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A B S T R A C T   

This study proposes an advanced model-free deep reinforcement learning (DRL) framework to 
construct optimal portfolio strategies in dynamic, complex, and large-dimensional financial 
markets. Investors’ risk aversion and transaction cost constraints are embedded in an extended 
Markowitz’s mean-variance reward function by employing a twin-delayed deep deterministic 
policy gradient (TD3) algorithm. This study designs a DRL-TD3-based risk and transaction cost- 
sensitive portfolio that combines advanced exploration strategies and dynamic policy updates. 
The proposed portfolio method effectively addresses the challenges posed by high-dimensional 
state and action spaces in complex financial markets. This methodology provides two optimal 
portfolios by flexibly controlling transaction and risk costs with (i) the constituents of the Dow 
Jones Industrial Average and (ii) the constituents of the S&P100 index. Results demonstrate a 
strong portfolio performance of the proposed DRL portfolio compared to those of several com
petitors from the traditional and DRL literatures.   

1. Introduction 

Portfolio allocation is a key area of interest in finance. In recent decades, research on this area has led to the development of 
sophisticated investment strategies based on optimizing the risk-return tradeoff. A pioneering study in this field was conducted by 
Markowitz (1952), who introduced the mean-variance framework to construct optimal portfolios. This construct has evolved over the 
years in various directions, including the construction of portfolios based on the maximization of investor preferences or the devel
opment of sophisticated tools to optimize investors’ short- and long-term objective functions. In recent years, machine learning (ML) 
techniques, in particular, are widely applied to risk management and optimal portfolio management tasks in dynamic financial 
markets (Henriques & Sadorsky, 2023). Reinforcement learning (RL; Sutton & Barto, 2018) and deep learning (DL; Goodell et al., 2021; 
Mavruk, 2022) methods have been widely used to solve portfolio selection optimization problems. Furthermore, RL is a promising 
method that does not require a specific portfolio baseline to make investment decisions and solely based on financial market infor
mation obtained at a given time period. The RL-based learning process is optimized by maximizing portfolio return or minimizing 
portfolio risk (Chaouki et al., 2020; Sutton & Barto, 2018) and enhancing portfolio forecasting accuracy by learning from errors. 

The recent success of RL in portfolio allocation problems is related to the model’s ability to improve expected returns and reduce 
portfolio risk. However, several important issues remain that must be resolved prior to applying these methods for portfolio investment 
to capture the complex and volatile characteristics of financial markets within the optimal portfolio decision rubric (Aboussalah & Lee, 
2020; Bühler et al., 2018; Li et al., 2018; Moody et al., 1998; Moody & Saffell, 2001; Yang et al., 2020; Zhao et al., 2023). In addition to 
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maximizing investment returns, other factors such as transaction costs and investor risk tolerance must be considered in portfolio 
decision-making (Bühler et al., 2018; Li et al., 2018). Moreover, the selection of historical data for RL model training may be prob
lematic (Yang et al., 2020). The characterization of important model features and state variables depends on the training phase, which 
is based on time-series data. Thus, the selection of specific datasets affects these characterizations and, in turn, the effectiveness of the 
corresponding portfolio selection strategy (Zhao et al., 2023). Furthermore, RL performance depends on model stability, convergence 
speed, and the ability of the algorithm to learn the underlying dynamic relationships between variables. A key advantage of these 
methods is their ability to manage high-dimensional portfolios very efficiently (Li et al., 2018; Yang et al., 2020). 

This study proposes an advanced model-free deep reinforcement learning (DRL) framework that constructs optimal portfolios in 
high-dimensional settings. Specifically, this model combines DL and RL methods to create DRL framework and optimize portfolio 
strategies in dynamic, complex, and large-dimensional financial markets. Investor’s risk aversion and transaction cost constraints are 
embedded in the model. Notably, DRL algorithms adopt neural networks as function approximators to automatically learn complex 
representations from high-dimensional data, thereby allowing them to capture key features and relationships among a variety of assets. 
The proposed model applies an adaptive portfolio trading method based on a twin-delayed deep deterministic policy gradient (TD3) 
algorithm. Thus, this study contributes to the DRL portfolio allocation literature by (i) building an investment strategy that naturally 
accommodates high-dimensional portfolios; (ii) embedding market risk, individual risk aversion, and transaction costs into the 
objective function; and (iii) solving Bellman type equations by combining twin networks, target networks, exploration strategies, and 
delayed policy updates that address the challenges posed by high-dimensional state and action spaces with nonlinear relationships. 

The empirical performance of this strategy-building tool is assessed in an extensive out-of-sample exercise for high-dimensional 
portfolios with stocks from the Dow Jones Industrial Average and the S&P100 index using cumulative return, maximum drawdown 
(MDD), Sharpe ratio, and additional performance metrics. Our model outcomes are compared with those of minimum variance (MV), 
maximum Sharpe ratio, and other popular DRL methods designed for similar tasks. The empirical results confirm that our proposed 
model is superior in terms of profitability and risk trade-offs in the presence of transaction costs and different degrees of risk aversion. 

The remainder of the study is organized as follows. Section 2 presents a brief literature review of DL, RL, and DRL models being 
applied to portfolio allocation problems. Section 3 introduces the proposed portfolio model’s design, optimization formula, and the 
TD3-based algorithm. Section 4 discusses the empirical application and comparison results. Finally, Section 5 concludes the work. 

