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Abstract

Short selling is widespread in financial markets but regulators can ban short positions.

The intermediate policy of taxing short sellers has been studied in an asset pricing

model with evolutionary competition of two belief types (Anufriev and Tuinstra, 2013).

We extend this approach to an arbitrary number of belief types H, giving 3H−2H cases

to check each period in the worst-case scenario. We provide analytic expressions for

asset prices along with conditions on beliefs (optimism) that determine which types

take long, short or zero asset positions at the market-clearing price. We use these

results to construct a fast solution algorithm (quadratic in H) which can solve models

with hundreds or thousands of types in a matter of seconds. A numerical example with

a short-selling tax and many heterogeneous beliefs in evolutionary competition shows

that price dynamics can differ substantially relative to the benchmark of few types.

1 Introduction

Short selling is widespread in financial markets but is widely regulated by policymakers.

When investors take a ‘short’ position, they borrow and immediately sell a financial asset

before repurchasing and returning the asset to the lender, closing their position. Whereas a

long position can be thought of as a bet that asset prices will increase, short-selling allows

investors to bet on falling asset prices. It has been argued that such betting may increase

financial market volatility, such as price downturns. A common policy response among

market regulators has been to restrict or ban short selling; for example, many countries

introduced short-selling bans following sharp declines in asset prices in the 2007-9 Financial

Crisis. Similar short-selling bans were reintroduced in some European economies during the

2011-12 sovereign debt crisis and the Covid-19 outbreak (Siciliano and Ventoruzzo, 2020).

Given the link to policy and outcomes in financial markets, it is important that researchers

be able to solve asset pricing models with short-selling regulations in an efficient manner.
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In this note, we take on this challenge. While some previous works consider a full ban on

short selling, Anufriev and Tuinstra (2013) study the novel, intermediate measure of taxing

(rather than banning) short selling in a model of two beliefs in evolutionary competition.1

The problem of solving asset pricing models with short-selling constraints and many belief

types is studied in Hatcher (2024), but only for the case of a full short-selling ban. Here, we

extend both the analytical results and solution algorithm to the much harder problem of a

short-selling tax. Our results enable a short-selling tax to be studied in models with a large

number of competing beliefs, as in many real-world asset markets, since our algorithm can

solve models with hundreds or thousands of belief types in a matter of seconds.

The difficulty with a short-selling tax is that the optimal asset demands are highly non-

linear in the price: investors may decide to (i) buy the risky asset; (ii) take a negative

position and pay the short-selling tax; or (iii) take a zero position if it is not beneficial

after tax (in expected terms) to short sell. Accordingly, there are many additional cases

into which investors can sort relative to the case of a full ban on short-selling, and finding

a solution is computationally expensive – especially in a dynamic setting. Our results cut

this computational cost and simulation times dramatically, thus making way for analyses of

short-selling regulation in asset markets with many competing heterogeneous beliefs.

We build on the benchmark Brock and Hommes (1998) asset pricing model in which

heterogeneous beliefs (or predictors) compete for investors via an evolutionary mechanism.

A many-types version of the model is studied by Brock et al. (2005) when short-selling

is unrestricted, and by Hatcher (2024) under a short-selling ban that precludes negative

positions. In the latter case, some types are short-selling constrained if belief dispersion is

large enough. Here, we consider the somewhat harder case of a short-selling tax, which is

of policy relevance given the high costs and disruption caused by full bans on shorting,2

and leads to sorting that depends on belief dispersion and the size of the tax penalty. We

illustrate the utility of our results with a numerical example that demonstrates the speed and

accuracy of our algorithm, and shows how heterogeneity of many beliefs types in evolutionary

competition affects price dynamics when investors are taxed if they hold a short position.

Previous works studied short-selling constraints and few competing belief types (Anufriev

and Tuinstra, 2013; in’t Veld, 2016; Dercole and Radi, 2020). Recently, Hatcher (2024)

extends the analysis to an arbitrary number of belief types – for a ban on shorting as in

Dercole and Radi (2020) – and provides conditions on beliefs that determine the sets of

unconstrained and short-selling constrained types at each date, plus a fast solution algorithm.

In this note we follow a similar approach but take on the more difficult challenge of a short-

selling tax and many belief types. The latter requires new analytical results and a novel

solution algorithm for numerical simulations, and we show that price dynamics with many

competing beliefs can differ substantially relative to the benchmark of few types.

1A short-selling constraint appears to have first been studied, in a static model, by Miller (1977).
2For example, Beber and Pagano (2013) study short-selling bans during the 2007-9 Financial Crisis and

conclude that such bans significantly disrupted market liquidity and slowed down price discovery.
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2 Model

Consider a finite set of myopic, risk-averse investor types H = {h1, ..., hH}. At each date

t ∈ N+, each type h ∈ H chooses a portfolio of a risky asset zt,h and a riskless bond

with return r > 0 in order to maximize a mean-variance utility function over future wealth

with risk-aversion parameter a > 0. The risky asset has current price pt, future price pt+1,

and pays stochastic dividends dt+1, which are exogenous and IID. Investors form subjective

expectations of the future price and dividends of the risky asset as described below. The

underlying model follows Brock and Hommes (1998), except that the risky asset is in positive

net supply Z > 0 and investors who short sell must pay a cost T ∈ (0,∞) per share as in

Anufriev and Tuinstra (2013), such that date t transaction costs of a short seller are T |zt,h|.

2.1 Asset demand

We denote the subjective expectation of type h at date t by Ẽt,h[.], and the subjective

variance by Ṽt,h[.]. The portfolio choice of type h ∈ H at date t solves the problem:

max
zt,h

Ẽt,h[wt+1,h]−
a

2
Ṽt,h[wt+1,h] (1)

where future wealth is wt+1,h = (1+r)wt,h+(pt+1+dt+1−(1+r)pt)zt,h−(1+r)T |zt,h|1{zt,h<0},

1{zt,h<0} equals 1 if zt,h < 0 and 0 otherwise, and Ṽt,h[wt+1,h] = σ2z2t,h, with σ2 > 0.

