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A B S T R A C T

Short selling is widespread in financial markets but regulators can ban short positions. The intermediate policy of taxing short sellers has been 
studied in an asset pricing model with evolutionary competition of two belief types (Anufriev and Tuinstra, 2013). We extend this approach to an 
arbitrary number of belief types 𝐻 , giving 3𝐻 − 2𝐻 cases to check each period in the worst-case scenario. We provide analytic expressions for asset 
prices along with conditions on beliefs (optimism) that determine which types take long, short or zero asset positions at the market-clearing price. 
We use these results to construct a fast solution algorithm (quadratic in 𝐻) which can solve models with hundreds or thousands of types in a matter 
of seconds. A numerical example with a short-selling tax and many heterogeneous beliefs in evolutionary competition shows that price dynamics 
can differ substantially relative to the benchmark of few types.

1. Introduction

Short selling is widespread in financial markets but is widely regulated by policymakers. When investors take a ‘short’ position, 
they borrow and immediately sell a financial asset before repurchasing and returning the asset to the lender, closing their position. 
Whereas a long position can be thought of as a bet that asset prices will increase, short-selling allows investors to bet on falling 
asset prices. It has been argued that such betting may increase financial market volatility, such as price downturns. A common policy 
response among market regulators has been to restrict or ban short selling; for example, many countries introduced short-selling bans 
following sharp declines in asset prices in the 2007-9 Financial Crisis. Similar short-selling bans were reintroduced in some European 
economies during the 2011-12 sovereign debt crisis and the Covid-19 outbreak (Siciliano and Ventoruzzo, 2020). Given the link to 
policy and outcomes in financial markets, it is important that researchers be able to solve asset pricing models with short-selling 
regulations in an efficient manner.

In this note, we take on this challenge. While some previous works consider a full ban on short selling, Anufriev and Tuinstra 
(2013) study the novel, intermediate measure of taxing (rather than banning) short selling in a model of two beliefs in evolutionary 
competition.2 The problem of solving asset pricing models with short-selling constraints and many belief types is studied in Hatcher 
(2024), but only for the case of a full short-selling ban. Here, we extend both the analytical results and solution algorithm to the much 
harder problem of a short-selling tax. Our results enable a short-selling tax to be studied in models with a large number of competing 
beliefs, as in many real-world asset markets, since our algorithm can solve models with hundreds or thousands of belief types in a 
matter of seconds.

The difficulty with a short-selling tax is that the optimal asset demands are highly non-linear in the price: investors may decide to 
(i) buy the risky asset; (ii) take a negative position and pay the short-selling tax; or (iii) take a zero position if it is not beneficial after 
tax (in expected terms) to short sell. Accordingly, there are many additional cases into which investors can sort relative to the case 
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of a full ban on short-selling, and finding a solution is computationally expensive – especially in a dynamic setting. Our results cut 
this computational cost and simulation times dramatically, thus making way for analyses of short-selling regulation in asset markets 
with many competing heterogeneous beliefs.

We build on the benchmark Brock and Hommes (1998) asset pricing model in which heterogeneous beliefs (or predictors) compete 
for investors via an evolutionary mechanism. A many-types version of the model is studied by Brock et al. (2005) when short-selling 
is unrestricted, and by Hatcher (2024) under a short-selling ban that precludes negative positions. In the latter case, some types are 
short-selling constrained if belief dispersion is large enough. Here, we consider the somewhat harder case of a short-selling tax, which 
is of policy relevance given the high costs and disruption caused by full bans on shorting,3 and leads to sorting that depends on belief 
dispersion and the size of the tax penalty. We illustrate the utility of our results with a numerical example that demonstrates the 
speed and accuracy of our algorithm, and shows how heterogeneity of many beliefs types in evolutionary competition affects price 
dynamics when investors are taxed if they hold a short position.

Previous works studied short-selling constraints and few competing belief types (Anufriev and Tuinstra, 2013; in’t Veld, 2016; 
Dercole and Radi, 2020). Recently, Hatcher (2024) extends the analysis to an arbitrary number of belief types – for a ban on shorting as 
in Dercole and Radi (2020) – and provides conditions on beliefs that determine the sets of unconstrained and short-selling constrained 
types at each date, plus a fast solution algorithm. In this note we follow a similar approach but take on the more difficult challenge of 
a short-selling tax and many belief types. The latter requires new analytical results and a novel solution algorithm for numerical simu-

lations, and we show that price dynamics with many competing beliefs can differ substantially relative to the benchmark of few types.

2. Model

Consider a finite set of myopic, risk-averse investor types  = {ℎ1, ..., ℎ𝐻}. At each date 𝑡 ∈ ℕ+, each type ℎ ∈  chooses a 
portfolio of a risky asset 𝑧𝑡,ℎ and a riskless bond with return 𝑟 > 0 in order to maximize a mean-variance utility function over future 
wealth with risk-aversion parameter 𝑎 > 0. The risky asset has current price 𝑝𝑡, future price 𝑝𝑡+1, and pays stochastic dividends 𝑑𝑡+1, 
which are exogenous and IID. Investors form subjective expectations of the future price and dividends of the risky asset as described 
below. The underlying model follows Brock and Hommes (1998), except that the risky asset is in positive net supply 𝑍 > 0 and 
investors who short sell must pay a cost 𝑇 ∈ (0, ∞) per share as in Anufriev and Tuinstra (2013), such that date 𝑡 transaction costs of 
a short seller are 𝑇 |𝑧𝑡,ℎ|.
2.1. Asset demand

We denote the subjective expectation of type ℎ at date 𝑡 by 𝐸̃𝑡,ℎ[.], and the subjective variance by 𝑉𝑡,ℎ[.]. The portfolio choice of 
type ℎ ∈ at date 𝑡 solves the problem:

max
𝑧𝑡,ℎ

𝐸̃𝑡,ℎ[𝑤𝑡+1,ℎ] −
𝑎

2
𝑉𝑡,ℎ[𝑤𝑡+1,ℎ] (1)

where future wealth is 𝑤𝑡+1,ℎ = (1 + 𝑟)𝑤𝑡,ℎ + (𝑝𝑡+1 + 𝑑𝑡+1 − (1 + 𝑟)𝑝𝑡)𝑧𝑡,ℎ − (1 + 𝑟)𝑇 |𝑧𝑡,ℎ|1{𝑧𝑡,ℎ<0}, 1{𝑧𝑡,ℎ<0} equals 1 if 𝑧𝑡,ℎ < 0 and 0 
otherwise, and 𝑉𝑡,ℎ[𝑤𝑡+1,ℎ] = 𝜎2𝑧2

𝑡,ℎ
, with 𝜎2 > 0.

Given the short-selling tax 𝑇 , the date 𝑡 demand of each investor type ℎ ∈ is

𝑧𝑡,ℎ =

⎧⎪⎪⎨⎪⎪⎩

𝐸̃𝑡,ℎ

[
𝑝𝑡+1

]
+𝑑−(1+𝑟)𝑝𝑡

𝑎𝜎2
if 𝑝𝑡 ≤ 𝑝ℎ

𝑡

0 if 𝑝𝑡 ∈ (𝑝ℎ
𝑡
, 𝑝ℎ

𝑡
+ 𝑇 ]

𝐸̃𝑡,ℎ

[
𝑝𝑡+1

]
+𝑑−(1+𝑟)(𝑝𝑡−𝑇 )
𝑎𝜎2

if 𝑝𝑡 > 𝑝ℎ
𝑡
+ 𝑇

(2)

where 𝑝ℎ
𝑡
∶= 𝐸̃𝑡,ℎ

[
𝑝𝑡+1

]
+𝑑

1+𝑟
and 𝐸̃𝑡,ℎ

[
𝑑𝑡+1

]
= 𝑑 is used.4

If the price 𝑝𝑡 is small enough, type ℎ’s expected excess return is positive and they take a long position which decreases with the 
price; this is the standard demand function in Brock and Hommes (1998), where short-selling costs are absent. However, if the price 
is high enough to make the expected excess return of type ℎ negative, they will choose either to short by taking a negative position 
and paying the tax (if the after-tax expected return is negative) or they will take a zero position in the risky asset (if shorting would be 
optimal absent a short-selling tax but is not optimal given the tax 𝑇 ).5 From Equation (2) we see that types with sufficiently pessimistic

price expectation, 𝐸̃𝑡,ℎ

[
𝑝𝑡+1

]
, will want to short sell and pay the tax, while more optimistic types will either buy or take a zero position.