2. Literature review 

Rubesam (2022) investigated ML investment portfolio construction techniques and demonstrated the advantages of portfolio 
learning over traditional approaches. Mavruk (2022) considered ML methods to preselect stocks prior to the portfolio formation stage, 
and Fereydooni and Mahootchi (2023) implemented ML methods to improve investment decisions in financial markets. RL models are 
a type of ML that applies a different set of mathematical tools used for perception and representation learning. RL models are useful for 
sequential decision-making (Ngo et al., 2023). Goodell et al. (2021) provided a comprehensive review of ML finance tools, including 
how their hybridization can effectively address large and complex portfolio problems across various domains. They covered innovative 
techniques like the Markov decision process (MDP; Almahdi & Yang, 2017; Peck & Yang, 2011), Q-learning (QL), deep QL (DQL), 
proximal policy optimization (PPO), and deep deterministic strategy gradients (DDPG; Lillicrap et al., 2015). Additional techniques are 
commonly used for portfolio management, such as actor-critic (AC) networks (Aboussalah & Lee, 2020). Moody et al. (1998, 2001) 
designed a recurrent RL asset allocation method that used market data from the S&P500 index and US Treasury bill data. 

QL has been applied to search for the optimal weights used to optimize portfolio asset allocations (Halperin, 2019; Zeng & Klabjan, 
2018). The long short-term memory (LSTM) network improves the forecasting ability of DL and RL models, and Li et al (2021) used one 
to predict financial returns in global commodity markets. Similarly, Ta et al. (2020) investigated their application to quantitative 
trading and optimization-based stock prediction. Furthermore, Almahdi and Yang (2017, 2019) combined recurrent RL and a particle- 
swarm technique for portfolio weight allocation under market constraints, demonstrating that this method achieves better cumulative 
returns than those obtained from maximizing the contemporary Sharpe ratio and mean-variance approaches. Zhang and Maringer 
(2016) used a genetic algorithm to enhance portfolio trading performance with RL models. 

Pigorsch and Schafer (2022) were among the first to develop a DQL portfolio trading strategy in a cross-sectional setting. Park et al. 
(2020) and Shavandia and Khedmati (2022) employed a multi-agent DQL algorithm to construct high-return portfolios. Huang and 
Tanaka (2022) designed a modularized and scalable multi-agent deep Q-network (DQN) to handle large-scale portfolios with het
erogeneous data. Notably, DQL provides the algorithmic framework for DQN, which was initially tailored for discrete action spaces. 
Aboussalah and Lee (2020) addresses this limitation by suggesting stacked deep dynamic recurrent RL models. These models provide 
real-time portfolio management based on continuous actions in multidimensional state spaces. This approach maximizes expected 
returns while guaranteeing portfolio risk-tolerance constraints. Lin et al. (2020), and Wang and Ku (2022) applied DDPG portfolio 
strategies to maximize total returns while maintaining a risk diversification objective. 

An important challenge for portfolio trading management is accommodating the underlying market risk while accounting for 
transaction costs (Kircher & Rsch, 2021; Moallemi & Saglam, 2015). Notably, transaction costs were ignored in earlier developments 
(Almgren & Chriss, 2001; Choi et al., 2019; Gaivoronski & Pflug, 2005; Li et al., 2018; Park et al., 2019). However, ignoring transaction 
costs can lead models to recommend over-aggressive portfolio trading. Some studies that include these costs as objective functions 
have partially addressed this issue (Ma et al., 2019; Qureshi et al., 2017; Roni & Jean-Luc, 1996; Zhang et al., 2011). Model-free RL 
algorithms were developed to adaptively control the impact of transaction costs. Building upon the work of Betancourt and Chen 
(2021), Zhao et al. (2023) applied DRL to develop portfolio policies and automatically execute transactions in such settings. A DRL- 
based portfolio management strategy on markets with transaction costs is proposed by Betancourt and Chen (2021). Similarly, Xu and 
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Dai (2022) used RL to derive hedging strategies that maximize profits while considering the effects of various transaction costs and 
underlying assets. Jang and Seong (2023) combined DRL with traditional portfolio theory, showing that DRL portfolios outperform 
other ML strategies. However, these authors did not incorporate risk aversion and transaction costs in the optimization of the in
vestment portfolio. Recent work by Cui et al. (2023) provided a DRL algorithm that explicitly embeds the presence of risk alongside 
risk aversion objectives for portfolio decision-making. Garcia-Galicia et al. (2019), Wang and Zhou (2020) proposed models that 
consider transaction costs and mean-variance linear constraints into the portfolio objective functions. Furthermore, Moody and Saffell 
(2001) applied RL to optimize risk-adjusted returns while handling the impact of different transaction costs. Bühler et al. (2018) 
investigated how to use standard DRL algorithms to build nonlinear reward structures under transaction costs, liquidity, and risk- 
sensitive constraints, thus verifying the effectiveness of the portfolio trading method. Zhang et al. (2022) introduced transaction 
costs and risk-sensitive portfolio management methods based on DRL to maximize total returns. Li et al. (2018) and Yang et al. (2020) 
developed ensemble trading models using AC, PPO, and DDPG methods and embedded transaction costs and risk aversion factors into 
a novel cost-sensitive reward function. Moreover, Sebastian et al. (2021) proposed a DRL-based repeated portfolio method that ac
counts for asset variability and the existence of mutual asset correlations. The empirical results confirmed the ability of the method to 
achieve superior performance over previous RL and traditional portfolio selection methods. 