Given the short-selling tax T , the date t demand of each investor type h ∈ H is

zt,h =


Ẽt,h[pt+1]+d−(1+r)pt

aσ2 if pt ≤ pht

0 if pt ∈ (pht , p
h
t + T ]

Ẽt,h[pt+1]+d−(1+r)(pt−T )

aσ2 if pt > pht + T

(2)

where pht :=
Ẽt,h[pt+1]+d

1+r
and Ẽt,h [dt+1] = d is used.3

If the price pt is small enough, type h’s expected excess return is positive and they take

a long position which decreases with the price; this is the standard demand function in

Brock and Hommes (1998), where short-selling costs are absent. However, if the price is

high enough to make the expected excess return of type h negative, they will choose either

to short by taking a negative position and paying the tax (if the after-tax expected return

is negative) or they will take a zero position in the risky asset (if shorting would be optimal

absent a short-selling tax but is not optimal given the tax T ).4 From Equation (2) we see

that types with sufficiently pessimistic price expectation, Ẽt,h [pt+1], will want to short sell

and pay the tax, while more optimistic types will either buy or take a zero position.

3Dividends are dt = d+ ϵt, where d > 0 and ϵt is IID, mean zero and has fixed variance. We assume all
types know the dividend process, such that Ẽt,h [dt+1] = d for all t, h as in Anufriev and Tuinstra (2013).

4In the special case T → ∞, short selling becomes prohibitively costly, i.e. the case of a full ban.
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2.2 Beliefs and population shares

To keep contact with the related literature, we assume that price beliefs and population

shares are determined as in Brock and Hommes (1998); see Assumptions 1–2 below.

Assumption 1 All price beliefs are of the form:

Ẽt,h [pt+1] = Et[p
∗
t+1] + fh(xt−1, ..., xt−L) (3)

where p∗t is the fundamental price, Et is the conditional expectations operator, xt := pt − p∗t
is the deviation of price from the fundamental price, and fh : RL → R is a deterministic

function that can differ across investor types h.

The price beliefs in Assumption 1 are boundedly-rational and do not depend on the current

price pt or any future values. Given our assumption of IID and mean-zero dividend shocks,

the fundamental price is constant at p∗t = p := d−aσ2Z
r

, and hence Et[p
∗
t+1] = p. The

fundamental price p is lower than in Brock and Hommes (1998) because the risky asset is in

positive net supply, Z > 0.5 By (3), beliefs in deviations from the fundamental price are

ft,h := Ẽt,h [xt+1] = fh(xt−1, ..., xt−L) (4)

where Ẽt,h [xt+1] := Ẽt,h [pt+1]− Et[p
∗
t+1].

Thus, expressed in price deviations xt := pt − p and beliefs ft,h, the demands in (2) are

zt,h =


ft,h+aσ2Z−(1+r)xt

aσ2 if xt ≤ xh
t

0 if xt ∈ (xh
t , x

h
t + T ]

ft,h+aσ2Z−(1+r)(xt−T )

aσ2 if xt > xh
t + T

(5)

where xh
t :=

ft,h+aσ2Z
1+r and xh

t + T are ‘kink points’ in the demand schedule of type h.

Aggregate demand for the risky asset is
∑

h∈H nt,hzt,h, where nt,h is the population share

of type h at date t and
∑

h∈H nt,h = 1. Following Brock and Hommes (1997, 1998), we

assume the population shares are given by a discrete choice logistic model (Assumption 2),

such that the population shares nt,h are endogenously determined and are time-varying but

do not depend on the contemporaneous price xt (or pt) or any future values.

Assumption 2 Population shares are updated using a discrete choice logistic model:

nt+1,h =
exp(βUt,h)∑
h∈H exp(βUt,h)

(6)

where β ∈ [0,∞) is the intensity of choice and Ut,h ∈ R is fitness of predictor h at date t.

5As in Brock and Hommes (1998) the fundamental price is the (hypothetical) price solution when all in
investors are fundamentalists with common rational expectations and speculative bubbles are absent.
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Assumption 2 says that the population share nt+1,h ∈ (0, 1) of predictor h at date t + 1

depends on the relative performance of predictor h against all other predictors h1, . . . , hH ,

as judged by their past observed levels of fitness Ut,h. The intensity of choice parameter

β determines how fast agents switch to better-performing predictors. In the special case

β = 0, no switching occurs and population shares are fixed at nt.h = 1/H for all t and h. In

financial market settings, the fitness measure Ut,h is typically net trading profits.

2.3 Market clearing

The asset market is in equilibrium when the aggregate demand equals outside supply:∑
h∈H

nt,hzt,h = Z subject to (5),(6). (7)

We now show how the price xt and demands zt,h are determined – via the market clearing

condition (7) – as a function of price beliefs and the short-selling tax, T . The resulting

analytic results have a nice economic interpretation and are central to our algorithm.

3 Solving the model

Given positive outside supply Z > 0, there exists a unique price xt satisfying Equation (7)

(see Anufriev and Tuinstra, 2013, Proposition 2.1). We first present our main analytical result

in Proposition 1; we then use this result to build an algorithm for numerical simulations.

Proposition 1 Let xt be the market-clearing price at date t ∈ N+. Let Bt ⊆ H be the

non-empty set of buyers at date t, let S1,t ⊆ H \ Bt (S2,t = H \ (Bt ∪ S1,t)) be the sets of

zero-position types (short-sellers) and T̃t := (1+r)T
∑

h∈H\S1,t
nt,h. Then the following holds:

1. If
∑

h∈H nt,h (ft,h −minh∈H{ft,h}) ≤ aσ2Z, all types are buyers (B∗
t = H, S∗

1,t = S∗
2,t = ∅),

demands are zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)xt) ≥ 0 ∀h ∈ H, and the price is

xt =

∑
h∈H nt,hft,h

1 + r
:= x∗

t . (8)

2. If
∑

h∈H nt,h (ft,h −minh∈H{ft,h}) > aσ2Z, one or more types are non-buyers at date t

(i.e. B∗
t ⊂ H, S∗

1,t ∪ S∗
2,t = H \ B∗

t ̸= ∅) and we have the following:

(i) If ∃ B∗
t ,S∗

1,t = H \ B∗
t s.t. max{dB∗

t
, dS∗

1,t
} ≤ aσ2Z <

∑
h∈B∗

t
nt,h(ft,h − maxh∈S∗

1,t
{ft,h}),

then zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)xt) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

1,t, price is

xt =

∑
h∈B∗

t
nt,hft,h − (1−

∑
h∈B∗

t
nt,h)aσ

2Z

(1 + r)
∑

h∈B∗
t
nt,h

:= x̃t > x∗
t (9)

where dB∗
t
:=

∑
h∈B∗

t

nt,h(ft,h−min
h∈B∗

t

{ft,h}), dS∗
1,t

:=
∑

h∈B∗
t

nt,h(ft,h− min
h∈S∗

1,t

{ft,h})−(1+r)T
∑

h∈B∗
t

nt,h.
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(ii) If ∃ B∗
t ,S∗

2,t = H\B∗
t s.t.