2.2. Beliefs and population shares

To keep contact with the related literature, we assume that price beliefs and population shares are determined as in Brock and 
Hommes (1998); see Assumptions 1–2 below.

3 For example, Beber and Pagano (2013) study short-selling bans during the 2007-9 Financial Crisis and conclude that such bans significantly disrupted market 
liquidity and slowed down price discovery.

4 Dividends are 𝑑𝑡 = 𝑑 + 𝜖𝑡 , where 𝑑 > 0 and 𝜖𝑡 is IID, mean zero and has fixed variance. We assume all types know the dividend process, such that 𝐸̃𝑡,ℎ

[
𝑑𝑡+1

]
= 𝑑

for all 𝑡, ℎ as in Anufriev and Tuinstra (2013).
2

5 In the special case 𝑇 →∞, short selling becomes prohibitively costly, i.e. the case of a full ban.



Journal of Economic Dynamics and Control 168 (2024) 104970M. Hatcher

Assumption 1. All price beliefs are of the form:

𝐸̃𝑡,ℎ

[
𝑝𝑡+1

]
= 𝐸𝑡[𝑝∗𝑡+1] + 𝑓ℎ(𝑥𝑡−1, ..., 𝑥𝑡−𝐿) (3)

where 𝑝∗
𝑡

is the fundamental price, 𝐸𝑡 is the conditional expectations operator, 𝑥𝑡 ∶= 𝑝𝑡 − 𝑝∗
𝑡

is the deviation of price from the 
fundamental price, and 𝑓ℎ ∶ℝ𝐿 →ℝ is a deterministic function that can differ across investor types ℎ.

The price beliefs in Assumption 1 are boundedly-rational and do not depend on the current price 𝑝𝑡 or any future values. Given 
our assumption of IID and mean-zero dividend shocks, the fundamental price is constant at 𝑝∗

𝑡
= 𝑝 ∶= 𝑑−𝑎𝜎2𝑍

𝑟
, and hence 𝐸𝑡[𝑝∗𝑡+1] = 𝑝. 

The fundamental price 𝑝 is lower than in Brock and Hommes (1998) because the risky asset is in positive net supply, 𝑍 > 0.6 By (3), 
beliefs in deviations from the fundamental price are

𝑓𝑡,ℎ ∶= 𝐸̃𝑡,ℎ

[
𝑥𝑡+1

]
= 𝑓ℎ(𝑥𝑡−1, ..., 𝑥𝑡−𝐿) (4)

where 𝐸̃𝑡,ℎ

[
𝑥𝑡+1

]
∶= 𝐸̃𝑡,ℎ

[
𝑝𝑡+1

]
−𝐸𝑡[𝑝∗𝑡+1].

Thus, expressed in price deviations 𝑥𝑡 ∶= 𝑝𝑡 − 𝑝 and beliefs 𝑓𝑡,ℎ, the demands in (2) are

𝑧𝑡,ℎ =

⎧⎪⎪⎨⎪⎪⎩

𝑓𝑡,ℎ+𝑎𝜎2𝑍−(1+𝑟)𝑥𝑡

𝑎𝜎2
if 𝑥𝑡 ≤ 𝑥ℎ

𝑡

0 if 𝑥𝑡 ∈ (𝑥ℎ
𝑡
, 𝑥ℎ

𝑡
+ 𝑇 ]

𝑓𝑡,ℎ+𝑎𝜎2𝑍−(1+𝑟)(𝑥𝑡−𝑇 )
𝑎𝜎2

if 𝑥𝑡 > 𝑥ℎ
𝑡
+ 𝑇

(5)

where 𝑥ℎ
𝑡
∶= 𝑓𝑡,ℎ+𝑎𝜎2𝑍

1+𝑟
and 𝑥ℎ

𝑡
+ 𝑇 are ‘kink points’ in the demand schedule of type ℎ.

Aggregate demand for the risky asset is 
∑

ℎ∈ 𝑛𝑡,ℎ𝑧𝑡,ℎ, where 𝑛𝑡,ℎ is the population share of type ℎ at date 𝑡 and 
∑

ℎ∈ 𝑛𝑡,ℎ =
1. Following Brock and Hommes (1997, 1998), we assume the population shares are given by a discrete choice logistic model 
(Assumption 2), such that the population shares 𝑛𝑡,ℎ are endogenously determined and are time-varying but do not depend on the 
contemporaneous price 𝑥𝑡 (or 𝑝𝑡) or any future values.

Assumption 2. Population shares are updated using a discrete choice logistic model:

𝑛𝑡+1,ℎ =
exp(𝛽𝑈𝑡,ℎ)∑

ℎ∈ exp(𝛽𝑈𝑡,ℎ)
(6)

where 𝛽 ∈ [0, ∞) is the intensity of choice and 𝑈𝑡,ℎ ∈ℝ is fitness of predictor ℎ at date 𝑡.

Assumption 2 says that the population share 𝑛𝑡+1,ℎ ∈ (0, 1) of predictor ℎ at date 𝑡 + 1 depends on the relative performance of 
predictor ℎ against all other predictors ℎ1, … , ℎ𝐻 , as judged by their past observed levels of fitness 𝑈𝑡,ℎ . The intensity of choice 
parameter 𝛽 determines how fast agents switch to better-performing predictors. In the special case 𝛽 = 0, no switching occurs and 
population shares are fixed at 𝑛𝑡.ℎ = 1∕𝐻 for all 𝑡 and ℎ. In financial market settings, the fitness measure 𝑈𝑡,ℎ is typically net trading 
profits.

2.3. Market clearing

The asset market is in equilibrium when the aggregate demand equals outside supply:

∑
ℎ∈

𝑛𝑡,ℎ𝑧𝑡,ℎ = 𝑍 subject to (5), (6). (7)

We now show how the price 𝑥𝑡 and demands 𝑧𝑡,ℎ are determined – via the market clearing condition (7) – as a function of price beliefs 
and the short-selling tax, 𝑇 . The resulting analytic results have a nice economic interpretation and are central to our algorithm.

3. Solving the model

Given positive outside supply 𝑍 > 0, there exists a unique price 𝑥𝑡 satisfying Equation (7) (see Anufriev and Tuinstra, 2013, 
Proposition 2.1). We first present our main analytical result in Proposition 1; we then use this result to build an algorithm for 
numerical simulations.

6 As in Brock and Hommes (1998) the fundamental price is the (hypothetical) price solution when all in investors are fundamentalists with common rational 
3

expectations and speculative bubbles are absent.
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Proposition 1. Let 𝑥𝑡 be the market-clearing price at date 𝑡 ∈ ℕ+. Let 𝑡 ⊆  be the non-empty set of buyers at date 𝑡, let 1,𝑡 ⊆  ⧵𝑡

(2,𝑡 = ⧵ (𝑡 ∪ 1,𝑡)) be the sets of zero-position types (short-sellers) and 𝑇̃𝑡 ∶= (1 + 𝑟)𝑇
∑

ℎ∈⧵1,𝑡 𝑛𝑡,ℎ. Then the following holds:

1. If 
∑

ℎ∈ 𝑛𝑡,ℎ

(
𝑓𝑡,ℎ −minℎ∈{𝑓𝑡,ℎ}

)
≤ 𝑎𝜎2𝑍 , all types are buyers (∗

𝑡
=, ∗

1,𝑡 = ∗
2,𝑡 = ∅), demands are 𝑧𝑡,ℎ = (𝑎𝜎2)−1(𝑓𝑡,ℎ + 𝑎𝜎2𝑍 −

(1 + 𝑟)𝑥𝑡) ≥ 0 ∀ℎ ∈, and the price is

𝑥𝑡 =
∑

ℎ∈ 𝑛𝑡,ℎ𝑓𝑡,ℎ

1 + 𝑟
∶= 𝑥∗

𝑡
. (8)

2. If 
∑

ℎ∈ 𝑛𝑡,ℎ

(
𝑓𝑡,ℎ −minℎ∈{𝑓𝑡,ℎ}

)
> 𝑎𝜎2𝑍 , one or more types are non-buyers at date 𝑡 (i.e. ∗

𝑡
⊂ , ∗

1,𝑡 ∪ ∗
2,𝑡 = ⧵∗

𝑡
≠ ∅) and we 

have the following:

