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Abstract: Spectral Computed Tomography (CT) is a versatile imaging technique widely utilized in
industry, medicine, and scientific research. This technique allows us to observe the energy-dependent
X-ray attenuation throughout an object by using Photon Counting Detector (PCD) technology. How-
ever, a major drawback of spectral CT is the increase in noise due to a lower achievable photon count
when using more energy channels. This challenge often complicates quantitative material identifica-
tion, which is a major application of the technology. In this study, we investigate the Noise2Inverse
image denoising approach for noise removal in spectral computed tomography. Our unsupervised
deep learning-based model uses a multi-dimensional U-Net paired with a block-based training ap-
proach modified for additional energy-channel regularization. We conducted experiments using two
simulated spectral CT phantoms, each with a unique shape and material composition, and a real scan
of a biological sample containing a characteristic K-edge. Measuring the peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) for the simulated data and the contrast-to-noise ratio
(CNR) for the real-world data, our approach not only outperforms previously used methods—namely
the unsupervised Low2High method and the total variation-constrained iterative reconstruction
method—but also does not require complex parameter tuning.

Keywords: deep learning; spectral computed tomography; unsupervised denoising method

1. Introduction

Spectral Computed Tomography (CT) imaging has been a very active field of research,
as it allows us to observe the energy dependence of the object being imaged using Photon
Counting Detector (PCD) technology [1]. The applicability of PCD technology to obtain
energy-resolved images has been shown in different fields. The first clinical PCD-CT
system has demonstrated better resolution and noise characteristics in four different clinical
applications than similarly configured energy-integrating CT (EID-CT) [2]. Spectral imaging
is also widely used in threat detection during airport luggage security screening [3,4],
as well as in different applications of Non-Destructive Testing (NDT) [5,6].

In spectral imaging, the projection data are intrinsically noisy because there are fewer
photons in each energy channel. The energy channel must be carefully chosen to minimise
noise because wider energy channels integrate more photons and, thus, have a lower noise
level. Consequently, there is a trade-off between the width of energy channels and the
noise level. To address these challenges, specialized noise-robust spectral CT reconstruction
techniques have been developed. Some of these methods focus on total variation (TV)-based
methods [7], dictionary learning methods [8], prior-based methods [9], and tensor-based
nuclear norm regularization [10]. However, these studies [8–10] used detectors with a
maximum of eight energy channels, each with a width of several keVs, which is far from
the ideal assumption of monochromatic acquisition. To manage the larger amounts of data
from more energy channels, 2D reconstruction with TV was applied in [7], but the required
regularization tuning makes this approach time-consuming and less practical. Although
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more recent detectors provide a significantly finer energy resolution, increasing the number
of energy channels leads to significant computational challenges when using the above
iterative algorithms, which operate jointly across the channels.

Thus, investigating alternative approaches based on channel-wise reconstruction
remains crucial, especially when working with large multi-channel datasets. Recently, data-
driven approaches have been applied for spectral imaging. A supervised deep learning-
based spectral CT method that includes information in the spectral domain was designed
to improve reconstructions when the signal is affected by Poisson noise [11]. The challenges
of obtaining high-quality reconstructions from sparse measurements for a 64-channel
PCD-CT were addressed using an unsupervised denoising method called Low2High [12]
that can be applied after independent, single-channel reconstructions. In this study, we
leverage the Noise2Inverse [13] framework in combination with a multi-dimensional U-Net
architecture [14], employing a block-based training approach [15] . This method enables
training on pairs of noisy images, each reconstructed from mutually exclusive subsets of
projections, thereby eliminating the need for clean training data. Given the significant
challenges in acquiring clean and diverse datasets for spectral imaging, particularly due
to the inherent noise in spectral CT data, self-supervised approaches like ours offer a
robust alternative. Our approach aims to improve image quality and, thus, help in accurate
material identification in spectral imaging applications where clean training datasets are
not available.

2. Background
2.1. Spectral Imaging

The attenuation of an X-ray beam travelling through an object is often modelled using
the Beer–Lambert law. For a poly-energetic X-ray spectrum used in spectral Imaging,
an adapted version of the Beer–Lambert law is expressed as follows:

I(E) = I0(E)e−
∫

L µ(E,r)dr, (1)

where I(E) and I0(E) are the transmitted (measured) X-ray intensity and the initial intensity
emitting from the X-ray source, respectively, at an energy level of E respectively, both of
which include the detector sensitivity. µ(E, r) is the linear attenuation coefficient (LAC) of
the object at an energy level of E, and

∫
L µ(E, r)dr represents the line integral of attenuation

along one ray path from the source to one detector element at one rotation angle. This
line integral sums attenuation along the path (r). It is critical to note that both the energy
dependency of the X-ray source spectrum (I0(E)) and the energy sensitivity of the detector
significantly influence the system’s overall spectral response. Consequently, Spectral CT
images are generated by the individual tomographic reconstruction of each energy channel
using the measured sinograms (I(E), i.e., projections), which enables the incorporation of
detailed energy information into the images [1,6].