∑
h∈H nt,h(ft,h−minh∈B∗

t
{ft,h}) ≤ aσ2Z−(1+r)T

∑
h∈S∗

2,t
nt,h <∑

h∈H nt,h(ft,h−maxh∈S∗
2,t
{ft,h})−(1+r)T , then zt,h = (aσ2)−1(ft,h+aσ2Z−(1+r)xt) ≥

0 ∀h ∈ B∗
t , zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)(xt − T )) < 0 ∀h ∈ S∗

2,t, and price is

xt =

∑
h∈H nt,hft,h + (1 + r)T

∑
h∈S∗

2,t
nt,h

1 + r
:= x̂t > x∗

t (10)

(iii) Else, ∃ B∗
t ,S∗

1,t,S∗
2,t ̸= ∅ s.t. max{d1,t, d̃1,t} ≤ aσ2Z−(1+r)T

∑
h∈S∗

2,t
nt,h < min{d2,t, d̃2,t},

zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)xt) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

1,t, zt,h =

(aσ2)−1(ft,h + aσ2Z − (1 + r)(xt − T )) < 0 ∀h ∈ S∗
2,t and price is

xt =

∑
h∈H\S∗

1,t

nt,hft,h + (1 + r)T
∑

h∈S∗
2,t

nt,h − (
∑

h∈S∗
1,t

nt.h)aσ
2Z

(1 + r)
∑

h∈H\S∗
1,t
nt,h

:= xt > x∗
t (11)

where d1,t =
∑

h∈H\S∗
1,t

nt,h(ft,h−minh∈B∗
t
{ft,h}), d2,t =

∑
h∈H\S∗

1,t
nt,h(ft,h−maxh∈S∗

1,t
{ft,h}),

d̃1,t =
∑

h∈H\S∗
1,t

nt,h(ft,h−minh∈S∗
1,t
{ft,h})−T̃t , d̃2,t =

∑
h∈H\S∗

1,t
(ft,h−maxh∈S∗

2,t
{ft,h})−T̃t.

Proof. See the Supplementary Appendix.

Proposition 1 gives the market-clearing price and demands for an arbitrary number of

belief types H = |H| facing a short-selling tax T and evolutionary competition. Since the

proposition applies at any date t ∈ N+, we can find a solution recursively for t = 1, 2, ...,

starting from period 1. As compared to a short-selling ban (see Hatcher, 2024), there are

four rather than two parts because in addition to all types long (Part 1) or some long and

some with zero positions (Part 2(i)), all non-buyers could short sell and pay the tax T (if

they are sufficiently pessimistic; see Part 2(ii)), or there may be a mix among the non-buyers,

with the less pessimistic at positions of zero and the more pessimistic choosing to short sell

and pay the tax (see Part 2(iii)). In all these cases, the market-clearing price depends on

the beliefs of investor types with non-zero positions – the market participants.

An important difference relative to Proposition 2.1 in Anufriev and Tuinstra (2013)

(which shows existence of a unique market-clearing price) is that Proposition 1 gives ex-

plicit conditions on beliefs that determine, for an arbitrarily large number of belief types,

the sets of buyers B∗
t , non-participants S∗

1,t, and taxed short-sellers S∗
2,t (see parts 2(i)–(iii))

and therefore the market-clearing price and demands.6 Note that the asset prices in (9)–(11)

are strictly larger than the no-tax solution x∗
t ; hence, if one or more types are (taxed) short

sellers or have zero positions, the price is higher than in absence of short-selling costs. Hence,

like a short-selling ban (Miller, 1977), a binding short-selling tax raises the asset price.

6Anufriev and Tuinstra (2013, p. 1529) do not provide an explicit solution to this problem, as they note
after Proposition 2.1 in their paper: “Note however, that xt is still implicitly defined by (10) since the right-
hand side also depends upon xt through the definition of the sets P (xt), Z(xt) and N(xt). Below we will
derive the market equilibrium price xt explicitly for some special cases” (they study a two-type example).
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The part of Proposition 1 we are ‘in’ depends on investor beliefs. If belief dispersion is

small enough relative to risk-adjusted supply aσ2Z, all types are ‘buyers’ and the price is

given by the usual solution x∗
t when short-selling costs are absent (Proposition 1, Part 1).

Hence, if beliefs are ‘close to homogeneous’ there is some consensus on the price and no type

wants to short or to not participate at date t. Conversely, if belief dispersion exceeds this

threshold, at least one type (and at most H − 1 types) will short sell or take a zero position;

see Part 2. Both belief dispersion and the short-selling tax T determine which ‘branch’ gives

the market-clearing price and demands at date t; see the inequalities in parts 2(i)–(iii) that

pin down the marginal long, short and zero-position type(s) based on their optimism.

There are many permutations of types which correspond to the sets Bt,S1,t,S2,t that

partition the set of investor types, H, in Proposition 1.7 The unique partition for which the

asset market clears corresponds to the sets B∗
t ,S∗

1,t,S∗
2,t that satisfy the marginal conditions

(on beliefs) just discussed and uniquely determines the asset price and demands. As noted

by Anufriev and Tuinstra (2013), there are 3H −2H different cases (or regions) in total when

types are unordered, making a solution computationally expensive: for H = 5 types there

are 665 cases to check in the worst case scenario, and for H = 15 more than 14.3 million!

