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ABSTRACT One of the major challenges in multiple input multiple output (MIMO) system design is the
salient trade-off between performance and computational complexity. For instance, the maximum likelihood
(Max-L) detection is capable of achieving optimal performance based on exhaustive search, but its exponen-
tial computational complexity renders it impractical. By contrast, zero-forcing detection has low computa-
tional complexity, while having significantly worse performance compared to that of the Max-L. The recent
developments in deep learning (DL) based detection techniques relying on back propagation neural networks
(BPNN) constitute promising candidates for the open challenge of the MIMO detection performance versus
complexity trade-off. Against this background, in this paper, we propose a novel partial learning (PL) model
for MIMO detection with soft-bit decisions that can be incorporated into channel-coded communication
systems. More explicitly, the proposed PL model consists of two parts: first, a subset of the transmitted MIMO
symbols is detected by the data-driven DL technique and then the detected symbols are removed from the
received MIMO signals for the sake of interference cancellation. Afterwards, the classic model-based zero-
forcing detector is invoked to detect the remaining symbols at a linear complexity. As a result, near-optimal
MIMO performance can be achieved with substantially reduced computational complexity compared to Max-
L and BPNN. The proposed solution is adapted to both accept and produce soft information, so that iterative
detection can be performed, where the iteration gain is analyzed by extrinsic information transfer (EXIT)
charts. Our simulation results demonstrate that the proposed partial learning-based iterative detection is capa-
ble of attaining near-Max-L performance while attaining a flexible performance versus complexity trade-off.

INDEX TERMS MIMO detection, neural network, deep learning, soft decision, iterative detection.

I. INTRODUCTION
Over the last decade, wireless communication technology has
advanced significantly [1], providing a once unimaginable
means of data transmission between two points without
the need for a physical medium of communication. Today,
wireless communication has become part of everyday life,
and most technologies utilize such systems due to the vast
improvements in terms of both efficiency and reliability,
which can now be provided at a reasonable cost [2].
Wireless technology has been constantly developing to
meet the ever-increasing user demands [1], and as a result,
considerable challenges regarding its latency and
transmission qualities exist today [3]. A promising solution

to these issues includes the utilization of modern machine
learning techniques [3], [4], in which the accessibility
of data and computing resources provides a means of
rapid smart learning and swift decision-making [3], within
communication systems.

A growing number of popular apps such as video stream-
ing services and social networking has resulted in a notable
jump in data consumption and web traffic. Therefore, Multiple
Input Multiple Output (MIMO) schemes utilize more than
a single antenna at both the transmitter and/or receiver side
to attain an improved transmission rate [5]. It is known that
MIMO technology faces many challenges [6], [7]. Notably,
the classic model-based MIMO detectors have a fundamental
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trade-off between performance and complexity [6], [7]. In this
paper, we aim to improve this salient trade-off by incorporat-
ing machine learning technologies.

More explicitly, for conventional detection techniques,
there exists an optimal detector [6] and a sub-optimal de-
tector [8]. The maximum likelihood detector (Max-L) has
optimal performance [6], while its complexity makes it diffi-
cult to implement in practice. For suboptimal detectors, linear
receivers include the zero-forcing (ZF) detector, the minimum
mean squared error (MMSE) detector, and the matched filter
(MF) detector [8]. These detectors feature a reduced complex-
ity while suffering from degraded performance in comparison
to the optimal detector [7].

Conventional detectors face the challenge of the sequential
operations involved in the detection process of an optimal de-
tector, which can be extremely complex even for small-scale
MIMO detection [9]. On the other hand, suboptimal detectors
fail to account for multiuser interference and noise in the
cases of MF and ZF, while the MMSE detection requires the
knowledge of the SNR [9].

A clear trade-off between complexity and system perfor-
mance is observed between these solutions. It is important to
note that the Shannon capacity can only be roughly estimated
when soft-decision and iterative detection are used with chan-
nel coding [10].

Robertson introduced the concept of log-likelihood ratio
(LLR) [11], which enables extrinsic information exchange
between two component decoders in order to achieve a tru-
ely near-capacity performance [12]. Motivated by this, the
concept of concatenated codes was firstly devised in [13].
The concept of iterative decoding at low complexity with
the use of simple constituent codes did not become a reality,
however, until the turbo codes were proposed in [14], [15].
Multiple parallel concatenated codes were added to the turbo
code concept in [16]. Then, in [17], the turbo principle was
applied to convolutional codes as well as those that use a
series of concatenated blocks. Bit Interleaved Coded Modu-
lation (B.C.) was created in [18], [19], [20] and B.C. with
Iterative Detection (B.C.-ID) was introduced, where itera-
tions are performed between the demapper and the channel
decoder. Consequently, taking into account a soft decision
(SD) in conjunction with channel coding would further in-
crease the complexity and delay of Max-L systems, rendering
them impractical for realistic communication systems [10].
Therefore, Machine Learning techniques become a promis-
ing solution for performance versus computational complexity
trade-off [8], [21].

