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Abstract

Example-generation tasks have been suggested as an effective way to both promote students’
learning of mathematics and assess students’ understanding of concepts. E-assessment offers
the potential to use example-generation tasks with large groups of students, but there has been
little research on this approach so far. Across two studies, we investigate students’ responses
to a particular sequence of example-generation tasks, posed either on paper or through e-
assessment. We identify a striking difference in students’ example-generation strategies and
success, for e-assessment and paper-based versions of the same tasks. This suggests the use
of example-generation tasks in e-assessment may not be straightforward, and we conclude
by discussing the implications for teaching and research.

Keywords Learner-generated examples - Digital tasks - Example spaces -
Example-generation strategies

There is a large body of work in the mathematics education literature arguing that example-
generation tasks are an effective way to develop students’ understanding of mathematical
concepts (e.g., Watson and Mason, 2005). However, these tasks are rarely used in practice
in undergraduate assessment because it can be demanding for lecturers to judge the stu-
dents’ answers, particularly with large cohorts. E-assessment presents an opportunity to use
example-generation tasks with large groups of students, where an automated system can
check numerous student-generated examples and provide feedback on a scale that would not
be practical in a manual setting.

Currently, little is known about how students approach example-generation tasks as part
of an e-assessment. Previous research has developed frameworks for analysing the range
of examples generated by students (Zazkis & Leikin, 2007), as well as the strategies used
by experts to produce examples (Antonini, 2011). These have been successfully applied by
researchers in a range of contexts (e.g., Saglam and Dost, 2016; Edwards and Alcock, 2010;
Tannone et al., 2011; Lew and Zazkis, 2019), but so far the focus has been on paper-based
tasks. We know that task format can influence students’ approaches (Lemmo, 2021), and
that e-assessment is playing an increasingly important role in undergraduate mathematics
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courses (Kinnear et al., 2022). Hence it is important to investigate how students respond to
e-assessment versions of example-generation tasks.

In this paper, our overarching aim is to investigate students’ responses to a particular
sequence of example-generation tasks, posed either on paper or through e-assessment. We
adopt a mixed-methods approach to examine students’ example generation in both settings,
in terms of the examples they generate, and the strategies used to generate them. In Study
1, we analyse a large sample of students’ written and e-assessment responses, with a focus
on outcomes and examples produced. In Study 2, we analyse students’ responses to the
same tasks during task-based interviews, to gain insight into students’ example-generation
strategies.

1 Literature review and theoretical framing

We begin with a review of three aspects of the literature on example generation: the theoret-
ical grounding in variation theory; approaches to characterising the examples generated by
students; and research on the strategies that students use to generate examples. In addition,
we review relevant literature on the comparison between paper and digital tasks, and on
students’ conceptions of functions (since this is the topic addressed by our tasks).

Variation theory and example generation Variation theory (Marton et al., 2004; Runesson,
2006) forms the theoretical basis for the focus on the role of example-generation tasks in
students’ learning (Watson & Mason, 2005). According to variation theory, learners come
to understand a particular aspect of a concept through experiencing variation of that aspect
across examples. Drawing on this theoretical framing, Fukawa-Connelly and Newton (2014)
analysed the range of examples of a concept (mathematical group) that was available to
students in an abstract algebra class. While their analysis was grounded in variation theory,
they also drew on notions described by Watson and Mason (2005), such as the example space:
the “class of potential examples” (p. 45) that a learner associates to a given concept. Watson
and Mason (2005) emphasised the situated and personal nature of these example spaces,
reflecting the influence of “task, cues and environment” (p. 76). This motivates the focus of
our study on the impact of varying the format of the task.

Characterising example spaces Students’ example spaces can be inferred from their
responses to example-generation prompts. Such inferences should be made cautiously: while
a student may not give a particular example, this “does not imply that it is not within their
accessible space” (Goldenberg and Mason, 2008, p. 189). A student’s example space can be
compared to the conventional example space as generally understood by mathematicians, or
to the collective and situated example space that is established in a given classroom or other
local context (Watson and Mason, 2005, p. 67). Zazkis and Leikin (2007) proposed a frame-
work for analysing students’ example spaces, in the context of clinical interviews where
“participants have ample opportunity to provide or construct examples, and that multiple
examples are encouraged by asking for ’another and another’ and for something different™
(p- 19). Thus, in studies such as ours, where students are asked to respond to a fixed sequence
of tasks, this type of analysis is typically not possible. Instead, students’ examples can be clas-
sified based on their mathematical properties to give insight into the collective and situated
example space. For instance, Popper and Yerushalmy (2021) classified students’ examples
of quadrilaterals into standard sub-types, considering the totality of work submitted by the
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students as a collective example space for that classroom. Similarly, Fahlgren and Brunstrom
(2023) classified students’ examples of functions according to their view of important cat-
egories within the conventional example space. We use a similar approach to analyse the
collective example space.

Example-generation strategies Another focus for research has been on the strategies that
students use to generate examples. Drawing on task-based interviews with postgraduate
students, Antonini (2006) identified three strategies:

1. Trial and error - “The example is sought among some recalled objects; for each example
the subject only observes whether it has the requested properties or not” (p. 58),

2. Transformation - “An object that satisfies part of the requested properties is modified
through one or more successive transformations until it is turned into a new object with
all the requested characteristics.” (p. 59)

3. Analysis - “Assuming the constructed object, and possibly assuming that it satisfies other
properties added in order to simplify or restrict the search ground, further properties are
deduced up to consequences that may evoke either a known object or a procedure to
construct the requested one.” (pp. 59-60)

Antonini’s (2006) classification of strategies has proved useful in other research that sought
to analyse how students respond to example-generation tasks. Iannone et al. (2011) classified
undergraduate students’ strategies after they solved tasks involving concepts that were new
to them. They found that the trial and error strategy was dominant, accounting for about
80% of all examples generated, and suggested that students’ over-reliance on this strategy
could explain why the generation tasks in the study did not lead to the learning gains that
the literature predicts (e.g., Watson and Mason, 2005). Other researchers have echoed the
finding that undergraduate students predominantly use the trial and error strategy (Edwards
& Alcock, 2010; Saglam & Dost, 2016).

