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Abstract
A new hierarchy of lasting gravitational-wave effects (the higher memory
effects) was recently identified in asymptotically flat spacetimes, with the
better-known displacement, spin, and center-of-mass memory effects included
as the lowest two orders in the set of these effects. These gravitational-wave
observables are determined by a set of temporal moments of the news tensor,
which describes gravitational radiation from an isolated source. The moments
of the news can be expressed in terms of changes in charge-like expressions
and integrals over retarded time of flux-like terms, some of which vanish in the
absence of radiation. In this paper, we compute expressions for the flux-like
contributions to the moments of the news in terms of a set of multipoles that
characterize the gravitational-wave strain. We also identify a part of the strain
that gives rise to these moments of the news. In the context of post-Newtonian
theory, we show that the strain related to the moments of the news is respons-
ible for the many nonlinear, instantaneous terms and ‘memory’ terms that
appear in the post-Newtonian expressions for the radiative multipole moments
of the strain. We also apply our results to compute the leading post-Newtonian
expressions for the moments of the news and the corresponding strains that
are generated during the inspiral of compact binary sources. These results
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provide a new viewpoint on the waveforms computed from the multipolar
post-Minkowski formalism, and they could be used to assess the detection
prospects of this new class of higher memory effects.

Keywords: memory effect, gravitational waves, post Newtonian expansion,
Bondi Sachs formalism

1. Introduction

In 1962, Bondi et al [1] published a study of the solutions of Einstein’s equations far from
an isolated and radiating axisymmetric source, which were written in a set of well adap-
ted coordinates (Bondi coordinates). Specifically, outgoing Bondi coordinates are based on a
retarded time variable u, an areal radius r, and angles on a unit two-sphere. The work of [1] was
generalized by Sachs [2] to spacetimes without axisymmetry soon thereafter. Several novel
features of these asymptotically flat spacetimes were revealed by these works [1, 2]:

(i) Einstein’s equations in these coordinates can be solved hierarchically with initial data
on a null hypersurface of constant u and boundary conditions imposed on the metric as
r→∞.

(ii) The solutions of these equations demonstrated there is a news tensor with two independent
components that characterizes the gravitational radiation emitted from the isolated source
and causes the mass of the source to decrease when it is non-zero.

(iii) The asymptotic symmetry group that preserves the leading-order metric in an expansion
in 1/r and the Bondi gauge conditions was determined to be an infinite-dimensional gen-
eralization of the ten-dimensional Poincaré group known as the Bondi-Metzner-Sachs
(BMS) group.

Much like the Poincaré group, the BMS group admits Lorentz transformations, but the BMS
group also allows for ‘angle-dependent translations’ called ‘supertranslations’ that include
the four-dimensional spacetime translations of the Poincaré group as a subgroup. It is the
supertranslations that make the BMS group infinite dimensional.

The BMS formalism has played an important role more recently in studying another facet of
gravitational radiation, the gravitational-wave memory effect (also referred to as the displace-
ment memory effect). Thememory effect is a lasting gravitational-wave strain that persists after
the waves pass by an observer far from an isolated source, and it produces a(n in principle)
measurable relative displacement of initially comoving, freely falling test masses. It was ori-
ginally computed in contexts other than the BMS formalism and different astrophysical sources
of the memory effect were identified over the course of several decades. The so-called linear
(or ‘ordinary’ [3]) part of the effect was first computed by Zeldovich and Polnarev in 1974 [4],
although the term ‘memory effect’ was only introduced later by Braginsky and Grishchuk [5].
The nonlinear (or ‘null’) portion of the effect was calculated by Christodoulou [6] and in the
context of the multipolar post-Minkowski formalism by Blanchet and Damour [7].

In the BMS formalism, the mathematical expressions that give rise to the linear and nonlin-
ear memory effects appear clearly in one of the asymptotic Einstein equations (the same one
that was used by Bondi et al [1] to compute the well-known mass-loss formula). Moreover,
the BMS formalism allows for the memory effect to be interpreted in terms of the BMS
supertranslation symmetries and the corresponding charges conjugate to these symmetries,
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the supermomenta [8, 9]. Specifically, the component of Einstein’s equation from which the
memory can be computed contains equivalent information to the flux-balance laws for super-
momentum [10, 11]. The existence of the memory effect can then be understood, in this con-
text, as a consequence of the supermomentum balance laws. Moreover, the lasting strain asso-
ciated with the memory effect exists because the initial and final ‘canonical’ rest frames before
and after the waves differ by a supertranslation [10–12].

The BMS formalism has also allowed other types of memory effects to be identified.
Pasterski et al [13] deduced the existence of a new memory effect related the fluxes of
angular momentum from the source (see also [12, 14]), which was called ‘spin memory.’ A
closely related memory effect corresponding to the flux of the electric-parity part of angular
momentum, called ‘center-of-mass (CM) memory,’ was identified not long after [15]. Both
of these memory effects could also be interpreted in terms of flux-balance laws of exten-
sions of the BMS group: in particular, the extended BMS group proposed by Barnich and
Troessaert [16, 17] or the generalized BMS group of Campiglia and Laddha [18, 19]. Unlike
the displacement memory effect associated with supermomentum fluxes, the spin and CM
memories were related to lasting changes in the time integral of the shear (which produces
part of the lasting displacement of freely falling test masses when the test masses are no longer
initially comoving [20]). In this case, however, there is not a corresponding interpretation of
the memory effects as arising from the initial and final canonical rest frames of the system
differing by a generalized or extended BMS transformation [21].

While the three memory effects (displacement, CM and spin) have close connections with
the symmetries and conserved quantities of the BMS framework and its extensions and gen-
eralizations, there are a large class of lasting gravitational-wave phenomena, called ‘persistent
observables’ by [20], which did not need to be computed in the context of asymptotically flat
spacetimes and did not have obvious relationships to symmetries and conserved quantities.
One of the observables of [20], the curve deviation, is a generalization of the (in-principle)
procedure used to measure the memory effect. Specifically, it allows the test masses that are
used to measure the relative separation to be in relative acceleration rather than freely falling,
and they are no longer assumed to be initially comoving. The relative separation will change
because of both the initial relative velocity and the relative acceleration, but once these kin-
ematical effects are removed, there is a residual change in the final relative separation that
depends on the spacetime curvature and its time integrals, as well as the initial separation,
velocity, acceleration, and all initial time derivatives of the acceleration. This residual change
was what was described as the curve deviation observable.

The curve deviationwas then computed in asymptotically flat spacetimes in the BMS frame-
work in [22]. In this context, the leading-order expression in 1/r for the curve deviation could
be written in terms of a set of temporal moments of the news tensor, which are closely related
to the Mellin transforms of the news computed in [23]. The zeroth moment of the news is
simply the displacement memory; the first moment of the news is related to the ‘drift’ (or, in
the older terminology of [20], ‘subleading displacement’) memory, which has the spin and
CM memories as its magnetic and electric parts on the sphere; and the second moment of the
news is related to what was named the ‘ballistic’ memory in [24]. It was demonstrated in [22]
that these moments of the news could be expressed in terms of changes in charge-like quant-
ities (expressions that did not vanish when there was no radiation) and retarded-time integrals
of fluxes (where the integrand vanishes in the absence of radiation). The work of [23, 25]
considered the connection between these charge-like quantities and charges that form a rep-
resentation of the loopw1+∞ algebra that appears in the celestial holography program (see [26]
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for a review) and in the context of the Weyl-BMS extension of the BMS group [27–29]. The
curve deviation as computed in [22] then may ultimately be constructed from quantities that
arise from flux-balance laws that are related to symmetries.

In this paper, however, we will put a greater emphasis on computations of these moments of
the news in terms of multipoles of the gravitational-wave strain and in the context of an approx-
imation method that allows these moments to be determined for astrophysical sources of grav-
itational waves. We also compute time-dependent gravitational-wave signals that are related to
these moments of the news, which are quantities that can be measured more straightforwardly
by existing gravitational-wave detectors, such as LIGO, Virgo and KAGRA. To do so, we first
define slightly different moments of the news from those used in [22]; these new moments
are just repeated integrals of the news over retarded time and have a simpler connection to the
corresponding gravitational-wave signals. These moments of the news and gravitational-wave
signals are what we refer to as ‘higher memory effects,’ the phrase that appears in the title of
this paper.

These moments of the news have flux and charge contributions, and we will focus on the
flux contributions in this paper. For higher moments of the news, the flux terms involve an
increasing number of integrals of fluxes that have appeared in lower moments of the news;
throughout this paper, we will focus on the ‘new’ parts of the fluxes, which do not appear
in the expressions for lower moments of the news. These fluxes can be written in terms of
products of the shear and news (and their angular derivatives), andwe derive general multipolar
expressions for these new fluxes in terms of a set of radiative multipole moments of the shear.
Starting at the second moment of the news, we also compute the multipolar expansion of
‘pseudo-fluxes’ (quantities that depend on the shear or other so-called ‘non-radiative’ Bondi
metric functions). We compute the fluxes and pseudo-fluxes necessary to determine the second
moment of the news; however, our results could be extended to compute higher moments of
the news.

The general multipolar results in this paper are then applied to understand features of the
post-Newtonian (PN) expressions for the gravitational waveform for general PN sources. In
particular, we demonstrate that up to a total second time derivative, the instantaneous and
memory terms in the 3.5 PN-order expressions for the radiative mass quadrupole and octupole
multipole moments as a function of the canonical moments (see [30]) are equivalent to the
gravitational-wave memory signals that arise from the zeroth, first, and second moments of
the news. This provides a new perspective on the relationship between the Bondi-Sachs and
multipolar post-Minkowskian framework that has been investigated recently in [31, 32].

We also use the multipolar expansions to compute the leading PN expressions for the
moments of the news (and their corresponding gravitational-wave signals) that are generated
by the leading gravitational-wave strain produced during the inspiral of nonspinning compact
objects on quasicircular orbits. We recover the leading-order non-oscillatory effects for the
nonlinear displacement and spinmemory effects given in [14, 33], respectively, which are com-
puted from the leading PN oscillatory waveforms without memory. We also compute ‘oscillat-
ory memory’ terms, which are nonlinear contributions to the oscillatory waveform modes of
the strain that arise from the same flux and pseudo-flux terms used to compute the more famil-
iar non-oscillatory memory effects. Our PN calculation of the oscillatory CMmemory corrects
the result in [15]; however, we also complete calculations of the non-oscillatory and oscillatory
displacement, spin and CM memories that we believe were not computed previously. For the
second moment of the news and the corresponding strain, the oscillatory memory terms prove
to be larger than the non-oscillatory terms. Since the gravitational-wave signal (the strain as
a function of time) is the observable that could be measured by gravitational-wave detectors,
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the oscillatory memory could be the easier to detect. However, because we compute the PN
expressions during the inspiral only (we would need to use numerical relativity waveforms to
cover the merger and ringdown phases; see [34]), we do not give quantitative estimates of the
detection prospects here, as they would be underestimates due to the truncation of the signal.

The remainder of this paper is organized as follows: We review the Bondi-Sachs formalism
for vacuum, asymptotically flat spacetimes in section 2. In particular, we write the evolution
equations for the Bondi metric functions in terms of a set of convenient scalar, charge-like
quantities, from which we compute expressions for moments of the news hierarchically. The
details of these definitions and calculations of the moments of the news are given in section 3.
The expressions for the flux contribution to the moments, when expanded in terms of the
multipole moments of the shear, are given in section 4. In section 5, we compute the first
few leading PN-order contributions from the moments of the news and their corresponding
contributions to the shear. We also show how the PN expansion in [30] can be understood in
terms of contributions from the higher memory effects (moments of the news) in that part.
Next, in section 6, we determine the PN orders and contributions to the waveform of the flux
and pseudo-flux terms for non-spinning compact binaries in quasi-circular orbits. We discuss
our results and conclude in section 7. A few supplementary results are summarized in four
Appendices.

The notation and conventions in this paper are as follows: We use the mostly plus metric
signature, and except when explicitly describing the post-Newtonian order of certain terms, we
use geometric units withG= c= 1. For spacetime coordinate indices, we use Greek letters (α,
β, etc), for spatial indices we use Latin letters (typically) from the middle of the alphabet (i, j,
etc), and for indices on the two-sphere at infinity we use capital Latin letters (A, B, etc).We also
introduce on some quantities a label I= B or E to denote the parity of a multipolar quantity
(which we put in a font without italics, to avoid confusion with two-sphere indices). Following
a convention from the post-Newtonian literature, we do not always raise or lower spatial indices
in the Einstein summation convention. This convention does not lead to significant ambiguities,
as we use a Cartesian coordinate system in which the spatial metric is δij in the context of these
PN calculations.

2. BMS formalism

The BMS formalism (see, e.g. the review [35]) is frequently used to study asymptotically
flat spacetimes, because the coordinates are well adapted to outgoing radiation. We denote
our Bondi-Sachs coordinates by xα = {u,r,θA}. The variable u is the retarded time, and the
u= constant surfaces are null (i.e. the dual vector kα =−(du)α is null and normal to these
hypersurfaces). The angular coordinates are represented here by θA, with A, B being coordinate
indices on the two-sphere. These angular coordinates are also constant along the null rays to
which kα is tangent: kα∂αθA = 0. Finally, r is an areal radius, in the sense that the area of
surfaces of constant u and r is proportional to r2 and independent of u. The above constraints
define Bondi gauge, and they imply

grr = 0, grA = 0, det [gAB] = r4q
(
θA
)
, (2.1)

where q is a function of only the coordinates θA on the 2-sphere.
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2.1. Metric, Einstein equations, boundary conditions, and expansion of the metric

In this work, we use the following form of the Bondi metric, which is based primarily on the
notation of [22]:

ds2 =−
(
1− 2V

r

)
e2β/rdu2 − 2e2β/rdudr+ r2HAB

(
dθA− UA

r2
du

)(
dθB− UB

r2
du

)
. (2.2)

The determinant condition in equation (2.1) for this metric can be written in the form
∂r det[HAB] = 0.

The metric functions are obtained by solving Einstein’s equations, subject to initial data
on a null hypersurface (and additional boundary data on a prescribed worldtube). Einstein’s
equations in these coordinates take the form of hypersurface equations (those that can be solved
on surfaces of constant u) and evolution equations (those that prescribe how to evolve data
between different hypersurfaces of constant u); see [35] for a review. In vacuum, the hyper-
surface equations are those arising from the vanishing of the following components of the Ricci
tensor: Ruα = 0. These partial differential equations can be solved hierarchically: β is determ-
ined through a radial integral of terms involving the two-metric HAB; UA is computed from
a similar integral involving β and HAB; and V is obtained from an integral that involves the
fields β, UA andHAB. The evolution equations (which come from the components of RAB = 0
that are trace-free with respect toHAB) are typically treated as an evolution equation involving
the trace-free part of ∂uHAB, but they can also be interpreted as a hypersurface equation for
this quantity [22].

The contracted Bianchi identity (specifically the β = u and β = A components of∇αRα
β =

0 in vacuum) gives rise to the constraints ∂r(r2e
2β
r Rru) = 0 and ∂r(r2e

2β
r RrA) = 0, which imply

that the Rru and RrA components of the vacuum Einstein equations are satisfied everywhere,
if they are satisfied on any finite worldtube or in the limit r→∞. Thus Rru = 0 and RrA = 0
are known as the supplementary equations, as compared with the hypersurface and evolution
equations, which together are referred to as the main equations. When the main equations are
satisfied, the β = r component of the Bianchi identity implies (H−1)ABRAB = 0, which shows
that the trace part of RAB = 0 is not an independent equation. The main and supplementary
equations then determine all of the metric functions in the Bondi gauge.