In the open literature, a variety of methods for addressing
the challenges of model-based detection based on learning
approaches have been proposed. The authors in [8], [21]
presented learning detection techniques known as “Fully-
Con” and “DetNet”. DetNet is a learning detection network
that unfolds the iteration of a projected gradient descent
algorithm and adds significant trainable variables, where the
soft decision-based scheme was considered in [21]. In [22],

the authors have shown how deep learning (DL) can be ap-
plied to estimate the channel and detect transmit symbols
as a hard decision detector in orthogonal frequency-division
multiplexing (OFDM) systems. Additionally, using neural
network (NN) technique, the channel estimation can be
learned and analyzed through nonlinear operation, which
have been demonstrated to be even more robust compared
to MMSE and LS detectors in some circumstances [22]. For
Compressed Sensing-assisted Multi-dimensional Index Mod-
ulation (CS-MIM), the authors in [23], [24] have introduced
DL-based Joint Channel Estimation and Detection (JCED),
which significantly decreases the complexity while also min-
imizing the pilot overhead required for Channel Estimation
(CE).

In [25], the authors proposed a deep learning technique
based on a model-driven approach instead of a data-driven
approach, where the orthogonal approximate message pass-
ing (OAMP) detector was incorporated with deep learning,
which is termed as “OAMP-Net”. This resulted in a network
that is faster and easier to train with the reduced number of
variables. This network can deal with time-varying channels,
and it operates based on soft decisions [25]. In [26], the au-
thors further improved the performance of OAMP-Net [25]
and proposed an advanced “OAMP-Net2” with computational
complexity similar to the OAMP. Moreover, [26] investigated
joint MIMO channel estimation and signal detection (JCESD)
using neural networks. The authors in [27] proposed an online
training-based iterative soft detection technique that is capa-
ble of achieving near-optimal performance, which alleviates
the off-line training requirements of DetNet and OAMP-Net.
Furthermore, [28] proposed an iterative decision decoding
technique for Reed-Solomon codes, based on a deep neural
network (DNN).

In [3], the authors proposed a semiblind detection technique
based on DL for compressed sensing-aided multidimensional
index modulation (CS-MIM), where iterative decoding based
on hard decision (HD) and soft decision (SD) was considered.
As a result of applying the DL-based semi-blind detection
technique, the complexity of channel estimation (CE) is
eliminated and the transmission rate is improved [3]. Further-
more, [4] proposed a CS-aided Joint Multi-dimensional Index
Modulation (JMIM) design based on the DL technique to re-
duce the complexity of the detection process for both HD and
SD. Therefore, employing learning techniques is a promising
solution for the optimal detector. However, these machine
learning based detectors still suffer from high computational
complexity compared to the suboptimal detectors [21], [22],
[23], [24], [25], [26], [26], [28].

In [7], the authors proposed a new detection technique for
massive MIMO hard detection called partial learning (PL),
which contains two parts. Firstly, a subset of the MIMO
symbols is detected by the data-driven DL technique and
then the classic model-based zero-forcing detector is invoked
to detect the remaining symbols at a linear complexity. The
purpose is to improve the performance of the conventional
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TABLE 1. Boldly and Explicitly Contrasting Our Contributions to the Literature

linear detector without reaching the computational complex-
ity of the nonlinear learning detector [7]. Thus, the idea of
partial learning addresses these challenges by simultaneously
leveraging conventional detectors and learning methods to
reduce the learning complexity and enhance the performance
of suboptimal detectors [7]. However, the incorporation of PL
into channel-coded systems remains unexplored in the open
literature. The major challenge is to devise reliable soft-bit
decisions from both the two-component detectors of the data-
driven learning detector and the model-based ZF, which we
aim to solve in this paper.

Following recent developments in machine learning for
wireless communication, we propose a novel method to miti-
gate the MIMO detection trade-off between performance and
complexity by using partial learning (PL) for soft detection
(SD) and integrating it with channel coding.

