
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal
non-commercial research or study, without prior permission or charge. This thesis and the accom-
panying data cannot be reproduced or quoted extensively from without first obtaining permission
in writing from the copyright holder/s. The content of the thesis and accompanying research data
(where applicable) must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given,
e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the Uni-
versity Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





University of Southampton
Faculty of Engineering and Physical Sciences

School of Physics and Astronomy

Applications of non-perturbative
renormalisation for lattice QCD

by
Rajnandini Mukherjee

ORCiD: 0000-0003-1015-8533

A thesis for the degree of
Doctor of Philosophy

November 2024

http://www.southampton.ac.uk
http://orcid.org/0000-0003-1015-8533




University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Physics and Astronomy

Doctor of Philosophy

Applications of non-perturbative renormalisation for lattice QCD

by Rajnandini Mukherjee

The Standard Model (SM) of particle physics, despite proving to be the most robust
framework for our current understanding of fundamental particles and their interactions
in nature, fails to account for several observed phenomena. In order to uncover the
New Physics beyond the SM and further our theoretical understanding of nature, it is
important to perform precision tests on its predictions, and also explore theories be-
yond the Standard Model (BSM). Lattice quantum chromodynamics (QCD) is an ab
initio framework for testing the SM in the non-perturbative regime of QCD; observables
on the discrete lattice can be related to their continuum counterparts by performing a
continuum extrapolation. An important corequisite for this procedure is the renormali-
sation of bare quantities computed on the lattice. In this thesis we present two studies
that aim to make high precision predictions for SM and BSM parameters with the use
of regularisation-independent momentum subtraction schemes for the non-perturbative
renormalisation of lattice quantities.

We present non-perturbative results for BSM kaon mixing matrix elements in the isospin
symmetric limit (mu = md) of QCD, including a complete estimate of all dominant
sources of systematic error. Our results are obtained from numerical simulations of lat-
tice QCD with Nf = 2+1 flavours of dynamical domain wall fermions. We include data
at three lattice spacings in the range a = 0.11 – 0.07 fm and with pion masses ranging
from the physical value up to 450 MeV. This improves upon earlier studies by including
direct calculations at physical quark masses and a third lattice spacing, therefore making
the removal of discretisation effects significantly more precise and eliminating the need
for any significant mass extrapolation beyond the range of simulated data. We renor-
malise the lattice operators non-perturbatively using RI/SMOM off-shell schemes. These
schemes eliminate the need to model and subtract non-perturbative pion poles that arise
in the RI/MOM scheme. Furthermore, since the calculations are performed with domain
wall fermions, the unphysical mixing between chirality sectors is suppressed. Our results
for the bag parameters in the MS scheme at 3GeV are BK ⌘ B1 = 0.5240(17)(54),
B2 = 0.4794(25)(35), B3 = 0.746(13)(17), B4 = 0.897(02)(10) and B5 = 0.6882(78)(94),
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where the first error is from lattice uncertainties and the second is the uncertainty due
to the perturbative matching to MS.

We also present the first numerical implementation of a massive momentum subtraction
(RI/mSMOM) renormalization scheme and use it to calculate the charm quark mass.
This scheme aims to curb discretisation effects in the study of heavy quark observables on
the lattice. Based on ensembles with three flavours of dynamical domain wall fermions
with lattice spacings in the range 0.11 – 0.08 fm, we demonstrate that the mass scale
which defines the RI/mSMOM scheme can be chosen such that the extrapolation has
significantly smaller discretisation effects than the RI/SMOM scheme which is defined
in the massless limit. Converting our results to the MS scheme we obtain mc(3GeV) =

1.008(13)GeV and mc(mc) = 1.292(12)GeV.
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Chapter 1

Introduction

Particle physics is the study of the fundamental particles and forces that govern interac-
tions at very small length scales. The Standard Model (SM) is a well-established theory
which describes how particles interact under three of the four known fundamental forces
in nature: the electromagnetic, weak, and strong forces. It is an extremely successful
theory with no confirmed inconsistency between theoretical predictions and experimen-
tal observation, and has so far allowed us to explain a wide variety of particles as well as
predict some new ones. However, several observed phenomena that are not explicable
within the framework of the SM lead us to believe that it must be an incomplete theory,
thereby suggesting the existence of New Physics. These include

• The observed scale of matter-antimatter (baryon) asymmetry: although it would
be a natural assumption that the universe is charge-neutral, the SM does not
resolve why the universe is matter-dominant to the observed extent.

• Gravity: the SM does not include a description of the fourth fundamental force,
gravity, and at present there is no known satisfactory quantum field theory (QFT)
of gravity.

• Origin of SM parameters: there are 18 free parameters in the SM theory, cor-
responding to quark and lepton masses, gauge couplings, the mixing angles and
charge-parity violation phase of the Cabbibo-Kobayashi-Maskawa (CKM) matrix,
and the Higgs mass and vacuum expectation value. These parameters are mea-
sured experimentally, and at present there is no explanation for their origin, the
wide range they cover, and their hierarchies.

The SM include also fails to explain, amongst other puzzles, the precise nature of neu-
trino masses and oscillations, dark matter and dark energy, and the size of the cosmo-
logical constant.
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The aim of modern particle physics has therefore been to address these puzzles, and given
the availability of high precision data from current and future experiments, there are
many ways to make progress. These include making theoretically motivated extensions
to the SM and testing their validity, and over-constraining the SM parameters to high
precision in order to look for discrepancies with experiments.

While many SM predictions can be made to high precision using analytical calculations,
this is not the case for low-energy hadronic processes due to the non-perturbative nature
of strong interactions. However, interactions at this scale are often key to constraining
the processes described by the SM. While there exist effective field theory treatments
in this regime, lattice quantum chromodynamics (QCD) provides a systematically im-
provable framework for determining the observables in such non-perturbative processes
from first principles by studying the theory in a discrete Euclidean spacetime inside a
finite box with some boundary conditions.

In this thesis we present two studies that employ the framework of lattice QCD to
constrain SM parameters as well as make predictions for beyond the Standard Model
(BSM) parameters with high precision.

1. The SM allows for the violation of charge-parity (CP ) symmetry in weak pro-
cesses, and this is known to generate matter-antimatter asymmetry. However, the
degree of CP -violation in the SM does not explain the observed extent of baryon
asymmetry. It is possible to make theoretical predictions for a measure of CP -
violation predicted by the SM, as well as by that predicted by BSM theories as part
of the search for New Physics. A candidate process for making such theoretical
prediction involves a neutral meson mixing with its anti-particle; this is mediated
by weak interactions and violates CP symmetry. We study the process of neu-
tral kaon mixing and make the following predictions for the phenomenologically
relevant bag and ratio parameters in the MS scheme at an energy scale of 3 GeV:

BMS
1 = 0.5240(17)(54),

BMS
2 = 0.4794(25)(35),

BMS
3 = 0.746(13)(17),

BMS
4 = 0.897(02)(10),

BMS
5 = 0.6882(78)(94),

RMS
2 = �18.90(12)(17),

RMS
3 = 5.92(05)(13),

RMS
4 = 41.94(44)(46),

RMS
5 = 10.64(14)(15) ,

(1.1)
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where the parentheses report lattice and perturbative matching uncertainties. Note
that B1 contributes to the SM measure of indirect CP -violation, ✏K , while the other
parameters constrain BSM theories for kaon mixing.

2. Due to the discrete nature of lattice QCD, it is challenging to resolve both light and
heavy quarks in the same box. With modern improvements to computing resources
and simulation algorithms, we are now able to study the physics of heavy quarks
(for example charm and bottom) more directly on the lattice, without needing
to use discretised effective theories. We present a prediction for the mass of the
charm quark at the charm scale:

mMS
c (mMS

c ) = 1.292(5)(10)(4), (1.2)

where the three errors arise due to statistical, systematic, and perturbative match-
ing uncertainties, respectively.

The connecting theme in this thesis is that of non-perturbative renormalisation (NPR).
It is often not possible to naïvely extrapolate observables measured on the lattice to
the continuum (impose the limit of a vanishing lattice spacing) without running into
divergences. Most bare quantities on the lattice need to go through the process of renor-
malisation before the continuum limit can be imposed, and the choice of renormalisation
scheme used often plays a role in making continuum predictions to a high precision while
controlling unwanted lattice artefacts.

In this thesis we use a non-perturbative scheme, known as RI/SMOM, to carry out
the renormalisation procedure for bare lattice-generated bag and ratio parameters in
the study of neutral meson mixing, in particular kaon mixing. We then do a first
numerical study of an extension to this scheme, called RI/mSMOM, in order to improve
its suitability to the study of heavy quarks on the lattice by reducing discretisation
effects.

The remainder of this thesis is structured as follows: Chapter 2 presents a brief introduc-
tion to the SM and its properties; in particular it outlines the theoretical background for
neutral meson mixing. Chapter 3 introduces the formalism of lattice QCD, presenting
the essential features relevant for the projects in this thesis. Chapter 4 details non-
perturbative renormalisation using the RI/SMOM scheme for bilinear and four-quark
operators. Note that these three chapters do not present original work but rather a
summarised literature review of the topics that make up the necessary ingredients in the
subsequent chapters. Chapters 5 and 6 provide the details and results from a study of
neutral kaon mixing [9], and a computation of the charm quark mass using a massive
NPR scheme [10], respectively, followed by the conclusions in chapter 7.

The work presented in this thesis is my own (with guidance from my supervisor and
carried out jointly with my collaborators), with the following exceptions:
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• Chapters 5 & 6: the data generation procedure for the data sets used.

• Chapter 5: (on all ensembles) the combined two- and three-point functions fits
for generating the bare bag and ratio parameters, fits for pion mass and decay
constant, the study of binning choices for correlation functions, and the calculation
of valence strange quark correction factors.

• Chapter 5: (on all ensembles) the non-perturbative renormalisation constants in
the RI/SMOM(/q,/q) scheme.

• Chapter 6: continuum perturbation theory calculations for the matching factor
RMS RI/mSMOM

m at one-loop order in Landau gauge.
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Chapter 2

The Standard Model

The Standard Model (SM) of particle physics is a quantum field theory that describes
the properties and interactions of all known elementary particles under the strong, weak,
and electromagnetic forces. It was developed in the second half of the twentieth century
[12–20], and has been a remarkably successful theory.

The elementary particles that make up the SM can be broadly categorised into bosons,
with integer spin (instrinsic angular momentum), and fermions, with half-integer spin.
The gauge or vector bosons are mediators of interactions: the photon for electromag-
netic interactions, gluons for strong interactions, and W± and Z-bosons for the weak
interactions. The Higgs is a scalar boson of the Higgs field which is responsible for
generating mass for all fundamental particles via the Higgs mechanism. The fermions
come in three generations and can be further classed into quarks, particles with colour
charge, and leptons, which come in pairs of a charged lepton and a neutral neutrino.

Many elementary particles in the SM were theoretically predicted and subsequently
confirmed by experiments. These include the charm quark: proposed in 1970 [21] and
detected in 1974 via the J/ particle [22,23]. The Cabibbo-Kobayashi-Maskawa matrix
was developed in 1973 [24, 25] predicting a third generation of quarks and introducing
CP -violation in the SM; the bottom and top quarks were subsequently confirmed in
experiments in 1977 [26] and in 1995 [27], respectively. The W± and Z bosons were
predicted to be mediators of weak interactions in the SM [17] and were experimentally
observed in 1983 [28, 29]. Most recently, the tau neutrino was detected in 2001 [30],
and the Higgs boson in 2012 [31, 32]; completing the experimental confirmation of all
elementary particles predicted in the SM.

Despite its tremendous success, the model is unable to explain many other phenonema:
gravity, neutrino masses and oscillations, the degree of baryogenesis in the primordial
universe, among others. Accounting for these phenomena may require the introduction
of New Physics via Beyond the Standard Model (BSM) theories. Of particular relevance
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to this thesis is the study of neutral meson-mixing interactions within and beyond the
SM which violate charge-parity (CP ) symmetry since the degree of CP -violation in the
SM is not enough to explain the matter-antimatter asymmetry in the observed universe
[33–35].

In this chapter, we begin by briefly introducing the formalism of a quantum field theory
(QFT) as well as symmetry groups. The description of the underlying physics of the
Standard Model – a QFT with SU(3)C⇥SU(2)L⇥U(1)Y gauge symmetry – is then split
into the SU(3)C sector, known as Quantum Chromodynamics, and the SU(2)L⇥U(1)Y

electroweak sector. We then derive the theory of neutral meson mixing, in particular
kaon mixing in and beyond the SM.

2.1 Quantum field theory

The modern description of quantum physics is in the language of mathematical fields.
A field theory is a framework derived from fields that take some value over all spacetime
points. The fields in a quantum field theory (QFT) are derived by quantising classical
fields: this can achieved via Dirac’s canonical quantisation [36], wherein fields are in-
terpreted as operators acting on a Fock space and satisfying commutation relations; or
via Feynman’s path integral quantisation [37], where the basis of the QFT is formed by
considering the path travelled by a particle to be the superposition of all possible paths
each weighted by its action. In this description particles are viewed as excitations of the
fields, as part of a many-body theory which allows for particle creation and annihilation.

In this thesis we work within the path integral formalism of QFT, wherein the vacuum
expectation value of an observable O in a theory with n fields  1, . . . , n is given by

hOi ⌘ h⌦|Ô|⌦i = 1

Z

Z
D [ 1, . . . , n] OeiS[ 1,..., n], (2.1)

where Ô is the operator for the observable, acting on the Fock space of all possible
states. Z is the partition function

Z =

Z
D [ 1, . . . , n] e

iS[ 1,..., n] , (2.2)

and D is the measure for the integral over all possible field configurations. Each path is
weighted by the action, S, which is defined as a functional of the fields as

S [ 1, . . . , n] =

Z
d4xL [ 1(x), . . . , n(x)] , (2.3)

where L is the Lagrangian density that encodes the dynamics of the theory. A field
theory is therefore defined by specifying its Lagrangian density.
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The SM is specified by a Lagrangian density that can be decomposed as

LSM = LQCD + LEW, (2.4)

into Quantum Chromodynamics (QCD) and the electroweak (EW) theories. In the
subsequent sections, we look into these two sectors in greater detail. However, it is useful
to first start with the description of the underlying symmetries of the SM Lagrangian.

2.2 Symmetries of the Standard Model

Symmetries form the basic guiding principle to building a physical theory. These rep-
resent field transformation under which the physics of the model remains invariant. In
the SM, these transformations derive from the symmetries of spacetime, such as Lorentz
invariance, as well as from internal gauge symmetries that transform the field represen-
tation �(x) as

g : �(x)! �0(x) = Rg(x)�(x), g 2 G, (2.5)

where Rg, a function of the four-position x, is some representation of the element g of
a symmetry group G. The Standard Model is a gauge theory based on the symmetry
group

GSM : SU(3)C ⇥ SU(2)L ⇥ U(1)Y , (2.6)

where C stands for colour, L for (left-handed) weak isospin, and Y for hypercharge.

In addition to these continuous symmetries, there are also three discrete symmetries of
importance called parity (P ), charge conjugation (C), and time reversal (T ). P and
T are spacetime symmetries that reverse the spatial and temporal coordinates of each
point in spacetime respectively

P : xµ = (x0, x)! x0µ = (x0,�x),
T : xµ = (x0, x)! x0µ = (�x0, x),

(2.7)

Charge conjugation is a global internal symmetry that reverses the sign of all charges,
thereby turning a particle into its antiparticle

C :  !  
T
; �!

⇣
�†
⌘
T

; Aµ ! �Aµ, (2.8)

where  represents a fermion field, � a charged scalar field, and Aµ a gauge field. While
strong and electromagnetic interactions are invariant under parity transformations, it
was experimentally found that weak interactions are not [38, 39]. This is reflected in
the Lagrangian density of the weak interactions as we will see in section 2.4. It was
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postulated that weak interactions may still conserve the combined CP symmetry, but
evidence of CP -violation in the weak sector was found in Cronin and Fitch’s kaon
regeneration experiment [40]. It has been shown that all three forces, strong, weak and
electromagnetic, obey the combined CPT symmetry.

Symmetries may or may not be exact, and they can be broken explicitly or spontaneously
based on how they modify the action and the vacuum of the theory. In the sections that
follow, we will derive how the underlying symmetries of the SM generate force carriers
and give rise to the known interactions.

2.3 Quantum chromodynamics

Quantum Chromodynamics (QCD) is the quantum theory of the strong force which
binds quarks into composite particles. It is a gauge theory deriving from the SU(3)C

colour symmetry of the SM gauge group [12,41] and describes quark-gluon interactions.
The QCD Lagrangian density is given by

LQCD = �1

4
FC

µ⌫(x)F
C,µ⌫(x) +

NfX

f

 f,a(x)
�
i /Dab �mf�ab

�
 f,b(x), (2.9)

where the index f = 1, . . . , Nf sums over the Nf = 6 quark flavours present in the
theory1. The lowercase Greek indices µ, ⌫ = 0, 1, 2, 3 run over the spacetime components
t, x, y, z, and the lowercase Roman indices a, b = 1, . . . , NC run over the “colour” indices
where NC = 3. The quark fields  f with masses mf are in the fundamental (triplet)
respresentation of SU(3)C and /D = �µDµ, where �µ are the generators of Clifford algebra
(explicit forms provided in appendix A.2), and Dµ is the QCD covariant derivative given
by

Dµ = @µ + igsAµ = @µ + igsA
C

µ t
C . (2.10)

Here gs is the QCD coupling constant, and AC
µ are the components of the gluon field in

the adjoint (octet) representation

Aµ,ab(x) = AC

µ (x)t
C

ab
. (2.11)

The capital Roman index C = 1, . . . , 8 iterates over the 8 generators of SU(3)C algebra
given by tC

ab
= i

2�
C

ab
, where �C are the Gell-Mann matrices. These generators are

represented by traceless anti-hermitian 3⇥ 3 matrices, their explicit forms are listed in
appendix A.1. A generic SU(3)C gauge group element represented by h(x) transforms

1Note that in addition to the terms in eqn (2.9) one also needs gauge fixing term if working in
perturbation theory. These are omitted in the discussion in this chapter.
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the quark and gluon fields as

 f,a(x)!  0
f,a

(x) = hab(x) f,b(x), (2.12)

Aµ(x)! A0µ(x) = h(x)Aµ(x)h
�1(x)� 1

gs
(@µh(x))h

�1(x). (2.13)

The gluonic field strength tensor Fµ⌫ in eqn (2.9) is defined in terms of the covariant
derivative as

Fµ⌫(x) = [Dµ(x), D⌫(x)] := FC

µ⌫(x)t
C , (2.14)

with FC

µ⌫ = @µA
C

⌫ � @⌫AC

µ + gs [Aµ, A⌫ ]
C , (2.15)

where the gluon fields have a non-trivial commutation relation owing to QCD being a
non-Abelian gauge theory:

[Aµ, A⌫ ]
C = ifABCAA

µA
B

⌫ . (2.16)

Here fABC are the SU(3) structure constants. This non-Abelian structure allows for
gluon-gluon interactions in QCD, in specific, three and four-gluon interactions are present
in the theory.

We can count the number of fundamental parameters needed to fully define QCD by
inspecting eqn (2.9): these are the Nf = 6 quark masses and the strong coupling gs. This
coupling is uniquely weak at high energies and strong at low energies – a phenomenon
known as asymptotic freedom [42, 43]. The consequence of this is the confinement of
quarks into bound states, called hadrons, at low energies; hadrons are further categorised
into two-quark bound states, or mesons, or three-quark bound states, baryons. More
exotic states such as tetraquarks [44–46] and pentaquarks [47,48] have also been observed
in recent experiments. The onset of the confinement or the hadronisation regime of the
strong coupling is often characterised by a scale known as ⇤QCD ⇡ 250� 700MeV. The
primary degrees of freedom in this regime are quark bilinears, and the symmetries of
QCD allow for bilinears of the form  � with 16 possible Dirac structures �. These can
be spanned using a basis of five types of transformations as listed in table 2.1.

In this thesis, we are interested in probing interactions in the SM and beyond at low
energy scales, comparable to ⇤QCD, where we cannot neglect the non-perturbative nature
of the strong coupling. The asymptotic freedom of the QCD coupling implies that the
perturbative approach of ordering processes via powers of the coupling constant cannot
be applied in this regime. This necessitates the use of the non-perturbative method of
lattice QCD for the study of hadronic interactions, as will be discussed in chapter 3.
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� structure # of components SO(3, 1) transformation
1 1 scalar
�5 1 pseudoscalar
�µ 4 vector
�µ�5 4 axial vector

�µ⌫ := 1
2 [�µ, �⌫ ] 6 tensor

Table 2.1: The 16 quark bilinears of QCD grouped into 5 structure-types based on their
transformations under Lorentz symmetry.

2.3.1 Chiral symmetry

Consider a massless version of the QCD Lagrangian

LQCD = �1

4
FC

µ⌫(x)F
C,µ⌫(x) + i f,a(x) /Dab f,b(x). (2.17)

In addition to SU(3)C gauge and Lorentz invariance, this Lagrangian has a U(Nf )L ⇥
U(Nf )R global symmetry associated with the Nf quark flavours [49, 50]. To illustrate
this, let us decompose the quark fields  into the left and right-handed components
using left and right projectors:

 (x) =  L(x) +  R(x), where  L,R(x) = PL,R (x), (2.18)

with PL =
1� �5

2
, PR =

1 + �5
2

. (2.19)

In this chiral description, the massless Lagrangian is invariant under U(Nf )L⇥U(Nf )R

transformations

U(Nf )L :  L ! UL L,

U(Nf )R :  R ! UR R,
(2.20)

where UL,R are represented by unitary matrices in the Nf -dimensional flavour space.

The symmetry group U(Nf )L⇥U(Nf )R can be decomposed as SU(Nf )V ⇥SU(Nf )A⇥
U(1)A ⇥ U(1)V , that is, a combination of non-singlet and singlet vector (V ) and axial-
vector (A) gauge transformations. As these are symmetries of the massless QCD La-
grangian, Noether’s theorem posits the existence of conserved charges or currents jµ

associated with each of them such that @µjµ = 0. We note that

1. The U(1)V symmetry gives rise to baryon number conservation, which is an ex-
tremely good symmetry of QCD.

2. The U(1)A is anomalous, that is, when quantising the theory, one finds that the
U(1)A symmetry changes the measure in the path integral [51, 52] and therefore
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it is not an actual symmetry of QCD even in the massless limit. This is known as
the axial anomaly.

3. The conserved currents associated with the SU(Nf )V ⇥ SU(Nf )A part are given
by

jF,µ
V

=  
�F

2
�µ ,

jF,µ
A

=  
�F

2
�µ�5 .

(2.21)

where �F are associated with the generators of the SU(Nf ) group algebra2 with
F = 1, . . . , N2

f
� 1. In the massless case, these currents are conserved.

2.3.2 Breaking of chiral symmetry

The ground state of QCD is experimentally known to have a non-zero expectation value
for the quark condensate, h0|  |0i 6=0, therefore indicating that chiral symmetry is
broken spontaneously [53–55]. The formation of this chiral condensate arises due to
strong coupling dynamics of non-Abelian gauge theories and currently lacks a complete
theoretical explanation. Nonetheless, from Goldstone’s theorem, the broken generators
of the QCD chiral symmetry give rise to massless Goldstone bosons; however this picture
is altered with the introduction of non-zero quark masses.

Consider re-introducing a mass matrix M = diag
�
m1, . . . ,mNf

�
into the QCD La-

grangian. In this case, the mass terms break chiral symmetry exactly and the Noether
currents of the flavour non-singlet vector and axial vector transformations in eqn (2.21)
diverge as

@µJ
F,µ

V
= i 

⇥
M,�F

⇤
 , (2.22)

@µJ
F,µ

A
= i 

�
M,�F

 
�5 , (2.23)

where the second equation is known as the non-singlet axial Ward identity (AWI) and
its right hand side vanishes only for zero quark masses.

Let us consider theories with only a few quark flavours to see how this affects the QCD
chiral symmetry:

• Nf = 2, with mu = md ⌧ ⇤QCD

Adding a mass term to the QCD Lagrangian explicitly breaks chiral symmetry,
however the two quarks are much lighter than the typical interaction scale given by
⇤QCD, so this theory posseses approximate chiral symmetry. For mass degenerate

2For example, for Nf = 2 these are the Pauli matrices, and for Nf = 3 these are the Gell-Mann
matrices; their explicit forms are provided in appendix A.1.
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quarks, the commutator in eqn (2.22) vanishes and SU(2)V becomes an exact sym-
metry known as isospin. From Goldstone’s theorem, we expect pseudo-Goldstone
bosons corresponding to the generators of the slightly broken SU(2)A symmetry -
these are the three pions ⇡0, ⇡+ and ⇡�.

• Nf = 3, with mu = md ⇡ ms ⌧ ⇤QCD

Once again in this case there is an explicit breaking of chiral symmetry such that
SU(3)V is conserved, and there are eight pseudo-Goldstone bosons corresponding
to the eight broken generators of SU(3)A. These are the three pions, ⇡0,+,�, four
kaons, K0,+ and K

0,�, and the ⌘0 meson.

2.3.3 Chiral perturbation theory (with kaons)

We are interested in the kaon sector for the purposes of this thesis and wish to use
the non-perturbative framework of lattice QCD (introduced in chapter 3) to study the
phenomenon of kaon mixing (introduced in section 2.5) at low energies. However, it
is also possible to describe the low-energy dynamics of QCD in terms of its Goldstone
bosons as effective degrees of freedom rather than in terms of quarks and gluon. The
resulting low-energy approximation is called chiral perturbation theory (�PT) [56]. The
agreement or disagreement of this perturbative method to non-perturbative results from
the lattice provides insight into the non-perturbative properties of QCD in a given regime
of the strong coupling.

For our study, we consider the Nf = 2 �PT combined with kaons, that is, mu = md ⌘
ml ⌧ ms, ⇤QCD. In this effective field theory (EFT) the quark masses and momenta
are used for power counting. The degrees of freedom in the Nf = 2 EFT are the pions,
and the lowest order Lagrangian, following the conventions in [57], is given by

LNf=2 =
f2

8
Tr
⇣
@µU

†@µU + U †�+ �†U
⌘
, (2.24)

where U is defined in terms of the pion fields as

U(x) = exp(i⇥(x)/f),

with ⇥(x) =

 
⇡0(x)/

p
2 ⇡+(x)

⇡�(x) �⇡0(x)/
p
2

!
,

(2.25)

and � = 2B diag (ml,ml). B and f are the low-energy constants (LECs) of the EFT.
At leading order they are related to the pion mass, 2BLOml = m2

⇡ ⇡ (139MeV)2 and
decay constant, fLO = f⇡ ⇡ 130MeV.
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We may now introduce the auxilliary kaon fields

K =

 
K+

K0

!
, K† =

⇣
K

0
K�
⌘
. (2.26)

The interaction of the kaons with pions in this theory – known as kaon chiral perturba-
tion theory or K�PT – is described by the Lagrangian (at leading order)

LLO
Nf=2,K = DµK

†DµK �m2
KK†K, (2.27)

where mK is the kaon mass and the covariant derivative Dµ is given by

Dµ = @µ + Vµ. (2.28)

The Vµ term induces pion-kaon interactions via the field u ⌘
p
U as

Vµ =
1

2

⇣
u@µu

† + u†@µu
⌘
. (2.29)

We can write down the chiral behaviour of the kaon mass and decay constant in this
theory using the expansion

m2
K = Bms

✓
1 +

a

f2
�l

◆
,

fK = f

 
1 +

b

f2
�l �

3

4

�l

(4⇡f)2
log �l

⇤2
QCD

!
,

(2.30)

where ms is the strange quark mass, �l = 2Bml, and a and b are LECs of K�PT.

We will employ K�PT to determine the chiral behaviour of parameters describing neutral
kaon mixing in section 2.5.4. In the SM, neutral meson mixing arises from CP -violation
in the electroweak sector, as we shall discuss in the following section.

2.4 Electroweak theory

The electroweak (EW) theory, as the name suggest, combines the theory of weak inter-
actions with quantum electrodynamics (QED) [14, 17, 58], deriving from the SU(2)L ⇥
U(1)Y sector of the SM gauge group. The SU(2)L and U(1)Y groups are referred to
as the weak isospin and hypercharge groups, respectively. The electroweak Lagrangian
density is given by

LEW = Lgauge + Lfermions + LHiggs + LYukawa, (2.31)
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where each of the four terms represents a different component of the theory. We shall
now have a closer look at each of these terms before discussing the Higgs mechanism
and its effect on the EW theory.

2.4.1 Gauge and fermionic terms

The gauge component of the EW Lagrangian describes the propagators and interactions
of the gauge bosons of the theory as seen before in the case of the QCD Lagrangian

Lgauge = �
1

4
F a

µ⌫F
a,µ⌫ . (2.32)

The field strength tensor is defined in terms of gauge fields as

Fµ⌫ = [Dµ, D⌫ ] ,

where Dµ = @µ + igWW I

µ(x)t
I +

1

2
igBBµ(x)Y. (2.33)

The gauge bosons Wµ(x)I with I = 1, 2, 3 are SU(2)L group elements in the adjoint
representation, and tI = 1

2�
I are the generators of the Lie algebra, with �I being the

Pauli matrices. Similarly, the gauge field Bµ(x) is an element of the U(1)Y group and Y

the generator of the group algebra. gW and gB are the couplings of these gauge fields.

The fermionic part of the EW Lagrangian describes interactions between the fermions
(quarks, leptons) and gauge bosons of the theory. Recall from section 2.3.1 that the
fermion fields can be decomposed into the left and right-handed components using chiral
projectors as  (x) =  L(x)+ R(x). These left and right-handed components of the six
quark fields (u, d, c, s, t, b) and the six leptons (⌫e, e, ⌫µ, µ, ⌫⌧ , ⌧) transform differently
under the EW gauge group and this is described in the Lagrangian as

Lfermionic = iQ
j

L
/DQj

L
+ iuj

R
/Duj

R
+ id

j

R
/Ddj

R| {z }
quarks

+ il
j

L
/Dlj

L
+ iej

R
/Dej

R| {z }
leptons

, (2.34)

where /D = �µDµ, with Dµ being the covariant derivative for the SU(2)L⇥U(1)Y group
as defined in eqn (2.33). The left-handed quark fields form SU(2)L-doublets such that
the two fields in a doublet carry weak isospins +1/2 and �1/2, while the right-handed
fields form SU(2)L-singlets with weak isopsin 0:

Qi

L =

  
uL

dL

!
,

 
cL

sL

!
,

 
tL

bL

!!
=:

 
ui
L

di
L

!
,

uiR = (uR, cR, tR) , d
i

R = (dR, sR, bR) .

(2.35)
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The leptons obey the same properties with the exception of there existing no right-
handed neutrinos in the SM.3 This means we have

liL =

  
⌫e

eL

!
,

 
⌫µ

µL

!
,

 
⌫⌧

⌧L

!!
=:

 
⌫i
L

ei
L

!
,

eiR = (eR, µR, ⌧R) .

(2.36)

In this context, the index i = 1, 2, 3 labels the three generations of quarks and lep-
tons. We see here explicitly that the weak interactions are not invariant under parity
transformations (which exchange left and right-handed particles).

2.4.2 Higgs and Yukawa terms

The Higgs part of the EW Lagrangian describes the propagators and interactions of the
Higgs field � with the EW gauge bosons, and is given by

LHiggs = |Dµ�|2 � µ2 |�|2 � �

2

⇣
|�|2

⌘2
, (2.37)

where µ2 relates to the mass of the Higgs field and � is the coefficient of the quartic po-
tential term. The complex scalar field � transforms as a SU(2)L-doublet, parameterised
as

� =

 
�+

�0

!
. (2.38)

As the Higgs field is in the fundamental representation of SU(2)L, the component fields
�+ and �0 carry weak isospins of +1/2 and �1/2 respectively. The covariant derivative
is once again defined via the EW gauge group, as given in eqn (2.33).

The Yukawa term of the EW Lagrangian couples the Higgs field to the fermions, and is
given by

LYukawa = Y ij

d
Q

i

L�d
j

R
+ Y ij

u Q
i

L�
†uj

R| {z }
quarks

+Y ij

l
lL�e

j

R| {z }
leptons

+h.c. , (2.39)

where Y ij are Yukawa couplings between the generations i and j represented by complex
matrices.

3Although they do not interact via any of the fundamental interactions in the SM, right-handed
sterile neutrinos are hypothesised to be a possible source of neutrino masses.
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2.4.3 Electroweak symmetry breaking

So far we have discussed a theory of four massless gauge bosons that mediate long-
range interactions between massless fermions. However, in nature we observe a weak
force with short-range interactions mediated by massive bosons, and an electromagnetic
force with long-range interactions mediated by a masses boson. This suggests that the
SU(2)L ⇥ U(1)Y gauge symmetry in the electroweak sector breaks to U(1)EM. This
occurs due to spontaneous symmetry breaking in the Higgs sector, introducing gauge-
invariant mass terms to the theory via the Yukawa sector [18,20,59].

Consider the Higgs potential

VHiggs(�) = µ2 |�|2 + �

2
|�|4 . (2.40)

By differentiating with respect to |�|2, we see that the potential has an extremum at

|�| =
✓
�µ2

�

◆1/2

=: v. (2.41)

From this, we can make the following deductions:

• In order for the potential to be physical it must have a global minimum, thus the
coefficient of the quartic potential must obey � > 0.

• In the case of µ2 � 0, we have a parabolic potential with a unique minimum at
|�|2 = 0. In this regime the vacuum expectation value (VEV) of the Higgs field
disappears.

• In the case of µ2 < 0, we have competing quadratic and quartic terms, schemati-
cally similar to a “Mexican hat” potential. In this regime the minima are degener-
ate under SU(2)L gauge symmetry, and the Higgs field picks up a non-zero VEV.
Although all ground states or vacua are equivalent, the Higgs field must still choose
to exist in one of them – this choice is made under some particular infinitessimal
perturbation. Although the Lagrangian retains the full SU(2)L⇥U(1)Y symmetry,
the Higgs field making this choice leads to spontaneous breaking of the SU(2)L

symmetry of the vacuum.

Let us looks at the effects of the Higgs field acquiring a non-zero VEV on the electroweak
theory. To start, it can be shown that, without loss of generality, we can choose a unitary
gauge ✓I = 0 for a SU(2)L rotation of the Higgs field

�(x) = ei
�
I

2 ✓
I(x) 1p

2

 
0

v + h(x)

!
, (2.42)

where, exp
✓
i
�I

2
✓I(x)

◆
= 1� h(x)

v
, with hhi = 0, (2.43)
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such that the VEV of the Higgs field is aligned with the vector

h�i = 1p
2

 
0

v

!
. (2.44)

Inserting this ground state into the kinetic term in the Higgs part of the EW Lagrangian
in eqn (2.37) and looking only at the terms quadratic in the gauge fields gives us

|Dµ�|2 =

�����

✓
@µ + igWW I

µ(x)t
I +

1

2
igBBµ(x)Y

◆
1p
2

 
0

v

!�����

2

(2.45)

= �v2

8

h
g2W

⇣��W 1
µ

��2 +
��W 2

µ

��2
⌘
+
��gWW 3

µ � gBBµ

��2
i
. (2.46)

We can simplify this expression by combining the gauge fields as

W±

µ = W 1
µ ⌥ iW 2

µ ,

Zµ =
1q

g2
W

+ g2
B

�
gWW 3

µ � gBBµ

� (2.47)

which gives us

|Dµ�|2 = �
v2

8

�
g2WW+,µW�µ + (g2W + g2B)Z

µZµ

�
. (2.48)

These look like mass terms for the newly-defined W+, W� and Z fields with

mW =
vgW
2

, mZ =
v
q
g2
W

+ g2
B

2
. (2.49)

The unitary gauge therefore turns three of the four Goldstone modes of the sponta-
neously broken SU(2) symmetry of the Higgs field into longitudinal modes of W± and
Z bosons, thereby rendering them massive. This is known as the Higgs mechanism, and
the massive gauge bosons are said to have eaten the massless Goldstone bosons. The
final Goldstone boson is called the Higgs boson.

There is a remaining degree of freedom in eqn (2.46) which did not pick up a mass term
and therefore vanished. We can identify this field by comparing the normalisation of the
new fields with the original gauge boson fields. This give us the fourth (massless) field

Aµ =
1q

g2
W

+ g2
B

�
gWW 3

µ + gBBµ

�
. (2.50)
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type particle(s) strong weak EM I3 Y Q
neutral leptons ⌫e, ⌫µ, ⌫⌧ 7 3 7 +1/2 �1 0

LH charged leptons eL, µL, ⌧L 7 3 3 �1/2 �1 �1
RH charged leptons eR, µR, ⌧R 7 3 3 0 �2 �1
LH up-type quarks uL, cL, tL 3 3 3 +1/2 +1/3 +2/3
RH up-type quarks uR, cR, tR 3 3 3 0 +4/3 +2/3

LH down-type quarks dL, sL, bL 3 3 3 �1/2 +1/3 �1/3
RH down-type quarks dR, sR, bR 3 3 3 0 �2/3 �1/3

massless gauge bosons � (photon) 7 7 3 0 0 0
g (gluon) 3 7 7 0 0 0

massive gauge bosons
Z 7 3 7 0 0 0

W± 7 3 3 ±1 0 ±1
H 7 3 7 �1/2 +1 0

Table 2.2: SM particles and their properties: weak isospin eigenvalue (I3), weak hyper-
charge (Y ) and electromagnetic quantum number (Q); and the SM interactions they

participate in: strong, weak and electromagnetic (EM).

We can identify this as the photon field. Re-writing the covariant derivative of the EW
gauge group in terms of our new fields gives us

Dµ = @µ � i
gWp
2

�
t+W+

µ + t�W�µ
�
� i

1q
g2
W

+ g2
B

Zµ

�
g2W I3 � g2BY

�
� ieAµQ, (2.51)

where t± = 1
2(�

1 ± �2), and I3 is the eigenvalue of the third component of the weak
isospin. The massless photon field Aµ encodes the surviving symmetry of the vacuum
state, denoted by U(1)EM, and the electric charge e and electric charge quantum number
Q are defined as

e =
gW gBq
g2
W

+ g2
B

, Q = I3 +
Y

2
. (2.52)

In this definition, we can see that the electric charge quantum number is related to the
weak isospin eigenvalue and hypercharge. The values of I3, Y and Q for all SM particles
are listed in table 2.2.

2.4.4 Fermion masses and the CKM matrix

Let us now turn to what the Higgs mechanism does to the fermions in this theory. After
EWSB, the Yukawa term of the EW Lagrangian density in the chosen ground state of
the Higgs field becomes [51]

LYukawa = �vY ij

l
eiL

✓
1 +

h

v

◆
ej
R
� vY ij

d
diL

✓
1 +

h

v

◆
dj
R
� vY ij

u uiL

✓
1 +

h

v

◆
uj
R
+ h.c. .

(2.53)



2.4. Electroweak theory 19

This gives us some interaction terms with the Higgs and others that look like mass terms
for the fermions, if not for the Yukawa couplings. The Yukawa couplings are not expected
to be diagonal a priori, but we can diagonalise them to come up with a basis of quark
fields which correspond to fixed masses. This tells us that quark fields can be packaged
into weak eigenstates or into mass eigenstates, and to maintain the normalisation of
the theory, there should be unitary transformation between these bases. To find the
mass eigenstates, we must diagonalise the Yukawa coupling matrices; it is a property
of Hermitian matrices that they are diagonalisable with unitary matrices, so we should
diagonalise the products YqY

†
q and Y †

q Yq (with q 2 {l, d, u}) which are Hermitian by
construction. For this purpose, we define the diagonalising unitary matrices Uq and Wq

such that

YqY
†

q = UqM
2
qU

†

q , Y †

q Yq = WqM
2
qW

†

q , (2.54)

where M is the diagonal mass matrix. Using this parameterisation, the Yukawa cou-
plings can be re-written as

Yq = UqMqW
†

q , (2.55)

and we can obtain the quark fields as mass eigenstates q̃ from the weak eigenstates q as
well as the quark masses via

q̃iR = W ij,†

q qj
R
, q̃iL = U ij,†

q qj
L
,

mi

q =
1p
2
M ii

q v.
(2.56)

However, here we note an interesting feature: the mass matrices for the up and down-
type quarks are not simultaneously diagonalisable, that is, Uu 6= Ud. This means that
interaction terms involving both up and down-type quarks (mediated by a W± boson)
take the following forms in the mass eigenbasis

1

2
ũ
i

L

⇣
U †

uUd

⌘
ij

�µd̃iL. (2.57)

The elements of the matrix (U †
uUd) are transition amplitudes for flavour changing in-

teractions between the quark flavours in ũ and d̃. We call this the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [24,25]

VCKM = U †

uUd =

0

B@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CA . (2.58)

The matrix elements Vij are free parameters of the SM that feature in all flavour-
changing interactions, and must be determined from experiments. Only the weak sector
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quark mass (MeV) [6] MS-scale I Iz S C B T
up (u) 2.16+0.49

�0.26 2 GeV 1/2 +1/2 0 0 0 0
down (d) 4.67+0.48

�0.17 2 GeV 1/2 �1/2 0 0 0 0
strange (s) 93.4+8.6

�3.4 2 GeV 0 - �1 0 0 0
charm (c) 1.27(2)⇥ 103 mc 0 - 0 1 0 0
bottom (b) 4.18+0.03

�0.02 ⇥ 103 mb 0 - 0 0 �1 0
top (t) 1.727(3)⇥ 105 mt 0 - 0 0 0 1

Table 2.3: Masses and flavour quantum numbers of quarks in the mass eigenbasis.
Quark masses are dependent on renormalisation scheme (MS in this case) and scale.
Light quarks u and d have isospin quantum numbers while heavy quarks have quantum

numbers called strangeness (S), charm (C), bottom (B), and top (T ).

of the SM allows for these flavour-changing interactions, and these are characterised
using quantum numbers described in table 2.3.