However, these studies also highlighted issues when classifying undergraduate students’
strategies using Antonini’s (2006) terms (or the elaboration provided by Antonini (2011)).
Edwards and Alcock (2010) noted that some students appeared to use transformation or
analysis strategies, but with faulty assumptions or deductions. Similarly, Iannone et al.
(2011) reported that students using the trial and error strategy did not always check that
their selected example had the desired properties. Saglam and Dost (2016) highlighted two
additional aspects not captured by the individual strategies. First, several students in their
study began their work by writing out definitions of the concepts involved; while the authors
do not interpret this a distinct strategy, it appeared to help the students to work with tasks
that involved multiple concepts. Second, students often transitioned between strategies: for
instance, some students generated examples through trial and error, noticed features that
needed to be accounted for, then switched to a different strategy. This is a more sophisticated
view of trial and error, beyond (Antonini, 2011) noting that the trials can be generated “with
a precise and planned order” (p. 208).

To summarise, the current literature on example-generation strategies suggests that under-
graduate students may not use all the strategies that experts use. We, therefore, draw on and
develop, Antonini’s (2011) framework for our analysis of students’ strategies in Study 2.

Comparing paper and digital mathematics tasks The transfer of traditional pen-and-paper

assessments to e-assessment can be achieved in a variety of ways. Ripley (2009) proposed
a classification of transfer approaches, distinguishing between assessment migration and
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assessment transformation. Assessment migration involves simply replicating a task, where
the question remains unchanged except for the mode of delivery. On the other hand, assess-
ment transformation entails implementing the task in a predominantly digital manner, such
as requiring students to use applets or specific features of the digital interface to solve prob-
lems. Several studies have investigated the characteristics of each type of transfer, examining
students’ approaches and performance in these tasks. Of interest to our study is the finding of
Lemmo (2021) that even simply migrating a paper-based task to e-assessment alters students’
interaction with the task and affects their performance, showing that the migration process is
not neutral. Johnson and Green (2006) and Threlfall et al. (2007) arrived at similar findings,
emphasising that task characteristics and question types can influence students’ working
methods.

The studies discussed so far are all in the school mathematics context, and in fact, we did not
find much written about the transfer of tasks from paper to digital format at the undergraduate
level. One example close to the undergraduate context is the study by Yerushalmy etal. (2017),
which used a task to probe school students’ understanding of the definition of the tangent to
a graph. The task exemplifies Ripley’s (2009) notion of “assessment transformation” since
the students used an interface with movable points, making the technology an integral part of
the task solution. The authors found that the task provided valuable feedback to the teacher
regarding students’ conceptions about the tangent and that information gathered in this way
could be an important tool to design feedback. Yerushalmy et al. (2017) conclude that

Designing interactive e-tasks with many correct solutions that can be worked out and
expressed in different representations with mathematical tools or symbols is of signif-
icant pedagogical value. (p. 714).

It seems plausible to think that such important pedagogical value would exist also for similar
tasks designed for undergraduate students.

Function concepts The tasks that we use in our studies are based on the concepts of injec-
tivity and surjectivity of functions. We chose this topic pragmatically since it was studied
in the course where we collected data. Moreover, there has been relatively little research
published about students’ understanding of these concepts. Bansilal et al. (2017) found that
a majority of pre-service teachers relied on faulty reasoning to conclude that a given func-
tion was surjective, such as being many-to-one. Similarly, Thoma and Nardi (2019) noted
that students would often use an inaccurately recalled definition to decide whether a given
function was injective or surjective (based on a commognitive analysis of exam scripts). In
a study focused on more sophisticated concepts from abstract algebra, Uscanga and Cook
(2022) noted that students’ conceptions of injectivity and surjectivity warrant further study,
based on an analysis of textbook examples and interviews with instructors.

Students’ conceptions of piecewise functions are also relevant to our tasks. Previous
research has found that students are reluctant to work with piecewise functions (e.g., Kon-
torovich and Li, 2022). In some cases, this is due to the conception that functions are defined
by a single rule, so that a piecewise function is therefore really two (or more) functions
(Mirin, 2022). Other difficulties may stem from a conception that function graphs should be
“reasonable” (Vinner, 1983, p. 303), while piecewise functions may have graphs that have
sudden changes in behaviour.
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2 Study 1: quantitative analysis of assessment responses

We developed a sequence of example-generation prompts that students could respond to either
in traditional written format or through e-assessment. To gather responses from students, we
used a quasi-experimental design with successive cohorts of students taking an undergraduate
course in pure mathematics. This was a pragmatic approach, as we were able to embed the
tasks in relevant assessments taking place in the course, with the two different formats used
in successive years (we return to the limitations of this design in the Discussion). The set of
responses to the two formats sheds light on the collective example space (Watson & Mason,
2005) of the two cohorts of students, and also gives insight into which examples are most
accessible.
For this study, we pose two research questions:

RQ1: How did students’ performance compare across the two formats?
RQ2: How did the examples that were produced (i.e., the collective example space) compare
across the two formats?

2.1 Methods

Materials We devised the sequence of four example-generation tasks shown in Fig. 1, draw-
ing on advice from Watson and Mason (2005, p. 131) to prompt students to “make up an
example with some constraints” and to “add constraints sequentially”. We refer to the four
prompts as Task 1 to Task 4.

The e-assessment version of the task sequence was implemented using STACK (Sang-
win, 2013), with interactive graphics provided by the JSXGraph plugin.! For each task, the
software showed a grid representing [0, 1] x [0, 1], with four movable points generating a
tripartite piecewise linear function. Figure2 shows a successful attempt at Task 1. A task
designed in this way is in the category of assessment transformation (Ripley, 2009) as it
involves students using an interface (in this case the grid with the movable points) to solve
the given task.

In this case, the e-assessment design was driven by the need to provide students with an
intuitive interface for producing function graphs, while also producing output that can be
interpreted by the Maxima computer algebra system used by STACK to evaluate students’
answers. For instance, a different e-assessment design could have provided students with a
digital “paintbrush” to draw their graph,? but this would have required a more complicated
interface (e.g., to allow for erasing and tweaking the drawing), and it would be difficult to
assess the resulting sketch automatically. In our design, the four movable points provide
the facility to express a suitable variety of function behaviours, and the properties of the
example can be readily inferred from the coordinates of the four points. Thus, the tasks
were not strictly identical across the two formats: the e-assessment version provided students
with some scaffolding by providing the axes and a prototype function graph, while limiting
students to piecewise linear examples (a point we return to in the Discussion). Nevertheless,
we argue that since the example-generation prompts were identical in both formats, and both
formats allowed for a range of responses, it is reasonable to compare students’ responses
across the two formats.