To obtain the metric of an asymptotically flat spacetime, additional boundary conditions on
the general metric functions in equation (2.2) need to be imposed as r→∞. The conditions
considered by Bondi and Sachs are given by

lim
r→∞

β

r
= lim

r→∞

UA

r
= lim

r→∞

V
r
= 0, lim

r→∞
HAB = hAB , (2.3)

where hAB is themetric on the unit 2-sphere. In the expressions throughout the rest of this paper,
wewill use hAB and hAB to raise and lower indices of tensors with 2-sphere indices, respectively.
With these boundary conditions, the metric can be expanded in 1/r, and the hypersurface
equations can be solved sequentially to determine β, UA and V in terms of the expansion of
HAB and its derivatives, as well as some functions of integration that do not depend on r. It is
then convenient to write β, UA and V in a manner that highlights the leading order behavior
in 1/r of these functions when subject to the boundary conditions (2.3) and the restrictions on
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HAB imposed by the determinant condition of Bondi gauge:

β =
1
r
β̃
(
u,r,θA

)
, (2.4a)

V= m
(
u,θA

)
+

1
r
M
(
u,r,θA

)
, (2.4b)

UA = UA
(
u,θB

)
+

1
r
VA
(
u,θB

)
+

1
r2
ΥA
(
u,r,θB

)
, (2.4c)

HAB =

√
1+

CCDCCD
2r2

hAB+
1
r
CAB
(
u,r,θC

)
. (2.4d)

Here,m (themass aspect) and VA are functions of integration of the hypersurface equations
for V and UA, respectively, and thus are functions of u and θA. The functions β̃, M, and
ΥA depend on all four coordinates, and they admit an expansion in 1/r starting at O(1); the
coefficients in this expansion can be written in terms of the expansion of HAB, its derivatives,
and the other functions of integration.

The determinant condition (which determines the form of equation (2.4d)) implies thatHAB,
the angular part of the metric, can be written entirely in terms of a symmetric, trace-free3 (STF)
tensor CAB. The 1/r part of the expansion of CAB vanishes in vacuum [12], and we write the
expansion of it in powers of 1/r using the notation of [22]:

CAB = CAB
(
u,θC

)
+

1
r2

∞∑
n=0

1
rn

E
(n)
AB
(
u,θC

)
. (2.5)

The coefficients E
(n)
AB in the expansion (which, following [23], we refer to as the ‘higher Bondi

aspects’) evolve with retarded time according to evolution equations; however, the evolution
of the leading order term CAB (the shear) remains unconstrained. The time derivative of the
shear can be freely specified, and it is known as the Bondi news tensor NAB = ∂uCAB.

In the literature, the integration constant VA is conventionally written in terms of NA (the
angular momentum aspect), defined as

NA
(
u,θB

)
≡−3

2
VA+

3
32

DA
(
CBCC

BC
)
+

3
4
CABDCCBC, (2.6)

where DA is the covariant derivative on the two-sphere, which is compatible with the metric
hAB. Lastly, the time evolution of the functions of integration, the mass aspect and the angular
momentum aspect, are computed from the leading-order terms in 1/r of the supplementary
equations. One can then asymptotically solve the hypersurface and the evolution equations
order by order in 1/r and the entire BMSmetric is then determined by themass aspectm(u,θA),
the angular momentum aspect NA(u,θA), the shear CAB(u,θA) and the higher Bondi aspects
E
(n)
AB(u,θA).

3 Here, and below, when we write ‘trace-free,’ we mean with respect to hAB.
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2.2. Evolution equations for the expanded Bondi metric functions

The news tensor plays an important role in determining the evolution of the Bondi metric
functions. The three lowest-order evolution equations can be written as (see [22, 35]):

∂um=
1
4

(
DADBN

AB− 1
2
NABN

AB

)
, (2.7a)

∂uNA = DAm− 1
4
ϵBAD

B
(
ϵCDDCD

ECDE
)
+

1
4

(
NBCDBCCA+ 3CABDCN

BC
)
, (2.7b)

∂u E
(0)
AB =

1
4
NCDC

CDCAB+
1
3
STFDANB+

1
4
CB

CD[AD
DCC]D+

1
2
mCAB. (2.7c)

A schematic form of the evolution equations for the higher Bondi aspects with n> 1 is given
in equation (4.29) of [22]. The STF operator above means to take the symmetric, trace-free
part of the tensor on the free indices using the metric hAB.

In this paper, we will work with a modified angular momentum aspect given by

N̂A = NA−WA, (2.8a)

WA ≡ 1
8

(
CB

CDCC
AB+ 3CABDCCBC

)
. (2.8b)

One reason for this definition is that N̂A simplifies the integrand for the ‘conserved quantity’
conjugate to the Lorentz symmetries of the BMS algebra at null infinity, as defined by Wald
and Zoupas [9] (see also [12])4. This definition will also be useful for comparing our PN
calculations that we will perform in section 6 with prior PN calculations of the spin and CM
memory effects.

Many of the calculations in this paper involving the evolution equations (2.7a) will be sim-
plified by introducing scalar versions of the metric functions N̂A and E

(n)
AB. We first define

Q0 ≡ m, Q1 ≡ DAN̂
A, Qn+2 ≡ DADB E

(n)

AB. (2.9)

The vector N̂A and STF tensors E
(n)
AB each contain two degrees of freedom, and taking the diver-

gences extracts the ‘electric’ or curl-free parts of these vectors and tensors. The corresponding
‘magnetic’ or divergence-free parts of the tensors can be obtained from

Q∗
0 ≡−1

4
ϵCADAD

BCCB, Q∗
1 ≡ ϵBAD

AN̂B, Q∗
n+2 ≡ ϵBADCD

A E
(n)

BC. (2.10)

That Q1 and Q∗
1 capture all of the degrees of freedom in N̂A, say, follows from the fact that

vectors on the sphere can be written in terms of a curl-free and divergence-free part; a similar
result holds for Qn+2, Q∗

n+2, and E
(n)
AB. Equivalently, equation (2.10) can be written as

Q∗
0 ≡−1

4
DADB (

∗C)AB , Q∗
1 ≡ DA

(
∗N̂
)A

, Q∗
n+2 ≡ DADB

(
∗ E
(n)

)AB

, (2.11)

4 Other definitions of these conserved quantities have been discussed in the literature [36], and there are various
arguments for and against them [37–39].
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where we have defined the (left) dual of a tensor field on the sphere by

(∗T)A1···As ≡ ϵBA1TBA2···As . (2.12)

It can be shown (for example, using proposition D.1 of [38]) that if a tensor field TAB is STF,
its dual is also STF.

The evolution equations for these scalar metric functions (or ‘charges’) take the following
form:

Q̇0 =
1
4
DADBN

AB+F0, (2.13a)

Q̇∗
0 =−1

4
DADB (

∗N)AB+F∗
0 , (2.13b)

Q̇1 = D2Q0 +F1, (2.13c)

Q̇∗
1 = D2Q∗

0 +F∗
1 , (2.13d)

Q̇2 =
1
6

(
D2 + 2

)
Q1 +F2 +Grad

2 +Gnonrad
2 , (2.13e)

Q̇∗
2 =

1
6

(
D2 + 2

)
Q∗

1 +F∗
2 +G

∗rad
2 +G

∗nonrad
2 . (2.13f )

In the expressions above, we have introduced a notation for the fluxesFn as well as radiative
and non-radiative ‘pseudo-fluxes’ Grad

n and Gnonrad
n , respectively. The expression for the fluxes

Fn ⩽ 2 are given by

F0 =−1
8
NABN

AB, F∗
0 = 0, (2.14a)

F1 =
1
8
DA
[(
NBCDBCCA−CBCDBNCA

)
+ 3
(
CABDCN

BC−NABDCC
BC
)]
, (2.14b)

F∗
1 =

1
8
DA
[
NBCDB (

∗C)CA−CBCDB (
∗N)CA+ 3

(∗CABDCN
BC− ∗NABDCC

BC
)]
, (2.14c)

F2 =
1
4
DADB

(
NCDC

CDCAB
)
, (2.14d)

F∗
2 =

1
4
DADB

[
NCDC

CD (∗C)AB
]
. (2.14e)

The pseudo-fluxes for n= 2 are given by

Grad
2 =

1
8
DADB

{[
DEDF (

∗C)EF
]
(∗C)AB

}
+

1
6

(
D2 + 2

)
DAWA, (2.15a)

Gnonrad
2 =

1
2
DADB

(
mCAB

)
, (2.15b)

Grad ∗
2 =

1
8
DADB

{[
DEDF (

∗C)EF
]
CAB
}
+

1
6

(
D2 + 2

)
DA
(∗WA

)
, (2.15c)

Gnonrad ∗

2 =
1
2
DADB

[
m(∗C)AB

]
. (2.15d)

9
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In general for all n> 0, the evolution-type Einstein equations can be written in a scalar,
flux-balance form as5

Q̇n =DnQn−1 +Fn+Gn, (2.16a)

Q̇∗
n =DnQ

∗
n−1 +F∗

n +G∗
n . (2.16b)

where Gn and G∗
n contain both radiative and non-radiative parts generically. The fluxes Fn are

nonlinear terms that vanish in the absence of radiation. The Gn terms are also non-linear, but
they can be nonzero in a non-radiative spacetime, which is why we refer to them as pseudo-
fluxes. The operators Dn are functions of covariant derivatives on 2-sphere, whose explicit
form for n⩽ 2 can be inferred from the expressions above. In general, equation (2.24) of [22]
(note the difference in notation!) implies that Dn ∝ D2 + n(n− 1), so that when acting on a
spherical harmonic Y lm it annihilates l= n− 1:

DnY(n−1)m = 0. (2.17)

We will not use the evolution equations with n⩾ 2, which is why we do not give their explicit
forms here.

3. Moments of the news and higher memory effects

In this section, we introduce and compute the moments of the news in terms of changes in
charges, as well as integrals of fluxes and pseudo-fluxes. We will use these moments to char-
acterize the higher memory effects of this paper, though more generally, these moments could
be used to characterize the full Bondi news as a function of time, much like the moments of a
probability distribution. As in [34], we use somewhat different moments than those introduced
in [22], because the moments in [22] were those that could be related straightforwardly to the
curve deviation of [20]. In this work, we are more interested in relating the moments of the
news to a portion of the gravitational-wave strain. For this purpose, it is useful to define the
moments in terms of a multiple integral over the news:

N
(n)

AB (u1,u0) =
ˆ u1

u0

du2 · · ·
ˆ un+1

u0

dun+2NAB (un+2)

≡

(
n+1∏
m=1

ˆ um

u0

dum+1

)
NAB (un+2) ,

(3.1)

where the second line in this equation defines a repeated composition notation for a series of
operators (in this case, integration)6. The moments in equation (3.1) can be related to a (finite)
linear combination of the moments defined in [22] for each n; the relationship between the two
is given in appendix C.

5 While this holds explicitly for n ⩽ 2 by equation (2.13a), it is not immediately obvious that the two differential
operators which appear in equations (2.16a) and (2.16b) are necessarily the same for all n. However, this can be
proven using the schematic form of the evolution equations in equation (4.29) of [22], specifically the fact that the
differential operator that appears in that equation commutes with the action of taking the dual.
6 Note that, in this product notation, we assume that successive terms appear left-to-right (in this case, the first term
in the product is the outer-most integral). Since composition of operators proceeds right-to-left, this implies that the
operators which appear are applied in the reverse order that they appear in the product.

10
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3.1. Procedure for computing the moments of the news

In [22], the moments of the news were obtained by defining charges from the Bondi aspects
and integrating the evolution-type Einstein equations in equation (2.7a) (or the equivalents for
the higher Bondi aspects). We perform a similar calculation for our scalar aspects Qn, which
we will summarize below for the different moments.

3.1.1. Zeroth moment. The zeroth moment is the simplest and best understood case, though
it also is a special case. Specifically, the zeroth moment N

(0)
AB is the change in the shear that

occurs after gravitational waves pass, which is precisely the displacement memory. It can be
computed by integrating equation (2.13a) once over retarded time:

1
4
N
(0)

(u,u0) = ∆Q0 (u,u0)−
ˆ u

u0

du1F0 (u1) , (3.2)

where, for all n⩾ 0, we define ∆Qn(u1,u0) and scalar moments N
(n)

by

∆Qn (u1,u0)≡ Qn (u1)−Qn (u0) . (3.3)

N
(n)

(u,u0)≡ DADBN
(n)

AB (u,u0) . (3.4)

Equation (3.2) has a charge contribution ∆Q0 which is conserved in the absence of radiation
and a flux contribution F0. The flux contribution is equivalent to the nonlinear contribution to
the memory computed by Christodoulou [6].

Our expression for the zeroth moment contains just the electric-parity piece, because the
differential operator acting on the news in equation (2.13b) removes the magnetic-parity part.
The magnetic-part of the zeroth moment of the news (that is, the difference in the shear) can
be obtained from taking the difference of equation (2.13d) at two different retarded times (one
before and one after the waves pass), as the magnetic part of the shear appears on the right-
hand side. The flux term vanishes (because the news vanishes when there are no gravitational
waves), so the magnetic part is determined ∆Q̇∗

1 . Because we focus on the flux terms in this
paper, we will not compute it here7.

3.1.2. First moment. For obtaining the electric part of the first moment, we integrate
equation (2.13a) twice to obtain

1
4
N
(1)

(u,u0) =
ˆ u

u0

du1∆Q0 (u1,u0)−
ˆ u

u0

du1

ˆ u1

u0

du2F0 (u2) , (3.5)

and similarly for the magnetic part we need to integrate equation (2.13b) twice:

1
4
N ∗
(1)

(u,u0) =
ˆ u

u0

du1∆Q
∗
0 (u1,u0) , (3.6)

7 Note that it has been shown in [40] that there are sources of stress-energy that satisfy standard energy conditions
that produce a non-zero magnetic-parity displacement memory (i.e. zeroth moment of the news). These ‘vector’ types
of memory in [40] would then arise from having spacetimes with a non-vanishing change in the time derivative of the
charge term.

11
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where we have defined a magnetic scalar moment by

N ∗
(n)

(u,u0)≡−DADB

(
∗N

(n)

)AB

(u,u0) . (3.7)

Thus, wewill need expressions for the integrals of∆Q0 and∆Q∗
0 to obtain a similar expression

for first moment in terms of changes of charges and fluxes (as we have for the zeroth moment).
We can derive such an expression by defining new scalar charges as follows:

Q̃1 (u, ũ)≡ Q1 (u)+ (ũ− u)D2Q0 (u) , (3.8a)

Q̃∗
1 (u, ũ)≡ Q∗

1 (u)+ (ũ− u)D2Q∗
0 (u) . (3.8b)

Then the difference of the charges is given by

∆Q̃1 (u,u0; ũ)≡ Q̃1 (u, ũ)− Q̃1 (u0, ũ)

= Q1 (u)−Q1 (u0)+ (ũ− u)D2Q0 (u)− (ũ− u0)D
2Q0 (u0) , (3.9)

and if we consider the special case of ũ= u, the expression reduces to

∆Q̃1 (u,u0)≡∆Q̃1 (u,u0;u) = Q1 (u)−Q1 (u0)− (u− u0)D
2Q0 (u0) . (3.10)

The evolution of ∆Q̃1(u,u0) can be computed by differentiating equation (3.10) with respect
to u and using equation (2.13c) to eliminate Q̇1 from the expression:

∂u∆Q̃1 (u,u0) = F1 +D2∆Q0 (u,u0) . (3.11)

Note that on the right-hand side of equation (3.11), there is the term proportional to
D2∆Q0(u,u0). If we apply the operator D2 to equation (3.5), equation (3.11) can then be
used to replace the integrand involving ∆Q0 with a flux and a time derivative of a charge.
Integrating equation (3.11) and substituting it into D2 applied to equation (3.5) gives

1
4
D2N

(1)
(u,u0) = ∆Q̃1 (u,u0)−

ˆ u

u0

du1F1 (u1)−D2
ˆ u

u0

du1

ˆ u1

u0

du2F0 (u2) . (3.12)

These steps work similarly for the magnetic part of the moment of the news, which can be
written as

1
4
D2N ∗

(1)
(u,u0) =−∆Q̃∗

1 (u,u0)+
ˆ u

u0

du1F̃∗
1 (u1) . (3.13)

This calculation for the electric (respectively, magnetic) part of the first moment of the news
has used the evolution equation forQ1 (Q∗

1 ) and a redefinition of the charge to recast the zeroth
charge∆Q̃0 (∆Q̃∗

0) as a total derivative piece ∂u∆Q̃1 (∂u∆Q̃∗
1) and a flux piece F1 (F∗

1 ). The
electric part of the first moment of the news now has three parts, a total change in the charge, an
integral over a ‘new’ flux (F1) and a double integral over the flux piece of the zeroth moment;
it is closely related to the CM memory effect in [15]. The magnetic part of the first moment is
two integrals of the dual of the news, and the left-hand side of equation (3.13) is equivalent to
the spin memory effect (see [14]).