Note however that the kinetic terms of the fermionic Lagrangian (eqn (2.34)) only link
the left-handed up-type quarks to ups, and the left-handed down-type quarks to downs.
This means that at tree-level in the SM, there are no flavour-changing neutral currents
(FCNCs) that mix the left-handed up-type quarks with down-type quarks. We will see
later the effect of FCNCs in the context of neutral meson mixing via weak interactions
which take place at the loop-level and are therefore highly sensitive to new physics.

Although the CKM matrix elements are free parameters, we can place several constraints
on their values. Since each of the matrices Uq is unitary, we expect the CKM matrix
to be unitary by construction; testing this unitarity is a principal direction of research
in order to validate the SM theory. The unitarity constraint leads to conditions of the
form

X

j

VijV
⇤

ij = 1 =
X

j

VjiV
⇤

ji, 8 i, (2.59)

X

j

VijV
⇤

kj
= 0 =

X

j

VjiV
⇤

jk
, 8 i 6= k. (2.60)

Any departure from these predicted values for sums of CKM matrix elements would
indicate the existence of New Physics (NP); for example, if in eqn (2.59) the summation
adds up to be lower than 1, it could hint at a possible fourth generation of quarks.

The condition in eqn (2.60) is often interpreted in literature as a so-called unitarity
triangle. To see this, consider for example i = d and k = b, and suppose each term in
the summation to be a vector in the complex plane:

VudV
⇤

ub
+ VcdV

⇤

cb
+ VtdV

⇤

tb
= 0,

=)
VudV ⇤ub
VcdV ⇤cb

+
VtdV ⇤tb
VcdV ⇤cb

= �1.
(2.61)
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This traces out a closed triangle in the complex plane with sides of length 1, |VudV ⇤ub/VcdV ⇤cb|,
and |VtdV ⇤tb/VcdV ⇤cb|. The condition of unitarity corresponds to this creating a closed tri-
angle. Experimental data needs to be combined with theoretical predictions to determine
the lengths of the sides and angles (↵,�, �) of this triangle.

Being a complex matrix, VCKM has 9 complex, or 18 real parameters. Unitarity con-
ditions provide 9 constraints, and redefinitions of quark fields can be used to absorb 5
more parameters. This leaves us with 4 remaining degrees of freedom: 3 rotations and
1 phase. These are often expressed via the Wolfenstein parameterisation of the CKM
matrix which introduces 3 real parameters (�, ⇢, A) and one complex phase ⌘ [60]. The
relative sizes of the CKM matrix elements are strongly hierarchical, with the largest
values along the principal diagonal, smaller entries on the sub-diagonal, and the small-
est entries in the remaining corners. The Wolfenstein parameterisation highlights this
hierarchy, and the CKM matrix is represented as

VCKM = 1 +

0

B@
��2/2 � A�3 (⇢� i⌘)

�� ��2/2 A�2

A�3 (1� ⇢� i⌘) �A�2 0

1

CA+O(�4). (2.62)

The unitarity triangle is commonly plotted in the (⇢, ⌘) plane, using the definitions

⇢ = ⇢
�
1� �2/2 +O(�4)

�
, ⌘ = ⌘

�
1� �2/2 +O(�4)

�
. (2.63)

This ensures that ⇢ + i⌘ = �VudV ⇤ub/VcdV ⇤cb. A global fit combining theoretical and
experimental data and imposing unitarity constraints currently predicts [1]4

A = 0.810(18)(24), � = 0.22548(68)(34),

⇢ = 0.145(13)(7) , ⌘ = 0.343(11)(12),
(2.64)

and the fit results for the magnitudes of all nine CKM matrix elements are [6]

|VCKM| =

0

BB@

0.97435(16) 0.22500(67) 0.00369(11)

0.22486(67) 0.97349(16) 0.04182(85)(74)

0.00857(20)(18) 0.04110(83)(72) 0.999118(31)(36)

1

CCA . (2.65)

Unitarity of the first row and column of the CKM matrix have been tested extensively
and at current precision the results are compatible with unitarity [61]. The most per-
sisten tension in the CKM matrix lies in the determination of the world average of the
elements Vub and Vcb using inclusive (unspecified final state) and exclusive (specific final
state) processes.

4The notation x.xxxx
(yy)
(z) denotes asymmetric errors: the 68% confidence interval in the value of x

lies between x.xxxx� 0.000z and x.xxxx+ 0.00yy.
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Figure 2.1: The unitarity triangle in the (⇢, ⌘) plane (source:[1]). Lengths of the sides
and the angles are constrained from various measurements: predictions for the indirect
CP violation parameter "K come from kaon mixing, while the mass splittings �md

and �ms are computed from B0 and B0
s -meson mixing respectively.

At minimal order in ↵EM, that is, ignoring electromagnetic interactions between quarks
and the W -boson, quarks and leptons, and W -boson and leptons, one can schematically
factorise an experimental observable in a flavour changing process as

�exp = |CKM|⇥ (weak)⇥ (EM)⇥ (strong), (2.66)

where contributions from weak and electromagnetic interactions can be computed per-
turbatively, while those from strong interactions must be computed non-perturbatively.
Combining these theoretical calculations with experimental inputs allows for precise
measurements of the CKM matrix elements.

It is worth noting that the complex phase ⌘ is the only source of CP violation in the
SM5. This manifests in processes involving flavour changing interactions such as neutral
meson mixing, as will be discussed in greater detail in the following section.

5
CP symmetry is also violated by introducing a term of the form ✓

↵s
⇡ Tr{E ·B} to the SM Lagrangian,

where E and B are the chromo-electric and chromo-magnetic fields. However, the angle ✓ is experimen-
tally found to be particularly small – O(10�10) [62], this is known as the strong CP problem [63]; the
discussion of this term is beyond the scope of this thesis.
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Figure 2.2: Mixing of a neutral meson M0 with its antiparticle M0 via second-order
weak interactions (“box” diagrams) with two W bosons and two quarks. For K0 and
B0 mixing, q = u, c, t (up-type quark); for D0 mixing, q = d, s, b (down-type quark).

2.5 Neutral meson mixing

Neutral mesons in the Standard Model can mix or oscillate between meson and anti-
meson states, that is, an initial meson M0 2 {K0, D0, B0} (with quantum number
F = ±1 where F 2 {S, C,B}), can transform into a final anti-meson M0 (with quan-
tum number F = ⌥1). Strong and electromagnetic interactions conserve these quantum
numbers and therefore no such flavour-changing interaction is allowed. Weak interac-
tions, however, need not conserve these quantum numbers, and therefore neutral meson
mixing occurs via weak interactions with the exchange of two W -bosons, as shown in
figure 2.2. As this process occurs at second-order in the Fermi constant GF , parameters
of neutral meson mixing provide stringent tests of the SM and windows into possible
New Physics.

In the following sections we discuss mixing in the neutral kaon system. However the
general framework applies to D0 �D

0 and B0 �B
0 mixing as well and we shall return

to them specifically in later sections.

2.5.1 Kaon mixing in the SM

Neutral kaons are produced copiously via strong interactions, for example

⇡� + p! ⇤+K0,

⇡+ + p! K+ +K
0
+ p.

(2.67)

Weak interactions allow the flavour eigenstates K0 and K
0 to mix as well as decay,

thereby allowing transitions between them. A neutral kaon at time t is thus described
by the superposition

| (t)i = K0(t)|K0i+K
0
(t)|K0i, (2.68)
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which evolves in time as

i
@

@t

 
K0(t)

K
0
(t)

!
= ⇤

 
K0(t)

K
0
(t)

!
=

✓
M� i

2
�

◆ 
K0(t)

K
0
(t)

!
, (2.69)

where M is the dispersive part defining the masses of the neutral kaon states, and � is
the absorptive part defining the decay width in the presence of weak interaction. We
parameterise ⇤ with eight real and positive parameters

⇤ =

 
mK0 M12ei�M

M12e�i�M m
K

0

!
� i

2

 
�K0 �12ei��

�12e�i�� �
K

0

!
, (2.70)

where mK0 and m
K

0 are the masses, and 1/�K0 and 1/�
K

0 the lifetimes of the K0 and
K

0 states respectively.

The eigenstates of ⇤ are the physical neutral kaons, corresponding to eigenvalues

�L,S =
⇤11 + ⇤22

2
±

s
(⇤22 � ⇤11)

2

4
+ ⇤12⇤21 := mL,S �

i

2
�L,S , (2.71)

where the subscripts L and S preemptively refer to the two neutral kaons observed
in nature which are called K-“long” and K-“short”. These are kaons with very similar
masses but very different lifetimes described as long (L) or short (S). The corresponding
eigenvectors are given by

|KL,Si =
ei'L,S

p
1 + |rL,S |2

⇣
rL,S |K0i+ |K0i

⌘
, (2.72)

with arbitrary phases 'L and 'S and

rL,S =
2M12

⇤22 � ⇤11 ± (�L � �S)
. (2.73)

It is also useful to define

�mK = mL �mS , ��K = �L � �S , (2.74)

which are known as the mass and width splitting parameters respectively.

2.5.2 CP violation

Neutral kaons often decay to pions (the lightest hadrons); to either two or three-pion
states. These are eigenstates of CP symmetry with

CP |⇡⇡i = +|⇡⇡i, CP |⇡⇡⇡i = �|⇡⇡⇡i. (2.75)



2.5. Neutral meson mixing 25

If CP symmetry were conserved in weak decays of neutral kaons, one would expect
decays to pions to occur from states of definite CP . The flavour eigenstates are not CP

eigenstates and transform as

CP |K0i = �|K0i, CP |K0i = �|K0i, (2.76)

but we can build CP eigenstates from their linear combinations which relate to the
decays to two or three-pion states

|K1i =
1p
2

⇣
|K0i � |K0i

⌘
, CP |K1i = +|K1i, K1 ! ⇡⇡

|K2i =
1p
2

⇣
|K0i+ |K0i

⌘
, CP |K2i = �|K2i, K2 ! ⇡⇡⇡.

(2.77)

The expected lifetimes of these CP eigenstates depend on the phase space available for
the corresponding decays. For decay to two pions, the energy available (mK � 2m⇡ ⇡
220MeV) is much higher than that for decays to three pions (mK � 3m⇡ ⇡ 80MeV),
thus we expect decays to two pions to be more rapid due to a larger phase space. This
predicts a short-lived K1 state and a long-lived K2 state. These can be identified with
the observed neutral kaon states

K1 ⌘ KS , K2 ⌘ KL. (2.78)

However, Fitch and Cronin in 1964 observed KL ! ⇡⇡ decay, which violates CP -
symmetry if the above equations were true. This CP violation was observed at a two
per mille level and has two possible explanations6:

1. that KL and KS do not correspond exactly to the CP eigenstates K1 and K2 but
instead to some admixture parameterised by a small "K

|KSi =
1p

1 + |"K |2
(|K1i+ "K |K2i) ,

|KLi =
1p

1 + |"K |2
(|K2i+ "K |K1i) ,

(2.79)

leading to indirect CP violation when the small CP -even component of KL decays
as K1 ! ⇡⇡,

2. and/or CP symmetry is violated directly in the decay K2 ! ⇡⇡, parameterised
by "0

K
.

6this not a complete description – additional violations of discrete symmetries may occur in the decay
of particles. The kaon system, due to the low mass of the kaon, has a limited number of different final
states compared to other neutral meson systems (D0, B0

d, and B
0
s ), with one dominant decay channel

(K0 ! (⇡⇡)I=0), which leads to a suppresion of the additional CP -violation effects. This is addressed
in part in eqn (2.84) and in section 2.5.6.
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Figure 2.3: Long (left) and short (right) - distance contributions to kaon mixing pa-
rameters.

Both of these parameters, "K (indirect) and "0
K

(direct) contribute to the mechanism
for CP violation in the kaon system, however the indirect contribution has been ex-
perimentally shown to dominate. The dominant source of CP violation is therefore a
result of the mixing between K0 and K

0 causing admixture of the CP eigenstates. We
can combine eqns. (2.79) and (2.77) to express the neutral kaon states in terms of the
flavour eigenstates and the indirect CP violation parameter "K

|KL,Si =
1p
2

1p
1 + |"K |2

h
(1 + "K)|K0i± (1� "K)|K0i

i
, (2.80)

which can be rearranged as

|KL,Si =
1r

1 +
���1+"K1�"K

���
2


±
✓
1 + "K
1� "K

◆
|K0i+ |K0i

�
. (2.81)

In this form, we can use eqns. (2.72) and (2.73) to identify

±
✓
1 + "K
1� "K

◆
⌘ rL,Se

i'L,S =
2M12ei'L,S

⇤22 � ⇤11 ± (�L � �S)
. (2.82)

The indirect CP violation parameter ✏K

The indirect CP violation parameter has been introduced in eqn (2.79) as a mea-
sure of admixture of CP -definite states in KL and KS . However, in literature it
is formally defined in terms of K ! ⇡⇡ decay amplitudes

✏K =
2⌘+� + ⌘00

3
, ⌘ij =

A
⇥
KL ! ⇡i⇡j

⇤

A [KS ! ⇡i⇡j ]
. (2.83)

This is related to "K in eqn (2.79) via

✏K ⇡ "K + i
Im (A0)

Re (A0)
, A0 ⌘ A

⇥
K0 ! (⇡⇡)I=0

⇤
, (2.84)

where A0 corresponds to the decay amplitude in the isospin I = 0 channel. Deter-
minations of Im(A0) and Re(A0) have also been subjects of lattice computations
in [64,65].
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The off-diagonal element of the mass matrix M12 is therefore a key parameter, and is
related to the �S = 2 flavour-changing neutral current (FCNC) responsible for the
mixing of K0 and K

0. The corresponding leading-order SM processes are the box
diagrams (figure 2.2) with two pairs of vertices joined by a W exchange each. We can
represent these vertices with effective weak hamiltonians, using H�S=1

W
for long-distance

spatial separation between the two vertices (of order 1/⇤QCD) or H�S=2
W

for the short-
distance case (separations much smaller than 1/⇤QCD), as shown in figure 2.3. We can
thus split the parameter M12 as

M12 = MSD
12 +MLD

12 . (2.85)

The long-distance contribution to "K is typically subdominant (⇠ 5% [66–68]) and is
not investigated in this thesis, however it has been a subject of lattice calculations in
[68–70]. In this thesis, the focus is on the dominant short-distance contribution to the
kaon mixing parameter, MSD

12 , with the goal of making high-precision predictions that
constrain the indirect CP violation parameter "K .

2.5.3 MSD
12 and the effective weak Hamiltonian

The short-distance contribution to the kaon mixing parameter is given by the matrix
element of an effective four-quark interaction vertex as shown in figure 2.3:

MSD
12 =

hK0|H�S=2
W

|K0i
2mK

, (2.86)

with mK = mK0 = m
K

0 , where the effective weak Hamiltonian can be generically
expressed using the operator product expansion

H�S=2
W =

5X

i=1

Ci(µ)Oi(µ). (2.87)

Here, Oi are six-dimensional, four-quark local operators, and Ci are the corresponding
Wilson coefficients. The Wilson coefficients capture the high-energy physics and are
calculated in perturbation theory, while the four-quark operators encode the low-energy
dynamics and therefore need to be computed non-perturbatively. The scale µ is in prin-
ciple arbitrary, but must be the same for the Wilson coefficients and the local operators
in order for the final amplitudes to be scale-independent. It must also be chosen to allow
for reliability of computing the Wilson coefficients perturbatively – this is typically in
the range of 1� 3 GeV.
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The four-quark operators, in the so-called “SUSY” basis introduced in [71], are

O1 = (sa�µ(1� �5)da)(sb�µ(1� �5)db),

O2 = (sa(1� �5)da)(sb(1� �5)db),

O3 = (sa(1� �5)db)(sb(1� �5)da),

O4 = (sa(1� �5)da)(sb(1 + �5)db),

O5 = (sa(1� �5)db)(sb(1 + �5)da),

(2.88)

where a and b denote colour indices. O1 describes kaon-mixing in the SM, while O2�5

are BSM operators. The operator O1 belongs to the (27, 1) representation of the chiral
symmetry group SU(3)L ⇥ SU(3)R, while operators O2,3 belong to the (6, 6) and O4,5

to the (8, 8) representations. This allows for mixing amongst operators in the same
representations during the procedures of renormalisation or matching; this is described
in greater detail in chapter 4.

The generic weak Hamiltonian may also have contributions from the parity partners of
operators O1�3 (by swapping 1 � �5 with 1 + �5), but the two variations differ only in
parity-odd cross terms which do not contribute to the matrix element hK0|Oi|K0i owing
to the parity invariance of QCD. This means we are only interested in the parity-even
part of the operators, denoted by O+

i
:

O+
1 = sa�µda sb�µdb + sa�µ�5da sb�µ�5db,

O+
2 = sada sbdb + sa�5da sb�5db,

O+
3 = sadb sbda + sa�5db sb�5da,

O+
4 = sada sbdb � sa�5da sb�5db,

O+
5 = sadb sbda � sa�5db sb�5da.

(2.89)

The matrix elements of these four-quark operators are obtained non-perturbatively and
this computation is performed using the framework of lattice QCD as part of this thesis
and the results are presented in chapter 5. For this purpose, it is useful to work in the
so-called “lattice” or “NPR” basis as introduced in [72], with Q1 ⌘ O1 and

Q2 = sa�µ(1� �5)da sb�µ(1 + �5)db,

Q3 = sa(1� �5)da sb(1 + �5)db,

Q4 = sa(1� �5)da sb(1� �5)db,

Q5 =
1

4
sa�µ⌫(1� �5)da sb�µ⌫(1 + �5)db.

(2.90)
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Note that all operators are color-unmixed in this basis. Once again, we are interested
only in the parity-even part of these operators, given by

Q+
1 = sa�µda sb�µdb + sa�µ�5da sb�µ�5db, (VV + AA)

Q+
2 = sa�µda sb�µdb � sa�µ�5da sb�µ�5db, (VV�AA)

Q+
3 = sada sbdb � sa�5da sb�5db, (SS� PP)

Q+
4 = sada sbdb + sa�5da sb�5db, (SS + PP)

Q+
5 =

X

⌫>µ

sa�µ�⌫da sb�µ�⌫db, (TT)

(2.91)

where the labels on the right indicate the Dirac structures of the operators. The same
operators – with identical Dirac structures but different quark content – make up the
weak effective Hamiltonian for the short-distance contribution relevant to the mixing of
other neutral mesons.

The operators in the NPR basis (used for lattice computations) map to those in the
SUSY basis (used in phenomenological applications) via the linear transformation
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. (2.92)

2.5.4 Bag and ratio parameters

In order to compute the short-distance contribution MSD
12 , we are interested in the matrix

element hK0|H�S=2
W

|K0i, as shown in eqn (2.86), and therefore in the non-perturbative
computation of the matrix elements of the four-quark operators hK0|Qi|K0i.

The conventional way to parameterise these hadronic matrix elements is through the
so-called bag parameters, defined as the ratio

Bi(µ) =

D
K

0|Qi(µ)|K0
E

D
K

0|Qi(µ)|K0
E

VSA

, (2.93)

using the vacuum saturation approximation (VSA), whereby the vacuum is inserted
between all possible quark-antiquark pairs in the four-quark operators. In practice,
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lattice calculations construct the following ratios [2, 73,74]7

B1(µ) =

D
K

0|Q1(µ)|K0
E

N1hK
0|s�µ�5d|0ih0|s�µ�5d|K0i

=
1

N1m2
K
f2
K

D
K

0|Q1(µ)|K0
E
, (2.94)

Bi>1(µ) =

D
K

0|Qi(µ)|K0
E

NihK
0|s�5d|0ih0|s�5d|K0i

=
(ms(µ) +md(µ))

2

Nim4
K
f2
K

D
K

0|Qi|K0
E
. (2.95)

The normalisation factors depend on the operator basis used

NSUSY
i =


8

3
,�5

3
,
1

3
, 2,

2

3

�
, (2.96)

NNPR
i =


8

3
,�4

3
, 2,�5

3
,�1

�
. (2.97)

and fK is kaon decay constant defined by the coupling of the kaon to the renormalised
axial-vector current jµ

A,R

h0|jµ
A,R(x)|K(p)i = ifK pµ e�ip·x, (2.98)

where pµ is the 4-momentum of the kaon. Note that the bag parameter corresponding
to the SM operator B1 can be identified with the quantity commonly referred to in
literature as BK

8.

Another parameterisation of the hadronic matrix elements of the BSM four-quark oper-
ators is via the ratio parameters [74–76]

Ri>1(µ) =

D
K

0|Qi(µ)|K0
E

D
K

0|Q1(µ)|K0
E . (2.99)

There is clear advantage to the ratio parameters over the bag parameters: the lack of
explicit quark-mass dependence allows us to recover the BSM matrix elements using
Ri(µ), B1(µ), and the experimentally measured values of mK and fK (using eqn (2.94)).
Furthermore, the similarity of the quantities in the numerator and denominator allow
for partial cancellations of systematic and statistical errors in the computation of these
ratio parameters on the lattice.

The chiral behaviour of the bag and ratio parameters can be predicted using kaon chiral
perturbation theory (as described in section 2.3.3). The bag parameters are given by [2]

Bi = B�
i

"
1 +

ci
f2
�l + si

�l

2(4⇡f)2
log �l

⇤2
QCD

#
, (2.100)

7An alternative definition of the bag parameters has been proposed in [75].
8Another frequently quoted quantity is the renormalisation group invariant version of the SM bag

parameter, B̂K , this is defined in section 4.5.
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where ci are si are low energy constants of K�PT. At next-to-leading order, this can be
written as

Bi = B�
i

"
1 +

m2
⇡

f2
⇡

 
�Bi +

CB

i

16⇡2
log m2

⇡

⇤2
QCD

!#
, (2.101)

where the coefficients of the chiral logarithm terms CB

i
are known constants from K�PT

to be CB

i=1,2,3 = �0.5 and CB

i=4,5 = 0.5 in the SUSY basis. Similarly, the chiral behaviour
of the ratio parameters is parameterised as

Ri = R�

i

"
1 +

m2
⇡

f2
⇡

 
�Ri +

CR

i

16⇡2
log m2

⇡

⇤2
QCD

!#
, (2.102)

where the chiral logarithm coefficients are given by CR

i=2,3 = 0 and CR

i=4,5 = 1, once
again in the SUSY basis.

The bag and ratio parameters form convenient mathematical parameterisations for the
hadronic matrix elements of the four-quark operators, which are the actual quanitites of
interest. These parameterisations allow for improved precision in the prediction of kaon
mixing parameters when using the framework of lattice QCD.

2.5.5 Status of kaon mixing in and beyond the SM

Within the Standard Model, the dominant short-distance contribution to the indirect
CP -violation parameter "K is calculated using the matrix element of the SM operator
Q1 in eqn (2.88). Theoretical predictions of this matrix elements have been computed on
the lattice using isospin-symmetric pure QCD in [2,3,5,76–86] and the latest values have
errors comparable to sizes of isospin-breaking and electromagnetic effects. The inclusion
of these effects would need to be accompanied by a reduction in the uncertainty in the
CKM matrix element |Vcb| [7,87]. Long-distance contributions to the mixing parameters
also need to be taken into account in order to make further progress in this avenue.

The BSM operators Q2�5 help quantify the possibility of New Physics contributions
to "K . These operators have color-Dirac structures that are not present in SM con-
tributions, thus making it easier to detect any New Physics arising from them. Addi-
tionally, the matrix elements of the BSM operators are enhanced in the chiral limit in
comparison to the SM operator, so upon combination with experimental measurements
they constrain the parameter space for BSM theories [88]. Previous computations of
BSM kaon mixing has been performed using various frameworks of lattice QCD in
[2, 3, 5, 74–76,88–90].
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2.5.6 B0
d
� B

0
d
, B0

s
� B

0
s
, and D0 �D

0 mixing

Neutral B, Bs and D meson mixing follow closely the theoretical framework of kaon
mixing, with differences in relative contributions of the various mixing parameters to
CP violation and other processes. For instance, the dominant sources CP violation
in the B system are via interference of the decay and oscillation amplitudes and the
interference of two decay amplitudes with different weak phases [91]. These effects are
suppressed in the kaon system. The B meson is also much heavier than the kaon, and
therefore has a larger phase space available for decay. This means that the difference in
lifetimes between BL and BS is small in comparison to the kaon system.

The B0
q meson (with q 2 {d, s}) oscillations provide many insights into quark flavour

dynamics. These systems feature physical observables of great interest for probing our
understanding of the SM as well as looking for New Physics: these include the mass
and width splitting parameters �md, �ms and ��d, ��s. A statistically significant
discrepancy between the theoretical prediction and experimental measurement for the
mass splittings would be suggestive of contributions from New Physics via unknown
heavy particles at the loop-order.

The B meson mixing parameter M12, like kaons, is dominated by the short-distance
contribution. The SM prediction for the mass splitting of the B0

q meson is therfore
given by

�mq =
G2

F
m2

W
mBq

6⇡2
��V ⇤tqVtb

��2 S0

⇣
m

2
t

M
2
W

⌘
⌘2Bf

2
Bq

B̂Bq , (2.103)

where GF is the Fermi constant, mW and mt are the masses of the W -boson and top
quark respectively, mBq is the mass of the flavour eigenstate B0

q , Vtq and Vtb are elements
of the CKM matrix, S0 is an Inami-Lim function which describes the basic electroweak
loop contributions without QCD [92], and ⌘2B is the short-distance QCD correction
factor [87]. Finally, B̂Bq is the renormalisation group invariant (RGI) bag parameter
derived from the SM �B = 2 operator Q1,q = [b�µ(1��5)q][b�µ(1��5)q]. The procedure
to derive RGI bag parameters B̂ from B(µ) is described in section 4.5.

In lattice QCD calculations, the flavour SU(3)-breaking ratio [93]

⇠2 =
f2
Bs
B̂Bs

f2
Bd

B̂Bd

, (2.104)

can be computed at greater precision than the individual RGI bag parameters in part
due to cancellation of statistical and systematic errors. The quantity ⇠2 gives access
to a precise determination of ratio of CKM matrix elements |Vtd/Vts|, which is used to
constrain the apex of the unitarity triangle [94,95].
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While the SM operator Q1 is used for predicting the mass splittings �mq, the matrix
elements or bag parameters of the BSM operators are also useful for estimating the
width splitting between the CP eigenstates of the B meson, where combinations of the
matrix elements of Q1�3,q contribute to ��q at O(1/mb) [7, 96,97].

At present, the short-distance contribution to B-mixing via �B = 2 operators has been
investigated by many groups using varying lattice QCD frameworks [98–106] and there
are tensions between them. These tensions must be understood and resolved in order
to infer the presence of New Physics in the neutral B-system [107–109].

Neutral D meson mixing offers complementary constraints on the CKM matrix. The
hadronic contributions to the mixing parameters can once again be decomposed into the
short-distance (with �C = 2 interactions) and long-distance contributions (with �C = 1

interactions). In this case, the short-distance contribution is subdominant and has been
a subject of lattice predictions at 5 � 10% precision [5, 110, 111] which are comparable
to experimental measurements. However, experimental precision is expected to improve
[112] therefore improvements in theoretical predictions are required for continued impact.
In the D0 �D

0 system, the long-distance contributions of the �C = 1 operators pose a
more difficult theoretical hurdle, and there is ongoing theoretical and algorithmic work
for the computation of the relevant matrix elements. Despite this challenge, it is possible
to validate or exclude New Physics models by studying the BSM extension to the�C = 2

sector only [113], and therefore warrants a systematic and high-precision study of the
short-distance contribution.

2.5.7 Implications beyond the SM

Neutral K, D, B and Bs meson decay and mixing due to physics at higher scales –
via interactions involving W , Z, t and H in the SM and unknown heavier particles in
BSM theories – can be parameterised using operators composed of SM fields obeying
the SM gauge symmetry. These flavour-changing neutral current (FCNC) interactions
are suppressed in the SM and therefore sensitive to BSM contributions and thus to New
Physics.

These BSM contributions are suppressed by powers of the scale at which they are gen-
erated, that is, at one-loop level at the lowest order in the case of neutral meson mixing.
Even at lowest order, there are many dimension-6 operators as described in eqn (2.87),
and BSM effects are encoded in their Wilson coefficients. These BSM contributions
may or may not obey SM relations, for example, the Minimal Supersymmetric Standard
Model (MSSM) introduces 40 new CP violating phases in its flavour sector [114,115].

One can illustrate the level of suppression required for New Physics effects by consid-
ering a class of BSM models where unitarity of the CKM matrix is maintained. As-
sume that the dominant BSM effects modify the neutral meson mixing amplitudes as
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(zij/⇤2
NP)(qi�µ(1� �5)qj)2 where zij is some unknown constant and the scale ⇤NP sup-

presses the BSM contribution [116–119]. The existing data predicts that ⇤NP/|zij |1/2

would have to exceed 104 TeV for K0 �K
0 mixing, 103 TeV for D0 � D

0 mixing, 500
TeV for B0 � B

0 mixing, and 100 TeV for B0
s � B

0
s mixing [119, 120]. Thus, for New

Physics to enter at the TeV scale we need |zij | ⌧ 1, which can have percent-level ef-
fects on processes at one-loop order, and may be observable in upcoming flavour physics
experiments.

This tells us that constraining the measurements of the magnitudes and phases of FCNC
interaction amplitudes to high precision allows for good sensitivity to New Physics be-
yond the SM.
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Lattice quantum chromodynamics

Quantum field theories (QFTs), as briefly introduced in section 2.1, are extensions of
Lagrangian mechanics to the quantum domain, where the typical fluctuations of the
action are of the order of the Planck constant h̄1. In this regime the quantum effects
are relevant, and the aim of quantum field theory in the path integral formulation is to
describe these effects quantitatively.

However most QFTs, if unregularised, are ill-defined due to ultraviolet divergences. In
terms of the path integral formulation, this means that the vacuum expectation value
of an operator O given by the integral over all possible configurations of the field(s)  

hOi ⌘ h⌦|O|⌦i =
R
D[ ]O[ ]eiS[ ]R

D[ ]eiS[ ]
, (3.1)

has an ill-defined measure D[ ]. To define a robust formalism for the path integral
expectation values this measure must be addressed, and this process is known is regular-
isation. Typical schemes for this purpose are, amongst others, dimensional regularisation
[121–123] and Pauli-Villars regularisation [124]; these are specific to perturbation the-
ory where processes are expanded as asympototic series in powers of a small expansion
parameter, for example a coupling constant. This works well for most QFTs, however in
the case of Quantum Chromodynamics (QCD) the asympotic freedom of the QCD cou-
pling constant implies that pertubation theory has poor convergence in the low energy
regime where interesting hadronic interactions take place. In this case, the path integral
formalism can be regularised non-perturbatively by restricting field configurations to
live on a discrete hypercubic spacetime lattice, L[125]. The spacing a between adjacent
sites on the lattice cuts off fluctuations of the field with energies higher than ⇠ ⇡/a, thus
reducing the ill-defined continuum measure to a well-defined measure over a discrete set

1Note that in this thesis we work in units wherein h̄ = 1
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of integrals
Z

L

D[ ] =

Z Y

x2L

d (x). (3.2)

While the lattice spacing, the ‘minimum’ length scale, renders all ultraviolet divergences
finite, the calculation of the path integral can only be tractable if this discrete set of
integrals is finite. This is done by further restricting the lattice to be of finite spacetime
volume, thereby introducing a ‘maximum’ length scale that prevents infrared divergence.
Typically lattices are square in the spatial dimensions (X) and elongated in the temporal
dimension (T ) such that there are X3⇥T lattice sites. The finite maximum length scale
leads to quantised momentum modes, and the minimum length scale restricts these
momenta to the Brillouin zone. In order to study the dynamics of the QFT at some
energy/momentum scale of interest ⇤, the two length scales must be well separated with

1

aX
⌧ ⇤⌧ 1

a
, (3.3)

since the lattice cannot resolve states with energies greater than 1/a or fit those with
energies lower than 1/aX. Note that placing the theory in a finite box calls for a choice of
appropriate boundary conditions (BCs); common choices include periodic, anti-periodic,
open and twisted BCs [126,127].

The phase in eqn (3.1) gives rise to poorly converging integrals, and we circumvent this
issue by working in an Euclidean framework instead. We start by transforming from
Minkowski space to Euclidean space via a Wick rotation of the time coordinate (t! i⌧).
The regularised Euclidean path integral is then defined by

hOiEucl.L =

R
L
D[ ]O[ ]e�S[ ]R
L
D[ ]e�S[ ]

, (3.4)

with respect to the weights e�S[ ] where the Euclidean action S is real and positive. The
continuum limit in the Euclidean theory corresponds to tuning the lattice parameters
towards a second order critical point at which all correlation functions2 in lattice units
diverge and the lattice spacing a is therefore sent to zero relative to fixed physical
correlation lengths.

While Wick rotating to a Euclidean spacetime gives us converging integrals, it is impor-
tant to note that the analytic continuation of Euclidean quantities back to Minkowski
spacetime is not always guaranteed. Quantities such as propagators and matrix elements
– with at most one hadron in the initial and final states – are analytic functions that
can be easily continued and studied in Minkowski space, however this is not true for

2Typical observables of a QFT are correlation functions (also known as n-point functions) of operators,
defined via vacuum expectation values of time-ordered products of n fields.
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multi-hadron state observables. In this thesis, we will only deal with quantities of the
former kind.

The Euclidean path integral in eqn (3.4) is defined in terms of S and  , the discretised
Euclidean action and field(s) repsectively. The specific choice of discretisation affects
the approach to the continuum [128] and we shall now discuss this in greater detail in
the context of QCD.

3.1 Discretising QCD

Let us recall the QCD action in Minkowski spacetime as introduced in eqn (2.9) for the
case of Nf = 1

SQCD =

Z
d4xLQCD

=

Z
d4x


�1

4
FC

µ⌫F
C,µ⌫ +  a

�
i /Dab �m�ab

�
 b

�

:= SG[A] + SF [ , , A],

(3.5)

where we have split the action into the pure gauge part SG and the fermionic part SF .
The Euclidean versions of these are given by

SG =
1

4g2s

Z
d4xFC

µ⌫(x)F
C,µ⌫(x), (3.6)

SF =

Z
d4x 

�
�Eµ Dµ +m

�
 , (3.7)

where �Eµ are the Euclidean gamma matrices (detailed in appendix A.2). Here we have
introduced the rescaling of the gluon fields gsAC

µ ! AC
µ for later convenience.

We now wish to discretise this Euclidean action and there is significant freedom on how
we achieve this as long as the discretised version is gauge invariant under the QCD gauge
group and reduces to the continuum expression above in the limit a! 0. To start, the
integral over continuous spacetime in the action is replaced by a Riemann sum over the
lattice sites given by

Z
d4x! a4

X

n

, with n = (n, n4), (3.8)

such that ni = 1, . . . , X and n4 = 1, . . . , T . Furthermore, the continuous spacetime
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derivative @µ is replaced by finite differences; we can define the forward (@µ) and back-
ward (@⇤µ) derivatives

@µf(n) =
1

a
(f(n+ aµ̂)� f(n)) ,

@⇤µf(n) =
1

a
(f(n)� f(n� aµ̂)) ,

(3.9)

where µ̂ is the lattice unit vector in the µ direction. We can choose to define the discrete
derivative to be either of these or the symmetric combination �µ := (@µ + @⇤µ)/2.

3.1.1 Pure gauge action

Having made a choice for the discretisation of the spacetime derivative, we must inves-
tigate how this affects our covariant derivative and gauge fields in order to ensure that
the fermion fields on the lattice transform correctly under the QCD gauge symmetry
SU(3)C .

Let us start by associating an SU(3)C element, represented by ⌦(n), with each lattice
site n. To ensure gauge invariance of the action, the fermion fields must transform as

⌦ :  (n)!  0(n) = ⌦(n) (n),

⌦ :  (n)!  
0
(n) =  (n)⌦†(n).

(3.10)

Now consider choosing the discretisation wherein the continuous spacetime derivative
@µ is replaced by the symmetric finite difference

�µ (x) =
 (x+ aµ̂)�  (x� aµ̂)

2a
. (3.11)

We see that this leads to mixing of fields at neighbouring sites in the discretised QCD
lagrangian, introducing terms like  (n) (n + µ̂), which are no longer gauge invariant
since

⌦ :  (n) (n+ µ̂)!  (n)⌦†(n)⌦(n+ µ̂) (n+ µ̂). (3.12)

SU(3)C invariance can be restored by introducing a new field Uµ(n) in the finite deriva-
tive

�µ (x) =
Uµ(n) (x+ aµ̂)� U�µ(n) (x� aµ̂)

2a
, (3.13)

which transforms as

⌦ : Uµ(n)! U 0µ(n) = ⌦(n)Uµ(n)⌦
†(n+ µ̂). (3.14)



3.1. Discretising QCD 39

(a) plaquette (b) rectangle (c) chair-type (d) 3-dimensional

Figure 3.1: Types of Wilson loops that enter the Iwasaki gauge action: plaquette is
a square loop, rectangle and chair-type loops are planar and non-planar 2 ⇥ 1 loops,

3-dimensional loop is a six-link path connecting opposite vertices of a cube.

In this definition, the term  (n)Uµ(n) (n+ µ̂) is gauge invariant under SU(3)C tranfor-
mations. We use the notation U�µ(x) ⌘ U †

µ(n � aµ̂). This field is related to the gauge
field as

Uµ(n) = eiagsAµ(n), (3.15)

and can be interpreted as linking the lattice site n to the site n+ µ̂; hence it is called a
gauge link.

Consecutive gauge links in a series inherit similar properties under gauge transforma-
tions:

Uµ(n)U⌫(n+ aµ̂)!⌦(n)Uµ(n)⌦
†(n+ aµ̂)⌦(n+ aµ̂)U⌫(n+ aµ̂)⌦†(n+ aµ̂+ a⌫̂)

= ⌦(n)Uµ(n)U⌫(x+ aµ̂)⌦†(x+ aµ̂+ a⌫̂). (3.16)

This implies that by chaining a number of consecutive gauge links in a closed loop, we
end up with ⌦(n) and ⌦†(n) on the left and right side of the expression above, making
the trace of a closed path over gauge links gauge invariant. Such an object is known as a
Wilson loop [125]; the smallest Wilson loop, called a plaquette, is formed of four lattice
sites in a square (see figure 3.1a),

Uµ⌫(n) = Uµ(n)U⌫(n+ aµ̂)U †

µ(n+ a⌫̂)U †

⌫ (n). (3.17)

We are interested in constructing a discrete pure gauge action which is gauge invariant
and reproduces the continuum QCD pure gauge action in the limit a ! 0, and gauge
invariant Wilson loops make good candidates for this purpose. For example, the Wilson
gauge action [125] is built from the plaquette:

SG[U ] =
2

g2s

X

n2L

X

µ<⌫

Re [Tr (1� Uµ⌫(n))] . (3.18)
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To demonstrate the equivalence to eqn (3.5) in the continuum limit, we can substitute
in eqn (3.17) and Taylor expand eqn (3.15) upto O(a); this gives us

SG[U ] =
a4

4g2s

X

n2L

Tr
�
FC

µ⌫(n)F
C

µ⌫(n)
�
+O(a2), (3.19)

with leading order discretisation errors of O(a2). It is possible to obtain a better scaling
of errors or more desirable simulation properties by making a different discretisation of
the pure gauge action. There are two methods for systematically reducing discretisa-
tion errors: the Symanzik improvement program [128–131] and renormalisation group
transformations [132–134].

The lattice simulations used for generating data for the projects in this thesis utilise the
renormalisation-improved Iwasaki gauge action [135–137] which is schematically given
by

SG =
2

g2s

X

n2L

(c0Tr[plaquette] + c1Tr[rectangle loop]

+c2Tr[chair-type loop] + c3Tr[3-dim loop] + constant)
(3.20)

where the four types of loops are depicted in figure 3.1. The renormalisation constraint
on the coefficients is given by c0 + 8c1 + 16c2 + 8c3 = 1 [135]. The Iwasaki gauge
action has O(a2)-improved discretisation errors and allows for a small residual mass
parameter amres in the Domain-Wall fermion action [138] (discussed in greater detail
in section 3.1.4). The simulations for this project use the Iwasaki gauge ensembles
calculated by the RBC-UKQCD collaboration [57,77,139] as input.