! further examples of this functionality are given by Hooper and Jones (2023)

2 an example of such an applet, that is constrained to drawing polynomials of a particular degree, is available

at https://jsxgraph.uni-bayreuth.de/share/example/sketch-polynomial
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In each case, draw the graph of a function with the given properties, and label important points:

« f1:[0,1] — [0,1] has image [0, %]

o f2:]0,1] — [0, 1] has image [0, %] and is not injective.

« f3:]0,1] — [0, 1] is surjective and not injective.

« f1:[0,1] — [0, 1] is injective, not surjective, and passes through (0.2, 0.8) and (0.5,0.5).

Fig. 1 The written version of the task sequence

Drag the points so that the diagram shows the graph of a function f : [0, 1] — [0, 1] with image [0, %}

A
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.1 02 03 04 05 06 07 08 09 1

Fig. 2 The e-assessment version of Task 1. The points A, B, C and D are constrained to the grid. Note that
before manipulation, all four points default to the x-axis

Participants and procedure Participants were students at a large, research-intensive UK
university, in a first-year introduction-to-proof module that follows Liebeck’s (2018) text-
book. Most students were taking the course as a compulsory part of the first year of an
undergraduate mathematics degree, although approximately a third of the students were tak-
ing the course as an option on another programme (e.g., physics or computer science). The
course curriculum was the same for both the 2019/20 and 2020/21 cohorts, with an overall
design based on a weekly schedule of assigned reading, lectures, small-group problem-
solving classes, and assessed homework (though aspects of the course design were adjusted
to mitigate the Covid-19 pandemic; for instance, lectures took place online in 2020/21). Ethics
approval for the study was obtained through the School of Mathematics at The University of
Edinburgh, which granted administrative consent for the research team to analyse students’
anonymised responses during the normal running of the course.

The e-assessment tasks were completed by 322 of 377 students from the 2019/20 cohort.
The tasks were embedded in the week 8 “reading quiz” that students were asked to complete
online at the start of the week. Students completed the quiz unsupervised in their own time,
with a time limit of 1h once the quiz was opened (the mean time spent on the quiz overall
was 28 min). Students received automatically generated feedback from STACK only after
the deadline had passed. The best 8 of 10 weekly quiz scores contributed 5% to the course
result.

The written tasks were completed by 333 of 451 students from the 2020/21 cohort. The
tasks were included in the week 8 written assignment; the best 8 of 10 written assignments
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contributed 25% to the course result. The written assignments were also completed unsu-
pervised in students’ own time, within a 1-week period. Students received written feedback
from their tutors 1 week after submission. Students in the course are encouraged to work with
peers, and make use of online resources, but there is a clear expectation that work submitted
for assessment should reflect the student’s own understanding.

2.2 Data analysis

We reviewed all of the responses to judge their correctness and the types of examples that
were generated. For the written responses, each author independently analysed 125 students’
responses. For each example, we noted whether it was fully correct and classified the type of
mathematical function (e.g., linear, quadratic, piecewise) in order to describe the collective
example space. These judgements were subjective since students did not always write an
algebraic expression; to provide a check of reliability, we distributed the coding so that 42
students’ work was analysed by at least two authors. We achieved a high level of inter-coder
reliability on the sample that was double-coded, with a Krippendorf’s alpha value of 0.897
for correctness and 0.857 for example type (Krippendortf, 2004).

For the e-assessment responses, correctness was evaluated using the existing STACK code
that checks properties of the student answer. We also partially automated the identification
of example types, using an R script (available at osf.io/sa24w) to identify patterns of com-
mon responses. For example, if the four points did not all have distinct x-coordinates, we
categorised the example as “not a function” since it would necessarily include a vertical
segment.

2.3 Results

Our firstresearch question concerned the relative performance of the written and e-assessment
groups. Figure 3 shows that, in aggregate, students from the written group performed substan-
tially better than the e-assessment group on all four tasks. Moreover, there was a strikingly
similar pattern in performance across the four tasks in the two groups, with Task 4 being the
most difficult.

Our second research question sought details of the types of examples generated by each
group, to shed light on their collective example spaces. Here we focus on the correct examples
(for analysis of incorrect examples, see Kinnear et al., 2023). Our analysis identified common
groups of examples; these are summarised in Fig. 4 and we give further details for each task
in turn.

Task 1: image [0, %] For the written group, the vast majority of students (90%) gave the
straight line y = %x as their example.? The e-assessment group gave a more diverse array of
responses in this case, most frequently choosing monotonically increasing piecewise func-
tions. The y = %x example was also common, and relied on students realising that the points
could be dragged horizontally as well as vertically.

Task 2: image [0, %] and not injective To satisfy the non-injectivity condition, 54% of
responses from the written group used a parabola (either concave down, as shown in Fig. 4,

3 Students typically did not give an explicit algebraic formula with their response. These formulae were not
a main feature of our analysis and are only included here for brevity.
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0

Task1 Task2 Task3 Task4

Fig.3 Number and proportion of correct responses to each task from each group

or concave up). Piecewise linear graphs were also common, sometimes explicitly specified
asy = |x — %|. The remaining responses were made up of cubic curves (31 examples)
and various other more complicated curves (26 examples); for instance, one student drew
y = |4 cos2mx)|.

Responses from the e-assessment group were dominated by the “hump” shape shown in
Fig. 4, with 43 students giving the example as shown and a further 11 giving the concave-up
version. Since it was not possible to represent a parabola using the e-assessment interface,
this is perhaps the students’ best approximation. The next most common type of response
was nondecreasing, with at least one flat segment. Other common responses were a “zig-zag”
shape with segments alternately increasing and decreasing (28 examples) and variations of
the hump shape where the segment between the middle two points was not flat (24 examples)

Task 3: surjective and not injective Among the written responses, we observed a similar
mix of functions as in the previous task, with parabolas (58 %) and piecewise linear functions
(20%) dominating. The correct e-assessment responses were quite varied, but most often the
non-injectivity was due to a change from increasing to decreasing (or vice versa) resulting
in a “peak” (or “valley”) shape. Among these are 22 examples of the “hump” shape from
Task 2. Another common group of answers were monotonic with a flat segment, which were
predominantly nondecreasing (48 of the 50 examples). As with Task 2, a further common
response was a “zig-zag” shape (39 responses).