(i) If ∃∗
𝑡
, ∗

1,𝑡 =⧵∗
𝑡

s.t. max{𝑑∗
𝑡
, 𝑑∗

1,𝑡
} ≤ 𝑎𝜎2𝑍 <

∑
ℎ∈∗

𝑡
𝑛𝑡,ℎ(𝑓𝑡,ℎ−maxℎ∈𝑆∗

1,𝑡
{𝑓𝑡,ℎ}), then 𝑧𝑡,ℎ = (𝑎𝜎2)−1(𝑓𝑡,ℎ+𝑎𝜎2𝑍−(1 +𝑟)𝑥𝑡) ≥

0 ∀ℎ ∈∗
𝑡
, 𝑧𝑡,ℎ = 0 ∀ℎ ∈ ∗

1,𝑡, price is

𝑥𝑡 =

∑
ℎ∈∗

𝑡
𝑛𝑡,ℎ𝑓𝑡,ℎ − (1 −

∑
ℎ∈∗

𝑡
𝑛𝑡,ℎ)𝑎𝜎2𝑍

(1 + 𝑟)
∑

ℎ∈∗
𝑡
𝑛𝑡,ℎ

∶= 𝑥̃𝑡 > 𝑥∗
𝑡

(9)

where 𝑑∗
𝑡
∶=

∑
ℎ∈∗

𝑡

𝑛𝑡,ℎ(𝑓𝑡,ℎ − min
ℎ∈∗

𝑡

{𝑓𝑡,ℎ}), 𝑑∗
1,𝑡
∶=

∑
ℎ∈∗

𝑡

𝑛𝑡,ℎ(𝑓𝑡,ℎ − min
ℎ∈∗

1,𝑡

{𝑓𝑡,ℎ}) − (1 + 𝑟)𝑇
∑

ℎ∈∗
𝑡

𝑛𝑡,ℎ.

(ii) If ∃ ∗
𝑡
, ∗

2,𝑡 = ⧵ ∗
𝑡

s.t. 
∑

ℎ∈ 𝑛𝑡,ℎ(𝑓𝑡,ℎ − minℎ∈∗
𝑡
{𝑓𝑡,ℎ}) ≤ 𝑎𝜎2𝑍 − (1 + 𝑟)𝑇

∑
ℎ∈∗

2,𝑡
𝑛𝑡,ℎ <

∑
ℎ∈ 𝑛𝑡,ℎ(𝑓𝑡,ℎ − maxℎ∈∗

2,𝑡
{𝑓𝑡,ℎ}) −

(1 + 𝑟)𝑇 , then 𝑧𝑡,ℎ = (𝑎𝜎2)−1(𝑓𝑡,ℎ + 𝑎𝜎2𝑍 − (1 + 𝑟)𝑥𝑡) ≥ 0 ∀ℎ ∈∗
𝑡
, 𝑧𝑡,ℎ = (𝑎𝜎2)−1(𝑓𝑡,ℎ + 𝑎𝜎2𝑍 − (1 + 𝑟)(𝑥𝑡 − 𝑇 )) < 0 ∀ℎ ∈ ∗

2,𝑡, and 
price is

𝑥𝑡 =

∑
ℎ∈ 𝑛𝑡,ℎ𝑓𝑡,ℎ + (1 + 𝑟)𝑇

∑
ℎ∈∗

2,𝑡
𝑛𝑡,ℎ

1 + 𝑟
∶= 𝑥̂𝑡 > 𝑥∗

𝑡
(10)

(iii) Else, ∃ ∗
𝑡
, ∗

1,𝑡, 
∗
2,𝑡 ≠ ∅ s.t. max{𝑑1,𝑡, 𝑑1,𝑡} ≤ 𝑎𝜎2𝑍−(1 +𝑟)𝑇

∑
ℎ∈∗

2,𝑡
𝑛𝑡,ℎ < min{𝑑2,𝑡, 𝑑2,𝑡}, 𝑧𝑡,ℎ = (𝑎𝜎2)−1(𝑓𝑡,ℎ+𝑎𝜎2𝑍−(1 +𝑟)𝑥𝑡) ≥ 0

∀ℎ ∈∗
𝑡
, 𝑧𝑡,ℎ = 0 ∀ℎ ∈ ∗

1,𝑡, 𝑧𝑡,ℎ = (𝑎𝜎2)−1(𝑓𝑡,ℎ + 𝑎𝜎2𝑍 − (1 + 𝑟)(𝑥𝑡 − 𝑇 )) < 0 ∀ℎ ∈ ∗
2,𝑡 and price is

𝑥𝑡 =

∑
ℎ∈⧵∗

1,𝑡

𝑛𝑡,ℎ𝑓𝑡,ℎ + (1 + 𝑟)𝑇
∑

ℎ∈∗
2,𝑡

𝑛𝑡,ℎ − (
∑

ℎ∈∗
1,𝑡

𝑛𝑡.ℎ)𝑎𝜎2𝑍

(1 + 𝑟)
∑

ℎ∈⧵∗
1,𝑡

𝑛𝑡,ℎ

∶= 𝑥𝑡 > 𝑥∗
𝑡

(11)

where 𝑑1,𝑡 =
∑

ℎ∈⧵∗
1,𝑡

𝑛𝑡,ℎ(𝑓𝑡,ℎ − minℎ∈∗
𝑡
{𝑓𝑡,ℎ}), 𝑑2,𝑡 =

∑
ℎ∈⧵∗

1,𝑡
𝑛𝑡,ℎ(𝑓𝑡,ℎ − maxℎ∈∗

1,𝑡
{𝑓𝑡,ℎ}), 𝑑1,𝑡 =

∑
ℎ∈⧵∗

1,𝑡
𝑛𝑡,ℎ(𝑓𝑡,ℎ −

minℎ∈∗
1,𝑡
{𝑓𝑡,ℎ}) − 𝑇̃𝑡, 𝑑2,𝑡 =

∑
ℎ∈⧵∗

1,𝑡
(𝑓𝑡,ℎ −maxℎ∈∗

2,𝑡
{𝑓𝑡,ℎ}) − 𝑇̃𝑡, and 𝑇̃𝑡 = (1 + 𝑟)𝑇

∑
ℎ∈⧵∗

1,𝑡
𝑛𝑡,ℎ.

Proof. See Appendix A, Supplementary material. □

Proposition 1 gives the market-clearing price and demands for an arbitrary number of belief types 𝐻 = || facing a short-selling 
tax 𝑇 and evolutionary competition. Since the proposition applies at any date 𝑡 ∈ℕ+, we can find a solution recursively for 𝑡 = 1, 2, ..., 
starting from period 1. As compared to a short-selling ban (see Hatcher, 2024), there are four rather than two parts because in addition 
to all types long (Part 1) or some long and some with zero positions (Part 2(i)), all non-buyers could short sell and pay the tax 𝑇 (if 
they are sufficiently pessimistic; see Part 2(ii)), or there may be a mix among the non-buyers, with the less pessimistic at positions 
of zero and the more pessimistic choosing to short sell and pay the tax (see Part 2(iii)). In all these cases, the market-clearing price 
depends on the beliefs of investor types with non-zero positions – the market participants.

An important difference relative to Proposition 2.1 in Anufriev and Tuinstra (2013) (which shows existence of a unique market-

clearing price) is that Proposition 1 gives explicit conditions on beliefs that determine, for an arbitrarily large number of belief types, 
the sets of buyers ∗

𝑡
, non-participants ∗

1,𝑡, and taxed short-sellers ∗
2,𝑡 (see parts 2(i)–(iii)) and therefore the market-clearing price 

and demands.7 Note that the asset prices in (9)–(11) are strictly larger than the no-tax solution 𝑥∗
𝑡
; hence, if one or more types are 

(taxed) short sellers or have zero positions, the price is higher than in absence of short-selling costs. Hence, like a short-selling ban 
(Miller, 1977), a binding short-selling tax raises the asset price.

The part of Proposition 1 we are ‘in’ depends on investor beliefs. If belief dispersion is small enough relative to risk-adjusted supply 
𝑎𝜎2𝑍 , all types are ‘buyers’ and the price is given by the usual solution 𝑥∗

𝑡
when short-selling costs are absent (Proposition 1, Part 

1). Hence, if beliefs are ‘close to homogeneous’ there is some consensus on the price and no type wants to short or to not participate 

7 Anufriev and Tuinstra (2013, p. 1529) do not provide an explicit solution to this problem, as they note after Proposition 2.1 in their paper: “Note however, that 
𝑥𝑡 is still implicitly defined by (10) since the right-hand side also depends upon 𝑥𝑡 through the definition of the sets 𝑃 (𝑥𝑡), 𝑍(𝑥𝑡) and 𝑁(𝑥𝑡). Below we will derive the 
4

market equilibrium price 𝑥𝑡 explicitly for some special cases” (they study a two-type example).
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at date 𝑡. Conversely, if belief dispersion exceeds this threshold, at least one type (and at most 𝐻 − 1 types) will short sell or take a 
zero position; see Part 2. Both belief dispersion and the short-selling tax 𝑇 determine which ‘branch’ gives the market-clearing price 
and demands at date 𝑡; see the inequalities in parts 2(i)–(iii) that pin down the marginal long, short and zero-position type(s) based 
on their optimism.