In HD, a neural network (NN) is trained to detect symbols
with the lowest signal-to-noise ratios (SNRs) among the trans-
mit symbols (xd ). In contrast, SD involves a more complex
process for data collection, training, and evaluation. Our pro-
posed concept of PL is applied in iterative detection, aiming to
achieve a near-optimal performance at a reduced complexity.
In the proposed iterative detection, there are two decoding
components: a demapper and a decoder, where soft informa-
tion is exchanged between both components. In HD, the NN
detects x̂d , whereas SD in iterative PL (Iter-PL) estimates the
probabilities of all possible combinations, p(y|Xd = x(m)

d ).
Consequently, the Iter-PL technique becomes more complex,
requiring careful training by applying Maximum Likelihood
(Max-L) for part of the transmit symbols and optimizing the
NN structure.

Furthermore, the HD learning-based detectors only need to
minimize the difference between the input and output of the
NN by hard-bit decisions. By contrast, the SD operates based
on log-likelihood ratios (LLRs), where the signs correspond
to hard-bit decisions, while the magnitudes have to be propor-
tionate to the real probabilities, so that the subsequent Iter-PL
detection does not propagate erroneous decisions.

The contributions of this paper are compared to state-of-
the-art schemes in Table 1 and are further elaborated below:
� We propose a PL-based MIMO detection applied for

SD with iterative detection for a quasi-static channel,
where the performance versus complexity trade-off is
investigated. In PL, the NN estimates the probabilities of
part of the symbols and then soft ZF detection estimates

the probabilities for the remaining symbols, which has a
low computational complexity compared to the full NN-
based detection. In addition, we propose Iter-PL aided
scheme where iterations can be performed between the
PL-detector and channel decoder.

� We analyze the performance of the learning-aided de-
tection techniques in MIMO detection, where the quasi-
static channel model is considered. We demonstrate that
for soft-decision scenarios, the data-driven deep learn-
ing (DL) detection based on a back propagation neural
network (BPNN) is capable of approaching the optimal
performance of the model-based Max-L. while the com-
putational complexity of the proposed PL is substantially
reduced compared to Max-L and BPNN.

� In order to incorporate deep learning detectors into
channel-coded systems, we propose the concepts of
Iter-BPNN and Iter-PL, where EXtrinsic Information
Transfer (EXIT) charts [29] are invoked for analyzing
the convergence behavior of the iterative demapping and
decoding.

� Our simulation results demonstrate that in the context
of soft decision, the performance of iterative BPNN is
at SNR = 14 dB, and ZF at SNR = 38 dB to attain a
BER of 10−5 for 4x4 MIMO considering quasi-static
channel. By contrast, the performance of iterative PL
with a quasi-static channel for 4x4 MIMO at 10−5 is
flexible, where the PL aided detector requires an SNR
in the range of 15dB and 23dB depending on the number
of symbols detected by the NN. Moreover, the compu-
tational complexity of the PL grows as the number of
symbols detected by the NN grows, while maintaining a
reduced complexity compared to the iterative BPNN.

The rest of the paper is organized as follows. In Section II,
the system model of PL for SD and iterative MIMO detection
is proposed. Our simulation results are provided in Section IV,
while our conclusions are offered in Section V. For the sake
of clarification, the abbreviations used in this treatise are sum-
marized in Table 2.

II. PARTIAL LEARNING FOR ITERATIVE SOFT
MIMO DETECTION
The main focus of this section is to demonstrate the concept
of PL for iterative soft detection and its advantages compared
to BPNN and conventional detection techniques. Detecting
all symbol probabilities by the NN may have an advantage
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TABLE 2. Nomenclature

over Max-L in terms of complexity considerations, especially
when the number of transmit antennas increases. Therefore,
the general concept of PL is to combine a low-complexity
detection technique such as ZF with a high-performance
detection technique such as the NN. Hence, the PL-based
technique has less complexity compared to BPNN and Max-L,
as well as improving the performance of the linear detector.

A. MIMO SYSTEM
Consider a MIMO system employing N transmit antennas
and M receive antennas [5]. Explicitly, in this system, x =
[x1, x2. . ., xN ]T denotes the transmitted symbols, while y =
[y1, y2. . ., yM ]T is the received signals. Moreover, y j de-
notes the received signal of the jth receiver antenna, and
n = [n1, n2. . ., nM ]T is the Additive White Gaussian Noise
(AWGN) vector, which has a zero mean and a variance of N0

in each dimension. In summary, the received signals can be
modeled as:

y = Hx + n, (1)

where y ∈ C
M×1, H ∈ C

M×N, x ∈ C
N×1, and n ∈ C

M×1.
H = [h1, h2, . . ., hN ] is the quasi-static (block-fading) chan-
nels matrix with hi = [h1, h2. . ., hM ]T and h ji representing

the channel from the ith transmit antenna towards the jth
receive antenna. On the receiver side, the aim is to detect the
transmitted symbols (x) from the received signal (y). For the
model-based MIMO detectors, CSI is assumed to be known at
the receiver, where the channel can be estimated as presented
in [30], [31], [32].