The procedure used to compute a single integral of ∆Q̃0 can be generalized to compute n
integrals, as we describe in the next part.

12
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3.1.3. General procedure for the nth moment. To compute the nth moment of the news in
terms of changes in charges and integrals of fluxes, we first define the modified electric and
magnetic-parity scalars:

Q̃n (u, ũ)≡
n∑

m=0

(
n−m−1∏
k=0

ũ− u
k+ 1

Dn−k

)
Qm (u) , (3.14)

where, like in equation (3.1), we are using a product notation for repeated composition of
linear operators. We apply the convention that when a product is empty (e.g. when the lower
bound is higher than the upper bound), the product becomes the identity, and so the first term
in this sum is simply Qn(u). Similarly, one can define

Q̃∗
n (u, ũ)≡

n∑
m=0

(
n−m−1∏
k=0

ũ− u
k+ 1

Dn−k

)
Q∗
m (u) . (3.15)

We will focus on the electric-parity scalars Q̃n, as the discussion for the magnetic-parity
scalars will be completely analogous. The quantity that will be relevant for computing
moments of the news will be differences in these modified scalars; thus, it is convenient to
define

∆Q̃n (u1,u0; ũ)≡ Q̃n (u1, ũ)− Q̃n (u0, ũ) . (3.16)

For computing the moments of the news, we will need the special case when ũ= u1, in which
case ∆Q̃n(u1,u0)≡∆Q̃n(u1,u0;u1) can be written as

∆Q̃n (u1,u0) = Qn (u1)− Q̃n (u0,u1)

= Qn (u1)−Qn (u0)−
n−1∑
m=0

(
n−m−1∏
k=0

u1 − u0
k+ 1

Dn−k

)
Qm (u0) .

(3.17)

The first two terms in the second line on the right-hand side of equation (3.17) are simply the
integral of the derivative of Qn(u) from u0 to u1. The last term can be written as an integral
from u0 to u1 by integrating each term in the sum in equation (3.14) with respect to the second
argument:

ˆ u1

u0

Q̃n−1 (u0,u)du=
n−1∑
m=0

u1 − u0
n−m

(
n−m−2∏
k=0

u1 − u0
k+ 1

Dn−1−k

)
Qm (u0) . (3.18)

By applying Dn to this equation, one can absorb the term outside of the product by changing
the upper bound of the product to n−m− 1, obtaining the third term on the right-hand side of
equation (3.17). This means that we can write ∆Q̃n(u1,u0) as the following integral:

∆Q̃n (u1,u0) =
ˆ u1

u0

[
Q̇n (u)−DnQ̃n−1 (u0,u)

]
du. (3.19)

Integrating equation (2.16a) and using the first line of equation (3.17), we therefore find that

∆Q̃n (u1,u0) =
ˆ u1

u0

[
Dn∆Q̃n−1 (u,u0)+Fn (u)+Gn (u)

]
du. (3.20)

13



Class. Quantum Grav. 41 (2024) 205014 S Siddhant et al

Equation (3.20) can then be applied recursively until the expression for ∆Q̃n(u1,u0) can be
written as a linear combination of integrals of fluxes and pseudo-fluxes and n integrals of
∆Q0(u1,u0):

∆Q̃n (u1,u0) =

(
n−1∏
m=0

Dn−m

ˆ um+1

u0

dum+2

)
∆Q0 (un+1,u0)

+
n−1∑
m=0

ˆ u1

u0

du2

(
m−1∏
k=0

Dn−k

ˆ uk+2

u0

duk+3

)
[Fn−m (um+2)+Gn−m (um+2)] ,

(3.21)

To write this in terms of the nth moment of the news, we use equation (3.2), which when
substituted into equation (3.21) yields

1
4

(
n−1∏
m=0

Dn−m

)
N
(n)

(u1,u0) = ∆Q̃n (u1,u0)−
n∑

m=0

ˆ u1

u0

du2

(
m−1∏
k=0

Dn−k

ˆ uk+2

u0

duk+3

)
× [Fn−m (um+2)+Gn−m (um+2)] , (3.22)

where, for brevity, we have defined G0 ≡ G1 ≡ 0. Expressions involving the magnetic scalars
as the dual of moments of the news can be calculated from integrals of ∆Q∗

0 in a completely
analogous way, and have exactly the same form, apart from a minus sign:

1
4

(
n−1∏
m=0

Dn−m

)
N
(n)

∗ (u1,u0) =−∆Q̃∗
n (u1,u0)+

n∑
m=0

ˆ u1

u0

du2

(
m−1∏
k=0

Dn−k

ˆ uk+2

u0

duk+3

)
×
[
F∗
n−m (um+2)+G∗

n−m (um+2)
]
. (3.23)

We similarly defined G∗
0 ≡ G∗

1 ≡ 0. Since F∗
0 = 0 as well, for calculations the upper limit of

the sum can be taken as n− 1. Equations (3.22) and (3.23) then can be applied to any moment
of the news once the corresponding fluxes, pseudo-fluxes, and charges are determined.

3.1.4. Procedure applied to the second moment. As an example, we give the expressions
for the second moment and its dual, as given by equations (3.22) and (3.23):

1
24

(
D2 + 2

)
D2N

(2)
(u,u0) = ∆Q̃2 (u,u0)−

ˆ u

u0

du1
[
F2 (u1)+Grad

2 (u1)+Gnonrad
2 (u1)

]
− 1

6

(
D2 + 2

)ˆ u

u0

du1

ˆ u1

u0

du2

[
F1 (u2)+D2

ˆ u2

u0

du3F0 (u3)

]
,

(3.24a)

1
24

(
D2 + 2

)
D2N ∗

(2)
(u,u0) =−∆Q̃∗

2 (u,u0)+
ˆ u

u0

du1
[
F∗

2 (u1)+Grad ∗
2 (u1)+Gnonrad ∗

2 (u1)
]

+
1
6

(
D2 + 2

)ˆ u

u0

du1

ˆ u1

u0

du2F∗
1 (u2) . (3.24b)

Unlike the zeroth or first moments, the second moment of the news and its dual have radi-
ative and non-radiative pseudo-flux terms in addition to the charge and the flux pieces.
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The three memory effects (displacement, spin, and CM) appear in the zeroth and the first
moments of the news. The second and higher moments of the news contain a hierarchy of
memory effects that have only been calculated for astrophysical sources very recently [34]. In
this work, we calculate general multipolar expressions and PN results for the second moment
of the news (i.e. the ballistic memory). We could have extended the calculations to higher
moments, though we do not do so in this paper.

3.2. Computing the moments of the news and the corresponding shear

While the equations (3.22) and (3.23) have related the moments of the news to changes
in charges and fluxes, the fluxes depend on the news, which make these equations integ-
ral equations for the moments. These expressions are then equivalent, in a sense, to the
partial differential equations in equation (2.16a), which were used to derive the expres-
sions (3.22) and (3.23). Thus, without making further assumptions, the integral expressions
for the moments do not ‘determine’ the moments of the news from the charges and fluxes;
they are consistency relationships for solutions of Einstein’s equations.

However, there are often scenarios (most frequently for analytical approximation methods)
in which the equations for the moments of the news can be used to calculate a contribution to
a moment from the changes in charges or fluxes that involve approximate gravitational wave-
forms that do not contain this moment (at a given order in a particular approximation method,
for example). Some of these contexts include in post-Newtonian theory (see, e.g. [7, 14, 33,
36]), linear perturbations of black holes [41], and even some numerical relativity waveforms
computed using extrapolation methods at finite radii (see, e.g. [14, 34, 42–45])8.

We will use the expressions for the moments of the news in this latter sense, where we will
treat the charges and fluxes as known quantities and compute a moment of the news that is
required to be consistent with the changes in the charges and the integral of the fluxes and
pseudo-fluxes. Our focus in this paper, moreover, will be on the flux and pseudo-flux (rather
than the charge) contribution, and the ‘new’ part of the flux: namely, that which is not a further
integral of a flux (or pseudo-flux) that appears in a lower moment of the news.

Because gravitational-wave interferometers (such as LIGO, Virgo and KAGRA) are cal-
ibrated to measure the strain rather than its time integrals, it is useful to have an observable
coming from the moment of the news that is related to the gravitational-wave strain. Given
our definition of the moments of the news, if instead we take n derivatives of both sides of
equations (3.22) and (3.23), we obtain

1
4

(
n−1∏
m=0

Dn−m

)
DADB

[
CAB (u)−CAB (u0)

]
=

∂n

∂un
∆Q̃n (u,u0)−

n−1∑
m=0

(
m−1∏
k=0

Dn−k

)(
d
du

)n−m−1

[Fn−m (u)+Gn−m (u)]

−

(
n−1∏
m=0

Dn−m

)ˆ u

u0

du1 F0 (u1)

(3.25)

8 Numerical relativity calculations using Cauchy-characteristic evolution or matching do not have this property. In
these cases, the moments of the news can be used as a check of the numerical accuracy of the solutions.
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and

1
4

(
n−1∏
m=0

Dn−m

)
DADB

[
(∗C)AB (u)− (∗C)AB (u0)

]
=− ∂n

∂un
∆Q̃∗

n (u,u0)+
n−1∑
m=0

(
m−1∏
k=0

Dn−k

)(
d
du

)n−m−1 [
F∗
n−m (u)+G∗

n−m (u)
]
.

(3.26)

This allows us to identify a portion of the shear that gives rise to a particular portion of a
moment of the news. The strain corresponding to the moment of the news is a time-dependent
gravitational-wave signal that an interferometer could more easily measure.

Note that, due to the presence of the angular operators (with nontrivial kernel) on the left-
hand sides of these equations, there is no way to recover certain multipoles of the shear. By
equation (2.17), it follows that if one is considering this equation for some n, one can only
recover multipoles with l⩾ n. This is discussed further in [22, 23, 25, 29], and is related
to the existence of generalizations of the Newman-Penrose constants which appear at linear
order [46]. In [23], the l< n multipoles of the charges are called the ‘memory-less’ parts of
the charge, as they do not constrain the shear.

4. Multipolar expansion of the fluxes’ contributions to the moments

In this section, we present general expressions for the flux and pseudo-flux contributions to
the zeroth, first, and second moments of the news, when the fields that enter into the fluxes
are expanded in terms of multipole moments. The ‘scalarized’ (pseudo-) fluxes, charges and
moments of the news used here, being all spin-weight-zero scalars, are expanded in terms of
the basis of scalar spherical harmonics. Specifically, for any scalar S, we write

S=
∞∑
l=0

l∑
m=−l

SlmYlm. (4.1)

The shear, however, is a rank two STF tensor on the sphere, which can be expanded in terms
of tensor harmonics (for more details, see [47]):

CAB =
∞∑
l=2

l∑
m=−l

∑
I∈{E,B}

CI
lm

(
TIlm
)
AB

. (4.2)

Here, the coefficients CI
lm (i.e. CE

lm and CB
lm) are functions of retarded time, and (TIlm)AB [i.e.

(TElm)AB and (T
B
lm)AB] are tensors on the 2-sphere with either electric (I= E) or magnetic (I= B)

parity. We review definitions and properties of these tensor harmonics in appendix D.
We first summarize the results for the multipolar expressions for the zeroth and first fluxes,

for which identical or equivalent formulas have been calculated previously. The results will
be useful for defining our notation and discussing the method of calculation. We then give
what we believe to be new expressions for the multipolar expansion of the second fluxes and
pseudo-fluxes. However, there have been closely related calculations of the Bondi charges
that contain nonlinear terms [32], though involving only up to the quadrupole moment (and
no higher multipoles).
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4.1. Zeroth and first fluxes

The zeroth flux can be computed by taking the u derivative of the expression (4.2) to obtain the
multipolar expansion of the news tensor. This multipolar expansion can then be substituted into
equation (2.14a). After re-writing the electric- and magnetic-parity tensor harmonics in terms
of spin-weighted harmonics using equations (D.6a), the scalar multipolar moment (F0)lm of
the flux can be written in terms of the integral of a product of three spin-weighted spherical har-
monics. These integrals can be written as proportional to the product of two Clebsch–Gordan
coefficients with several selection rules determining when these integrals are nonzero. These
expressions arise because the product of two spin-weighted spherical harmonics can be writ-
ten as a sum of spin-weighted spherical harmonics multiplied by products of Clebsch–Gordan
coefficients. The relevant expression is given in equation (D.17). The result has been derived
before in several different notations (e.g. [14, 33, 45]); our result is most similar to the expres-
sion for ∆Φlm in [14], though we use the slightly more compact notation that we introduce
below.

In our notation, this expression is given by

(F0)lm =− 1
16

∑
I ′,I ′ ′

∑
l′,m ′

∑
l′ ′,m ′ ′

ηEI
′I ′ ′

ll ′l ′ ′ Ċ
I ′
l′m ′ĊI ′ ′

l′ ′m ′ ′C lm2
l′m ′l ′ ′m ′ ′ . (4.3)

We suppress the range of the summations for ease of notation, but the relevant ranges are as
follows:

l ′, l ′ ′ ⩾ 2, −l ′ ⩽ m ′ ⩽ l ′ ,−l ′ ′ ⩽ m ′ ′ ⩽ l ′ ′, and I ∈ {E,B} . (4.4)

The coefficient C lm2
l′m ′l ′ ′m ′ ′ that appears in equation (4.3) is the s= 2 case of a coefficient

C lms
l′m ′l ′ ′m ′ ′ , which can be written in terms of Clebsch–Gordan coefficients as

C lms
l′m ′l ′ ′m ′ ′ = (−1)l+l

′+l ′ ′

√
(2l ′ + 1)(2l ′ ′ + 1)

4π (2l+ 1)
⟨l ′,−s, l ′ ′,s; l,0⟩⟨l ′,m ′, l ′ ′,m ′ ′; l,m⟩. (4.5)

These coefficients are nonzero for

max(|l ′ − l ′ ′|, |m ′ +m ′ ′|, |s ′ + s ′ ′|)⩽ l⩽ l ′ + l ′ ′, m= m ′ +m ′ ′ and − l⩽ m⩽ l.
(4.6)

Finally, we have introduced the coefficient ηII
′I ′ ′

ll′l ′ ′ , which is given by

ηII
′I ′ ′

ll ′l ′ ′ =



[
1+(−1)l+l

′+l ′ ′
]

I= E, I ′ = I ′ ′ = E,B

i
[
1− (−1)l+l

′+l ′ ′
]

I= E, I ′ = E, I ′ ′ = B

−i
[
1− (−1)l+l

′+l ′ ′
]

I= E, I ′ = B, I ′ ′ = E

i
[
1− (−1)l+l

′+l ′ ′
]

I= B, I ′ = I ′ ′ = E,B

−
[
1+(−1)l+l

′+l ′ ′
]

I= B, I ′ = E, I ′ ′ = B[
1+(−1)l+l

′+l ′ ′
]

I= B, I ′ = B, I ′ ′ = E

. (4.7)

We will use these quantities in the other multipole expansions of the fluxes and pseudo-fluxes,
which is why we have introduced expressions with I= B that are not used in equation (4.3).
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These coefficients arise from the expansion of a product of two tensor harmonics; for more
details, see appendix D.