There are many permutations of types which correspond to the sets 𝑡 , 1,𝑡, 2,𝑡 that partition the set of investor types, , in 
Proposition 1.8 The unique partition for which the asset market clears correspond to the sets ∗

𝑡
, ∗

1,𝑡, 
∗
2,𝑡 that satisfy the marginal 

conditions (on beliefs) just discussed and uniquely determines the asset price and demands. As noted by Anufriev and Tuinstra (2013), 
there are 3𝐻 − 2𝐻 different cases (or regions) in total when types are unordered, making a solution computationally expensive: for 
𝐻 = 5 types there are 665 cases to check in the worst case scenario, and for 𝐻 = 15 more than 14.3 million! As a result, obtaining a 
fast solution is a non-trivial problem for a large number of investor types, as seems plausible in many real-world asset markets.

We now show how the analytic results in Proposition 1 can be used – in conjunction with an optimism ranking – to reduce 
computational burden substantially, making simulations of models with hundreds or thousands of belief types tractable on a standard 
desktop or laptop computer. We start with an example that helps motivate our computational approach.

Example 1. Suppose that there are 𝐻 = 2 types, ℎ1 and ℎ2. Then by Proposition 1, there are 32 − 22 = 5 different regions (or cases) 
and the equilibrium price is given by

𝑥𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
ℎ∈{ℎ1 ,ℎ2}

𝑛𝑡,ℎ𝑓𝑡,ℎ

1+𝑟
if − 𝑎𝜎2𝑍

𝑛𝑡,ℎ2
≤ 𝑓𝑡,ℎ1

− 𝑓𝑡,ℎ2
≤

𝑎𝜎2𝑍

𝑛𝑡,ℎ1

𝑛𝑡,ℎ1𝑓𝑡,ℎ1−(1−𝑛𝑡,ℎ1 )𝑎𝜎2𝑍

(1+𝑟)𝑛𝑡,ℎ1
if

𝑎𝜎2𝑍

𝑛𝑡,ℎ1
< 𝑓𝑡,ℎ1

− 𝑓𝑡,ℎ2
≤

𝑎𝜎2𝑍
𝑛𝑡,ℎ1

+ (1 + 𝑟)𝑇

𝑛𝑡,ℎ2𝑓𝑡,ℎ2−(1−𝑛𝑡,ℎ2 )𝑎𝜎2𝑍

(1+𝑟)𝑛𝑡,ℎ2
if − 𝑎𝜎2𝑍

𝑛𝑡,ℎ2
− (1 + 𝑟)𝑇 ≤ 𝑓𝑡,ℎ1

− 𝑓𝑡,ℎ2
< − 𝑎𝜎2𝑍

𝑛𝑡,ℎ2∑
ℎ∈{ℎ1 ,ℎ2}

𝑛𝑡,ℎ𝑓𝑡,ℎ+(1+𝑟)𝑇 𝑛𝑡,ℎ1
1+𝑟

if 𝑓𝑡,ℎ1
− 𝑓𝑡,ℎ2

< − 𝑎𝜎2𝑍

𝑛𝑡,ℎ2
− (1 + 𝑟)𝑇

∑
ℎ∈{ℎ1 ,ℎ2}

𝑛𝑡,ℎ𝑓𝑡,ℎ+(1+𝑟)𝑇 𝑛𝑡,ℎ2
1+𝑟

if 𝑓𝑡,ℎ1
− 𝑓𝑡,ℎ2

>
𝑎𝜎2𝑍
𝑛𝑡,ℎ1

+ (1 + 𝑟)𝑇

(12)

which matches the result in Anufriev and Tuinstra (2013, Proposition 2.2).

Suppose that beliefs follow the two-type Brock and Hommes (1998) model: type ℎ1 is a fundamentalist with 𝐸̃𝑡,ℎ1

[
𝑝𝑡+1

]
= 𝑝, where 

𝑝 = (𝑑 − 𝑎𝜎2𝑍)∕𝑟 is the fundamental price, and ℎ2 is a 1-lag chartist: 𝐸̃𝑡,ℎ2

[
𝑝𝑡+1

]
= 𝑝 + 𝑔𝑥𝑡−1, where 𝑔 > 0. Note that these beliefs 

imply that 𝑓𝑡,ℎ1
= 0 and 𝑓𝑡,ℎ2

= 𝑔𝑥𝑡−1; see (3)–(4) for reference. Assuming 𝑥𝑡−1 > 0, the chartist ℎ2 is more optimistic at date 𝑡 and 
must buy the asset. We can therefore narrow down to

𝑥𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑛𝑡,ℎ2 𝑔𝑥𝑡−1
1+𝑟

if 𝑛𝑡,ℎ2
𝑔𝑥𝑡−1 ≤ 𝑎𝜎2𝑍

𝑛𝑡,ℎ2 𝑔𝑥𝑡−1−(1−𝑛𝑡,ℎ2 )𝑎𝜎2𝑍

(1+𝑟)𝑛𝑡,ℎ2
if 𝑛𝑡,ℎ2

(𝑔𝑥𝑡−1 − (1 + 𝑟)𝑇 ) ≤ 𝑎𝜎2𝑍 < 𝑛𝑡,ℎ2
𝑔𝑥𝑡−1

𝑛𝑡,ℎ2 𝑔𝑥𝑡−1+(1+𝑟)𝑇 𝑛𝑡,ℎ1
1+𝑟

if 𝑛𝑡,ℎ2
(𝑔𝑥𝑡−1 − (1 + 𝑟)𝑇 ) > 𝑎𝜎2𝑍.

(13)

i.e. three cases for the price and the sets 𝑡, 1,𝑡 2,𝑡.

In the above example, ordering the two types in terms of optimism reduces the number of cases to check from 5 to 3. The remaining 
three cases correspond to the sets 𝑡 = {ℎ1, ℎ2}, 1,𝑡 = 2,𝑡 = ∅ (ℎ1 and ℎ2 are buyers), 𝑡 = {ℎ2}, 1,𝑡 = {ℎ1}, 2,𝑡 = ∅ (ℎ2 buys, ℎ1
has a zero position), 𝑡 = {ℎ2}, 1,𝑡 = ∅, 2,𝑡 = {ℎ1} (ℎ2 buys, ℎ1 short sells and pays the tax).

Since there are 3𝐻 − 2𝐻 cases given 𝐻 types, it would be desirable to reduce the number of cases that need to be checked in 
any example that we face. We now show how the principle of ranking belief types in terms of optimism reduces the number of cases 
substantially, taking us from exponential in the number of types to quadratic. As a result, ranking types by optimism can drastically 
speed up discovery of the sets 𝑡, 1,𝑡 2,𝑡, and hence price and demands, when we have a large number of belief types. We then 
show how ‘pruning’ can further speed up the algorithm by eliminating further cases that do not need to be checked.

3.1. Algorithm

Ranking types by optimism is suggested by Anufriev and Tuinstra (2013). In the Appendix of their paper they present an algorithm 
for the case of many types that uses an arbitrary guess on the market-clearing price, followed by a procedure to progressively narrow 

8 We use the term ‘partition’ loosely since 1,𝑡 and 2,𝑡 may be empty sets. In Part 1 of Proposition 1, both 1,𝑡 and 2,𝑡 are the empty set; in Part 2(i), 2,𝑡 is the 
5

empty set; in Part 2(ii) 1,𝑡 is the empty set.
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down to a single region and price. The key advantage of the analytics in Proposition 1 is that the sets of buyers, zero and short-selling 
types are determined in terms of beliefs that do not depend on the endogenous market-clearing price 𝑥𝑡. As a result, we can construct 
a fast algorithm that can solve models with hundreds or thousands of belief types in a matter of seconds.