High-dimensional portfolios benefit greatly from the advantages of diversification when containing a large number of assets. 
However, their management strategies require data-rich environments that present an obstacle to normal portfolio construction 
(Fernandez-Arjona & Filipovic, 2022). Pigorsch and Schafer (2022) is one of the first studies to propose a DQL method that constructs 
high-dimensional portfolios in a cross-sectional setting. Meanwhile, Bühler et al. (2018) developed an advanced DRL method for 
hedging a portfolio of derivatives under market constraints, including transaction costs, liquidity limits, and different risk-tolerance 
levels. The empirical results confirm the superiority of the proposed DRL methods against standard approaches to portfolio optimi
zation in large dimensions. Notably, the performance advantage increases with the number of assets in the portfolio. 

3. Model and methods 

The first block of this section introduces the portfolio choice problem under the presence of transaction costs and investor risk 
aversion constraints. The second block introduces MDP for portfolio trading decisions, and the third one describes the proposed DRL- 
based portfolio and portfolio selection methodology. 

3.1. Asset allocation problem under portfolio constraints 

Consider a financial market with N risky assets that has been trading for T periods, and let pt =
[
p1,t ,⋯, pN,t

]T
∈ ℝN

+ denote the 

vector of asset prices such that pn,t indicates the closing price of the n-th asset at time t. Similarly, let mn,t ∈ ℤ+ and Pt ∈ ℝ denote the n- 
th asset shares and portfolio value at time t, respectively. Investors perform portfolio trading strategies over the N assets during each 
period, including buying, selling, and holding, which results in increasing, reducing, and no changes to asset shares, respectively. The 
portfolio selection decision variable is denominated in this literature as the trading action and is characterized by kn,t for asset n at time 
t. For each asset, this variable takes three possible values {− 1,0,1}, denoting selling, holding, and buying, respectively. This strategy 
can be extended to consider multiple shares of each asset such that the domain of kn,tis { − k,⋯, − 1, 0,1,⋯, k}, where -k and k denote 
the net number of shares that a trader can sell or buy, respectively, in a given period. Traders can set a maximum number of 
shares,k ≤ mmax, so that at each period t the number of shares on each asset n is given by mn,t+1 = mn,t + kn,t. The value of the portfolio 
at time t is given by the following equation: 

Pt = Pt− 1 + pΤ
t kt (1)  

where pΤ
t is the transpose of price vector pt , and kt =

[
k1,t ,⋯, kN,t

]T. 
Each trading process (buying, holding, or selling) generally involves transaction costs and it is necessary to consider this factor in 

the portfolio selection problem. Let ξ denote a positive constant that characterizes the transaction cost rate of issuing a new trade. Thus, 
the transaction cost is expressed as (Yang et al., 2020): 

ctran
t = ξ× pT

t |kt | (2) 

For simplicity, we assume that the constant is fixed across assets, although this can be modified to accommodate the presence of 
different transaction costs and different liquidities. 

Underlying risk is an important aspect to consider in an objective function. We differentiate two sources of risk that influence asset 
allocation, namely, true risk of the portfolio position, captured by portfolio variance σ2

t , and investor risk aversion coefficient β. Here, 
the variance of the portfolio position is proxied by the sample variance of the portfolio return over the last t days, defined as σ2

t =

1
t
∑t

i=1((Pi − Pi− 1)/Pi− 1 − μt )
2, where μt is the average return of assets over the last t periods. The literature takes different approaches 

to introduce risk aversion coefficient in portfolio optimization schemes. The most relevant tactic in financial economics is to leverage a 
utility function to model investor’s preferences. Popular utility functions include constant absolute risk aversion and constant relative 
risk aversion (Chambers & Quiggin, 2007). Herein, we follow Markowitz’s approach and introduce coefficientβthat reflects the in
vestor’s degree of risk aversion. To model the investor’s attitude towards the underlying portfolio risk, we incorporate a cost function 
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in the objective function as follows: 

crisk
t = βσ2

t (3)  

3.2. Markov decision process for portfolio trading 

The portfolio trading decision is modeled as an MDP, characterized by a tuple (S ,A ,P , r) in which S is the state space, A is the 
action space, P (st+1|st , at) is the transition probability of state st+1 ∈ S , given the realization of action at ∈ A based on the observed 
state st ∈ S at the t-th learning time step. Similarly, rt(st , at , st+1) is the reward function obtained from taking action at at state st under 
the realization of state st+1 at time t + 1. 

The state space is defined by a vector of state variables such that st = [pt ,mt− 1] ∈ S . Similarly, action space A contains the set of 
possible actions, at ∈ A . In the portfolio allocation problem, each action is defined as the quantity of an asset a trader wishes to buy, 
sell, or hold in a given period such that at ∈ { − k,⋯, − 1, 0,1,⋯, k}. Here, we use at and kn,t interchangeably. The action space can be 
normalized to [− 1,1], which is a continuous action space that can be used for continuous-action RL algorithms. 