With the notation set, we can describe more briefly how we obtain the multipolar expres-
sions for the first fluxes F1 and F∗

1 . Starting from equations (2.14b) and (2.14c), we then
substitute in the multipolar expansion of CAB (and its u derivative) in (4.2) and make use of the
‘raising’ and ‘lowering’ expressions for STF tensor harmonics in equations (D.11) and (D.13a),
respectively. The result can be written as

(F1)lm =− 1
32

∑
I ′,I ′ ′

∑
l′,m ′

∑
l′ ′,m ′ ′

ηEI
′I ′ ′

ll ′l ′ ′

[
ĊI ′
l′m ′CI ′ ′

l′ ′m ′ ′ −CI ′
l′m ′ĊI ′ ′

l′ ′m ′ ′

]
Blm

l′m ′l ′ ′m ′ ′ , (4.8a)

(F∗
1 )lm =− 1

32

∑
I ′,I ′ ′

∑
l′,m ′

∑
l′ ′,m ′ ′

ηBI
′I ′ ′

ll ′l ′ ′

[
ĊI ′
l′m ′CI ′ ′

l′ ′m ′ ′ −CI ′
l′m ′ĊI ′ ′

l′ ′m ′ ′

]
Blm

l′m ′l ′ ′m ′ ′ . (4.8b)

The coefficients Blm
l′m ′l ′ ′m ′ ′ are defined by

Blm
l′m ′l ′ ′m ′ ′ ≡

√
(l ′ ′ − 2)(l ′ − 2)(l ′ ′ + 3)(l ′ + 3)C lm3

l′m ′l ′ ′m ′ ′

+ 3
√
(l ′ − 1)(l ′ ′ − 1)(l ′ + 2)(l ′ ′ + 2)C lm1

l′m ′l ′ ′m ′ ′

+ [(l ′ ′ − 2)(l ′ ′ + 3)+ 3(l ′ − 1)(l ′ + 2)]C lm2
l′m ′l ′ ′m ′ ′ , (4.9)

and the sums run over the same ranges given in equation (4.4). Note that the expression for
(F1)lm is consistent with the expression for the flux contribution to the CM memory in [15]
and (F∗

1 )lm is consistent with the flux contribution to the spin memory in [14]. The different
form of the coefficients in equation (4.9) from those in [14, 15] arises from how the integral
was evaluated. In [14, 15], the flux used was a vector rather than a scalar, and a scalar integral
was computed by contracting the vector flux with a vector spherical harmonic; here the fluxes
are scalars and the multipoles are computed using an overlap integral with a scalar harmonic.
One can verify that these different expressions for the Blm

l′m ′l ′ ′m ′ ′ coefficients are actually
equivalent, after using identities involving the Clebsch–Gordan coefficients. This should not
be surprising, because the two expressions are equivalent after integrating by parts.

Note also that the electric and magnetic fluxes are related by the transformation ηEI
′I ′ ′

ll ′l ′ ′ ↔
ηBI

′I ′ ′
ll ′l ′ ′ . Namely, writing (F1)lm as a function of ηEI

′I ′ ′
ll′l ′ ′ , one can obtain (F∗

1 )lm via the
relationship

(F∗
1 )lm = (F1)lm

(
ηEI

′I ′ ′
ll′l ′ ′ → ηBI

′I ′ ′
ll′l ′ ′

)
. (4.10)

We will find similar relationships for the second flux and pseudo-fluxes.

4.2. Second flux and pseudo-fluxes

Now we turn to computing the second flux and pseudo-fluxes. Because there are relationships
that transform the electric part of the fluxes into the magnetic-parity parts (and vice versa), we
will write the expressions for the electric part only, and we give the transformation rules to
obtain the magnetic parts at the end of the section.

We start with the electric-parity flux F2 in equation (2.14d). Because it is cubic in the shear
and news, we can successively apply the product expression for two spin-weighted spherical
harmonics in equation (D.17). The term of the form NCDCCD in the flux has an expansion in
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spherical harmonics similar to that in the zeroth flux: i.e.

CCDN
CD =

1
2

∑
I ′,I ′ ′

∑
l′,m ′

∑
l′ ′,m ′ ′

∑
l̄,m̄

ηEI
′I ′ ′

ll ′l ′ ′ Ċ
I ′
l′m ′CI ′ ′

l′ ′m ′ ′C l̄m̄2
l′m ′l ′ ′m ′ ′ Ȳlm̄, (4.11)

where l̄ and m̄ are nonzero for the same ranges as l and m in equation (4.6) with s ′ + s ′ ′ = 0.
Using equation (4.11) and several of the STF tensor-harmonic identities in appendix D, the

calculation of the spherical-harmonic modes of the flux (F2)lm again reduces to an integral
over three spin-weighted spherical harmonics, though now with additional sums over l̄ and
m̄ in the range in equation (4.6) with s ′ + s ′ ′ = 0 as well as l ′ ′ ′ and m′′′ over the analogous
ranges as those in equation (4.4) for l′ and m′. After a lengthy calculation, the result for the
second flux is given by

(F2)lm =
1
16

∑
I ′,I ′ ′,I ′ ′ ′

∑
l′,m ′

∑
l′ ′,m ′ ′

∑
l̄,m̄

∑
l′ ′ ′,m ′ ′ ′

ηEI
′I ′ ′

l̄l ′l ′ ′ η
EEI ′ ′ ′

l̄ll ′ ′ ′ ĊI ′
l′m ′CI ′ ′

l′ ′m ′ ′CI ′ ′ ′
l′ ′ ′m ′ ′ ′C l̄m̄2

l′m ′l ′ ′m ′ ′

×

[√
(l ′ ′ ′ + 2)!
2(l ′ ′ ′ − 2)!

δEI ′ ′ ′C
lm0
l̄m̃l ′ ′ ′m ′ ′ ′ +D lm

l̄m̄l ′ ′ ′m ′ ′ ′

]
, (4.12)

where the ranges of l̄ and m̄ have already been described, and where l and m should satisfy

max
(
|l ′ ′ ′ − l̄|, |m ′ ′ ′ + m̄|

)
⩽ l⩽ l ′ ′ ′ + l̄, and m= m̄+m ′ ′ ′, (4.13)

for the modes of the flux to be nonzero. The new coefficient D lm
l′m ′l ′ ′m ′ ′ is defined by

D lm
l′m ′l ′ ′m ′ ′ ≡ 2

√
l ′ (l ′ + 1)(l ′ ′ + 2)(l ′ ′ − 1)

2
C lm1
l′m ′l ′ ′m ′ ′ +

√
(l ′ + 2)!
2(l ′ − 2)!

C lm2
l′,m ′,l ′ ′,m ′ ′ , (4.14)

and δII ′ is the Kronecker delta symbol (i.e. it vanishes unless I= I ′, in which case it
equals to 1).

Next, we turn to the calculation of the second pseudo-fluxes. These pseudo-fluxes are quad-
ratic in the Bondi metric functions, which makes their calculation more similar to that of the
zeroth and first fluxes. Given the more complicated form of the angular operators acting on
the shear in the radiative pseudo-flux in equation (2.15a), the form of the spherical harmonic
modes (Grad

2 )lm are a bit lengthier, but the calculation of them proceeds in an analogous way
to that of the first flux. The result of the calculation for the electric part is

(
Grad
2

)
lm

=
1
16

∑
I ′,I ′ ′

∑
l′,m ′

∑
l′ ′,m ′ ′

ηEI
′I ′ ′

ll ′l ′ ′ C
I ′
l′m ′CI ′ ′

l′ ′m ′ ′

[
1
2

√
(l ′ + 2)! (l ′ ′ + 2)!
(l ′ − 2)! (l ′ ′ − 2)!

δI ′BδI ′ ′BC lm0
l′m ′l ′ ′m ′ ′

+ δI ′B

(√
(l ′ + 2)! l ′ (l ′ + 1)(l ′ ′ + 2)(l ′ ′ − 1)

(l ′ − 2)!
C lm1
l′m ′l ′ ′m ′ ′ +

(
l ′ + 2

)
!

2(l ′ − 2)!
C lm2
l′m ′l ′ ′m ′ ′

)

+
l(l+ 1)− 2

12
Bl
l′m ′l ′ ′m ′ ′

]
. (4.15)

The nonradiative pseudo-flux in equation (2.15b) involves a product of the mass aspect and
shear. We therefore must expand the mass aspect in scalar (spin-weight zero) spherical har-
monics and the shear in rank-2 STF tensor harmonics. The calculation proceeds similarly to
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that of the other quadratic fluxes and pseudo-fluxes, and we find that

(
Gnonrad
2

)
lm
=
1
4

∑
l′,m ′

∑
l′ ′,m ′ ′

∑
I ′ ′

ηEEI
′ ′

ll′l ′ ′ ml′m ′CI ′ ′
l′ ′m ′ ′

[√
(l ′ ′ + 2)!
2(l ′ ′ − 2)!

δEI ′ ′C
lm0
l′m ′l ′ ′m ′ ′

+

(√
2l ′ (l ′ + 1)(l ′ ′ + 2)(l ′ ′ − 1)C lm1

l′m ′l ′ ′m ′ ′ +

√
(l ′ + 2)!
2(l ′ − 2)!

C lm2
l′m ′l ′ ′m ′ ′

)]
,

(4.16)

where now the range of l′ differs from other cases but the remaining sums run over equivalent
ranges:

l ′ ≥ 0, l ′ ′ ⩾ 2, −l ′ ⩽ m ′ ⩽ l ′ and − l ′ ′ ⩽ m ′ ′ ⩽ l ′ ′. (4.17)

The expression in equation (4.16) is fully general, but it involves the spherical-harmonicmodes
of the mass aspect, mlm, which by the evolution equation for the Bondi mass aspect (2.7a)
have solutions that depend nonlinearly on the shear. However, if one linearizes the evolution
equation for the mass aspect, the time dependence of the modes mlm with l⩾ 2 is then determ-
ined by that of the shear, and for l< 2, the mass aspect is constant. Thus, for all l we can write
m as

mlm = µlm+
1
4

√
(l+ 2)!
2(l− 2)!

CE
lm+O

(
C2
)
, (4.18)

where themodesµlm with l⩾ 0 are constant and themodesCE
lm are the electric-paritymultipole

moments of the shear, which are nonzero for l⩾ 2.
In the post-Newtonian calculations that we perform below, it will be useful to specialize to

systems that are stationary in the past (u→−∞) as is often assumed in the post-Newtonian
context [30]. In this case, all moments of the initial mass aspect with l> 0 must vanish [12], so
that µ00 is the only nonvanishing moment of µlm. In terms of the initial massM of the system,

µ00 =
√
4πM. (4.19)

Thus, with the additional approximation of past stationarity, equation (4.16) can be written as

(
Gnonrad
2

)
lm
=

1
2
M

√
(l+ 2)!
2(l− 2)!

CE
lm+

1
8

∑
I ′ ′

∑
l′,m ′

∑
l′ ′,m ′ ′

√
(l ′ + 2)!
2(l ′ − 2)!

ηEEI
′ ′

ll ′l ′ ′ C
E
l′m ′CI ′ ′

l′ ′m ′ ′

×

[(
1
2

√
(l ′ + 2)!
2(l ′ − 2)!

C lm2
l′m ′l ′ ′m ′ ′ +

√
l ′ (l ′ + 1)(l ′ ′ + 2)(l ′ ′ − 1)

2
C lm1
l′m ′l ′ ′m ′ ′

)

+
1
2
δEI ′ ′

√
(l ′ ′ + 2)!
2(l ′ ′ − 2)!

C lm0
l′m ′l ′ ′m ′ ′

]
+O

(
C3
)
. (4.20)

The sums over l′ and l′′ are again restricted to l ′, l ′ ′ ⩾ 2. As we will discuss in more detail in
section 5, the term proportional to M looks similar to the tail terms in PN theory, which arise
at 1.5 PN order relative to the corresponding multipolar mode of the waveform. However,
unlike the tail terms in post-Newtonian calculations (see, e.g. [7, 48]) that involve an integral
of multipole moments that correspond to two derivatives of the strain times the mass monopole
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scaled by a logarithmic function, these tail-like terms from the pseudo-flux are instantaneous
terms involving the product of the mass monopole and the news. We discuss the discrepancy
between the forms of these two terms in more detail in sections 5 and 6.

The magnetic pieces can now be obtained through the following transformation rules
applied to the expressions for the (pseudo-)fluxes, when they are considered to be functions of
ηEI

′I ′ ′
ll′l ′ ′ , δEI ′ ′ and δI ′ ′B:

(F∗
2 )lm = (F2)lm

(
ηEEI

′ ′ ′

l̄ll ′ ′ ′ → ηBEI
′ ′ ′

l̄ll ′ ′ ′ , δEI ′ ′ ′ → δBI ′ ′ ′
)
, (4.21a)(

Grad ∗
2

)
lm
=
(
Grad
2

)
lm

(
ηEI

′I ′ ′
ll′l ′ ′ → ηBI

′I ′ ′
ll′l ′ ′ , δI ′ ′B → δI ′ ′E

)
, (4.21b)(

Gnonrad ∗
2

)
lm
=
(
Gnonrad
2

)
lm

(
ηEEI

′ ′

l̄ll ′ ′ → ηBEI
′ ′

l̄ll ′ ′ , δEI ′ ′ → δBI ′ ′
)
, (4.21c)

where the last transformation applies to the original expression for the pseudo-flux in
equation (4.16), not the derived expression in equation (4.20). Furthermore, these transform-
ations should be applied only to the terms with the same dummy indices in the expres-
sions for the (pseudo-)fluxes; for example, equation (4.21b) implies that the factors of δI ′B
in equation (4.15) should not be transformed. Given these transformation rules, we do not
need to explicitly provide the magnetic-parity analogs of equations (4.12), (4.15) and (4.16).

5. Post-Newtonian formalism and signals from compact binaries

In this section, we evaluate the PN expressions for the moments of the news and the corres-
ponding parts of the shear for the zeroth, first and second fluxes as well as the second pseudo-
fluxes. We first review the relationship between the radiative data in the Bondi-Sachs frame-
work with that in the post-Newtonian formalism. We next compute the shear corresponding to
the moments of the news (as defined in section 3.2). Finally, we show, for the quadrupole and
octupole, that the different flux contributions to the moments of the news can account for all of
the PN memory terms. Also for these modes, we show that the nonlinear, instantaneous terms
that appear in the PN expression for the waveform at 3.5 PN and 3 PN order for the quad-
rupole and octupole, respectively, can also be obtained from the fluxes and pseudo-fluxes up
to second total time-derivative terms. These remainder terms should, in principle, arise from
charge contributions or higher flux contributions that we do not compute.

5.1. Relation between post-Newtonian and Bondi-Sachs waveforms

To perform post-Newtonian calculations using our results in the Bondi formalism, we need
to relate gravitational-wave data in the PN formalism to that in the Bondi-Sachs formalism.
As shown by Blanchet et al in [31] (where a coordinate transformation is derived that maps
the metric in harmonic gauge to that in the Bondi gauge), the Bondi shear is related to the
gravitational-wave strain HTT

ij in transverse traceless gauge by

HTT
ij e

i
Ae

j
B =

1
r
CAB+O

(
1/r2

)
. (5.1)

The quantities eiA are given by eiA = ∂ni/∂θA, where ni = xi/r. The Cartesian coordinates xi

are defined from specializing the arbitrary angular coordinates θA on the two-sphere to spher-
ical polar coordinates, and constructing Cartesian coordinates from r and the other two angular
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coordinates using the standard flat-space relationships. The strain on the left-hand side is typ-
ically computed in a set of radiative coordinates which are consistent with Penrose’s notion of
asymptotic simplicity or flatness [49] (see section 2.1.5 of [30] for further details9). Because
HTT
ij is symmetric, transverse and traceless, contracting eiAejB into HTT

ij produces a tensor that
is STF in Bondi coordinates.

The strain can then be expanded in terms of a set of radiative multipole moments using
tensor harmonics (see, e.g. [47]):

HTT
ij =

1
r

∑
l,m

[
Ulm

(
TElm
)
ij
+Vlm

(
TBlm
)
ij

]
. (5.2)

The tensor harmonics (TIlm)ij are symmetric, transverse-traceless tensors, likeHTT
ij . Nominally,

they are a distinct set of tensor harmonics from those that we used in the context of the Bondi-
Sachs framework, but we use a similar notation to describe them, because they are related to
these other tensor harmonics by contracting with eiA as follows:(

TIlm
)
ij
eiAe

j
B =

(
TIlm
)
AB

. (5.3)

It is not necessary to take the STF part on the 2-sphere indices for the same reasons discussed
below equation (5.1). Comparing equations (4.2) and (5.2), it therefore follows that

CE
lm = Ulm, CB

lm = Vlm. (5.4)

One can also compute the polarizations h+ and h× via the relationship

h≡ h+ − ih× =
∑
l,m

hlm (−2Ylm) , (5.5)

where the moments hlm are related to Ulm and V lm by

hlm =
1

r
√
2
(Ulm− iVlm) , (5.6)

and where −2Ylm is a spin-weighted spherical harmonic. The conventions that we use for these
harmonics are defined in appendix D.