B. PARTIAL LEARNING-AIDED SOFT DECISION
The LLR evaluations may become more complex as the num-
ber of antennas increases in MIMO systems [33]. Instead of a
single transmit symbol (x), soft MIMO detection is anticipated
to handle vector basis (x) and (y) [33]. Therefore, Max-L
should decompose the soft-decision MIMO detection into
three phases. First, the vector-basis probability computation
phase of the transmitted symbols P(y|X = x(m) ) evaluates the
vector-based conditional probabilities as follows:

p(y|X = x(m) ) = 1√
πN0

exp

(
−||y − Hx(m)||2

N0

)
, (2)

where x(m) is the m-th legitimate MIMO codeword among QN

combinations, where Q represents the number of the possible
symbols, while N is the number of transmit antennas, which
affects the number of possible combinations. With Max-L,
the significant computational complexity of (2) makes the PL
approach for SD a potential substitute and solution to this
challenge.

Following this, the symbol probability P(y|xi = x(l ) ) com-
putation decouples MIMO probabilities into SISO probabili-
ties as:

p(y|xi = x(l ) ) =
∑

x(m)∈x(i,x(l ) )

p
(
y|x(m)) , (3)

where x(l ) is the l-th legitimate codeword among Q possible
symbols. Finally, the bit probability is calculated by:

p(y|bi = b) =
∑

x(l )∈x(i,b)

p
(

y|x(l )
)

. (4)

Given the above background, the proposed partial learning
technique for soft decisions is presented in the following as
a combination of the fully-connected neural network (FCNN)
as a learning technique and ZF as a conventional detector.

Let d represent the number of detected symbols by the NN,
then the NN estimates the vector basis probability of the d
transmitted symbols. The primary objective of the NN is to
enable the soft decision process for the d symbols, which
have the lowest signal-to-noise ratio (SNR). Following this,
the transmitted symbols with the highest SNR values will
be detected by ZF. The SNR for each column of H can be
evaluated by:

SNRk =
∑M

n=1 |hnk|2
σ 2

. (5)

Then a sorting algorithm can be invoked for the columns of
H from the lowest to the largest SNR. In this way, the symbols
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FIGURE 1. Block diagram of partial learning based iterative detection. L(.)
denotes the LLRs of the bits concerned, where the subscript i indicates the
demapper, also often termed as the inner ‘decoder’, while o corresponds to
outer RSC decoder component. Additionally, the subscripts a, s and e
denote the dedicated role of the LLRs with a, s and e indicating a priori, a
posterior and extrinsic information, respectively.

corresponding to the weakest links with the lowest SNR val-
ues can be detected by NN, while the symbols corresponding
to the strongest SNRs are detected by the linear detector in our
proposed PL-aided detection.

The objective of NN in PL is to estimate the symbol prob-
abilities as a vector-basis p(y|Xd = x(m)

d ) for d number of the
transmit symbols (xd ). Furthermore, the motivation of PL is
to alleviate the complexity of BPNN by reducing the number
of NN output elements. Fig. 1 shows the block diagram of the
iter-PL detection, which combines both data-driven NN and
model-based ZF, and has less computational complexity than
BPNN and Max-L while attaining better performance than the
ZF-based detection. The computational complexity of NN is
primarily determined by the number of layers and neurons, as
well as the number of antennas.

More explicitly, the proposed Iter-PL scheme presented in
Fig. 1 is different from its hard-decision counterpart [7], as
the soft-decision PL is incorporated into iterations with the
channel decoder. Moreover, the conventional hard-decision
PL aims to produce the detected symbols as output, while the
soft-decision Iter-PL aims to infer their probabilities. Due to
the iterative detection, re-training NN for each iteration is a
challenging endeavor. Therefore, the proposed vector proba-
bility p(y|Xd = x(m)

d ) is an attractive solution that does not
need to be calculated again for each iteration.