We start by presenting a ‘simple’ algorithm that is powerful because it reduces the number of cases from 3𝐻 − 2𝐻 (when all 𝐻
types are unordered) to at most 𝐻(𝐻 +1)∕2, i.e. quadratic in the number of types. To do so, we rank and re-label types according to 
their optimism in each period 𝑡. Thus, consider the function 𝑣𝑡 ∶ → ̃𝑡, where ̃𝑡 ∶= {1, … , 𝐻̃𝑡} is an adjusted set of types with the 
property that the most optimistic type(s) in  get label 𝐻̃𝑡, the next most optimistic type(s) gets label 𝐻̃𝑡 −1, and so on, down to the 
least optimistic type(s) in  with label 1. Types with equal optimism get the same label, so 𝐻̃𝑡 ≤ 𝐻 , which implies that |̃𝑡| ≤ ||. In 
the case of ties in terms of optimism, the period 𝑡 population share of the ‘group’ is the sum of the population shares of the individual 
types.9

Before presenting the algorithm, we introduce some notation that defines the measures of belief dispersion in Parts 1–2(iii) of 
Proposition 1 for the new set of types ̃𝑡. Belief dispersion relative to the most pessimistic type, 

∑
ℎ∈ 𝑛𝑡,ℎ

(
𝑓𝑡,ℎ −minℎ∈{𝑓𝑡,ℎ}

)
, is 

given by 𝑑𝑖𝑠𝑝𝑡,1 =
∑𝐻̃𝑡

ℎ=2 𝑛𝑡,ℎ(𝑓𝑡,ℎ − 𝑓𝑡,1) (see Proposition 1, Parts 1–2). Analogously, belief dispersion relative to the marginal buyer 
and the marginal non-buyer is given by

𝑑𝑖𝑠𝑝𝑡,𝑘 ∶=
∑𝐻̃𝑡

ℎ=𝑘+1
𝑛𝑡,ℎ(𝑓𝑡,ℎ − 𝑓𝑡,𝑘), 𝑘 ∈ {1, ..., 𝐻̃𝑡 − 1}

where type 𝑘 is either the most pessimistic buyer, the most optimistic non-buyer, or the most pessimistic non-buyer type (see Propo-

sition 1 Part 2(i)).

Finally, for the other concepts of belief dispersion in Proposition 1 parts 2(ii)–2(iii), we define the following dispersion measures 
for use in our algorithm (again 𝑘 ∈ {1, ..., 𝐻̃𝑡 − 1}):

𝑑𝑖𝑠𝑝𝑡,𝑘 ∶=
𝐻̃𝑡∑
ℎ=1

𝑛𝑡,ℎ(𝑓𝑡,ℎ − 𝑓𝑡,𝑘), 𝑑𝑖𝑠𝑝𝑡,𝑘 ∶=
∑

ℎ∉[𝑘,𝑘]

𝑛𝑡,ℎ(𝑓𝑡,ℎ − 𝑓𝑡,𝑘)

where 𝑘 (𝑘) denotes the most pessimistic (most optimistic) zero-position type.10

We first present a simple benchmark algorithm before adding some speed improvements.

Algorithm 1.

1. Find the set ̃𝑡 and the population shares 𝑛𝑡,ℎ for ℎ = 1, ..., 𝐻̃𝑡. Compute 𝑑𝑖𝑠𝑝𝑡,1. If 𝑑𝑖𝑠𝑝𝑡,1 ≤ 𝑎𝜎2𝑍 , then 𝑥𝑡 = 𝑥∗
𝑡

is the date 𝑡 price, 
compute the demands 𝑧𝑡,ℎ ≥ 0 for ℎ = 1, … , 𝐻̃𝑡 and move to period 𝑡 + 1 and repeat. If 𝑑𝑖𝑠𝑝𝑡,1 > 𝑎𝜎2𝑍 , move to Step 2.

2. Guess there is 1 non-buyer. Check if max{𝑑𝑖𝑠𝑝𝑡,2, 𝑑𝑖𝑠𝑝𝑡,1 − (1 + 𝑟)𝑇
∑𝐻̃𝑡

ℎ=2 𝑛𝑡,ℎ} ≤ 𝑎𝜎2𝑍 . If so, 𝑥𝑡 = 𝑥̃
(1)
𝑡

is the price (Proposition 1

Part 2(i), ∗
1,𝑡 = {1}), compute the demands 𝑧𝑡,1 = 0 and 𝑧𝑡,ℎ ≥ 0 for ℎ = 2, … , 𝐻̃𝑡 and move to period 𝑡 +1. If the above condition 

is not met, check if 𝑑𝑖𝑠𝑝𝑡,2 + (1 + 𝑟)𝑇 𝑛𝑡,1 ≤ 𝑎𝜎2𝑍 < 𝑑𝑖𝑠𝑝𝑡,1 − (1 + 𝑟)𝑇 (1 − 𝑛𝑡,1). If so, 𝑥𝑡 = 𝑥̂
(1)
𝑡

is the price (Proposition 1 Part 2(ii), 
∗
2,𝑡 = {1}), compute the demands 𝑧𝑡,1 < 0 and 𝑧𝑡,ℎ ≥ 0 for ℎ = 2, … , 𝐻̃𝑡 and move to period 𝑡 + 1. Else, move to Step 3.

3. Guess 𝑘 = 2 non-buyers. If max{𝑑𝑖𝑠𝑝𝑡,𝑘+1, 𝑑𝑖𝑠𝑝𝑡,𝑘 − (1 + 𝑟)𝑇
∑𝐻̃𝑡

ℎ=𝑘+1 𝑛𝑡,ℎ} ≤ 𝑎𝜎2𝑍 < 𝑑𝑖𝑠𝑝𝑡,𝑘, 𝑥𝑡 = 𝑥̃
(𝑘)
𝑡

is the price (Proposition 1

Part 2(i), ∗
1,𝑡 = {1, … , 𝑘}), compute the demands 𝑧𝑡,1, … , 𝑧𝑡,𝑘 = 0 and 𝑧𝑡,ℎ ≥ 0 for ℎ = 𝑘 +1, … , 𝐻̃𝑡 and move to period 𝑡 +1. Else 

if 𝑑𝑖𝑠𝑝𝑡,𝑘+1 + (1 + 𝑟)𝑇
∑𝑘

ℎ=1 𝑛𝑡,ℎ ≤ 𝑎𝜎2𝑍 < 𝑑𝑖𝑠𝑝𝑡,𝑘 − (1 + 𝑟)𝑇 (1 −
∑𝑘

ℎ=1 𝑛𝑡,ℎ), 𝑥𝑡 = 𝑥̂
(2)
𝑡

(Proposition 1 Part 2(ii), ∗
2,𝑡 = {1, … , 𝑘}), 

compute the demands 𝑧𝑡,1, … , 𝑧𝑡,𝑘 < 0, 𝑧𝑡,ℎ ≥ 0 for ℎ = 𝑘 + 1, … , 𝐻̃𝑡 and move to period 𝑡 + 1. Else, move to Step 4.

4. Consider all relevant partitions of {1, … , 𝑘} into 1,𝑡 and 2,𝑡 and let 𝑘 ∶= min1,𝑡, 𝑘 ∶= max1,𝑡 (= 𝑘). Check if max{𝑑𝑖𝑠𝑝
𝑡,𝑘+1,

𝑑𝑖𝑠𝑝𝑡,𝑘 − 𝑇̃𝑡} ≤ 𝑎𝜎2𝑍 − (1 + 𝑟)𝑇
∑𝑘−1

ℎ=1 𝑛𝑡,ℎ < min{𝑑𝑖𝑠𝑝
𝑡,𝑘

, 𝑑𝑖𝑠𝑝𝑡,𝑘−1 − 𝑇̃𝑡} for each partition 𝑘, 𝑘 (Proposition 1 Part 2(iii)).11 If this 

condition is met, then ∗
2,𝑡 = {1, … , 𝑘−1}, ∗

1,𝑡 = {𝑘, … , 𝑘} and ∗
𝑡
= {𝑘+1, … , 𝐻̃𝑡}, price is 𝑥𝑡 = 𝑥

(𝑘,𝑘)
𝑡

(Proposition 1 Part 2(iii) 
for ∗

1,𝑡, 
∗
2,𝑡, 

∗
𝑡

above), compute demands 𝑧𝑡,1, … , 𝑧𝑡,𝑘−1 < 0, 𝑧𝑡,𝑘, … , 𝑧
𝑡,𝑘

= 0, 𝑧𝑡,ℎ ≥ 0 for ℎ = 𝑘+ 1, … , 𝐻̃𝑡, move to period 𝑡 +1.

5. If the condition in Step 4 is not met, increase 𝑘 by 1 and repeat Steps 3–4 until a solution is found. Once a solution is found, 
move to period 𝑡 + 1 and repeat.