When comparing with PN results, we will also use the symmetric, trace-free l-index
Cartesian multipole tensors. We use the multi-index notation for representing STF tensor of
rank l:

TL = T⟨i1···il⟩, nL = n⟨i1 · · ·nil⟩, (5.7)

where angle brackets around three-dimensional indices indicate to take the STF part with
respect to the Cartesian metric δij. There then exist a set of STF basis tensorsY lm

L that relate the
Ulm and V lm modes to STF rank-l tensors UL and VL. The relations are given by (see, e.g. [47])

UL = al

l∑
m=−l

UlmY lm
L , VL =−bl

l∑
m=−l

VlmY lm
L , (5.8)

9 Section and equation numbers here refer to the latest version (v5) of [30] on the arXiv, which is organized differently
from both earlier versions of the paper on arXiv and earlier versions published in Living Reviews in Relativity.
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where we have defined

al =
l!
4

√
2l(l− 1)

(l+ 1)(l+ 2)
, bl =

(l+ 1)!
8

√
2l(l− 1)

(l+ 1)(l+ 2)
. (5.9)

Although we do not give the explicit expressions for the tensors Y lm
L (see [47] instead), they

are related to the scalar spherical harmonics Y lm via

Y lm
L n

L = Ylm (5.10)

(see also [47]). Thus contracting equation (5.8) with nL gives

ULnL = al

l∑
m=−l

UlmYlm, VLnL =−bl
l∑

m=−l

VlmYlm. (5.11)

The orthogonality of the Y lm
L with different l and m allows the Ulm and V lm moments to be

determined from UL and VL, respectively. We will use these relations in the calculations in the
next section, so we give them here (see [33, 47]):

Ulm =
16π

(2l+ 1)!!

√
(l+ 1)(l+ 2)
2l(l− 1)

ULȲ lm
L , Vlm =− 32π l

(2l+ 1)!!

√
l+ 2

2l(l+ 1)(l− 1)
VLȲ lm

L .

(5.12)

We use an overline to denote complex conjugation; the double factorial, (2l+ 1)!!, is the
product of all odd integers less than or equal to 2l+ 1. To leading order in the multipolar
post-Minkowski expansion, the radiative moments for a given l are equal to l time derivatives
of a set of so-called ‘canonical multipoles’:

UL =M(l)
L +O(G) , VL = S(l)L +O(G) . (5.13)

The tensor ML is the mass multipole moment and SL is the current multipole moment; the
superscript (l) indicates the number of derivatives with respect to retarded time. To compare
our expressions with existing post-Newtonian results, we will use these canonical multipoles,
as these multipoles are commonly used in this context.

5.2. Post-Newtonian expressions for the shear associated with moments of the news

Given the simple leading PN relationship between the multipoles of the Bondi shear and the
canonical moments in equations (5.4), (5.12) and (5.13), we can now compute the leading PN
expressions for the multipolar expansions of the fluxes in section 4 and the corresponding con-
tributions to the waveforms associated with these fluxes. Because each retarded-time derivative
in equation (5.13) is accompanied by a factor of 1/c, higher l multipoles are of a higher PN
order. This allows us to compute 3.5 PN-accurate quadrupole and octupole modes of the wave-
form that come from the (pseudo-)flux contributions to the zeroth, first and second moments
of the news. This calculation uses as input the leading, linearized quadrupole, octupole and
hexadecapole expressions for the radiative or canonical moments.

We focus on these parts, in particular, because they will allow us to compare these contri-
butions of the moments of the news to the shear with the corresponding PN expression for the
radiative multipole moments in terms of the canonical moments (which appear, for example,
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in section 2.4.5 of [30]). For brevity, we will present the results for the purely electric con-
tributions (i.e. UL); these results could be extended to the magnetic parts (the VL) using the
methods that we use for the electric part. We also give, for simplicity, just the quadrupole and
octupole terms. There are also contributions to the l= 4 and l= 5 moments, which occur at the
same PN order as those we compute for the quadrupole and octupole. We are able to show that
all of the nonlinear ‘memory’ terms (in the PN usage of ‘memory’) can be determined from
the flux contribution to the zeroth moment of the news. The nonlinear instantaneous terms for
the mass quadrupole and octupole moments can be written in terms of the flux terms that con-
tribute to the first and second moments, up to total second derivatives. Terms involving second
derivatives could be calculated from (pseudo-)flux contributions from the third moment of the
news, or from charge contributions, neither of which we compute in this paper.

In the remainder of this section, we present the results for the leading PN expressions for
the shear associated with the moments of the news in the quadrupole and octupole modes. We
will use several of these results in section 6 when we specialize to compact-binary sources
(though we will compute additional modes there). We then describe our procedure to compare
the PN expressions for the multipole moments of the strain (as given in section 2.4.5 of [30])
with the expressions that we derive from taking derivatives of moments of the news.

5.2.1. Expressions for the quadrupole and octupole waveforms generated by fluxes and
pseudo-fluxes. To compute the contributions to the shear coming from the flux and pseudo-
flux terms, we return to the expressions for the electric and magnetic parts of the shear in
equations (3.25) and (3.26) without the contributions from the changes in the charges. We will
specialize our computation to the contributions to the shear that come from moments less than
the third; thus, we consider these equations with n= 2 and neglect the charge contributions.

Because there are angular operators acting on the shear (on the left-hand side) and fluxes and
pseudo-fluxes (on the right-hand side), it is convenient to expand the left-hand side in spherical
harmonics (in addition to the right-hand side, which we already expanded in section 4). For
each spherical harmonic mode, inverting the angular operators to determine the moments of
the shear then becomes an algebraic operation. Specifically, if we use UF

lm and VF
lm to denote

the electric and magnetic parts of the shear that arise from the flux and pseudo-flux terms for
a given spherical harmonic mode, then we can write the contribution from the zeroth, first
and second moments relatively concisely. To do so, we apply equation (D.13a) twice to the
expansion of CAB in terms of tensor harmonics and use the facts that D1 = D2, D2 = D2 + 2
and D2Ylm =−l(l+ 1)Ylm. It then follows that the electric part of the shear, UF

lm, is given by

1
4

√
(l+ 2)!
2(l− 2)!

UF
lm =−

ˆ u

−∞
du1 (F0)lm (u1)+

(l− 1)!
(l+ 1)!

(F1)lm

− 6
(l− 2)!
(l+ 2)!

d
du

[
(F2)lm+

(
Grad
2

)
lm
+
(
Gnonrad
2

)
lm

]
+

d2

du2
(· · ·) . (5.14)

The product of the angular operators has the property that it annihilates spherical harmon-
ics with l⩽ 1 for the zeroth, first and second moments, and l⩽ n− 1 for the nth moment.
Equation (5.14) holds for l⩾ 2 and for the corresponding permitted m. The ellipsis at the end
of equation (5.14) indicates that we neglected contributions from the fluxes and pseudo-fluxes
that contribute to highermoments of the news (starting at the thirdmoment); however, for l= 2,
the angular operators set the contribution from the third flux to zero (so no additional flux terms
contribute). We are also neglecting all charge terms, which is why we add the superscript F
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to UF
lm. Finally, the magnetic part VF

lm can be obtained by substituting the magnetic fluxes and
pseudo-fluxes on the right-hand side of equation (5.14), and using the fact that F∗

0 = 0.
The expression in (5.14) for the shear related to the zeroth, first and second moments of

the news holds to any PN order, when the full expressions for the multipolar expansion of the
fluxes in section 4 are used. To compare with existing PN results and to compute the shear
from specific astrophysical sources, we will substitute into our expressions for the fluxes the
necessary linearized PN radiative or canonical moments. In addition, we will give explicit
expressions for the mass quadrupole and octupole moments (namely, UF

2m and UF
3m). These

moments up to 3.5 PN and 3 PN orders for the quadrupole and octupole, respectively, are
summarized in section 2.4.5 of [30]. We begin by writing the expressions in terms of the
radiative moments.

The expressions for UF
3m are simpler, because they can be computed from the leading (lin-

earized) PN parts of the radiative quadrupole and octupole moments. The zeroth and first flux,
as well as the second radiative pseudo-flux contributions to UF

3m, all arise at 2.5 PN order
relative to the leading octupole waveform (which is 0.5 PN orders higher than the leading
quadrupole waveform). The nonradiative pseudo-flux gives rise to a term at relative 1.5 PN
order in addition to the relative 2.5 PN-order contribution from the other fluxes and pseudo-
fluxes. The second flux contribution to the strain first enters at greater than 4 PN order, which
is the highest-order waveform computed to date [50]; thus, we will not compute the flux part
of the second moment. Thus, the terms in equation (5.14), which contribute to the leading and
next-to-leading order parts of UF

3m, are the following:

(F0)3m =− 1
4

(
G
c5

) ∑
m′,m ′ ′

(
U̇2m′U̇3m′ ′C 3m2

2m′3m ′ ′ + iU̇2m′ V̇2m′ ′C 3m2
2m′2m ′ ′

)
, (5.15a)

(F1)3m =− 1
16

(
G
c5

) ∑
m′,m ′ ′

(
U̇2m′U3m′ ′ −U2m′U̇3m′ ′

)(
B3m

2m′3m ′ ′ −B3m
3m′2m ′ ′

)
, (5.15b)

(
Grad
2

)
3m

=

(
G
c5

) ∑
m′,m ′ ′

[
5U2m′U3m′ ′

(
C 3m2
2m′3m ′ ′ +

5
4

√
10C 3m1

2m′3m ′ ′

)

+iU2m′V2m′ ′

(
4C 3m1

2m′2m ′ ′ +
11
2

C 3m2
2m′2m ′ ′

)]
, (5.15c)

(
Gnonrad
2

)
3m

=

(
G
c3

)√
15MU3m+

3
2

(
G
c5

) ∑
m′,m ′ ′

[
iU2m′V2m′ ′

(
C 3m2
2m′2m ′ ′ + 2C 3m1

2m′2m ′ ′

)
+U2m′U3m′ ′

(
6C 3m2

2m′3m ′ ′ + 3
√
10C 3m1

2m′3m ′ ′ + 2
√
5C 3m0

2m′3m ′ ′

)]
. (5.15d)

We now compute the contributions to UF
2m. For simplicity, we restrict to the expression

known to 3.5 PN order (as in section 3.3 of [30]), rather than the new 4 PN result in [50]. This
computation will require us to compute the second radiative and nonradiative pseudo-fluxes, as
well as the zeroth and first fluxes. We can again neglect the second flux; its contribution enters
at 5 PN order, which is one order above the known 4 PN result. The expressions for these
fluxes and pseudo-fluxes are somewhat lengthier than those of the octupole, and we present
them in sequence below.
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First, the contributions fromF0 to the quadrupole moment can be obtained from the integral
of the following multipole moments:

(F0)2m =−1
8

(
G
c5

) ∑
m′,m ′ ′

U̇2m′U̇2m′ ′C 2m2
2m′2m ′ ′

− 1
8

(
G
c7

) ∑
m′,m ′ ′

(2U̇2m′U̇4m′ ′C 2m2
2m′4m ′ ′ + U̇3m′U̇3m′ ′C 2m2

3m′3m ′ ′

+ V̇2m′ V̇2m′ ′C 2m2
2m′2m ′ ′ + 2iU̇3m′ V̇2m′ ′C 2m2

3m′2m ′ ′ + 2iV̇3m′ ′U̇2m′C 2m2
2m′3m ′ ′). (5.16a)

Next, the contribution from F1 to the mass quadrupole is obtained from

(F1)2m =− 1
16

(
G
c7

) ∑
m′,m ′ ′

[
(U̇2m′U4m′ ′ −U2m′U̇4m′ ′)(B2m

2m′4m ′ ′ −B2m
4m′2m ′ ′)

+i(U̇3m′V2m′ ′ −U3m′ V̇2m′ ′ + V̇3m′U2m′ ′ −V3m′U̇2m′ ′)B2m
3m′2m ′ ′

]
, (5.16b)

up to a numerical factor. Finally for the second moment, the 2.5 and 3.5 PN order contributions
come from the pseudo-flux terms, and they are given by the derivatives of

(Grad
2 )2m =

1
2

(
G
c5

) ∑
m′,m ′ ′

U2m′U2m′ ′(C 2m2
2m′2m ′ ′ +C 2m1

2m′2m ′ ′)

+
1
2

(
G
c7

) ∑
m′,m ′ ′

[
U3m′U3m′ ′(4C 2m3

3m′3m ′ ′ + 6C 2m2
3m′3m ′ ′ + 5C 2m1

3m′3m ′ ′)

+
1
3
U2m′U4m′ ′(20C 2m2

2m′4m ′ ′ + 9
√
2C 2m1

2m′4m ′ ′)

+V2m′V2m′ ′(4C 2m2
2m′2m ′ ′ + 7C 2m1

2m′2m ′ ′ + 3C 2m0
2m′2m ′ ′)

+ iU3m′V2m′ ′(7C 2m2
3m′2m ′ ′ + 4

√
10C 2m1

3m′2m ′ ′)

− iV3m′U2m′ ′(7
√
10C 2m1

3m′2m ′ ′ + 19C2m2
3m′2m ′ ′)

]
, (5.16c)

(Gnonrad
2 )2m =

(
G
c3

)√
3MU2m+

3
2

(
G
c5

) ∑
m′,m ′ ′

U2m′U2m′ ′(C 2m2
2m′2m ′ ′ + 2C 2m1

2m′2m ′ ′ +C 2m0
2m′2m ′ ′)

+
3
2

(
G
c7

) ∑
m′,m ′ ′

[
5U3m′U3m′ ′(C 2m2

3m′3m ′ ′ + 2C 2m1
3m′3m ′ ′ +C 2m0

3m′3m ′ ′)

+U2m′U4m′ ′(16C 2m2
2m′4m ′ ′ + 13

√
2C 2m1

2m′4m ′ ′ + 2
√
15C 2m0

2m′4m ′ ′)

+ iU3m′V2m′ ′(5C 2m2
3m′2m ′ ′ + 2

√
10C 2m1

3m′2m ′ ′)

− iV3m′U2m′ ′(C 2m2
3m′2m ′ ′ +

√
10C 2m1

3m′2m ′ ′)
]
. (5.16d)

We will make use of these expressions in section 6, when we compute the results from
compact binary sources. However, we will also need several other multipoles of the fluxes and
pseudo-fluxes that we do not give in this section.

26



Class. Quantum Grav. 41 (2024) 205014 S Siddhant et al

5.2.2. Comparison with PN waveform multipoles. The expressions for the multipoles UF
2m

and UF
3m are convenient for some calculations, but in many post-Newtonian calculations, the

STF rank-l tensor multipoles UL (specifically, in this case, Uij and Uijk) are used instead.
Moreover, the PN expressions for these radiative multipoles are often written in terms of the
canonical multipoles of equation (5.13) instead of the radiative multipoles. Comparing the PN
waveform modes derived from a harmonic-gauge calculation with our waveform modes UF

lm
requires a nontrivial calculation.

This is further complicated by the fact that several of the nonlinear terms in the PN
harmonic-gauge modes are written in terms of canonical multipoles that correspond via
equation (5.13) to integrals of the radiative multipoles. To compare our modes with the corres-
ponding PNmodes (in [30], for example), we must first use the product rule on these nonlinear
terms to write it in a form closer to what we obtain from taking the appropriate number of time
derivatives of each moment of the news. To do this, we first collect the ‘hereditary’ (also called
‘tail’ and ‘memory’) terms that involve retarded-time integrals of the waveform modes in the
harmonic-gauge PN expressions; these terms do not need to be recast. The remaining nonlinear
terms are the so-called ‘instantaneous’ terms. We then manipulate these instantaneous terms
with the product rule to write them as products of canonical multipoles, total first derivatives
of these products and total second derivatives of these products. For the product and first deriv-
ative of these products, we keep terms where the total number of derivatives acting on each
individual canonical moment is either zero or one derivative of the corresponding radiative
moment. This still is not a unique prescription, in some cases, so we also require that the coef-
ficient multiplying the product of moments of the same type (e.g. mass quadrupole times mass
octupole) with different numbers of derivatives acting on the corresponding moment should
have the same coefficient, up to a sign.