The NN in Fig. 1 is followed by DFE and ZF, which eval-
uate the remaining symbol vector probability. Compared to

the hard-decision PL of [7], the soft-decision based on PL
estimates the following symbols (xd ), as follows:

x̂d =
Q∑

l=1

x(l )Pr(xd = x(l ) )

=
Q∑

l=1

x(l ) · exp[
∑BPS

j=1 b̃ j · Li,s,NN (b j )]∏BPS
j=1{1 + exp[Li,s,NN (b j )]}

. (6)

Before invoking the ZF detector, the estimated soft symbols
of (6) are subtracted from the received signal, as:

yN−d = y − Hd x̂d . (7)

where Hd has d number of columns with the least SNR. Fol-
lowing this, the linear model-based ZF detector will detect the
remainder of the transmitted symbols (x̂N−d ) as follows [34]:

x̂N−d = PyN−d = P(y − Hd x̂d ), (8)

where the ZF weighting matrix is evaluated based on:

P = (
HH

N−d HN−d
)+

HH
N−d . (9)

Following this, the symbol probability of (3) is revised for
the ZF output as follows:

p(y|x̂(i)
N−d = x(l ) ) = 1√

πN0
exp

(
−|x̂(i)

N−d − x(l )|2
N0||p(i)||2

)
. (10)

Lastly, the LLR is computed using the following equation
as the final step before merging the symbol probabilities of the
NN and ZF:

L(y|bi = b) = ln

(
P(y|bi = 1)

P(y|bi = 0

)
. (11)

In summary, both outputs of the NN and the ZF will be utilized
for producing and exchanging soft decisions with the Re-
cursive Systematic Convolutional (RSC) decoder in iterative
detection of Fig. 1.

Nonetheless, the NN still exhibits substantial computational
complexity that grows with the number of input/output ele-
ments. The output of the NN calculates a reduced number
of Qd , which reduces the dimension of the vector proba-
bility computation (d < N). The PL complexity is evalu-
ated by 2M × l1 +∑L−1

i=1 li × li+1 + lL × Qd ] + [(N − d ) ×
(M − d ) multiplications and Qd +∑L

i=1 li activation func-
tions. li is the number of neurons of the ith (1 ≤ i ≤ L) hidden
layer.

C. PARTIAL LEARNING-AIDED ITERATIVE DETECTION
In this subsection, the focus is on the core principle of it-
erative PL detection when a learning technique is employed
to enhance the soft detection process. To put it simply, the
idea behind PL is to combine two distinct detection methods
to enhance the system’s performance while minimizing its
computing complexity.

Fig. 1 shows iter-PL detector, which illustrates the two-
stage serially concatenated system with an outer encoder
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(RSC) and an interleaver coupled to an inner encoder (demap-
per). As illustrated in Fig. 1, the RSC encoder encodes input
bit stream to create a bit sequence, which is then interleaved
by interleaver (

∏
). The mapper encodes the bit sequence,

which was coming from the RSC encoder passing through
∏

,
by mapping bits based on the selected constellation diagram.
Then, the output of the mapper is transmitted to the receiver
through a wireless channel.

According to Fig. 1, the received signal (y) goes into the
NN to calculate the vector probabilities of the symbol com-
binations p(y|X = x(m) ) instead of (2). Therefore, the a priori
LLRs of bits (Li,a(u)) are fed to the inner decoder (demapper),
which outputs the a posteriori LLRs (Li,s(u)) based on the
concept of the Maximum A Posteriori (MAP). The Maximum
A Posteriori (MAP) detection aims to calculate a posteriori
probabilities based on the vector-based probability p(y|X) as
follows [35]:

p(Xd = x(m)
d |y) =

P
(

y|Xd = x(m)
d

)
p
(

Xd = x(m)
d

)
p(y)

, (12)

where p(Xd = x(m)
d ) is the a priori probabilities coming

from outer decoder to update the symbol probabilities, while
p(y|Xd = x(m)

d ) is the output of the NN as can be seen in
Fig. 1. Similarly, the MAP detection based on the symbol-
based probability p(y|xi = x(l ) ) is expressed as:

p
(

x̂(i)
N−d = x(l )|y

)
= p

(
y|x̂(i)

N−d = x(l )
)

p
(

x̂(i)
N−d = x(l )

)
,

(13)
where p(y|x̂(i)

N−d = x(l ) ) is the output of soft ZF as can be

seen in Fig. 1, and p(x̂(i)
N−d = x(l ) ) is the a priori probabilities.

Thus, the a posteriori probabilities of the NN and ZF can be
combined to be called the a posteriori probabilities of PL.