Algorithm 1 uses the adjusted set of types ̃𝑡 in conjunction with Proposition 1. The case where all types are ‘buyers’ is first 
proposed as a solution; if this guess is rejected, the algorithm proceeds by guessing sequentially, starting from 𝑘 = 1 non-buyers. The 

9 From a computational perspective, grouping together types with equal optimism is not necessary and can impair computation speed. Nevertheless, we choose to 
present our approach under the ‘grouping’ assumption because it is conceptually simpler to have a strict ranking of beliefs, i.e. 𝑓𝑡,1 < 𝑓𝑡,2 < … < 𝑓𝑡,𝐻̃𝑡

.
10 Note: 𝑘 ≥ 𝑘. If the set of zero-position types 1,𝑡 is a singleton, then 𝑘 = 𝑘. Otherwise, 𝑘 > 𝑘. The variables 𝑘 and 𝑘 are period-specific; however, to ease exposition 

we refrain from including a 𝑡 subscript here.
11 Here, 𝑇̃𝑡 = (1 + 𝑟)𝑇

∑
ℎ∉[𝑘,𝑘] 𝑛𝑡,ℎ . By ‘relevant partitions’ we mean all those partitions of {1, … , 𝑘} for which min1,𝑡 > max2,𝑡 , i.e. 2,𝑡 = {1}, 1,𝑡 = {2, … , 𝑘}; 

2,𝑡 = {1, 2}, 1,𝑡 = {3, … , 𝑘},..., up to 2,𝑡 = {1, … , 𝑘 − 1}, 1,𝑡 = {𝑘}. Here, we use the fact that short-sellers must be more pessimistic in terms of their price beliefs 
6

than zero-position types; see, for example, Equation (5).
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Fig. 1. Tree diagram of the 𝐻̃𝑡(𝐻̃𝑡 +1)∕2 cases with ordered types, where 𝐻̃𝑡 ≤ 𝐻 . Each main branch corresponds to a number of non-buyers (𝑘); subsequent branches 
are sub-cases.

algorithm is ‘simple’ in the sense that it starts ‘at the bottom’ – by assuming there is one non-buyer (the most pessimistic type only) – 
and then increases the guess 𝑘 in steps of 1 until a solution is found. Although this solution algorithm can easily be improved upon, 
it is quadratic in the number of types 𝐻 in the worst-case scenario, which is a big improvement on the 3𝐻 −2𝐻 cases when types are 
left unordered. Thus, even this ‘simple’ algorithm can deliver very large speed gains in numerical simulations with moderate or large 
numbers of types 𝐻 .12

The worst-case is the maximum cases traversed by Algorithm 1 before finding a solution. Fig. 1 shows there are 𝐻̃𝑡(𝐻̃𝑡 + 1)∕2
cases, where 𝐻̃𝑡 ≤ 𝐻 . There are 𝐻̃𝑡 initial ‘branches’, each representing a different number of non-buyers 𝑘 (from 0 up to 𝐻̃𝑡 −1). The 
number of subsequent branches depends on the permutations of non-buyers into short-sellers and zero positions. For zero non-buyers 
(Algorithm 1 Step 1), we have an empty set and no subsequent branches (1 case); for 1 non-buyer (Algorithm 1 Step 2) there may be 
either 1 zero position or 1 short-seller (2 cases); for 2 non-buyers (Algorithm 1 Step 3–4), there may be 2 zero positions, 2 short-sellers, 
or 1 zero position and 1 short-seller (3 cases).13 In general, for 𝑘 non-buyers there are 𝑘 +1 subsequent branches (𝑘 +1 cases), where 
𝑘 ∈ {1, … , 𝐻̃𝑡 − 1}, such that summing over all cases gives 𝐻̃𝑡(𝐻̃𝑡 + 1)∕2 cases in total, as shown in Fig. 1.

It is instructive to consider some numerical examples. For 𝐻 = 5, the number of cases is reduced from 35 − 25 = 665 to at most 
5(5 +1)∕2 = 15, while for 𝐻 = 20 we go from around 3.5 billion cases(!) to at most 210. These examples make clear the computational 
advantages of ordering beliefs in terms of optimism as in Algorithm 1. However, for large numbers of belief types such as 𝐻 = 500
or 𝐻 = 1, 000, there are still many cases and a further speed up is desirable. We now show how to do so by making further use of 
Proposition 1.

Algorithm 2 (Fast).

1. Find the set ̃𝑡 and the population shares 𝑛𝑡,ℎ for ℎ = 1, ..., 𝐻̃𝑡. Compute 𝑑𝑖𝑠𝑝𝑡,1. If 𝑑𝑖𝑠𝑝𝑡,1 ≤ 𝑎𝜎2𝑍 , then 𝑥𝑡 = 𝑥∗
𝑡

is the date 𝑡 price, 
compute the demands 𝑧𝑡,ℎ ≥ 0 for ℎ = 1, … , 𝐻̃𝑡 and move to period 𝑡 + 1 and repeat. If 𝑑𝑖𝑠𝑝𝑡,1 > 𝑎𝜎2𝑍 , move to Step 2.

2. Find the largest ℎ such that 𝑧∗
𝑡,ℎ

= (𝑎𝜎2)−1(𝑓𝑡,ℎ + 𝑎𝜎2𝑍 − (1 + 𝑟)𝑥∗
𝑡
) < 0, say 𝑘0, where 𝑥∗

𝑡
is the price if a short-sales tax were 

absent (see Proposition 1 Part 1). If desired, 𝑘0 may be updated in an iterative manner by updating the price and then updating 
𝑘0.14

3. Run Steps 3–5 of Algorithm 1, starting from 𝑘 = 𝑘0 (see Step 2). Continue until a solution is found, then move to period 𝑡 + 1
and repeat.

Algorithm 2 builds on Algorithm 1 by using ‘pruning’ – in place of sequential search starting from 𝑘 = 1 non-buyers – in order to 
cut computation time. In particular, Step 2 avoids checking the first 𝑘0 − 1 branches (i.e. (𝑘0 − 1)𝑘0∕2 cases) when they cannot be 

12 Algorithm 2 (see below) is a faster algorithm that exploits more the analytical results in Proposition 1.
13 Note that the less optimistic type, 1, cannot have a zero position if type 2 has a short position (see (5)).
14 Our algorithm allows the user to ‘turn on’ such updating, and we find a non-trivial improvement in computation times for very large numbers of types, such as 
7

𝐻 = 1, 000 or more.
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market-clearing outcomes. The key point is that the market-clearing price is higher when there are some short sellers or zero-position 
types (see Proposition 1), so if some type is a non-buyer at the no-tax price 𝑥∗

𝑡
, they must be a non-buyer at the market-clearing price 

𝑥𝑡 > 𝑥∗
𝑡
, giving us a lower bound 𝑘0 on the number of non-buying types. Algorithm 2 proceeds from this value to find the ‘right’ 

initial branch (i.e. the equilibrium no. of non-buyers), followed by the ‘right’ subsequent branch (the split between short and zero 
positions). Clearly, if Algorithm 2 eliminates many initial branches in Fig. 1, computation time will be much reduced.

3.2. Discussion

We have set out analytical expressions that determine the sets of buyers, short-sellers and zero positions at market clearing as a 
function of beliefs and the short-selling tax. We used these results to construct a fast solution algorithm that is based on ordering 
types by optimism to eliminate irrelevant cases (Algorithm 1) plus additional pruning to avoid irrelevant equilibrium search strategies 
among the set of ordered types (Algorithm 2).

The approach used in Algorithms 1 and 2 has some similarity to the ‘branch and bound’ method used to solve integer or mixed-

integer programming problems (Land and Doig, 1960). The branch and bound approach solves optimization problems by breaking 
them down into smaller sub-problems and then eliminating sub-problems (i.e. branches) that cannot contain the optimal solution. By 
comparison, we are able to eliminate certain permutations of the set of investor types into buyers, zero-position types or short-sellers 
because, given the known price beliefs of different types, some permutations cannot be consistent with equilibrium. The key to this 
result is that for any given price, demands cannot decrease as price beliefs increase (see (5)), so more optimistic types must have 
weakly larger equilibrium positions than less optimistic types, such that many ‘branches’ can be eliminated a priori.