The result of this lengthy rewriting on the harmonic-gauge PN waveform is given in A,
with equation (A.1) being the expression for the quadrupole and equation (A.2) being the
expression for the octupole. This rewriting of the typical PN expressions puts them in a form
more similar to equation (5.14) (aside from the difference in the types of multipole moments
used in appendix A). We will now be able to determine that the terms in equations (A.1)
and (A.2) that are integrals of products of canonical moments correspond to the integral of
the flux F0, the term F1 corresponds to the terms with no retarded time derivatives, and F2 is
responsible for producing the term with the total first derivative. For the octupole (but not the
quadrupole), the total second-derivative terms could be written in terms of flux or pseudo-flux
terms from the third moment; there will also be charge contributions to the PN expressions
for both multipoles. Although we have neglected the charge contributions, they would need to
account for all remaining differences if the Bondi-Sachs and post-Newtonian calculations are
consistent.

With the PN quadrupole Uij and octupole Uijk written in the form in equations (A.1)
and (A.2), we can now more easily compare the different flux and pseudo-flux contributions
in UF

2m and UF
3m, which we can do separately for each flux. What now remains is to convert

between our expressions involving scalar multipoles and the STF tensor multipoles used in
PN theory. This will require evaluating the combination of Clebsch–Gordan coefficients that
appears in the scalar-multipole expressions (which we do using Mathematica) and some of the
tensors Ȳ lm

L , which are given in equation (2.12) of [47]. To make the comparison for the quad-
rupole, we take each unique product of multipoles on the right-hand sides of equation (5.16a)
and replace the scalar radiative mass and current multipoles with equation (5.12). We then
multiply by alYlm and sum over m, so that we obtain the contribution of this term to UF

ij n
i nj.

We then compare this with the equivalent term (in terms of multipole order and number of time
derivatives acting on the multipoles) in equation (A.1) by contracting the expression there with

27



Class. Quantum Grav. 41 (2024) 205014 S Siddhant et al

ni nj, so as to verify that the two terms are equal. By repeating this process for all the terms, we
find that the expression for the quadrupole computed from equation (5.14) (using the moments
in equation (5.16a)) are equivalent to that in equation (A.1), up to the error terms involving
d2/du2 of products of canonical multipoles. We repeat the same process for the octupole.

This then allows us to conclude that the following quadrupole and octupole fluxes can be
written in the STF-tensor form, as we give below. First, the octupole fluxes and pseudo-fluxes
are

(F0)ijk =

(
G
c5

)(
1
2

√
5
3
M(3)
a⟨iM

(4)
jk⟩a− 2

√
3
5
ϵab⟨iM

(3)
ja S

(3)
k⟩b

)
, (5.17a)

(F1)ijk =−
√
15
2

(
G
c5

)(
M(3)
a⟨iM

(3)
jk⟩a−M(2)

a⟨iM
(4)
jk⟩a

)
, (5.17b)

(
Grad
2

)
ijk
=−

(
G
c5

)(
25
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√
5
3
M(2)
a⟨iM

(3)
jk⟩a+ 24

√
15ϵab⟨iM

(2)
ja S

(2)
k⟩b

)
, (5.17c)

(
Gnonrad
2

)
ijk
=
√
15

(
G
c3

)
MM(3)

ijk −
√
15

(
G
c5

)(
5M(2)

a⟨iM
(3)
jk⟩a+ 12ϵab⟨iM

(2)
ja S

(2)
k⟩b

)
. (5.17d)

The relationship between the STF multipoles (Fn)L and (Gn)L of the fluxes and pseudo-
fluxes and the scalar multipoles (Fn)lm and (Gn)lm is the same as that given for the radiative
mass multipole in equation (5.8):

(Fn)L = al

l∑
m=−l

(Fn)lmY
lm
L , (Gn)L = al

l∑
m=−l

(Gn)lmY
lm
L . (5.18)

This implies that equation (5.14) for the contribution of the fluxes and pseudo-fluxes to the
mass octupole at 2.5 PN order relative to the leading octupole is given by

UF
ijk =− 2√

15

ˆ u

−∞
du1 (F0)ijk (u1)+

1

6
√
15

(F1)ijk (u)

− 1

10
√
15

d
du

[
(F2)ijk (u)+

(
Grad
2

)
ijk
(u)+

(
Gnonrad
2

)
ijk
(u)
]
+

d2

du2
(· · ·) . (5.19)

Substituting the expressions for the fluxes from equation (5.17a) into equation (5.19) and com-
paring with equation (A.2), shows, in detail, how the PN expansion of the octupole moment
can be understood in terms of the contributions from the flux and pseudo-flux pieces of the
moments of the news. The PN memory integral comes from the zeroth flux F0, the instantan-
eous terms with no retarded-time derivatives come from the first fluxF1 and both radiative and
non-radiative the pseudo-flux pieces of the second moment contribute to the first total deriv-
ative term. The higher derivative terms could, in principle, be obtained from calculating flux
and pseudo-flux contributions from the third moment of the news, although this still neglects
the charge contribution to the third moment.

Finally, note that the leading-order pseudo-flux term (the first term in equation (5.17d))
appears at the same PN order as the tail term (the 1.5 PN order terms in the expansion of the
radiative moments in appendix A). The PN tail integral, however, contains both a logarithm
term and a part without a logarithm; this latter term could be written as the total derivative
of the mass monopole multiplied by l+ 1 derivatives of the lth canonical multipole. The non-
radiative pseudo-flux has the same form as this part of the tail term without the logarithm.
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Such logarithm terms do not manifestly appear in any of the flux or pseudo-flux expressions,
which may account for why it does not arise from our Bondi-Sachs calculations. Thus, the tail
terms should be arising from the charge contributions to the waveform, which we have not
computed.

We can now repeat the calculation for the quadrupole. By following the same approach that
we used with the octupole, we can first determine that the STF form of the zeroth and first
fluxes are

(F0)ij =
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The STFmultipolar expression for the pseudo-fluxes’ contributions to the quadrupole are given
by
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This implies the full flux contributions to the quadrupole can be written in STF form as

UF
ij =− 2√

3

ˆ u

−∞
dτ (F0)ij (τ)+
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(5.21)

Substituting the STFmultipole expressions for the fluxes and pseudo-fluxes in equation (5.20a)
into equation (5.21) reproduces the waveform in equation (A.1) up to the second-derivative
terms. As with the octupole, the PN memory integral arises from the zeroth flux, the instantan-
eous terms without derivatives come from the first flux, and the second fluxes and pseudo-
fluxes contribute to the term involving a single time derivative. For the quadrupole case,
the higher derivative terms cannot be obtained from flux and pseudo-flux contributions to
higher moments of the news, because the angular operators which appear on left-hand side
of equation (3.25) remove the l= 2 component of the shear for n⩾ 3. This follows from
equation (2.17): the derivative operatorDn acting onQn−1 in the evolution equation forQn sets
the l= n− 1 mode to zero. This is why we do not include a residual term in equation (5.21).
There also will be charge contributions from the n= 2 charge in the PN expression that we
have been neglecting.
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6. Leading post-Newtonian contribution from the higher-memory moments for
compact binaries

We now specialize to non-spinning, compact-binary sources in quasi-circular orbits, and we
write our results in terms of the post-Newtonian parameter x. At leading Newtonian order, the
PN parameter is given by x=M/R, with R being the position of the reduced mass of the binary
M= m1 +m2 being the total mass, and m1 and m2 being the individual masses. It will also be
convenient to define η = m1m2/M2 as the symmetric mass ratio and δm= m1 −m2 to be the
mass difference with the convention that m1 ⩾ m2. We derive the leading PN-order contribu-
tions of the zeroth, first and second flux and pseudo-flux contributions to the moments of the
news and the corresponding shear. Some aspects of these calculations have been performed for
the zeroth flux [51] and first fluxes [14, 15] (in the sense that we will describe shortly below);
however, they have not been computed for the second fluxes or pseudo-fluxes (though they are
computed numerically in [52] using full inspiral-merger-ringdown waveforms).

6.1. Terminology for higher memory effects and calculation methods

To describe the sense in which the flux calculations are not fully complete, we introduce a
terminology of ‘oscillatory’ and ‘non-oscillatory’ higher memory effects. The displacement
memory effect for non-precessing binaries has the property that the leading m= 0 modes gen-
erated by the zeroth flux are monotonically increasing. These modes are described as ‘non-
oscillatory’ terms in the waveform, so as to distinguish them from the dominant oscillatory
waveform m ̸= 0 modes which have zero mean, when averaged over timescales short com-
pared to the PN radiation-reaction timescale. However, precisely the same zeroth flux terms
that produce the m= 0 modes in waveform also produce m ̸= 0 modes that have zero mean.
This nonlinear contribution to the oscillatory waveform modes are what we refer to as the
‘oscillatory’ memory terms. Although in the PN context, they do not lead to an offset in the
strain that accumulates from early times to late times, the oscillatory strain associated with
these modes is computed from the same terms that generate the m= 0 modes with an offset.
Thus, we still consider them to be ‘memory’ modes, because they are both features of nonlin-
earities in the asymptotic Einstein equations10.

In terms of the oscillatory and non-oscillatory memory effects, the higher memory effects
associated with the first flux have been computed in the PN context for both types for the
electric part of the first flux. This is precisely the CM memory effect, which was computed at
leading PN order in [15]. However, only the leading PN non-oscillatory part of the flux has
been computed for the magnetic part of the first flux in [14]; the oscillatory terms have not
been computed to the best of our knowledge.

We now summarize the computations required to compute the PN expressions for the
moments of the news and the corresponding shear. We use the PN expressions for the radiative
modes given in section 9.5 of [30].We reproduce the relevant modes at the orders at which they
are required in appendix B, for m⩾ 0 [the negative m values can be obtained using the rela-
tionship that hl(−m) = (−1)mh̄lm]. These modes are written in terms of the mass parametersM,
η and δm; the PN parameter x; and the gravitational-wave phase mϕ(x) for a given spherical-
harmonic mode indexed by (l,m). To compute the electric-parity part of the quadrupole or

10 These oscillatory modes can develop a nonzero offset during the merger and ringdown stages of a black-hole
binary merger, even though during the early inspiral they have zero-mean; thus, they can have a memory offset in
the standard sense, but the PN inspiral is not sufficient to calculate it (i.e. it must be computed from the full inspiral-
merger-ringdown waveforms).
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octupole fluxes and pseudo-fluxes, we can directly substitute the relevant expressions for the
modes in appendix B into the expressions (5.15a) and (5.16a). For all the magnetic fluxes and
pseudo-fluxes, as well as the l⩾ 4 modes, we must calculate expressions analogous to (5.15a)
and (5.16a) that give the spherical-harmonic modes of the scalar fluxes in terms of the radi-
ative modes. The calculations proceed analogously to those in section 5.2, and the results are
also lengthy expressions, such as those found in equations (5.15a) and (5.16a). We, thus, do
not give the expressions for general PN radiative modes; rather, we give only the leading-PN
results for compact binaries below.

To extract the moment of the news, or the corresponding shear, we will compute integrals
or derivatives of the fluxes and pseudo-fluxes. Computing derivatives is straightforward: a
derivative of the PN parameter dx/dt≡ ẋ is given by ẋ= 64ηx5/(5M)+O(x6); a derivative of
the phase ϕ̇ only increases the PN order by 3/2 [i.e. ϕ̇ = x3/2/M+O(x5/2), which is just the
Keplerian orbital frequency, at leading order]. Computing integrals to obtain the moments is
somewhat more subtle. As described in [33] (and also [14, 15]), the integrals of the fluxes in
time t can be performed by recasting them in terms of x (which introduces a factor of 1/ẋ∼
x−5). The integrals of non-oscillatory terms have a PN order that is four PN-orders lower
than the integrand, whereas the oscillatory terms have an order that is only three-halves PN-
orders lower. This counting allows the PN orders of moments to be estimated without too much
difficulty. However, it is also important to compute all of the relevant Clebsch–Gordan-type
coefficients to determine whether the leading-PN coefficient of the flux is nonzero.

We next summarize how we will present the results of our calculations. The signals asso-
ciated with the higher memory effects can all be written schematically as

r
√
2h(HME)

lm = ĥlmx
k+1e−imϕ, (6.1)

where ĥlm is a coefficient proportional to the radiative modes Ulm or V lm associated with the
higher memory effects, with the phase e−imϕ and the leading power of x factored out. Because
we compute the leading-order effect for the zeroth, first and second fluxes and pseudo-fluxes,
for both electric and magnetic parities, for both oscillatory and non-oscillatory effects, and
for both the moment of the news and the associated shear, there would be nearly 40 differ-
ent expressions of the form in equation (6.1) to present. We do not write these expressions
explicitly. Instead, we summarize the expressions in three tables. Table 1 contains the leading
l and m= 0 non-oscillatory mode for each flux type, the corresponding PN orders (the power
of k in equation (6.1)), and the oscillatory modes that contribute to the higher memory effects;
table 2 contains the same information for the oscillatory modes. Finally, table 3 focuses just
on the shear associated with the higher memory effects, and has the coefficient ĥlm for the
leading flux or pseudo-flux. For the modes in table 3, it is then straightforward to reconstruct
the corresponding radiative moments Ulm or V lm [or hlm via equation (5.6)] from the results
in tables 1–3 and equation (6.1). Similarly, the polarizations h+ and h× could be computed
using the expression for hlm and equation (5.5) using the conventions for the spin-weighted
spherical harmonics defined in appendix D.

We also do not plot the higher-memory signals as a function of time or of the PN parameter
x. At leading Newtonian order, the time dependence of x(t) and of the phase ϕ(x) are given by

x(t) =
1
4

[ η

5M
(tc− t)

]−1/4
, ϕ(x) =−x−5/2

32η
. (6.2)

Thus, the flux or pseudo-flux contributions will look no different from a higher PN correction
to a given (l,m) spherical harmonic mode of the waveform. Namely, the oscillatory signals will
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Table 1. PN orders of the non-oscillatory modes relative to the leading l= 2, m= 0
mode. Note that in the second column, the modes are electric (Ul0) or magnetic (Vl0)
depending on whether l is even or odd, respectively. This occurs because the binar-
ies we consider have no spins and the orbital plane does not precess. The modes used
to compute the flux or pseudo-flux are listed in the third column. The fourth and fifth
columns gives the PN order (power k of the term xk+1) that arises in the expression for
the moment of the news or the shear.

Flux or
pseudo-flux

Leading-order modes
in shear (m= 0) Contributing modes

PN order of

moment shear

F0 l= 2,4 U2(±2) 0 0
F1 l= 2,4 U2(±2),U4(±2),U3(±1),

V2(±1),V3(±2)

1 5

F∗
1 l= 3 U2(±2) −1.5 2.5

F2 l= 2,4,6,8 U2(±2),U20,U40 2 10
F∗

2 l= 3,5,7 U2(±2),U20,U40 2 10
Grad
2 l= 2,4 U2(±2),U20,U40 −3 5

G∗rad
2 l= 3,5 U2(±2),U3(±1),U4(±2),

V2(±1),V3(±2)

−0.5 7.5

Gnonrad
2 l= 2,4 U20,U40 −4 4

G∗nonrad
2 l= 3 V30 −1.5 6.5

be chirp signals with a slowly increasing amplitude and frequency; the non-oscillatory signals
will be just slowly increasing amplitudes. The more complex features of these memory signals
will arise during the last stages of the inspiral, the merger and the ringdown; however, the PN
approximation does not hold in this regime, so we are unable to plot the waveform from the
later stages of the merger using the PN results in this paper. Instead, see [24], particularly
figure 3, for explicit plots of some of these contributions in a numerical relativity simulation,
which covers the late inspiral, merger and ringdown.