3.1.2 Naïve and Wilson fermions

Recall the symmetric discretisation of the spacetime derivative in eqn (3.13). We can
use this to make a first attempt in writing down the discretised version of the fermionic
part of the QCD action SF by defining quark fields at the lattice sites and replacing
derivatives with their discrete counterparts. This naïve fermion action takes the form

SF [ , , U ] = a4
X

n,m2L

 a,↵(n)D(n|m)ab
↵�

 b,�(m), (3.21)

where D(n|m) is the Dirac operator connecting the lattice sites n and m, given by

D(n|m)ab
↵�

= (�µ)↵�

✓
Uµ(n)ab�n+µ̂,m � U�µ(n)ab�n�µ̂,m

2a

◆
+m�ab�↵��n,m. (3.22)

The lowercase Latin letters denote colour indices as introduced in section 2.3, and the
lowercase Greek letters denote Dirac or spin indices.



3.1. Discretising QCD 41

We can compute the Dirac operator of the free theory by setting gs = 0, which makes all
Uµ(n) = 1. The Dirac operator is inversely related to the propagator for a free fermion
with some momentum pµ in the momentum space, so we Fourier transform as

D̃(p|q) = 1

X3 ⇥ T

X

n,m2L

e�ip·naD(n|m)eiq·ma

=
1

X3 ⇥ T

X

n,m2L

e�i(p�q)·na
✓
�µ

eiqµa � e�iqµa

2a
+m1

◆

:= �p,qD̃(p),

(3.23)

where we define

D̃(p) = m1 +
i

a
�µ sin (pµa) . (3.24)

The inverse of this is the momentum-space propagator given by

D̃(p)�1 =
m1� ia�1�µ sin (pµa)

m2 + a�2
P

µ
sin2 (pµa)

. (3.25)

In a QFT, the masses of physical particles are inferred from the poles of the propagator.
If we consider the case of massless quarks (set m = 0), the physical pole of the quark
propagator corresponds to p = (0, 0, 0, 0) where p2 = m2. In the naïve discretisation of
fermions on the lattice, the poles of the quark propagator in eqn (3.25) correspond to
the corners of the Brillouin zone where sin2(pµa) vanishes, that is, where any component
of pµ is 0 or ⇡/a. This generates 24 = 16 poles (two poles in each dimension), of which
only one is physical and 15 are unphysical poles describing additional massive particles.
These spurious poles are called doublers and need to be removed to recover the physical
continuum behaviour.

The first suggestion for removing the unphysical doublers came from Wilson using the
observation that we may add any irrelevant higher dimesional operators to the discrete
theory as long as they disappear in the continuum limit a ! 0. He proposed adding a
dimension-5 term, such that the momentum-space Dirac operator becomes

D̃Wilson(p) = D̃naïve(p) + 1
1

a

X

µ

(1� cos(pµa)) . (3.26)

For the case pµ = (0, 0, 0, 0), this term disappears, leaving the physical pole unchanged.
For any momentum with at least one component being ⇡/a, this term adds a contribution
to the mass as m + 2l/a where l is the number of components equal to ⇡/a. In the
continuum limit this mass term becomes divergent and the unphysical poles decouple
from the theory, leaving behind only the physical one.
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3.1.3 Chiral symmetry on the lattice

While adding the Wilson term solves the doubling problem, it comes at a cost: it
explicitly breaks the chiral symmetry of the discrete QCD action – one can see this by
writing the Wilson action in position space:

D(n|m)Wilson = D(n|m)naïve � a
X

µ

Uµ(n)�n+µ̂,m � 2�n,m + U�µ(n)�n�µ̂,m
2a2

, (3.27)

where D(n|m)naïve is given in eqn (3.22). In fact, the Nielsen-Ninomiya theorem states
more generally that it is impossible to construct a local action3 that is both free of
doublers and preserves chiral symmetry [140].

In terms of the Dirac operator, a fermion action invariant under chiral symmetry satisfies
the condition

{D, �5} = D�5 + �5D = 0, (3.28)

and maintaining this chiral symmetry is a desirable feature in a choice of fermion dis-
cretisation for the following reasons:

• The leading order, discretisation errors of a theory that possesses chiral symmetry
are of O(a2), that is, simulations are automatically O(a)-improved.

• In the study of weak matrix elements (relevant to this thesis) the lack of chiral
symmetry introduces mixing between operators that otherwise don’t mix in the
continuum theory due to being in different representations of the chiral symmetry
group. This problem, however, can be resolved during the process of renormal-
isation – the matching of lattice fields to the continuum fields. It is argued in
[141] that it is possible to place conditions on the renormalisation such that QCD-
like behaviour is recovered in the continuum by adding terms that reconstruct
the chiral basis of QCD. However, this means that chirally symmetric fermion
actions enjoy a simpler, multiplicative renormalisation procedure, while chirally
asymmetric actions require additive renormalisation.

A trick to get around the Nielsen-Ninomiya theorem was formulated in [142] by replacing
the condition in eqn (3.28) with

{D, �5} = aD�5D. (3.29)

This is known as the Ginsparg-Wilson relation, and it matches the continuum condition
for chiral symmetry in the limit a! 0.

3for an even number of dimensions in a Euclidean theory



3.1. Discretising QCD 43

Lattice fields that obey the Ginsparg-Wilson relation therefore enjoy the benefits of
chiral symmetry as discribed above, and the only known exact solution at present is
given by overlap fermions [143–148]. The overlap formulation is related to another
version of chiral lattice QCD using domain wall fermions which obey the Ginsparg-
Wilson relation in a strict limit; this is the framework used for the projects in this thesis
and we shall now discuss this in greater detail.

3.1.4 Domain wall fermions

The domain wall fermion (DWF) formulation, introduced in [149, 150] and developed
further in [151–156], introduces an extra, unphysical fifth dimension in an attempt to
circumvent the Nielsen-Ninomiya theorem [140]. The DWF Dirac operator satisfies the
Ginsparg-Wilson relation and reproduces the overlap operator [147] in the limit of the
fifth dimension extending out to infinity.

Continuum theory of DWFs

Before discussing the domain wall setup on the lattice, let us review its properties in the
continuum. Consider a fermion field  living in a 5-dimensional Euclidean spacetime
with coordinates X = (x, s) where x = (x, t) are the usual four infinite spacetime
coordinates, and s is the coordinate of the fifth dimension. Furthermore, we assume
that the fermion has a mass term that depends on s as

m(s) = m✓(s) =

8
<

:
+m s > 0

�m s < 0
. (3.30)

The Lagrangian equation of motion for this DWF is then given by

⇥
/D + �5@s +m(s)

⇤
 (x, s) = 0, (3.31)

where D is the Dirac operator of the 4-dimensional theory. This equation is an eigenvalue
problem which can be satisfied using separation of variables in a solution of the form
[150]

 (x, s) =
X

n

[an(s)PR + bn(s)PL] n(x), (3.32)

where  n(x) is the nth eigenvector of the 4-dimensional Dirac operator, PR,L are the
chiral projectors introduced in eqn (2.19), and an(s) and bn(s) are the right and left-
handed solutions in the 5th dimension. By substituting eqn (3.32) into eqn (3.31) we
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find that

[@s +m(s)] an(s) = �sbn(s)

[�@s +m(s)] bn(s) = �san(s)
�
/D + �n

�
 n(x) = 0

(3.33)

where �n is the eigenvalue corresponding to  n(x). In the case �n = 0, the last line
above is the equation of motion for a massless fermion (in four dimensions), and the
equations for an(s) and bn(s) decouple and can be satisfied by the ansatze

an(s) = Ae�
R s
0 ds

0
m(s0) = Ae�m|s|

bn(s) = Be+
R s
0 ds

0
m(s0) = Be+m|s| .

(3.34)

Note that the solution for bn(s) is not normalisable and therefore unphysical.

In the continuum theory, the DWF setup leads to an infinite tower of fermion states
 n(x) each with mass |�n| > 0; these are called the bulk modes. The solution for an(s)

corresponds to a single massless right-handed fermion that is exponentially localised
near the domain wall at |s| = 0. Due to the mass gap between the massless and bulk
modes, at low energies only the massless chiral fermion is encountered.

DWFs on the lattice

The picture above holds for a theory with an infinite 5th dimension. However, on the
lattice, we are restricted to a finite 5th dimension – forcing us to have a second domain
wall. Consider for example a compact 5th dimension of extent Ls with periodic boundary
conditions  (s) =  (s+ 2Ls) with two domain walls at s = 0 and Ls � 1. In this case,
both the solutions in eqn (3.34) are normalisable (thus physical) and correspond to two
exponentially localised massless modes: a right-handed mode at |s| = 0 and a left-handed
mode at |s| = ±Ls � 1. In the end, the resulting theory has two opposite-chirality 4-
dimensional massless fermions localised on two domain walls, decaying exponentially in
the 5th dimension.

Let us now write down the Nf = 1 DWF action on the lattice with the fermion  (n, s)
of mass mf (suppressing spin and colour indices):

SDW
F

⇥
 , , U

⇤
(mf ,M5) =

X

n,m2L

s,t2Ls

 (n, s)DDW
5 (n, s|m, t;mf ,M5) (m, t) . (3.35)

Here, DDW
5 is the 5-dimensional DWF Dirac operator which can be decomposed into

components parallel and perpendicular to the 4-dimensional spacetime slices as

DDW
5 (n, s|m, t;mf ,M5) = �s,tD

k(n|m;M5) + �n,mD?(s|t;mf ). (3.36)
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The parallel component is a discrete 4-dimensional Dirac operator connecting sites n

and m given by

Dk(n|m;M5) = (4�M5) �n,m �
1

2a

±4X

µ=±1

(1� �µ)Uµ(n)�n+aµ̂,m, (3.37)

where the parameter M5 separates the two domain wall sites s = 0 and s = Ls � 1 and
is known as the domain wall height. The perpendicular component connects the sites in
the 5th dimension and is given by

D?(s|t;mf ) =�s,t � (1� �s,Ls�1)PL�s+1,t � (1� �s,0)PR�s�1,t

+mf (PL�s,Ls�1�0,t + PR�s,0�Ls�1,t) .
(3.38)

Note that the only term connecting the two domain wall sites resembles a mass term
and is proportional to mf . Also note that the gauge links Uµ(n) live in the usual
4-dimensional spacetime and therefore don’t appear in D?.

Chiral symmetry with DWFs

It has been shown in [157, 158] that domain wall fermions, in the limit Ls ! 1, are
equivalent to overlap fermions [146] which are exact solutions to the Ginsparg-Wilson
relation (eqn (3.29)). However, as we are restricted to finite Ls on the lattice, the chiral
symmetry in our theory is not exact and we will now discuss the effects of this in greater
detail.

Let us start by looking at the physical 4-dimensional fields that live on the 4-dimensional
boundary of L⇥Ls; these are constructed as superpositions of the left and right-handed
chiral modes at s = 0 and s = Ls � 1 respectively:

 (n) ⌘  L(n) +  R(n) = PL (n, 0) + PR (n,Ls � 1),

 (n) ⌘  L(n) +  R(n) =  (n, 0)PR + (n,Ls � 1)PL.
(3.39)

By this definition, chiral symmetry is preserved when the left and right-handed fields
decouple as Ls !1; this is because terms breaking chiral symmetry mix left and right-
handed components. This mixing can be minimised by restricting the overlap between
the two chiral modes in the theory by separating them via a sufficiently large extent of
the 5th dimension, Ls.

We are thus interested in defining a measure for the residual chiral symmetry breaking
as a function of Ls. With this in mind, let us look at the chiral symmetries of the domain
wall action: there is a symmetry under  ! ei

1
2↵

F
t
F
 vector transformations (where the

SU(Nf ) generators tF were introduced in section 2.3.1), with associated 5-dimensional



46 Chapter 3. Lattice quantum chromodynamics

conserved currents

jFµ (n, s) =
1

2

h
 (n+ µ̂, s)(1 + �µ)U

†

µ(n)t
F (n, s)

�  (n, s)(1� �µ)Uµ(n)t
F (n+ µ̂, s)

⇤
,

jF5 (n, s) =
1

2

h
 (n, s+ 1)(1 + �µ)U

†

µ(n)t
F (n, s)

�  (n, s)(1� �µ)Uµ(n)t
F (n, s+ 1)

⇤
.

(3.40)

The associated conserved 4-dimensional vector current is defined by summing over the
5th dimension

jFV,µ(n) =
Ls�1X

s=0

jFµ (n, s). (3.41)

The action is also symmetric under axial vector transformations  ! ei
1
2↵

F
t
F
q(s) follow-

ing the conventions in [154], with q(s) = sgn
�
Ls�1

2 � s
�
. In this notation the associated

conserved 4-dimensional axial current can be written using eqn (3.40) as

jFA,µ(n) =
Ls�1X

s=0

q(s)jFµ (n, s). (3.42)

We can also construct local vector and axial currents (with non-curly V and A) using
the 4-dimensional quark fields

jFV,µ(n) =  (n)tF�µ (n),

jFA,µ(n) =  (n)tF�µ�5 (n),
(3.43)

which are related to their conserved counterparts via

ZV j
F

V,µ(n) = jFV,µ(n),

ZAj
F

A,µ(n) = jFA,µ(n),
(3.44)

where ZV,A are multiplicative renormalisation constants. The exact conservation of
chiral symmetry demands ZA = ZV [159], and that the conserved currents have zero
divergence �µjFV,µ(n) = 0 and �µjFA,µ

(n) = 0, by Noether’s theorem4.

As we are working in the Nf = 1 theory, we will now remove the index F for the
remainder of this discussion.

4We define �µf(n) = f(n)� f(n� µ̂)
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With a finite Ls and non-zero quark mass, chiral symmetry is broken and the conserved
axial current picks up a non-zero divergence

a�µjA,µ(n) = 2amfJ5(n) + 2J5q(n), (3.45)

where the first term accounts for the non-zero quark mass with J5(n) := j5(n,Ls),
and the second term – defined at the mid-point of the 5th dimension with J5q(n) :=

j5(n,
Ls
2 � 1) – accounts for finite Ls. This condition is known as the partially conserved

axial Ward identity (PCAWI).

However, we know that the axial Ward identity (AWI) in eqn (2.23), arising from non-
zero masses, must be recovered in the continuum limit. This implies that in the limit
a! 0, ZA = ZV = 1. Furthermore, in the case of Nf = 1, the AWI can be written as

X

n

h(�µjA,µ)(n)O(n)i = 2mf

X

n

hJ5(n)O(n)i , (3.46)

where O(n) is some correlation function5. To recover this, the two terms in the PCAWI
relation in eqn (3.45) must be combined, leaving us with

X

n

h(�µjA,µ)Oi = 2
X

n

⌧✓
2mfJ5(n) +

2

a
J5q(n)

◆
O(n)

�

= 2

✓
mf +

1

a

P
n
hJ5q(n)O(n)iP
n
hJ5(n)O(n)i

◆X

n

hJ5(n)O(n)i . (3.47)

Comparing with eqn (3.46), we see that the second term in eqn (3.47) is a mass-like term
arising due to the finiteness of the fifth dimension. We define this to be our measure
of the residual chiral symmetry breaking attributed to finite Ls, and call it the residual
mass. This is extracted from the asymptotic time behaviour of the ratio of correlation
functions with current insertions:

amres =

P
nhJ5q(n, t)O(n, t)iP
nhJ5(n, t)O(n, t)i

����
t�0

. (3.48)

The effective mass of the DWF is therefore given by

meff = mf +mres. (3.49)

As long as the value of the residual mass mres is sufficiently small relative to mf , the
four-dimensional fermions of the theory are chiral up to O(a2) corrections. Note that in
this framework, the chiral limit corresponds to mf ! �mres, instead of mf ! 0.

5This relation arises because J5 is equivalent to the conserved pseudoscalar density.
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Other DWF kernels

In the projects in this thesis, we use both the Shamir [153] and Möbius [160–162] for-
mulations of DWFs, corresponding to the choice made for the parallel component of the
DWF Dirac operator. They are explicitly defined by the kernels

DShamir =
a5Dk

2 + a5Dk
, (3.50)

DMöbius =
(b5 + c5)Dk

2 + (b5 � c5)Dk
, (3.51)

where Dk was defined in eqn (3.37). The Möbius kernel is a rescaling of the Shamir
kernel DMöbius ⌘ ↵DShamir where a5 = b5 � c5 and ↵a5 = b5 + c5. It can be shown that
the two actions are identical in the limit Ls !1 [77], however the Möbius action leads
to a smaller mres compared to the Shamir action at the same value of Ls.

3.1.5 �5-hermiticity

Let us finally remark on an important symmetry of lattice Dirac operators; almost all
of them are �5-hermitian, that is, they obey

H :D ! �5D
†�5 = D,

=) (�5D)† = �5D.
(3.52)

Apart for being a useful mathematical tool for simplifying expressions, this also implies
that the Dirac operator has eigenvalues that are either real or come in complex conju-
gate pairs. This means the determinant of the Dirac operator is real – this is a useful
property for the numerical evaluation of the path integral as we will briefly touch upon
in section 3.2.2.

Furthermore, the �5-hermiticity is inherited by the inverse Dirac operator making it a
useful tool for manipulating Wick-contracted fermion fields in correlation functions.

3.2 Simulating the path integral

So far we have developed a framework for discretising the gauge and fermionic fields
in QCD, and are ultimately intersted in studying hadronic observables calculated using
Euclidean path integrals as defined in eqn (3.4). To get there, we must first dicuss the
practical aspects of lattice computations. The problem of numerically evaluating the
path integral can be split into two broad parts:

1. generating a set of gauge configurations known as a gauge ensemble, and
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2. computing a path integral of a fermionic observable of interest over the gauge
configurations.

In this section, we will discuss the steps involved in generating gauge ensembles using
dynamical fermions, and in the next section we will detail the process of measuring
fermionic observables using these ensembles.

3.2.1 Markov chain Monte Carlo sampling

Since we are interested in computing high-dimensional integrals, we turn to the Monte
Carlo stochastic method for numerical integration.

The Monte Carlo approach to evaluating an integral requires drawing a set of samples
by summing evaluations of integrand at random points in its domain. Mathematically,
this is equivalent to computing the average value

Z
dx f(x) = lim

N!1

V

N

N�1X

n=0

f(xn), (3.53)

where f is some function with domain x, and N is the number of Monte Carlo samples.
The volume factor is given by the sum over the domain V =

R
dx. Note that in this

definition the Monte Carlo method samples uniformly from the domain of f . Also note
that the error in the Monte Carlo estimation of integrals scales as ⇠ 1/

p
N as we vary the

sample size N . This scaling behaviour is favourable over to other methods for numerical
integration as it has no dependence on the dimensionality of the problem.

In our path integral, the integration over the points x in the domain of our function is
weighted by the Boltzmann factor e�S(x), where S is the action. In order to efficiently
sample points with higher weights, we must bias our Monte Carlo method to draw from
a non-uniform probability distribution; this is known as importance sampling. In this
way, the expectation value of f biased to some probability distribution is given by

hfi =
Z

dP (x)f(x) = lim
N!1

1

N

N�1X

n=0

f(xn), (3.54)

where xn are generated by the probability density dP (x) known as the Gibbs measure,
given by

dP (x) =
dx e�S(x)R
dx0 e�S(x0)

. (3.55)

The sequential drawing of x1, x2, . . . , xi, xi+1, . . . from the domain, in order to guide our
starting guess x0 towards the region of the domain that carries the highest weight, is
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given by a Markov chain process. We can associate the probability of accepting (not
rejecting) a proposed update step with the transition function

P (xk = X 0|xk�1 = X) := T (X 0|X). (3.56)

In order to ensure no preference in the direction of update, we demand the probability
of reversing an update step be equal to that of traversing it. In practice this is enforced
by the detailed balance condition

T (X 0|X)P (X) = T (X|X 0)P (X 0), (3.57)

and the distribution of the Markov chain whose transition function satisfies this condition
is called an equilibrium distribution. A typical Markov chain process needs a certain
number of thermalisation steps to allow the algorithm to converge to equilibrium. Once
it has, we can draw a Monte carlo samples using equilibrium distributions.

Note that a method for generating the transition function T associated with accept-
ing/rejecting a proposed update step in the Markov chain is also needed; the Metropolis
algorithm [163] is one such prescription. The transition probability between the current
step with xi = X and a proposed next step with xi+1 = X 0 is expressed as

Ti+1(X
0|X) = min

 
1,

Ti(X|X 0)e�S(X0)

Ti(X 0|X)e�S(X)

!
, (3.58)

where the argument ‘min’ sets an upper bound of 1 on the transition probability.

3.2.2 The QCD Gibbs measure

Before we compute the expectation value of an observable using Monte Carlo sampling,
we need to determine the Gibbs measure for generating samples from the domain, as
described in eqn (3.54).

The path integrals for QCD involve drawing samples from a domain of high dimension-
ality, since the integration variables include paths of gauge links, fermion fields, as well
as spatial coordinates. We call a single sampling from this domain a configuration. The
Gibbs measure for generating configurations from the domain of QCD is therefore given
by (using eqn (3.55))

dP [ , , U ] =
D[ , , U ] exp

⇣
�SG[U ]�

PNf

f
SF

⇥
 f , f , U

⇤⌘

R
D[ 0, 

0
, U 0] exp

⇣
�SG[U 0]�

PNf

f
SF

h
 0

f
, 
0

f , U
0

i⌘ . (3.59)

Note that the denominator is just the QCD partition function.
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The fermionic part

In practice, the fermionic part of the path integral is typically integrated out analytically
[164,165]. This is because fermions fields anti-commute and are therefore represented by
Grassman variables, which are difficult to treat computationally. The partition function
thus reduces to an integration over gauge fields

Z =

Z
D [U ]

⇣
⇧

Nf

f
det [Df [U ]]

⌘
exp (�SG[U ]) , (3.60)

where Df is the Dirac operator6 corresponding to the quark of mass mf .

The Gibbs measure therefore also reduces to

dP [U ] =
1

Z
D [U ]

⇣
⇧

Nf

f
det [Df [U ]]

⌘
exp (�SG[U ]) , (3.61)

where the dynamical effects of the quarks in the “gluonic sea” are captured via the
Nf factors of the determinant of the Dirac operator. The “quenched” approximation,
where we set Df = 1, is ignorant of these sea-quark excitations. In un-quenched lattice
QCD, the determinant of the Dirac operator is calculated in practice by simulating
pseudo-fermion fields7, �, by noting that [166]

detD =

Z
D� exp

⇣
��†(n)D�1(n|m)�(m)

⌘
. (3.62)

This is useful because the Dirac operator for a single fermion flavour is a very large ma-
trix of size Ncolour⇥Nspin⇥X3⇥T , and direct evaluation of the determinant is extremely
expensive in computation time. This is made more manageable by folding the deter-
minant into the probability distribution using pseudo-fermion fields which act as noisy
estimators of the fermion determinant. Note that the rewriting of the fermion determi-
nant as an integral over pseudo-fermion fields is possible only when the determinant of
the Dirac operator is real, a property derived from its �5-hermiticity, as mentioned in
section 3.1.5. The final version of the Gibbs measure is therefore given by

dP [U,�] =
D [U,�] exp

⇣
�SG[U ]�

PNf

f
�†

f
D�1

f
�f

⌘

R
D [U 0,�0] exp

⇣
�SG[U 0]�

P
f
�0†
f
D�1

f
�0
f

⌘ , (3.63)

which generates configurations of gauge fields as well as pseudo-fermion fields.
6As the QCD action is quadratic in the fermion fields, we can use the Berezin rules to analytically

integrate
R
d d exp( aDab b) = det[D].

7called ‘pseudo’ since they commute
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The gauge part

In practice, we can generate paths Un starting from an arbitrary configuration of gauge
links and follow the Markov chain process with the Metropolis accept/reject step to
probabilistically perturb the links to a new path configuration. If we consider the Gibbs
measure in the quenched approximation, we notice that it is highly local; however adding
the fermion determinant part to it causes it to become non-local. This can lead to very
large changes between one Markov chain step and the next one proposed, possibly leading
to a low acceptance rate and thereby diminishing the efficiency of the algorithm greatly.

There are many techniques designed for addressing this problem, and the one used to
generate the gauge configuration used in this thesis is known as the hybrid Monte Carlo
(HMC) algorithm [167]; other algorithms include heat-bath [168,169] and over-relaxation
[170,171].

3.2.3 Gauge fixing

The gauge configurations in the Markov chain process are generated using the gauge-
invariant QCD Lagrangian. The gauge symmetry (presented below in its discrete ver-
sion), demands that physical observables remain unchanged under a local transformation
of the gauge links of the form

g(n)Uµ(n)g(n+ µ̂)†, (3.64)

where g(n) represents an arbitrary SU(3)C gauge group element. When computing the
path integral over all possible configurations of the gauge links, there exists an inherent
gross over-counting of the gauge links Uµ that are equivalent under SU(3)C gauge group
transformations – each such set is called a gauge orbit. Where needed, this over-counting
can be removed via gauge fixing, that is, restricting the path integral to sample only
once from each gauge orbit.

Recall that the gauge links are defined as Uµ(n) = eiagsAµ(n) (see eqn (3.15)) where
Aµ(n) are the SU(3)C Lie algebra-valued gauge fields. A typical gauge fixing condition
in the continuum that is enforced at all spacetime points is the (minimal) Landau gauge

@µAµ(x) = 0. (3.65)

On the lattice, this is equivalent to demanding that the lattice gauge functional

F (g)
Landau[U ] =

1

12X3T
Re

X

µ,n2L

Tr
h
g(n)Uµ(n)g(n+ µ̂)†

i
(3.66)

resides in a stationary point with respect to gauge transformations g(n) 2 Rep(SU(3)C)

[172–175].
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The need for gauge fixing on the lattice

Unlike continuum QCD, the lattice formulation of gauge theories does not strictly
require gauge fixing as we integrate over a compact gauge group, and the over-
counting of gauge links in the same orbit simply emerges in the form of an overall
normalisation constant. While physical observables are gauge-invariant, gauge
fixing is needed for studying gauge-dependent intermediate quantities of interest
such as correlation functions as well as in some non-perturbative renormalisation
schemes which use gauge-dependent matrix elements to renormalise composite
operators [176], as we will see in chapter 4. Where required, lattice measurements
used in the projects in this thesis are gauge fixed using the Landau gauge.

3.2.4 Ensemble generation and scale setting

Given a starting configuration of fields T0, we evolve it via a Markov chain process which
updates according to the Metropolis accept/reject condition to create trajectories of field
configurations {Ti}, generated using the Gibbs measure in eqn (3.63). The Monte Carlo
method samples intermittently from the trajectories in the ensemble in order to reduce
autocorrelations between consecutive field configurations. Such a set of configurations
is called a gauge ensemble; these are computed for a particular lattice and are then used
as integration variables for fermionic observables.

Before we move on to discussing how fermionic observables are computed using these
gauge ensembles, let us take stock of the all the input parameters needed for computing
these ensembles on a given lattice. As discussed in section 2.3, QCD is fully defined with
seven input parameters: the Nf = 6 quark masses and the strong coupling constant gs.
The hierarchy of masses between the lightest and heaviest quarks makes it very difficult
to simulate all six quarks on the same lattice. Simulations are instead restricted to a
smaller number of quarks for the purpose of ensemble generation, for example Nf = 2,
Nf = 2 + 1, or Nf = 2 + 1 + 1, where 2 refers to mass degenerate light quarks (l) -
up and down (this further reduces the number of parameters). The quarks included in
the ensemble generation process are called sea quarks. The projects in this thesis use
lattices with Nf = 2 + 1 quarks in the sea.

In order to fix the remaining parameters, experimentally determined values of m⇡, mK

and m⌦ are used as physical inputs to set the values of ml, ms and the lattice spacing
a respectively. In this thesis we will also study physics at the charm scale, which we
will fix using a physical input such as the ⌘c meson mass, however the charm quark is
simulated only in the valence sector and its sea effects are neglected.
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3.3 Correlation functions

Correlation functions, also known as n-point functions or Green’s functions, are the
building blocks for observables in a QFT. These are given by expectation values of
products of fermionic fields with some Dirac structure. Recall from eqn (3.54) that
expectation values on the lattice are estimated stochastically by averaging over mea-
surements made on a set of configurations generated by the Gibbs measure for our
theory.

Having generated an ensemble of gauge configurations, we are now ready to measure the
expectation values of fermionic observables.

3.3.1 Propagators

Let us start with the simplest flavour-diagonal correlation function of two fermion fields
known as a propagator

Sf (x, y)
↵�

ab
=
D
 ↵
f,a

(x) 
�

f,b(y)
E

g

, (3.67)

where the Greek and Latin letters denote Dirac (also known as spin) and colour indices
respectively, and the subscript g denotes the expectation value over gauge configurations.
This describes a quark of flavour f created at point y propagating to and annihilated at
point x. As discussed in section 3.1.2, the quark propagator is given by the expectation
value of the inverse Dirac operator

Sf (x, y)
↵�

ab
=

⌧h
D�1

f
(x, y)

i
↵�

ab

�

g

. (3.68)

It also inherits the �5-hermiticity property of the Dirac operator (as mentioned in sec-
tion 3.1.5) and is therefore trivially related to the quark propagator in the opposite
direction (from x to y) by

Sf (y, x)
↵� = �↵⇢5 S†

f
(x, y)⇢����5 , (3.69)

where the Hermitian conjugation acts on the spin and colour indices.

Point sources

Propagators are ubiquitous to all lattice computations and make up the dominant ex-
pense as they require multiple solves of linear equations using the Dirac operator on
each gauge configuration, as they are gauge-dependent quantities. The Dirac operator
is a large matrix connecting every possible “source point” (source site, spin, colour) to
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every possible “sink point” (sink site, spin, colour) [177]. In practice, propagators are
computed by inverting the Dirac operators using a source operator s(x, y) as

Sf (x, y)
↵�

ab
=
D
D�1

f
(x, z)↵⇢ac s(z, y)

⇢�

cb

E

g

. (3.70)

The all-to-all propagator is computed by inverting the Dirac operator at every source
and sink point using the source operator

s(x, y)↵�
ab

= �x,y�↵��ab. (3.71)

This is very expensive to compute, and the task can be somewhat simplified by not-
ing that the matrix elements of the full propagator will be highly correlated owing to
translation invariance on the hypercubic lattice8. We can instead be much more mem-
ory efficient by storing entries from only one source point to every possible sink point,
thereby removing largely redundant information. This is equivalent to retaining a single
column of the inverse Dirac operator by using a source vector

spt(x; y0) = �x,y0�↵��ab, (3.72)

Sf (x, y0)
↵�

ab
=
D
D�1

f
(x, z)↵⇢ac spt(z; y0)

⇢�

cb

E

g

, (3.73)

at a single source site y0. This restricts us to only 12 inversions (4 Dirac ⇥ 3 colour
combinations) contributing to each choice of a sink point.

As point sources are placed at specific lattice sites, they are sensitive to local fluctuations;
it is therefore common practice to average over many sources across the lattice sites in
order to maximise the information extracted and reduce the statistical noise.

Stochastic sources

An overall reduction of noise in the inversion of the Dirac operator can be achieved with
the use of stochastic sources [178], a method that has long been used in physics [179–181].
The stochastic approach to estimating the inverse of an M ⇥M matrix D employs the
introduction of an ensemble of Nhits column vectors ⌘(n) with n = 1, . . . , Nhits each with
dimension M ⇥ 1 with the properties of white noise

h⌘iin =
1

Nhits

NhitsX

n=1

⌘(n)
i

= 0,
D
⌘i⌘

†

j

E

n

=
1

Nhits

NhitsX

n=1

⌘(n)
i
⌘†,(n)
j

Nhits!1= �ij , (3.74)

where the second property allows for a noisy estimation of the inverse hD�1
ij
⌘i⌘

†

j
in = D�1

ij

in the limit of a large number of hits.
8Note that translation invariance for lattice observables on a given ensemble is only approximate and

is restored fully only after gauge averaging.
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For the projects in this thesis we use Nhits stochastic Z2-wall sources ⌘↵a (x, t0) [182,
183] (called “wall” since the time component is fixed at some t0) such that their hit-
expectation value satisfies

D
⌘↵a (x, t0)⌘†,�b

(y, t0)
E

n

⌘ 1

Nhits

NhitsX

n=1

⌘(n),↵a (x, t0)⌘†,(n),�b
(y, t0)

Nhits!1= �x,y�↵��ab. (3.75)

These are used for computing the propagator as

Sf (x, y)
↵�

ab
=
D
D�1

f
(x, z)↵⇢ac sZ2(z, y; t0)

⇢�

cb

E

g,n

, (3.76)

where s(n)Z2
(x, y; t0)

↵�

ab
= ⌘(n),↵a (x, t0)⌘†,(n),�b

(y, t0)�tx,ty
= ⌘(n)(x)⌘†,(n)(y)�x,y�tx,ty�↵��ab,

(3.77)

where each entry of the noise vector at the lattice site x corresponds to a Z2⇥Z2 complex
number

⌘(n)(x) 2
⇢

1p
2
(±1± i)

�
. (3.78)

It is worth noticing that the gauge and hit averages commute, so the large hit limit (and
therefore a good estimation of S) can be achieved by placing only a few noise sources
per gauge configuration.

Note also that in lattice calculations we often extract only the time-dependence of cor-
relation functions, and average over the spatial volume; this means the propagator is
computed as

Sf (tx, ty)
↵�

ab
=

*
X

x,y
D�1

f
(x, z)↵⇢ac sZ2(z, y; t0)

⇢�

cb

+

g,n

. (3.79)

If we assume the stochastic source vector sZ2 to be diagonal in the spin indices, then for
a given source time ty, we only need to invert the Dirac matrix once per flavour. This
means that by introducing noise we are able to sample the entire spatial volume of the
source time-plane with only one inversion; this is known as the one-end-trick [183,184].

Some other noise reduction techniques that are beyond the scope of this thesis include
deflation [185], distillation [186], low-mode-averaging [187,188], and all-mode-averaging
[189–191].

Gaussian smeared sources

The point-like sources we have discussed so far place the quark field  (x) on a spe-
cific lattice site x, which has only a small overlap with the physical wavefunction since
particles are not point-like. We can consider modelling the physical wavefunction by
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using more point sources, however this increases the number of inversions required (of
the Dirac operator); so we instead use smeared fields to optimise our signal of interest.
For this we use a “smearing function” – a standard choice for this is the Jacobi smear-
ing which follows the Gaussian shape like those of simple wavefunctions [192], making
it easy to create gauge-invariant smeared interpolating operators. This corresponds to
smearing at the source and/or sink point as

sAB

! (x, y) =
X

w,z
!A(x, z)�tx,tz s(z, w)!B(w, y)�tw,ty ; A,B 2 {S,L}, (3.80)

with !S(x, y) =
✓
1 +

�2

4N

◆
H(x, y;N); !L(x, y) = �x,y (3.81)

where S and L stand for smeared and local respectively; � is the smearing width, N is
the number of smearing steps, and H(x, y) is the smearing function

H(x, y;N) =
3X

i=1

⇣
Ui(x)�x+î,y

+ Ui(x� î)�
x�î,y

⌘
N

. (3.82)

The projects in this thesis use correlation functions with both local and smeared quark
fields, and further details about the smearing parameters � and N used are provided in
[105].

3.3.2 Meson interpolators

As discussed in section 2.3, the confining nature of QCD dictates that there are no colour-
singlet states at low energies, and quarks are confined into colour-neutral hadrons. In the
low energy regime, we are interested in hadrons and therefore must discuss the properties
of relevant operators and relate their correlation functions to hadronic observables.

Hadrons are characterised by their spin (J), parity (P ) and charge conjugation (C)
quantum numbers. To study these hadrons on the lattice, we must identify interpo-
lating operators that create states with the appropriate quantum numbers from the
vacuum. Some general forms of mesonic interpolators are quark bilinears which act as
local creation and annihilation operators given respectively by

O(x) =  f (x)� f 0(x), O† =  f 0(x)�† f (x). (3.83)

Here, f and f 0 correspond to the flavours of the two quark fields, and � is a generic
Dirac structure used for inducing the appropriate quantum numbers – table 3.1 lists
various choices of � and the quantum numbers induced by each. In this thesis, we are
interested in the properties of pseudoscalar mesons such as ⇡, K, D, Ds, ⌘c, B, and Bs,
which are created by interpolators of the form  f�5 f 0 .
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� Lorentz JPC mesons
1 scalar 0++ a0, f0, . . .
�5 pseudoscalar 0�+ ⇡, K, D, Ds, ⌘c, B, Bs, . . .
�µ vector 1�� ⇢, !, �, J/ , K⇤, D⇤, . . .
�µ�5 axial vector 1++ a1, f1, . . .
�µ⌫ tensor 1+� b1, h1, . . .

Table 3.1: Quantum numbers induced by various Dirac structures in meson interpola-
tors: J is psin, P is parity and C is charge conjugation. Some of the lightest mesons

are listed as examples [6, 7].

Two-point functions

Let us begin by studying the two-point correlation function of a meson interpolator
O(x) between the source and sink sites xsrc and xsnk given by the time-ordered vacuum
expectation value

C2pt(xsnk, xsrc) =
D
T{O(xsnk)O(xsrc)

†}
E
. (3.84)

We are often interested only in the temporal separation and therefore average over the
spatial volume to get

C2pt(t) =

*
X

x
T{O(x, t)O(0, 0)†}

+
. (3.85)

By making the expectation values explicit, inserting a complete set of states, and pulling
out the time-dependence of the operators, one can show that this equation is analytically
equivalent to

C2pt(t) =
1

Z

X

x,n

1

4EnE0
h0|e�E0(T�t)O(x, 0)e�Ent|nihn|O(0, 0)|0i, (3.86)

where En is the energy of the nth state, and T is the lattice time extent. The partition
function is given by

Z =
X

n

1

2En

hn|e�ĤT |ni =
X

n

1

2En

e�EnT . (3.87)

One can show that by neglecting the finite-size effects, the two-point function can be
simplied to the form

C2pt(t) =
X

n

|An|2
2En

⇣
e�Ent + e�En(T�t)

⌘
, (3.88)

where An is the transition amplitude between the vacuum and the nth energy state
An = |h0|O|ni| = |h0|O†|ni|. The two-point function therefore behaves as a cosh-like
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function, where the second term captures the “around-the-world” effect of the toroidal
lattice.

We commonly refer to the n = 0 state as the ground state and to all others (n > 0) as
excited states. Since En>0 > E0, at large time separations we can assume ground state
dominance and isolate the ground state energy from the asymptotic time behaviour of
the effective mass, given by the ratio9

meff (t) = cosh�1
✓
C2pt(t+ 1) + C2pt(t� 1)

C2pt(t)

◆
; 0⌧ t⌧ T/2. (3.89)

Note that source smearing is often used to increase overlap with the ground state and
reduce excited state contamination in correlation functions.

Three-point functions

The three-point functions we study in this thesis are those of flavour-changing neutral
currents corresponding to pseudoscalar meson mixing. In this section, we term the quark
which does not change flavour as the spectator quark,  s, and the one that does change
flavour from and initial state flavour f1 to a final state flavour f2 as the valence quark.
The initial state creation and final state annihilation operators are therefore given by

O†

1(x) =  s(x)�5 f1(x),

O2(x) =  f2
(x)�5 s(x).

(3.90)

The interaction is mediated by some flavour-changing operator Q(x) with the appropri-
ate Dirac structure and quark content, for example the operators in eqn (2.91) in the
case of neutral kaon mixing. The three-point function of the interaction is thus given by

C3pt(t,�T ) =

*
X

x,y
O2(x,�T )Q(y, t)O†

1(0, 0)
+
, (3.91)

with the operator inserted at t and the initial and final states separated by�T . Smearing
can be applied in various combinations for the different quark fields – spectator or valence
– in the inital and final state operators in order to improve the overlap with the ground
state. Additionally the source and sink separation �T can be optimised for extracting
a stable signal with the least amount of statistical fluctuations.

9Note that this is only one choice for defining the effective mass and there exist other definitions that
are often used.
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3.4 Statistical analysis

3.4.1 Resampling and error propagation

Correlation functions are defined as expectation values over an ensemble of gauge config-
urations, where we compute an average over data from our simulations. This alone only
provides a single average value for the correlation function and it is important to esti-
mate statistical errors. While it is possible to assign a statistical error by studying the
variance in measurements over configuration for primary quantities (measured directly
on gauge configurations), it becomes difficult to define the errors for secondary quanti-
ties that are derived from primary ones (especially if there is a non-linear dependence).
This problem is typically addressed by employing resampling methods.

In this thesis we adopt the bootstrap resampling method [193] which is a generalisation of
the jackknife method. Given a random variable x with N measurements, the bootstrap
resampling method generates a resampled dataset made up of K “bootstrap samples”
that define the mean and variance for the unbiased estimator x̃ via

hx̃i = 1

K

X

k

bk; �2x̃ =
1

K � 1

X

k

(bk � hxi)2, (3.92)

where bk is the kth bootstrap sample given by the average of N randomly selected
values from the measurement sample with replacement, and hxi is the measurement
sample average. Statistical errors are therefore propagated via bootstrap samples, and
secondary data is constructed from primary data using operations performed bootstrap-
sample-by-bootstrap-sample.

In practice, the N measurements each represent the configuration value of x, and the
bootstrap resample method assumes that these are uncorrelated. This is a valid assump-
tion as long as the Monte Carlo sampling takes place over configurations sufficiently
separated in the Markov chain process.

The number of bootstrap samples K is a free parameter, and the estimator x̃ is expected
to converge to x in the limit K ! 1. For all quantities in the projects in this thesis,
we use 1000 bootstrap samples. It is important to note that the resampling method
provides an estimate and therefore carries an associated resampling error [194].