Furthermore, the extrinsic LLRs (Li,e(u)) are calculated
by subtracting Li,a(u) from Li,s(u). Fig. 1 shows how the
demmaper’s output is de-interleaved and provided to the RSC
decoder as a priori LLRs (Lo,a(c)). After receiving the infor-
mation as input, the RSC decoder decodes it and outputs its
extrinsic LLRs (Lo,e(c)), which are then interleaved and sent
on to the demapper as Li,a(u). the RSC decoder uses Lo,a(c)
to generate enhanced Lo,e(c), which are fed back to the outer
decoder for further iterations. The RSC decoder produces the
extrinsic LLRs for its input stream after the final iteration,
which may then be fed into a hard decision decoder.

III. NN TRAINING OF ITER-PL
In this section, we present our simulation results for PL-aided
soft iterative detection and compare the performance as well
as the computational complexity with the benchmark schemes
of Max-L, ZF, and BPNN-based detection.

First, we start by presenting the NN structure and training
process. As a learning technique, several stages exist in this
process, including collecting training data, training the net-
work, and testing the model.

FIGURE 2. Collecting data model block diagram.

A. TRAINING DATA COLLECTION
The initial stage is to collect data from the conventional sys-
tem. The received signals (y) are taken as the input, whereas
the vector probability of the transmit symbols in SD is refer-
enced as the target output.

Fig. 2 shows how the data can be collected by employing
Max-L to calculate the vector probability of the transmit sym-
bols based on (2). In PL, we choose d transmitted symbols
(d < N), which have the least SNR based on (5). This pro-
cedure was carried out in MATLAB. Moreover, no channel
coding is needed for training, as the NN weights are not
updated for each iteration.

It is challenging to determine the SNR point at which the
network is trained. This decision to determine the SNR re-
quires the collection of data for several SNRs to simulate
several trained networks. Hence, multiple simulations were
conducted at different SNR values so that the performance of
the trained NN at these different SNR values, can be compared
to each other as well as to the optimal Max-L.

B. TRAINING
The training process for the model was done based on
Python [36] as a programming language on the Colab
platform. The computational complexity, however, of the
learning-based detection process is higher than that of linear
detectors such as ZF, due to the number of required neurons
(the width of the layer). Nonetheless, we note that the inherent
concurrent nature of the NN relying on a parallel processing
architecture of GPUs, is capable of executing MIMO detec-
tion faster than the conventional CPU for model-based MIMO
detectors.

In our model, we propose a FCNN that is specifically
designed to estimate the probabilities of the possible com-
binations of transmit symbols. The performance of the NN
is affected by several key factors that play substantial roles
within the training process, such as the choices of channel fad-
ing, the optimum SNR for collecting data, its width and depth,
and avoiding over-fitting. In this work, we adopt the Adam
optimizer as in [7], [37], [38]. Adam is a widely used op-
timization technique for supervised learning in feed-forward
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FIGURE 3. Evaluation of the demapper transfer characteristic.

FIGURE 4. Evaluation of the RSC decoder’s EXIT characteristics.

FIGURE 5. EXIT chart for 2x2 MIMO, using QPSK, employing a quasi-static
channel at SNR= 5dB with iterative detection using different detection
schemes, where d = 1 for PL means one of the symbols was detected by
the NN. IE of the inner MIMO detector becomes IA of the outer RSC decoder
IE of the outer RSC decoder becomes IA of the inner MIMO detector.

artificial neural networks [37]. Additionally, it is a first-order
optimization algorithm that combines the advantages of mo-
mentum and adaptive learning rates [37], [39].

The neural network model is trained to estimate the prob-
abilities of vector combinations for the transmitted symbols
p(y|X = x(m) ), where the Mean Square Error (MSE) is em-
ployed as the loss function. Formally, the MSE is calculated
as:

MSE = 1

Qd

Qd∑
m=1

(
p
(
y|X = x(m))− p̂

(
y|X = x(m)))2 , (14)

FIGURE 6. EXIT chart for 4x4 MIMO, using QPSK, employing a quasi-static
channel at SNR= 5dB with iterative detection using different detection
schemes, where d in PL refers to the number of the symbols detected by
the NN. IE of the inner MIMO detector becomes IA of the outer RSC decoder
IE of the outer RSC decoder becomes IA of the inner MIMO detector.