Algorithm 1 uses this approach to reduce the number of branches (i.e. cases) at any given date 𝑡 from 3𝐻 − 2𝐻 to at most 
𝐻(𝐻 + 1)∕2 (for 𝐻 investor types); this amounts to a big reduction in the number of cases for moderate or large values of 𝐻 .15

Algorithm 2 allows the remaining 𝐻(𝐻 + 1)∕2 cases to be cut further by using the no-tax price solution 𝑥∗
𝑡

(see (8)) to eliminate 
branches that contain too few non-buyers to be an equilibrium. In particular, Algorithm 2 uses two specific features of the problem 
at hand: (1) any types ℎ whose untaxed demand is negative at price 𝑥∗

𝑡
must be non-buyers at the equilibrium price 𝑥𝑡 > 𝑥∗

𝑡
by 

Proposition 1 (i.e. have 𝑧𝑡,ℎ ≤ 0); (2) an updated price can be computed by counting the number of non-buyers in (1), and using this 
to generate an initial guess for the number of non-buying types in equilibrium (i.e. the 𝑘0 in Step 3 of Algorithm 2).

In the next section we illustrate our algorithm using a numerical example. We report measures of computation speed and accuracy 
and compare against the ‘standard case’ of no short-selling tax where the price follows the no-tax solution 𝑥∗

𝑡
; see (8).

4. Numerical example

We consider a version of the Brock and Hommes (1998) model with a large number of belief types and a short-selling tax. 
Accordingly, the demands of types ℎ ∈ are given by (5) and dividends 𝑑𝑡 = 𝑑+ 𝜖𝑡 are IID with 𝐸̃𝑡,ℎ[𝑑𝑡+1] = 𝑑 ∀𝑡, ℎ. The fundamental 
price is 𝑝 = (𝑑−𝑎𝜎2𝑍)∕𝑟, where 𝑍 > 0 is the outside supply of the risky asset. The deviation from the fundamental price is 𝑥𝑡 ∶= 𝑝𝑡−𝑝. 
Investors have linear predictors of the form:

𝐸̃𝑡,ℎ

[
𝑥𝑡+1

]
= 𝑏ℎ + 𝑔ℎ𝑥𝑡−1. (14)

Here, 𝑏ℎ ∈ℝ is the ‘bias’ of type ℎ and 𝑔ℎ ≥ 0 is their trend-following parameter. Type ℎ is a pure fundamentalist investor if 𝑏ℎ = 𝑔ℎ = 0, 
while larger values of 𝑔ℎ or |𝑏ℎ| imply, respectively, stronger trend-following and stronger forecast bias.

Fitness 𝑈𝑡,ℎ is a linear function of past profits net of predictor costs 𝐶ℎ ≥ 0. Profits at date 𝑡 are given by the realized excess return 
𝑅𝑡,ℎ ∶= 𝑥𝑡 − (1 + 𝑟)(𝑥𝑡−1 −1{𝑧𝑡−1,ℎ<0}𝑇 ) + 𝑎𝜎2𝑍 + 𝜖𝑡 scaled by demand 𝑧𝑡−1,ℎ, where 𝜖𝑡 is the IID dividend shock, and we abstract (for 
simplicity) from memory of past performance. For all 𝑡 > 1 fitness and population shares are given by

𝑈𝑡,ℎ = 𝑅𝑡,ℎ𝑧𝑡−1,ℎ −𝐶ℎ, 𝑛𝑡+1,ℎ =
exp(𝛽𝑈𝑡,ℎ)∑

ℎ∈ exp(𝛽𝑈𝑡,ℎ)
, where 𝛽 ∈ [0,∞). (15)

Profits 𝑈𝑡,ℎ determine the population shares 𝑛𝑡+1,ℎ via a discrete-choice logistic model with intensity of choice 𝛽. The intensity 
of choice determines how fast agents switch to more profitable predictors. For 𝛽 = 0 no switching occurs; increasing the value of 
𝛽 implies more switching to relatively profitable predictors. Following Brock and Hommes (1998), this profit-based evolutionary 
competition mechanism has been widely studied.

We use the same parameters as in Section 3.1 of Anufriev and Tuinstra (2013): 𝑍 = 0.1, 𝑎𝜎2 = 1, 𝑟 = 0.1 and 𝑑 = 10, giving a 
fundamental price 𝑝 = 𝑑−𝑎𝜎2𝑍

𝑟
= 99. In their model there are two types: a fundamentalist type with 𝐸̃𝑡,𝑓

[
𝑥𝑡+1

]
= 0 and cost 𝐶 = 1, 

and a chartist type with 𝐸̃𝑡,𝑐

[
𝑥𝑡+1

]
= 𝑔𝑥𝑡−1, where 𝑔 = 1.2, and cost 0. We consider many types with predictors described by (14), 

population shares 𝑛𝑡,ℎ given by (15), and predictor costs 𝐶ℎ depending on the ‘closeness’ of beliefs to a pure fundamentalist (see 
above).

We start by looking at some individual numerical simulations, along with computation time and accuracy, before presenting a 
numerical bifurcation diagram. Fig. 2 plots the price deviation 𝑥𝑡 under four different scenarios labelled 1 to 4, both for a two-type 

15 Recall our previous numerical example: for 𝐻 = 20, 3𝐻 − 2𝐻 ≈ 3.5 billion, while 𝐻(𝐻 + 1)∕2 = 210. Even for 𝐻 = 10 the difference is very large: 58,025 cases 
8

(no ordering) versus 55 when using Algorithm 1.
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Fig. 2. Four price scenarios: Two-type model vs many types (𝐻 = 100) when 𝑇 = 0.1. Scenario 1: intensity of choice is 𝛽 = 1.6; Scenario 2: intensity of choice is 𝛽 = 2. 
Scenario 3 (4) increases the intensity of choice to 𝛽 = 2.5 (𝛽 = 2.9). In each panel, the price deviation 𝑥𝑡 is plotted at each 𝑡, given initial price 𝑥0 = 1 and deterministic 
dividends 𝑑𝑡 = 𝑑 for all 𝑡. The dashed line (resp. solid line) shows the price for the case of two types (resp. many types).

model (as in Anufriev and Tuinstra (2013)) and for 𝐻 = 100 heterogeneous belief types. In the latter case, we add heterogeneity 
in fundamentalist and chartist types by giving 50 types a trend-following parameter 𝑔ℎ linearly spaced on the interval [1, 1.4], and 
the remaining 50 types a zero trend parameter 𝑔ℎ = 0 but bias 𝑏ℎ linearly spaced on the interval [−0.2, 0.2] and cost 𝐶ℎ = 1 − |𝑏ℎ|
which is decreasing in the bias of their predictor; these relatively small heterogeneities in beliefs have non-trivial implications for 
price dynamics. The four scenarios differ only in terms of the intensity of choice 𝛽 and the short-selling tax is 𝑇 = 0.1.

Scenario 1 sets 𝛽 = 1.6. We see that the initial overvaluation ‘dies out’ fairly quickly toward the fundamental price, with the 
main difference being the greater initial price persistence in the two-type model, due to the better relative performance of chartists 
with two types rather than many (Fig. 2, top left). In the many-types model, price settles at a small, positive non-fundamental price 
because positive bias fundamental types (𝑏ℎ > 0) perform better. In Scenario 2, the intensity of choice increases to 𝛽 = 2. Both prices 
now converge to a non-fundamental steady state with a sizeable overvaluation, with the latter being larger in the two-type model, 
reflecting the better relative performance of chartists. Scenario 3 increases the intensity of choice further to 𝛽 = 2.5. In this case, 
price initially falls, but the trend is reversed. In the two type model, short-selling by fundamental types is discouraged by the tax and 
chartists outperform, so price starts increasing; however, there is sufficient short-selling by fundamental types to cause the bubble 
to ‘burst’ and price to converge near the fundamental price. With many types, the price deviation initially increases but we then see 
endogenous price cycles around a positive price. Finally, in Scenario 4, where the intensity of choice is 𝛽 = 2.9, price converges near 
the fundamental price in the two-type model but diverges to +∞ with many types, as belief heterogeneity means the most chartist 
types outperform enough to get a large population share, making price increases entrenched.

Table 1 reports computation times and accuracy for Scenario 3 with 𝑇𝑠𝑖𝑚 = 100 simulated periods and dividend shocks.16 Com-

putation times are quite fast – less than 0.5 seconds in all cases – but they increase sharply as the number of types 𝐻 is increased, 
as expected for a quadratic algorithm. Note that both short-sellers and zero position types coexist in many periods (Column 4), such 
that our algorithm must search for the ‘correct partition’ between short-sellers and zero-position types (Algorithm 1, Step 4).17 As 
compared to the case of no short-selling tax (where price is 𝑥𝑡 = 𝑥∗

𝑡
∶=

∑
ℎ∈ 𝑛𝑡,ℎ𝐸̃𝑡,ℎ

[
𝑥𝑡+1

]
1+𝑟

), computation times are increased somewhat 
but remain reasonable even for 𝐻 = 2, 500 types. Finally, the computed error in the final column is essentially zero as expected. The 
results for the other price scenarios in Fig. 2 – see Appendix A, Supplementary material – tell a similar story.