In this thesis, we use datasets of varying sizes depending on how many configurations
are used in the measurement for a given quantity, and we typically wish to combine
the data for example to produce results for an observable in the combined continuum
limit derived from lattices of varying lattice spacings. The resampling method provides
a simple and statistically robust way for computing estimators for such observables.
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3.4.2 Data fitting

Lattice data is typically conceived in the form of volume-averaged correlation functions.
We are often interested in extracting information – for example amplitudes and energies –
by fitting the lattice data to some analytic form. In this section we outline our procedure
for the fitting of data.

As a simple example, consider a correlation function dependent on time-separation t,
C(t), which we wish to describe with an ansatz f(↵, t) where ↵ is the vector of input
parameters we wish to extract using a tuning procedure that converges on the value
↵? such that f(↵?, t) best describes C(t). The procedure followed for all such fits in
this thesis is the generalised least-squares method which optimises ↵ by minimising the
quantity

�2 = (C(ti)� f(↵, ti))COV�1(ti, tj)(C(tj)� f(↵, tj)), (3.93)

where C(t) � f(↵, t) is known as the residual or difference vector, and cov(ti, tj) is the
covariance between the time slices ti and tj . The covariance is estimated from the
samples of the correlation function, and is given by

cov(ti, tj) = h(C(ti)� hC(ti)i)(C(tj)� hC(tj)i)i , (3.94)

where “samples” can mean the configuration samples or the bootstrap (re)samples. The
diagonal elements are the variances �2(ti) at each time slice, and are useful for relating
the covariance matrix to the correlation matrix

cor(ti, tj) =
1

�(ti)
cov(ti, tj)

1

�(tj)
, (3.95)

which captures the statistical correlations between different times.

Having determined the optimal values of the fit parameters ↵? that minimise the �2,
we can quantify the suitability of the ansatz f(↵?, t) for describing the data C(t). This
goodness-of-fit is calculated by reporting the two-tailed p-value of the fit corresponding
to the reduced �2 distribution given by �2

red ⌘ �2/d.o.f., where d.o.f. stands for the
degrees of freedom in the fit. The p-value measures the probability of obtaining the
observed data assuming the null hypothesis is true. In this thesis, we almost always
characterise fits that reject the null hypothesis to have 5%  p  95%, where the upper
bound typically punishes over-fitting.

In the case where we neglect the inherent correlations in the data (by imposing cor(ti, tj) =
�ij) and perform an uncorrelated fit, the �2

red distribution provides no probabilistic in-
terpretation for the goodness-of-fit.
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3.5 Lattice systematic errors

In addition to statistical errors associated to the Monte Carlo stochastic estimation of
quantities on the lattice, the lattice methodology inherently introduces systematic errors
that must be estimated, controlled, and reduced when making a prediction for a physical
observable. Note that systematic errors need to be estimated individually for different
observables, and the methodologies used in the projects in this thesis will separately
account for them in chapter 5 and chapter 6. In this section, we give a brief overview of
some of the common sources of systematic errors in lattice computations.

Finite volume effects

As we briefly saw in the case of two-point functions in section 3.3.2, the finite volume
as well as the periodic boundary conditions of the lattice introduce “around-the-world”
effects, that is, self interactions between particles on the lattice and their counterparts
across the boundary. For the quantities in this thesis, these effects are exponentially
suppressed by the mass of the particle as e�mL [195]. This means that the minimum
volume required to keep finite volume effects at a sub-percent level is determined by the
mass of the lightest hadron on the lattice, which is usually the pion; this threshold is
typically imposed by ensuring m⇡L & 4 [196].

Discretisation errors

In order to calculate a continuum observable using lattice data, it is necessary to compute
the same physical observable on lattices with different spacings so as to parameterise the
lattice spacing dependence and extrapolate to the continuum limit a! 0. The various
choices involved in discretising the theory on a lattice leads to various discretisation
errors in the value of observables in the continuum limit.

As we discussed in section 3.1.4, retaining chiral symmetry automatically limits dis-
cretisation errors to O(a2), but the finite size of the fifth dimension of the domain wall
fermion discretisation still introduces residual chiral symmetry breaking effects measured
by the quantity amres.

In addition to this, discretisation errors are also expected to grow in powers of amq,
where mq are input quark masses, and the largest errors are induced by the heaviest
quark in the valence sector. For all hadrons to be well resolved on the lattice, the pion
mass m⇡ and the mass of the heaviest quark need to satisfy

L�1 ⌧ m⇡ < mq < a�1, (3.96)
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however this hierarchy is often violated when working with charm or bottom quarks.
There are many proposed methods of controlling discretisation errors caused by heavy
quark masses, and in chapter 6 of this thesis, we will discuss a specific methodology that
addresses this problem via the procedure of non-perturbative renormalisation (NPR).

Chiral extrapolation

As discussed in section 3.2.4, lattice computations use ensembles of gauge configurations,
for example with Nf = 2+1 quark flavours in the sea, where the quark masses and lattice
spacing are tuned using physical values of the pion, kaon, and omega-meson masses as
input. However, it is often computationally expensive to generate ensembles at the
physical point, that is, where the quark masses are tuned using the physical values
of the meson masses. For this reason lattice calculations often use gauge ensembles
generated using meson masses heavier than their physical values. In order to control
the systematic error arising from the use of unphysical meson masses for tuning the
lattice parameters, it is necessary to compute physical observables on lattices differing
on the values of the input meson masses, and extrapolate to the physical values of the
meson masses. Note that chiral perturbative theory provides a symmetry-based, model-
independent approach to parameterising the quark mass dependence of observables, as
discussed briefly in section 2.3.3.

In the meson mixing project in this thesis (reported in chapter 5), we make use of lattices
tuned using both physical and unphysical meson masses. In the massive NPR project in
this thesis (reported in chapter 6), we only use lattices tuned at unphysical pion masses,
and therefore study the pion mass-dependence of our results as part of the analysis of
systematic errors.
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Chapter 4

Non-perturbative renormalisation

The spacetime lattice can be viewed as a regularisation where the lattice spacing and
finite box size play the roles of ultraviolet and infrared regulators respectively. In order to
obtain physical results from numerical simulations, lattice regularised quantities need to
be identified with observables in the continuum theory via the process of renormalisation.

Masses of hadronic bound states are scale-independent and therefore physical (that is,
experimentally measurable), and can be measured directly from the exponential de-
cay of two-point correlation functions without a need for renormalisation. However,
scale-dependent observables such as hadronic matrix elements and quark masses require
renormalisation parameters that must be assigned via a chosen scheme.

Lattice perturbation theory – using series exapansions in powers of the small lattice
spacing a – has been used historically for comparing lattice and continuum results [197].
However this method has poor convergence in certain cases and reducing uncertainties
below 5% is difficult. As a result, non-perturbative renormalisation (NPR) methods
have been proposed for removing the regularisation-dependence of observables, yielding
quantities in the so-called regularisation-independent (RI) schemes [198] which may then
be matched to some favoured continuum scheme — commonly the MS scheme — using
continuum perturbation theory.

The procedure is therefore the following: we start with lattice regularised data which
are outputs from our numerical simulations, we use an intermediate NPR scheme and
extrapolate to the continuum limit to produce regularisation-independent quantities
which are then matched to MS scheme using continuum perturbation theory.

4.1 The Rome-Southampton method

A renormalisation scheme demands that in the continuum limit (a ! 0), renormalised
lattice operators must correspond to finite operators which have the same symmetries
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q

p1 p2

�

Figure 4.1: Choice of kinematics for bilinear Green’s functions. The dashed bubble
represents the operator insertion (with Dirac structure �) and higher order corrections,

p1 and p2 are the momenta of the external off-shell quark lines.

and renormalisation conditions as those in the continuum theory. In what follows,
we describe the NPR prescription in the Rome-Southampton symmetric momentum-
subtraction scheme - RI/SMOM [199]. Note that all discussions use Euclidean quantities.

Consider a bare lattice operator O(a). The regularisation-independent operator at some
renormalisation scale µ is defined by introducing a renormalisation constant ZO as

ORI(µ) = lim
a!0

ZO(aµ)O(a). (4.1)

In the RI/SMOM scheme, ZO is found by demanding that in a fixed gauge, for a chosen
set of external momenta, the renormalised amputated Green’s function of O coincide
with its tree level value. This is described in further detail in the following subsections
in the cases of bilinear and fourquark operators.

Renormalisation of bilinear operators

Consider the Green’s function of a quark bilinear operator OF

� =  f�⌧
F f 0 between

two external off-shell quark lines in a fixed (Landau) gauge

GF

� (p2, p1) = h f (p2)OF

� (q) f 0(p1)i, (4.2)

where  f and  f 0 are quark fields of flavours f and f 0, and q = p1�p2 (see figure 4.1 for
conventions used). ⌧F represents a generator of the SU(Nf ) symmetry; note that for
the remainder of the discussion we suppress the sum over the adjoint flavour index F .
� indicates the Dirac structure of the operator; we are interested in scalar, ‘S’ (� = 1),
pseudoscalar, ‘P’ (� = i�5), vector, ‘V’ (� = �µ), axial vector, ‘A’ (� = �µ�5), and
tensor, ‘T’ (� = 1

2 [�µ, �⌫ ] := �µ⌫) bilinears. The quark propagator is defined as

Sf (p) = h f (p) f (p)i, (4.3)

and the amputated Green’s function is obtained by amputating each leg with the inverse
quark propagator of the corresponding flavour

⇤�(p1, p2) = S�1
f

(p2)G�(p2, p1)S
�1
f 0 (p1). (4.4)
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Renormalised (subscript ‘R’) and bare quantities (no subscript) are related via renor-
malisation constants Z as

 R = Z1/2
q  , mR = Zmm, O�,R = Z�O�,

=) SR(p) = ZqS(p), ⇤�,R(p1, p2) =
Z�

Zq

⇤�(p1, p2).
(4.5)

The Z-factors in the RI/SMOM scheme are defined by imposing the condition

lim
mR!0

P̂� [⇤�,R(a, p1, p2)]sym = F� ⌘ P̂�

h
⇤(0)
� (p1, p2)

i

sym
,

=) lim
mR!0

Z�

Zq

(a, µ)P̂� [⇤�(a, p1, p2)]sym = F� ,
(4.6)

where ⇤(0)
� is the tree level amputated Green’s function, P̂� is a projector, and F� is the

corresponding tree level value. ‘sym’ denotes the symmetric momentum configuration
characteristic to the SMOM scheme which sets the renormalisation scale

p21 = p22 = q2 ⌘ µ2. (4.7)

RI/MOM vs RI/SMOM scheme

Originally, the Rome-Southampton method used the choice of kinematics

p1 = p2 = µ ; (p1 � p2)
2 = q2 = 0, (RI/MOM) (4.8)

where the momentum inserted at the operator is q = 0, called an exceptional
channel – where the square of the momentum, q2, is much smaller than the typical
scale µ2. For this choice of kinematics, the effects of chiral symmetry breaking
vanish slowly as 1/p2 for large external momenta p2, which can be seen via the
differences (⇤V � ⇤A) and (⇤S � ⇤P ) [200], and other unwanted infrared effects,
need to be subsequently treated with a pion-pole subtraction procedure. An
alternate choice of kinematics was proposed to address this issue, by employing
non-exceptional kinematics

p1 6= p2 ; p
2
1 = p22 = (p1 � p2)

2 = q2 = µ2. (RI/SMOM) (4.9)

The choice of such a symmetric subtraction point is convenient, as all renormalised
quantities depend on a single scale µ2, chiral symmetry breaking effects and other
unwanted infrared effects vanish faster as 1/p6, and are therefore better behaved.
As an added bonus, the RI/SMOM to MS conversion factor for Zm [201, 202] is
much closer to unity (upto O(↵2)) than its RI/MOM counterpart [203,204], mean-
ing that ZMS( RI/SMOM)

m can be computed with smaller systematic uncertainty
[199].



68 Chapter 4. Non-perturbative renormalisation

There are two variations of the scheme depending on the choice of projectors denoted
by (�µ) and (/q); listed below explicitly are all the renormalisation conditions [199]:

Zm :�µ, /q lim
mR!0

1

mR

⇢
Tr
⇥
SR(p)

�1
⇤
p2=µ2 +

1

2
Tr
⇥�
iq · ⇤A,R

�
�5
⇤

sym

�
= 12, (4.10)

ZP :�µ, /q lim
mR!0

Tr [⇤P,R�5]sym = 12i, (4.11)

ZS :�µ, /q lim
mR!0

Tr
⇥
⇤S,R

⇤
sym = 12, (4.12)

ZT :�µ, /q lim
mR!0

X

µ>⌫

Tr
h
⇤µ⌫

T,R
�µ⌫
i

sym
= 12. (4.13)

ZV :�µ lim
mR!0

Tr
h
⇤µ

V,R
�µ
i

sym
= 48, (4.14)

/q lim
mR!0

1

q2
Tr
⇥
(q · ⇤V,R) /q

⇤
sym = 12, (4.15)

ZA :�µ lim
mR!0

Tr
h
⇤µ

A,R
�µ�5

i

sym
= 48, (4.16)

/q lim
mR!0

1

q2
Tr
⇥�
q · ⇤A,R

�
�5/q
⇤

sym = 12, (4.17)

Zq :�µ lim
mR!0

Tr
"
@S�1

R
(p)

@pµ
�µ

#

p2=µ2

� i

2
Tr

qµ�⌫

@

@q⌫
⇤µ

V,R
(p1, p2)

�

sym
= 48, (4.18)

/q lim
mR!0

1

p2
Tr
⇥
�iSR(p)

�1
/p
⇤
p2=µ2 = 12. (4.19)

Note that the projectors for the scalar, pseudoscalar and tensor operators, and the
renormalisation condition for the fermion mass are identical in the (�µ) and (/q) schemes.

By design, the Z-factors in this scheme have the same properties to those in the contin-
uum MS scheme

ZA = ZV = 1, ZS = ZP = 1/Zm, (4.20)

and the renormalised quantities satisfy the vector and axial-vector Ward-Takahashi iden-
tities

qµ⇤
µ

V,R
(p2, p2) = iS�1

R
(p2)� iS�1

R
(p1), (4.21)

qµ⇤
µ

A,R
(p2, p2) = �2mR⇤P,R(p2, p2) + i�5S

�1
R

(p1) + S�1
R

(p2)i�5. (4.22)

Renormalisation of �F = 2 four-quark operators

Consider a color-unmixed four-quark operator

O =
⇣
 
↵

f,a�
A

↵�
 �
f 0,b

⌘⇣
 
�

f,c�
B

��
 �
f 0,d

⌘
�ab�cd, (4.23)



4.1. The Rome-Southampton method 69

p2

p1 p2
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�A �B

Figure 4.2: Choice of kinematics for a four-quark operator with �A⌦�B Dirac structure.
The dashed bubbles represent the operator insertions and higher order corrections, p1

and p2 are the momenta of the external off-shell quark lines.

where Greek and Latin letters denote spin and colour indices respectively, and �A and
�B are generic Dirac structures. Operators of this kind can be related to ones that make
up an effective weak �F = 2 Hamiltonian which encodes the short-distance contribution
to meson-mixing interactions as described in section 2.5.3. We are interested in the five
parity-even operators (spin indices are suppressed),

Q+
1 =  f,a�µ f 0,a  f,b�µ f 0,b +  f,a�µ�5 f 0,a  f,b�µ�5 f 0,b , (VV + AA)

Q+
2 =  f,a�µ f 0,a  f,b�µ f 0,b �  f,a�µ�5 f 0,a  f,b�µ�5 f 0,b , (VV�AA)

Q+
3 =  f,a f 0,a  f,b f 0,b �  f,a�5 f 0,a  f,b�5 f 0,b , (SS� PP)

Q+
4 =  f,a f 0,a  f,b f 0,b +  f,a�5 f 0,a  f,b�5 f 0,b , (SS + PP)

Q+
5 =

X

⌫>µ

 f,a�µ�⌫ f 0,a  f,b�µ�⌫ f 0,b , (TT)

(4.24)

where the labels on the right correspond to their Dirac structures. Q+
1 is the parity-even

part of the Standard Model �F = 2 four-quark mixing operator, and the rest are related
to Beyond the Standard Model (BSM) operators. Under SU(3)L⇥SU(3)R quark flavour
symmetry, Q+

1 transforms as (27, 1), Q+
2,3 as (8, 8), and Q+

4,5 as (6, 6). This implies that
operators 2 and 3, and 4 and 5 mix under renormalisation:

Q+
i,R

(a, µ) = Zij(a, µ)Q
+
j
(a) , (4.25)

2

6666664

Q+
1,R

Q+
2,R

Q+
3,R

Q+
4,R

Q+
5,R

3

7777775
=

2

6666664

Z11 0 0 0 0

0 Z22 Z23 0 0

0 Z32 Z33 0 0

0 0 0 Z44 Z45

0 0 0 Z54 Z55

3

7777775

2

6666664

Q+
1

Q+
2

Q+
3

Q+
4

Q+
5

3

7777775
. (4.26)

These Z-factors are defined via renormalisation conditions similar to those in the case
of bilinear operators

lim
mR!0

P̂k [⇤i,R(a, p1, p2)]sym = Fik ⌘ P̂k

h
⇤(0)
i

(p1, p2)
i

sym
, (4.27)

=) lim
mR!0

P̂k


Zij

Z2
q

(a, µ)⇤i(a, p1, p2)

�

sym
= Fik, (4.28)
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where the vertex function is derived by amputating the four quark legs of the corre-
sponding Green’s function,

G��;�↵ = h �
f
(p2) 

�

f 0(p1)O �f (p2) 
↵

f 0(p1)i, (4.29)

⇤��;�↵ =
h
S�1
f

(p2)
i
��
h
S�1
f

(p2)
i
��

G��;�↵
h
S�1
f 0 (p1)

i
��
h
S�1
f 0 (p1)

i
↵↵

. (4.30)

Once again, there are variations of the scheme corresponding to two sets of projectors
denoted by (�µ) and (/q) and these are listed below explicitly [72].

For the (27, 1) operator,
h
P̂

(�µ)
1

i
ba;dc

�↵;��
= [(�µ)�↵(�µ)�� + (�µ�5)�↵(�µ�5)�� ] �

ba�dc , (4.31)
h
P̂

(/q)
1

iba;dc
�↵;��

=
1

q2
⇥
(/q)�↵(/q)�� + (/q�5)�↵(/q�5)��

⇤
�ba�dc . (4.32)

For the (8, 8) doublet,
h
P̂

(�µ)
2

i
ba;dc

�↵;��
= [(�µ)�↵(�µ)�� � (�µ�5)�↵(�µ�5)�� ] �

ba�dc , (4.33)
h
P̂

(�µ)
3

i
ba;dc

�↵;��
= [��↵��� � (�5)�↵(�5)�� ] �

ba�dc , (4.34)
h
P̂

(/q)
2

iba;dc
�↵;��

=
1

q2
⇥
(/q)�↵(/q)�� � (/q�

5)��(/q�
5)��

⇤
�ba�dc , (4.35)

h
P̂

(/q)
3

iba;dc
�↵;��

=
1

q2
⇥
(/q)�↵(/q)�� � (/q�

5)��(/q�
5)��

⇤
�bc�da . (4.36)

Finally, for the (6, 6) doublet,
h
P̂

(�µ)
4

i
ba;dc

�↵;��
=
⇥
��↵��� + (�5)�↵(�

5)��
⇤
�ba�dc , (4.37)

h
P̂

(�µ)
5

i
ba;dc

�↵;��
=

"
X

⌫>µ

(�µ�⌫)�↵(�
µ�⌫)��

#
�ba�dc , (4.38)

h
P̂

(/q)
4

iba;dc
�↵;��

=
1

p21p
2
2 � (p1.p2)2

h
(pµ1 (�

µ⌫PL)p
⌫

2)�↵ (p
⇢

1(�
⇢�PL)p

�

2 )��

i
�bc�da , (4.39)

h
P̂

(/q)
5

iba;dc
�↵;��

=
1

p21p
2
2 � (p1.p2)2

h
(pµ1 (�

µ⌫PL)p
⌫

2)�↵ (p
⇢

1(�
⇢�PL)p

�

2 )��

i
�ba�dc , (4.40)

with PL = 1
2(1� �5). The matrices corresponding to the projecting the tree-level four-

quark vertex functions are given by

Pj

h
⇤(0)
i

i
= [Pj ]

ba;dc
�↵;��

h
⇤(0)
i

i
ab;cd

↵�;��
= Fij . (4.41)
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For the choice of projectors P (�µ) and P (/q), these are (for Ncolors = 3) [72]

F (�µ) =

0

BBBBBB@

3072 0 0 0 0

0 2304 �384 0 0

0 �384 576 0 0

0 0 0 480 288

0 0 0 288 2016

1

CCCCCCA
, (4.42)

F (/q) =

0

BBBBBB@

768 0 0 0 0

0 576 192 0 0

0 �92 �288 0 0

0 0 0 72 24

0 0 0 120 168

1

CCCCCCA
. (4.43)

It is common practice to remove the Zq-dependence of the renormalisation constants by
making use of a bilinear renormalisation constant such that

lim
mR!0

✓
Zij

Z2
�

(aµ)

◆(A,B) P̂ (A)
k

h
⇤4q
i
(a, p1, p2)

i

⇣
P̂ (B)
�

h
⇤2q
� (a, p1, p2)

i⌘2

�������
sym

=
Fik

F 2
�

, (4.44)

where we combine the renormalisation condition of the four-quark (4q) operator in
scheme (A) and the renormalisation condition of the bilinear (2q) operator in scheme
(B) (where A,B 2

�
�µ, /q

 
) to arrive at renormalisation constant (Zij/Z2

�) in the (A,B)
scheme.

4.2 Implementation in numerical simulation

On the lattice, we numerically compute Landau gauge-fixed Green’s functions of the
operators of interest between incoming and outgoing quarks in a given kinematic con-
figuration. The momenta are chosen from the Fourier modes of the simulated lattice

apµ =
2⇡

L
nµ, nµ 2 {0, 1, . . . , L}, (4.45)

where L is the extent of the lattice in the spatial directions. Twisted boundary conditions
are used in the valence sectors, so the momenta are not restricted only to the Fourier
modes. In practice we can interpolate between the integer Fourier modes by using

apµ =
2⇡

L
nµ +

⇡

L
✓µ, ✓µ 2

⇢
0,

1

N
, . . . ,

N � 1

N

�
, (4.46)

where ✓ is the twist angle of the boundary condition, and 1/N is some choice of interval.
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Furthermore, for a precise lattice calculation, the momentum scale is restricted to lie
within the Rome-Southampton window

⇤2
QCD ⌧ p2 ⌧

⇣⇡
a

⌘2
, (4.47)

where the upper limit controls discretisation effects and the lower limit guards against
potentially large non-perturbative effects in the infrared (which are prevalent in the
RI/MOM scheme when using exceptional kinematics).

We associate a momentum with each quark flavour (see figures 4.1 and 4.2), so we need
two momentum source propagators. The following convention is used (with respect to
the vertex position x):

1. An incoming quark  f with momenta p1 is denoted by

Sf,x(p1) =
X

y

Sf (x, y)e
ip1·(y�x). (4.48)

2. An outgoing quark  f 0 with momenta p2 is denoted by

Sf 0,x(p2) = �5Sf 0,x(p2)�
†

5 =
X

y

e�ip2·(y�x)Sf 0(y, x), (4.49)

A bilinear Green’s function in momentum space with external quark legs  f (p2) (out-
going) and  f 0(p1) (incoming) – see eqn (4.2) – is computed as

G�↵

� (p1, p2) =
X

x,x1,x2

h0| �
f
(x2) [O�(x)] 

↵

f 0(x1)|0ie�ip1·x̃1+ip2·x̃2 (4.50)

=
X

x

h
⇥
Sf,x(p2)�Sf 0,x(p1)

⇤�↵i. (4.51)

where x̃i = xi � x. The vertex function is obtained by amputating each leg as

⇤�↵� (p1, p2) =


S
��

f (p2)

��1
G�↵

� (p1, p2)
⇥
S↵↵
f 0 (p1)

⇤�1
, (4.52)

where we amputate using the inverse of the full momentum propagator

Sf (p) =
X

x

Sf,x(p). (4.53)

In a similar way, the momentum space Green’s function for a four-quark vertex with
two incoming quarks legs,  f (p2), and two outgoing legs,  f 0(p1), – see eqn (4.29) – is
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computed as

G��;�↵
�A⌦�B (p1, p2) =

X

x,x1,...,x4

h0| �
f
(x4) 

�

f 0(x3)
⇥
O�A⌦�B (x)

⇤
 �
f
(x2) 

↵

f 0(x1)|0i

⇥ e�ip1·x̃1+ip2·x̃2�ip1·x̃3+ip2·x̃4 (4.54)

= 2
X

x

⇣
h
⇥
Sf,x(p2)�

ASf 0,x(p1)
⇤�� ⇥

Sf,x(p2)�
BSf 0,x(p1)

⇤�↵i

� h
⇥
Sf,x(p2)�

ASf 0,x(p1)
⇤�↵ ⇥

Sf,x(p2)�
BSf 0,x(p1)

⇤��i
⌘
. (4.55)

The vertex function is once again computed by amputating each quark leg using the
inverse of the appropriate full momentum propagator

⇤��;�↵(p1, p2) =
h
S
�1
f (p2)

i
��
h
S
�1
f (p2)

i
��

G��;�↵(p1, p2)
h
S�1
f 0 (p1)

i
��
h
S�1
f 0 (p1)

i
↵↵

.

(4.56)

4.3 Matching in continuum perturbation theory

Quantities in the RI/SMOM scheme are typically converted to a continuum scheme such
as MS so that they can be used for producing phenomenological predictions. We are
interested in the conversion factor

hOiMS(µ) = RMS RI/SMOM(µ)hOiRI/SMOM(µ) (4.57)

RMS RI/SMOM(µ) =
ZMS(µ)

ZRI/SMOM(µ)
, (4.58)

which we compute using perturbation theory up to some fixed loop order. The conversion
factor can be parameterised as (where ↵s is the strong coupling)

RMS RI/SMOM(µ) = 1� ↵s(µ)

4⇡
�rMS RI/SMOM +O(↵2

s), (4.59)

and the coefficients �rMS RI/SMOM are presented the following sections.

Matching coefficients for bilinear operators

The matching coefficients for the bilinear operators have been calculated perturbatively
using dimensional regularisation to one-loop level for the RI/SMOM scheme in [199],
and are presented here in the Landau gauge

�r
MS (�µ)
q = �4

3
, �r

MS (/q)
q = 0, (4.60)

�r
MS (�µ)
m =

20

3
� 2C0, �r

MS (/q)
m =

16

3
� 2C0, (4.61)
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where (�µ) and (/q) are the two distinct RI/SMOM schemes, and

C0 =
2 (1)(13)

3
�
✓
2⇡

3

◆2

, (4.62)

wherein  is the polygamma function. For the scalar and pseudoscalar currents, ZS =

ZP = 1/Zm in both MS and RI/SMOM, which gives us�r
MS (�µ),(/q)
S,P

= ��r
MS (�µ),(/q)
m .

For the tensor operator, we have

�r
MS (�µ)
T

=
4

9
� 2

3
C0, �r

MS (/q)
T

=
16

9
� 2

3
C0. (4.63)

As ZA = ZV = 1 in both MS and RI/SMOM, the conversion factor RMS (�µ),(/q)
V,A

(µ) = 1.

Matching coefficients for �F = 2 four-quark operators

The matching coefficients for the �F = 2 four-quark operators have been calculated at
the one-loop level in literature and we present them here in the Landau gauge for the
(A,A)-type schemes using Ncolors = 3. The coefficients of the one-loop conversion factor
for the (27,1) operator is given by [84]

�r
MS (�µ,�µ)
11 =

16

3
� 8 log(2), �r

MS (/q,/q)
11 = 6� 8 log(2). (4.64)

For the (8, 8) doublet, we have [205]

�r
MS (�µ,�µ)
22 = �r

MS (/q,/q)
22 = �C0

2
+

2

3
+

2 log(2)
3

,

�r
MS (�µ,�µ)
23 = �r

MS (/q,/q)
23 = �3C0 + 4 + 4 log(2),

�r
MS (�µ,�µ)
32 = log(2)� 3

2
, �r

MS (/q,/q)
32 = log(2)� 1,

�r
MS (�µ,�µ)
33 = 4C0 �

43

3
+

2 log(2)
3

, �r
MS (/q,/q)
33 = 4C0 �

34

3
+

2 log(2)
3

.

(4.65)

Finally, for the (6, 6) doublet we have [72]

�r
MS (�µ,�µ)
44 =

13C0

4
� 40

3
+

2 log(2)
3

, �r
MS (/q,/q)
44 =

47C0

12
� 5� 10 log(2)

3
,

�r
MS (�µ,�µ)
45 = �C0

12
+

7

12
� 7 log(2)

3
, �r

MS (/q,/q)
45 = �11C0

36
+

11

9
� 14 log(2)

9
,

�r
MS (�µ,�µ)
54 =

11C0

4
� 1

3
� 14 log(2)

3
, �r

MS (/q,/q)
54 =

73C0

12
� 7� 14 log(2)

3
,

�r
MS (�µ,�µ)
55 = �23C0

12
+

29

9
� 58 log(2)

9
,�r

MS (/q,/q)
55 = �109C0

36
� 73

9
� 58 log(2)

9
.

(4.66)

The one-loop coefficients for converting from (A,B)-type schemes are presented in [72].
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4.4 Step scaling

The scale evolution function to a scale µ1 from another scale µ2

�(µ1, µ2) = Z(µ1)Z
�1(µ2) (4.67)

can be computed perturbatively as well as non-perturbatively. This comparison helps
us estimate the systematic errors affecting the renormalisation procedure and gauge the
quality of the perturbative series for the various schemes – we present this comparison
in section 5.3.2. We present here the details of perturbative scale evolution.

The renormalisation constant Z (a real number in the case of bilinears, a matrix in case
of four-quark operators) scales as

µ
dZ

dµ
= ��(µ)Z(µ), (4.68)

where �(µ) is the anomalous scaling dimension of Z. We can relate the renormalisation
constants from two different scales using

Z
Z2

Z1

dZ = �
Z

µ2

µ1

dµ
�(µ)Z(µ)

µ

=) Z(µ2) = Z(µ1)�
Z

µ2

µ1

dµ
�(µ)Z(µ)

µ
. (4.69)

We can recursively substitute for Z(µ) in the integral to get

Z(µ2) = Z(µ1)�
Z

µ2

µ1

dµ
�(µ)

µ


Z(µ1)�

Z
µ

µ1

dµ0
�(µ0)Z(µ0)

µ0

�

= Tµ exp

�
Z

µ2

µ1

dµ
�(µ)

µ

�
Z(µ1), (4.70)

where Tµ is denotes µ-ordering.

We can use the running of the strong coupling ↵s(µ) = gs(µ)2/4⇡, ie, the �-function, to
swap out the integral in µ for an integral in gs,

�(gs) = µ
dgs
dµ

=) dµ

µ
=

dgs
�(g)

, (4.71)

which we use in eqn (4.70) to get

Z(µ2) = Tg exp

�
Z

g2

g1

dgs
�(gs)

�(gs)

�
Z(µ1)

=) �pt(µ1, µ2) = Z(µ1)Z
�1(µ2) = Tg exp


�
Z

g1

g2

dgs
�(gs)

�(gs)

�
. (4.72)
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The �-function and the anomalous dimension can be expanded in powers of the strong
coupling

�(µ) = �gs(µ)
1X

i=0

✓
g2s(µ)

16⇡2

◆i+1

�(i) = �g3s(µ)

16⇡2
�(0) � g5s(µ)

(16⇡2)2
�(1) +O(g7s), (4.73)

�(µ) =
1X

i=0

✓
g2s(µ)

16⇡2

◆i+1

�(i) =
g2s(µ)

16⇡2
�(0) +

✓
g2s(µ)

16⇡2

◆2

�(1) +O(g6s). (4.74)

The coefficients of the anomalous magnetic moment are operator-dependent while the
coefficients of the �-function are universal and known upto many orders. The values
upto first order are (for Nf quark flavours)

�(0) =11� 2

3
Nf , �(1) = 102� 38

3
Nf . (4.75)

At leading order (LO) in ↵s, the perturbative scaling is given by

�(0)
pt

(µ1, µ2) = Tg exp
"
�
Z

g1

g2

dgs
gs

�(0)

��(0)

#
= exp

"
�(0)

�(0)
log
✓
gs(µ1)

gs(µ2)

◆#

=

✓
gs(µ1)

gs(µ2)

◆
�
(0)/�(0)

=

✓
↵s(µ1)

↵s(µ2)

◆
�
(0)/2�(0)

. (4.76)

At next-to-leading order (NLO), we have

�(1)
pt

(µ1, µ2) = Tg exp

2

4
Z

g1

g2

dgs
gs

⇣
�(0) + �(1)( g

2
s

16⇡2 )
⌘

⇣
�(0) + �(1)( g

2
s

16⇡2 )
⌘

3

5 , (4.77)

where �(0) is scheme-independent and �(1) is typically scheme-dependent. If �(1) is
known in a scheme A, we can convert it to another scheme B via

�(1),B = �(1),A +
h
�rB A, �(0)

i
+ 2�(0)�rB A, (4.78)

where �rB A is the coefficient of the scheme conversion factor at leading order (as
defined in eqn (4.59)). This means, given �(0), �(1),MS, and �rMS RI/SMOM (provided in
preceeding sections), we can compute �(1),RI/SMOM and NLO perturbative scale evolution
in RI/SMOM. We present the values of �(0) and �(1),MS for bilinear and four-quark
renormalisation factors in the following sections.

Note that for numerical computations, our inputs were [6]

↵s(MZ) = 0.1180, MZ = 91.1876GeV,

m̄b(m̄b) = 4.18GeV, m̄c(m̄c) = 1.28GeV,
(4.79)
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and we determine

↵s(2GeV) = 0.293347, ↵s(3GeV) = 0.243580. (4.80)

Perturbative scaling of bilinear operators

In the case of bilinear operators, �(i) are just c-numbers, and often known to many-
loop orders [199,206,207]. The coefficients of the anomalous dimension of some bilinear
quantities up to order O(↵2

s) are presented below in MS

�(0)q = 0, �(1),MS
q =

1

16

✓
67

3
� 4

3
Nf

◆
,

�(0)m = 1, �(1),MS
m =

1

16

✓
202

9
� 20

9
Nf

◆
,

�(0)
T

=
1

3
, �(1),MS

T
=

1

16

✓
362

9
� 52

27
Nf

◆
.

(4.81)

Once again by exploiting the chiral symmetry relation ZS = ZP = 1/Zm, we get

�S(µ) = �P (µ) = ��m(µ). (4.82)

Perturbative scaling of �F = 2 four-quark operators

The leading order anomalous dimension matrix of the �F = 2 four-quark operators is
scheme-independent and is calculated in [208–210]. For Ncolors = 3, it’s given by

�(0) =

0

BBBBBB@

4 0 0 0 0

0 2 12 0 0

0 0 �16 0 0

0 0 0 �10 2
3

0 0 0 �10 34
3

1

CCCCCCA
. (4.83)

Following the procedure in [209], we can diagonalise �(0) as

V �1�(0)V = �(0)
D

, (4.84)

�(0)pt (µ1, µ2) = V

✓
↵s(µ1)

↵s(µ2)

◆
�
(0)
D /2�(0)

V �1, (4.85)

where �(0)
D

is the diagonal matrix of eigenvalues

�(0)
D

= diag
✓
4, 2,�16, 2

3

⇣
1 +
p
241
⌘
,
2

3

⇣
1�
p
241
⌘◆

. (4.86)
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The scale evolution beyond the leading order can be written as

�pt(µ1, µ2) ⌘ K(µ1)�
(0)
pt (µ2, µ1)K

�1(µ2), (4.87)

where the matrix K(µ) satisfies

@K

@gs
+

1

gs

"
K,

�(0)

�(0)

#
=

 
�(gs)

�(gs)
+

1

gs

�(0)

�(0)

!
K. (4.88)

To compute the scale evolution at next-to-leading order (NLO) in ↵s we use K at leading
order, which can be parameterised as1 [9]

K = 1 + J
g2s

16⇡2
+ L

g2s
16⇡2

ln(gs). (4.89)

Substituting this into eqn (4.88), we find that the matrices J and L must satisfy

L =
1

2

"
�(0)

�(0)
, L

#
,

2J + L+

"
J,
�(0)

�(0)

#
=

1

�(0)
�(1) � �(1)

�
�(0)

�2 �
(0).

(4.90)

Using the LO diagonalising matrix V from eqn (4.85), we can rewrite this system of
equations as

Tij = (ai � aj)Tij ,

Sij +
1

2
Tij � (ai � aj)Sij =

1

2�(0)
Gij �

�(1)

�(0)
ai�ij ,

(4.91)

where

a =
1

2�(0)
�(0)
D

, G = V �1�(1)V, S = V �1JV, T = V �1LV. (4.92)

Eqn (4.91) determines the matrix elements of Tij when (ai � aj) = 1, and those of Sij

when (ai�aj) 6= 1. With S and T , we can detemine J and L, and therefore compute the
matrix K and the NLO expression for the perturbative scale evolution. The two-loop
coefficients of the anomalous dimension matrix in MS for Ncolors = 3 and Nf quark

1We thank Dr Nikolai Husung for proposing the inclusion of the logarithmic term in this parameter-
isation.
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flavours is given by [209,210]

�(1),MS =

0

BBBBBB@

4Nf

9 � 7 0 0 0 0

0 71
3 �

22Nf

9 198� 44Nf

3 0 0

0 225
4 � 2Nf

17
18 (8Nf�237) 0 0

0 0 0 1
9 (74Nf�1459) �2Nf

27 �
35
9

0 0 0 1
9 (146Nf�1583)

1
27 (6195�394Nf )

1

CCCCCCA

(Nf=3)
=

0

BBBBBB@

�17
3 0 0 0 0

0 49
3 154 0 0

0 201
4 �1207

6 0 0

0 0 0 �1237
9 �37

9

0 0 0 �1145
9

557
3

1

CCCCCCA
.

(4.93)

4.5 Renormalisation group invariant quantities

An operator Q(µ), renormalised in some scheme S such that the anomalous dimension
�(µ) is known, can be related to its scheme-independent renormalisation group invariant
(RGI) version Q̂ via the exact relation [210]

Q̂ = [↵s(µ)]
��

(0)/2�(0) exp
 
�
Z 0

gs(µ)
dgs

"
�(gs)

�(gs)
+

�(0)

�(0)gs

#!
Q(µ), (4.94)

which, at NLO in perturbation theory, reduces to

Q̂ = [↵s(µ)]
��

(0)/2�(0)

 
1 +

↵s

4⇡

"
�(1)�(0) � �(0)�(1)

2(�(0))2

#!
Q(µ) (4.95)

= [↵s(µ)]
��

(0)/2�(0)
K�1(µ)Q(µ), (4.96)

where K(µ) is defined via eqn (4.88).

Phenomenologically interesting RGI quantities of interest in the context of this thesis are
those derived from the SM bag parameter as introduced in section 2.5.4 in eqn (2.94).
The 11 element of the anomalous dimension and K matrix help convert the bag paramter
B1(µ) to B̂ via

B̂1 = ↵s(µ)
��

(0)
11 /2�(0)

K�111 (µ)BMS
1 (µ). (4.97)

To construct the B̂i for the BSM four-quark mixing operators, one would additionally
need to take into account the running of the quark masses in the definition in eqn (2.95).
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Chapter 5

Kaon mixing from lattice QCD

Neutral kaon mixing, as introduced in section 2.5, has long been an important area of
study in standard model (SM) and beyond the standard model (BSM) particle physics.
The process is mediated by a flavour changing neutral current interaction (absent at tree
level) whereby the neutral kaon K0 oscillates with its antiparticle K

0. The parameters
of neutral kaon mixing relating to CP -violation have been the subject of many lattice
calculations. In specific, the short-distance contributions to the indirect CP -violation
parameter "K using both SM and BSM operators – parameterised by the kaon bag
parameters – have been reviewed by the Flavour Lattice Averaging Group (FLAG) [7]
with consistent results from multiple collaborations [2, 3, 5, 76,76–86,88,90,211].

The short-distance contribution to the neutral kaon mixing process depends on matrix
elements of�S = 2 four-quark mixing operators, listed in eqn (2.88). While lattice QCD
is as a natural candidate for computing these matrix elements, the calculation is made
more challenging by the mixing pattern between these operators under renormalisation,
as described in eqn (4.25). In this project, we take advantage of the good chiral properties
of the domain wall fermion (DWF) formulation to constrain the mixing pattern on the
lattice to be the same as that in the continuum theory1 (see eqn (4.26)) upto O(amres)

corrections. In practice, these corrections are suppressed by controlling the extent of
the fifth dimension of the domain wall.

In this chapter, we report the details of a high-precision lattice computation of bag and
ratio parameters for SM and BSM neutral kaon mixing in the DWF framework, using
the RI/SMOM non-perturbative scheme for the renormalisation of �S = 2 four-quark
operators. At the end of this chapter we provide a comprehensive comparison, including
the discussion of tensions, with previous lattice computations of these quantities, and
demonstrate that this study improves upon previous results from the RBC-UKQCD
collaboration. The current status of neutral kaon mixing in and beyond the SM is

1Chiral symmetry on the lattice becomes exact in the limit Ls ! 1.
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Figure 5.1: W exchange box diagrams mediating neutral kaon mixing in the SM.

summarised briefly in section 2.5.5, and for broader reviews of its status and prospects
we refer the reader to references [212–214].