Task 4: injective, not surjective, and passes through (0.2, 0.8) and (0.5, 0.5) This
task was designed to prompt students to generate a bespoke example, since standard lin-
ear/quadratic functions cannot satisfy all the constraints. For the written group, most correct
answers were piecewise linear (72%) in contrast to the previous tasks where smooth curves
were predominant. Still, many students in the written group drew smooth curves for this task
too (62 examples). For the e-assessment group, essentially the only choice was whether to
restrict the image at the top or the bottom. The largest group of examples omitted values at
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Written E-assessment
Task 1 286 correct examples 177 correct examples
258 (90%) 84 (47%) 53 (30%)
linear increasing linear

Task 2 254 correct examples 139 correct examples
137 (54%) 57 (22%) 54 (39%) 33 (24%)
quadratic piecewise linear hump nondecreasing
|
Task 3 270 correct examples 166 correct examples
156 (58%) 55 (20%) 73 (44%) 50 (30%)
quadratic piecewise linear peak/valley monotonic
£ () ) |
1
h
(<) -
o 1
Task 4 228 correct examples 113 correct examples
164 (72%) 62 (27%) 55 (49%) 28 (24%)
piecewise linear other top end both ends

N
|
(0:5,0%)
05

Fig. 4 Overview of the collective example spaces, showing the most common types of correct examples
generated by students for each task
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the top end (55 examples), but omitting at both ends (28 examples) and only at the bottom
(24 examples) was also common.

2.4 Discussion

We found that performance on the e-assessment version of the tasks was substantially lower
than on the written version. This large difference in performance — even on simple tasks like
Task 1 — was surprising. Our analysis of the types of (correct) examples used by students
revealed clear differences in the collective example spaces elicited by the two formats. For
the written version, students predominantly used familiar types such as linear, quadratic
and cubic functions where possible. For the e-assessment version, where students did not
have access to these familiar types of function, the most common answers often appeared to
approximate the more familiar examples (e.g., the “hump” example for Task 2 approximating
a parabola).

We offer three plausible explanations for the large difference in performance. The first is
that the e-assessment version requires students to produce examples consisting of piecewise
linear functions. Our analysis of the written examples showed that students rarely used
such functions. Moreover, there is some evidence in the literature (Hohensee, 2006; Mirin,
2022) that students at this stage have difficulties working with piecewise functions. A second
possible explanation is that the students found the e-assessment interface difficult to use.
While we cannot entirely rule this out based on the available data, we note that most students
were able to produce a response. Finally, it could be the case that students tackled the tasks —
in written form and online — differently, for example by using different example-generation
strategies.

We also note two limitations of our longitudinal (in particular, repeated cross-sectional)
design. First, it is possible that the two groups of students in this study had different levels
of motivation toward the tasks. Both versions were part of assessments that contributed to
course grades, but the written assignment had a higher weight than the e-assessment version.
However, in both years, student performance on both forms of assessment was broadly
similar, with average scores across the class of around 75% each week. Second, the written
assessment took place toward the end of the week of study, while the e-assessment tasks were
set near the start (as part of a quiz on the assigned reading). Thus, the higher performance on
the written version could have been due to greater familiarity with the concepts.

The key finding from this study, of a stark difference in performance between the two
groups, provides empirical evidence of the potential for task format to influence student
performance. We designed a second study to develop a better understanding of the possible
explanations for differences between the two groups. In what follows we describe the study
and its outcomes.

3 Study 2: Qualitative analysis of task-based interviews

Our second study focused on students’ example-generation strategies as a possible explana-
tion for the differences between the written and e-assessment tasks. We carried out a series
of interviews, in person and online, during which students were asked to solve tasks 1 to 4.
For this study, we asked the two research questions:

RQI: Is there a difference in example-generation strategy use between students attempting
tasks in written and e-assessment formats?
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RQ2: What student difficulties contribute to unsuccessful attempts at example generation?

3.1 Methods

Participants were students enrolled in the same introduction to proof module as in the first
study, at the same university, but in the 2021/22 academic year. An email was sent to all 536
students enrolled on the course, with an invitation to either an in-person interview or an online
one. Nineteen students replied, 11 for the in-person interviews and 8 for the online ones. The
interviews lasted between 15 and 30 min and were video recorded. Ethics approval for the
study was obtained from the Ethics Committee of the School of Science at Loughborough
University (UK) where the second author worked at the time of data collection.

The interviewers (the first author for the in-person ones, the second author for the
online ones) used the same interview schedule, following a task-based model (Maher &
Sigley, 2020). We described the project aims, then invited students to solve the same four
tasks as in the previous study: the written version for the in-person interviews and the e-
assessment version for the online ones. The students had access to reference materials from
the course, including the definitions of functions, domain, range, injectivity and surjectivity
(see osf.io/rp7a3). The interviewer intervened either when the student seemed to pause (e.g.,
“what are you thinking about?”), or to ask for clarification regarding what the student was
doing (e.g., “how did you come up with that?”’). When the student offered a solution, the
interviewer asked whether it was correct and why (e.g., “can you explain what’s going on?”,
as in Fig. 5). This sometimes led to the student noticing an error and revising their solution to

Peter

Task 2: Draw the graph of a function f,: [0, 1] - [0,1] that has image [0, %] and is not injective

Transcript with time stamp Example Generated Analytical summaries
(I=Interviewer, S=student)

[4:09] [reading task]

[4:22] S: So injective... that means that, er. So each of |Synthesis, incorrect Student seems to
the points that are mapped, they have to have confuse injective and
at most one output, | suppose. surjective, and this

remains the case even
after consulting the
reference materials

[interviewer offers reference materials and
student consults them]
[6:43] [starts drawing axes and annotating points on the
y-axis]
[7:14] [draws the curve]
[7:24] S: | guess, something like this?
I: OK, can you explain what’s going on?
S: Er, not every element in the codomain is
mapped, so it doesn’t go... the graph doesn’t the student’s
span the whole codomain [gesturing at y=1]. understanding of those
But a point here [gesturing at the horizontal . was flawed.
line y=1/2] could be mapped onto a point, say |Prompted validation
2 there.