2.2. Unsupervised Learning Methods

Data-driven approaches to image denoising can be divided into the following three
categories: unsupervised, supervised, and semi-supervised methods. Here, we focus on
unsupervised methods, since there is often a lack of low-noise, high-quality reference data
in CT imaging applications [13,16] that could be used for supervised training. Spectral CT
applications exemplify this challenge. Thus, denoising methods that may be trained with
noisy reference data of paired images [17] or a single image [18] become of interest. There
are a few strategies for this. In the Noise2Noise training method [17], a pair of images
is used, both showing the same object but where each image contains independent, zero
mean noise. Such pairs are generally unavailable in CT. This drawback is eliminated by
the Noise2Self method [18], which uses a single noisy image. However, it utilises the
assumption that noise in one pixel is statistically independent of noise in another pixel,
which is not the case in tomographic reconstructions. The Noise2Inverse approach does not
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require spatially independent noise or matched image pairs [13,16]. Instead, it utilises the
realisation that most noise in tomographic measurements is independent from projection
to projection. By splitting the projection data into two mutually exclusive sets, two images
can be reconstructed with independent noise. A model is then trained to predict one
noisy image from the other noisy image. Under the assumption that the image structure is
predictable but the noise is not, the model then learns to predict a noise-free image.

Describing this approach in detail, we use the Beer–Lambert law to convert the X-ray
intensity measurements to absorption values and discretise the integral as follows:

ỹ = Ax + ϵ, (2)

where ỹ contains the absorption measurements corrupted by noise, that is, element-wise
independent and zero-mean conditional on the data. A represents the projection operator,
and x is the discretised absorption image. Noise2Inverse is implemented in single-energy
tomographic reconstruction by reconstructing image pairs from mutually exclusive subsets
of the measurement data. Reconstructed noise in the image pairs is then assumed to
be independent.

For denoising, we use a parameterised deep neural network (Λθ) that is trained by
optimising the parameters as follows:

θ⋆ = arg min
θ

1
|J | ∑

J∈J

∥∥∥Λθ(x̃JC )− (x̃J)
∥∥∥2

2
, (3)

providing the best prediction of the target reconstruction (x̃J ; reconstructed from the
projections in set J) from the input (x̃JC ; reconstructed from the projections in set JC).

Based on similar reasoning, the Low2High [12] approach was introduced for sparse
multi-spectral imaging. In the Low2High method, a different strategy is used to produce
two pairs of images with independent noise generated from the same set of measurements.
This is done using a filtered backprojection (FBP) [19] algorithm that uses two different
filters, namely the standard FBP Ram-Lak (s = 1) filter (high) and a Hann (s = 0.2) low-pass
filter that removes the higher image frequencies (low). The reasoning here is that noise is
predominately concentrated at higher frequencies so that the low-frequency image does
not contain significant noise and the network is then trained to predict the coherent high
frequencies from the low-frequency content whilst the noise averages out in the same way
as in Noise2Inverse [13,16].

2.3. Our Approach

The Noise2Inverse approach is well-suited for denoising in tomographic imaging,
and our approach proposes an unsupervised learning strategy for spectral imaging based
on the Noise2Inverse method. The approach requires us to generate input and target
images with independent noise. To achieve this, for a given set of projections acquired over
an angular range of 360◦, we split the sinogram into K different subsets ((ỹE1 , . . . , ỹEN )1,
. . . , (ỹE1 , . . . , ỹEN )K), where each split contains mutually exclusive projections at equally
spaced angles for the same energy channels. After splitting the sinogram, each subset of the
sinogram is reconstructed using energy channel-wise FBP ((x̃E1 , . . . , x̃EN )1, . . . , (x̃E1 , . . . ,
x̃EN )K). For the training step, we generate K different network input images by averaging
over all K − 1 different subgroups of reconstructions, where each subgroup contains K − 1
images, whilst the target image is the reconstruction from the set not included in the
network input. With this strategy, the input is less noisy than the target. To estimate the
final denoised image ((x∗E1

, . . . , x∗EN
)1, . . . , (x∗E1

, . . . , x∗EN
)K), all inputs used in training

are averaged and used as input for the trained network. A schematic diagram of our
approach for K = 4 is detailed in Figure 1 based on the methodologies used in the synthetic
data experiment. The differences between the real and synthetic data experiments include
the dimensions of projections and models, the selected subsets, and the use of the FDK
reconstruction algorithm instead of the FBP algorithm.
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Figure 1. Our approach: The spectral sinograms are obtained over 360◦ and split into 4 (K = 4)
mutually exclusive sets, which are reconstructed independently for each energy channel using
FBP. The network is trained using images generated by averaging all possible combinations of
3 reconstructions out of the 4 images as network input to predict the 4th spectral image not used
to generate the current network input. Once trained, all 4 images are averaged and denoised by
the model. The workflow is divided into three main stages, each distinguished by a unique colour.

2.4. Evaluation Metrics for Image Quality

This section discusses evaluation metrics that are commonly used in the literature
to measure image quality and are also employed in this paper. The comparative analysis
of these metrics allows us to distinguish their relative efficacy in methods addressed in
this paper.