As a result, obtaining a fast solution is a non-trivial problem for a large number of investor

types, as seems plausible in many real-world asset markets.

We now show how the analytic results in Proposition 1 can be used – in conjunction with

an optimism ranking – to reduce computational burden substantially, making simulations of

models with hundreds or thousands of belief types tractable on a standard desktop or laptop

computer. We start with an example that helps motivate our computational approach.

Example 1 Suppose that there are H = 2 types, h1 and h2. Then by Proposition 1, there

are 32 − 22 = 5 different regions (or cases) and the equilibrium price is given by

xt =



∑
h∈{h1,h2}

nt,hft,h

1+r if −aσ2Z
nt,h2

≤ ft,h1 − ft,h2 ≤ aσ2Z
nt,h1

nt,h1
ft,h1−(1−nt,h1

)aσ2Z

(1+r)nt,h1
if aσ2Z

nt,h1
< ft,h1 − ft,h2 ≤ aσ2Z

nt,h1
+ (1 + r)T

nt,h2
ft,h2−(1−nt,h2

)aσ2Z

(1+r)nt,h2
if −aσ2Z

nt,h2
− (1 + r)T ≤ ft,h1 − ft,h2 < −aσ2Z

nt,h2∑
h∈{h1,h2}

nt,hft,h+(1+r)Tnt,h1

1+r if ft,h1 − ft,h2 < −aσ2Z
nt,h2

− (1 + r)T∑
h∈{h1,h2}

nt,hft,h+(1+r)Tnt,h2

1+r if ft,h1 − ft,h2 >
aσ2Z
nt,h1

+ (1 + r)T

(12)

which matches the result in Anufriev and Tuinstra (2013, Proposition 2.2).

Suppose that beliefs follow the two-type Brock and Hommes (1998) model: type h1 is a

fundamentalist with Ẽt,h1 [pt+1] = p, where p = (d − aσ2Z)/r is the fundamental price, and

7We use the term ‘partition’ loosely since S1,t and S2,t may be empty sets. In Part 1 of Proposition 1,
both S1,t and S2,t are the empty set; in Part 2(i), S2,t is the empty set; in Part 2(ii) S1,t is the empty set.
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h2 is a 1-lag chartist: Ẽt,h2 [pt+1] = p+gxt−1, where g > 0. Note that these beliefs imply that

ft,h1 = 0 and ft,h2 = gxt−1; see (3)–(4) for reference. Assuming xt−1 > 0, the chartist h2 is

more optimistic at date t and must buy the asset. We can therefore narrow down to

xt =



nt,h2
gxt−1

1+r if nt,h2gxt−1 ≤ aσ2Z

nt,h2
gxt−1−(1−nt,h2

)aσ2Z

(1+r)nt,h2
if nt,h2(gxt−1 − (1 + r)T ) ≤ aσ2Z < nt,h2gxt−1

nt,h2
gxt−1+(1+r)Tnt,h1

1+r if nt,h2(gxt−1 − (1 + r)T ) > aσ2Z.

(13)

i.e. three cases for the price and the sets Bt, S1,t S2,t.

In the above example, ordering the two types in terms of optimism reduces the number of

cases to check from 5 to 3. The remaining three cases correspond to the sets Bt = {h1, h2},
S1,t = S2,t = ∅ (h1 and h2 are buyers), Bt = {h2}, S1,t = {h1}, S2,t = ∅ (h2 buys, h1 has a

zero position), Bt = {h2}, S1,t = ∅, S2,t = {h1} (h2 buys, h1 short sells and pays the tax).

Since there are 3H−2H cases given H types, it would be desirable to reduce the number of

cases that need to be checked in any example that we face. We now show how the principle of

ranking belief types in terms of optimism reduces the number of cases substantially, taking

us from exponential in the number of types to quadratic. As a result, ranking types by

optimism can drastically speed up discovery of the sets Bt, S1,t S2,t, and hence price and

demands, when we have a large number of belief types. We then show how ‘pruning’ can

further speed up the algorithm by eliminating further cases that do not need to be checked.

3.1 Algorithm

Ranking types by optimism is suggested by Anufriev and Tuinstra (2013). In the Appendix

of their paper they present an algorithm for the case of many types that uses an arbitrary

guess on the market-clearing price, followed by a procedure to progressively narrow down to

a single region and price. The key advantage of the analytics in Proposition 1 is that the sets

of buyers, zero and short-selling types are determined in terms of beliefs that do not depend

on the endogenous market-clearing price xt. As a result, we can construct a fast algorithm

that can solve models with hundreds or thousands of belief types in a matter of seconds.

We start by presenting a ‘simple’ algorithm that is powerful because it reduces the number

of cases from 3H−2H (when all H types are unordered) to at most H(H+1)/2, i.e. quadratic

in the number of types. To do so, we rank and re-label types according to their optimism

in each period t. Thus, consider the function vt : H → H̃t, where H̃t := {1, . . . , H̃t} is an

adjusted set of types with the property that the most optimistic type(s) in H get label H̃t,

the next most optimistic type(s) gets label H̃t − 1, and so on, down to the least optimistic

type(s) in H with label 1. Types with equal optimism get the same label, so H̃t ≤ H, which

implies that |H̃t| ≤ |H|. In the case of ties in terms of optimism, the period t population
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share of the ‘group’ is the sum of the population shares of the individual types.8

Before presenting the algorithm, we introduce some notation that defines the measures

of belief dispersion in Parts 1–2(iii) of Proposition 1 for the new set of types H̃t. Belief

dispersion relative to the most pessimistic type,
∑

h∈H nt,h (ft,h −minh∈H{ft,h}), is given by

dispt,1 =
∑H̃t

h=2 nt,h(ft,h − ft,1) (see Proposition 1, Parts 1–2). Analogously, belief dispersion

relative to the marginal buyer and the marginal non-buyer are given by

dispt,k :=
∑H̃t

h=k+1
nt,h(ft,h − ft,k), k ∈ {1, ..., H̃t − 1}

where type k is either the most pessimistic buyer, the most optimistic non-buyer, or the

most pessimistic non-buyer type (see Proposition 1 Part 2(i)).