5.1 Background

The theoretical background for neutral kaon mixing has been introduced in detail in sec-
tion 2.5, and the non-perturbative renormalisation of four-quark operators in section 4.1.
In this section we briefly repeat the main ingredients needed for the calculations that
follow in the remainder of this chapter, in order for the discussion to be self-contained.

The hadronic contributions to the short-distance part of neutral kaon mixing is given
via the matrix elements of the parity-conserving part of �S = 2 four-quark operators
given by (in the “SUSY” basis):

O+
1 = sa�µda sb�µdb + sa�µ�5da sb�µ�5db,

O+
2 = sada sbdb + sa�5da sb�5db,

O+
3 = sadb sbda + sa�5db sb�5da,

O+
4 = sada sbdb � sa�5da sb�5db,

O+
5 = sadb sbda � sa�5db sb�5da.

(5.1)

It is often more convenient to work in the “NPR” basis where they are all the operators
are colour-unmixed, given by

Q+
1 = sa�µda sb�µdb + sa�µ�5da sb�µ�5db, (VV + AA)

Q+
2 = sa�µda sb�µdb � sa�µ�5da sb�µ�5db, (VV�AA)

Q+
3 = sada sbdb � sa�5da sb�5db, (SS� PP)

Q+
4 = sada sbdb + sa�5da sb�5db, (SS + PP)

Q+
5 =

X

⌫>µ

sa�µ�⌫da sb�µ�⌫db, (TT),

(5.2)

where the labels on the right indicate the Dirac structures of each operator. We perform
the lattice calculations and renormalisation in the NPR basis and transform to the SUSY
basis prior to performing the necessary chiral and continuum limit extrapolations; note
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that all results in this chapter (unless otherwise stated) are therefore quoted in the SUSY
basis. The conversion between the two bases is given by the linear transformation

0
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O+
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4
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5

1

CCCCCCA
=

0
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1 0 0 0 0
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2 0 0 0
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1
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BBBBBB@
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1
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4

1
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�
Q+
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4

�
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3

�1
2Q

+
2

1

CCCCCCA
. (5.3)

We observe that under SU(3)L ⇥ SU(3)R quark flavour symmetry, Q+
1 transforms as

(27, 1), Q+
2,3 as (8, 8) and Q+

4,5 as (6, 6), and therefore the matrix elements of these
operators mix under renormalisation as

Q+
i,R

(a, µ) = Zij(a, µ)Q
+
j
(a) , (5.4)

2

6666664

Q+
1,R

Q+
2,R

Q+
3,R

Q+
4,R

Q+
5,R

3

7777775
=

2

6666664

Z11 0 0 0 0

0 Z22 Z23 0 0

0 Z32 Z33 0 0

0 0 0 Z44 Z45

0 0 0 Z54 Z55

3

7777775

2

6666664

Q+
1

Q+
2

Q+
3

Q+
4

Q+
5

3

7777775
, (5.5)

where the Z-factors and their corresponding projectors as well as tree-level values are
listed in section 4.1.

The bag parameters are a conventional choice of parameterisation for the hadronic ma-
trix elements of these operators, and are given by

Bi(µ) =

D
K

0|Qi(µ)|K0
E

D
K

0|Qi(µ)|K0
E

VSA

= hK0 |Qi(µ)|K0i ·

8
<

:

1
N1m

2
Kf

2
K

i = 1,

(ms(µ)+md(µ))
2

Nim
4
Kf

2
K

i > 1
, (5.6)

where the vacuum saturation approximation (VSA) replaces the four-quark matrix ele-
ments with products of two-quark matrix elements, and the basis-dependent normalisa-
tion factors Ni are given by

NSUSY
i =


8

3
,�5

3
,
1

3
, 2,

2

3

�
, (5.7)

NNPR
i =


8

3
,�4

3
, 2,�5

3
,�1

�
. (5.8)

We also define the ratio parameters for the matrix elements of the BSM operators as

Ri>1(µ) =

D
K

0|Qi(µ)|K0
E

D
K

0|Q1(µ)|K0
E . (5.9)
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The chiral behaviour of the bag and ratio parameters, derived using chiral perturbation
theory, is discussed in section 2.5.4.

5.2 Ingredients and simulation details

For the numerical simulation, we use RBC/UKQCD ensembles [8, 9, 57, 77, 84, 105, 139]
with Iwasaki gauge action (section 3.1.1) and domain wall fermion action (section 3.1.4).
These are Nf = 2 + 1 gauge ensembles with dynamical up, down and strange quarks.
There are three lattice spacings in the range a = 0.11�0.07 fm, labelled by ‘coarse’ (C),
‘medium’ (M) and ‘fine’ (F), each with either Shamir or Möbius domain wall kernels
(see eqns (3.50) & (3.51)) denoted by the last letter ‘S’ or ‘M’. The parameters of these
kernels are chosen such that they lie on the same scaling trajectory and therefore a
combined continuum limit is possible [77].

There are two ensembles simulated at the physical pion mass (denoted with middle
number ‘0’ in their names) at the coarse and medium lattice spacings, and the remaining
ensembles have heavier pion masses ranging up to m⇡ ⇡ 450MeV, which are used for
guiding the (small) chiral extrapolation on the fine ensemble. On each ensemble, the
light valence quark mass was chosen to be identical to the light quark mass in the sea
amval

l
= amsea

l
⌘ amuni

l
(hence we use the superscript “uni” for unitary). The strange

valence quark mass was simulated near its physical value which typically differs from
the sea quark mass amval

s ⇠ amphys
s 6= amsea

s . The main ensemble properties and the
simulated masses are listed in table 5.1. We also use for the first time the ensembles C1M
and M1M, which are Möbius equivalents of the C1S and M1S, used only for constraining
the chiral extrapolation of the Z-factors at each lattice spacing for each choice of DWF
kernel. Large parts of the data used in this project were generated using the Grid and
Hadrons frameworks [215–217].

In order to compute the bare bag and ratio parameters on each ensemble we combine
the necessary ingredients as detailed in the following sections.

5.2.1 Correlation functions

The quark propagators S(y, x), where we denote x = (x, tx), are obtained by inverting
the domain wall Dirac operator on Z2-wall noise sources which are further Gaussian-
smeared using a Jacobi procedure, as described in section 3.3.1. At the sink, we consider
both the local (L) and smeared (S) case such that

SL,S(x, y) =
X

z
!L,S

snk (x, z)S(z, y)�tx,tz , (5.10)
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where !snk is a (spatial) smearing function. Two-point functions are constructed as

Cs1,s2
�1,�2

(t) =
X

x

⌧⇣
Os2

�2
(x, t)

⌘⇣
Os1

�1
(0, 0)

⌘†�

=
X

n

⇣
M s2

�2

⌘

n

⇣
M s1

�1

⌘⇤
n

2En

⇣
e�Ent ± e�En(T�t)

⌘
,

(5.11)

where Os

� is a bilinear with the flavour content of a kaon (with s denoting the choice of
smearing and � denoting the Dirac structure), defined as

Os

�(x, t) =
 
q2(x, t)

X

y
!s(x, y)�q1(y, t)

!
. (5.12)

The hadronic matrix elements are denoted by (M s

�)n = hXn|(Os

�)
†|0i (with (M

s

�)n =

(M s

�)
⇤
n = h0|Os

�|Xni) where the nth excited meson states |Xni has the corresponding
energy En. For the bilinear operator, we only consider pseudoscalar (� = �5 ⌘ P ) and
the temporal component of the axial current (� = �0�5 ⌘ A) as kernels. The superscripts
s1, s2 label the smearing combination; in our setup, we use local (L) and smeared (S)
propagators at source and sink. At the source, all our quark fields are smeared, s1 = SS.
We also require the smearing at the sink to be the same for both the strange and the
down quark, s2 2 {SS,LL}. An exception to this is the ensemble F1M, where we keep
both the source and sink local, s1 = s2 = LL.

For three-point correlation functions, in contrast to the two-point functions, we consider
only pseudoscalar operators Os,†

P
(Os

P
) inducing the quantum numbers of a K (K) at the

source (sink). These operators are smeared (s = SS) on all ensembles apart from the
F1M, where they are local (s = LL). For notational convenience we drop the smearing
indices for the operators for the remainder of the discussion where unnecessary. The
three-point function for the four-quark operator Q+

i
is then given by

Ci

3pt(t,�T ) ⌘
D
OP (�T )Q+

i
(t)O†

P
(0)
E

=
X

n,n0

(M s

P
)n

4EnEn0
hXn|Q+

i
(t)|Xn0i(M s

P )
⇤

n0e�(�T�t)Ene�tEn0 ,
(5.13)

where we obtain the second equation by neglecting the around-the-world effects. Ci

3pt(t,�T )

describes a three-point correlation function with a source at t = 0, sink at t = �T and
a four-quark operator insertion Q+

i
at t, and the summation is over all energy states

(labelled by n and n0) of the initial and final state mesons.

By placing sources on every second time plane, we compute the above correlation func-
tions for T/2a time translations, where T/a is the integer number of time slices for a
given ensemble. We time-translate and average equivalent measurements on a given con-
figuration into a single effective measurement prior to further analysis; this helps reduce
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the variance in the measurements of the correlation functions. The only exception is
that we use all available measurements to estimate the correlation matrix.

Covariance and correlation matrices

In this project our fits are correlated frequentist minimisations of the �2-function as
described in section 3.4.2. Since we jointly fit multiple two-point and three-point func-
tions, it is important to be able to accurately invert the covariance matrix that appears
in the �2-function. On a given ensemble, we have Nmeas = Nconf⇥Nsrc estimators for the
data yi (compare table 5.1). When estimating the correlation matrix and the standard
deviations, we therefore need to choose whether we treat measurements on different
time translations on the same configuration as independent or whether we bin them
into an effective measurement. From these two choices we obtain (�i, cor(yi, yj))unbinned

and (�i, cor(yi, yj))binned based on Nconf ⇥ Nsrc measurements and Nconf effective mea-
surements, respectively. Our reasoning is based on stochastic locality [218], that is, the
fact that observables measured in sufficiently distant regions of a gauge field configura-
tion can be treated as independent2. Since we only have access to measurements with
sources shifted in the time direction, we do not pursue a master field analysis [219] but
instead use binning studies to gain insight into the level of independence of different
measurements on the same configuration.

When defining the covariance matrix that enters the �2 function, we consider two fac-
tors: the overall normalisation, stemming from the estimate of the variances, and the
normalised correlation matrix that measures the degree of correlations between dif-
ferent time slices. The separation of these components is motivated by the following
observation: if each measurement of a dataset with Nconf independent measurements is
duplicated and (falsely) assumed to constitute a dataset with 2Nconf independent mea-
surements then the mean values and the correlation matrix will remain unchanged while
the variance of the mean will be underestimated by a factor 2. The variance is hence
far more sensitive to the assumption of statistical independence; this leads us to assess
the properties of the covariance of the mean and the correlation matrix separately.

The left-hand plot of figure 5.2 shows a binning study on the M0M ensemble. In the top
panel the relative uncertainty of the pseudoscalar-pseudoscalar kaon two-point function
is shown as a function of the inverse bin-size. The right-most data points correspond to
considering every measurement as independent, whereas the left-most data point corre-
sponds to the “fully binned” case, i.e. where all measurements on a given configuration
are averaged into a single effective measurement. We find that the uncertainty only
mildly depends on the bin size, however we take the conservative approach of taking the

2The separation that is required for this statement to hold strongly depends on the observable under
consideration.
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Figure 5.2: Investigation of binning choices for a typical kaon two-point function on
the M0M ensemble. Further details are provided in the text.

variance from the maximally binned version of the dataset, in order to ensure that the
uncertainties are not underestimated.

We now turn our attention to the correlation matrix. The right hand plot of figure 5.2
shows a slice of the correlation matrix where one time index is fixed to be t/a = 12. The
blue solid line shows the estimate of the correlation matrix based on the “fully binned”
case. The green dashed line with the circles on it, shows the “fully unbinned” estimate
of the correlation matrix. The faint red lines correspond to estimates based on a single
source plane, i.e. only include one measurement per configuration and are therefore
based on a sub-statistic of 1/Nsrc measurements. Comparing these Nsrc estimators of
the correlation matrix provides an indication of the uncertainty in the correlation matrix
elements (depicted by the red error-bars). We note that the “fully unbinned” estimate
agrees very well with this average.

In the bottom panel of the left-hand plot we perform the binning study for three repre-
sentative elements of the correlation matrix and superimpose the uncertainty obtained
from the Nsrc estimates as horizontal bands. In each case, we find that for sufficiently
small number of sources per bin the values stabilise. We therefore conclude to use “fully
unbinned” estimates for the correlation matrix, whilst using the “fully binned” esti-
mate of the variance. We now construct the covariance matrix we use in the fit to the
correlation functions as

cov(yi, yj) = diag(�binned
i )cor(yi, yj)unbinneddiag(�binned

j ) . (5.14)

This has the benefit that it resolves the correlations but estimates the statistical uncer-
tainties without any assumption of independence for measurements from different source
positions on the same configurations.
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NiBbare
i

i = 1 i = 2 i = 3 i = 4 i = 5
C0M 1.5565(17) -1.22385(96) 1.8631(15) -0.96015(86) -0.49446(43)
C1S 1.5692(28) -1.2294(18) 1.8574(27) -0.9907(17) -0.51051(86)
C2S 1.5949(24) -1.2366(16) 1.8586(23) -1.0118(15) -0.52241(74)
M0M 1.4890(21) -1.2052(11) 1.8461(17) -0.87841(86) -0.44361(42)
M1S 1.5038(35) -1.2066(26) 1.8374(41) -0.9051(23) -0.4577(11)
M2S 1.5101(24) -1.2119(20) 1.8409(31) -0.9133(17) -0.46219(80)
M3S 1.5223(45) -1.2129(30) 1.8380(47) -0.9252(26) -0.4684(13)
F1M 1.4776(34) -1.1901(20) 1.8218(30) -0.8691(14) -0.43601(70)

Table 5.2: Bare bag parameters on all ensembles quoted in the NPR basis.

Rbare
i

i = 2 i = 3 i = 4 i = 5
C0M -23.511(30) 35.788(48) -18.439(28) -9.494(15)
C1S -20.587(55) 31.098(85) -16.592(59) -8.549(31)
C2S -18.368(35) 27.604(56) -15.001(43) -7.747(23)
M0M -28.144(39) 43.113(60) -20.516(29) -10.361(15)
M1S -25.125(72) 38.25(11) -18.848(72) -9.531(36)
M2S -23.505(51) 35.704(81) -17.742(67) -8.979(33)
M3S -22.107(56) 33.501(88) -16.866(65) -8.538(33)
F1M -28.621(80) 43.82(13) -20.929(70) -10.500(36)

Table 5.3: Bare ratio parameters on all ensembles quoted in the NPR basis.

5.2.2 Combined fits to two-point and three-point functions

For each of the four-quark operators Q+
i

, we extract the desired masses and matrix ele-
ments from a combined fit to several two-point and three-point functions. In particular,
we jointly fit CSL

PP
, CSS

PP
and CSL

PA
(CLL

PP
and CLL

PA
on F1M) and Ci

3pt(t;�T ) for multiple
choices of �T , using a typical parameterisation of the ground state and the first excited
state.

From these fits we extract the main quantities of interest: the bare bag parameters Bbare
i

;
and the ratios of operators Rbare

i
. They are determined and quoted in the NPR basis

(see tables 5.2 and 5.3) but can subsequently be translated into the SUSY basis. For
completeness we also quote the meson masses and bare decay constants at our simulation
points for the pion and the kaon in table 5.4.

We pursue two independent fit strategies (described below as ‘primary’ and ‘alterna-
tive’) and systematically vary the fit ranges of the two-point and three-point functions
(including the choice of which source-sink separations enter the fit) until we see stability
in all fit parameters.
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ens am⇡ afbare
⇡ amK afbare

K

C0M 0.08048(10) 0.10654(12) 0.28696(13) 0.126852(89)
C1S 0.19052(40) 0.11902(27) 0.30630(39) 0.13201(22)
C2S 0.24159(38) 0.12743(20) 0.32518(35) 0.13737(18)
M0M 0.059078(74) 0.074620(86) 0.21065(10) 0.089081(60)
M1S 0.12750(35) 0.08292(28) 0.22491(36) 0.09379(20)
M2S 0.15123(36) 0.08680(22) 0.23208(35) 0.09578(17)
M3S 0.17238(42) 0.09023(25) 0.23994(40) 0.09775(20)
F1M 0.08581(16) 0.06768(15) 0.18810(19) 0.07821(15)
C1M† 0.15987(50) 0.11659(60) 0.30560(51) 0.13261(52)
M1M† 0.12116(52) 0.07943(39) 0.22778(62) 0.09193(32)

Table 5.4: Masses and bare decay constants of the pion and kaons for all of the ensembles
used in this work. The ensembles labelled with ‘†’ only enter the analysis in order to

constrain the chiral extrapolation of the renormalisation constants.

Primary strategy

We jointly fit several two-point and three-point functions directly to their functional
forms given by eqn (5.11) and eqn (5.13). As a first step, we start by only fitting the two-
point functions. We determine fit ranges t2pt

min and t2pt
max for the two-point functions which

produce stable ground and first excited state results for masses and overlap factors. For
each four-quark operator Q+

i
we then perform a joint fit to the same two-point functions

but also the corresponding three-point functions Ci

3(t,�T ) for several values of �T . To
begin with we keep t2pt

min, t2pt
max from above for the two-point functions. For the three-point

functions we use the same t3pt
min irrespective of �T . This is determined by choosing an

integer � to set t3pt
min = t2pt

min + � and t3pt
max = �T � t3pt

min. Typically we have � 2 {0, 1}. We
then vary � by ±1, vary the choice of which values of �T enter the fit and vary t2pt

min by
±1. We adjust these choices until we see stability in all fit parameters.

Figure 5.3 demonstrates this stability for the example of Q+
2 on the C0M ensemble for

the first strategy. The superimposed dashed lines and magenta bands in the first two
panels correspond to the chosen fit if only the two-point functions are fitted. The green
bands illustrate our preferred choice of fit. Each set of three data points corresponds
to variations in the fit range (by �1, 0,+1) for the three-point functions compared to
the chosen fit. Finally, the different blocks correspond to following fit variations; the
same fit but only to the middle (first, last) half of the source-sink separations; including
an additional excited-to-excited matrix element in the fit ansatz; the same fit but for a
varied choice of tmin for the two point functions which enter the fit. We find that the
ground state fit results are insensitive to any of these choices.
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Figure 5.3: Stability of correlation function fits, illustrated on the example of the C0M
ensemble for Q+

2 . All numbers quoted in lattice units and NPR basis. Details of fit
variations and coloured bands explained in main text.

Alternative strategy

In this method we perform a combined fit to the two-point functions CSL

PP
, CSS

PP
, CSL

PA

and ratios of three and two-point functions (as opposed to three-point functions only).
We start by defining the ratios of two-point functions in eqn (5.11) and three-point
functions in eqn (5.13)

r1(t,�T ) =
C1

3 (t,�T )

CPA(t)CAP (�T � t)
,

ri(t,�T ) =
Ci

3(t,�T )

CPP (t)CPP (�T � t)
, i > 1

(5.15)

which are purposefully constructed to asymptotically approach the bag parameters

ri(t,�T ) ��������!
0⌧t⌧�T⌧T

NiBi . (5.16)

Expanding numerator and denominator of the first line of eqn (5.15) using eqn (5.11)
and eqn (5.13) taking into account the ground state (|0i) and first excited state (|1i)
contributions (n, n0 = 0, 1) (but neglecting the excited-to-excited matrix elements) yields

r1(t,�T ) =
h0|O1|0i
M2

A,0


1 +X1(t,�T )e��E�T/2 + Y1(t,�T )e��E�T

�
. (5.17)

where we defined

X1(t,�T ) = 2
MP,1E0

MP,0E1
cosh [�E(t��T/2)]

✓
h0|O1|1i
h0|O1|0i

� MA,1

MA,0

◆
,

Y1(t,�T ) = �4
M2

P,1E
2
0

M2
P,0E

2
1

cosh2 [�E(t��T/2)]
h0|O1|1i
h0|O1|0i

MA,1

MA,0
,

(5.18)

and �E = E1 � E0. The expression for ri (i > 1) is very similar.
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We now define a version of the ratio summed over the interval [tc,�T � tc]

ri(tc,�T ) ⌘
�T�tcX

t=tc

ri(t,�T ). (5.19)

Using the identity

�T�tcX

t=tc

cosh[�E(t��T/2)] =
sinh[�E/2(�T � 2tc + 1)]

sinh[�E/2]
, (5.20)

the summed ratio can be expressed as

r1(tc,�T ) =
h0|O1|0i
M2

A,0


t̂+ 2

MP,1E0

MP,0E1
e��E�T/2 sinh[�E/2t̂]

sinh[�E/2]

✓
h0|O1|1i
h0|O1|0i

� MA,1

MA,0

◆�
,

(5.21)
where t̂ ⌘ �T � 2tc + 1. For a given operator Oi and choice of tc we then jointly fit
the correlation functions and CSL

PP
(t), CSL

PA
(t), CSS

PP
(t) and ratios ri(tc,�T ) (and the LL

equivalent for F1M). The fit ranges of t 2 [t2pt
min, t

2pt
max] and �T 2 [�T 3pt

min,�T 3pt
max] are

chosen such that all fit parameters remain stable when these ranges are varied by small
amounts.

5.2.3 Valence strange quark correction

As is evident from table 5.1, the valence strange quark mass on the F1M ensemble is
slightly mistuned from the physical strange quark mass value. We account for this effect
by repeating the simulation at the physical strange quark mass on one eighth of the full
statistics. We then compute the appropriate correction factors as

↵Ri ⌘
Rphys

i

Runi
i

= lim
0⌧t⌧�T

Reff
i
(t,�T )

��
m

phys
s

Reff
i
(t,�T )

��
muni

s

,

↵Bi ⌘
Bphys
i

Buni
i

= lim
0⌧t⌧�T

Beff
i
(t,�T )

��
m

phys
s

Beff
i
(t,�T )

��
muni

s

,

(5.22)

↵X i = 1 i = 2 i = 3 i = 4 i = 5
X = Bi 1.004983(99) 1.004231(66) 1.003036(65) 1.003193(71) 1.003583(61)
X = Ri 0.97005(18) 0.96890(18) 0.96904(17) 0.96942(17)

Table 5.5: Correction factors to be applied to the bare values of Ri and Bi on the F1M
ensemble in the NPR basis in order to correct the observables to the physical strange

quark mass.
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Figure 5.4: Strange valence mistuning quark correction on the F1M ensemble for the
example of B5 (top) and R5 (bottom). The shaded band indicates the fit value of the

correction factor.

where
Reff

i (t,�T ) =
Ci

3(t,�T )

C1
3 (t,�T )

,

Beff
i (t,�T ) =

Ci

3(t,�T )

NiC2(t)C2(�T � t)
.

(5.23)

We find that the effect of the approximately 3% mistuning of the strange quark valence
mass leads to around 0.3 � 0.5% correction for the bag parameters and around 3%
correction for the ratio of operators — see table 5.5. Given that the relative uncertainty
of the correction factor is more than an order of magnitude smaller than that of the values
it is applied to, we treat this correction factor as uncorrelated. Figure 5.4 illustrates this
correction factor for the case of B5 and R5.

Figure 5.5 shows the bare effective ratios Reff
i
(t,�T ) (defined in eqn (5.23)) in the NPR

basis for the C0M (left) and M0M (right) ensembles for various typical source-sink
separations �T . For sufficiently large �T values these ratios plateau to the same value,
indicating ground-state saturation.
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Figure 5.5: Illustration of the quality of our data for the C0M (left) and M0M (right)
ensembles. We show the bare effective ratios Reff

i (t,�T ) in the NPR basis as defined
in eqn (5.23).

Figure 5.6: Simulation values of the scale µ on the various ensembles.
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5.3 Non-perturbative renormalisation

Having computed the bare bag and ratio parameters, we now move to the step of renor-
malisation using the non-perturbative RI/SMOM scheme. The numerical setup for the
computation of renormalisation constants for �S = 2 four-quark operators has been
outlined in section 4.2.

We compute the relevant Green’s functions for the four-quark operators (given by
eqn (4.55)) as well as quark propagators. We then amputate the four quark legs of
each Green’s function using the appropriate inverse propagators to get the vertex func-
tions needed for implementing the RI/SMOM renormalisation conditions. We then use
the projectors and tree-level matrices in the two separate schemes �µ and /q (see sec-
tion 4.1) to compute the set of renormalisation constants for bag and ratio parameters
over a range of simulated momenta that cover the region 2GeV . µ . 3GeV, as shown
in figure 5.6. In specific, using A to indicate �µ or /q we define the renormalisation factors
Z(A,A)
ij

/Z2
A

as3

Z(A,A)
ij

(µ, a)

Z2
A
(a)

⇥ lim
mq!0

P (A)
k

[⇧bare
j

(a, p1, p2)]

(P (A)
A

[⇧bare
A

(a, p1, p2)])2

����
sym

=
F (A)
ik

(F (A)
A

)2
. (5.24)

Our conventions are such that from eqn (5.24) we can define ZB1 ⌘ ZBK = Z11/Z2
A

.
Finally, to obtain the renormalised BSM bag parameters we also need to renormalise
the quark mass. Making use of Zm = 1/ZS we impose

Z(A)
A

(µ, a)

ZS(µ, a)
⇥ lim

mq!0

P (A)
A

[⇧bare
A

(a, p1, p2)]

PS [⇧bare
S

(a, p1, p2)]

����
sym

=
F (A)
A

FS

. (5.25)

The use of two schemes provides a way of estimating systematic errors in the renor-
malisation by examining the spread of the results. In order to ensure reproducibility,
we provide numerical values of the renormalisation constants at some choice of lat-
tice momenta on the lightest pion mass ensemble for each distinct lattice spacing in
tables B.1-B.8 in appendix B.

Finally, we use these values to renormalise the quantities of interest. In particular we
find

Rren
i (µ) =

Zij

Z11
Rbare

j (µ, a) ,

Bren
1 (µ) =

Z11

Z2
A

Bbare
1 (µ, a) ,

NiBren
i (µ) =

Zij

Z2
P

NjBbare
j (µ, a) i, j = 2, · · · , 5.

(5.26)

Note that in practice we make use of the relation ZS ⇡ ZP , following from chiral
symmetry (which is well-preserved by the DWF action).

3We can also define Z
(A,B)
ij with A 6= B, but in this work we consider only (�µ, �µ) and (/q, /q).
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5.3.1 Chiral extrapolation of Z factors

Formally the RI/SMOM renormalisation constants are defined in the massless (zero
quark mass) limit. In order to perform this limit lattice-spacing-by-lattice-spacing we
proceed as follows:

1. We first extrapolate the valence quark mass to zero ensemble-by-ensemble. As
the C0M and M0M ensemble are computationally most expensive, we simulate
only at amval

q = amsea
s /2 in the valence sector. On all other ensembles we have

additional simulation points at amval
q = amsea

l
and amval

q = 2amsea
l

. On each of
these ensembles we extrapolate the renormalisation constants to the massless limit
amval

q ! 0 (see figure 5.7). The extrapolation of the data on the physical pion
mass ensembles is performed by applying the slope of the C1M (M1M) ensemble
to the C0M (M0M) data.

2. We then interpolate the renormalisation constants on all ensembles to a fixed scale
µ. We perform a linear fit to the two closest simulated values of µ and a quadratic
fit to the three closest points and assign the spread as a systematic error.

3. We then perform a chiral extrapolation in (am⇡)2 to all ensembles that share
an identical lattice spacing (C1S and C2S; C0M and C1M; M1S, M2S and M3S;
M0M and M1M) as illustrated in figure 5.8 for the M-S ensembles at a momentum
point close to 2 GeV. Since we only have a single sea quark mass data point on
the F1M ensemble, in practice we first interpolate the results on all ensembles
to a common renormalisation scale and then perform the sea-light quark mass to
zero limit for each choice of distinct lattice spacing. For the F-M ensemble this
is done by applying each of the four slopes (obtained from C-S, C-M, M-S and
M-M) in turn and assigning a systematic uncertainty of half the spread of these
results. Since these numbers contain information from multiple ensembles and the
NPR calculations are based on a subset of the configurations, we propagate these
small uncertainties in an uncorrelated fashion. To this end we add statistical and
systematic uncertainties in quadrature and generate bootstrap samples for each of
the Zij by drawing from a Gaussian distribution with the appropriate mean and
width. We provide numerical values of these chirally extrapolated renormalisation
constants for each of the lattice spacings at µ = 2GeV (table B.9), µ = 2.5GeV
(table B.10), and µ = 3GeV (table B.11).

5.3.2 Step scaling

When performing the renormalisation we have the freedom to choose the renormalisation
scale µ within the Rome-Southampton window of our ensembles, which includes 2GeV .
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Figure 5.7: Extrapolation of the renormalisation constants to massless valence-quark
limit for the example of the (11), (33) and (23) elements of the M1S ensemble close to

2 GeV. Results are presented in the RI/SMOM(�µ,�µ) scheme in the NPR basis.

Figure 5.8: Extrapolation of the renormalisation constants to the zero light-sea quark
mass limit for the example of the (11), (33) and (23) elements of the M-S ensembles
close to 2 GeV. Results are presented in the RI/SMOM(�µ,�µ) scheme in the NPR basis.

µ . 3GeV. We note that higher scales are more susceptible to discretisation effects,
whilst lower scales face larger errors in the perturbative matching to a continuum scheme
such as MS. It is possible to scale the value of an operator renormalised at one scale to
another using a scale evolution matrix, �(µ2, µ1), in a procedure called step-scaling as
discussed in section 4.4. We can therefore choose a lower scale µ for non-perturbative
renormalisation to reduce cutoff effects, and a higher scale µ0 for matching to MS. This
distance is bridged using non-perturbative running

OMS
i (µ0) = RMS RI

ij (µ0)�jk(µ
0, µ)ORI

k
(µ), (5.27)

Oi being any of the quantities in eqn (5.26). The matching factors RMS RI
ij

are com-
puted in next-to-leading order perturbation theory and presented in section 4.3 for both
schemes.

We define the continuum scale evolution matrix for the renormalisation of the four-quark
operators as

�(µ2, µ1) = lim
a2!0

Z(µ2, a)Z
�1(µ1, a), (5.28)
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where Z(µ, a) is the 5 ⇥ 5 block-diagonal matrix. The numerical values of the scaling
matrix at each lattice spacing are reported in table B.12 in appendix B. We perform
this continuum limit using the chirally extrapolated renormalisation constants from all
lattice spacings using a linear fit in a2. In the few cases where the quality of fit does not
lead to an acceptable p-value, we rescale the uncertainty by

p
�2/d.o.f.. In figure 5.9

we compare our non-perturbative step-scaling results to leading order (LO) and next-to-
leading order (NLO) perturbation theory. We observe that while the results from NLO
perturbation theory are closer to the non-perturbative results compared to those from
LO perturbation theory, the non-perturbative results are still clearly significant.

Since we have mapped out the region 2GeV . µ . 3GeV, we can further split (5.28)
into multiple smaller steps � = (µ2 � µ1)/N , i.e. we can compute the product

N�1Y

k=0

�(µ1 + k�+�, µ1 + k�) . (5.29)

Hence, alongside directly renormalising at 3GeV, we can also renormalise the result at
2GeV and step scale to 3GeV in one step, or in multiple steps – this allows us to probe
the effect the scale of the renormalisation has.

The numerical values for the step-scaling matrices for the bag parameters in the RI/SMOM(�µ,�µ)-
scheme and in the SUSY basis are given by

�bag(3GeV, 2GeV) =

2

666664

0.98021(53) 0.0 0.0 0.0 0.0

0.0 0.9194(22) �0.0630(16) 0.0 0.0

0.0 �0.00284(35) 0.6846(19) 0.0 0.0

0.0 0.0 0.0 0.9988(24) 0.0784(25)

0.0 0.0 0.0 0.00838(59) 0.7542(24)

3

777775
,

(5.30)

�bag(3
�=0.5 ���� 2GeV) =

2

666664

0.98030(35) 0.0 0.0 0.0 0.0

0.0 0.9199(22) �0.0634(15) 0.0 0.0

0.0 �0.00260(31) 0.6863(17) 0.0 0.0

0.0 0.0 0.0 0.9990(25) 0.0778(24)

0.0 0.0 0.0 0.00860(44) 0.7552(23)

3

777775
,

(5.31)

�bag(3
�=0.33 ����� 2GeV) =

2

666664

0.98030(29) 0.0 0.0 0.0 0.0

0.0 0.9178(18) �0.0630(16) 0.0 0.0

0.0 �0.00342(24) 0.6863(16) 0.0 0.0

0.0 0.0 0.0 0.9973(19) 0.0774(22)

0.0 0.0 0.0 0.00842(53) 0.7552(16)

3

777775
.

(5.32)
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Figure 5.9: Comparison of the scale evolution matrix �(3GeV, µ) in the
RI/SMOM(�µ,�µ) scheme and NPR basis evaluated non-perturbatively (blue circles),
perturbatively at leading order (orange dashed lines) and next-to-leading order (green

solid lines).
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Similarly, the numerical values for the step-scaling matrices for the ratio parameters in
the RI/SMOM(�µ,�µ)-scheme and in the SUSY basis are given by

�rat(3GeV, 2GeV) =

2

666664

1.0 0.0 0.0 0.0 0.0

0.0 1.2153(28) �0.08396(60) 0.0 0.0

0.0 �0.00426(52) 0.90868(42) 0.0 0.0

0.0 0.0 0.0 1.3186(42) 0.1018(15)

0.0 0.0 0.0 0.00976(68) 0.99984(59)

3

777775
, (5.33)

�rat(3
�=0.5 ���� 2GeV) =

2

666664

1.0 0.0 0.0 0.0 0.0

0.0 1.2149(25) �0.08315(50) 0.0 0.0

0.0 �0.00374(43) 0.90889(40) 0.0 0.0

0.0 0.0 0.0 1.3190(35) 0.1023(14)

0.0 0.0 0.0 0.01083(44) 0.99940(59)

3

777775
,

(5.34)

�rat(3
�=0.33 ����� 2GeV) =

2

666664

1.0 0.0 0.0 0.0 0.0

0.0 1.2141(33) �0.08249(72) 0.0 0.0

0.0 �0.00502(44) 0.90883(53) 0.0 0.0

0.0 0.0 0.0 1.3184(39) 0.1018(13)

0.0 0.0 0.0 0.01002(68) 0.99915(42)

3

777775
.

(5.35)

Therefore it is possible to scale our operators, once renormalised and extrapolated to
the continuum limit, from µ1 to µ2. By renormalising at µ = 2GeV, where lattice
artefacts are less significant, and step-scaling our results in RI/SMOM to µ = 3GeV
before perturbatively matching to MS, we also reduce the errors associated with the
truncation of the perturbative series at lower scales.

5.4 Results

The ratio and bag parameters in the MS scheme at a scale µ0 are obtained via

BMS
1 (µ0) = RMS RI

11 (µ0)
h

lim
a!0

�bag,11(µ
0, µ)

i
2

4 lim
a!0

m⇡!m
phys
⇡

ZRI
11

Z2
A

(aµ)Bbare
1

3

5

(5.36)

NiBMS
i>1(µ

0) =

✓
Rij

R2
S

◆MS RI
(µ0)

h
lim
a!0

�bag,jk(µ
0, µ)

i
2

4 lim
a!0

m⇡!m
phys
⇡

ZRI
kl

Z2
S

(aµ)NlBbare
l>1

3

5

(5.37)

RMS
i>1(µ

0) =

✓
Rij

R11

◆MS RI
(µ0)

h
lim
a!0

�rat,jk(µ
0, µ)

i
2

4 lim
a!0

m⇡!m
phys
⇡

ZRI
kl

Z11
(aµ)Rbare

l>1

3

5 .

(5.38)
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The matching factors RS and R11 are required for matching the denominators in the bag
and ratio parameters to the MS scheme. Note that in the continuum limit ZRI

A
= 1 =

ZMS
A

and therefore a separate conversion factor is not needed for it in B1. In the equations
above Z-factors are implicitly in the chiral limit Z(aµ) = limmval

q !0msea
q !0 Z(amval

q , amsea
q , aµ).

Having computed these chirally extrapolated Z-factors, the scale evolution matrices
in the continuum limit, and using the matching factors Rij known from perturbation
theory, the final step is to perform the chiral and continuum limit extrapolation for the
renormalised bag and ratio parameters while assembling an error budget corresponding
to each step in the above equations.

5.4.1 Chiral and continuum fits

To recover continuum results at physical quark masses we perform a simultaneous chiral-
continuum limit fit. Our fit ansatz is based on NLO SU(2) chiral perturbation theory
(�PT), covered in more detail in sections 2.3.3 & 2.5.4, and includes a chiral logarithm
term. Furthermore our fit function is linear in a2 and m2

⇡ and the mistuning of the
strange quark mass �sea

ms
. It is given by

Yi(a
2,m2

⇡,m
sea
s ) = Y phys

i

 
1 + ↵i(a⇤)

2 + �i
m2
⇡ � (mphys

⇡ )2

(mphys
⇡ )2

+�i�
sea
ms

+ LY

i (m⇡)� LY

i (m
phys
⇡ )

⌘
.

(5.39)

where Y 2 {B, R} is the quantity of interest. ⇤ = ⇤QCD is the typical QCD scale and
we take the isospin-averaged pion mass to be mphys

⇡ = (2m±
⇡ + m0

⇡)/3 ⇡ 138MeV [6].
Y phys
i

, ↵, � and � are fit parameters, while �sea
ms

= (msea
s � mphys

s )/mphys
s parame-

terises the mistuning of the sea strange quark mass. The chiral logarithms are given by
LY

i
(m⇡) = CY

i
m2
⇡ log(m2

⇡/⇤
2)/(16⇡2f2

⇡), where the coefficients Ci are known constants
with numerical values CB

i
= �0.5 for i = 1, 2, 3 and CB

i
= 0.5 for i = 4, 5, and we

take f⇡ = 130.41(23)MeV [6]. For the ratios R2 and R3 the chiral logarithms vanish
(CR

2 = CR

3 = 0) and finally CR

4 = CR

5 = 1.

In this section we present the chiral-continuum limit fits in the RI/SMOM(�µ,�µ) and
RI/SMOM(/q,/q) schemes at µ = 2GeV and in the SUSY basis. We show these fits for the
ratios Ri in figures 5.11 & 5.13 and for the bag parameters Bi in figures 5.12 & 5.14. The
data points represent the renormalised bag or ratio parameters where we have corrected
for the sea quark mistuning and chiral logarithm dependence. The data points from each
ensemble therefore only carry lattice spacing and chiral dependence, which are depicted
in the left and right panels of each figure respectively. The black data point represents
the physical value at zero lattice spacing and at the physical pion mass, Y phys

i
, and the

coloured bands are reconstructed fit trajectories for each ensemble. We also report the
�2/d.o.f and corresponding p-value for each fit.
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Figure 5.10: Heat-map of the statistical correlation matrix between the renormalised
Bi, Ri and the hK|O+

i |Ki in MS at 3GeV.

Since we find that the results from the C2S ensemble — which is at the heaviest pion
mass and the coarsest lattice spacing — is not always well described by the fit ansatz,
we remove it from our central fits. We find that the data is well described by the fit
function in eqn (5.39) in all cases with acceptable p-values (> 5%) for all fits presented.
The statistical correlation matrix between the Bi, Ri and hK|O+

i
|Ki (computed by

combining Ri with B1 and other appropriate factors) is illustrated in the form of a
heat-map in figure 5.10.

Our central fit results in the two intermediate schemes – RI/SMOM(�µ,�µ) and RI/SMOM(/q,/q)

– are obtained from a chiral-continuum limit fit at µ = 2GeV performed in the SUSY
basis. These results are then step-scaled to 3GeV (e.g. using the matrix provided in
eqn (5.30)) and perturbatively matched to MS. In the following sections we will present
the results of the chiral-continuum limit fits and assemble the full uncertainty budget
relating to the lattice computation in the intermediate RI/SMOM schemes at 3GeV.
Only subsequently do we match these results perturbatively to MS. This allows us to
cleanly separate the uncertainties due to the perturbative matching to MS from those
arising in the lattice calculation.
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Figure 5.11: Chiral-continuum limit fit to BSM ratio parameters R2�5 in the SUSY
basis, renormalised in the RI/SMOM(�µ,�µ) scheme.
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Figure 5.12: Chiral-continuum limit fit to the standard model bag parameter B1 (top)
and BSM bag parameters B2�5 in the SUSY basis, renormalised in the RI/SMOM(�µ,�µ)

scheme.
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Figure 5.13: Chiral-continuum limit fit to BSM ratio parameters R2�5 in the SUSY
basis, renormalised in the RI/SMOM(/q,/q) scheme.
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Figure 5.14: Chiral-continuum limit fit to the standard model bag parameter B1 (top)
and BSM bag parameters B2�5 in the SUSY basis, renormalised in the RI/SMOM(/q,/q)

scheme.