• The Peak Signal-to-Noise Ratio (PSNR) can be used as a measure of performance.
PSNR measures image quality by calculating the ratio between the maximum of the
signal power and the power of the noise. The PSNR value is expressed in decibels
due to the wide dynamic range. The PSNR between images f and g is computed
as follows:

PSNR( f , g) = 20 · log10(max( f , g))− 10 · log10(MSE( f , g)), (4)

The Mean Square Error (MSE) between image f and image g can be calculated as follows:

MSE( f , g) =
1

mn

m

∑
i=1

n

∑
j=1

( f (i, j)− g(i, j))2, (5)

where f is the ground truth and g is the reconstructed/denoised image. If the MSE
approaches zero, the PSNR value approaches infinity; this suggests that a higher PSNR
value provides higher image quality. Furthermore, a small PSNR value indicates high
numerical differences between the images [20]. In general, a PSNR value greater than
20 dB is considered to indicate good image quality.

• The structural similarity index (SSIM) is a quality metric used to measure the similarity
between two images [21]. This metric is correlated with the perception of the human
visual system. The SSIM is defined as follows:

SSIM( f , g) =
(2µ f µg + c1)(2σf g + c2)

(µ2
f + µ2

g + c1)(σ
2
f + σ2

g + c2)
, (6)
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where µ f and µg, σf and σg, and σf g represent the local means, standard deviations,
and cross-covariance of images f and g, respectively. Regularization constants c1 and
c2 are very small values that prevent zeros in the denominator. The SSIM value varies
between 0 and 1. An SSIM index close to 1 shows an ideal agreement between the
images, whilst a value of 0 shows no correlation between the images [20,21].

• The contrast-to-noise ratio (CNR) is a widely used metric to evaluate imaging quality.
It helps to understand how easily low-contrast objects can be distinguished from
their surroundings [22,23]. The CNR is calculated by dividing the signal difference
between the target region and the background by the sum of the noise in both regions
(Equation (7)) [24]. In particular, the larger the signal difference and the smaller the
noise, the higher the CNR, which indicates better image quality [22,23].

CNR =
|ST − SB|
σT + σB

, (7)

where ST and SB represent the average of selected area and background in the re-
constructed/denoised image, respectively, while σT and σT stand for the standard
deviation (SD) of the selected area and background area, respectively.

3. Methodology
3.1. Synthetic Spectral CT Data

To simulate an X-ray source spectrum, we used SpeckPy software (v2.0) [25]. The sim-
ulation used a tube voltage of 150 kVp and a tungsten reflection target at an angle of
12 degrees with filtering of 4 mm aluminium, 1 mm beryllium, and 1000 mm air. The width
of the energy bin [keV] was selected as 0.5 keV, and the exposure setting was selected as
1 mAs. To simulate a spectral resolution of 1 keV, we created 131 spectral energy bins
between 20 and 150 keV. Specifically, we interpolated the source spectrum between 19.550
and 150.450 keV with an initial resolution of 0.1 keV before averaging the X-ray flux over
10 neighbouring energy bands. To normalise the X-ray fluence of the source, we assumed
an X-ray exposure time that would guarantee the detection of 60,000 photons for each
pixel when summed over all energy channels. Figure 2a illustrates the source spectrum
obtained using SpekPy [25], while Figure 2b demonstrates the normalised X-ray source
spectrum with the number of photons per energy bin on the y axis in the energy range
of 20 to 150 keV. In both spectra, the y axis shows the number of photons, and the x axis
represents the energy levels in keV.

We created two 2D phantoms (each with spatial dimensions of 100 × 100) containing
four distinct objects, with each object composed of a different material. We utilised the
X-ray DB Python library, which provides attenuation profiles of materials for various
elements and compounds, to simulate our phantoms. We sourced the densities of the
selected materials from the PubChem database [26]. Densities were spatially modulated
using a sinusoidal function to simulate relative density variations throughout the object.
We assigned the X-ray attenuation coefficients of the material to objects (shown in Figure 3)
and the background to zero. The choice of the 8 materials used in the experiment and the
selection of the spatial size of the phantoms were inspired by a study of a multi-spectral
dataset [27]. Figure 3 presents a visualisation of the two phantoms, each showing a distinct
energy level (45 keV and 70 keV), highlighting the differentiation in the appearance of
the phantoms and their respective objects when observed in different energy channels.
Water, olive oil, nitromethane, and acetone are selected for the first phantom (Figure 3a),
and methanol, ethylenediamine, aluminium, and nitrobenzene are chosen for the second
phantom (Figure 3b).
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Figure 2. (a) Source spectrum obtained with SpekPy at 150 kVp. The source spectrum has a
maximum value of 5.58 × 107 photons/cm2/mAs/keV, representing the peak fluence per unit of
energy. (b) Normalised X-ray source spectrum over the energy range of 20 to 150 keV. The y axis
represents the number of photons, while the x axis indicates the energy level in keV for both spectra.
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Figure 3. Examples of phantoms at energy levels of 45 keV and 70 keV, featuring different mate-
rials and shapes: (a) water, olive oil, nitromethane, and acetone; (b) methanol, ethylenediamine,
aluminium, and nitrobenzene.