For each state of nature and possible action, we define a portfolio policyπ(at , st)that describes the trading strategy in a given 
scenario. Similarly, the reward functionrt(st , at , st+1)is obtained by implementing the portfolio policy after state st+1 is realized. We 
propose the following reward function that includes the variation in the value of the portfolio as well as the presence of transaction 
costs. The function accounts for risk by penalizing the volatility of the portfolio by the degree of the investor’s risk aversion. The 
objective reward function is expressed as: 

rt = pT
t mt − βσ2

t⏟⏞⏞⏟
Risk cost

− ξpT
t

⃒
⃒kt

⃒
⃒

⏟̅̅̅ ⏞⏞̅̅̅ ⏟
Transaction cost

(4) 

In DRL, the agent is the entity that executes decision-making, interacts with the environment, and learns how to choose actions to 
maximize cumulative returns and improve strategy to obtain better results. Specifically, the objective of the agent is to learn an optimal 
trading policy π(st , at) that selects an action to maximize the reward function. Policies are evaluated using an action-value function, 
Qπ(st , at) (i.e., the Q-function). Wiering and Otterlo (2012) expressed this function as a Bellman equation: 

Qπ(st , at) = Est+1

[
rt(st , at , st+1)+ γEst+1 ,at+1 [Qπ(st+1, at+1) ]

]
(5)  

where 0 < γ < 1 is the discount factor, and Est+1 [ · ] is the conditional expectation on the realization of state st+1. 
QL is one of the most common algorithms in RL. During the learning process, the action-value Qπ(st , at) function is continuously 

updated recursively to obtain the maximum cumulative reward, thereby obtaining the optimal trading strategy. The temporal dif
ference error quantifies the difference between the expected and actual Q-value as the agent interacts with the environment and moves 
from one state to another by taking an action. The updated Q-value is determined by multiplying the temporal difference error and 
learning rate and adding it to the current Q-value (Wiering & Otterlo, 2012). Thus, we have: 

QNew
π (st , at)←QOld

π (st , at)+α
(

rt(st , at , st+1)+ γ max
at+1∈A

Qπ

(

st+1 , at+1
)
− QOld

π
(
st , at)

)

(6)  

where α is the learning rate, 0 < α < 1, γ is the discount factor, QNew
π (st , at) is the updated Q-value of QOld

π (st , at), rt(st , at , st+1) is the 
reward when the agent executes action at at state st and receives the new state, st+1, from the market environment. 
max

at+1∈A
Qπ(st+1, at+1)indicates the maximum Q-value after selecting action at+1 at state st+1, QOld

π (st , at) on the right side of (6) denotes the 

estimated Q-value under action at at state st, and rt(st , at , st+1) + γ max
at+1∈A

Qπ(st+1, at+1) − QOld
π (st , at) is the temporal difference error. This 

function represents the signal used to adjust estimates over time (Wiering & Otterlo, 2012). 
Iterating (6) allows the Q-value function to gradually converge to the optimal Q-function as the agent iteratively interacts with the 

environment and learns how to make better decisions that maximize the cumulative reward. Moreover, learning rate α plays a key role 
as it controls the frequency of updates for each Q-value. Specifically, it determines the degree of balance between the new and old 
values. The investor observes the arrival of new information in each state (e.g., number of assets and asset prices), followed by selecting 
an available action with optimized policy π that maximizes the Q-value. Subsequently, the investor obtains an instantaneous reward 
from the market environment, which is used to evaluate the quality of the selected action, thereby resulting in an adjusted portfolio 
strategy based on the evaluation. The detailed implementation of the learning processes by the investor (agent) is described at the end 
of the following section. 

3.3. TD3-based portfolio trading algorithm 

We adopted the TD3 algorithm to search the optimal portfolio trading strategy in dynamic financial markets. TD3 extends and 
improves the DDPG algorithm by introducing new features to make it increasingly stable during training and to improve convergence 
speeds. Furthermore, DDPG is an AC algorithm that extends the deterministic policy gradient algorithm to continuous action spaces. It 
employs a neural network as the actor to approximate the optimal policy and another neural network as the critic to approximate the 
state-action value function. The actor network directly outputs the deterministic action, given the current state. The critic network 
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learns the Q-value function by taking the state and action as inputs. TD3 algorithm includes a convolutional neural network (CNN) or 
LSTM actor network with weight ψ and two critic networks with weights θ1 and θ2. The critic networks more effectively avoid 
overestimating the Q-value function and are, therefore, able to achieve better learning performance. After receiving the portfolio 
trading policy, π(st , at), from the actor network, the two critic networks update their loss functions as follows: 

L(θi) =
1
I
∑t+i

t
(yt − Qπ(st , at |θl) )

2
, l = 1, 2 (7)  

where I is the size of the replay buffer, which is the amount of information used for model training, i is the i-th sample of the replay 
buffer, and the information set in the replay buffer is denoted as D . As the TD3 has two critic networks, ldenotes the l-th critic network, 
and l = 1, 2. The difference between the Q-value functionQπ(st , at |θl)in (7) and Qπ(st , at)in (6) is that Qπ(st , at |θl) adopts the CNN 
backbone and optimizes neural network weights, θl, using information from the available dataset. yt is the target Q-value function, 
expressed as: 

yt = rt(st , at , st+1)+ γQπ
(
st+1, at+1|θʹ

l
)

(8)  

where θ́l are the updated neural network weights of the l-th critic network. 
In TD3, the target Q-value function, yt , plays a key role in training the portfolio learning model. A target Q-value is adopted in 

various DRL algorithms to update the Q-values during the learning process, which represents the estimated maximum one-period 
ahead reward that the agent can achieve by selecting the best action in the next state and discounting it by γ. This target Q-value 
yt is used to update the current Q-value function Qπ(st , at |θl). Then, the actor network uses the policy gradient method to update 

∇ψ J(ψ) ≈ Est

[
∇aQ

(
st , at |θl)|at=π(st ;ψ)∇ψ π(st |ψ)

]
(9) 

Because a traditional DDPG can sometimes converge to the local optimal portfolio policy, TD3 introduces the following three 
techniques to avoid this. The first involves target policy smoothing, a technique that reduces the estimation bias of the Q-value and 
improves model generalization by adding noise on target policy output. The equation for target strategy smoothing is expressed as 
follows: 

ã = π(st+1|ψ)+ ς, ς ∼ clip(N (0, δ̃) , − κ, κ) (10)  

where π(st+1|ψ) is the action output from the main network, ̃a is the target action after adding noise, ς is Gaussian noise after clipping 
with variance δ̃2 for policy smoothing, and κ is the clipping amplitude. 