The strategy seems to
be Synthesis because
of the apparent
attention to the
properties, even though

Fig.5 Analysis of Peter’s attempt at Task 2. On the left-hand side is a (reduced) transcript of the interaction
with time stamps; in the middle, a picture of the student’s example is annotated with the strategy assigned by
the coder and an indication of whether it is correct; on the right is the analytical commentary
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produce a new example. In order to align the interviewing styles of the two interviewers, the
second author observed the first interview of the first author before starting their interviews
and a debriefing meeting was held afterward.

3.2 Data analysis

We began the analysis by investigating the students’ example-generation attempts in terms
of the strategies described by Antonini (2011). Our unit of analysis was an attempt to solve
one of the tasks, thus there were 76 units of analysis in total. For each unit of analysis, we
produced a transcript and an analytical summary of the content (for example, commenting
on the types of difficulties the student encountered while solving the task), as well as coding
the strategy used by the student. An example of this is shown in Fig. 5.

Our coding of example-generation strategies proceeded by triangulation analysis (Mok &
Clarke, 2015), in three stages:

1. We each selected at random one interview to analyse independently. We returned to
the original videos — either recordings of the online interviews or the video-recorded
in-person interviews — to code the example-generation strategies according to those
identified by Antonini (2011). We discussed these interviews and our coding to arrive at
a common understanding of the different strategies. From this discussion, we identified
two main difficulties.

First, some students produced a chain of examples before stopping, and could therefore
use a mix of different strategies. To address this, we agreed to note details of each example
generated by a student and to code the strategy used in each case.

The second difficulty that we encountered was that some students employed a strategy
that did not fit exactly under any of those described by Antonini (2006, 2011). In par-
ticular, we noted several cases where students re-read the definitions relevant to the task
and tried to make sense of them before using them to construct an example. We named
this strategy Synthesis to indicate an approach based on elaboration of the relevant defi-
nitions before starting to construct the given example according to these definitions. The
Synthesis and Analysis strategies are related, in that both are based on reasoning about
mathematical properties. However, in the Analysis strategy, the experts proceed deduc-
tively starting from the hypothesis that an example (the required mathematical object)
exists and deducing further properties until they recognise such an object among those in
their example space or they can construct one. Our students, on the other hand, seemed
to proceed inductively, starting from the relevant definitions and elaborating on them
(e.g., interpreting algebraic constraints graphically), before looking to find or construct
an example that may fit them. We therefore chose the name Synthesis to indicate that
students’ reasoning was proceeding in the opposite direction* to the experts in Antonini’s
(2006) study. Crucially, Synthesis goes beyond simply reading the definitions and then

4 Antonini (2011) notes that his use of “Analysis” is because the strategy is “similar to the method used by
ancient Greeks for both geometrical construction and search for proofs” (p. 208). In the context of problem-
solving, Polya (1945) highlighted a reciprocal relationship between analysis and synthesis in the writings of
Pappus, noting that “analysis is invention, synthesis, execution; analysis is devising a plan, synthesis carrying
through the plan”(p. 146). Our use of “Synthesis” likewise alludes to the reciprocality with Antonini’s Analysis:
while both strategies depend on reasoning, the deductions flow in opposite directions.
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employing one of the Trial and Error or Transformation strategies, as some of the students
in Saglam and Dost’s (2016) study did. In the case of the example-generation attempts
coded as Synthesis in our sample, students elaborated on the definitions to establish
constraints that guided their generation of an example.

2. We each coded one more interview independently, using the shared understanding of the
strategies that we had developed. We shared the coding and discussed how the strategies
were used in the interviews coded so far. At this stage, we refined the definitions of the
strategies, as summarised in Table 1.

3. We independently coded the rest of the interviews. We each coded a similar number of
interviews, ensuring that each author coded both in-person and online interviews to avoid
bias.

After the first round of coding was complete with the analytical commentary for the 76
units of analysis, the second author carried out a second round of coding focused on the
students’ difficulties (RQ2). The types of difficulties across the interviews were classified
by pattern coding (Saldafia, 2021), which allowed grouping of types of difficulties, as well
as investigating the distribution of strategy usage and effectiveness across the written and
e-assessment tasks.

We note that 32 of the 76 example-generation instances consisted of a sequence of
examples. In these instances, the student generated an example and then realised, either
by themselves or following a prompt by the interviewer, that the example did not fulfil the
given requirements and then produced another one (and at times two or three more). To
enable comparison with results from Study 1, we scored each example-generation task with
1 for a correct answer and O for an incorrect one. For sequences of examples, we scored the
last example generated by the student before any prompting by the interviewer (for instance,
Sofia’s attempt in Fig. 6 was scored 1 because the final example was correct and arrived at
without prompting from the interviewer; Porsia’s attempt in Fig. 9 was scored 0 based on the
incorrect first example, since the second example was only produced after prompting).

Table 1 Definitions of the example-generation strategies

Strategy Description Example

Trial and Error (T&E) The student tries examples from their example space to see Fig.8
whether they may fit the object requested

Transformation The student modifies an example which does not yet have all Fig.6
the required properties

Synthesis The student recalls or revises the relevant theory (e.g., the Fig.5, Fig. 7
definition of injective function) and uses their elaboration of
these definitions to guide their approach to the task

Analysis The student assumes the required object exists and uses the None
properties to deduce consequences that either evoke a known
example or a procedure to construct one
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Sofia

Task 2: Draw the graph of a function f,: [0, 1] — [0,1] that has image [0, 4] and is not injective

Transcript with time stamp
(I=Interviewer, S=student)

Example Generated

Analytical summaries

[9:20] [reading question]

[9:30] S: It's the same question as last time, but the
function needs to not be injective. Which
means, eh... injective means that there’s only
one value in the domain that maps to each
value in the codomain. So you can't have... if
it's not injective, then there needs to be two...
two values in the domain that give the same in
the codomain.

[10:10] I: Exactly. So how would you realise such a
function?

S: Well, I'm just thinking about my last one and
whether that was injective or not. Because that
was just a straight line [...] | think my last one
was injective.