To generate simulated test data, we used the 2D spectral CT phantoms and generated
sinograms of 1D projections (yE1 , yE2 , . . . , yEN ) using the geometry described below over
the full angular range of 360◦ with 1◦ increments and corrupted these with Poisson noise
using the source spectrum (I0(E)) discussed above. If yp(E) is the simulated clean X-ray
attenuation value for one pixel in the projections, then the noisy pixel (ỹp(E)) for that
energy is distributed as follows:

I0(E)e−ỹp(E) ∼ Poisson
(

I0(E)e−yp(E)
)

, (8)

All noisy projections were split into 4 sets (K = 4), and each of them was reconstructed
with the FBP algorithm.

A linear array detector was simulated with 0.8 mm wide pixels in a 256-pixel array.
The scanning geometry used a 57.50 cm distance between the X-ray source and the object
and a 58.05 cm distance between the object and the detector, simulating the setup reported
in [27].

3.2. Spectral Biological Data Acquisition

We used the data provided in [28]. The details of the acquisition procedure for the
biological sample can be found in [29]. In short, the head of a lizard, approximately
17 mm in length and 10 mm in width, which provides contrast-rich views of soft tissues
stained with 1% elemental iodine (I), was scanned using a HEXITEC detector [30] at a
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beam voltage of 50 kV. The choice of iodine is of particular interest in the preparation of the
biological sample because of the presence of absorption edges located at 33.17 keV. This
edge represents the K-shell binding energy of the atom, known as the K-edge, and is unique
for each element [22]. The acquisition of the biological sample involved recording projection
images at 2◦ intervals throughout a 360◦ rotation, with each projection exposed for 120 s,
culminating in a total scanning time of 8 h. The energy range of the biological sample used
in our experiments is between 17.5 and 43.9 keV over 96 energy bins. These 180 projections
(180 × 80 × 80) were split into two sets and reconstructed using the Feldkamp–Davis–
Kress (FDK; the 3D form of filtered backprojection for cone-beam imaging) algorithm [31]
separately for each energy channel. Due to the limited number of projections, they were
divided into 2 sets (K = 2) to minimise artefacts resulting from undersampling.

To estimate the system geometry parameters needed for the reconstruction, a geometric
magnification of 1.81 was established to ensure the complete and accurate projection of
the biological sample onto the detection area. The configuration included a distance of
332.0 mm from the X-ray source to the centre of the object and 270.0 mm from the centre
of the object to the detector. The detector itself featured a pixel size of 0.250 mm and an
80 × 80-pixel array.

3.3. Comparative Reconstruction Approaches

For comparison with our method, we also employed a traditional iterative recon-
struction method that imposes a total variation [32] constraint, as well as the Low2High
approach [12], both of which use all noisy projections as inputs (360 projections for syn-
thetic datasets and 180 projections for biological samples). The total variation approach
minimises the following cost function:

xreco = arg min
x

{
1
2
∥Ax − ỹ∥2

2 + αTV(x)
}

, (9)

where the α parameter controls the regularisation strength and is chosen empirically for
each phantom to optimise denoising performance, which requires knowledge of the clean
image, which is not available in real applications.

In determining the regularisation parameters, for each spectral CT synthetic phantom,
the average PSNR values of images obtained using 5 different parameters were calculated.
In this process, the parameter that provided the highest average PSNR value was considered
to achieve the best performance and was selected for use in the traditional reconstruction
method. The determination of parameters for the biological sample was conducted through
a different strategy due to the absence of ground truth. In this process, various parameters
were tested, and the quality of the images in their spatial dimensions was assessed visually
(although the impacts of only 3 regularisation parameters are highlighted in this paper).
The parameter that provided the best image quality was selected based on this visual
evaluation. This approach was applied to maximize image quality and achieve the best
results in the imaging process using iterative algorithms. All experiments were performed
using the Core Imaging Library (CIL) [33].

3.4. Network Implementation and Training

We utilised the U-Net architecture reported in [14] using PyTorch v.2.1, ref. [34] which
remains state-of-the-art in many biomedical image denoising applications. U-Net was
selected for its simplicity and capacity to manage the complexity of 4D data, including the
spectral dimension, making it an appropriate choice for this study, particularly given the
unsupervised nature of the task and the absence of both labelled and clean data in spectral
imaging. We implemented both 2D and 3D U-Net architectures to accommodate the
diverse data requirements. We employed a 3D convolutional neural network for biological
samples and a 2D convolutional neural network for synthetic data, which requires less
computational cost compared with the 3D model. Both models consist of three layers and
use ReLU activation functions. The differences between these models are the dimensions
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of the maximum pooling and batch normalization layers. The 2D model uses MaxPool2d
and BatchNorm2d, which are specialized for 2D images. In contrast, the model developed
to work with 3D data includes layers such as MaxPool3d and BatchNorm3d that are
specifically designed to process 3D data [35].