The second technique is double-QL, which reduces the overestimation of Q-values by maintaining two critic network Q-value 
functions. The formula for double-QL is expressed as: 

y = rt + γ ·min
(
Qʹ

1
(
st+1, aʹ|θʹ

1
)
,Qʹ

2
(
st+1, aʹ|θʹ

2
))

(11)  

where y is the target Q-value, rt is the actual reward, γ is the discount factor, Q1́ and Q2́ are the Q-value functions of the two target 
networks used to calculate the minimum Q-value. 

Fig. 1. TD3-based portfolio trading framework.  
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Next, according to (8) and (9), the portfolio trading agent updates the weights of the three online networks using the following 
equations: 

θl,t = θl,t− 1 + αcL
(
θl,t− 1

)
θl,t− 1

ψ t = ψ t− 1 + αa∇ψ t− 1 J(ψ t− 1)ψ t− 1
(12)  

where αa and αc are the learning rates of the actor and critic networks, respectively. 
The target networks are updated periodically by tracking the main networks using the following update rule: 

θʹ
l,t = τθl,t− 1 + (1 − τ)θʹ

l,t− 1

ψʹ
t = τψ t− 1 + (1 − τ)ψʹ

t− 1

(13)  

where τ is the hyperparameter that controls the rate of target network updates. 
The third technique is the delayed policy update, which reduces the update frequency of the actor network and forces the critic 

network to update more frequently than the actor, thus improving stability and convergence speed. 
Fig. 1 presents the TD3-based portfolio trading framework, which aims to devise a portfolio trading strategy that maximizes the 

portfolio rewardrt(st , at , st+1)in a dynamic environment. The learning agent (i.e., investor) collects the market statestto train the 
learning model, where the risk awareness behavior of the investor and transaction cost are input to the model through the reward 
function and included in the training step. Subsequently, a portfolio actionat (i.e., buy, sell, or hold), is selected as a combination to 
maximize the Q-value function. After executing the selected action, the investor receives reward rt from the financial market and 
moves one period ahead. Thus, a new set of states, st+1, and possible actions are encountered at time t + 1. The replay buffer stores all 
training samples from which the agent randomly selects a mini-batch sample set at each training epoch to train the portfolio learning 
model. 

The TD3 method for optimal portfolio allocation is listed in Algorithm 1. To ease the interpretation of the method, the main steps of 
the algorithm are summarized as follows: 

Step 1: Initialize the TD3-based learning framework, including actor π(s|ψ) and critics Q1(s, a|θ1) and Q2(s, a|θ2)with random 
weights ψ, θ1, and θ2, respectively, and initialize the replay buffer set, D . 

Step 2: Observe state s from the trading market, which contains asset prices and market shares. 
Step 3: Input the financial market information into the learning framework, including the asset prices, number of assets, etc. 
Step 4: Select one available action, a (buying, holding, or selling), to maximize the reward function, rt, and execute the action 

before observing state st+1, which is realized in the next period. 
Step 5: Store transition (st , at , rt , st+1) into the replay buffer, D , where the learning agent will sample a mini-batch of transitions 

(st , at , rt , st+1). 
Step 6: Update the actor and critic networks by applying the gradient based method of (7), (8), (12), and (13). 
Step 7: The TD3 model is fully trained after a certain number of learning episodes, when the training loss becomes less than a given 

tolerance level or all sampled data are completely trained. 

Algorithm 1. Portfolio risk and transaction cost-aware TD3-based portfolio trading.  
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4. Empirical application 

This section provides an empirical illustration of the aforementioned methodology and algorithms to construct investment port
folios. We use the Yahoo Finance database and select the 30 constituent stocks of the Dow Jones Industrial Average (DJIA) and the 100 
constituents of the S&P100 index as the trading stock pool. Furthermore, we exploit historical daily closing price data from April 1, 
2010 to March 9, 2023 for the performance evaluation. Our empirical application has three stages, including training, validation, and 
trading testing, where the entire dataset is divided into three parts. The daily closing price data from April 1, 2010 to January 2, 2020 
and January 3, 2020 to April 29, 2021 are utilized for the learning agent model training and validation, respectively. Notably, the 
validation stage assesses the performance of the method using in-sample information to evaluate the quality of the portfolio training 
model. Subsequently, the trained model was used to test the trading performance based on the testing dataset in an out-of-sample 
period from April 30, 2021 to March 9, 2023. 

Portfolio performance is usually assessed by comparing the metrics of portfolio competitors. The first metric that we consider is the 
cumulative portfolio value, which measures the increase in portfolio value at the end of the investment period. Here, the cumulative 
portfolio value PT is obtained as the net increment of the portfolio over time. Combining (1) and (2), we obtain the net value of the 
portfolio Pnet

T , defined as follows: 

Pnet
T = P0 +

∑T

t=1
pT

t (kt − ξ|kt | ) (14)  

where P0 is the initial portfolio trading wealth, which is set to P0 = 1 and T denotes the length of the investment time period. The 
transaction cost rate (ξ) is taken into account in the cumulative portfolio. The final cumulative return, ST , after T, is defined as follows: 
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ST =
Pnet

T − P0

P0
(15) 

The cumulative value neglects the presence of risk in the portfolio as it reports only the cumulative gain. A complementary per
formance measure widely used in the literature is the Sharpe ratio, which measures the portfolio return per risk unit. The Sharpe ratio 
is defined as: 

SR =
E[ρt ] − ρf

σρt

(16)  

where ρt denotes the portfolio return, ρt = (Pt − Pt− 1)/Pt− 1, ρf is the risk-free return, and σρt is the unconditional volatility of ρt , 
defined as σρt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(ρt)

√
. 