FIGURE 7. Trajectory for PL aided detection for 2x2 MIMO, using QPSK,
employing quasi-static channel at SNR= 5dB and 8dB, when d = 1, where
d = 1 means one of the symbols was detected by the NN. IE of the inner
MIMO detector becomes IA of the outer RSC decoder IE of the outer RSC
decoder becomes IA of the inner MIMO detector.

where x(m) is the m-th legitimate MIMO codeword among
Qd combinations, where Q represents the number of the pos-
sible symbols, while d is the number of transmit symbols
detected by NN, and Qd is the total number of vector com-
binations. When applying QPSK, where Q = 4, and using the
PL technique with d = 2, this results in 16 possible symbol
combinations. By minimizing the MSE, the model is opti-
mized to reduce the discrepancy between the predicted and
true probabilities of the vector combinations, leading to more
accurate estimations.

The activation function should be selected carefully, and
we chose “ReLu” for the hidden layer and “Softmax” for
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TABLE 3. The Computational Complexity for 2x2 MIMO, Using QPSK and SD-Based Detection

FIGURE 8. Trajectory for PL aided detection for 4x4 MIMO, using QPSK
and employing quasi-static channel at SNR = 8dB, where d in PL refers to
the number of the symbols detected by the NN. IE of the inner MIMO
detector becomes IA of the outer RSC decoder IE of the outer RSC decoder
becomes IA of the inner MIMO detector.

the output layer. The objective is to train the network to esti-
mate the vector probability of the transmitted symbols in SD.
The following considerations are summarized in order to en-
sure that the NN training is reproducible:

1) The Best Width and Depth to Train the NN:
This step is similar to choosing an SNR point for col-
lecting data, as it is also dependent on testing and
simulating the results to determine the optimum choice.
The term ‘width’ refers to the number of neurons each
layer requires, and the term ‘network depth’ refers to the
number of layers. As the number of neurons and layers
increases, the complexity increases due to the number
of computational processes [36].

2) Avoiding Over-Fitting:
Over-fitting is one of the challenges that appears during
the training stage [36]. It means the trained model can
deal with specific cases which is closer to the collected
data. Therefore, the model will have an inferior perfor-
mance at any SNR points that have not been provided
during the training process. As a result, “early stop-
ping” is a concept related to the optimization process
that assists the optimizer in stopping at an appropriate
point [36]. This stopping point protects the model from

FIGURE 9. BER performance comparison for different detection schemes,
when considering 2x2 MIMO, employing QPSK and using a quasi-static
channel with iterative detection, where d in PL refers to the number of the
symbols detected by the NN.

losing its generalization. The generalization is essential
as it allows for dealing with the introduced new data set.

IV. SIMULATION RESULTS
In this section, we present the simulation results of our
proposed soft-decision PL detection. We demonstrate that
the proposed Iter-PL is capable of approaching the near-
optimum performance of Iter-BPNN at a substantially reduced
complexity.

As discussed above in the paper, the concept of PL is de-
rived from the concept of full learning (BPNN). The BPNN
technique aims to estimate the vector probability of all trans-
mitted symbols by the trained NN. By contrast, the detection
process of PL is divided into two stages: one stage employs
the learning technique to estimate the vector probability of
some transmitted symbols (d), where d is less than the number
of the transmit antennas (N). The second stage is to utilize
a linear soft detector to estimate the symbol probability of
the rest of the transmitted symbols. The PL technique aims to
improve the performance of a low-complexity detector, such
as a ZF detector, without the excess complexity of Max-L and
BPNN.

As shown in Fig. 1, the NN has been adopted for the non-
linear detection process. The received signals (y) are the input
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FIGURE 10. BER performance comparison for different detection schemes, when considering 4x4 MIMO, QPSK, and quasi-static channel with iterative
detection.

TABLE 4. The Computational Complexity for 4x4 MIMO, QPSK and SD-Based Detection

for the NN, which are presented in the complex number form.
As the NN only accepts real-valued input, it is essential to
separate the complex number into the real part (�(y)) and the
imaginary part(�(y)). The inputs of the NN can be presented
as ŷ = [�(y1),�(y1),�(y2),�(y2). . .,�(yM ),�(yM )]T .

Fig. 3 illustrates the evaluation process for the demapper
transfer characteristic, while Fig. 4 shows the evaluation pro-
cess for the decoder transfer characteristic of the RSC code.
Based on these transfer functions, we simulated EXIT charts,
which facilitated the calculation of the mutual information
for the inner decoder (demapper) (Ii,e) and the outer decoder
(RSC decoder) (Io,e), as detailed in [40]. More details about
the EXIT chart can be found in [29]. The mutual information
equation is given by:

I (X,Y ) =
∑
x,y

P(Xi,Yj ) · I (Xi,Yj ), (15)

which can be written as:

I (X,Y ) =
∑
x,y

P(Xi,Yj ) · log2

(
P(Xi | Yj )

P(Xi )

)
bits/symbol,

(16)
where X represents the transmitted information or the source
signal and Y represents the received information [29].