Finally, for the other concepts of belief dispersion in Proposition 1 parts 2(ii)–2(iii), we

define the following dispersion measures for use in our algorithm (again k ∈ {1, ..., H̃t − 1}):

dîspt,k :=
H̃t∑
h=1

nt,h(ft,h − ft,k), dĩspt,k :=
∑

h/∈[k,k]

nt,h(ft,h − ft,k)

where k (k) denotes the most pessimistic (most optimistic) zero-position type.9

We first present a simple benchmark algorithm before adding some speed improvements.

Algorithm 1

1. Find the set H̃t and the population shares nt,h for h = 1, ..., H̃t. Compute dispt,1. If

dispt,1 ≤ aσ2Z, then xt = x∗
t is the date t price, compute the demands zt,h ≥ 0 for

h = 1, . . . , H̃t and move to period t+ 1 and repeat. If dispt,1 > aσ2Z, move to Step 2.

2. Guess there is 1 non-buyer. Check if max{dispt,2, dispt,1−(1+r)T
∑H̃t

h=2 nt,h} ≤ aσ2Z.

If so, xt = x̃
(1)
t is the price (Proposition 1 Part 2(i), S∗

1,t = {1}), compute the demands

zt,1 = 0 and zt,h ≥ 0 for h = 2, . . . , H̃t and move to period t+1. If the above condition

is not met, check if dîspt,2 + (1 + r)Tnt,1 ≤ aσ2Z < dîspt,1 − (1 + r)T (1 − nt,1). If

so, xt = x̂
(1)
t is the price (Proposition 1 Part 2(ii), S∗

2,t = {1}), compute the demands

zt,1 < 0 and zt,h ≥ 0 for h = 2, . . . , H̃t and move to period t+ 1. Else, move to Step 3.

3. Guess k = 2 non-buyers. If max{dispt,k+1, dispt,k − (1 + r)T
∑H̃t

h=k+1 nt,h} ≤ aσ2Z <

dispt,k, xt = x̃
(k)
t is the price (Proposition 1 Part 2(i), S∗

1,t = {1, . . . , k}), compute the

demands zt,1, . . . , zt,k = 0 and zt,h ≥ 0 for h = k + 1, . . . , H̃t and move to period t+ 1.

8From a computational perspective, grouping together types with equal optimism is not necessary and can
impair computation speed. Nevertheless, we choose to present our approach under the ‘grouping’ assumption
because it is conceptually simpler to have a strict ranking of beliefs, i.e. ft,1 < ft,2 < . . . < ft,H̃t

.
9Note: k ≥ k. If the set of zero-position types S1,t is a singleton, then k = k. Otherwise, k > k. The

variables k and k are period-specific; however, to ease exposition we refrain from including a t subscript here.
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Else if dîspt,k+1+(1+r)T
∑k

h=1 nt,h ≤ aσ2Z < dîspt,k−(1+r)T (1−
∑k

h=1 nt,h), xt = x̂
(2)
t

(Proposition 1 Part 2(ii), S∗
2,t = {1, . . . , k}), compute the demands zt,1, . . . , zt,k < 0,

zt,h ≥ 0 for h = k + 1, . . . , H̃t and move to period t+ 1. Else, move to Step 4.

4. Consider all relevant partitions of {1, . . . , k} into S1,t and S2,t and let k := minS1,t,

k := maxS1,t (= k). Check if max{dĩspt,k+1, dĩspt,k−T̃t} ≤ aσ2Z−(1+r)T
∑k−1

h=1 nt,h <

min{dĩspt,k, dĩspt,k−1 − T̃t} for each partition k, k (Proposition 1 Part 2(iii)).10 If this

condition is met, then S∗
2,t = {1, . . . , k−1}, S∗

1,t = {k, . . . , k} and B∗
t = {k+1, . . . , H̃t},

price is xt = x
(k,k)
t (Proposition 1 Part 2(iii) for S∗

1,t,S∗
2,t,B∗

t above), compute demands

zt,1, . . . , zt,k−1 < 0, zt,k, . . . , zt,k = 0, zt,h ≥ 0 for h = k+1, . . . , H̃t, move to period t+1.

5. If the condition in Step 4 is not met, increase k by 1 and repeat Steps 3–4 until a

solution is found. Once a solution is found, move to period t+ 1 and repeat.

Algorithm 1 uses the adjusted set of types H̃t in conjunction with Proposition 1. The

case where all types are ‘buyers’ is first proposed as a solution; if this guess is rejected, the

algorithm proceeds by guessing sequentially, starting from k = 1 non-buyers. The algorithm

is ‘simple’ in the sense that it starts ‘at the bottom’ – by assuming there is one non-buyer

(the most pessimistic type only) – and then increases the guess k in steps of 1 until a solution

is found. Although this solution algorithm can easily be improved upon, it is quadratic in the

number of types H in the worst-case scenario, which is a big improvement on the 3H − 2H

cases when types are left unordered. Thus, even this ‘simple’ algorithm can deliver very

large speed gains in numerical simulations with moderate or large numbers of types H.11

The worst-case is the maximum cases traversed by Algorithm 1 (naive) before finding a

solution. Figure 1 shows there are H̃t(H̃t + 1)/2 cases, where H̃t ≤ H. There are H̃t initial

‘branches’, each representing a different number of non-buyers k (from 0 up to H̃t − 1). The

number of subsequent branches depends on the permutations of non-buyers into short-sellers

and zero positions. For zero non-buyers (Algorithm 1 Step 1), we have an empty set and no

subsequent branches (1 case); for 1 non-buyer (Algorithm 1 Step 2) there may be either 1

zero position or 1 short-seller (2 cases); for 2 non-buyers (Algorithm 1 Step 3–4), there may

be 2 zero positions, 2 short-sellers, or 1 zero position and 1 short-seller (3 cases).12 In general,

for k non-buyers there are k+1 subsequent branches (k+1 cases), where k ∈ {1, . . . , H̃t−1},
such that summing over all cases gives H̃t(H̃t + 1)/2 cases in total, as shown in Figure 1.