A related metric that captures the portfolio maximum potential loss faced by investors is the MDD measure. This is defined as the 
largest loss from peak to trough: 

MDD = max
t:l>t

Pnet
t − Pnet

l
Pnet

t
(17) 

A mixture of the MDD risk measure and the Sharpe ratio is the Calmar ratio (CR), which provides an alternative characterization of 
the portfolio risk-adjusted value to evaluate performance. Investors can use this metric to identify portfolios that align with their risk 
appetite and investment objectives, where CR is defined as: 

CR =
Pnet

T
MDD

(18) 

Trading performance comparisons are presented using the following models:  

□ Our proposed risk and transaction cost-sensitive (RTC) portfolio based on the TD3 algorithm combined with CNN, denoted RTC- 
CNN-TD3.  

□ Our proposed RTC portfolio based on the TD3 algorithm combined with LSTM, denoted RTC-LSTM-TD3.  
□ The risk and transaction cost-sensitive portfolio based on the RTC-DDPG algorithm combined with CNN, denoted RTC-CNN-DDPG.  
□ The risk and transaction cost-sensitive portfolio based on the RTC-PPO algorithm combined with CNN, denoted RTC-CNN-PPO, 

where PPO is a common RL portfolio trading method (Aboussalah et al., 2022; Li, Liu, et al., 2021).  
□ The minimum variance portfolio trading method, which aims to minimize portfolio risk, denoted min-variance (MV).  
□ The maximum Sharpe ratio portfolio, which maximizes the Sharpe ratio, denoted Max-Sharpe. 

The hyperparameter values for portfolio optimization are provided in Table 1. To improve the learning efficiency of the proposed 
DRL algorithm, a suitable parameter must be selected. For the learning rate, if we set a learning rate that is too small (e.g., a =
0.0001), it will take longer to achieve convergence. On the contrary, if the learning rate is set too large (e.g., a = 0.01), the method 
leads to significant fluctuations in the model parameters and destabilizes the training processes. Hence, we select a suitable learning 
rate (i.e., a = 0.001) in the training model. 

Similarly, the number of hidden layers and their sizes should be moderated. If we set numerous layers, it may render an overly 
complex model that demands high computational complexity. However, limited number of layers may result in poor performance 
because it would lack the capacity to learn effectively. The remaining hyperparameters are standard values for DRL frameworks 
(Sutton & Barto, 2018). 

4.1. Empirical results for DJIA stocks 

Fig. 2 and Table 2 present the backtesting portfolio trading performance on 30 DJIA stocks for a risk aversion coefficient of β =
0.005 and a transaction cost rate of ξ = 0.05%. The first scenario hardly penalizes the presence of risk and transaction costs, and all 
results were performed on the out-of-sample evaluation (testing) period. Fig. 2 illustrates the strong performance of the three DRL- 
based portfolio methods (i.e., TD3, PPO, and DDPG). These portfolios achieve a higher cumulative return than those managed by 

Table 1 
Hyperparameter values for portfolio optimization.  

Hyperparameter Value Hyperparameter Value 

Actor learning rate 10− 4 Second hidden layer size 512 
Critic learning rate 10− 4 Target policy coefficient 10− 4 

Optimizer Adam Max. episode number 1000 
Discount factor 0.98 Replay buffer Size 106 
Mini-batch size 64 Policy noise 0.02 
Number of hidden layers 2 Policy noise clip 0.05 
First hidden layer size 512 Exploration noise standard deviation 0.15  
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the other two benchmark methods (i.e., Max-Sharpe and MV). Table 2 reports the performance metrics. The RTC-CNN-TD3 portfolio 
has an annualized return of 26.91%, which is significantly higher than those of Max-Sharpe (2.62%) and MV (3.25%). Moreover, our 
proposed DRL portfolio method effectively captures the dynamic patterns of each asset price, and the trading performance can be 
optimized accordingly. From Fig. 2 and Table 2, we can observe that both the RTC-CNN-TD3 and RTC-LSTM-TD3 portfolios have 
similar performance, where the CNN and LSTM methods have the most structurally comparable structure for portfolio feature 
extraction. 

Table 2 shows that the Sharpe ratio of the RTC-CNN-TD3 method is the highest, indicating that this strategy outperformed the rest 
in terms of risk/return tradeoff. Furthermore, the RTC-CNN-TD3 method achieves the highest annual return and CR during the testing 
period. On the downside, this strategy exhibits higher annual volatility than the two benchmark methods. Interestingly, we observe 
that the RTC-CNN-PPO portfolio may not be a suitable investment strategy because of its poor performance in terms of annual volatility 
(28.08%) and MDD (23.52%). These results demonstrate that DRL-driven portfolios can adequately handle dynamic financial data. In 

Fig. 2. Cumulative return performance comparisons using different investment strategies for a risk aversion coefficient of β = 0.005 and a 
transaction cost rate of ξ = 0.05%. 

Table 2 
Performance measures of different portfolio methods when β = 0.005 and ξ = 0.05%.  

