ϵ = 10−5, and NRIS = 20.

3) Impact of the packet length: Fig. 12 shows the average
max-min EE versus nt for P = 10 dB, NBS = 4, Nu = 4,
K = 2, L = 1, M = 1, ϵ = 10−5, and NRIS = 20. In this
figure, RIS provides a significant gain when the RIS elements
are optimized by our proposed algorithm. However, random
RIS coefficients degrade the EE performance.

Fig. 13 shows the average EE improvement by RISs versus
nt for P = 10 dB, NBS = 2, Nu = 2, K = 2, L = 2, M = 2,
ϵ = 10−5, and NRIS = 20. The average improvements reduce
as nt increases. This indicates that the lower the tolerable
latency, the higher gain the RIS can provide. In other words,
RIS-aided systems become more energy efficient when a low
latency is required, as in control channels, for example.

V. SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH

An optimization framework was proposed for MU-MIMO
RIS-aided systems with FBL by considering the NA for
the rate expressions. To this end, we first calculated closed-
form expressions for the FBL rate and then obtained suit-
able concave lower bounds for the FBL rates. Our proposed
framework can be adapted to a large variety of MU-MIMO
systems in which interference is treated as noise. Moreover, the
framework can obtain a stationary point of a broad spectrum
of practical optimization problems such as the maximization
of the minimum/sum rate, GEE and minimum EE, when the
set of the feasible RIS coefficients adheres to convexity. In
summary, the key conclusions of this work are:

• RISs may significantly increase the average max-min rate,
sum rate, max-min EE and global EE of the MU-MIMO
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Fig. 13: Average EE performance improvement by RIS versus nt for
P = 10 dB, NBS = 2, Nu = 2, K = 2, L = 2, M = 2, ϵ = 10−5,
and NRIS = 20.

systems considered. However, the RIS elements should
be optimized to attain the above benefits, since RISs
utilizing random elements may even degrade the system
performance.

• The benefits of RISs increase when the packet length is
reduced and/or the tolerable bit error rate is lower. The
packet length can be related to the latency constraint,
and the tolerable bit error rate represents the reliability
constraint. Thus, these results show that RISs can be even
more beneficial in URLLC systems than in non-URLLC
systems.

• Multiple-stream data transmission for each user sig-
nificantly outperforms single-stream data transmission
(beamforming) in MU-MIMO RIS-assisted URLLC sys-
tems. Indeed, both the reliability and latency can be
enhanced, when multiple-stream data transmission is em-
ployed in multiple-antenna systems.

In future research, it would be interesting to integrate
advanced interference-management techniques, such as RSMA
and NOMA, into MU-MIMO URLLC systems. In this regard,
the solutions in, e.g., [36], [48], in combinations with the
FBL rate expressions in Lemma 1 might be helpful. Another
challenging research direction is to extend the optimization
framework proposed in this work to scenarios with statistical
or imperfect CSI. To this end, the robust designs in [12], [64]
can be harnessed. Moreover, studying the performance of other
concepts/technologies for RIS, such as holographic RIS [65],
active RIS [66], BD-RIS [67], [68], and globally-passive RIS
[69], [70] can be another promising direction for extending this
work. Furthermore, considering RIS-aided cell-free URLLC
systems is worth exploring in future research. Finally, another
interesting line of research is to develop computationally more
efficient resource allocation schemes that do not compromise
performance.
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