It is instructive to consider some numerical examples. For H = 5, the number of cases is

reduced from 35− 25 = 665 to at most 5(5+1)/2 = 15, while for H = 20 we go from around

3.5 billion cases(!) to at most 210. These examples make clear the computational advantages

10Here, T̃t = (1 + r)T
∑

h/∈[k,k] nt,h. By ‘relevant partitions’ we mean all those partitions of {1, . . . , k}
for which minS1,t > maxS2,t, i.e. S2,t = {1}, S1,t = {2, . . . , k}; S2,t = {1, 2}, S1,t = {3, . . . , k},..., up to
S2,t = {1, . . . , k − 1}, S1,t = {k}. Here, we use the fact that short-sellers must be more pessimistic in terms
of their price beliefs than zero-position types; see, for example, Equation (5).

11Algorithm 2 (see below) is a faster algorithm that exploits more the analytical results in Proposition 1.
12Note that the less optimistic type, 1, cannot have a zero position if type 2 has a short position (see (5)).
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Figure 1: Tree diagram of the H̃t(H̃t + 1)/2 cases with ordered types, where H̃t ≤ H. Each
main branch corresponds to a number of non-buyers (k); subsequent branches are sub-cases.

of ordering beliefs in terms of optimism as in Algorithm 1. However, for large numbers of

belief types such as H = 500 or H = 1, 000, there are still many cases and a further speed

up is desirable. We now show how to do so by making further use of Proposition 1.

Algorithm 2 (fast)

1. Find the set H̃t and the population shares nt,h for h = 1, ..., H̃t. Compute dispt,1. If

dispt,1 ≤ aσ2Z, then xt = x∗
t is the date t price, compute the demands zt,h ≥ 0 for

h = 1, . . . , H̃t and move to period t+ 1 and repeat. If dispt,1 > aσ2Z, move to Step 2.

2. Find the largest h such that z∗t,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)x∗
t ) < 0, say k0, where

x∗
t is the price if a short-sales tax were absent (see Proposition 1 Part 1). If desired, k0

may be updated in an iterative manner by updating the price and then updating k0.
13

3. Run Steps 3–5 of Algorithm 1, starting from k = k0 (see Step 2). Continue until a

solution is found, then move to period t+ 1 and repeat.

Algorithm 2 builds on Algorithm 1 by using ‘pruning’ – in place of sequential search

starting from k = 1 non-buyers – in order to cut computation time. In particular, Step 2

13Our algorithm allows the user to ’turn on’ such updating, and we find a non-trivial improvement in
computation times for very large numbers of types, such as H = 1, 000 or more.
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avoids checking the first k0−1 branches (i.e. (k0−1)k0/2 cases) when they cannot be market-

clearing outcomes. The key point is that the market-clearing price is higher when there are

some short sellers or zero-position types (see Proposition 1), so if some type is a non-buyer

at the no-tax price x∗
t , they must be a non-buyer at the market-clearing price xt > x∗

t , giving

us a lower bound k0 on the number of non-buying types. Algorithm 2 proceeds from this

value to find the ‘right’ initial branch (i.e. the equilibrium no. of non-buyers), followed by the

‘right’ subsequent branch (the split between short and zero positions). Clearly, if Algorithm

2 eliminates many initial branches in Figure 1, computation time will be much reduced.

3.2 Discussion

We have set out analytical expressions that determine the sets of buyers, short-sellers and

zero positions at market clearing as a function of beliefs and the short-selling tax. We

used these results to construct a fast solution algorithm that is based on ordering types

by optimism to eliminate irrelevant cases (Algorithm 1) plus additional pruning to avoid

irrelevant equilibrium search strategies among the set of ordered types (Algorithm 2).

The approach used in Algorithms 1 and 2 has some similarity to the ‘branch and bound’

method used to solve integer or mixed-integer programming problems (Land and Doig, 1960).

The branch and bound approach solves optimization problems by breaking them down into

smaller sub-problems and then eliminating sub-problems (i.e. branches) that cannot contain

the optimal solution. By comparison, we are able to eliminate certain permutations of the set

of investor types into buyers, zero-position types or short-sellers because, given the known

price beliefs of different types, some permutations cannot be consistent with equilibrium.

The key to this result is that for any given price, demands cannot decrease as price beliefs

increase (see (5)), so more optimistic types must have weakly larger equilibrium positions

than less optimistic types, such that many ‘branches’ can be eliminated a priori.

Algorithm 1 uses this approach to reduce the number of branches (i.e. cases) at any given

date t from 3H − 2H to at most H(H + 1)/2 (for H investor types); this amounts to a big

reduction in the number of cases for moderate or large values of H.14 Algorithm 2 allows

the remaining H(H + 1)/2 cases to be cut further by using the no-tax price solution x∗
t

(see (8)) to eliminate branches that contain too few non-buyers to be an equilibrium. In

particular, Algorithm 2 uses two specific features of the problem at hand: (1) any types h

whose untaxed demand is negative at price x∗
t must be non-buyers at the equilibrium price

xt > x∗
t by Proposition 1 (i.e. have zt,h ≤ 0); (2) an updated price can be computed by

counting the number of non-buyers in (1), and using this to generate an initial guess for the

number of non-buying types in equilibrium (i.e. the k0 in Step 3 of Algorithm 2).

In the next section we illustrate our algorithm using a numerical example. We report

measures of computation speed and accuracy and compare against the ‘standard case’ of no

short-selling tax where the price follows the no-tax solution x∗
t ; see (8).

14Recall our previous numerical example: for H = 20, 3H − 2H ≈ 3.5 billion, while H(H + 1)/2 = 210.
Even for H = 10 the difference is very large: 58,025 cases (no ordering) versus 55 when using Algorithm 1.
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4 Numerical example

We consider a version of the Brock and Hommes (1998) model with a large number of belief

types and a short-selling tax. Accordingly, the demands of types h ∈ H are given by (5)

and dividends dt = d + ϵt are IID with Ẽt,h[dt+1] = d ∀t, h. The fundamental price is

p = (d− aσ2Z)/r, where Z > 0 is the outside supply of the risky asset. The deviation from

the fundamental price is xt := pt − p. Investors have linear predictors of the form:

Ẽt,h [xt+1] = bh + ghxt−1. (14)

Here, bh ∈ R is the ‘bias’ of type h and gh ≥ 0 is their trend-following parameter. Type

h is a pure fundamentalist investor if bh = gh = 0, while larger values of gh or |bh| imply,

respectively, stronger trend-following and stronger forecast bias.