Method RTC-CNN-TD3 RTC-LSTM-TD3 RTC-CNN 
-DDPG 

RTC-CNN-PPO Max-Sharpe MV 

Annual Return (%) 26.91 26.20 10.18 18.28 2.62 3.25 
Cum. Return (%) 55.53 53.92 19.62 36.50 4.91 6.10 
Annual Volatility (%) 22.01 29.02 17.28 28.08 19.97 13.42 
Sharpe Ratio 1.19 0.95 0.65 0.74 0.23 0.31 
Max Drawdown (%) 19.11 20.61 18.58 23.52 21.38 16.01 
Calmar Ratio 1.41 1.27 0.55 0.78 0.12 0.20  

Fig. 3. Cumulative return performance comparisons using different portfolio trading strategies for a risk aversion coefficient of β = 0.01 and a 
transaction cost rate of ξ = 0.1%. 

Y. Jiang et al.                                                                                                                                                                                                           



Global Finance Journal 62 (2024) 101016

10

particular, the RTC-CNN-TD3 method generally outperforms the others. 
We further evaluate the portfolio performance of the six competing methods by increasing the values of the two cost-sensitive 

parameters (i.e., risk aversion coefficient β and transaction cost rate ξ). Fig. 3 and Table 3 present the performance measures of the 
six methods when β = 0.01 and ξ = 0.1%. Compared with the results shown in Fig. 2 and Table 2, the cumulative returns of all 
portfolios decrease to different extents. This is because the increased risk aversion and transaction cost levels discourage risk-taking 
positions and high portfolio turnover. Moreover, the three DRL-based portfolio methods have similar cumulative returns in the period 
from April 30, 2021 to September 20, 2021. Interestingly, the proposed RTC-CNN-TD3-based portfolio achieves the highest value 
(approximately 33.69%) at the end of the out-of-sample period on March 9, 2023. In contrast, the Max-Sharpe and MV portfolios 
achieve cumulative returns of only 3.97% and 5.11%, respectively. As expected, as the two cost-sensitive parameters (i.e., β and ξ) 
increase, the annual volatility of the methods drops. The Sharpe ratio also takes lower values than the ones shown in Table 2; however, 
our proposed method still significantly outperforms the competitors, indicating that the RTC-CNN-TD3-based portfolio strategy bal
ances risk and return. From Tables 2 and 3 we find that although both RTC-CNN-TD3 and RTC-LSTM-TD3 achieve comparable per
formances, RTC-LSTM-TD3 exhibits a higher volatility, suggesting that risk-averse investors may prefer RTC-CNN-TD3. 

We further gauge the effect of the transaction cost rate, ξ, on portfolio performance. Unsurprisingly, Fig. 4 and Table 4 reveal that 
the cumulative return declines as the transaction cost rate increases. Particularly, the RTC-CNN-TD3-based portfolio strategy achieves 
high cumulative returns when the transaction cost rate is comparatively low (e.g., 0.01% and 0.05%) but reduces by approximately 
50% when the transaction cost rate raises to 0.1% and 0.5%. The reason lies in the fact that the transaction cost level has a sizable effect 
on the profitability of the strategy and investor’s behavior. In addition, as shown in Table 4, increases of ξ are accompanied by de
creases in Sharpe ratio, MDD, and CR, especially when ξ is relatively large (e.g., ξ = 0.5%). These empirical findings suggest that the 
investment strategy is very sensitive to frequent changes in portfolio composition. 

Finally, we evaluate the effect of the risk aversion coefficient β on the performance of the proposed RTC-CNN-TD3 method (see 
Fig. 5 and Table 5). As expected, increases in risk aversion are accompanied by decreases in the annual volatility of the proposed 
portfolio over the testing dataset, indicating the effectiveness of the proposed cost-sensitive method in incorporating investor’s attitude 
towards risk. Furthermore, the MDD value declines for larger values of β. As this value is determined by asset price volatility, the results 
confirm that constraining the volatility of portfolio returns can assist investors in managing downside risks. 

4.2. Empirical results for S&P100 stocks 

This section compares the portfolio performance of the methods in a high-dimensional setting given by the constituents of the 
S&P100 index. Fig. 6 illustrates the cumulative return performance of the out-of-sample dataset. As expected, the three portfolio 
methods based on DRL (i.e., TD3, PPO, and DDPG) achieve better performance than the traditional Max-Sharpe and MV strategies. This 
is because the proposed learning methods are capable of effectively searching for the optimal portfolio decision strategy in complex, 
uncertain, dynamic, and large-scale financial trading markets. 

Furthermore, as shown in Table 6, the proposed two TD3-based portfolio methods achieve the highest annual return and Sharpe 
ratio in this high-dimensional setting, confirming their ability to balance risk and return. Similar to the previous results, the MV 
method shows the worst portfolio performance in almost all indicators, apart from the MDD measure. From Fig. 6 and Table 6, we 
observe that the RTC-LSTM-TD3 method obtains a slightly higher cumulative return than the RTC-CNN-TD3 portfolio at the expense of 
higher volatility and MDD, posing increased risk for investors. 

Fig. 7 and Table 7 illustrate the effect of considering different transaction cost rates, ξ, on the performance of the proposed RTC- 
CNN-TD3 portfolio for the constituents of the S&P100 index. The portfolio return and market performance measures decreased with 
increasing ξ. Because a large transaction cost rate induces investors to reduce trading activities, the portfolio return declines. More
over, when ξ = 0.5%, the proposed learning-based portfolio had a significant loss compared with the scenario given by ξ = 0.01%. 