6.2. Post-Newtonian orders and coefficients of higher memory effects

The first two tables for the non-oscillatory (table 1) and oscillatory (table 2) higher memories
give the flux or pseudo-flux (first column), the spherical-harmonic modes in which the higher
memory appears (second column), the modes that are used in computing the higher memory
(third column), the PN order of the moment of the news relative to the leading zeroth moment
(fourth column), and the PN order of the contribution to the shear relative to the leading quad-
rupole waveform (fifth column). Because both the zeroth moment and the shear scale as x,
we wrote the mode schematically as ckxk+1e−imϕ, so that the PN order given in the last two
columns of corresponds to the power k. In table 3, we give the coefficient ck of the contribu-
tion of a moment or the news to the shear for the lowest l and largest mmode of a given parity
(electric or magnetic). We give the result for both the oscillatory and non-oscillatory modes,
and we focus on the flux (or for the second moment, pseudo-flux) that has the lowest-PN-order
contribution for a given moment of the news. The reason for focusing on these specific contri-
butions is related to the detection prospects for these effects, as we discuss in more detail later
in this subsection.

In table 1, there are a few features that we comment upon. First, the expressions for the
zeroth flux and the magnetic part of the first flux are consistent with previous calculations for
the displacement memory (e.g. [14, 33, 51]) and the spin memory effects [14]. The expressions
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the non-oscillatory electric first flux (second row) and for the second fluxes and pseudo-fluxes
in the last six rows are new. The order of the zeroth moment and shear are the same, because
the zeroth moment of the news is precisely the change in the shear. The PN orders of the
first fluxes’ moments and shear differ by four PN orders, because differentiating the moment
once replaces one factor of x with ẋ∼ x5, which leads to a net increase of four powers of x.
This also explains why the moments associated with the second fluxes and pseudo-fluxes are
eight PN orders higher. The shear associated with the second moments involves taking two
derivatives of the moment; the first derivative increases the power of x by four, and the second
derivative increases it by four again. For the non-oscillatory shear associated with the second
fluxes and pseudo-fluxes, the non-radiative pseudo-flux Gnonrad

2 has the lowest PN contribution
(at 4 PN). Although the 4 PN waveform has been computed for the l= 2, m=±2 waveform,
the contribution to the l= 2, m= 0 mode has only been computed at 1.5 PN order (in terms of
the parameter x) for compact binaries in [50]. This prevents us frommaking a comparison with
existing computations in this case. As we also discuss in more detail below, this non-radiative
pseudo-flux term is also closely related to the charge contribution to the CM memory effect,
which was computed in [15].

The PN order of the contributions of these fluxes to the shear is an important contributing
factor to determining if the higher memory effects will be detectable. The zeroth moment or
the displacement memory, which appears in the waveform at leading Newtonian order, can
potentially be observed in current ground-based detectors (in the entire population of black-
hole mergers [52–54]) or in next-generation ground-based detectors [52] for individual events.
The magnetic part of the shear generated by the first moment (the spin memory) enters at
2.5 PN order: it was recently forecast that it may be detectable by next-generation detectors
only in the entire population of black hole mergers after several years of observation time at
the detectors’ design sensitivities [52]. The electric part, the CM memory, is a relative 5 PN
order effect (for the non-oscillatory part). Given that it is another 2.5 PN orders higher than
the spin memory effect, this does not bode well for its detection prospects; however, tidal
effects in neutron-star binaries behave like a 5 PN correction to the gravitational-wave phase,
and they have been constrained by individual gravitational-wave measurements [55], because
the coefficient of the effective 5 PN term is large. Thus, computing the coefficient is another
important factor in determining the detection prospects. We will discuss this in more detail in
the context of table 3. For the second moment, or ballistic memory, the flux contribution is
higher order (10 PN for both electric and magnetic parts); however, the contributions from the
pseudo-fluxes are lower (4 and 6.5 PN for the electric and magnetic pieces respectively). The
high PN-order of these effects again makes their detection prospects seem more pessimistic,
but we will comment on this further in the context of table 3.

We now turn to discussing the oscillatory (higher) memory terms summarized in table 2.
The oscillatory displacement memory (zeroth flux) is both at a higher PN order than the non-
oscillatory part and it appears in the higher l= 4 multipole moment. For the first fluxes, the
corresponding moments and the shear differ by only 1.5 PN orders (as described earlier). For
the electric part, this makes the oscillatory shear a lower PN-order expression than the cor-
responding term for the non-oscillatory modes, whereas the converse is true for the moment.
The U40 mode contributing to the flux was neglected in the calculation in [15], which is why
no l= 7 modes were computed there; neglecting this term also changes the amplitude of the
l= 3 and l= 5 terms. For the magnetic part, the contribution to the shear for the oscillatory and
non-oscillatory terms enters at the same PN order (which implies that the non-oscillatory term
appears at a lower PN order in the moment). For the second fluxes and pseudo-fluxes, the shear
is only three PN orders higher than the corresponding moments. Comparing the oscillatory and
non-oscillatory terms for the moments, the non-oscillatory terms are mostly at equal or lower
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Table 2. PN order of the oscillatory modes relative to the leading l= 2,m=±2 modes.
The table is otherwise the same as table 1, except that we also list the azimuthal
spherical-harmonic index m in parentheses in the second column and the modes in this
column are Ulm when l+m is even and V lm when l+m is odd.

Flux or
pseudo-flux

Leading-order
modes in shear

Contributing
modes

PN order of

moment shear

F0 l= 4 (m=±4) U2(±2) 2.5 2.5
F1 l= 3 (m=±1,±3),

l= 5 (m=±1,±3,±5),
l= 7 (m=±1,±3)

U3(±1),U3(±3),U2(±2),
U20,U40

1.5 3

F∗
1 l= 3 (m=±2) U2(±2), U20,U40 1 2.5

F2 l= 2 (m=±2),
l= 4 (m=±2,±4),
l= 6 (m=±2,±4,±6),
l= 8 (m=±4)

U2(±2),U20,U40 2 5

F∗
2 l= 3 (m=±2),

l= 5 (m=±2,±4),
l= 7 (m=±4)

U2(±2),U20,U40 2 5

Grad
2 l= 2 (m=±2),

l= 4 (m=±4,±2)
U2(±2),U20,U40 −0.5 2.5

G∗rad
2 l= 2 (m=±1),

l= 4 (m=±1,±3)
U2(±2),U3(±1),U3(±3),
V2(±1)

0 3

Gnonrad
2 l= 2 (m=±2) U2(±2) −1.5 1.5

G∗nonrad
2 l= 2 (m=±1) V2(±1) −1 2

PN orders than the corresponding oscillatory terms; however, for the shear, the converse is
true for all of the terms: the oscillatory terms are all at lower PN orders than the equivalent
non-oscillatory terms. In fact, the non-radiative pseudo-flux terms arise in the shear at a lower
PN order than the first flux terms.

The detection prospects of these oscillatory higher memory effects merits further discus-
sion. It was noted in [15] that the oscillatory part of the first flux could, in principle, be detect-
able, but it would just be a part of the total oscillatory spherical-harmonic mode (which in the
language used in this paper, has substantial charge contributions). At first glance, the same
could be true of the non-radiative pseudo-flux term appearing at 1.5 PN order in the l= 2,
m=±2 modes of the waveform. This term also seems promising from the perspective of
observation, because it is at a lower PN order, and it appears in the dominant quadrupole mode
for compact binaries. To have a more quantitative viewpoint on its detection prospects, how-
ever, it is important to know the size of the coefficient that multiplies this 1.5 PN contribution
to the shear. We discuss this next.

In table 3, we show the coefficient of the leading-order contribution to the non-oscillatory
and oscillatory pieces of the shear’s radiative moments in the second and third principal
columns of the table. We include only the lowest l and highest m term when there are multiple
(l,m) modes at a given PN order. We include the zeroth, first and second flux and pseudo-flux
of the moments. For reference, the coefficient of the leading (2, 2) mode is 8

√
2π/5Mη.

The non-oscillatory zeroth flux coefficient is consistent with the previous results computed
for the displacement memory, as is the non-oscillatory first magnetic flux terms. The oscil-
latory, electric-parity, first-flux coefficient corrects the result in [15], because it includes the
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Table 3. Coefficient of the leading-order flux and pseudo-flux contributions to the radi-
ative multipoles of the shear. As in table 2, the modes are Ulm when l+m is even and
V lm when l+m is odd. For brevity, we have only included the highest m for the lowest
l terms, with m> 0 for the oscillatory contributions. We do not include the PN order
(given in tables 1 and 2) or the overall phase dependence e−imϕ (which can be inferred
from the azimuthal number m of the mode).

Flux or
pseudo-flux

Non-oscillatory piece Oscillatory piece

Mode Coefficient Mode Coefficient

F0 (2, 0) 4
7

√
5π
3 Mη (4, 4) − 8i

45

√
2π
7 Mη2

F1 (2, 0) a (3, 3) − 509
990

√
π
21δmη

2

F∗
1 (3, 0) − 96

5

√
π
105Mη2 (3, 2) 233

405

√
2π
7 Mη2

Grad
2 (2, 0) − 16084864

46305

√
π
15Mη3 (2, 2) − 926i

567

√
2π
5 Mη2

Grad∗
2 (3, 0) b (2, 1) − 8749i

1701

√
π
10δmη

2

Gnonrad
2 (2, 0) − 128

7

√
π
15Mη2 (2, 2) −4i

√
10πMη

Gnonrad∗
2 (3, 0) − 512

125

√
21π
5 Mη3 (2, 1) 4i

3

√
2π
5 δmη

a The expression for this coefficient is somewhat lengthier than the others. It is given by

2

315M

√
π

15
η2 [80M2 (−121+ 538η)− 3δm2 (23+ 20 ln2)

]
. (6.3)

The reason for the longer expression is that the leading-order terms in the modes given in table 1
vanish, but subleading terms do not. These subleading terms all appear at 2.5 PN order relative to
the quadrupole moment, and they are out of phase by π/2 with the leading modes (because they
arise from dissipative, radiation-reaction effects). The product of these subleading terms with the
leading moments does not cancel.
b This expression is also longer, for the same reasons discussed in the previous footnote. It is
given by

512

25

√
π

105
(424η− 97)Mη3. (6.4)

U40 mode which was dropped in [15]. The oscillatory zeroth flux, non-oscillatory first electric
flux and oscillatory magnetic first flux terms have not appeared elsewhere, as far as we are
aware. All of the second pseudo-flux terms have not been computed previously through this
prescription. However, the (2, 0) mode corresponding to the non-radiative electric pseudo-flux
contribution has exactly the same form as the ordinary part of (i.e. charge contribution to) the
CM memory effect computed in [15], in the context of stationary-to-stationary transitions in
asymptotically flat spacetimes. This occurs because, in the context of stationary-to-stationary
transitions, the value of the angular momentum aspect is computed from the expression for
the non-radiative pseudo-flux in a stationary region with nonvanishing shear. Nevertheless, the
procedure used here does not make the stationary-to-stationary assumption, and still arrives at
the same result. However, there is an additional subtlety that we discuss next in the context of
the oscillatory non-radiative electric pseudo-flux term in the (2, 2) mode.

This oscillatory term appears at 1.5 PN order relative to the leading quadrupole waves,
which appears at precisely the same order as the tail terms. However, the coefficient of the tail
contribution is precisely 2π times larger than the leading U22 mode for nonspinning compact
binaries in quasi-circular orbits, whereas this pseudo-flux term is −5i/2 times larger than the
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leading U22. Notably, the factor of −i implies that it is −π/2 out of phase with the tail term.
The fact that the 1.5 PN order waveform has a strictly real coefficient strongly suggests that
there are contributions from the charge that cancel with this term. In fact, from the first term
of equation (2.53d) of [32], one can see (after accounting for the differences in notation) that
there is a contribution to Q̈2 that is precisely equal to this contribution from the non-radiative
pseudo-flux term. This suggests that one should be cautious about computing the flux terms
in isolation, especially for the higher fluxes, because the charge terms can have comparable
contributions.

Thus, while the electric non-radiative pseudo-flux terms appeared nominally to be a prom-
ising gravitational-wave signature associated with the second moment of the news, they ulti-
mately do not lead to any measurable effect, because they are precisely balanced by the ordin-
ary (charge) contributions to the strain. This is true of both the oscillatory terms (at the same
order as the gravitational-wave tails) and the non-oscillatory term (which was previously iden-
tified as the ordinary contribution to the CMmemory in [15] for stationary-to-stationary trans-
itions) for the electric part of the shear. While [32] has not computed the contributions from the
current moments, we strongly suspect that the same will hold for the magnetic non-radiative
fluxes, although such a result has not been computed explicitly yet.

7. Conclusions and discussion

7.1. Summary and conclusions

In this paper, we have studied generally, and in the context of PN theory and compact binar-
ies, the first three orders in a hierarchy of memory effects, which were introduced in [22], in
the setting of asymptotically flat spacetimes. We used the phrase ‘higher memory effects’ to
describe the collection of these effects, which are examples of persistent gravitational-wave
observables. In asymptotically flat spacetimes, these higher memory effects are encoded in the
temporal moments of the Bondi news. Specifically, the zeroth and first moments contain equi-
valent information as the displacement, spin and CM memories; we also studied the second
moment, which has recently been dubbed the ballistic memory [24].

One main result of this paper was expressing all of the scalar moments of the news and
of its dual in terms of a convenient hierarchy of integrals of fluxes (and pseudo-fluxes) and
changes in a charge for that moment. We used the nomenclature that charges are superposi-
tions of Bondi aspects, fluxes are nonlinear terms that vanish in the absence of radiation, and
that other nonlinear terms that are non-zero in a non-radiative region, but involve the shear
and/or the Bondi aspects, were called pseudo-fluxes. Because the higher moments are com-
puted from additional integrals of fluxes (and pseudo-fluxes) that arise in the calculation of
lower moments, we focused primarily on the ‘new’ flux and pseudo-flux terms that first appear
in a given expression for a moment of the news. We also identified contributions to the shear
that are generated by the fluxes and charges for each moment of the news; the shear is the
observable that can be measured most straightforwardly in interferometric gravitational-wave
detectors, which makes it the more natural quantity to consider in the context of gravitational-
wave detection and data analysis.

A second key result was the computation of the multipolar expansion of all of the flux and
pseudo-flux terms that appear in the expressions for the zeroth, first and second moments of
the news, in terms of the multipolar expansion of the shear. These results hold generally, but
our main application of them in this paper was to compute post-Newtonian expressions for the
flux contributions to the moments of the news and the corresponding shear, both for general
multipolar, PN sources and for nonspinning, quasicircular compact binaries.
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We used the multipolar expansion of the zeroth, first and second fluxes (and pseudo-fluxes)
to compute the contributions to the gravitational waveform for the mass quadrupole and octu-
pole moments through 3.5 PN order for the quadrupole and 3 PN order for the octupole. These
fluxes could account for both the terms called ‘memory’ in the PN literature and the large
number of instantaneous, nonlinear terms. The discrepancies between the two expressions
were restricted to the tail terms (which cannot obviously be captured by using leading-order
PN waveforms in the fluxes) and second derivative terms that come from charge terms, as
well as the third fluxes and pseudo-fluxes for the octupole. Given the differences between the
harmonic-gauge equations of motion and the Bondi ones, the high degree of similarity of the
final expressions is notable.

We finally computed the leading radiative PNmultipoles that are produced by both the elec-
tric and magnetic zeroth, first and second fluxes and pseudo-fluxes for non-spinning, quasi-
circular compact binaries. Our calculations using zeroth and first fluxes reproduced the pre-
viously computed results for the displacement and spin memory effects, respectively, and we
also corrected a small error in a previous computation of the center-of-mass memory effect
with the first-flux computation. The second fluxes produced a shear, for the non-oscillatory
m= 0 modes, at 10 PN order relative to the leading quadrupole. The oscillatory shear asso-
ciated with the second flux appears at 5 PN order. Although the order is the same as tidal
effects, it is a correction to the amplitude, rather than the phase, which would make it more
challenging to detect. There were also intriguing 1.5 PN order terms that arose from the elec-
tric non-radiative pseudo-flux. However, these terms would be canceled by equivalent terms
that appear in the charge contribution to the shear, so they cannot account for the tail terms at
1.5 PN order that have previously been computed.