Fitness Ut,h is a linear function of past profits net of predictor costs Ch ≥ 0. Profits at

date t are given by the realized excess return Rt,h := xt−(1+r)(xt−1−1{zt−1,h<0}T )+aσ2Z+ϵt
scaled by demand zt−1,h, where ϵt is the IID dividend shock, and we abstract (for simplicity)

from memory of past performance. For all t > 1 fitness and population shares are given by

Ut,h = Rt,hzt−1,h − Ch, nt+1,h =
exp(βUt,h)∑
h∈H exp(βUt,h)

, where β ∈ [0,∞). (15)

Profits Ut,h determine the population shares nt+1,h via a discrete-choice logistic model with

intensity of choice β. The intensity of choice determines how fast agents switch to more

profitable predictors. For β = 0 no switching occurs; increasing the value of β implies

more switching to relatively profitable predictors. Following Brock and Hommes (1998), this

profit-based evolutionary competition mechanism has been widely studied.

We use the same parameters as in Section 3.1 of Anufriev and Tuinstra (2013): Z = 0.1,

aσ2 = 1, r = 0.1 and d = 10, giving a fundamental price p = d−aσ2Z
r

= 99. In their model

there are two types: a fundamentalist type with Ẽt,f [xt+1] = 0 and cost C = 1, and a

chartist type with Ẽt,c [xt+1] = gxt−1, where g = 1.2, and cost 0. We consider many types

with predictors described by (14), population shares nt,h given by (15), and predictor costs

Ch depending on the ‘closeness’ of beliefs to a pure fundamentalist (see above).

We start by looking at some individual numerical simulations, along with computation

time and accuracy, before presenting a numerical bifurcation diagram. Figure 2 plots the

price deviation xt under four different scenarios labelled 1 to 4, both for a two-type model

(as in Anufriev and Tuinstra (2013)) and for H = 100 heterogeneous belief types. In the

latter case, we add heterogeneity in fundamentalist and chartist types by giving 50 types a

trend-following parameter gh linearly spaced on the interval [1, 1.4], and the remaining 50

types a zero trend parameter gh = 0 but bias bh linearly spaced on the interval [−0.2, 0.2]

and cost Ch = 1 − |bh| which is decreasing in the bias of their predictor; these relatively

small heterogeneities in beliefs have non-trivial implications for price dynamics. The four

scenarios differ only in terms of the intensity of choice β and the short-selling tax is T = 0.1.

13



Figure 2: Four price scenarios: Two-type model vs many types (H = 100) when T = 0.1.
Scenario 1: intensity of choice is β = 1.6; Scenario 2: intensity of choice is β = 2. Scenario 3
(4) increases the intensity of choice to β = 2.5 (β = 2.9). In each panel, the price deviation
xt is plotted at each t, given initial price x0 = 1 and deterministic dividends dt = d for all t.

Scenario 1 sets β = 1.6. We see that the initial overvaluation ‘dies out’ fairly quickly

toward the fundamental price, with the main difference being the greater initial price per-

sistence in the two-type model, due to the better relative performance of chartists with two

types rather than many (Fig. 2, top left). In the many-types model, price settles at a small,

positive non-fundamental price because positive bias fundamental types (bh > 0) perform

better. In Scenario 2, the intensity of choice increases to β = 2. Both prices now converge

to a non-fundamental steady state with a sizeable overvaluation, with the latter being larger

in the two-type model, reflecting the better relative performance of chartists. Scenario 3

increases the intensity of choice further to β = 2.5. In this case, price initially falls, but the

trend is reversed. In the two type model, short-selling by fundamental types is discouraged

by the tax and chartists outperform, so price starts increasing; however, there is sufficient

short-selling by fundamental types to cause the bubble to ‘burst’ and price to converge near

the fundamental price. With many types, the price deviation initially increases but we then

see endogenous price cycles around a positive price. Finally, in Scenario 4, where the inten-

sity of choice is β = 2.9, price converges near the fundamental price in the two-type model
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but diverges to +∞ with many types, as belief heterogeneity means the most chartist types

outperform enough to get a large population share, making price increases entrenched.

Table 1 reports computation times and accuracy for Scenario 3 with Tsim = 100 simulated

periods and dividend shocks.15 Computation times are quite fast – less than 0.5 seconds in

all cases – but they increase sharply as the number of number of types H is increased, as

expected for a quadratic algorithm. Note that both short-sellers and zero position types

coexist in many periods (Column 4), such that our algorithm must search for the ‘correct

partition’ between short-sellers and zero-position types (Algorithm 1, Step 4).16 As compared

to the case of no short-selling tax (where price is xt = x∗
t :=

∑
h∈H nt,hẼt,h[xt+1]

1+r
), computation

times are increased somewhat but remain reasonable even for H = 2, 500 types. Finally, the

computed error in the final column is essentially zero as expected. The results for the other

price scenarios in Figure 2 – see the Supplementary Appendix – tell a similar story.

Table 1: Computation times and accuracy in Scenario 3 (Algo. 2, Tsim = 100 periods)

No. of types Short-selling tax Time (s) Freq. 1 (2) max(Errort)

No tax: T = 0 0.01 - 6.9e-17
H = 100 T = 0.10 0.02 100 (57) 7.6e-16

T = 1/8 0.02 100 (41) 5.4e-16

No tax: T = 0 0.02 - 8.3e-17
H = 1, 000 T = 0.10 0.15 100 (60) 1.1e-15

T = 1/8 0.11 100 (41) 1.0e-15

No tax: T = 0 0.03 - 1.4e-16
H = 2, 500 T = 0.10 0.48 100 (60) 1.1e-15

T = 1/8 0.38 100 (41) 1.3e-15

Notes: max(Errort) := max{Error1, ..., ErrorTsim}, where we define the date t simulation error

as Errort = |
∑

h∈H nt,hzt,h − Z|. Demands zt,h depend on the computed market-clearing price.