[10:50] I'm just going to put in my last one, just to see if
that helps me think about it. [moves points into
place]

[11:11] S: So, the same function... isn’t going to work
for this. It's not injective, then it needs to...
there needs to be a point on the graph where
you can draw a horizontal line across it and it'll
hit the graph twice [...] it needs to change
direction at some point, basically.

Transformation, incorrect

I
09
08
o7
06
05

04
03
02
01

0.1 02 03 04 05 06 07 08 09 1~

Unprompted validation

There are some signs
of Synthesis here, but
the student’s strategy
seems to be mainly
based on whether the
previous example will
suffice or in what ways
it might fail to work.

[11:46] [moves point C down, then point B up]
[11:55] S: | would want it to look something like this.
I: Yeah. Why do you think this would work?
S: Because, | was just saying, as long as there’s
somewhere on the graph that we can get the
same y value multiple times for different x
values, then it's not injective.

Transformation, correct

0.1 02 03 04 05 06 07 08 09 1

Prompted validation

The interface may have
heightened the sense of
transformation here, as
the student moved
points around to
achieve a desired effect
(described at 11:11).

Fig.6 Sofia’s attempt at Task 2, consisting of a sequence of two example-generation instances, both of which
came from the Transformation strategy

3.3 Findings

3.3.1 Scoring the example-generation attempts

The scoring of the example-generation tasks produced the grouping in Table 2. We observe

Table 2 Scores for each student,
reflecting the number of
example-generation tasks they
completed successfully without
prompting from the interviewer
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Score Students

Written E-assessment
0 Paul Sally
1 Phoebe, Prue Serena, Steve, Sergio
2 Pamela, Peter, Philip Sofia, Stefan, Siobhan
3 Pat, Pier, Porsia, Patrick Sam
4 Padme

Note that the names are pseudonyms, that do not necessarily reflect the

gender of the participants
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that the scores reflect the findings from Study 1: students completing the written version
performed better than students completing the e-assessment version. For the e-assessment
tasks, only one student achieved a score of 3 and none a score of 4.

3.3.2 Strategy usage across attempts

To analyse the strategies used by students, and their effectiveness, we consider separately
the cases where students generated a single example and where they generated a chain of
examples.

Single-example instances There were 44 example-generation instances that consisted only
of one example. These were correct 29 times; for the remaining 15 incorrect examples, the
student either abandoned the task or was not able to explain their answer and the interviewer
moved to the following task. Table 3 shows the distribution of strategy usage and success
across the two task formats.

The Trial and Error strategy was the most used among the single-example instances — with
18 instances, 12 of which gave a correct example — but not by much. In fact, the Synthesis
strategy was used 16 times in this sample and mostly on the written version of the tasks, with
only two students using this strategy in the e-assessment version (both times producing a
correct example). While all students were given reference material from the lectures, it was
almost exclusively those in the written group who used this material to guide them (albeit
not always successfully) to the construction of the required example. When the Synthesis
strategy was not successful, this was because the student constructed an example starting
from inaccurate premises or drew inaccurate inferences. One example of this is the solution
to Task 2 proposed by Peter (Fig. 5). During the interview, Peter confused the definitions of
injective and surjective, even after consulting the lecture notes. From this misunderstanding,
they constructed an example of an injective function whose image is [0, %] and not [0, 1] as
the task requested.

Similarly, the Transformation strategy was used predominantly by students in the written
group (successfully in most cases). This was surprising as we anticipated that the STACK
interface would encourage students to transform examples by moving points on the grid.
Chains of examples There were 32 instances of chains of examples. These were more
common among the e-assessment group (18 out of 32, compared with 14 out of 44 for the
written group). Only six of the 32 chains were coded correct, while 16 chains ended with a
correct example only after prompts by the interviewer. This low number of correct instances
is not surprising: a chain typically begins when the student’s first example is not correct
(we did observe one case where the student spontaneously changed their own correct first
example).

Table 3 Distribution of example-generation strategies and outcomes for instances when a single example was
generated

Trial and error Transformation Synthesis

Correct Incorrect Correct Incorrect Correct Incorrect
Written 7 2 6 1 8 6
E-assessment 5 4 1 2
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The most common way for a chain to end was with a final example obtained through the
Transformation strategy, with 22 occurrences out of the 32 chains. In four of these cases,
students generated a correct example at the end of that chain without prompts, while in
a further 13 cases, the final example was correct but produced only after prompts by the
interviewer (such as in Fig. 6). The remaining five cases ended with an incorrect solution.

Another chain of strategies adopted in four instances consisted of a series of T&E attempts,
with the generated examples being quite disconnected from each other. All four instances
were in the e-assessment group, and only one of the attempts was eventually successful
(following prompting from the interviewer). This repeated use of T&E may have indicated
that the student was confused as to what the exercise required.

We notice that nine out of the 32 sequences started with a Synthesis strategy. This strategy
was implemented in these cases with incorrect premises, and may indicate that the student
did not have a clear grasp of the definitions involved in the task. For instance, Philip consulted
the definition of injectivity and tried to interpret it graphically, but confused the roles of x
and y (which led to drawing the S-shaped first example in Fig. 7).

Philip
Task 2: Draw the graph of a function f,: [0, 1] - [0,1] that has image [0, %] and is not injective

Transcript with time stamp Example Generated Analytical summaries
(I=Interviewer, S=student)

[4:08] (Starts off looking at definition of injectivity; Synthesis, incorrect
seems to get muddled with x’s and y’s.)

[4:41] S: | couldn’t have a graph that had multiple... x...
multiple... y values with different values of x.

[4:59] S: So | couldn’t have something like this [draws S
shape] because then | would have multiple y
values for the same value of x here. I'd have y1
and y2 are the same [annotates these points].

[5:17] S: No, wait, hang on. No, y is the same. [draws
new set of axes]. So | suppose this one here
[indicates example of y=x/2 from Task 1] is
injective, is 1-1, the first graph.

The first example here
is not a function, but the
student corrects
themselves quickly.

Unprompted validation

[conversation with interviewer about the The student reasons
properties of the Task 1 example] based on the previous
[6:20] I: OK, so the one that you've drawn for the first example, but returns to
task was injective [S: yes] but for this task the definition when
we're looking for one that's not injective. producing the next one.