5.4. Results 107

5.4.2 Error budget

In this section we quantify all relevant sources of uncertainties; we consider variations
to the data and the fit ansatz; variations of the renormalisation procedure; and uncer-
tainties stemming from the perturbative matching. We quantify the uncertainties for
the variations by considering

�var
i (µ) =

|Y central
i

� Y variation
i

|
1
2(Y

central
i

+ Y variation
i

)
, (5.40)

where Y 2 {B, R}.

Chiral extrapolation

The two precise data points at physical pion masses make the mass extrapolation element
of the fit very benign. We quantify the associated uncertainty by varying the pion mass
cut applied to the data by removing terms from our fit form and by repeating the fits
using the alternative correlator fit results. For each of these variations we compute the
associated � (see eqn (5.40)) – which measures the shift in central value – and list the
corresponding values in table 5.6. For all ratios and bag parameters this error is well
below 1% and typically sub-statistical. For each observable we assign the maximum of
those values as the systematic uncertainty associated to the chiral extrapolation listed
as “chiral” in table 5.9.

Discretisation effects

The good chiral symmetry of domain wall fermions constrains O(a) and O(a3) terms
to be small. The O(a2) effects are controlled and removed by our three lattice spac-
ings present in the fit. Power counting suggests that O(a4) effects for hadronic physics
scales with a 1.73GeV coarsest inverse lattice spacing will remain small on all data
points. However, the same is not necessarily true for hard, off-shell vertex functions
where the momenta are chosen as the best compromise for a Rome-Southampton win-
dow. The leading unremoved discretisation effects are thus likely to come from the
non-perturbative renormalisation, and may be probed by comparing different ways of
renormalising our data.

Our central chiral-continuum limit fit is based on data renormalised at µ = 2GeV which
is then step-scaled to 3GeV by the step-scaling function �(3GeV, 2GeV) presented in
eqn (5.30) for the bag parameters. We compare the results obtained this way to using
the alternative prescription to obtain the scaling function (see eqn (5.29)) with N = 2, 3

and to performing the continuum limit to data renormalised directly at µ = 3GeV. We
compute and report the associated values for �i in table 5.7.
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For our main analysis we extract the bare matrix elements and renormalisation factors
in the NPR basis, transform them to the SUSY basis and then perform the various
analysis steps. Performing the entire analysis in the NPR basis and converting the final
values to the SUSY basis causes a reshuffling of discretisation effects. The corresponding
�i are presented in the column labelled SUSY  NPR in table 5.7.

We take the maximum of these variations as our estimate for the systematic uncertainties
due to higher order discretisation effects, labelled “discr” in table 5.9.

Residual chiral symmetry breaking

Domain wall fermions provide a good approximation to chiral symmetry, however a small
degree of residual chiral symmetry breaking is present in the data. Chiral symmetry
restricts the allowed mixing pattern to be block-diagonal. For our central analysis we
impose this, by setting the chirally forbidden elements of Zij to zero which we refer to
as “masking”. To test the effect residual chiral symmetry breaking has on our results,
we repeat the entire analysis without masking. We find that the deviations are well
below the percent level, indicating that our approximation to chiral symmetry is very
well controlled. We report the associated systematic uncertainties in tables 5.7–5.9 as
“rcsb”.

Finite Volume Effects

Finite volume effects (FVEs) could be neglected in our previous studies, but at this level
of precision we need to revisit this assumption. We estimate these effects using chiral
perturbation theory and note that the finite volume corrections appear with the same
pre-factors CY

i
as the chiral logarithms [73]. The FVEs are given by [220]

CY

i

m2
⇡

(4⇡f⇡)2
12
p
2⇡ exp (�m⇡L)

(m⇡L)3/2
. (5.41)

The leading order FVEs cancel in the ratios R2 and R3. Numerically evaluating eqn (5.41)
for our ensembles, we find that the largest effect is observed on the M1S ensemble, where
the estimate of finite size effects is 1.1 per-mille for the bag parameters and 2.1 per-mille
for R4 and R5. Noting that this is a sub-leading effect (see table 5.9) and that the FVEs
on the ensembles which are most constraining for the fit (C0M, M0M, F1M) are more
than a factor three smaller than this, we conclude that FVEs remain negligible at our
current level of precision.



5.4. Results 111

sc
he

m
e

R
2

R
3

R
4

R
5

B 1
B 2

B 3
B 4

B 5

M
S
 

RI
/S

M
O

M
(�

µ
,�

µ
)

ce
nt

ra
l
�
18
.7
3

5.
78

1
41

.4
5

10
.8
0

0.
51

85
0.
47

59
0.
72

8
0.
88

62
0.
69

77
st

at
0.

60
%

0.
69

%
0.

72
%

0.
43

%
0.

28
%

0.
24

%
0.

72
%

0.
21

%
1.

02
%

ch
ira

l
0.

21
%

0.
42

%
0.

61
%

0.
46

%
0.

20
%

0.
17

%
0.

29
%

0.
17

%
0.

25
%

rc
sb

0.
10

%
0.

15
%

0.
09

%
0.

03
%

0.
04

%
0.

03
%

0.
06

%
0.

01
%

0.
00

%
di

sc
r

0.
16

%
0.

53
%

0.
49

%
1.

23
%

0.
01

%
0.

44
%

1.
61

%
0.

16
%

0.
38

%
to

ta
l

0.
66

%
0.

98
%

1.
07

%
1.

38
%

0.
35

%
0.

53
%

1.
79

%
0.

32
%

1.
12

%

M
S
 

RI
/S

M
O

M
( /q
, /q
)

ce
nt

ra
l
�
19
.0
7

6.
05

9
42

.4
3

10
.4
9

0.
52

95
0.
48

29
0.
76

4
0.
90

70
0.
67

88
st

at
0.

68
%

0.
92

%
0.

81
%

0.
83

%
0.

29
%

0.
43

%
1.

24
%

0.
36

%
2.

21
%

ch
ira

l
0.

48
%

0.
78

%
1.

25
%

1.
26

%
0.

24
%

0.
27

%
0.

44
%

0.
29

%
0.

51
%

rc
sb

0.
29

%
0.

21
%

0.
23

%
0.

13
%

0.
08

%
0.

19
%

0.
29

%
0.

03
%

0.
01

%
di

sc
r

0.
34

%
0.

65
%

0.
20

%
2.

30
%

0.
10

%
0.

64
%

1.
92

%
0.

19
%

0.
10

%
to

ta
l

0.
95

%
1.

39
%

1.
52

%
2.

75
%

0.
40

%
0.

83
%

2.
34

%
0.

50
%

2.
27

%

Ta
bl

e5
.8

:C
en

tr
al

va
lu

es
an

d
co

m
bi

ne
d

sy
st

em
at

ic
er

ro
rs

fo
rr

at
io

an
d

ba
g

pa
ra

m
et

er
sa

tµ
=

3
G

eV
in

M
S

af
te

rc
on

ve
rt

in
g

fro
m

th
et

wo
RI

/S
M

O
M

sc
he

m
es

—
(�

µ
,�

µ
)

an
d
( /q
, /q
),

in
th

e
SU

SY
ba

sis
.W

e
lis

tt
he

er
ro

rs
ar

isi
ng

fro
m

st
at

ist
ics

,c
hi

ra
le

xt
ra

po
la

tio
n,

re
sid

ua
lc

hi
ra

ls
ym

m
et

ry
br

ea
ki

ng
,

an
d

di
sc

re
tis

at
io

n
an

d
co

m
bi

ne
it

in
to

to
ta

lu
nc

er
ta

in
tie

s.



112 Chapter 5. Kaon mixing from lattice QCD

schem
e

R
2

R
3

R
4

R
5

B
1

B
2

B
3

B
4

B
5

RI/SM
O

M
(
�
µ
,�

µ
)

central
�
18.37

5.485
38.60

10.93
0.5164

0.5150
0.762

0.9107
0.7792

stat
0.59%

0.66%
0.72%

0.44%
0.28%

0.24%
0.69%

0.22%
1.02%

chiral
0.22%

0.42%
0.59%

0.47%
0.21%

0.17%
0.28%

0.17%
0.24%

rcsb
0.11%

0.14%
0.09%

0.03%
0.04%

0.03%
0.06%

0.01%
0.00%

discr
0.17%

0.50%
0.48%

1.22%
0.01%

0.45%
1.51%

0.16%
0.38%

total
0.66%

0.94%
1.05%

1.38%
0.35%

0.54%
1.68%

0.31%
1.11%

RI/SM
O

M
(/ q
,/ q)

central
�
19.53

5.818
40.99

10.49
0.5342

0.5155
0.765

0.9137
0.7078

stat
0.68%

0.90%
0.81%

0.83%
0.29%

0.42%
1.20%

0.36%
2.19%

chiral
0.47%

0.77%
1.21%

1.23%
0.24%

0.27%
0.43%

0.28%
0.53%

rcsb
0.28%

0.20%
0.23%

0.13%
0.08%

0.19%
0.28%

0.03%
0.01%

discr
0.35%

0.66%
0.20%

2.25%
0.11%

0.63%
1.88%

0.19%
0.10%

total
0.94%

1.37%
1.48%

2.69%
0.40%

0.83%
2.29%

0.49%
2.25%

M
S

(�
µ ,�

µ )
�
18.73

5.781
41.45

10.80
0.5185

0.4759
0.728

0.8862
0.6977

(/ q,/ q)
�
19.07

6.059
42.43

10.49
0.5295

0.4829
0.764

0.9070
0.6788

central
�
18.90

5.920
41.94

10.64
0.5240

0.4794
0.746

0.8966
0.6882

lattice
0.66%

0.96%
1.06%

1.40%
0.34%

0.52%
1.75%

0.32%
1.14%

PT
0.91%

2.35%
1.17%

1.47%
1.05%

0.74%
2.40%

1.16%
1.38%

total
1.12%

2.54%
1.57%

2.03%
1.10%

0.90%
2.97%

1.20%
1.79%
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Perturbative matching

The dominant source of uncertainty arises in the conversion of our results to MS where
the matching is done in perturbation theory to one-loop. The truncation of the per-
turbative series leads to an uncertainty. We have defined two intermediate RI/SMOM
schemes, differentiated by their projectors and use these to estimate the size of this
error. We expect results in MS to be independent of the intermediate renormalisation
scheme. We take our central value as the average between the results obtained from
the two intermediate schemes and associate a truncation uncertainty of half their differ-
ence. For definiteness we assign the relative error from the (�µ, �µ) scheme to quantify
the combined lattice uncertainty in our final results. The estimate of the perturbative
truncation uncertainty is quoted as “PT” in the last column of table 5.9.

5.4.3 Self-consistency check

Having determined the Ri and the Bi parameters we can perform a self-consistency
check. Recalling the definitions in eqns (5.6) & (5.9) we consider

NiBi

Ri

=
8

3

(ms(µ) +md(µ))2

m2
K

B1 , i = 2, · · · , 5 . (5.42)

The right hand side is independent of i and hence the ratios from each operator should
give compatible results. The black data points in figure 5.15 display this comparison for
the results at µ = 3GeV in RI/SMOM(�µ,�µ) (top) and MS (bottom). The Ri and Bi

have notably different — and sometimes steep — approaches to the continuum limit.
The good agreement between the different results gives us confidence that uncertainties
in general and discretisation effects in particular have been well estimated.

We compare our MS results to the value obtained by evaluating the right hand side using
external inputs. We use the isospin-symmetrised kaon mass mK = (mK0 +mK±)/2 =

Figure 5.15: Self-consistency check by forming the ratio eqn (5.42) at µ = 3GeV. The
data points are from our calculations in the RI/SMOM(�µ,�µ) scheme (top) and in the
MS scheme (bottom). For the MS plot we show the expected value using FLAG inputs

as the grey horizontal band.
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496.144(9)MeV [6]. We take FLAG [221] values for the Nf = 2+ 1+ 1 [5,222–227] and
Nf = 2 + 1 [3, 77, 77, 81, 83, 228–234] isospin-symmetrised light quark mass and strange
quark mass in MS at µ = 2GeV, together with B̂K , the renormalisation group invariant
(RGI) value for B1,

Nf = 2+1+1 : mud = 3.410(43)MeV ms = 93.44(68)MeV B̂K = 0.717(24) ,

Nf = 2+1 : mud = 3.364(41)MeV ms = 92.03(88)MeV B̂K = 0.7625(97) .
(5.43)

and run them to µ = 3GeV, allowing us to construct the right hand side of eqn (5.42)
(the conversion of the four-quark operators at a given scale to RGI operators is shown
in section 4.5). This is shown as the grey band in the lower plot in figure 5.15.

Furthermore, we can use the constant value in both the RI/SMOM and MS schemes,
combining it with our value for B1, to predict the sum of the quark masses (see also the
discussion in [74]). From our result for i = 2 we find:

(ms +mud)
RI(3GeV) = 91.38(41)MeV,

(ms +mud)
MS(3GeV) = 86.29(79)MeV.

(5.44)

We compare this to the corresponding FLAG values

Nf = 2+1+1 :(ms +mud)
MS(3GeV) = 88.18(63)MeV,

Nf = 2+1 :(ms +mud)
MS(3GeV) = 86.34(79)MeV.

(5.45)

5.4.4 Comparison to literature

Our final results in the MS scheme at 3GeV, where the first error is the RI/SMOM
error and the second is the uncertainty from the matching to MS, are:

BMS
1 = 0.5240(17)(54)

BMS
2 = 0.4794(25)(35)

BMS
3 = 0.746(13)(17)

BMS
4 = 0.897(02)(10)

BMS
5 = 0.6882(78)(94)

RMS
2 = �18.90(12)(17)

RMS
3 = 5.92(05)(13)

RMS
4 = 41.94(44)(46)

RMS
5 = 10.64(14)(15) .

(5.46)
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Figure 5.16: Comparison of the Ri and Bi in RI/SMOM(�µ,�µ) at µ = 3GeV to the
previous RBC-UKQCD results [2].

In figure 5.16 we compare our results in the RI/SMOM scheme at µ = 3GeV to the
previous RBC-UKQCD determination [2]. The addition of two physical pion mass en-
sembles and a third lattice spacing helps to constrain the chiral and continuum limit
extrapolations respectively, yielding a significantly reduced uncertainty. Given the sig-
nificantly different data set, we find good agreement between our previous result and
this work.

Figure 5.17 shows a comparison of our BSM bag parameters with previous lattice results
available in the literature. Early studies of BSM kaon mixing [74,75,89] were performed
in the quenched approximation. They were followed by dynamical simulations with Nf

quark flavours by several collaborations: RBC-UKQCD (Nf = 2 + 1) [2, 211], SWME
(Nf = 2 + 1) [3, 235, 236], and ETM (Nf = 2) [4] and (Nf = 2 + 1 + 1) [5]. In contrast
to results for the SM operator, there are tensions between the different collaborations’
results for some of the BSM operators, as shown in table 5.10 and summarised in the
FLAG report [221]. We note that a similar discrepancy is observed in neutral B(s)-mixing
[221,237].

In [2, 72], it was proposed that the source of these tensions was the choice of the in-
termediate renormalisation scheme. Specifically, it was proposed that the symmetric
momentum subtraction scheme RI/SMOM (which has non-exceptional kinematics) ad-
vocated by RBC-UKQCD has several beneficial features compared to the previously
used RI/MOM (which has exceptional kinematics). This is likely due to the exceptional
(divergent in the massless limit), infrared non-perturbative “pion pole” behaviour in
the RI/MOM vertex functions, which must be correctly modelled and subtracted, while
the mass is simultaneously taken to zero to establish a mass independent scheme. This
behaviour is absent in the RI/SMOM scheme, giving greater theoretical control as it
avoids the possibility of imperfect modelling of the non-perturbative pole systematically
affecting the result. The results obtained from two RI/SMOM schemes are in agree-
ment with each other and with the perturbatively renormalised results from the SWME
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Figure 5.17: Comparison of our results for the BSM bag parameters in MS at 3 GeV
with previous results (RBC-UKQCD16 [2], SWME15 [3], ETM12 [4], ETM15 [5]).

Figure 5.18: Comparison of our results for the RGI SM bag parameter B̂K with previous
results.

collaboration [3, 235, 236], while the calculation with RI/MOM agreed with previous
RBC-UKQCD [211] and ETM [4, 5] results which also used RI/MOM. Values for B̂K

and the BSM Bi estimated in a large-Nc (number of colours) expansion may be found
in [238,239].

Our value for the SM bag parameter BK = B1 shows good consistency with our col-
laboration’s most-recent previous result, BMS SMOM(/q,/q)

K
(3GeV) = 0.530(11) [77]. A

different fitting procedure in which the physical point data was over-weighted was em-
ployed in Ref. [77] and, while it also included the coarse and medium ensembles included
in this work, it included a different third lattice spacing with a heavier pion mass. Fur-
ther, it combined additional coarser ensembles with a different gauge action in a global
fit, and reweighting factors to adjust the sea strange mass to the physical values. In
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this work we instead leave the sea-strange mass dependence as a fit parameter. Given
the differences in the underlying correlator data and the various fitting procedures, the
consistency of the results is reassuring.

We convert our result above for BK at scale µ = 3GeV to the RGI value

B̂K = 0.7436(82). (5.47)

A comparison of our B̂K with previous lattice results [2,3,76–86] is shown in figure 5.18,
where good agreement is seen.

5.5 Conclusions and outlook

In the study presented in this chapter we have performed the first calculation of beyond
the standard model (BSM) neutral kaon mixing matrix elements with data directly
simulated with physical quark masses in the isospin symmetric limit of pure Nf = 2+1

QCD. This paper improves upon the most recent RBC/UKQCD BSM kaon mixing
calculation [2, 72] by adding a third lattice spacing and including two data points at
the physical light quark mass. The status of this work has been previously reported
in [240, 241] and our final results are now published in [9]. Using an increased level
of volume averaging, with many Z2 wall sources on each configuration, we have been
able to obtain a much greater reduction in statistical errors compared to our previous
publications, even with physical quark masses.

All sources of systematic uncertainties have been estimated. For each of the bag param-
eters and ratios of matrix elements a simultaneous fit has been performed to the mass
and lattice spacing dependence. Direct simulation at physical quark masses leaves the
mass dependence of this extrapolation a negligible systematic. With the inclusion of a
third lattice spacing we can test the validity of a2 scaling and find that in the range
covered by our data it works well. We assess discretisation uncertainties by considering
different renormalisation points and/or different ways of obtaining the non-perturbative
scaling matrix. The self-consistency check of comparing ratios NiBi/Ri increases our
confidence that the discretisation effects have been well estimated, since those ratios
approach the continuum limit in notably different ways.

The dominant systematic error comes from perturbative matching from the RI/SMOM
scheme to MS at the 3GeV renormalisation point. This key error was assessed by
comparing two different intermediate RI/SMOM schemes after continuum extrapolation.
If the matching were non-perturbative the intermediate scheme would be irrelevant, but
with truncated, perturbative matching the results differ due to the truncation error.
The differences are of the order 1-3%.
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The prospects for further improvements of this calculation are as follows: we believe that
the RI/SMOM scheme results are sufficiently precise that there is no purpose in further
reduction in the error within the isospin symmetric pure QCD approximation. Instead,
strong isospin breaking and QED must be addressed if greater accuracy is required. For
our final results a significant source of error stems from the perturbative matching to MS.
This could be addressed by raising the matching scale at which we convert operators.
The convergence is logarithmic in the energy scale and this will not lead to a rapid
improvement in the calculation. It would be better to accompany this with a two-loop
calculation of the scheme change factors presented in [72]. The quadratic suppression in
↵s would be more beneficial than an increase in the renormalisation scale towards the
b-threshold.

Consequently, we believe our results are a robust determination that in the short term
may only be further improved with an additional loop in the perturbative matching, or
by the inclusion of isospin breaking effects.

Finally, it is worth noting that a similar analysis performed in the pion sector allows to
one to extract the matrix elements which could dominate the short-distance contribu-
tion to neutrino-less double beta decays, see for example [242, 243]. In particular, the
renormalisation factors computed here could be employed for such a study.

5.6 Towards D, B and Bs-meson mixing

The analysis framework used in our study of neutral kaon mixing can be extended to
the study of the mixing of D, B and Bs mesons, and there is ongoing work within
the RBC-UKQCD collaboration for computing the bag parameters in these systems, in
particular for B and Bs meson mixing [244,245]. This will enable use to determine, from
first principles, several quantities that provide stringent tests on the SM or constrain
BSM physics, as discussed in section 2.5.6.

The non-perturbative renormalisation procedure for computing the observables in these
systems is identical to that in neutral kaon mixing but applied instead to �C = 2 and
�B = 2 operators. These computations are based on Nf = 2 + 1 DWF ensembles
generated by the RBC-UKQCD and JLQCD [246] collaborations; their main properties
are listed in table 5.11. These ensembles feature pion masses from m⇡ = 430Mev down
to the physical range of m⇡ = 139MeV and six values of lattice spacing ranging from
a�1 = 1.7GeV up to a�1 = 4.5GeV.

The notable feature of this dataset compared to the one used so far in this chapter is that
the light and strange quarks are simulated using the same DWF action as used in the
study of neutral kaon mixing, while the heavy quarks are simulated using stout-smeared
[247] Möbius DWF.



120 Chapter 5. Kaon mixing from lattice QCD

name X/a T/a a�1[GeV] m⇡[MeV] m⇡L Nconf ⇥Nsrc
C0M 48 96 1.730(4) 139 3.9 90⇥48
C1S 24 64 1.785(5) 340 4.6 100⇥32
C2S 24 64 1.785(5) 431 5.8 99⇥32
M0M 64 128 2.359(7) 139 3.8 82⇥64
M1S 32 64 2.383(9) 304 4.1 83⇥32
M2S 32 64 2.383(9) 361 4.8 76⇥32
M3S 32 64 2.383(9) 411 5.5 80⇥32
KEKC1L 48 128 2.453(4) 226 4.4 100⇥24
KEKC1S 32 64 2.453(4) 230 3.0 100⇥16
KEKC2a 32 64 2.453(4) 309 4.0 100⇥16
KEKC2b 32 64 2.453(4) 310 4.0 100⇥16
F1M 48 96 2.708(10) 232 4.0 72⇥48
KEKM1a 48 96 3.610(9) 300 3.9 50⇥24
KEKM1b 48 96 3.610(9) 297 3.9 50⇥24
KEKF1 64 128 4.496(9) 284 4.0 50⇥32

Table 5.11: Summary of the main parameters of the RBC-UKQCD and JLQCD en-
sembles used for the ongoing study of D, B, and Bs-meson mixing.

The relevant renormalisation factors have been computed as part of this PhD project
and the numerical values are reported in tables B.13 - B.27 in appendix B.

It is important to note that the non-perturbative renormalisation procedure defined
by the RI/SMOM scheme prescribes renormalisation constants in the massless limit.
While this is an acceptable approximation in the study of neutral kaon mixing, the
NPR process fails to account for heavy quark discretisation effects when used in heavy
meson systems such as Bs�Bs mixing. In the next chapter we will discuss an extension
to the RI/SMOM scheme with the aim of addressing cutoff effects introduced by the use
of heavy quarks on the lattice.
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Chapter 6

Charm quark mass using massive
NPR

The charm and bottom quarks are distinguished from the up, down and strange quarks
by their much heavier masses, with mq � ⇤QCD, and are therefore known as heavy
quarks. The study of heavy quark observables, such as the spectra of the heavy hadrons,
provides a testing ground for QCD in the non-perturbative regime. The weak decays
of heavy hadrons, for example, are critical to the determination of the elements of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix.

At present there is a wealth of input from heavy flavour experiments such as the LHCb
at CERN and Belle II at KEK, as well as older data from BaBar, Belle, CLEO and
BESIII. Given the increase in experimental data, there is a need for improving precision
of theoretical inputs in order to extract Standard Model (SM) parameters such as the
CKM matrix elements. Lattice QCD provides an ab initio method for computing the
necessary inputs from heavy quark observables.

However, in order to make reliable predictions for heavy quark observables on the lattice
one must demonstrate that physical results are independent of lattice discretisation
effects. This condition is met when the relevant distance scales of the calculation are
much larger than the lattice spacing a. In the case of heavy quarks, the relevant scale is
associated with the inverse of their mass 1/mq, and present day lattices (with a ⇠ 0.1

fm) typically fail to meet the criterion amq ⌧ 1 (with amb ⇡ 2.5 and amc ⇡ 0.75).

Renormalised quantities on the lattice can be related to their bare and continuum coun-
terparts as

hOiSlat(amq, aµ) = ZS

O(aµ)hOibare
lat (amq)

= hOiScont

✓
mq

µ

◆h
1 + �̂(amq, aµ)

i
,

(6.1)
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where ZS

O
(aµ) is a multiplicative renormalisation constant (or matrix when operators

mix under renormalisation) in some scheme S at some renormalisation scale µ, and �̂

denotes lattice artefacts. Non-perturbative renormalisation (NPR) schemes, such as the
RI/SMOM scheme [199] introduced in chapter 4, often define renormalisation constants
in the limit of vanishing quark masses, that is, the chiral limit of QCD. The renormalisa-
tion conditions are chosen such that the renormalised vector and axial current correlators
satisfy the Ward identities (WIs) derived using the symmetries of the theory. In order
to recover physics with subdominant discretisation effects in the continuum limit one
demands that lima!0 �̂(amq, aµ) . O(a2m2

q), which is satisfied when the scales are well
resolved as mq ⌧ µ ⌧ a�1. As we know in case of heavy quarks on the lattice this
hierarchy is violated with amq /⌧1 and mq ⇠ µ, therefore the use of these massless NPR
schemes for heavy quark observables neglects amq-sized discretisation effects and leads
to violations of WIs.

An alternative to the RI/SMOM scheme was proposed in [248], prescribing renormalisa-
tion conditions away from the chiral limit such that the desirable properties of the mass-
less scheme are preserved, in particular the WIs are satisfied at finite quark masses. This
massive scheme, known as RI/mSMOM, provides a prescription for the non-perturbative
renormalisation of fermion bilinear operators, in particular for scalar and pseudoscalar
densities as well as vector and axial currents, computed at some finite value of the renor-
malised mass. This scheme can therefore be expected to reabsorb some of the amq-sized
lattice artefacts in the continuum limit for heavy quark observables.

In this chapter, we report the details of a pilot numerical implementation of the RI/mSMOM
scheme in the study of the renormalised charm quark mass on the lattice. The status of
this work has previously been reported in [11] and the final results are presented in [10].

6.1 RI/mSMOM

In this section we summarise the main ideas of the massive momentum-subtraction
scheme (originally detailed in [248]). Note that the definitions of Green’s functions and
propagators as well as the use of symmetric kinematics in this scheme match those of
the RI/SMOM scheme, as described in section 4.1; they are repeated in this section
in order to make the discussion self-contained. Note also that to match the numerical
simulations we work with Euclidean quantities.

Renormalisation conditions for quark bilinear operators are usually expressed in terms
of Green’s functions of quark bilinear operators between two external off-shell quark
lines in a fixed (Landau) gauge

OF

� =  f�⌧
F f 0 , (6.2)

GF

� (p2, p1) = h f (p2)OF

� (q) f 0(p1)i, (6.3)



6.1. RI/mSMOM 123

where  f and  f 0 are quark fields of flavours f and f 0 respectively, and q = p1� p2 (see
figure 4.1 for conventions used). ⌧F is some generator of an SU(Nf ) flavour symmetry,
which generates a non-singlet flavour transformation, with F denoting the adjoint index.
� indicates the Dirac structure of the operator; we are interested in scalar, ‘S’ (� = 1),
pseudoscalar, ‘P’ (� = i�5), vector, ‘V’ (� = �µ), and axial vector, ‘A’ (� = �µ�5)
bilinears. The quark propagator is defined as

Sf (p) = h f (p) f (p)i =
1

i/p+mf + ⌃(p)
, (6.4)

and the amputated Green’s function is obtained by amputating each leg with the inverse
quark propagator of the corresponding flavour

⇤F

� (p1, p2) = S�1
f

(p2)G
F

� (p2, p1)S
�1
f 0 (p1). (6.5)

Renormalised (subscript ‘R’) and bare quantities (no subscript) are related via renor-
malisation constants Z as

 R = Z1/2
q  , mR = Zmm, O�,R = Z�O�,

=) SR(p) = ZqS(p), ⇤�,R(p1, p2) =
Z�

Zq

⇤�(p1, p2).
(6.6)

Recall from section 4.1 that the Z-factors in the RI/SMOM scheme are defined by
imposing the condition (in the chiral limit of QCD)

lim
mR!0

P̂F

�

⇥
⇤F

�,R(a, p1, p2)
⇤

sym = F� ⌘ P̂F

�

h
⇤F,(0)
� (p1, p2)

i

sym
,

=) lim
mR!0

Z�

Zq

(a, µ)P̂F

�

⇥
⇤F

� (a, p1, p2)
⇤

sym = F� ,
(6.7)

where ⇤(0)
� is the tree level amputated Green’s function, P̂� is a projector, and F� is the

corresponding tree level value. Note that the adjoint flavour index F is suppressed for the
remainder of this discussion as we assume that the bilinears are all flavour non-singlet.
‘sym’ denotes the symmetric momentum configuration characteristic to the RI/SMOM
scheme used from setting the renormalisation scale

p21 = p22 = q2 ⌘ µ2. (6.8)

Since the renormalisation conditions are imposed in the limit of renormalised mass mR !
0, the renormalisation constants are therefore by contruction mass-independent and
functions of the renormalisation scale µ only

ZSMOM = ZSMOM(aµ). (6.9)
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In contrast, the RI/mSMOM renormalisation conditions are imposed at finite renor-
malised masses

lim
mR!mR

Z�

Zq

(a, µ)P̃� [⇤�(a, p1, p2)]sym = F̃�, (6.10)

where P̃� and F̃� are the projectors and tree level values in the RI/mSMOM scheme
given below explicitly:

Zm : lim
mR!mR

1

mR

⇢
Tr
⇥
SR(p)

�1
⇤
p2=µ2 +

1

2
Tr
⇥�
iq · ⇤A,R

�
�5
⇤

sym

�
= 12, (6.11)

ZP : lim
mR!mR

Tr [⇤P,R�5]sym = 12i, (6.12)

ZS : lim
mR!mR

Tr
⇥
⇤S,R

⇤
sym +

2

q2
Tr
⇥
2mR⇤P,R�5/q

⇤
= 12, (6.13)

ZV : lim
mR!mR

1

q2
Tr
⇥
(q · ⇤V,R)/q

⇤
sym = 12, (6.14)

ZA : lim
mR!mR

1

q2
Tr
⇥
(q · ⇤A,R + 2mR⇤P,R)�5/q

⇤
sym = 12, (6.15)

Zq : lim
mR!mR

1

p2
Tr
⇥
�iSR(p)

�1
/p
⇤

sym = 12. (6.16)

Note that these renormalisation conditions are identical to those in the “/q” variation of
the RI/SMOM scheme for bilinear operators, except for the additional mass terms in
eqn (6.13) and eqn (6.15).

The renormalisation constants in this mass-dependent scheme are now functions of the
renormalisation scale µ as well as the bare mass (corresponding to the finite renormalised
mass mR) at which they are evaluated

ZmSMOM = ZmSMOM(aµ, am), (6.17)
with mR = lim

a!0
ZmSMOM
m (aµ, am)m. (6.18)

The RI/mSMOM scale mR

In the massive scheme, the renormalisation conditions are imposed at some ar-
bitrary but finite renormalised mass scale mR. One could consider varying mR

in order to determine a value where the continuum extrapolation of a lattice ob-
servable of interest has mild discretisation errors. The cutoff effects in different
observables may need to be treated with different values of mR. It is therefore
useful to view this scale as a tunable parameter. Note however that each choice of
mR, strictly speaking, corresponds to a different RI/mSMOM scheme, therefore
observables renormalised using different values of the renormalised mass need to
be converted to some common scheme (in the continuum limit) before they can
be compared.
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These Z-factors inherit the properties of those in the RI/SMOM (and MS) scheme such
that in the continuum limit

ZA = ZV = 1, ZS = ZP = 1/Zm, (6.19)

and the renormalised quantities satisfy the vector and axial WIs at finite mass

qµ⇤
µ

V,R
(p1, p2) = iS�1

f,R
(p2)� iS�1

f 0,R(p1), (6.20)

qµ⇤
µ

A,R
(p1, p2) = �2mR⇤P,R(p1, p2) + i�5S

�1
f 0,R(p1) + S�1

f,R
(p2)i�5. (6.21)

6.2 Charm quark mass

In this project, we carry out a first numerical implementation of the RI/mSMOM scheme
by studying the renormalised charm quark mass which is defined as

mmSMOM
c,R

(µ,mR) = lim
a!0

ZmSMOM
m (aµ, am)mc, (6.22)

with the goal of absorbing discretisation errors in the continuum extrapolation. This can
be quantified by comparing to the same extrapolation using the massless scheme. We
can then match to the MS scheme using continuum perturbation theory (which removes
the mR-dependence) in order to compare our results with those in the literature at the
same scale µ

mMS
c,R

(µ) = RMS mSMOM
m

✓
mR

µ

◆
mmSMOM

c,R
(µ,mR). (6.23)

6.2.1 Ingredients and simulation details

For the numerical simulation, we use six RBC/UKQCD ensembles [8, 77, 84, 105] with
Iwasaki gauge action (section 3.1.1) and domain wall fermion action (section 3.1.4).

ens X/a T/a a�1[GeV] M⇡[MeV] aml ams

C1M 24 64 1.7295(38) 276 0.005 0.0362
C1S 24 64 1.7848(50) 340 0.005 0.04
M0M 64 128 2.3586(70) 139 0.000678 0.02661
M1M 32 64 2.3586(70) 286 0.004 0.02661
M1S 32 64 2.3833(86) 304 0.004 0.03
F1M 48 96 2.708(10) 232 0.002144 0.02144
F1S 48 96 2.785(11) 267 0.002144 0.02144

Table 6.1: Summary of the main parameters of the ensembles used in this work. The
first letters – C, M or F – stand for coarse, medium and fine, respectively and the last
letters – M or S –stand for Möbius and Shamir kernels, respectively. Note that the

ensemble M0M is not used in the main analysis.
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ens aminput
C1M 0.05, 0.1, 0.15, 0.2, 0.3
C1S 0.05, 0.1, 0.15, 0.2, 0.3, 0.33
M1M 0.05, 0.1, 0.15, 0.225, 0.3, 0.32, 0.34
M1S 0.05, 0.1, 0.15, 0.225, 0.3, 0.32, 0.34, 0.36, 0.375
F1M 0.033, 0.066, 0.099, 0.132, 0.198, 0.264, 0.33, 0.36
F1S 0.033, 0.066, 0.099, 0.132, 0.198, 0.264, 0.33, 0.36, 0.396

Table 6.2: (Heavy) input quark masses aminput that were simulated in addition to aml,
2aml, ams/2 and ams.

These are Nf = 2 + 1 gauge ensembles with dynamical up, down and strange quarks.
There are three lattice spacings labelled as ‘coarse’ (C), ‘medium’ (M) and ‘fine’ (F), each
with either Shamir or Möbius domain-wall kernels (see eqns (3.50) & (3.51)) denoted by
last letter ‘S’ or ‘M’. The parameters of these kernels are chosen such that a combined
continuum limit with all six ensembles in possible [77]. All six ensembles are simulated at
unphysical pion masses; in order to investigate the pion mass dependence of our results
we also use data from the physical pion mass ensemble M0M which differs from M1M
only in pion mass and volume. The main properties of these seven ensembles are listed
in table 6.1. Large parts of the data used in this project were generated using the Grid
and Hadrons framework [215–217].

In order to compute the renormalised charm quark mass in the RI/mSMOM scheme as
given in eqn (6.22), we need the following ingredients:

1. bare quark masses: on each lattice, we compute the value of the residual mass
amres using the asymptotic behaviour of the ratio of the mid-point current (J5q)
over the pseudoscalar density (J5), as defined in eqn (3.47) over a range of input
masses aminput. This procedure is shown in figures 6.1a and 6.1b using the M1M

(a) amres derived from the ratio of mid-
point current over pseudoscalar density

(see eqn (3.47)).
(b) amres measurements over a range of

input bare heavy quark masses.

Figure 6.1: amres measurements on the M1M ensemble.
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(a) aM⌘h derived from the effective mass
of the pseudoscalar two-point function

(see eqn (3.89)).
(b) M⌘h measurements over a range of in-

put bare heavy quark masses.

Figure 6.2: M⌘h measurements on the M1M ensemble.

ensemble as an example. The corresponding bare quark masses in lattice units are
defined as

amq = aminput + amres, (6.24)

where the input masses range from aml up to the heaviest values that can be
accommodated on the lattice given its DWF parameters. The values of chosen
input masses for each ensemble is listed in table 6.2.

2. the bare charm mass mc: on each lattice, we compute the quark-connected two-
point function of the flavour-diagonal pseudoscalar meson interpolator1 denoted
as the ⌘h meson. Note that we use a mild Jacobi smearing (see eqn (3.80)) to
improve the overlap with the ground state for heavy masses. From the ground
state of the two-point function we extract the meson mass M⌘h in physical units
over a range of bare quark masses (in lattice units) amq (the coverage of ⌘h masses
over the available range of bare quark mass mq over all six ensembles is shown in
figure 6.5). This procedure in shown in figures 6.2a and 6.2b once again using the
M1M ensemble as an example. The bare charm mass can then be computed by
interpolating to the value of the bare mass corresponding to the physical value of
the ⌘c meson mass, MPDG

⌘c
= 2.9839(4)GeV [6], as

mc = (amc) · a�1, (6.25)
amc = amq(M⌘h = MPDG

⌘c
). (6.26)

3. the bare mass m: following the same procedure as the one used to determine
amc, we can compute the bare mass corresponding to the RI/mSMOM scheme

1The contribution from quark-disconnected pieces to the mass of the ⌘c meson (since we are ultimately
interested in the charm quark mass) has been estimated to be negligibly small [249].
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(a) Zm computed from eqn (6.11) over a
range of momenta.

(b) Zm (interpolated to µ = 2 GeV) over
a range of bare quark masses.

Figure 6.3: ZmSMOM
m measurements on the M1M ensemble.

reference scale by choosing an arbitrary reference ⌘h mass scale M . The bare mass
m is therefore determined by interpolating to this reference scale as

m = (am) · a�1, (6.27)
am = amq(M⌘h = M). (6.28)

Note that this choice of the reference pseudoscalar meson mass M ultimately
corresponds to choosing the RI/mSMOM mass scale mR.

4. renormalisation constant ZmSMOM
m : we see from eqn (6.11) that in order to calcu-

late Zm, we need to also compute Zq, ZP . Zm and ZA can then be extracted from
the coupled equations

1

Zmm

⇢
Tr
⇥
ZqS(p)

�1
⇤
p2=µ2 +

1

2

ZA

Zq

Tr [(iq · ⇤A(p1, p2)) �5]sym

�
= 12,

1

q2

⇢
ZA

Zq

Tr
⇥
(q · ⇤A(p1, p2))�5/q

⇤
sym + 2m

ZmZP

Zq

Tr
⇥
⇤P (p1, p2)�5/q

⇤
sym

�
= 12.

On each ensemble, for each choice of bare mass, we compute bare propagators and
Green’s functions for � = S, P, V,A by choosing lattice momenta ap1 = (p, p, 0, 0)

and ap2 = (p, 0, p, 0), where

p =
2⇡

L
(n+ ✓). (6.29)

In order to cover the range of physical momenta 2GeV . q . 3GeV (see fig-
ure 6.3a), we use twist angles ✓ 2 {0, 0.25, 0.5, 0.75} in order to interpolate between
the integer Fourier modes n 2 {3, 4, 5} on the coarse and medium ensembles, and
n 2 {4, 5, 6} on the fine ensembles. This is then repeated for each choice of bare
quark mass as shown in figure 6.3b. We therefore compute the renormalisation
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(a) ZA derived from the ratio of conserved
over local axial current.

(b) ZA measurements over a range of bare
quark masses.

Figure 6.4: ZA measurements on the M1M ensemble.

constant for quark masses as a function of the renormalisation scale µ and the bare
quark mass in lattice units amq as shown in figure 6.6.

5. renormalisation constant ZA: note that in practice we find it convenient to replace
the renormalisation condition for ZA in eqn (6.15) with a direct determination of
ZA from the asymptotic time behaviour of the ratio of conserved (jA) over local
(jA) axial currents (see eqn (3.44))2. We adopt the definition of this ratio from
[250] in order to avoid as much systematic error as possible:

ZA = Zeff
A
(t)
���
t�a�1

=
1

2

"
C(t+ 1

2) + C(t� 1
2)

2L(t)
+

2C(t+ 1
2)

L(t) + L(t+ 1)

#

t�a�1

, (6.30)

with C(t+ 1
2) := hjA(t)j5(0)i, L(t) := hjA(t)j5(0)i. (6.31)

This procedure is shown in figure 6.4a, and then repeated for the various bare
quark masses as shown in figure 6.4b. Note that conserved axial current is defined
not on lattice sites but instead on the links between sites, therefore the conserved
current correlator C has a 1

2 in its argument.