In the synthetic data experiment, we cropped our original images before starting the
training process because having dimensions that are powers of two significantly simplifies
various computational processes, especially in deep learning architectures that involve
sub-sampling. Each image has 128 energy channels and 96 × 96 pixels in the spatial domain.
Specifically, this training process was conducted using a block-based approach. Inputs
and targets were divided into blocks with dimensions of 4 × 16 × 16, where 4 is the energy
dimension. Selected blocks had a 75% overlap in both the energy and spatial dimensions.

In the experiment conducted with the biological sample, each image had 96 energy
channels and 80 × 80 × 80 pixels in the spatial domain. Inputs and targets were divided
into blocks with dimensions 4 × 16 × 16 × 16, where 4 is the energy dimension. Overlap
between blocks was defined as 75% in the energy dimension (chosen to prioritize energy
information) and 50% in the spatial dimension. Due to RAM constraints faced by our
system, the overlap ratio in spatial dimensions was reduced relative to previous settings.

We trained both the 2D and 3D models using the Adam optimiser [36] with a learning
rate of 10−4; the 2-D model was trained over 100 epochs, and the 3D model was trained
over 50 epochs, both utilizing a batch size of 32.

3.5. Image Quality Assessment

The quality of the denoised images was assessed against the ground-truth phantoms
using the SSIM and PSNR metrics applied channel-wise to the entire image. We further
analysed the overall image quality by computing the mean and standard deviation of the
SSIM and PSNR metrics in the energy direction. This approach allowed us to quantitatively
evaluate the impact of the performance of our method across energy channels. Additionally,
by examining the LACs of selected regions of interest (ROIs) of various materials across the
energy channel, the accuracy of recovery of the linear attenuation coefficient profiles, which
can be used to identify different materials, was assessed. To assess the noise in the selected
ROIs in detail, the standard deviation of the ROIs was calculated and averaged over the
energy channel. This helped to obtain an overall noise profile by quantitatively evaluating
the noise variations between energy levels. To further assess the X-ray attenuation profiles
for each material in the synthetic phantom, the MSE between the denoised and ground-
truth profiles was computed, with both the mean and standard deviation calculated over
the energy channels. Smaller values indicate better alignment with the ground truth.

Due to the lack of ground truth in the real data, we could not use the PSNR and SSIM
metrics to evaluate the performance of our method on the biological sample. However,
the evaluation of our approach was not only based on qualitative methods, which include
attenuation profile comparison, but also incorporated quantitative measurements, includ-
ing channel-wise CNR calculation. First, in the assessment, the average signals across
energy channels were calculated for each specified ROI. Then, the data in these channels
were flattened to obtain the standard deviation values separately, and these deviations
were averaged over the energy channel to provide a representative measure of noise for the
entire spectral range. The channel-wise CNR was calculated using the means and standard
deviations according to Equation (7). Bold formatting in the tables is used to consistently
highlight the best performance in image quality assessment, making it easy to identify the
top results in all tables.

4. Results

We applied our new Noise2Inverse-based training method to the two synthetic phan-
toms and a biological sample containing a chemical tracer (iodine) and compared our
approach to the Low2High method, as well as to a traditional iterative reconstruction
method. The TV constraint inverse problem was solved using the FISTA [32] solver with
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the optimal parameters for the TV minimisation found to be 1 for the first synthetic phantom
and 0.5 for the second synthetic phantom. This parameter was set at 0.035 for the biological
sample. The iterative method was run for 100 iterations for phantoms and the biological
sample. In the remainder of this section, the iterative method, Iterative Reconstruction with
Total Variation, is referred to as IR-TV.

Figures 4 and 5 show the denoised images of each phantom at three different energies
(55, 85, and 125 keV) for all different methods. Interestingly, according to the channel-wise
SSIM and PSNR metrics shown in Figure 6, our method achieved better performance,
especially for high-noise (i.e., low photon count) energy channels (the low and high en-
ergy channels, where the source spectrum has limited flux), although the average PSNR
performance was still found to be better for the iterative method.

Ground Truth 55 keV Noisy 55 keV IR-TV_1 55 keV Ours 55 keV Low2High 55 keV

Ground Truth 85 keV Noisy 85 keV IR-TV_1 85 keV Ours 85 keV Low2High 85 keV

Ground Truth 125 keV Noisy 125 keV IR-TV_1 125 keV Ours 125 keV Low2High 125 keV

Figure 4. Channel-wise reconstruction for the first phantom. The first column is the ground truth,
and the second column is the noisy reconstruction with FBP. The third column represents the iterative
reconstruction method, and 1 indicates the alpha value selected for TV minimisation. The fourth
column shows our method, and the last column shows the unsupervised Low2High method.