7.2. Discussion and future directions

Much of the emphasis of the calculations in this paper was on determining the lowest multi-
pole moments (quadrupole and octupole) both to compare with existing PN calculations and to
determine the size of the new flux contributions to the moments relative to the leading part of
the gravitational-wave strain for compact binary sources. These leading-order results could be
generalized to include sub-leading corrections from higher PN terms in the oscillatory wave-
forms. The assumption of non-spinning compact objects could also be revisited to determine
additional subleading corrections that enter from including spins. As one of the main goals was
to compute the leading-order effects to simply determine which of the many flux terms merit
further study, we will leave calculations with spinning PN results (which are more involved
computationally) to future studies.

Understanding the largest higher-memory flux terms is a pre-requisite for assessing the
detection prospects of these new contributions to the higher moments of the news. Such fore-
casts for the lower moments in ground-based detectors have already appeared in the literature.
Because the flux contributions are small compared to the dominant quadrupole modes, this is
typically done by ‘stacking’ [53]. For studies using the binary-black-hole mergers discovered
to date by LIGO and Virgo [56, 57], the stacking involves combining the evidence ratio of
models that include these contributions versus those that do not. For forecasts of measurement
prospects, it is also useful to consider stacking the signal-to-noise ratio of the memory sig-
nals in quadrature [53, 54], which approximates the total evidence ratio (for all merger events)
with and without the higher memories (see [52] for more details about when this equivalence
holds).

The outcomes of these studies are that the flux contribution from the zeroth moment (the
nonlinear displacement memory) has not yet been detected in ground-based detectors [56, 57],
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but the prospects for its detection are promising [52–54]; similarly, for the magnetic part of the
first moment’s flux contribution (i.e. the spin memory), it is possible for the next generation
of ground-based detectors to observe the statistical evidence for the memory in the population
of merging black holes [52].

As future work, it is natural to investigate if similar studies could be done for the new
higher memory effects arising from the second fluxes or pseudo-fluxes. The results of this
paper suggest that the oscillatory pieces of the non-radiative pseudo-flux would be the most
promising contribution given its relatively low PN order (2.5 PN), and the fact that it appears
in the dominant l= 2, m= 2 waveform mode in non-spinning compact binaries. Based on the
facts that it has the same PN order as the spin memory effect and that the amplitudes of the
effects have the same mass dependence and numerical order of magnitude, this suggests that
it might also be detectable in the population of black-hole mergers by the next generation of
ground-based GWdetectors. For example, since the spin memory has a peak strain on the order
of 10−24 for a GW150914-like event, and an SNR in Advanced LIGO of order 0.01 [14], it is
not unreasonable to suppose the same would be true for this new radiative pseudo-flux term.
To obtain the most accurate forecasts in this context, it would be better to use the full inspiral-
merger-ringdown signals from numerical relativity simulations rather than the inspiral-only
PN signals considered in this paper. This is an important reason why we leave this effort for
future work.

For tests that involve just the post-Newtonian signal, one could envision making use of the
parametrized tests of general relativity performed by the LIGO-Virgo-KAGRA Collaboration
(see, e.g. [58]). These tests introduce ‘deviation parameters’ in the coefficients of the post-
Newtonian expansion of the gravitational-wave phase in the frequency-domain that have the
property that when they are zero, the waveform reduces to the expression in general relativity.
Current constraints on these deviation parameters are consistent with zero, to within the stat-
istical uncertainty of the measurement of these parameters. If future measurements constrain
the parameters to have a statistical error less than the contribution of the radiative pseudo-flux
to the phase, then this would provide indirect evidence that the pseudo-flux contribution to the
waveform exists: namely, because the pseudo-flux term is a prediction of general relativity
that contributes to the value of the PN coefficient in general relativity.

There are some subtleties that make this using this approach a bit more difficult than it
might, at first consideration, seem.When writing the full l= 2,m= 2 waveformmode in terms
of its time-dependent slowly varying amplitude and rapidly varying phase, the pseudo-flux
contribution to the waveform affects the amplitude at 2.5 PN order, and it is imaginary rather
than real. While changes in the amplitude can produce phase differences when using energy
balance to take into account the effect of the radiative losses on the binary’s dynamics, these
imaginary terms in the amplitude first produce phase differences at twice the PN order (namely
5 PN) unlike the real terms in the amplitude that change the phasing at the same PN order that
they appear in the amplitude. Currently, however, the parametrized tests of general relativity
are restricted to 3.5 PN order and lower terms in the phase; they would need to be extended
to higher PN orders (once these orders have been computed) to be able to obtain such indirect
evidence of the pseudo-flux terms.

Although ground-based gravitational-wave detectors have larger calibration uncertainties
on amplitude than on phase (see, e.g. [59]) and tests of general relativity tend to be more sens-
itive to deviations in phase than in amplitude at a given PN order (see, e.g. [60]), performing
tests of general relativity with deviations in the amplitude is still possible. Given the fact that
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the contributions from the radiative pseudo-flux terms appear at 2.5 PN order in the amplitude
and 5 PN order in the phase, the significantly lower PN order in the phase could make up
for the decreased constraining power of amplitude (as opposed to phase) effects. Even if a
parametrized test of relativity using the amplitude were implemented, to find evidence for the
pseudo-flux contribution to the 2.5 PN waveform amplitude, the test would need to be per-
formed at a high precision, because the pseudo-flux contribution is small. Specifically, the part
of the amplitude that depends on η2 has a real and an imaginary part with comparable mag-
nitudes; the pseudo-flux contribution is less than one-percent of the imaginary part. It would
likely require either a large number of events or very high signal-to-noise events (and perhaps
both) to show that the 2.5 PN deviation parameter is consistent with general relativity to less
than one-percent accuracy (and thus the pseudo-flux is required to reproduce the observed
waveform). Thus, the first method, using inspiral-merger-ringdown waveforms to make fore-
casts may be the more promising future direction.

From a more theoretical perspective, the calculations in this paper also highlighted which
fluxes are necessary to compute a given multipolar order of the gravitational-wave strain. In
particular, the quadrupole can be computed from just the zeroth, first and second fluxes (and
pseudo-fluxes), plus a charge contribution. The octupole also requires the third fluxes and a
charge contribution that involves more Bondi aspects than the quadrupole. This pattern con-
tinues for the l-pole mode of the strain, which involves l+ 1 flux terms and a charge with l+ 1
Bondi aspects. The higher multipoles thus contain a larger set of possible nonlinear terms
which are related to higher-order (or more subleading in 1/r) parts of the Bondi-gauge metric
and Einstein equations (cf the discussion of ‘memoryful’ and ‘memoryless’ charges in [23]).
This is not as apparent in the PN calculations of the waveform, in which, at a given PN order,
the quadrupole often appears to be the most complicated mode. This occurs because the higher
multipoles are also of a higher PN order than the quadrupole as are the higher fluxes; thus the
higher flux contributions are at higher PN orders than the current state-of-the-art PN calcula-
tions. This perspective from the Bondi-Sachs framework also provides one more motivation
for investigating higher gravitational-wave multipoles.
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Appendix A. PN expansion of the mass quadrupole and octupole moments

The flux contributions to the shear from the higher moments of the news enter as n deriv-
atives with respect to retarded time for the nth flux (see equation (5.14)). In addition, the
fluxes in the Bondi approach involve only the radiative multipoles, which involve l retarded-
time derivatives of the multipole moment of order l; however, the post-Newtonian calculation
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involves the full metric which includes the multipole moments without any derivatives (which
would correspond to as many as l integrals of the radiative multipole of order l). Thus, to com-
pare the expression for the flux contribution to the Bondi radiative moments (equations (5.19)
and (5.21)) with the PN radiative moments we will need to re-express the PN results (given
in section 2.4.5 of [30], for example). We use the product rule so as to write it in a form that
appears more compatible with the Bondi framework. The result of these calculations is that
the PN waveform can be written in a form involving integrals over retarded time, ‘instantan-
eous’ terms without derivatives, and terms that involve one or two total derivatives (for the
quadrupole and octupole). In addition, we require that the terms that involve zero or one time
derivative do not involve multipole moments that would correspond to retarded time integrals
of the Bondi radiative moments. This allows the results below in equations (A.1) and (A.2) to
be compared with the respective Bondi results in equations (5.21) and (5.19), respectively. For
the mass quadrupole moment, the result is
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and for the mass octupole moment the result is
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Appendix B. Radiative modes for compact binaries in quasi-circular orbits

Here, we list the radiative modes that were used to calculate the leading PN order of the
moments of the news and the corresponding shear. These expressions were obtained from
section 3.4.5 of [30]. For the majority of our calculations, we used the leading, ‘Newtonian’
expressions for these modes given below:
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We left the ‘N’ label off the m= 0 modes, because these modes are computed from the
zeroth or first fluxes, which go beyond linearized gravity.

However, to compute the entries in table 3 given by equations (6.3) and (6.4), we needed to
go to higher PN orders, because the leading terms cancel. There are subleading terms that that
are out of phase by π/2 from the leading terms that do not cancel, however. These terms are
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related to radiation reaction effects, and the ones that we require appear at 1.5 PN order relative
to the ‘Newtonian’ mode. We give these terms the superscript ‘RR’ for radiation reaction, and
we list them below:
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Appendix C. Relation between definitions of the moments of the news

The curve deviation observable in [22] was written in terms of the following moments:

N
(n)

M
AB (u1,u0) =

1
n!

ˆ u1

u0

du2 (u2 − u0)
nNAB (u2) . (C.1)

It was noted in [23, 34] that these moments are related to the Mellin transform of the news
tensor. We made a remark in section 3 that the definition of moments in this paper differs
from those in equation (C.1). However, the so-called ‘Mellin moments’ in equation (C.1) can
be written in terms of the moments defined in equation (3.1) by using Cauchy’s formula for
multiple integration. After a short calculation, one can show that the relation is

N
(n)

M
AB (u1,u0) =

n∑
m=0
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(n−m)!
(u1 − u0)

n−mN
(m)

AB (u1,u0) . (C.2)

Moreover, by Cauchy’s formula for multiple integration, the moments of the news in this paper
are the same as the ‘Cauchy moments’ which appear in [34], up to minor differences in the
exact definition of ‘news’.

Appendix D. Tensors on the 2-sphere

In this appendix, we provide several properties and relationships satisfied by tensors on the
2-sphere, including a number of results for tensor and spin-weighted spherical harmonics. We
used many of these results throughout this paper.

Tensors on the 2-sphere can be written on a null, complex dyad {mA, m̄A}, which satisfies
the conditions

hABm
AmB = 0, hABm

Am̄B = 1. (D.1)

In terms of this dyad, the metric on the 2-sphere can be written as

hAB = 2m(Am̄B). (D.2)

Here, we focus on STF tensors, as many of the tensors which we consider in this paper are
STF. Any STF tensor SA1···As on the 2-sphere has only 2 degrees of freedom, since it can be
shown to be written as

SA1···As = S̄mA1 · · ·mAs + Sm̄A1 · · · m̄As , (D.3)
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where

S≡ mA1 · · ·mAsSA1···As . (D.4)

In general, for some tensor field SA1···Ap , if it transforms as SA1···Ap → eisθSA1···Ap when
mA → eiθmA, then the tensor field is said to have spin weight s. While discussions of spin
weight (e.g. [61]) often are restricted to scalar quantities, we find it convenient to also consider
tensors of spin weight, which have been discussed elsewhere: for example, at the beginning
of section 4.12 of [62]. Examples of spin-weighted tensors include mA itself (spin weight 1),
as well as a tensor that has only a subset of its indices contracted with dyad vectors, such as
m̄ACAB (spin weight −1). If SA1···As has zero spin weight, then the scalar in equation (D.4) has
spin weight s.

A convenient basis for STF tensors on the 2-sphere are the tensor harmonics, which are
defined by

(
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)
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√
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BYlm
)
. (D.5b)

On contracting the tensor harmonics withmembers of the dyad, one can show that the tensor
harmonics can be written in terms of spin-weighted spherical harmonics:

(
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where the spin-weighted spherical harmonics sYlm are defined by

sYlm = 2|s|/2
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(l− |s|)!
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{
(−ð)sYlm s⩾ 0(
ð̄
)s
Ylm s⩽ 0

, (D.7)

and where the derivative operator ð is defined, when acting on a spin weight s tensor SA1···Ap ,
by

ðSA1···Ap ≡
[
mBDB− sm̄CmBDB (mC)

]
SA1···Ap . (D.8)

It follows that ð raises the spin-weight of any tensor on which it acts, ð̄ lowers the spin-weight,
and

ðmA = 0, ð̄mA = 0. (D.9)

For example, using equation (D.7), one can derive the following formula for raising and lower-
ing the spin-weighted spherical harmonics:

ðsYlm =−
√

(l− s)(l+ s+ 1)
2 s+1Ylm, ð̄sYlm =

√
(l+ s)(l− s+ 1)

2 s−1Ylm. (D.10)
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We now discuss the raising and lowering the tensor rank of tensor harmonics with the cov-
ariant derivative operator DA. First, directly from the harmonics’ definitions, we have that
raising is given by

STF
[
DA1

(
TIlm
)
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]
=

√
(l− s)(l+ s+ 1)

2
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A
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ϵBAD
BYlm, (D.12)

where I= E,B. Deriving the lowering relationship takes a few more steps. Writing
DB(TIlm)BA1···As−1 = 2m(Bm̄C)DB(TIlm)CA1···As−1 , then using equation (D.6a), the product rule,
equation (D.8) (and its complex conjugate) and equation (D.10), allows us to derive the fol-
lowing expressions for lowering tensor harmonics:

DB
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2
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ϵABD
A
(
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)B

= DA
(
TBlm
)
A
= 0. (D.13c)

Finally, the action of the Laplacian on the tensor harmonics is given by

D2
(
TIlm
)
A1···As

=
[
s2 − l(l+ 1)

](
TIlm
)
A1···As

, (D.14)

which can be obtained through a calculation similar to that described for the lowering rela-
tionship. The eigenvalue of D2 on the right-hand side of equation (D.14) reduces to the usual
factor of −l(l+ 1) when restricting to the scalar harmonics.

We now derive expressions for the contraction of two tensor harmonics of equal rank in
terms of a sum of scalar harmonics. Using equation (D.6a), we obtain(
TI
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where

cII
′
=


1 I= I ′ = E,B

i I= E, I ′ = B

−i I= B, I ′ = E

. (D.16)

Next, we can use the fact that

−sYl′m ′ sYl′ ′m ′ ′ =
∑
l,m

C lms
l′m ′l ′ ′m ′ ′Ylm, (D.17)

for the coefficient C lms
l′m ′l ′ ′m ′ ′ defined in equation (4.5), which has the property that

C lms
l′m ′l ′ ′m ′ ′ = (−1)l+l

′+l ′ ′ C
lm(−s)
l′m ′l ′ ′m ′ ′ . (D.18)
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This allows us to write equation (D.15) as(
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′
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where

ηEI
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ll′l ′ ′ = cI
′I ′ ′ +(−1)l+l

′+l ′ ′ cI ′I ′ ′ . (D.20)

The values for ηEI
′I ′ ′

ll′l ′ ′ are given in the first three cases of equation (4.7).
The tensor harmonics satisfy the following property on contracting with the two-

dimensional Levi-Civita tensor:

ϵBA1

(
TI

′
)
BA2···An

= ϵI
′I ′ ′
(
TI
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A1···An

, (D.21)

where we define

ϵI
′I ′ ′ =


1 I ′ = E, I ′ ′ = B

−1 I ′ = B, I ′ ′ = E

0 otherwise

. (D.22)

Also, our definition of η has the following property:

ϵĨI
′ ′
ηII

′ Ĩ
ll′l ′ ′ = ϵĪIη ĪI

′I ′ ′
ll′l ′ ′ . (D.23)

Thus, using equations (D.21) and (D.23), one can evaluate the following contraction which
was used for computing the magnetic parts of the fluxes:

ϵB
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)
A1···As
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TI
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The values for ηBI
′I ′ ′

ll′l ′ ′ are given in the last three cases of equation (4.7).
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