The results in Table 1 raise the question: to what extent can the ‘fast’ computation times be attributed to ordering types by 
optimism (Algorithm 1) versus additionally finding a good guess for the number of non-buyers (Algorithm 2)? The short answer is 
that for moderate or large numbers of types 𝐻 , Algorithm 1 is most important for reducing computation times, because sorting types 
by optimism reduces the number of cases from a very large number 3𝐻 − 2𝐻 to quadratic in 𝐻 , which is a dramatic difference.18

16 Dividend shocks 𝜖𝑡 were drawn from a truncated-normal distribution with mean zero, standard deviation 𝜎𝑑 = 0.01 and support [−𝑑, 𝑑]. Simulations were run in 
Matlab 2023a (Windows version) on a Viglen Genie Desktop PC with an Intel(R) Core(TM) i7-7700 CPU 3.60 GHz processor and 16 GB of RAM.
17 If non-buyers are either all short-sellers or all with zero positions, rather than a mix of the two, then solution times are much faster (not shown); however, such 

cases do not fully test our solution algorithm.
9

18 For example, for 𝐻 = 100 the ratio 𝐻(𝐻+1)∕2
3𝐻−2𝐻

is smaller than 1 × 10−44 (note: 3𝐻 − 2𝐻 = 5.15 × 1047).
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Table 1

Computation times and accuracy in Scenario 3 (Algorithm 2, 𝑇𝑠𝑖𝑚 = 100 periods).

No. of types Short-selling tax Time (s) Freq. 1 (2) max(𝐸𝑟𝑟𝑜𝑟𝑡)

No tax: 𝑇 = 0 0.01 - 6.9e-17

𝐻 = 100 𝑇 = 0.10 0.02 100 (57) 7.6e-16

𝑇 = 1∕8 0.02 100 (41) 5.4e-16

No tax: 𝑇 = 0 0.02 - 8.3e-17

𝐻 = 1,000 𝑇 = 0.10 0.15 100 (60) 1.1e-15

𝑇 = 1∕8 0.11 100 (41) 1.0e-15

No tax: 𝑇 = 0 0.03 - 1.4e-16

𝐻 = 2,500 𝑇 = 0.10 0.48 100 (60) 1.1e-15

𝑇 = 1∕8 0.38 100 (41) 1.3e-15

Notes: max(𝐸𝑟𝑟𝑜𝑟𝑡) ∶= max{𝐸𝑟𝑟𝑜𝑟1 , ..., 𝐸𝑟𝑟𝑜𝑟𝑇𝑠𝑖𝑚
}, where we define the date 𝑡

simulation error as 𝐸𝑟𝑟𝑜𝑟𝑡 = | ∑ℎ∈ 𝑛𝑡,ℎ𝑧𝑡,ℎ − 𝑍|. Demands 𝑧𝑡,ℎ depend on the 
computed market-clearing price. Freq. 1 = number of periods with ∗

1,𝑡 ∪ ∗
2,𝑡 ≠ ∅

(at least one short or zero position at date 𝑡), and Freq. 2 = number of periods 
with ∗

1,𝑡 , ∗
2,𝑡 ≠ ∅ (both short and zero positions at date 𝑡).

Table 2

Comparison of computation times: Algorithm 1 vs Algorithm 2.

No. of types Algorithm 1 time (s) Algorithm 2 time (s) Relative time gain

𝐻 = 100 0.09 0.02 77.8%

𝐻 = 1,000 8.25 0.09 98.9%

𝐻 = 2,500 146.4 0.28 99.8%

Notes: Scenario 3 with 𝑇 = 0.10 and 𝑇𝑠𝑖𝑚 = 100 periods.

Indeed, searching all 3𝐻 − 2𝐻 permutations of the set of investor types is not computationally tractable for large values of 𝐻 , so 
Algorithm 1 is an essential component of Algorithm 2.

What the results in Table 2 show, however, is that Algorithm 2 still obtains sizeable extra reductions in computation time by 
finding a good initial guess for the number of non-buyers, such that simulations take a small fraction of the Algorithm 1 times.19 We 
conclude that both the mass removal of branches in Algorithm 1 and the refinement in Algorithm 2 are crucial for a fast solution 
algorithm which makes it computationally-tractable to study simulations of many periods or bifurcation-type analyses to changes in 
parameter values.

Fig. 3 plots a numerical bifurcation diagram as the intensity of choice 𝛽 is increased; the attractors are based on negative initial 
prices 𝑥0 < 0 and a particular short-selling tax, 𝑇 . The price attractor for the two-type model is shown in grey, and the attractor from 
the many-type model (𝐻 = 20 types) is in black. The short-selling tax is set at 𝑇 = 0.1.

In the two-type model, the fundamental steady state 𝑥 = 0 is the only price attractor for sufficiently low intensity of choice 𝛽
(grey attractor). Once a critical value of 𝛽 is exceeded, the price converges to a non-fundamental steady state with negative price 
(i.e. undervaluation); hence the lower ‘fork’ seen for 𝛽 between (approx.) 2.4 and 3.2 in Fig. 3. Increasing 𝛽 further causes the non-

fundamental steady states to lose stability through a secondary bifurcation, leading to endogenous price fluctuations. The results for 
the two-type model are consistent with the results and bifurcation diagrams in Anufriev and Tuinstra (2013), and we found similar 
attractors for alternative values of the short-selling tax 𝑇 .20

The attractor in the many-types model is quite different (black). For small positive values of the intensity of choice we see con-

vergence on a non-fundamental steady state price with a small overvaluation; intuitively, this is because the fundamentalists with 
positive bias are best performers, such that their optimistic predictor gains a foothold in the market. As the intensity of choice 𝛽
increases, price converges to a larger steady-state price since the foothold is stronger when there is more switching in response to 
performance. Increasing 𝛽 further leads to endogenous price fluctuations which, however, exist only for a small range of 𝛽 values 
(approx. 2.4 to 2.7). Once the intensity of choice is sufficiently high, there is a negative steady-state price (undervaluation) whenever 
price converges. By comparison to the two-type model, the price attractor is rather ‘sparse’ at higher values of the intensity of choice 
because a high percentage of simulations have explosive price paths, so there is an extreme form of volatility not seen in the two-type 
model where price paths were bounded.21

In short, there are non-trivial qualitative differences in the price dynamics with many versus few types, including a switch in sign 
of the price deviation and explosive simulations.

19 Slightly different hardware used relative to Table 1, so Algorithm 2 computation times are slightly lower.
20 Fig. 7 in their paper is a bifurcation diagram in the two-type model for 𝑇 = 0.1, and their Fig. 8 is a numerically-computed bifurcation diagram for 𝑇 = 0.1, 

analogous to the grey attractor in Fig. 3.
10

21 For 𝛽 between approx. 2.7 and 2.8, we found price was explosive in all simulations (many-types model).
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Fig. 3. Numerical bifurcation diagram: two-type model (grey attractor) and many-type model (𝐻 = 20, black attractor) when 𝑇 = 0.1. For each 𝛽 , we ran 30 simulations 
from initial prices 𝑥0 ∈ (−4, 0) and we plot a total of 2,400 points after 3,120 transitory periods.

5. Conclusion

In this note we studied asset pricing in behavioural heterogeneous-belief models with a short selling tax and many belief types. 
We provided analytic expressions for asset prices and conditions on beliefs that determine which types take long, short or zero asset 
positions at the market-clearing price. These results allowed us to construct an algorithm that can solve models with hundreds or 
thousands of heterogeneous beliefs in a matter of seconds.

We illustrated the utility of these results using a numerical example with many different belief types in evolutionary competition, 
inspired by the two-type model in Anufriev and Tuinstra (2013). We extended the model to allow many heterogeneous beliefs around 
the polar chartist and fundamentalist beliefs, and we found that even small heterogeneities can have substantive implications for 
price dynamics and financial market volatility.

An interesting question is whether our approach could be applied to models with non-smoothness or discontinuities in demand 
for reasons other than short-selling regulations. Examples include market entry from the crossing of price misalignment thresholds or 
price beliefs that depend on such thresholds (see Tramontana et al., 2010, 2015). Extending such models to a large number of belief 
types might reveal new insights about effectiveness of regulatory policies or the empirical performance of this class of models.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jedc .2024 .104970.
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