. ) Synthesis, incorrect
[6:27] S: Ah, right. [Student re-reads the question and

consults the definitions again]

[6:38] S: So | have f(x) equalling f(x’) but | have x not
equalling X’ [while writing this down]

[6:50] S: So | have f(x) and f(x’) here; x here and x’ here
[annotates these on the axes]

[7:10] S: So, we have something like that [draws o
parabola shape], in the interval 1 and a half. ~ |Unprompted validation of
So f(x) equals f(x'), and that is x and that is x'. | Not injective”.

And that one’s not injective. Prompted to consider

[7:35] I: OK, so that's the “not injective” part. Are you |other properties; student | The student seems to
happy with everything else? says they are satisfied view the domain and

[7:44] S: So we're still in the same interval, and we've image r'equwements’as
still got the same image. So as long as | keep constraints that don’t
under a half fadds dotted line at y=1/2 and necessarily have to be
annotates it] and 1 [adds dotted line at x=1], | met exactly (“as long as
think I'm still complying with the rest. I keep under a half”).

Fig.7 Analysis of Philip’s attempt at Task 2
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3.3.3 Difficulties with example-generation tasks

The second round of analysis identified a number of difficulties that students encountered
in solving the tasks. Many of the attempts failed because the student did not attend to all
of the requirements of the task. For example, for task 3, students were supposed to find a
function (first requirement) from [0, 1] to [0, 1] (second requirement regarding the domain
and codomain of the function) which was surjective (third requirement), and not injective
(fourth requirement). Some students attended to only one or two of the requirements, as we
can see in the case of Sally’s answer to Task 2 (Fig. 8).

Another common difficulty was with notation; for instance, many students confused the
interval notation [0, 1] with the notation for a point (0, 1) or had difficulties in coordinating
the abstract representations of functions that appeared in the lecture notes (for the material
students were given during the interview see osf.io/rp7a3). Finally, some students misunder-
stood what the task asked for, for example looking for injective functions when the tasks
asked for non-injective functions. The last type of difficulty is a logic one: three students
equated non-injective to surjective (or non-surjective to injective). We observe however that
none of these difficulties could be predominantly seen in one for the online or written groups,
with all students but one showing some of these difficulties some of the time.

This last stage of the analysis confirms that the two groups of students displayed similar
difficulties with the tasks, so the marked difference in achievement observed in both studies
may come from characteristics of the task format. Indeed, the only difficulty that was unique
to one group concerned the use of the e-assessment interface. While some students said
that they had used this type of graphical interface before, for others it took some time and
experimentation before they could see how to move the points around to create piecewise
linear functions.

Sally
Task 2: Draw the graph of a function f,: [0, 1] - [0,1] that has image [0, *2] and is not injective
Transcript with time stamp Example Generated Analytical summaries
(I=Interviewer, S=student)
[7:30] S: it is a non injective. Injective — is that every Trial and error, incorrect
different value of x has a different value of y? s
I: Yeah, and this needs to be not injective. -
[7:43] S: Yeah, so a value of x... o
07
[moves points A, B, C, D into position] 0s
[7:52] S: maybe like this? :*
I: Yeah, so let's see all the... the function needs | ..
to go from [0,1] to [0,1] with image [0, 2], and | o2 M.“—o o When bromoted to
it needs to be not injective. s validatz thepstudent
[8:05] S: Yeah, so... if values of x are 0.1 and 0.3, we el ol el ol focuses'omy on the
have the same value of y which is 0.1 [I: yeah] |prompted validation condition of non-
and similarly the case for C and D. injective

Fig. 8 Analysis of Sally’s attempt at Task 2. In her final answer, Sally has attended to the non-injective
requirement but not to the image requirement which was supposed to be [0, %]
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3.4 Discussion

The results of our task-based interviews with 19 students were consistent with the pattern
we observed in Study 1: students achieved much more success with the written versions of
the tasks compared with the e-assessment versions. This study was also designed to examine
reasons behind the difference in student performance between the two versions, in terms of
students’ use of example-generation strategies (RQ1) and the difficulties they encountered
with the tasks (RQ2).

Regarding RQ1, we found that while our participants did use the Trial and Error and
Transformation strategies, they did not use the Analysis strategy in the same way as the experts
in Antonini’s (2006) study. Instead, we observed students using a strategy that we named
Synthesis. The absence of Antonini’s (2006) Analysis strategy may be related to the well-
documented difficulty that students have with abstraction. One of the coping mechanisms
observed in previous research is that students reduce the level of abstraction of problems
in order to be able to make sense of them (Hazzan, 1999). Employing the Analysis strategy
entails assuming that an abstract object with the required properties exists, and then deducing
more properties until the actual object is found. This level of abstraction may just be too
much for students starting their mathematics degree. Our findings showed that the example-
generation strategies of experts did not transfer exactly to describing novices’ approaches. A
key contribution from our study is the identification of a new strategy — Synthesis — used
extensively by students, that may help us to understand novices’ example generation.

For our analysis of students’ example-generation strategies, we distinguished between
cases where students generated a single example or a chain of examples. For the single-
example cases, we found that the Trial and Error and Synthesis strategies were used a similar
amount (18 and 16 times respectively), while in previous studies, the Trial and Error strat-
egy was predominant (e.g., lannone et al., 2011; Antonini, 2011). The frequent use of the
Synthesis strategy that we observed may indicate that the students’ example spaces were
not yet sufficiently rich to support Trial and Error, or that they were not yet familiar with
the definitions and their implications. For the cases where students generated a chain of
examples, we noted that these were most common among the e-assessment group and only
rarely successful. The low success rate is perhaps explained by the widely observed phe-
nomenon that students find it difficult to review their own work (e.g., Selden and Selden,
2003; Kontorovich, 2019).

RQ2 concerned the factors affecting student performance in tasks, and we observed that
the students’ difficulties aligned with existing literature. The students had difficulties with
notation (see also Selden, 2012), they often did not attend to all requirements of the task,
and in some cases they drew incorrect logical inferences (such as equating non-injective to
surjective, see also Weber, 2001). However, these difficulties were observed in both groups,
making it unlikely that they alone explain the difference in outcomes.