Ground Truth 55 keV Noisy 55 keV IR-TV_0.5 55 keV Ours 55 keV Low2High 55 keV

Ground Truth 85 keV Noisy 85 keV IR-TV_0.5 85 keV Ours 85 keV Low2High 85 keV

Ground Truth 125 keV Noisy 125 keV IR-TV_0.5 125 keV Ours 125 keV Low2High 125 keV

Figure 5. Channel-wise reconstruction for the second phantom. The first column is the ground truth,
and the second column is the noisy reconstruction with FBP. The third column represents the iterative
reconstruction method, and 0.5 indicates the alpha value selected for TV minimisation. The fourth
column shows our method, and the last column shows the unsupervised Low2High method.



Sensors 2024, 24, 6654 10 of 18

20 40 60 80 100 120 140
Energy (keV)

15

20

25

30

35

40

45

PS
N

R 
(d

B)

IR-TV_1
Ours
Low2High

(a)

20 40 60 80 100 120 140
Energy (keV)

0.0

0.2

0.4

0.6

0.8

1.0

SS
IM

IR-TV_1
Ours
Low2High

(b)

20 40 60 80 100 120 140
Energy (keV)

15

20

25

30

35

40

45

50

55

PS
N

R 
(d

B)

IR-TV_0.5
Ours
Low2High

(c)

20 40 60 80 100 120 140
Energy (keV)

0.0

0.2

0.4

0.6

0.8

1.0

SS
IM

IR-TV_0.5
Ours
Low2High

(d)

Figure 6. Comparative analysis using PSNR and SSIM metrics of synthetic data. These metrics are
evaluated across the entire image. (a) Channel-wise PSNR for the first phantom; (b) channel-wise
SSIM for the first phantom; (c) channel-wise PSNR for the second phantom; (d) channel-wise SSIM
for the second phantom.

The results (Tables 1 and 2) indicate that our method exceeds the performance of the
Low2High and traditional iterative methods for each phantom, as measured in average
SSIM values across the energy channel. In addition, our method demonstrated comparable
performance in terms of average PSNR for the first phantom; however, for the second
phantom, the average PSNR was inferior to that achieved by the traditional iterative
reconstruction method. Furthermore, the high standard deviation of 7.9 in the PSNR
values for the IR-TV method on the second phantom indicates significant variability across
the energy axis, which may contribute to the less consistent performance compared to
data-driven approaches.

Table 1. Channel-wise averaged SSIM and PSNR of different methods for the first phantom
(mean ± SD).

Method SSIM PSNR (dB)

IR-TV_1 0.79 ± 0.16 34.4 ± 3.9
Ours 0.92 ± 0.12 33.7 ± 3.0

Low2High 0.74 ± 0.18 30.8 ± 2.7
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Table 2. Channel-wise averaged SSIM and PSNR of different methods for the second phantom
(mean ± SD).

Method SSIM PSNR (dB)

IR-TV_0.5 0.81 ± 0.21 39.0 ± 7.9
Ours 0.94 ± 0.10 36.9 ± 4.6

Low2High 0.79 ± 0.18 33.8 ± 4.5

To evaluate the denoising performance across the energy channels, ROIs were ran-
domly selected within the objects of interest, and analysis was performed on four ROIs—
two from each phantom. Each ROI was compared with the ground truth; thus, the attenua-
tion profiles of four different materials were evaluated as illustrated in Figure 7. The LAC
values were better preserved over the energy channels with the unsupervised methods
(Low2High and our approach) compared to the IR-TV method in terms of noise. The LAC
profile of the Low2High method is slightly lower than that of our method compared with
the ground truth; this shrinking and smoothness comes from the use of the filter in the
reconstruction of the Low2High method. Notably, our method exhibits a closer alignment
with the ground truth over the energy channels. Despite the presence of noise within the
LAC profile, the IR-TV method for each phantom yielded superior average PSNR outcomes.
This is because an area was analysed across the energy channels for the LAC profile,
but PSNR was averaged over the energy channels. Most importantly, with respect to the
standard deviation of the pixel values (considered noise) in the selected ROIs (as seen in
Table 3), unsupervised methods show lower values than the IR-TV method. Lower standard
deviation values indicate reduced noise, suggesting that unsupervised methods are more
effective at noise reduction, resulting in clearer and cleaner images across energy channels.
The impact of the filter employed in the Low2High method is also evident in these results.
Additionally, the IR-TV method exhibits higher noise levels due to the lack of regulariza-
tion along the energy dimension. While over-regularization could help reduce noise, it
makes the process time-consuming and less efficient. For a more detailed evaluation of the
methods’ performance, we computed the MSE between the denoised attenuation profiles
and the ground-truth attenuation profiles for the materials, which are shown in Figure 7.
We then calculated both the mean and standard deviation of the MSE across the energy
channels, and these results are presented in Table 4. While the Low2High method appears
visually smoother and has a lower standard deviation, it comes with trade-offs, as both the
averaged MSE and the standard deviation of the MSE indicate a greater deviation from
the ground truth. This suggests that it may not be ideal for more detailed tasks, such as
material decomposition, where accuracy and fine detail are critical. In contrast, our method
achieves a balance between alignment with the ground truth, as indicated by reasonable
MSE values, and effective noise reduction, as reflected by a moderate standard deviation.
This balance suggests its ability to reduce noise while preserving key material features,
making it potentially more suitable for tasks requiring precise material identification.