Figs. 5 and 6 show the EXtrinsic Information Transfer
(EXIT) chart, which illustrates the transfer of mutual in-
formation between the inner and outer decoders in iterative
detectors. The inner decoder corresponds to the different
MIMO detectors used, namely Max-L, ZF, BPNN, and PL-
based detectors, while the outer decoder is RSC with a
half-rate (Rc = 1/2), with a generator polynomial of (31,29),
and a constraint length of 5.

EXIT charts constitute a powerful tool to analyze the
convergence behaviour of iterative detection schemes [29].
Explicitly, the iteration gain can be inferred from the slope
of the EXIT curve of the inner decoder. For example, iteration
gain can be attained for the Max-L, BPNN, and PL, since their
slopes are not horizontal. By contrast, there is no iteration gain
for the MMSE and the ZF. Additionally, the intersection of
the EXIT curves of the inner and outer decoders corresponds
to the attainable bit error ratio (BER) performance, where the
intersection point near the mutual information IE = 1 corre-
sponds to extremely small BER [29]. In our proposed system,
the tunnel of the trajectory can achieve IE of the outer RSC
decoder of 1, when the SNR is increased to 8dB, which are
demonstrated by Figs. 7 and 8.

Fig. 8 demonstrates the flexibility advantage of PL,
where for two different d values, two different EXIT
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curves are shown in Fig. 8, where at the same SNR more
performance gain can be attained for d = 2.

Moreover, as shown in Figs. 5 and 6, the proposed PL
achieves a flexible tradeoff between the model-based ZF and
the data-driven BPNN, where PL is capable of outperforming
ZF and approaching BPNN at a reduced complexity that is
proportionate to the value of d .

The EXIT charts of Figs. 5 and 6 are confirmed by the
BER performance results of Figs. 9 and 10, for 2x2 and 4x4
MIMO scenarios, respectively. More explicitly, our simulation
demonstrates that Max-L, BPNN, and PL achieve beneficial
iteration gain, in comparison to MMSE and ZF. Secondly,
our simulations demonstrate that BPNN is capable of achiev-
ing a near-optimum Max-L performance while using iterative
decoding, while the PL aided detection is capable of substan-
tially outperforming MMSE and ZF and approaching BPNN
performance, with reduced complexity compared to the Max-
L and BPNN-aided detection scheme.

Based on the simulation results in Figs. 9 and 10, the
MMSE detector offers robustness compared to the ZF de-
tector. According to [41], the MMSE detector can deal with
noisy environments and ill-conditioned channels, while the
ZF detector focuses on eliminating interference by invert-
ing the channel matrix, which is highly sensitive to noise
and can suffer from significant performance degradation in
practical scenarios [41]. Conversely, the MMSE detector
balances the trade-off between interference suppression and
noise minimization by incorporating the noise variance into its
calculations. This allows the MMSE detector to achieve better
performance in real-world systems where varying channel
conditions and noise are prevalent, making it a more reliable
and serving as a linear benchmark detector in our simulations.

The computational complexity of different detection
schemes, considering the number of multiple/divide and
add/subtract operations and the type of operations (whether
sequential or parallel), is detailed in Table 3 and Table 4.
The Iter-BPNN technique, while allowing parallel operations,
is computationally less complex compared to the Iter-Max-L
detector, which requires a significantly higher number of se-
quential operations. Moreover, the Iter-PL technique is even
less complex than Iter-BPNN, primarily due to the reduction
in the output layer size of the neural network, which decreases
both the number of multiply/divide and add/subtract opera-
tions required.

V. CONCLUSION
In this paper, we presented an approach for MIMO detec-
tion that combines a learning technique and a conventional
linear detection technique. The primary goal is to achieve a
low computational complexity while attaining a performance
improvement. The paper presented the concept of PL, as a
combination of a NN based detector as a deep learning tech-
nique with non-linear operations, and ZF as the conventional
detector with low computational complexity. By employing
the NN, soft detections can be achieved using the proposed
PL-aided detection, which has also been extended to iterative

PL detection. Our simulation results show that the perfor-
mance of our proposed detection system outperforms the
model-based linear MIMO detector and approaches the full
data-driven NN at a reduced complexity.
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