We note three aspects of the design of the study that could affect comparisons between
the two groups. First, we did not seek to ensure the groups were balanced in terms of prior
mathematics attainment, so it could be that the differences we observed were due to the
makeup of the groups. However, we had no selection criteria for the groups, and we observed
similar difficulties related to the mathematics concepts involved in the task between the two
groups. Second, the interviews for the two groups were conducted by different interviewers,
and it could be that our interviewing technique was so different that it yielded different
outcomes. We believe this is unlikely as the interviewers designed the interviews together
and great care was taken to achieve a consistent interviewing style, although, of course, it
would be impossible to guarantee that no difference between interviews was present. Third,
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the lower performance of the e-assessment group could be due to difficulties with using the
interface, as noted in the discussion of Study 1. However, the students had time during the
interviews to familiarise themselves with the interface, and all students managed to produce
examples.

We suggest two more plausible accounts for the differences in performance between the
two groups in this study. First, as noted in the discussion of Study 1, the written group was
able to use familiar examples (e.g., parabolas) while the e-assessment group was forced to
operate with a restricted example space of piecewise linear functions. Students were perhaps
unable to make the transfer from a known example to an example with the same characteristics
but represented by a piecewise linear function. A second explanation for the differences in
performance lies in the types of example-generation strategies used by the two groups. We
found that the e-assessment group made much less use of the Synthesis strategy than the
written group. This could reflect a general tendency for students to engage with e-assessment
tasks in a different way to written work. Previous research has found that undergraduate
students often engage passively with e-assessment tasks, relying on the software to check
answers (Dorko, 2020); as one student explained, “When you do it on paper you do it more
properly” (Rgnning, 2017, p. 101).

4 General discussion

Across two studies, we investigated how students responded to the same sequence of example-
generation prompts, in either written or e-assessment format. Our main findings were that
students were much more successful with the written version of the tasks than the e-
assessment version and that they employed different strategies in each case.

Our studies had some limitations concerning their longitudinal nature and the timing of
the data collection. However, the similar pattern of results across both studies increases our
confidence that the difference in outcomes is best explained by the different modalities of
the tasks. A further limitation is that our studies were based on a single-task sequence. The
nature of the task can influence the example-generation strategies that may be employed; for
instance, we designed Tasks 2 and 3 to invite Transformation. It may also be that our tasks
were too simple to prompt the use of the Analysis strategy. Future research could investigate
different topics and tasks, to explore how the design of tasks affects the range of strategies
employed to solve them.

Our findings about students’ example-generation strategies raise a question for under-
graduate teaching: to what extent should students learn the Analysis strategy? lannone et
al. (2011) suggested students’ reliance on Trial and Error might explain the unexpectedly
low learning gains from generating examples; students may only benefit when employing
more expert-like strategies. On the other hand, this could be an instance where students
lack “the knowledge, experience, or ability to engage in the activities that are productive for
mathematicians” (Weber et al., 2020, p. 10), and therefore encouraging students to use other
approaches (such as the Synthesis strategy that we identified) may be more worthwhile.

It seems that the promise of example-generation tasks as a way to help students learn has
yet to be fully realised. Closer consideration of the way that students approach these tasks
(across a range of topics) may help to unlock that potential. Our findings also demonstrate
that the transfer of paper-based example-generation tasks to e-assessment is not neutral, with
students adopting different strategies in each case. Further work is needed to explore how
e-assessment can be used most effectively to enrich students’ example spaces.
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Appendix: Further examples of student work

Porsia

Task 1: Draw the graph of a function f;: [0, 1] - [0,1] with image [0, 2]

Transcript with time stamp
(I=Interviewer, S=student)

Example Generated

Analytical summaries

[2:15] (Student reads the task and draws the Cartesian
axes; spends some time trying to recall the
definition of image and consulting slides from
the lectures).

[4:43] S: OK, so of course it's going to be smooth,
however, so... (draws the segment in the first
picture) it will kind of, just, end at %2 however.

(Student asks if the function must be linear;
interviewer notes the task only asks for “a
function”).

S: OK, let's go for a nice linear function, it's quite
easy. And so, yeah, because the image... yes
because the image is... | guess you could then
contract the scales a bit, just so it ends at 2,
but yes, it would kind of end at the point (0,1/2)
(annotates the point (0, %3)).

[5:29] I: Ok so do you want to talk me through all the
parts of the question ...explain why you are
happy with that.

S: Ok so we are given this function and we are
given that it has domain [0,1] and we know that
maps to this subset of [0,1] erm... oh my, | did
it the other way [...] so a function that maps
[0,1] to codomain [0,1] but our image is [0,1/2]
... so at least | think of the image as [...] what
has been realised in our graph.

[6:33] S: Like, for example when | am thinking of a
function like x2 (writes f(x)=x"2 and sketches
its graph) so our codomain can be all the real
numbers but our image is the positive reals, so
the image is what'’s actually being realised by
the graph.

[6:55] I: Ok so can you point that out to me in your
graph? Where you're seeing that?

Trial and Error, incorrect

The interviewer prompts a
check by asking the
student to check the
definition against the
graph produced.

Student draws a graph
straight away — after
some thinking they
consult the notes and
slides.

The first confusion is
that the student thinks
of a smooth
(continuous?)
function.

[7:00] S: Where I'm seeing that? OK... | have to change
our graph. [... ] So actually, maybe what would
be better... is, instead of having this weird half-
interval — if | may start over again...

[7:26] S: (crosses out the first graph — draws new
Cartesian axes and labels the x- and y-axes)
this is 0, this is 1, this will be ¥2. Then | think
something like this (draws the second graph of
the straight line) makes actually more sense.

[7:36] S: Because then you actually... what | even
forgot is, every function must map all of its
domain, otherwise you don'’t include stuff in the
domain. So this (pointing at the first example)
is already wrong, | can see, because (pointing
at 1 on the x-axis in the first example) what
does 1 map to? Right, so? Here 1 actually
maps to something. And that is 2. And we
have 0 maps to something 0. Eh, yeah. | think
that this one is right.

Transformation previous

graph

l N\
P
o [

A

Correct example, but only
following a prompt from
the interviewer

After the conversation
about images, the
student changes their
mind and finds a better
example, one that fulfils
the requirements of the
task.

Issue with the domain
in the previous
example, only noticed
after attending to the
image.

Fig. 9 Analysis of Porsia’s attempt at Task 1, which included a chain of two examples being produced. The
second example was produced after prompting from the interviewer, so this attempt was assigned a score of
0 based on the example that Portia generated before prompting from the interviewer
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