Table 3. Channel-wise averaged standard deviation for selected ROIs of materials.

Method Water Nitromethane Methanol Aluminium

IR-TV 0.068 0.048 0.032 0.508
Ours 0.058 0.044 0.03 0.4

Low2High 0.058 0.040 0.027 0.398
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Table 4. Mean and Standard Deviation of MSE over the energy channels between attenuation profiles
of denoised and ground-truth images for different materials.

Method Metric Water Nitromethane Methanol Aluminium

IR-TV
Mean 0.00016 0.00003 0.00013 0.00893

SD 0.00063 0.00009 0.00020 0.04477

Ours
Mean 0.00080 0.00012 0.00034 0.01280

SD 0.00458 0.00027 0.00034 0.04806

Low2High
Mean 0.00253 0.00082 0.00098 0.00701

SD 0.00720 0.00145 0.00092 0.01490
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Figure 7. Examples of the linear attenuation coefficient of different materials over the energy channels
for the synthetic data. Both axes are shown on a logarithmic scale, with tick marks manually adjusted
for clarity. (a) Water; (b) nitromethane; (c) methanol; (d) aluminium.

The reconstruction results of the biological sample are shown in Figure 8 and Figure 9,
respectively. Figure 8 demonstrates the smoothing effects in both the spatial domains for
the biological sample, depending on the selected parameter in the iterative reconstruction
method. As we discussed before, various regularization parameters (0.01, 0.035 and
0.001) are determined to examine the effect of smoothness in the spatial and spectral
dimensions. The selection of the regularization parameter critically influences the balance
between spatial and energy dimensions. A larger regularization parameter tends to produce
smoother, less detailed images in the spatial dimension but results in less noise within the
energy dimension. Conversely, a smaller regularization parameter enhances sharpness
and detail in the spatial dimension at the cost of increased noise in the energy dimension.
Therefore, to optimise the trade-off between quality in spatial and energy dimensions, 0.035
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is used for the final reconstruction for IR-TV to compare with the other methods. Figure 10b
illustrates the effect of regularization parameters on the energy dimension.

FDK IR_TV-0.01 IR_TV-0.001 IR_TV-0.035
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(a)
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0.0015

0.0020

0.0025

0.0030

(b)

Figure 8. Reconstruction result of iterative methods at energies of (a) 25 keV and (b) 35 keV. The first
column represents the reconstruction with full projection using FDK. The other three columns show
the iterative reconstruction method, the numbers in the headings indicate the alpha values selected
for TV minimisation.

In Figures 8 and 9, the first row shows axial reconstructed slices, and the second row
shows sagittal reconstructed slices, each at different energy levels (25 keV and 35 keV).
These two energy levels (25 and 35 keV) were deliberately chosen to study the spatial effects
of the iodine K-edge in the absorption spectrum. Through examination of images obtained
at energy levels of 25 and 35 keV, a significant increase in the amount of attenuation after
the K-edge was observed. This increase is indicative of the highly attenuated iodine marker
(tracer) used in the sample.

The second column in Figure 9a,b shows examples of input used during the train-
ing process, indicating that the quality of these examples is insufficient. This becomes
more evident when compared with the results of our model presented in the fourth col-
umn. The results in the fourth column visually demonstrate how our model is able to
produce effective results from this initial dataset and its capacity to improve its overall
performance. This comparison clearly highlights the robust nature of our model and its
improvements. In the data-driven approach called Low2High investigated in this paper,
the impact of the blocks used in the training process is evident; this method exhibits the
poorest performance in the spatial dimension. However, as illustrated in the third column,
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the IR-TV method achieves significantly sharper images than the data-driven approaches
in the spatial dimension.
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Figure 9. Reconstruction result of of all methods at energies of (a) 25 keV and (b) 35 keV. The first
column represents the reconstruction with full projection, and the second column represents the re-
construction with half projection using FDK. The third column represents the iterative reconstruction
method, and 0.035 indicates the alpha value selected for TV minimisation. The fourth column shows
our method, and the fifth column shows the unsupervised Low2High method.

Figure 10a,b show the absorption spectra of the ROIs selected from the lens of the
sample for all methods (ROIs are indicated by white arrow in Figure 11). In the figure, the K-
edge of iodine is clearly highlighted at 33.169 keV in the absorption spectra. Absorption
edges (K-edges) serve as critical markers in chemical identification processes. Accurate and
complete detection of these edges is crucial to the identification of materials.