For completeness, Fig. 8 and Table 8 report the cumulative return and performance measures, respectively, for different risk 
aversion levels. As before, we observe a decrease in the portfolio return and volatility as β increases. There is an exception, with β =
0.005. For this level of investor risk aversion, we observe a good cumulative return performance and high Sharpe and CR values, 
suggesting that this level of intermediate risk aversion is optimal from an investment perspective. 

5. Conclusion 

This study proposes a DRL method to construct optimal portfolios that performs particularly well, even in high-dimensional 

Table 3 
Performance measures of different portfolio methods when β = 0.01 and ξ = 0.1%.  

Method RTC-CNN-TD3 RTC-LSTM-TD3 RTC-CNN-DDPG RTC-CNN-PPO Max-Sharpe MV 

Annual Return (%) 16.96 17.40 9.87 8.77 2.12 2.73 
Cum. Return (%) 33.69 34.62 19.05 16.86 3.97 5.11 
Annual Volatility (%) 18.21 26.26 16.47 26.20 19.78 13.28 
Sharpe Ratio 0.95 0.74 0.65 0.45 0.21 0.27 
Max Drawdown (%) 19.82 26.84 19.19 25.64 21.20 15.87 
Calmar Ratio 0.86 0.65 0.51 0.34 0.10 0.17  
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Fig. 4. Cumulative return performance of the RTC-CNN-TD3 portfolio under different transaction cost rates, ξ, for a risk aversion coefficient of β 
= 0.005. 

Table 4 
Performance measures of the RTC-CNN-TD3 portfolio under different transaction cost rates, ξ, when β = 0.005.  

ξ 0.01% 0.05% 0.1% 0.5% 

Annual Return (%) 31.90 26.91 17.51 13.23 
Cum. Return (%) 67.06 55.52 34.86 25.89 
Annual Volatility (%) 28.42 22.01 20.12 17.38 
Sharpe Ratio 1.12 1.19 0.90 0.80 
Max Drawdown (%) 23.45 19.11 22.88 17.59 
Calmar Ratio 1.36 1.41 0.77 0.75  

Fig. 5. Cumulative return performance of the RTC-CNN-TD3 portfolio under different risk aversion coefficients, β, for a transaction cost rate of ξ 
= 0.05%. 

Table 5 
Performance measures of the RTC-CNN-TD3 portfolio under different risk aversion coefficients, β, when ξ = 0.0005.  

β 0.0005 0.001 0.005 0.01 0.05 

Annual Return (%) 31.19 30.50 26.91 16.32 5.79 
Cum. Return (%) 65.38 63.75 55.53 32.32 11.00 
Annual Volatility (%) 27.06 24.52 22.01 20.26 15.91 
Sharpe Ratio 1.14 1.21 1.19 0.85 0.43 
Max Drawdown (%) 20.39 21.07 19.11 17.05 14.80 
Calmar Ratio 1.53 1.45 1.41 0.96 0.39  
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Fig. 6. Cumulative return performance comparisons using different portfolio trading strategies for a risk aversion coefficient of β = 0.005 and a 
transaction cost rate of ξ = 0.05%. 

Table 6 
Performance measures of different portfolio methods when β = 0.005 and ξ = 0.05%.  

Method RTC-CNN-TD3 RTC-LSTM-TD3 RTC-CNN-DDPG RTC-CNN-PPO Max-Sharpe MV 

Annual Return (%) 36.92 39.34 17.99 18.37 10.25 3.08 
Cum. Return (%) 83.09 89.35 37.49 38.34 20.67 5.93 
Annual Volatility (%) 24.79 26.10 22.92 31.72 28.72 14.73 
Sharpe Ratio 1.39 1.40 0.84 0.69 0.48 0.09 
Max Drawdown (%) 15.90 27.45 23.52 18.95 38.85 15.94 
Calmar Ratio 2.32 1.43 0.76 0.97 0.27 0.02  

Fig. 7. Cumulative return performance of the RTC-CNN-TD3 portfolio under different transaction cost rates, ξ, for a risk aversion coefficient of β 
= 0.005. 

Table 7 
Performance measures of the RTC-CNN-TD3 portfolio under different transaction cost rates, ξ, when β = 0.005.  

ξ 0.01% 0.05% 0.1% 0.5% 

Annual Return (%) 34.85 36.92 20.23 11.03 
Cum. Return (%) 77.78 83.09 42.57 22.30 
Annual Volatility (%) 30.49 24.79 26.99 25.20 
Sharpe Ratio 1.13 1.39 0.82 0.54 
Max Drawdown (%) 22.42 15.90 23.90 25.62 
Calmar Ratio 1.55 2.32 0.85 0.43  
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settings. Our proposal combines DL and RL methods into a new DRL model that optimizes portfolio allocation. Investor risk aversion 
and transaction cost constraints are embedded using an extended Markowitz’s mean-variance reward function, implemented using a 
TD3 algorithm. 

We applied these strategies to the constituents of the DJIA and S&P100 and found extremely encouraging results. In particular, our 
proposed DRL method outperforms traditional investment strategies widely used by practitioners and recent models proposed in the 
deep reinforcement literature. 
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Fig. 8. Cumulative return performance of the RTC-CNN-TD3 portfolio under different values of the risk aversion coefficient, β, for ξ = 0.05%.  

Table 8 
Performance measures of the RTC-CNN-TD3 portfolio under different risk aversion coefficients, β, when ξ = 0.05%.  

β 0.0005 0.001 0.005 0.01 0.05 

Annual Return (%) 42.91 39.71 36.92 13.43 4.9 
Cum. Return (%) 98.80 90.34 83.09 27.444 9.73 
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