6. renormalisation constant ZSMOM
m : we also compute the renormalisation constants

in the massless RI/SMOM scheme in order to make a comparison with the massive
scheme, using the (/q) projectors as listed in eqns 4.10–4.19. Once again, we use the
ZA computed from the ratio of conserved over local axial currents in this process.

Note that the values of amres, aM⌘h and ZA are computed from choosing the value and
error of a datapoint in the plateau region in the t/a� 1 limit. The numerical values of
these as well as those of ZmSMOM

m and ZSMOM
m are listed explicitly for all ensembles in

tables C.1 – C.6.
2These currents carry an index µ corresponding to �µ�5 in the kernel, and we construct the ratios

using the temporal component only (µ = 4).
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Figure 6.5: Coverage of the quark mass dependence of our data. Note that on the
coarse ensembles we don’t reach the physical charm quark mass scale.

Figure 6.6: Zm in the RI/mSMOM scheme computed over a range of momenta for
various values of bare input quark masses am = aminput on the M1M ensemble, in-
terpolated to a chosen value of the renormalisation scale (µ = 2 GeV case illustrated

here).
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6.2.2 Strategy

Our strategy for computing the renormalised charm quark mass in the RI/mSMOM
scheme is as follows:

(a) Interpolate ZmSMOM
m to a common renormalisation scale µ for each bare quark

mass to obtain ZmSMOM
m (aµ, amq) on all ensembles as shown in figure 6.6.

(b) Choose a mass scale at which the RI/mSMOM renormalisation conditions are im-
posed (mR): this is done indirectly via choosing an ⌘h meson mass M . Interpolate
to find the corresponding bare quark mass in lattice units am on each ensemble.

(c) Interpolate the renormalisation constants to this mass scale on each ensemble
ZmSMOM
m (aµ, am).

(d) Choose a mass scale corresponding to the quark mass to be renormalised. Ideally
we should work at the charm scale, using MPDG

⌘c
as our reference mass, however our

choice of DWF parameters does not allow for direct simualations at the physical
charm scale on the coarsest ensembles (see figure 6.5). We therefore instead carry
out the renormalisation procedure at lower bare quark masses and extrapolate to
the charm scale (as well as renormalising directly at the charm scale using only
two lattice spacings) – for this purpose, we choose a meson mass scale M , and
compute the corresponding bare quark mass m = amq(M) · a�1 by interpolating.

(e) For a given choice of (µ, M , M), carry out two continuum extrapolations

(a) combine Zm(aµ, am) with m on all ensembles to obtain the RI/mSMOM
scheme-defining renormalised mass

mR = lim
a!0

ZmSMOM
m (aµ, am)(am) · a�1. (6.32)

(b) combine Zm(aµ, am) with m on all ensembles to obtain the renormalised mass

mmSMOM
R

(µ,mR) = lim
a!0

ZmSMOM
m (aµ, am)(am) · a�1. (6.33)

(f) Keeping the choices of (µ, M) fixed, vary the choice of M and extrapolate to
M = MPDG

⌘c
to obtain mmSMOM

c,R
(µ,mR) and derive a systematic error that accounts

for the lack of physical charm scale coverage on the course ensembles.

(g) Finally, repeat the analysis for different choices of µ and M in order to determine
the ideal choice of M (and thereby mR) for a given µ.

In our analysis, we choose the renormalisation scale µ 2 {2.0, 2.5, 3.0}, and the reference
mass scales as fractions of the ⌘c meson mass as M,M 2 {0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 1.0}⇥
MPDG
⌘c

.
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Figure 6.7: Limit a ! 0 for fixed choice of (µ, M , M) comparing approach to the
continuum in the massless (RI/SMOM) versus massive (RI/mSMOM) schemes. Values
of fit parameters (see eqn (6.34)) and p-value indicated in the legend. Opaque data

points are obtained from original data points (faint) by subtracting C�amres.

6.2.3 Continuum extrapolation

Having chosen (µ, M , M) and determined the corresponding bare quark masses and
renormalisation constant (Zm(µ, am), m, m) on each ensemble, we perform the contin-
uum limit of the renormalised quark mass. The most general ansatz we consider for our
continuum extrapolations is given by

mR(a⇤) = mR(a
2 = 0) + C�amres + C1 (a⇤)

2 , (6.34)

where the coefficient C� captures the scaling violations stemming from the residual chiral
symmetry breaking in our data. The size of this coefficient is of O(1), however the size
of amres is typically small (see tables C.1 & C.2). We tried adding a term proportional
to a4 and found that its coefficient is in practice compatible with zero, and therefore it
is not needed to describe the data and excluded from the ansatz.

In figure 6.7 we show the continuum extrapolation for the choice µ = 2.0 GeV, M =

0.7MPDG
⌘c

, and M = 0.6MPDG
⌘c

. In addition to the RI/mSMOM data points (blue
circles) we also show the approach to the continuum limit using Zm in the massless
RI/SMOM scheme (orange circles) computed in the chiral limit. We clearly observe
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Figure 6.8: Continuum limit with M = M for computing the RI/mSMOM scheme-
defining renormalised mass scale mR.

that the data has smaller discretisation effects in the massive scheme than the massless
scheme - this is also indicated by the value of the fit parameter of the term proportional
to a2 given by C1 in the plot.

The original RI/mSMOM data points are shown as the faint blue symbols while the
opaque symbols represent the value once the residual mass contribution (C�amres) is
corrected for. We notice that this only significantly affects the C1S data point, which
is expected since residual chiral symmetry breaking effects are known to decrease by
decreasing the lattice spacings and increasing the extent of the fifth dimension Ls . Note
that the residual chiral symmetry breaking of our choice of Möbius kernel is expected
to the same as that of the Shamir kernel with twice the extent of the fifth dimension.
Since Ls(C1S) = 16 and Ls(C1M) = 24, the C1M ensemble effectively has thrice the
extent of the fifth dimension in comparison to C1S.

We also show, in figure 6.8, the continuum extrapolation for computing the renormalised
mass scale mR (at which the renormalisation conditions are imposed). By choosing
M = M we get mR = mR in the RI/mSMOM scheme.
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Figure 6.9: Variations of the renormalisation mass scale M at a fixed value of M . Data
points shown here have been corrected for the amres contribution in the ansatz (see
eqn (6.34)). For the largest values of M we lose coverage on the coarse ensembles and

therefore exclude them from the fit.

6.2.4 Varying mR

As described in the beginning over this section, the finite mass scale at which the
RI/mSMOM renormalisation conditions are imposed, mR, is a tunable parameter that
can be freely varied within the range of our data. In figure 6.7 we present fits to the
ansatz in eqn (6.34) with M = 0.6⇥MPDG

⌘c
for a single choice of M = 0.7⇥MPDG

⌘c
. As

we see in figure 6.8, this corresponds to a renormalisation mass scale mR = 0.6559(15).

We also study the absorption of cutoff effects by varying the choice to M (and therefore
mR) as shown in figure 6.9. It is important to note that each choice of M corresponds to
a different RI/mSMOM scheme and therefore the values of the continuum extrapolations
from the various Ms at a2 = 0 are not directly comparable. However, it is clearly visible
that while the approach to the continuum is well described by a fit linear in a2 in all
cases, the slope varies strongly with the choice of M . It is therefore possible, for a given
observable, to choose an ideal mR in order to obtain the flattest possible continuum
slope. This is one of the key features of the massive scheme.
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6.2.5 Systematic errors

Interpolations

In order to complete steps (a)–(c) in section 6.2.2, we perform interpolations in
p
q2 and

amq. As our data has broad coverage, we perform these interpolations locally as polyno-
mial fits to data points closest to the target value. In order to estimate any systematic
uncertainties stemming from these interpolations we use the following variations:

1. linear interpolation between the two closest bracketing data points

2. quadratic interpolation between the two data points which bracket the target value
and nearest other data point to the left or right

3. cubic interpolation between the four closest data points

We take the fit value of variation 2 as our central value and in addition to its statistical
uncertainty we assign half the spread of all variations as a systematic uncertainty. The
numerical values of Zm in the RI/mSMOM and RI/SMOM schemes interpolated to a
few different choices of µ using this procedure are listed in tables C.3–C.6.

Continuum extrapolation

In order to assess the systematics uncertainties associated to the continuum limit ex-
trapolation associated with a given choice of M and M , we use the following variations
in ansatze and ensembles:

1. all ensembles on which the hadron mass M can be simulated using the ansatz in
eqn (6.34)

2. all ensembles except C1S (which has the largest amres value by far) and excluding
the C� term from the ansatz

3. only the three Möbius ensembles (all of which have smaller amres values compared
to the Shamir ones) and excluding the C� term from the ansatz

We take the fit value of variation 1 as our central value and in addition to its statistical
uncertainty we assign half the spread of all variations as a systematic uncertainty.
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0.32 M0M M1M M0M/M1M
aM⌘h 1.23636(19) 1.23593(61) 1.00035(53)
amres 0.0006613(18) 0.0006617(21) 0.9993(41)
ZA 0.824110(43) 0.824154(95) 0.99995(12)
0.34 M0M M1M M0M/M1M
aM⌘h 1.28092(18) 1.28049(61) 1.00033(50)
amres 0.0009049(26) 0.0009004(28) 1.0050(43)
ZA 0.833863(42) 0.833897(100) 0.99996(13)

Table 6.3: Comparison of observables between the M0M (M⇡ = 139MeV) and the
M1M (M⇡ = 286MeV) ensembles for two mass points bracketing the physical charm

quark mass.

Pion mass dependence

We also consider the size of potential effects afflicting our simulations which do not take
place at the physical pion mass. In table 6.3 we contrast the values for aM⌘h , amres,
and ZA on the M1M with those on the M0M (physical point) ensemble for two choices
of the heavy bare quark mass that bracket the physics charm quark mass (amc). These
two ensembles differ only in their volume and pion masses. We observe that values
on the two ensembles are compatible and therefore their ratios are compatible with
unity. We further observe that the relative (albeit not statistically resolved) effect on
the hadron mass is at the sub-per-mille level. We therefore conclude that any effects
of unphysical pion masses in the data can be safely neglected and do not assign any
systematic uncertainties accounting for this.

Physical charm scale

We are ultimately interested in the renormalised charm quark mass, and in order to
compute it we follow step (f) of our strategy in section 6.2.2. This involves varying the
choice of M for fixed values of µ and m in order to remain in the same scheme. For
M 2 {0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 1.0}⇥MPDG

⌘c
, we assemble the error budget of the steps

up to and including the continuum extrapolation. We then combined these results to
perform an inter/extrapolation to the physical charm quark mass. Strictly speaking this
is not necessary since we already have a direct results at M = MPDG

⌘c
, however this

continuum limit is only based on the medium and fine ensembles and therefore we prefer
to supplement it by a parameterisation using different values of mR/M as a function of
M , as shown in figure 6.10.

In order to assemble a systematic error budget associated with this procedure, we fit
data points in various intervals to the following ansatz

mR

M
= ↵

1

M
+ � + �M. (6.35)
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Figure 6.10: Left panel: results of continuum extrapolations of the renormalised mass
at µ = 2GeV at M = 0.7 ⇥MPDG

⌘c
for various values of M . Right panels: results of

fits using eqn (6.35) over various fit ranges and corresponding p-values. The red data
point and corresponding band represents final value of mc,R in RI/mSMOM scheme at

given choice of M .

The intervals we consider, in terms of M/MPDG
⌘c

are [0.6, 1.0], [0.7, 1.0], [0.6, 0.9] and
[0.6, 0.8]. The results of these varaitions in fit ranges are shown in the right hand panel
of figure 6.10. We use the direct determination at the charm quark mass (M = MPDG

⌘c
)

as our central value, and to its uncertainty we conservatively associate a systematic
uncertainty of half the spread of the variations.

Note that we quote the two uncertainties separately since the latter only arises from
requiring the final number be based on continuum limits from more than two lattice
spacings. With the addition of ensembles with finer lattice spacings such that a contin-
uum limit may directly be obtained at the charm quark mass the uncertainty associated
with the determination at the physical charm scale would be completely removed.

6.2.6 Conversion to MS

Finally, it remains to directly compare the results from different choices of M as well
those from the RI/SMOM scheme by converting to a common scheme in the continuum.
We do this in the phenomenologically relavant MS scheme, and the conversion factor
for quark masses in the RI/SMOM scheme has been computed to two-loop order in
[201,202]. In the Landau gauge for Ncolor = 3 and Nf = 2 + 1 this explicitly given by

RMS SMOM
m (µ) ' 1�

✓
↵s(µ)

4⇡

◆
0.6455188560�

✓
↵s(µ)

4⇡

◆2

[10.56706916] +O(↵3
s).

(6.36)
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Figure 6.11: Conversion from the RI/mSMOM scheme to MS in the Landau gauge as
a function of the renormalised mass scale mR for a few choices of the renormalisation

scale µ (see eqn (6.37)).

The conversion factor MS from the RI/mSMOM scheme has been computed at the
one-loop level [248] and is given explicitly in the Landau gauge by [10]

RMS mSMOM
m (µ,mR) = 1 +

↵s(µ)

4⇡
CF


�4 + 3

2
C0

✓
m2

R

µ2

◆
+ 3 ln

✓
m2

R
+ µ2

µ2

◆

�3m
2
R

µ2
ln
✓

m2
R

m2
R
+ µ2

◆�
,

(6.37)

where C0(x) is defined in [10] with C0(0) ⌘ C0 from section 4.3. Note that using the
massless condition mR = 0 in eqn (6.37) yields CF (4 � 3C0/2) ⇡ 0.6455, which is
consistent with the one-loop coefficient in eqn (6.36) as expected.

The conversion to MS as a function of the renormalised mass scale mR is shown in
figure 6.11 for a few different choices of µ. In this figure, the conversion from the
massless scheme is represented by mR = 0.

Perturbative truncation error

In order to quantify the effects of truncation in the perturbative expansion for the
RI/mSMOM mass renormalisation constant, in the (temporary) absence of perturbative
two-loop calculations, we compare the one and two-loop contributions in the massless
scheme (second and third term in eqn (6.36)) and use the relative difference between
them as an indicator for the systematic truncation uncertainty. By this presciption we
find that for µ = 2.0GeV (µ = 2.5GeV , µ = 3.0GeV) the truncation uncertainty is a
0.38% (0.31%, 0.27%) effect. Note that the uncertainties related to one-loop truncation
can be reduced or eliminated by extending the perturbative calculations for renormali-
sation constants in the RI/mSMOM scheme to higher loop orders.
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Figure 6.12: Results for the continuum-extrapolated renormalised charm quark mass
at 3 GeV computed in RI/SMOM and RI/mSMOM (with variations in choice of M)
schemes and converted to MS using results from µ = 2.0, 2.5, 3.0 GeV. Numerical values

are presented in table 6.4.

6.2.7 Results

Having converted our results from the RI/mSMOM and RI/SMOM schemes to the
MS scheme using matching in continuum perturbation theory, we now make a direct
comparison of the value of the renormalised charm quark mass computed in the various
schemes. Furthermore, within the MS scheme we then run our results up to 3 GeV
as well as down to the charm quark scale to quote mMS

c,R
(3GeV) and mMS

c,R
(mMS

c,R
). To

compute the strong coupling and running of the MS quark mass we make use of RunDec
[251–253] which in turn relies on 5-loop results for the beta function and the mass
anomalous dimension [254–259].

Our final results from the charm quark mass in MS at 3 GeV are shown in figure 6.12.
We find good agreement between the massless and massive schemes as well as amongst
the different values for mR for the massive scheme. In the RI/SMOM scheme, we use
results computed at µ = 3.0 GeV directly as well as those computed at µ = 2.0, 2.5 GeV
and then ran up (using perturbatively running in MS) to 3 GeV. In the RI/mSMOM
scheme, our results at 3 GeV are calculated by running up the values computed at
µ = 2.0 GeV. This is because while in the massive scheme the continuum limit is well
controlled for determinations at 2 GeV, the values of M which significantly absord cutoff
effects and therefore decrease the slop of the continuum extrapolation are not reachable
on our current data set for larger values of the renormalisation scale µ, and thus we
exclude them.
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R
)

m
M

S
c
,R
(µ
)
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0.75
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As our final number we quote our results obtained from RI/mSMOM at µ = 2GeV from
the choice M = 0.7MPDG

⌘c
which corresponds to mR = 0.6559(16)GeV. We find

mmSMOM
c,R

(2GeV,mR) = 1.129(7)(12)GeV , (6.38)

mMS
c,R

(2GeV) = 1.115(7)(12)(4)GeV , (6.39)

mMS
c,R

(3GeV) = 1.008(6)(11)(4)GeV , (6.40)

mMS
c,R

(mMS
c,R

) = 1.292(5)(10)(4)GeV . (6.41)

The first uncertainty comes from the determination of the renormalised charm quark
mass directly at the charm scale, the second from the inter/extrapolation from using
reference values M < MPDG

⌘c
, and the third is the estimated one-loop perturbative

truncation error in converting from RI/mSMOM to MS. We end up with an overall
1.3% uncertainty in our result at 3 GeV. Note that we have not applied any additional
uncertainties associated with the running in the MS scheme.

Nf collaboration mMS
c,R

(3GeV) mMS
c,R

(mMS
c,R

)

2+1

[10] RBC/UKQCD 24 1.008(6)(11)(4) 1.292(5)(10)(4)
[260] ALPHA 21 1.007(16) 1.296(19)
[261] Petreczky 19 1.001(16) 1.265(10)
[262] Maezawa 16 1.267(12)
[246] JLQCD 16 1.0033(96) 1.2871(123)
[263] �QCD 14 1.006(5)(22) 1.304(5)(20)
[234] HPQCD 10 0.986(6) 1.273(6)
[264] HPQCD 08B 0.986(10) 1.268(9)

[7] FLAG21 avg 0.992(5) 1.275(5)

2+1+1

[265] ALPHA 23 1.006(13) 1.296(16)
[222] ETM 21A 1.036(17)(+15

�8 ) 1.339(22)(+19
�10)(10)

[266] HPQCD 20A 0.9841(51) 1.2719(78)
[226] HPQCD 18 0.9896(61) 1.2757(84)
[223] FNAL/MILC/

0.9837(43)(14)(33)(5) 1.273(4)(1)(10)TUMQCD 18
[227] HPQCD 14A 0.9851(63) 1.2715(95)
[267] ETM 14A 1.0557(22)(153) 1.3478(27)(195)
[224] ETM 14 1.058(35) 1.348(46)

[7] FLAG21 avg 0.988(11) 1.278(13)
[6] PDG 1.27(2)

Table 6.5: Comparison of various lattice results and PDG evaluation for renormalised
charm quark mass in MS scheme at µ = 3 GeV and at the charm mass scale. The
results from this work indicated in red text, all other values except ALPHA 23 are from
FLAG21 [7] including the average of lattice results (in orange). For a breakdown of

individual values and errors, please refer to FLAG21 review.
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6.2.8 Comparison to literature

The charm quark mass has previously been computed by various collaborations in var-
ious schemes. In table 6.5 we compare our results (in red) to results in the literature
computed using Nf = 2 + 1 as well as Nf = 2 + 1 + 1. Most results presented in
this table are computed in massless NPR schemes such as RI/SMOM, RI’/SMOM, the
Schrödinger functional scheme and the X-space method, or heavy quark effective theory
(HQET) methods to treat the heavy masses. Note that some computations have also
used Symanzik improvement methods to tackle discretisation effects, see for example
[223,260]. Some of them also computed the charm mass from moments of pseudoscalar
quarkonium correlation functions involving ratios of quark masses – in this case the Zm

factors would cancel out so no NPR procedure is needed.

We find good agreement with other Nf = 2 + 1 calculations and obtain similar uncer-
tainties. Note that the leading uncertainty in our calculation arised from the the large of
charm scale coverage on all three lattice spacings we use for computing the renormalised
charm quark mass - this can be eliminated in the future with the use of an additional
finer lattice spacing.

6.3 Conclusions and outlook

We have presented the first numerical implementation of the massive non-perturbative
renormalisation scheme RI/mSMOM which was originally proposed in [248]. Our key
findings include confirming that the use of a massive scheme indeed leads to absorption of
discretisation effects related to the use of heavy quarks on the lattice, and that the finite
renormalisation scale mR acts as a tunable parameter for controlling this absorption;
therefore we can use it to find the flattest approach to the continuum for our renormalised
quantities of interest.

We observe good agreement between different RI/mSMOM schemes corresponding to
different mR’s; this provides a non-trivial test for scrutinising and substantiating that the
continuum limit is well-controlled and independent of the choice of the renormalisation
mass scale.

The use of this massive scheme is in principle not restricted to heavy quark masses and
can be useful for studying any observable with large discretisation effects relative to the
desired statistical precision. In the future we envisage applications of the RI/mSMOM
scheme to other bilinear operators as well as an extension to four-quark operators where
it can find use in processes such as heavy meson decays and mixing.
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Chapter 7

Conclusions

The ongoing search for New Physics calls for high precision tests on the parameters of the
Standard Model (SM), as well as exploring beyond the Standard Model (BSM) theories.
In this thesis, we use the framework of lattice quantum chromodynamics (QCD) to make
high precision predictions for both SM and BSM parameters for neutral kaon mixing,
and for the mass of the charm quark. The unifying theme in these projects is the
use of regularisation-independent (RI) momentum subtraction (MOM) schemes for the
non-perturbative renormalisation of lattice observables.

We present a study of neutral kaon mixing using Nf = 2 + 1 QCD data simulated
directly with physical quark masses. This improves upon the most recent RBC/UKQCD
calculation of BSM bag and ratio parameters [2,72] by utilising a third lattice spacing and
two data points at the physical light quark masses. Our results for the SM bag parameter
as well as the BSM bag parameters B2 and B2 are in good agreement with previous
calculations [7]. Meanwhile, the results for B4 and B5 confirm the tensions between
calculations employing the RI/SMOM versus the RI/MOM schemes. We propose the
source of this tension to be artefacts of the pion pole subtraction procedure needed
when using exceptional kinematics in the RI/MOM scheme. This study is carried out
with sufficient precision that further improvement will require addressing the strong and
electromagnetic isospin breaking effects, and improving the perturbative matching from
the RI scheme to the MS scheme by an additional loop order. Our results stand at
present to be the most precise determinations of the BSM bag parameters for neutral
kaon mixing, and our methodology involves a comprehensive implementation and test
of the RI/SMOM scheme.

The study of the short-distance contributions to neutral D, B and Bs meson mixing
follows a similar strategy to that used in the kaon mixing project. The necessary non-
perturbative renormalisation factors for these processes have also been computed as part
of the thesis in order to contribute to the ongoing RBC/UKQCD study of heavy meson
mixing.
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We have also presented a first ever numerical implementation of an extension to the
RI/SMOM scheme (imposed in the massless limit) for improving precision for heavy
quark observables, called the RI/mSMOM scheme [248], where ‘m’ denotes massive. We
impose renormalisation conditions at finite values of a fixed renormalised quark mass,
and use the corresponding Z-factors to renormalise our bare lattice quantity of interest,
in our case the charm quark mass. We find that our final value of the charm quark mass
is in good agreement with the existing literature. Most importantly, we observe that the
massive scheme helps absorb discretisation effects in heavy quark observables and there-
fore leads to a milder continuum extrapolation compared to the massless (RI/SMOM)
scheme. We find that the finite renormalisation scale mR behaves as a tunable parameter
for controlling this absorption, and can be adjusted to find a flat continuum approach,
depending on the observable of interest. The current results can be improved with the
use of finer lattices and perturbative matching factors computed to higher loop order.
We predict that this methodology of massive non-perturbative renormalisation will find
use in the improvement of precision in other heavy quark observables, particularly if the
scheme is extended to higher dimensional operators in the future.
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Appendix A

Algebraic properties

A.1 Generators of SU(2) and SU(3)

The generators of the SU(2) Lie algebra are given by ta = 1
2�

a where �a are the three
Pauli matrices given by

�1 =

 
0 1

1 0

!
, �2 =

 
0 �i
�i 0

!
, �3 =

 
1 0

0 1

!
. (A.1)

Similarly, the generators of the SU(3) Lie algebra are given by ta = 1
2�

a where �a are
the eight Gell-Mann matrices given by

�1 =

0
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0 1 0

1 0 0

0 0 1

1

CA , �2 =
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0 0 0
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1 0 0
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0 0 0

1

CA ,
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1 0 0

1
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0 0 0

i 0 0

1
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0
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0 0 0

0 0 1

0 1 0

1

CA , �7 =
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0 0 �i
0 i 0

1

CA , �8 =
1p
3

0

B@
1 0 0

0 1 0

0 0 �2

1

CA .

(A.2)
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A.2 Gamma matrices

The generators of the Lorentz group1 algebra are commonly represented as Sµ⌫ =
1
4 [�µ, �µ], where the gamma matrices are the four generators of Clifford algebra, given
by (in Euclidean space)

�1 =

0

BBBB@

0 0 0 �i
0 0 �i 0

0 i 0 0

i 0 0 0

1

CCCCA
, �2 =

0

BBBB@

0 0 0 �1
0 0 1 0

0 1 0 0

�1 0 0 0

1

CCCCA
,

�3 =

0

BBBB@

0 0 �i 0

0 0 0 i

i 0 0 0

0 �i 0 0

1

CCCCA
, �4 =

0

BBBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1

CCCCA
.

(A.3)

These matrices are Hermitian and satisfy the Clifford group algebra

�†µ = (�µ)
�1 = �µ, {�µ, �⌫} = 2�µ⌫14⇥4. (A.4)

We also define a useful combination of these matrices

�5 = �1�2�3�4 =

0

BBBB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1

CCCCA
, (A.5)

which is also Hermitian and anticommutes with the other matrices:

�†5 = (�5)
�1 = �5, {�µ, �5} = 0. (A.6)

1defined as SO(3, 1) in Minkowski spacetime and SU(2)⇥ SU(2) in Euclidean spacetime
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Appendix B

Numerical results for meson
mixing



148 Chapter B. Numerical results for meson mixing

aµ
1.11072

1.20328
1.29584

1.3884
1.48096

1.57352
Z
1
1 /Z

2A
0.93224(13)

0.929176(89)
0.926290(94)

0.923561(69)
0.920933(61)

0.918361(48)
Z
2
2 /Z

2A
1.051566(67)

1.050490(35)
1.049666(44)

1.049023(34)
1.048781(30)

1.048699(22)
Z
2
3 /Z

2A
0.34329(10)

0.32562(10)
0.31148(13)

0.299919(76)
0.29116(11)

0.284410(79)
Z
3
2 /Z

2A
0.025241(32)

0.026859(24)
0.028691(14)

0.030482(26)
0.032458(19)

0.034417(25)
Z
3
3 /Z

2A
0.70331(21)

0.73972(25)
0.77188(10)

0.79997(14)
0.825201(70)

0.847377(98)
Z
4
4 /Z

2A
0.76990(16)

0.80063(30)
0.82823(13)

0.85250(18)
0.874776(87)

0.89460(11)
Z
4
5 /Z

2A
�
0.020531(33)

�
0.023123(42)

�
0.025770(20)

�
0.028259(33)

�
0.030843(17)

�
0.033323(22)

Z
5
4 /Z

2A
�
0.32217(13)

�
0.30334(14)

�
0.28828(13)

�
0.27607(12)

�
0.26659(12)

�
0.259125(92)

Z
5
5 /Z

2A
1.134435(46)

1.112601(64)
1.094144(44)

1.0786529(50)
1.065350(26)

1.0539165(45)
Z
A
/Z

S
1.197636(72)

1.17094(20)
1.14850(10)

1.129805(85)
1.113751(82)

1.100262(50)
aµ

1.66608
1.75864

1.8512
1.94376

2.03632
2.12888

Z
1
1 /Z

2A
0.915757(55)

0.913126(40)
0.910350(50)

0.907465(35)
0.904293(46)

0.900905(32)
Z
2
2 /Z

2A
1.049000(28)

1.049402(14)
1.050175(21)

1.050999(11)
1.052146(28)

1.053327(10)
Z
2
3 /Z

2A
0.279843(79)

0.276699(69)
0.275435(81)

0.275145(75)
0.276453(90)

0.278507(72)
Z
3
2 /Z

2A
0.036556(21)

0.038698(21)
0.041039(19)

0.043385(14)
0.045971(20)

0.048580(12)
Z
3
3 /Z

2A
0.867628(13)

0.885835(87)
0.9026943(41)

0.918149(54)
0.932898(25)

0.946640(39)
Z
4
4 /Z

2A
0.913142(39)

0.930040(97)
0.946110(20)

0.960969(61)
0.975488(25)

0.989038(43)
Z
4
5 /Z

2A
�
0.035922(23)

�
0.038460(22)

�
0.041150(20)

�
0.043791(16)

�
0.046625(22)

�
0.049431(13)

Z
5
4 /Z

2A
�
0.253672(91)

�
0.249596(86)

�
0.247137(88)

�
0.245600(78)

�
0.245377(91)

�
0.245835(73)

Z
5
5 /Z

2A
1.043880(31)

1.034942(24)
1.026894(25)

1.019469(17)
1.012461(21)

1.005738(14)
Z
A
/Z

S
1.088466(27)

1.078253(51)
1.069232(11)

1.061227(34)
1.0539537(99)

1.047396(20)

Table
B.1:

Values
of

Z
ij /Z

2A
for

chirally
non-vanishing

m
atrix

elem
ents

for
allsim

ulated
m

om
enta

(in
lattice

units)
on

the
C0M

ensem
ble

for
am

val
q

=
0.0181.A

llvaluesare
given

in
the

RI/SM
O

M
(�

µ
,�

µ
)schem

e
and

in
the

SU
SY

basis.



149

aµ
1.
11

07
2

1.
20

32
8

1.
29

58
4

1.
38

84
1.
48

09
6

1.
57

35
2

Z
1
1
/Z

2 A
0.
93

30
3(
14

)
0.
92

97
6(
10

)
0.
92

68
81

(6
1)

0.
92

41
65

(5
5)

0.
92

14
84

(6
8)

0.
91

88
80

(6
8)

Z
2
2
/Z

2 A
1.
05

27
3(
21

)
1.
05

13
8(
14

)
1.
05

02
9(
10

)
1.
04

95
71

(8
3)

1.
04

89
96

(4
8)

1.
04

89
99

(5
8)

Z
2
3
/Z

2 A
0.
34

13
0(
42

)
0.
32

40
7(
26

)
0.
31

00
1(
20

)
0.
29

85
9(
18

)
0.
28

94
1(
16

)
0.
28

32
3(
17

)
Z
3
2
/Z

2 A
0.
02

53
1(
10

)
0.
02

70
37

(6
8)

0.
02

87
90

(6
4)

0.
03

06
00

(5
0)

0.
03

24
38

(4
0)

0.
03

44
50

(4
0)

Z
3
3
/Z

2 A
0.
70

74
6(
75

)
0.
74

33
9(
45

)
0.
77

45
3(
36

)
0.
80

25
3(
31

)
0.
82

74
4(
22

)
0.
84

92
0(
15

)
Z
4
4
/Z

2 A
0.
77

31
3(
64

)
0.
80

38
4(
41

)
0.
83

04
3(
34

)
0.
85

46
9(
29

)
0.
87

66
2(
22

)
0.
89

62
4(
16

)
Z
4
5
/Z

2 A
�
0.
02

06
45

(7
7)
�
0.
02

33
93

(6
1)
�
0.
02

58
95

(4
9)
�
0.
02

83
87

(3
7)
�
0.
03

08
66

(3
4)
�
0.
03

34
24

(4
0)

Z
5
4
/Z

2 A
�
0.
32

07
3(
41

)
�
0.
30

20
1(
25

)
�
0.
28

69
4(
17

)
�
0.
27

47
7(
15

)
�
0.
26

50
2(
17

)
�
0.
25

79
0(
14

)
Z
5
5
/Z

2 A
1.
13

44
0(
25

)
1.
11

21
6(
22

)
1.
09

38
1(
15

)
1.
07

83
4(
11

)
1.
06

50
43

(8
1)

1.
05

36
10

(7
3)

Z
A
/Z

S
1.
19

36
1(
87

)
1.
16

78
3(
38

)
1.
14

66
8(
31

)
1.
12

82
0(
22

)
1.
11

20
9(
19

)
1.
09

91
5(
11

)
aµ

1.
66

60
8

1.
75

86
4

1.
85

12
1.
94

37
6

2.
03

63
2

2.
12

88
8

Z
1
1
/Z

2 A
0.
91

62
71

(6
6)

0.
91

36
47

(6
2)

0.
91

09
79

(5
8)

0.
90

79
58

(5
9)

0.
90

48
35

(5
7)

0.
90

14
07

(5
7)

Z
2
2
/Z

2 A
1.
04

91
63

(5
4)

1.
04

96
28

(4
3)

1.
05

01
84

(4
4)

1.
05

11
41

(4
3)

1.
05

21
97

(4
4)

1.
05

34
18

(4
8)

Z
2
3
/Z

2 A
0.
27

85
6(
18

)
0.
27

56
9(
15

)
0.
27

39
1(
14

)
0.
27

41
8(
14

)
0.
27

53
5(
14

)
0.
27

76
0(
16

)
Z
3
2
/Z

2 A
0.
03

65
36

(4
2)

0.
03

87
23

(4
4)

0.
04

09
50

(2
7)

0.
04

33
93

(4
3)

0.
04

59
08

(4
4)

0.
04

85
68

(4
5)

Z
3
3
/Z

2 A
0.
86

92
1(
12

)
0.
88

73
4(
12

)
0.
90

39
5(
12

)
0.
91

93
9(
13

)
0.
93

38
5(
12

)
0.
94

76
7(
10

)
Z
4
4
/Z

2 A
0.
91

45
1(
13

)
0.
93

14
3(
14

)
0.
94

71
4(
13

)
0.
96

21
4(
15

)
0.
97

63
4(
14

)
0.
99

00
2(
13

)
Z
4
5
/Z

2 A
�
0.
03

59
43

(4
1)
�
0.
03

85
26

(4
5)
�
0.
04

10
70

(3
0)
�
0.
04

38
28

(4
4)
�
0.
04

65
88

(4
4)
�
0.
04

94
43

(4
4)

Z
5
4
/Z

2 A
�
0.
25

23
7(
15

)
�
0.
24

84
9(
13

)
�
0.
24

56
7(
14

)
�
0.
24

44
9(
12

)
�
0.
24

41
6(
12

)
�
0.
24

47
3(
13

)
Z
5
5
/Z

2 A
1.
04

36
19

(6
5)

1.
03

47
80

(5
7)

1.
02

68
35

(4
2)

1.
01

93
46

(4
2)

1.
01

24
14

(3
5)

1.
00

56
85

(3
6)

Z
A
/Z

S
1.
08

75
3(
10

)
1.
07

73
95

(9
5)

1.
06

84
93

(7
5)

1.
06

05
48

(7
6)

1.
05

34
15

(6
1)

1.
04

68
57

(5
0)

Ta
bl

e
B.

2:
Sa

m
e

as
ta

bl
e

B.
1

bu
tf

or
th

e
C1

S
en

se
m

bl
e

fo
ra

m
va

l
q

=
0.
00
5.



150 Chapter B. Numerical results for meson mixing

aµ
1.11072

1.20328
1.29584

1.3884
1.48096

1.57352
Z
1
1 /Z

2A
0.93191(15)

0.92887(10)
0.926097(77)

0.923495(73)
0.921020(94)

0.918454(72)
Z
2
2 /Z

2A
1.05171(15)

1.050485(93)
1.049645(83)

1.049098(72)
1.048722(86)

1.048781(64)
Z
2
3 /Z

2A
0.34132(33)

0.32419(30)
0.31003(26)

0.29875(24)
0.28985(28)

0.28339(21)
Z
3
2 /Z

2A
0.025215(80)

0.027035(48)
0.028793(41)

0.030617(44)
0.032426(51)

0.034531(46)
Z
3
3 /Z

2A
0.70614(29)

0.74217(37)
0.77411(29)

0.80213(27)
0.82646(20)

0.84921(24)
Z
4
4 /Z

2A
0.77195(27)

0.80249(32)
0.82992(28)

0.85436(25)
0.87568(18)

0.89625(25)
Z
4
5 /Z

2A
�
0.020631(76)

�
0.023284(54)

�
0.025855(50)

�
0.028421(52)

�
0.030823(53)

�
0.033466(54)

Z
5
4 /Z

2A
�
0.32063(32)

�
0.30217(28)

�
0.28714(22)

�
0.27510(21)

�
0.26550(25)

�
0.25819(18)

Z
5
5 /Z

2A
1.13305(26)

1.11148(20)
1.09330(13)

1.07791(10)
1.06485(11)

1.053406(58)
Z
A
/Z

S
1.19289(55)

1.16840(34)
1.14640(27)

1.12798(23)
1.11248(14)

1.09896(17)
aµ

1.66608
1.75864

1.8512
1.94376

2.03632
2.12888

Z
1
1 /Z

2A
0.915930(67)

0.913308(61)
0.910629(79)

0.907679(57)
0.904565(59)

0.901155(61)
Z
2
2 /Z

2A
1.049033(69)

1.049516(68)
1.050148(77)

1.051112(66)
1.052184(64)

1.053426(65)
Z
2
3 /Z

2A
0.27882(19)

0.27598(19)
0.27443(26)

0.27459(19)
0.27575(19)

0.27805(20)
Z
3
2 /Z

2A
0.036609(46)

0.038786(47)
0.040972(56)

0.043468(50)
0.045989(50)

0.048651(52)
Z
3
3 /Z

2A
0.86908(20)

0.88714(18)
0.90343(12)

0.91920(14)
0.93371(12)

0.94751(12)
Z
4
4 /Z

2A
0.91443(22)

0.93129(20)
0.94668(15)

0.96202(17)
0.97625(15)

0.98993(15)
Z
4
5 /Z

2A
�
0.035998(53)

�
0.038575(53)

�
0.041093(60)

�
0.043899(53)

�
0.046662(55)

�
0.049514(56)

Z
5
4 /Z

2A
�
0.25274(17)

�
0.24885(17)

�
0.24622(23)

�
0.24494(18)

�
0.24461(17)

�
0.24522(17)

Z
5
5 /Z

2A
1.043492(53)

1.034652(47)
1.026738(50)

1.019273(43)
1.012344(36)

1.005655(35)
Z
A
/Z

S
1.08747(14)

1.07744(12)
1.068669(67)

1.060647(73)
1.053495(59)

1.046974(54)

Table
B.3:

Sam
e

astable
B.1

butforthe
C2S

ensem
ble

for
am

val
q

=
0.01.



151

aµ
0.
83

30
4

0.
90

24
6

0.
97

18
8

1.
04

13
1.
11

07
2

1.
18

01
4

Z
1
1
/Z

2 A
0.
95

89
88

(9
7)

0.
95

52
60

(7
7)

0.
95

19
56

(6
3)

0.
94

89
99

(5
4)

0.
94

63
21

(4
9)

0.
94

38
62

(4
4)

Z
2
2
/Z

2 A
1.
05

71
28

(6
9)

1.
05

45
65

(5
3)

1.
05

22
59

(3
9)

1.
05

02
56

(3
1)

1.
04

85
45

(2
9)

1.
04

71
15

(2
6)

Z
2
3
/Z

2 A
0.
36

43
3(
11

)
0.
34

36
48

(9
5)

0.
32

55
62

(7
6)

0.
30

98
33

(6
1)

0.
29

62
24

(4
8)

0.
28

45
31

(4
1)

Z
3
2
/Z

2 A
0.
01

91
20

(2
3)

0.
01

99
58

(2
1)

0.
02

08
54

(2
1)

0.
02

18
06

(1
6)

0.
02

28
10

(1
3)

0.
02

38
61

(1
4)

Z
3
3
/Z

2 A
0.
63

28
6(
11

)
0.
66

78
99

(9
3)

0.
69

92
47

(9
2)

0.
72

74
10

(9
1)

0.
75

27
80

(7
9)

0.
77

56
95

(6
6)

Z
4
4
/Z

2 A
0.
71

34
9(
12

)
0.
74

23
50

(8
0)

0.
76

81
19

(8
5)

0.
79

13
17

(9
1)

0.
81

22
96

(8
8)

0.
83

13
80

(8
1)

Z
4
5
/Z

2 A
�
0.
01

19
25

(3
0)
�
0.
01

37
91

(2
4)
�
0.
01

55
61

(2
1)
�
0.
01

72
70

(2
0)
�
0.
01

89
33

(1
9)
�
0.
02

05
64

(1
9)

Z
5
4
/Z

2 A
�
0.
34

87
85

(7
0)
�
0.
32

53
24

(5
5)
�
0.
30

53
76

(4
9)
�
0.
28

83
83

(4
6)
�
0.
27

38
97

(3
6)
�
0.
26

15
59

(3
3)

Z
5
5
/Z

2 A
1.
20

09
61

(8
9)

1.
17

42
12

(7
1)

1.
15

16
20

(5
2)

1.
13

23
60

(4
4)

1.
11

57
98

(3
9)

1.
10

14
41

(3
3)

Z
A
/Z

S
1.
26

23
2(
14

)
1.
23

09
9(
11

)
1.
20

45
35

(8
6)

1.
18

19
92

(8
3)

1.
16

26
86

(6
5)

1.
14

60
34

(5
1)

aµ
1.
24

95
6

1.
31

89
8

1.
38

84
1.
45

78
2

1.
52

72
4

1.
59

66
6

Z
1
1
/Z

2 A
0.
94

15
80

(4
0)

0.
93

94
24

(3
6)

0.
93

73
57

(3
1)

0.
93

53
54

(2
7)

0.
93

33
84

(2
6)

0.
93

14
27

(2
5)

Z
2
2
/Z

2 A
1.
04

59
50

(2
5)

1.
04

50
24

(2
4)

1.
04

43
26

(2
2)

1.
04

38
38

(2
0)

1.
04

35
36

(1
6)

1.
04

34
05

(1
4)

Z
2
3
/Z

2 A
0.
27

45
57

(4
3)

0.
26

61
40

(4
6)

0.
25

91
32

(4
8)

0.
25

34
06

(4
5)

0.
24

88
29

(4
1)

0.
24

52
82

(3
7)

Z
3
2
/Z

2 A
0.
02

49
52

(1
5)

0.
02

60
87

(1
5)

0.
02

72
73

(1
5)

0.
02

85
08

(1
4)

0.
02

97
93

(1
4)

0.
03

11
28

(1
4)

Z
3
3
/Z

2 A
0.
79

64
68

(5
9)

0.
81

53
46

(5
3)

0.
83

25
71

(4
5)

0.
84

83
40

(3
9)

0.
86

28
44

(3
5)

0.
87

62
49

(3
0)

Z
4
4
/Z

2 A
0.
84

88
35

(7
4)

0.
86

48
68

(6
8)

0.
87

96
78

(5
9)

0.
89

34
21

(5
3)

0.
90

62
44

(5
0)

0.
91

82
74

(4
5)

Z
4
5
/Z

2 A
�
0.
02

21
73

(2
0)
�
0.
02

37
75

(2
0)
�
0.
02

53
79

(1
9)
�
0.
02

69
91

(1
8)
�
0.
02

86
17

(1
7)
�
0.
03

02
61

(1
6)

Z
5
4
/Z

2 A
�
0.
25

10
73

(3
5)
�
0.
24

22
00

(3
5)
�
0.
23

47
55

(3
6)
�
0.
22

85
69

(3
4)
�
0.
22

34
91

(3
1)
�
0.
21

93
90

(2
9)

Z
5
5
/Z

2 A
1.
08

88
99

(2
9)

1.
07

78
60

(2
1)

1.
06

80
94

(1
3)

1.
05

93
99

7(
83

)
1.
05

16
04

(1
1)

1.
04

45
63

(1
2)

Z
A
/Z

S
1.
13

15
63

(4
2)

1.
11

89
26

(3
3)

1.
10

78
11

(2
3)

1.
09

79
86

(2
0)

1.
08

92
46

(1
9)

1.
08

14
23

(1
6)

Ta
bl

e
B.