As we can see in Figure 10a, the IR-TV method exhibits noise levels nearly comparable
to those of the FDK method. Noticeably, Low2High demonstrates a much smoother
profile than our method, but our method shows closer alignments. This smoothness in the
attenuation profile of Low2High is due to the effect of the filter used in the reconstruction.
This pattern is similarly observed in synthetic data experiments, indicating the general
applicability of the method to other data types. However, since we lack a ground truth, it
remains uncertain whether the attenuation profile achieved with Low2High is unbiased.
This is because it was demonstrated to be biased relative to the ground truth in the synthetic
data experiment. Figure 10c shows the result of the channel-wise CNR calculation for the
ROI in the jaw of the biological sample (ROI is indicated by a white arrow in Figure 11).
The K-edge effect is still clearly observed in the channel-wise CNR, sharply improving the
image contrast. The results presented in Figure 10a,c are validated by the strong alignment
between channel-wise CNR and the attenuation profile of the sample for all methods.
A comprehensive assessment of image quality was performed using the average CNR
calculated over energy channels. Data-driven approaches generally exhibited superior
performance compared to traditional techniques (as seen in Table 5).
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Figure 10. Attenuation profile across energy levels for the selected area from the lens in the biological
sample. The coloured line signifies the K-edge of iodine at 33.169 keV. (a) All methods; (b) iterative
methods; (c) calculations of CNR across channels for the iodine-stained jaw of the biological sample.

Table 5. Contrast-to-noise ratio averaged over energy channels.

Method CNR

FDK 6.62
IR-TV_0.035 7.55

Ours 10.51
Low2High 17.41

Lens

K-edge

FDK IR-TV OursIR-TV

Lens
Jaw

Figure 11. Three-dimensional visualisation of the biological sample. The image on the left depicts
a 3D spatial visualisation of the biological sample reconstructed with IR-TV for an energy channel.
The remaining images show a spatial 2D image slice, with the third dimension showing the energy
channels for the reconstructions obtained by FDK, IR-TV, and our approach, respectively. The K-edge
in the energy spectrum is shown with a red arrow, ROI’s are indicated by a white arrows. The y axis
in the latter images represents the energy dimension.

In order to provide a comprehensive understanding of the biological sample, Figure 11
presents a detailed 3D visualisation. The image in the first column of the figure shows a 3D
visualisation of the spatial dimension of the sample, allowing for an in-depth examination
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of its structure. The lens and jaw of the biological sample contain K-edge material (iodine),
which is clearly visible in the first column, as indicated by a white arrow. Images in the
other columns, on the other hand, illustrate the energy distribution, offering insights into
the sample’s energetic properties. Images in these columns are the reconstructions obtained
by FDK, IR-TV, and our method, respectively. In the 3D energy mapping, a spatial slice of
the sample was added to the energy profile of that dimension, and a 3D visualisation was
acquired. As demonstrated by the 3D energy mapping images, our method exhibits supe-
rior performance in reducing noise in the energy dimension compared to other methods.
The sudden increase in the energy spectrum of this marker is even more pronounced in the
visualisation of the energy dimension. This dual visualisation approach facilitates a more
thorough analysis of the biological sample’s characteristics. Considering performance in
both the spatial and energy dimensions, our approach shows promising results compared
to other methods.

5. Discussion and Conclusions

The employment of energy information in spectral CT imaging is significant, as it
enables the decomposition of materials with similar attenuation properties and enhances
the accuracy of material decomposition. However, the projection data are intrinsically
noisy because there are not many photons within each energy channel. Here, to address the
difficulty of collecting clean data, we studied the feasibility of a learning-based denoising
approach that does not require additional clean and noisy training data for two synthetic
phantoms and a biological sample. The image quality was preserved across spectral
channels in two different spectral phantoms and one biological sample without the necessity
of parameter adjustment. U-Net denoised the FBP/FDK reconstruction using a noisy
sinogram splitting strategy. The self-supervised U-Net was robust to the varying noise
levels of the different energy channels, especially the first and last energy channels.

Whilst the traditional total variation-constrained reconstruction was also found to
perform similarly well or even slightly better than our approach in the spatial dimension,
that was only achieved with significant and time-consuming parameter tuning. As the
optimal parameter is highly sensitive to the image structure, this approach would not be
feasible without knowledge of the ground-truth image and is, thus, not easily applicable
in real applications. Furthermore, it is well known that TV regularisation leads to biased
results, which can introduce further errors in the estimated spectra, which, for quantitative
applications, can lead to unacceptable errors.

In this study, we have demonstrated the application of Noise2Inverse to spectral
computed tomography using a block-based training approach with U-Net, showing that the
use of Noise2Inverse in spectral CT imaging does offer a significant improvement in image
quality. This was achieved without needing to fine tune, regularisation parameters which
is a drawback of traditional iterative approaches. Some questions remain unanswered; due
to the limited number of projections in the real-world experimental dataset, the number
of splits was set to K = 2, and this splitting strategy yielded better results than iterative
approaches. However, increasing the number of splits will increase the number of training
data we employ for denoising, which we believe will improve the performance of our
method, as demonstrated in [13]. Unfortunately, due to the limited number of projections,
this issue could not be addressed in this paper. Future studies will focus on evaluating the
performance of learned spectral noise reduction techniques across various data acquisition
strategies. In this context, the effects of variables such as acquisition time, the number
of projections, and exposure time, on spectral data quality will be examined. Crucially,
the effectiveness of energy-dimension regularization will be investigated using iterative
methods and compared with learned methods. With these future studies, we aim to provide
information that will contribute to the potential of spectral CT technology.
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