Freq. 1 = number of periods with S∗
1,t ∪ S∗

2,t ̸= ∅ (at least one short or zero position at date t),

and Freq. 2 = number of periods with S∗
1,t,S∗

2,t ̸= ∅ (both short and zero positions at date t).

The results in Table 1 raise the question: to what extent can the ‘fast’ computation times

be attributed to ordering types by optimism (Algorithm 1) versus additionally finding a good

guess for the number of non-buyers (Algorithm 2)? The short answer is that for moderate or

large numbers of types H, Algorithm 1 is most important for reducing computation times,

because sorting types by optimism reduces the number of cases from a very large number

3H − 2H to quadratic in H, which is a dramatic difference.17 Indeed, searching all 3H − 2H

15Dividend shocks ϵt were drawn from a truncated-normal distribution with mean zero, standard deviation
σd = 0.01 and support [−d, d]. Simulations were run in Matlab 2023a (Windows version) on a Viglen Genie
Desktop PC with an Intel(R) Core(TM) i7-7700 CPU 3.60 GHz processor and 16GB of RAM.

16If non-buyers are either all short-sellers or all with zero positions, rather than a mix of the two, then
solution times are much faster (not shown); however, such cases do not fully test our solution algorithm.

17For example, for H = 100 the ratio H(H+1)/2
3H−2H

is smaller than 1× 10−44 (note: 3H − 2H = 5.15× 1047).
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permutations of the set of investor types is not computationally tractable for large values of

H, so Algorithm 1 is an essential component of Algorithm 2.

Table 2: Comparison of computation times: Algorithm 1 vs Algorithm 2

No. of types Algo. 1 time (s) Algo. 2 time (s) Relative time gain

H = 100 0.09 0.02 77.8%
H = 1, 000 8.25 0.09 98.9%
H = 2, 500 146.4 0.28 99.8%

Notes: Scenario 3 with T = 0.10 and Tsim = 100 periods.

What the results in Table 2 show, however, is that Algorithm 2 still obtains sizeable

extra reductions in computation time by finding a good initial guess for the number of non-

buyers, such that simulations take a small fraction of the Algorithm 1 times.18 We conclude

that both the mass removal of branches in Algorithm 1 and the refinement in Algorithm 2

are crucial for a fast solution algorithm which makes it computationally-tractable to study

simulations of many periods or bifurcation-type analyses to changes in parameter values.

Figure 3 plots a numerical bifurcation diagram as the intensity of choice β is increased;

the attractors are based on negative initial prices x0 < 0 and a particular short-selling tax,

T . The price attractor for the two-type model is shown in grey, and the attractor from the

many-type model (H = 20 types) is in black. The short-selling tax is set at T = 0.1.

In the two-type model, the fundamental steady state x = 0 is the only price attractor

for sufficiently low intensity of choice β (grey attractor). Once a critical value of β is

exceeded, the price converges to a non-fundamental steady state with negative price (i.e.

undervaluation); hence the lower ‘fork’ seen for β between (approx.) 2.4 and 3.2 in Figure 3.

Increasing β further causes the non-fundamental steady states to lose stability through a

secondary bifurcation, leading to endogenous price fluctuations. The results for the two-

type model are consistent with the results and bifurcation diagrams in Anufriev and Tuinstra

(2013), and we found similar attractors for alternative values of the short-selling tax T .19

The attractor in the many-types model is quite different (black). For small positive values

of the intensity of choice we see convergence on a non-fundamental steady state price with

a small overvaluation; intuitively, this is because the fundamentalists with positive bias are

best performers, such that their optimistic predictor gains a foothold in the market. As

the intensity of choice β increases, price converges to a larger steady-state price since the

foothold is stronger when there is more switching in response to performance. Increasing β

further leads to endogenous price fluctuations which, however, exist only for a small range

of β values (approx. 2.4 to 2.7). Once the intensity of choice is sufficiently high, there is

a negative steady-state price (undervaluation) whenever price converges. By comparison to

18Slightly different hardware used relative to Table 1, so Algorithm 2 computation times are slightly lower.
19Figure 7 in their paper is a bifurcation diagram in the two-type model for T = 0.1, and their Figure 8

is a numerically-computed bifurcation diagram for T = 0.1, analogous to the grey attractor in Figure 3.
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Figure 3: Numerical bifurcation diagram: two-type model (grey attractor) and many-type
model (H = 20, black attractor) when T = 0.1. For each β, we ran 30 simulations from
initial prices x0 ∈ (−4, 0) and we plot a total of 2,400 points after 3,120 transitory periods.

the two-type model, the price attractor is rather ‘sparse’ at higher values of the intensity of

choice because a high percentage of simulations have explosive price paths, so there is an

extreme form of volatility not seen in the two-type model where price paths were bounded.20

In short, there are non-trivial qualitative differences in the price dynamics with many

versus few types, including a switch in sign of the price deviation and explosive simulations.

5 Conclusion

In this note we studied asset pricing in behavioural heterogeneous-belief models with a short

selling tax and many belief types. We provided analytic expressions for asset prices and

conditions on beliefs that determine which types take long, short or zero asset positions at

the market-clearing price. These results allowed us to construct an algorithm that can solve

models with hundreds or thousands of heterogeneous beliefs in a matter of seconds.

We illustrated the utility of these results using a numerical example with many different

belief types in evolutionary competition, inspired by the two-type model in Anufriev and

Tuinstra (2013). We extended the model to allow many heterogeneous beliefs around the

polar chartist and fundamentalist beliefs, and we found that even small heterogeneities can

have substantive implications for price dynamics and financial market volatility.

An interesting question is whether our approach could be applied to models with non-

smoothness or discontinuities in demand for reasons other than short-selling regulations.

Examples include market entry from the crossing of price misalignment thresholds or price

20For β between approx. 2.7 and 2.8, we found price was explosive in all simulations (many-types model).
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beliefs that depend on such thresholds (see Tramontana et al., 2010, 2015). Extending such

models to a large number of belief types might reveal new insights about effectiveness of

regulatory policies or the empirical performance of this class of models.
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