4:
Sa

m
e

as
ta

bl
e

B.
1

bu
tf

or
th

e
M

0M
en

se
m

bl
e

fo
ra

m
va

l
q

=
0.
01
33

.



152 Chapter B. Numerical results for meson mixing

aµ
0.83304

0.90246
0.97188

1.0413
1.11072

1.18014
Z
1
1 /Z

2A
0.95866(27)

0.95479(24)
0.95131(20)

0.94835(17)
0.94594(14)

0.94335(15)
Z
2
2 /Z

2A
1.05863(24)

1.05561(17)
1.05283(11)

1.05060(10)
1.04902(10)

1.047373(78)
Z
2
3 /Z

2A
0.36666(42)

0.34511(40)
0.32651(31)

0.31022(27)
0.29709(24)

0.28490(15)
Z
3
2 /Z

2A
0.01927(13)

0.02016(11)
0.020953(63)

0.021960(45)
0.022876(56)

0.023976(33)
Z
3
3 /Z

2A
0.63178(68)

0.66790(65)
0.69929(51)

0.72810(37)
0.75237(37)

0.77607(16)
Z
4
4 /Z

2A
0.71203(63)

0.74187(62)
0.76777(49)

0.79149(33)
0.81164(35)

0.83146(18)
Z
4
5 /Z

2A
�
0.01197(11)

�
0.013999(81)

�
0.015696(78)

�
0.017368(41)

�
0.019037(56)

�
0.020694(43)

Z
5
4 /Z

2A
�
0.35142(49)

�
0.32709(41)

�
0.30657(35)

�
0.28915(28)

�
0.27495(26)

�
0.26220(20)

Z
5
5 /Z

2A
1.20251(48)

1.174820(78)
1.15166(16)

1.13231(16)
1.11609(15)

1.101308(99)
Z
A
/Z

S
1.2629(14)

1.2305(12)
1.20420(72)

1.18148(47)
1.16311(51)

1.14592(24)
aµ

1.24956
1.31898

1.3884
1.45782

1.52724
1.59666

Z
1
1 /Z

2A
0.94111(13)

0.93899(11)
0.937051(99)

0.93495(10)
0.932999(96)

0.931072(90)
Z
2
2 /Z

2A
1.046175(55)

1.045212(37)
1.044577(53)

1.044027(36)
1.043714(34)

1.043592(32)
Z
2
3 /Z

2A
0.27494(13)

0.26650(12)
0.25961(19)

0.25385(12)
0.24930(13)

0.24578(13)
Z
3
2 /Z

2A
0.025059(26)

0.026205(25)
0.027322(35)

0.028620(30)
0.029916(29)

0.031257(27)
Z
3
3 /Z

2A
0.79677(15)

0.81571(16)
0.83239(16)

0.84859(15)
0.86306(15)

0.87648(14)
Z
4
4 /Z

2A
0.84892(15)

0.86504(15)
0.87937(18)

0.89355(15)
0.90638(15)

0.91844(14)
Z
4
5 /Z

2A
�
0.022302(39)

�
0.023901(32)

�
0.025446(33)

�
0.027116(33)

�
0.028756(33)

�
0.030412(30)

Z
5
4 /Z

2A
�
0.25166(17)

�
0.24272(14)

�
0.23537(20)

�
0.22911(14)

�
0.22405(14)

�
0.21994(15)

Z
5
5 /Z

2A
1.088774(81)

1.077719(65)
1.068125(64)

1.059205(33)
1.051443(40)

1.044415(36)
Z
A
/Z

S
1.13157(10)

1.11884(12)
1.10792(13)

1.09803(10)
1.08928(11)

1.08143(11)

Table
B.5:

Sam
e

astable
B.1

butforthe
M

1S
ensem

ble
for

am
val
q

=
0.004.



153

aµ
0.
83

30
4

0.
90

24
6

0.
97

18
8

1.
04

13
1.
11

07
2

1.
18

01
4

Z
1
1
/Z

2 A
0.
95

88
2(
22

)
0.
95

46
7(
28

)
0.
95

13
7(
21

)
0.
94

84
5(
18

)
0.
94

61
8(
12

)
0.
94

35
42

(8
7)

Z
2
2
/Z

2 A
1.
05

78
7(
21

)
1.
05

50
5(
25

)
1.
05

25
9(
14

)
1.
05

04
0(
11

)
1.
04

89
25

(9
7)

1.
04

72
47

(6
4)

Z
2
3
/Z

2 A
0.
36

44
2(
27

)
0.
34

38
7(
35

)
0.
32

56
5(
19

)
0.
30

97
9(
16

)
0.
29

63
7(
13

)
0.
28

46
4(
20

)
Z
3
2
/Z

2 A
0.
01

90
5(
11

)
0.
01

99
83

(9
3)

0.
02

09
59

(6
9)

0.
02

19
04

(5
1)

0.
02

28
41

(7
3)

0.
02

39
47

(4
3)

Z
3
3
/Z

2 A
0.
63

32
3(
69

)
0.
66

85
0(
84

)
0.
69

99
9(
46

)
0.
72

81
3(
38

)
0.
75

30
2(
39

)
0.
77

60
2(
31

)
Z
4
4
/Z

2 A
0.
71

35
3(
69

)
0.
74

28
6(
83

)
0.
76

87
1(
54

)
0.
79

18
2(
42

)
0.
81

23
7(
43

)
0.
83

15
2(
29

)
Z
4
5
/Z

2 A
�
0.
01

18
1(
13

)
�
0.
01

39
5(
14

)
�
0.
01

57
4(
10

)
�
0.
01

73
82

(8
1)
�
0.
01

89
87

(9
5)
�
0.
02

06
60

(6
3)

Z
5
4
/Z

2 A
�
0.
34

92
3(
38

)
�
0.
32

58
2(
39

)
�
0.
30

56
2(
23

)
�
0.
28

84
9(
18

)
�
0.
27

41
1(
18

)
�
0.
26

18
0(
19

)
Z
5
5
/Z

2 A
1.
20

11
4(
29

)
1.
17

43
0(
24

)
1.
15

15
3(
11

)
1.
13

20
2(
13

)
1.
11

58
2(
18

)
1.
10

12
0(
12

)
Z
A
/Z

S
1.
25

99
(1
0)

1.
22

88
0(
87

)
1.
20

27
3(
64

)
1.
18

06
5(
50

)
1.
16

24
2(
29

)
1.
14

56
4(
32

)
aµ

1.
24

95
6

1.
31

89
8

1.
38

84
1.
45

78
2

1.
52

72
4

1.
59

66
6

Z
1
1
/Z

2 A
0.
94

13
17

(6
3)

0.
93

91
63

(5
4)

0.
93

72
35

(9
2)

0.
93

51
66

(3
9)

0.
93

32
26

(3
0)

0.
93

12
91

(2
4)

Z
2
2
/Z

2 A
1.
04

61
03

(3
6)

1.
04

51
17

(3
5)

1.
04

44
08

(6
2)

1.
04

39
85

(5
6)

1.
04

36
66

(7
1)

1.
04

35
36

(7
4)

Z
2
3
/Z

2 A
0.
27

46
6(
13

)
0.
26

61
9(
15

)
0.
25

90
2(
12

)
0.
25

35
4(
16

)
0.
24

89
9(
16

)
0.
24

54
5(
17

)
Z
3
2
/Z

2 A
0.
02

50
44

(4
4)

0.
02

62
01

(4
7)

0.
02

73
26

(5
5)

0.
02

86
34

(5
2)

0.
02

99
21

(5
6)

0.
03

12
55

(5
5)

Z
3
3
/Z

2 A
0.
79

68
0(
26

)
0.
81

57
8(
29

)
0.
83

28
3(
29

)
0.
84

88
2(
27

)
0.
86

32
9(
28

)
0.
87

66
9(
25

)
Z
4
4
/Z

2 A
0.
84

90
3(
29

)
0.
86

51
7(
31

)
0.
87

98
4(
27

)
0.
89

38
4(
28

)
0.
90

66
8(
30

)
0.
91

87
4(
27

)
Z
4
5
/Z

2 A
�
0.
02

22
98

(5
4)
�
0.
02

39
08

(5
2)
�
0.
02

54
38

(6
6)
�
0.
02

71
31

(5
0)
�
0.
02

87
58

(5
7)
�
0.
03

04
02

(5
9)

Z
5
4
/Z

2 A
�
0.
25

12
6(
17

)
�
0.
24

23
0(
18

)
�
0.
23

47
1(
12

)
�
0.
22

87
2(
15

)
�
0.
22

36
2(
14

)
�
0.
21

95
1(
14

)
Z
5
5
/Z

2 A
1.
08

86
55

(9
2)

1.
07

75
7(
10

)
1.
06

79
2(
11

)
1.
05

92
26

(9
4)

1.
05

14
39

(8
7)

1.
04

44
19

(7
9)

Z
A
/Z

S
1.
13

12
1(
21

)
1.
11

85
9(
19

)
1.
10

77
1(
17

)
1.
09

77
3(
15

)
1.
08

90
4(
16

)
1.
08

12
3(
13

)

Ta
bl

e
B.

6:
Sa

m
e

as
ta

bl
e

B.
1

bu
tf

or
th

e
M

2S
en

se
m

bl
e

fo
ra

m
va

l
q

=
0.
00
6.



154 Chapter B. Numerical results for meson mixing

aµ
0.83304

0.90246
0.97188

1.0413
1.11072

1.18014
Z
1
1 /Z

2A
0.95828(42)

0.95462(40)
0.95138(35)

0.94851(29)
0.94589(26)

0.94340(20)
Z
2
2 /Z

2A
1.05754(21)

1.05471(15)
1.05237(10)

1.05041(12)
1.048624(90)

1.047155(83)
Z
2
3 /Z

2A
0.36552(53)

0.34385(41)
0.32570(37)

0.31005(34)
0.29653(28)

0.28468(28)
Z
3
2 /Z

2A
0.019240(78)

0.020098(98)
0.020971(75)

0.021903(70)
0.022899(56)

0.023887(42)
Z
3
3 /Z

2A
0.63244(77)

0.66864(54)
0.69997(43)

0.72786(40)
0.75295(23)

0.77586(38)
Z
4
4 /Z

2A
0.71290(66)

0.74271(53)
0.76851(40)

0.79152(37)
0.81223(23)

0.83130(38)
Z
4
5 /Z

2A
�
0.01207(12)

�
0.01379(11)

�
0.015619(83)

�
0.017364(78)

�
0.018993(66)

�
0.020594(43)

Z
5
4 /Z

2A
�
0.34975(49)

�
0.32602(47)

�
0.30588(41)

�
0.28890(38)

�
0.27440(31)

�
0.26193(29)

Z
5
5 /Z

2A
1.20103(43)

1.17450(46)
1.15165(34)

1.13233(26)
1.11573(19)

1.10121(20)
Z
A
/Z

S
1.2590(15)

1.22834(56)
1.20252(33)

1.18059(33)
1.16145(32)

1.14525(31)
aµ

1.24956
1.31898

1.3884
1.45782

1.52724
1.59666

Z
1
1 /Z

2A
0.94115(19)

0.93903(17)
0.93710(16)

0.93506(13)
0.93311(12)

0.93118(11)
Z
2
2 /Z

2A
1.045938(64)

1.045015(56)
1.044340(52)

1.043868(41)
1.043563(32)

1.043433(34)
Z
2
3 /Z

2A
0.27469(28)

0.26632(28)
0.25932(21)

0.25359(21)
0.24904(21)

0.24550(21)
Z
3
2 /Z

2A
0.024974(38)

0.026116(32)
0.027334(41)

0.028542(25)
0.029816(25)

0.031145(27)
Z
3
3 /Z

2A
0.79653(37)

0.81531(37)
0.83264(11)

0.84830(24)
0.86273(23)

0.87610(20)
Z
4
4 /Z

2A
0.84870(36)

0.86468(36)
0.87962(14)

0.89328(25)
0.90604(24)

0.91805(21)
Z
4
5 /Z

2A
�
0.022195(37)

�
0.023802(32)

�
0.025418(42)

�
0.027027(28)

�
0.028643(28)

�
0.030285(28)

Z
5
4 /Z

2A
�
0.25140(29)

�
0.24255(29)

�
0.23510(22)

�
0.22891(23)

�
0.22383(23)

�
0.21973(22)

Z
5
5 /Z

2A
1.08868(16)

1.07767(13)
1.067983(81)

1.05932(12)
1.051520(89)

1.044481(76)
Z
A
/Z

S
1.13106(26)

1.11870(24)
1.10756(12)

1.09791(15)
1.08925(14)

1.08145(12)

Table
B.7:

Sam
e

astable
B.1

butforthe
M

3S
ensem

ble
for

am
val
q

=
0.008.



155

aµ
0.
74

04
8

0.
78

67
6

0.
83

30
4

0.
87

93
2

0.
92

56
Z
1
1
/Z

2 A
0.
97

05
8(
44

)
0.
96

71
4(
43

)
0.
96

41
7(
31

)
0.
96

15
5(
21

)
0.
95

91
4(
20

)
Z
2
2
/Z

2 A
1.
06

14
5(
47

)
1.
05

89
7(
36

)
1.
05

66
3(
22

)
1.
05

44
3(
12

)
1.
05

24
70

(5
9)

Z
2
3
/Z

2 A
0.
37

43
3(
51

)
0.
35

79
6(
51

)
0.
34

32
0(
36

)
0.
32

98
1(
36

)
0.
31

72
3(
29

)
Z
3
2
/Z

2 A
0.
01

73
4(
15

)
0.
01

77
10

(7
8)

0.
01

82
64

(6
0)

0.
01

88
52

(8
4)

0.
01

93
39

(6
6)

Z
3
3
/Z

2 A
0.
60

90
9(
78

)
0.
63

51
9(
95

)
0.
65

87
7(
80

)
0.
68

05
9(
77

)
0.
70

14
4(
50

)
Z
4
4
/Z

2 A
0.
69

54
6(
93

)
0.
71

67
(1
1)

0.
73

58
0(
83

)
0.
75

34
9(
76

)
0.
77

05
9(
52

)
Z
4
5
/Z

2 A
�
0.
00

92
7(
14

)
�
0.
01

05
2(
18

)
�
0.
01

16
4(
16

)
�
0.
01

27
2(
13

)
�
0.
01

39
1(
10

)
Z
5
4
/Z

2 A
�
0.
36

20
6(
57

)
�
0.
34

31
1(
47

)
�
0.
32

63
5(
25

)
�
0.
31

13
4(
27

)
�
0.
29

75
5(
26

)
Z
5
5
/Z

2 A
1.
23

02
1(
85

)
1.
20

82
1(
54

)
1.
18

90
1(
26

)
1.
17

17
3(
18

)
1.
15

61
5(
27

)
Z
A
/Z

S
1.
28

76
(1
4)

1.
26

23
2(
65

)
1.
24

12
1(
75

)
1.
22

13
(1
0)

1.
20

29
1(
51

)
aµ

0.
97

18
8

1.
01

81
6

1.
06

44
4

1.
11

07
2

1.
15

7
Z
1
1
/Z

2 A
0.
95

70
1(
21

)
0.
95

49
9(
15

)
0.
95

30
9(
11

)
0.
95

13
0(
11

)
0.
94

96
29

(8
6)

Z
2
2
/Z

2 A
1.
05

08
5(
10

)
1.
04

92
55

(4
7)

1.
04

78
25

(1
1)

1.
04

65
92

(1
1)

1.
04

55
33

(3
0)

Z
2
3
/Z

2 A
0.
30

58
8(
21

)
0.
29

54
3(
17

)
0.
28

62
4(
15

)
0.
27

79
3(
14

)
0.
27

04
7(
11

)
Z
3
2
/Z

2 A
0.
01

98
72

(3
9)

0.
02

04
25

(2
5)

0.
02

10
06

(2
6)

0.
02

16
49

(2
9)

0.
02

23
16

(2
5)

Z
3
3
/Z

2 A
0.
72

06
2(
39

)
0.
73

85
9(
30

)
0.
75

48
8(
19

)
0.
77

01
7(
20

)
0.
78

45
2(
20

)
Z
4
4
/Z

2 A
0.
78

62
7(
42

)
0.
80

08
4(
36

)
0.
81

41
3(
22

)
0.
82

67
3(
21

)
0.
83

86
6(
19

)
Z
4
5
/Z

2 A
�
0.
01

49
51

(7
9)
�
0.
01

59
45

(5
4)
�
0.
01

69
42

(4
4)
�
0.
01

79
95

(3
2)
�
0.
01

90
37

(1
9)

Z
5
4
/Z

2 A
�
0.
28

53
7(
23

)
�
0.
27

41
9(
19

)
�
0.
26

44
2(
16

)
�
0.
25

56
3(
15

)
�
0.
24

77
6(
14

)
Z
5
5
/Z

2 A
1.
14

25
6(
30

)
1.
13

00
8(
13

)
1.
11

88
72

(6
9)

1.
10

87
51

(4
2)

1.
09

95
95

(7
6)

Z
A
/Z

S
1.
18

71
0(
36

)
1.
17

32
5(
29

)
1.
16

07
6(
22

)
1.
14

95
3(
16

)
1.
13

94
5(
12

)

Ta
bl

e
B.

8:
Sa

m
e

as
ta

bl
e

B.
1

bu
tf

or
th

e
F1

M
en

se
m

bl
e

fo
ra

m
va

l
q

=
0.
00
21

.



156 Chapter B. Numerical results for meson mixing

C-M C-S M-M M-S F-M
a�1 [GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86) 2.708(10)
Z11/Z2

A
0.93258(26)(0) 0.93444(77)(1) 0.96021(51)(2) 0.9579(12)(0) 0.97120(69)(47)

Z22/Z2
S

1.0703(26)(0) 1.0788(37)(2) 1.1185(18)(0) 1.1237(64)(1) 1.1405(27)(18)
Z23/Z2

S
-0.06092(49)(8) -0.0603(10)(0) -0.04045(55)(5) -0.0387(10)(0) -0.03054(62)(27)

Z32/Z2
S

0.0343(31)(3) 0.0403(74)(1) 0.1135(47)(1) 0.120(11)(0) 0.1522(57)(6)
Z33/Z2

S
1.6094(53)(13) 1.643(13)(0) 1.9107(85)(9) 1.948(21)(0) 2.064(10)(6)

Z44/Z2
S

1.0113(21)(2) 1.0161(35)(2) 1.0134(11)(0) 1.0160(51)(0) 1.0122(21)(16)
Z45/Z2

S
-0.07270(48)(4) -0.07384(98)(6) -0.06217(46)(7) -0.06268(98)(0) -0.05774(49)(44)

Z54/Z2
S

-0.23507(99)(38) -0.2417(31)(1) -0.2851(20)(2) -0.2940(46)(2) -0.3119(22)(15)
Z55/Z2

S
1.4762(38)(9) 1.4994(96)(6) 1.6718(64)(5) 1.699(15)(0) 1.7670(74)(55)

Table B.9: Elements of Zij/Z2
A/S extrapolated to the massless limit. All results are

provided in RI/SMOM(�µ,�µ) at µ = 2.0GeV in the SUSY basis. The first parenthesis
is the statistical error and the second is the systematic error.

C-M C-S M-M M-S F-M
a�1 [GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86) 2.708(10)
Z11/Z2

A
0.92273(29)(1) 0.92491(52)(0) 0.94913(20)(0) 0.94752(86)(2) 0.95950(43)(33)

Z22/Z2
S

1.05048(77)(4) 1.0519(13)(0) 1.08128(96)(1) 1.0830(21)(0) 1.0964(11)(6)
Z23/Z2

S
-0.07511(48)(3) -0.07280(82)(2) -0.04932(29)(0) -0.04900(66)(1) -0.04007(40)(17)

Z32/Z2
S

-0.0228(16)(1) -0.0162(45)(0) 0.0447(28)(1) 0.0465(63)(1) 0.0746(37)(0)
Z33/Z2

S
1.3816(30)(7) 1.4014(83)(2) 1.5913(50)(6) 1.603(11)(0) 1.6981(67)(17)

Z44/Z2
S

1.02458(44)(3) 1.02303(97)(4) 1.01873(49)(7) 1.0201(14)(0) 1.01595(76)(71)
Z45/Z2

S
-0.07967(51)(2) -0.07835(69)(1) -0.06134(25)(1) -0.06193(46)(0) -0.05599(23)(24)

Z54/Z2
S

-0.18458(58)(19) -0.1880(18)(0) -0.2130(11)(1) -0.2162(26)(1) -0.2305(15)(5)
Z55/Z2

S
1.3170(21)(5) 1.3310(60)(1) 1.4581(36)(3) 1.4673(80)(5) 1.5267(46)(17)

Table B.10: Elements of Zij/Z2
A/S extrapolated to the massless limit. All results are

provided in RI/SMOM(�µ,�µ) at µ = 2.5GeV in the SUSY basis. The first parenthesis
is the statistical error and the second is the systematic error.

C-M C-S M-M M-S F-M
a�1 [GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86) 2.708(10)
Z11/Z2

A
0.91427(17)(0) 0.91641(55)(0) 0.94123(17)(1) 0.94044(67)(0) 0.95157(31)(27)

Z22/Z2
S

1.03795(18)(4) 1.03874(73)(2) 1.05744(45)(5) 1.0596(10)(0) 1.06947(54)(36)
Z23/Z2

S
-0.08818(26)(2) -0.08564(98)(0) -0.05786(22)(0) -0.05804(54)(0) -0.04741(25)(25)

Z32/Z2
S

-0.0589(10)(0) -0.0532(31)(0) 0.0036(18)(0) 0.0052(44)(0) 0.0300(24)(1)
Z33/Z2

S
1.2568(19)(2) 1.2711(59)(2) 1.4093(34)(4) 1.4206(79)(1) 1.4919(44)(11)

Z44/Z2
S

1.03009(18)(0) 1.02856(45)(0) 1.02098(20)(0) 1.02223(60)(0) 1.01811(29)(38)
Z45/Z2

S
-0.08895(23)(2) -0.08683(80)(0) -0.06453(14)(1) -0.06486(36)(0) -0.05716(16)(22)

Z54/Z2
S

-0.16199(30)(9) -0.1636(11)(0) -0.17286(72)(9) -0.1757(17)(0) -0.1842(10)(3)
Z55/Z2

S
1.2268(12)(1) 1.2368(41)(1) 1.3299(24)(2) 1.3389(57)(1) 1.3852(31)(10)

Table B.11: Elements of Zij/Z2
A/S extrapolated to the massless limit. All results are

provided in RI/SMOM(�µ,�µ) at µ = 3.0GeV in the SUSY basis. The first parenthesis
is the statistical error and the second is the systematic error.
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C-M C-S M-M M-S F-M
a�1 [GeV] 1.7848(50) 1.7295(38) 2.3833(86) 2.3586(70) 2.708(10)

�22 1.1866(15) 1.18862(99) 1.2055(27) 1.1980(16) 1.2047(16)
�23 -0.020560(36) -0.02201(14) -0.01408(33) -0.01294(22) -0.01165(18)
�32 -0.09661(26) -0.09870(19) -0.09318(55) -0.09034(41) -0.08994(17)
�33 0.94800(88) 0.95149(38) 0.92958(89) 0.93208(35) 0.92586(49)
�44 1.2441(30) 1.2447(15) 1.2844(46) 1.2748(21) 1.2910(23)
�45 -0.00982(21) -0.01235(22) -0.00146(54) -0.00159(23) 0.00067(30)
�54 0.0439(12) 0.04063(45) 0.0711(17) 0.06801(83) 0.0774(10)
�55 1.017341(75) 1.018409(16) 1.00827(44) 1.00994(39) 1.00838(48)

Table B.12: Chirally-allowed elements of the non-perturbative scaling matrix
�(3GeV, 2GeV) using chirally extrapolated Z-factors in the RI/SMOM(�µ,�µ) scheme.
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Appendix C

Numerical results for massive
NPR
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(a) C1S
aminput amres ⇥ 103 aM⌘h ZA

0.0050 3.162(19) 0.1885(29) 0.71796(44)
0.0100 3.085(18) 0.2367(21) 0.71822(28)
0.0200 2.938(16) 0.3129(15) 0.71942(17)
0.0400 2.720(12) 0.4304(10) 0.72235(12)
0.0500 2.644(22) 0.4829(18) 0.72413(27)
0.1000 2.427(15) 0.6904(14) 0.73344(23)
0.1500 2.420(11) 0.8636(11) 0.74507(19)
0.2000 2.6192(92) 1.01733(94) 0.75960(15)
0.3000 4.530(18) 1.28409(79) 0.80194(14)
0.3300 6.455(18) 1.35527(38) 0.821474(90)

(b) M1S
aminput amres ⇥ 103 aM⌘h ZA

0.0040 0.6727(72) 0.1290(24) 0.74486(27)
0.0080 0.6561(64) 0.1714(16) 0.74542(15)
0.0150 0.6319(55) 0.2283(11) 0.746212(91)
0.0300 0.5977(42) 0.32118(69) 0.747987(58)
0.0500 0.5767(52) 0.42023(76) 0.75062(11)
0.1000 0.5479(35) 0.61780(44) 0.758721(100)
0.1500 0.5602(29) 0.78382(43) 0.769158(89)
0.2250 0.6677(29) 1.00056(52) 0.789767(76)
0.3000 1.0409(41) 1.18880(56) 0.817587(74)
0.3200 1.2562(65) 1.23385(41) 0.826456(79)
0.3400 1.6053(82) 1.27801(40) 0.836317(81)
0.3600 2.189(11) 1.32043(39) 0.847392(85)
0.3750 2.936(12) 1.35187(55) 0.857047(90)

(c) F1S
aminput amres ⇥ 103 aM⌘h ZA

0.0021 0.9769(95) 0.0994(18) 0.76231(18)
0.0043 0.9722(88) 0.1263(13) 0.76263(11)
0.0107 0.9565(62) 0.18387(86) 0.763139(55)
0.0214 0.9393(43) 0.25453(57) 0.764180(44)
0.0330 0.9291(36) 0.31626(41) 0.765486(42)
0.0660 0.9188(24) 0.45975(34) 0.769873(38)
0.0990 0.9251(18) 0.58074(34) 0.775231(37)
0.1320 0.9463(14) 0.68965(34) 0.781619(36)
0.1980 1.0427(11) 0.88429(32) 0.797730(37)
0.2640 1.2577(11) 1.05584(28) 0.818823(38)
0.3300 1.7485(18) 1.20763(25) 0.845736(38)
0.3960 3.1873(46) 1.34062(22) 0.880386(40)

Table C.1: Numerical results for amres, aM⌘h and ZPCAC
A on the Shamir ensembles.



175

(a) C1M
aminput amres ⇥ 103 aM⌘h ZA

0.0050 0.601(12) 0.1642(34) 0.71302(34)
0.0100 0.574(11) 0.2203(22) 0.71337(19)
0.0181 0.5330(95) 0.2886(14) 0.71443(12)
0.0362 0.4642(79) 0.40331(87) 0.717257(77)
0.0500 0.450(17) 0.4769(22) 0.71979(19)
0.1000 0.361(12) 0.6877(14) 0.72921(11)
0.1500 0.3210(100) 0.8637(11) 0.74087(11)
0.2000 0.3172(94) 1.01971(85) 0.75528(13)
0.3000 0.599(16) 1.28930(50) 0.79647(16)

(b) M1M
aminput amres ⇥ 103 aM⌘h ZA

0.0040 0.3116(61) 0.1196(26) 0.74376(24)
0.0080 0.3018(56) 0.1651(16) 0.74421(13)
0.0133 0.2907(51) 0.2113(12) 0.744798(86)
0.0266 0.2709(39) 0.29939(79) 0.746330(56)
0.0500 0.2527(54) 0.4178(17) 0.749495(88)
0.1000 0.2414(40) 0.6163(11) 0.757548(60)
0.1500 0.2523(35) 0.78311(79) 0.767843(47)
0.2250 0.3173(27) 1.00082(63) 0.788084(41)
0.3000 0.5277(20) 1.19017(57) 0.815321(43)
0.3200 0.6634(21) 1.23610(64) 0.824062(46)
0.3400 0.8998(26) 1.28063(63) 0.833810(56)

(c) F1M
aminput amres ⇥ 103 aM⌘h ZA

0.0021 0.2399(56) 0.0865(21) 0.75927(21)
0.0043 0.2390(52) 0.1172(16) 0.75952(11)
0.0107 0.2343(43) 0.1795(10) 0.760226(53)
0.0214 0.2286(36) 0.25287(54) 0.761281(42)
0.0330 0.2244(31) 0.31620(38) 0.762536(41)
0.0660 0.2201(21) 0.46183(32) 0.766829(40)
0.0990 0.2248(15) 0.58391(32) 0.772132(39)
0.1320 0.2378(12) 0.69368(30) 0.778456(38)
0.1980 0.29064(77) 0.88979(25) 0.794371(35)
0.2640 0.39970(57) 1.06271(21) 0.815121(32)
0.3300 0.66808(62) 1.21606(19) 0.841614(31)
0.3600 1.0280(12) 1.27967(19) 0.856367(32)

Table C.2: Numerical results for amres, aM⌘h and ZPCAC
A on the Möbius ensembles.
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(a) C1S
amq ZmSMOM

m (2.0GeV) ZmSMOM
m (2.5GeV) ZmSMOM

m (3.0GeV)
0.008162(19) 1.3145(72) 1.2392(37) 1.2362(36)
0.013085(18) 1.4381(35) 1.3763(24) 1.3701(23)
0.022938(16) 1.5245(18) 1.4698(14) 1.4627(13)
0.042720(12) 1.5706(13) 1.51846(80) 1.51128(66)
0.052644(22) 1.5772(14) 1.52530(98) 1.51804(88)
0.102427(15) 1.5763(12) 1.52468(79) 1.51631(68)
0.152420(11) 1.5542(11) 1.50388(68) 1.49448(56)
0.2026192(92) 1.52098(97) 1.47342(59) 1.46347(45)
0.304530(18) 1.42069(79) 1.38114(51) 1.37158(39)
0.336455(18) 1.37464(69) 1.33792(43) 1.32877(31)

(b) M1S
amq ZmSMOM

m (2.0GeV) ZmSMOM
m (2.5GeV) ZmSMOM

m (3.0GeV)
0.0046727(72) 1.5055(54) 1.4206(37) 1.3871(30)
0.0086561(64) 1.5557(28) 1.4737(19) 1.4379(15)
0.0156319(55) 1.5802(19) 1.5002(13) 1.46327(86)
0.0305977(42) 1.5930(18) 1.5131(11) 1.47522(65)
0.0505767(52) 1.5951(18) 1.5144(11) 1.47581(67)
0.1005479(35) 1.5838(17) 1.5039(11) 1.46439(66)
0.1505602(29) 1.5596(16) 1.4844(11) 1.44536(65)
0.2256677(29) 1.5066(13) 1.44203(94) 1.40589(61)
0.3010409(41) 1.4377(10) 1.38470(80) 1.35296(55)
0.3212562(65) 1.41695(96) 1.36683(77) 1.33638(53)
0.3416053(82) 1.39437(90) 1.34712(73) 1.31796(52)
0.362189(11) 1.36951(84) 1.32504(70) 1.29721(50)
0.377936(12) 1.34809(80) 1.30567(67) 1.27886(49)

(c) F1S
amq ZmSMOM

m (2.0GeV) ZmSMOM
m (2.5GeV) ZmSMOM

m (3.0GeV)
0.0030769(95) 1.4979(65) 1.4231(50) 1.3995(47)
0.0052722(88) 1.5265(38) 1.4478(27) 1.4142(25)
0.0116565(62) 1.5759(23) 1.4921(14) 1.4501(10)
0.0223393(43) 1.5918(20) 1.5054(12) 1.46001(76)
0.0339291(36) 1.5935(20) 1.5059(12) 1.45912(76)
0.0669188(24) 1.5923(20) 1.5036(12) 1.45510(79)
0.0999251(18) 1.5822(18) 1.4956(12) 1.44677(81)
0.1329463(14) 1.5662(17) 1.4837(12) 1.43561(80)
0.1990427(11) 1.5208(14) 1.4498(10) 1.40544(76)
0.2652577(11) 1.4630(11) 1.40425(90) 1.36518(69)
0.3317485(18) 1.39618(86) 1.34857(75) 1.31516(60)
0.3991873(46) 1.31942(67) 1.28125(62) 1.25326(52)

Table C.3: Zm in the RI/mSMOM (massive) scheme interpolated to various renormal-
isation scales µ for various bare heavy quark masses on the Shamir ensembles.
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(a) C1M
amq ZmSMOM

m (2.0GeV) ZmSMOM
m (2.5GeV) ZmSMOM

m (3.0GeV)
0.005601(12) 1.5754(64) 1.5305(73) 1.5451(63)
0.010574(11) 1.6088(35) 1.5621(23) 1.5678(27)
0.0186330(95) 1.6211(22) 1.5758(14) 1.5776(13)
0.0366642(79) 1.6232(15) 1.57780(84) 1.57731(68)
0.050450(17) 1.6185(14) 1.57268(92) 1.57135(81)
0.100361(12) 1.5996(11) 1.55238(64) 1.54883(51)
0.1503210(100) 1.57247(100) 1.52577(58) 1.52075(46)
0.2003172(94) 1.53813(91) 1.49351(57) 1.48761(45)
0.300599(16) 1.44377(74) 1.40606(53) 1.39986(45)

(b) M1M
amq ZmSMOM

m (2.0GeV) ZmSMOM
m (2.5GeV) ZmSMOM

m (3.0GeV)
0.0043116(61) 1.5167(51) 1.4401(30) 1.4041(29)
0.0083018(56) 1.5635(26) 1.4854(17) 1.4499(13)
0.0135907(51) 1.5820(19) 1.5039(12) 1.46793(80)
0.0268709(39) 1.5955(17) 1.51671(99) 1.47972(57)
0.0502527(54) 1.5970(16) 1.51711(98) 1.47921(59)
0.1002414(40) 1.5851(14) 1.50588(93) 1.46699(55)
0.1502523(35) 1.5612(13) 1.48653(88) 1.44804(54)
0.2253173(27) 1.5093(11) 1.44500(78) 1.40930(51)
0.3005277(20) 1.44227(85) 1.38926(67) 1.35783(46)
0.3206634(21) 1.42193(81) 1.37182(64) 1.34164(44)
0.3408998(26) 1.39986(76) 1.35257(61) 1.32366(43)

(c) F1M
amq ZmSMOM

m (2.0GeV) ZmSMOM
m (2.5GeV) ZmSMOM

m (3.0GeV)
0.0023399(56) 1.4816(58) 1.3925(46) 1.3457(40)
0.0045390(52) 1.5229(31) 1.4358(24) 1.3906(20)
0.0109343(43) 1.5766(21) 1.4889(15) 1.4429(10)
0.0216286(36) 1.5924(19) 1.5041(13) 1.45734(87)
0.0332244(31) 1.5942(19) 1.5054(13) 1.45821(85)
0.0662201(21) 1.5935(19) 1.5042(13) 1.45612(85)
0.0992248(15) 1.5838(18) 1.4967(13) 1.44852(86)
0.1322378(12) 1.5683(16) 1.4853(12) 1.43784(85)
0.19829064(77) 1.5243(14) 1.4525(11) 1.40862(80)
0.26439970(57) 1.4682(11) 1.40846(95) 1.36961(72)
0.33066808(62) 1.40308(86) 1.35444(79) 1.32105(63)
0.3610280(12) 1.36962(78) 1.32550(72) 1.29456(59)

Table C.4: Zm in the RI/mSMOM (massive) scheme interpolated to various renormal-
isation scales µ for various bare heavy quark masses on the Möbius ensembles.
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(a) C1S
amq ZSMOM

m (2.0GeV) ZSMOM
m (2.5GeV) ZSMOM

m (3.0GeV)
0.008162(19) 1.5398(19) 1.4727(12) 1.4281(11)
0.013085(18) 1.5388(13) 1.47178(99) 1.42749(86)
0.022938(16) 1.5342(11) 1.46817(86) 1.42469(73)
0.042720(12) 1.5205(10) 1.45901(80) 1.41750(67)

(b) M1S
amq ZSMOM

m (2.0GeV) ZSMOM
m (2.5GeV) ZSMOM

m (3.0GeV)
0.0046727(72) 1.5709(26) 1.4887(14) 1.4376(11)
0.0086561(64) 1.5686(20) 1.4876(13) 1.43630(98)
0.0156319(55) 1.5643(17) 1.4851(13) 1.43422(94)
0.0305977(42) 1.5516(15) 1.4780(12) 1.42910(91)

(c) F1S
amq ZSMOM

m (2.0GeV) ZSMOM
m (2.5GeV) ZSMOM

m (3.0GeV)
0.0030769(95) 1.5795(20) 1.4940(14) 1.4382(11)
0.0052722(88) 1.5795(19) 1.4935(13) 1.4376(10)
0.0116565(62) 1.5764(18) 1.4916(13) 1.4362(10)
0.0223393(43) 1.5672(16) 1.4867(12) 1.43275(98)

Table C.5: Zm in the RI/SMOM (massless) scheme interpolated to various renormali-
sation scales µ for various bare heavy quark masses on the Shamir ensembles.

(a) C1M
amq ZSMOM

m (2.0GeV) ZSMOM
m (2.5GeV) ZSMOM

m (3.0GeV)
0.005601(12) 1.5419(15) 1.47525(94) 1.43143(83)
0.010574(11) 1.5424(11) 1.47448(81) 1.43052(64)
0.0186330(95) 1.53875(99) 1.47170(72) 1.42803(57)
0.0366642(79) 1.52670(91) 1.46351(66) 1.42131(54)

(b) M1M
amq ZSMOM

m (2.0GeV) ZSMOM
m (2.5GeV) ZSMOM

m (3.0GeV)
0.0043116(61) 1.5735(20) 1.4909(12) 1.43843(97)
0.0083018(56) 1.5703(22) 1.4891(12) 1.43735(85)
0.0135907(51) 1.5672(19) 1.4871(11) 1.43589(82)
0.0268709(39) 1.5570(16) 1.4811(10) 1.43159(78)

(c) F1M
amq ZSMOM

m (2.0GeV) ZSMOM
m (2.5GeV) ZSMOM

m (3.0GeV)
0.0023399(56) 1.5792(22) 1.4926(17) 1.4377(11)
0.0045390(52) 1.5791(20) 1.4926(15) 1.4373(10)
0.0109343(43) 1.5758(18) 1.4905(14) 1.4356(10)
0.0216286(36) 1.5672(17) 1.4859(13) 1.4324(10)

Table C.6: Zm in the RI/SMOM (massless) scheme interpolated to various renormali-
sation scales µ for various bare heavy quark masses on the Möbius ensembles.
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