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Emerging evidence suggests that ADHD is associated with increased risk for metabolic and cardiovascular (cardiometabolic)
diseases. However, an understanding of the mechanisms underlying these associations is still limited. In this study we estimated the
associations of polygenic scores (PGS) for ADHD with several cardiometabolic diseases and biomarkers. Furthermore, we
investigated to what extent the PGS effect was influenced by direct and indirect genetic effects (i.e., shared familial effects). We
derived ADHD-PGS in 50,768 individuals aged 18–90 years from the Dutch Lifelines Cohort study. Using generalised estimating
equations, we estimated the association of PGS with cardiometabolic diseases, derived from self-report and several biomarkers
measured during a physical examination. We additionally ran within-sibling PGS analyses, using fixed effects models, to disentangle
direct effects of individuals’ own ADHD genetic risk from confounding due to indirect genetic effects of relatives, as well as
population stratification. We found that higher ADHD-PGS were statistically significantly associated with several cardiometabolic
diseases (R-squared [R2] range= 0.03–0.50%) and biomarkers (related to inflammation, blood pressure, lipid metabolism, amongst
others) (R2 range= 0.01–0.16%) (P < 0.05). Adjustment for shared familial factors attenuated the associations between ADHD-PGS
and cardiometabolic outcomes (on average 56% effect size reduction), and significant associations only remained for metabolic
disease. Overall our findings suggest that increased genetic liability for ADHD confers a small but significant risk increase for
cardiometabolic health outcomes in adulthood. These associations were observable in the general population, even in individuals
without ADHD diagnosis, and were partly explained by familial factors shared among siblings.
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INTRODUCTION
ADHD is a common and highly heritable neurodevelopmental
disorder with an estimated worldwide prevalence of 3–7% in
childhood and adolescence [1, 2], and around 3% in adulthood
[3, 4]. While there is a plethora of research documenting the
frequent co-occurrence of psychiatric disorders with ADHD [5],
associations with physical disorders, especially those that occur in
older age, have been less studied. This is partly due to the lack of
available data on ageing adults with ADHD. Recent evidence from
large-scale studies have reported associations between ADHD and
increased risk of metabolic and cardiovascular (CVD) diseases
(cardiometabolic diseases) [6–9], which are some of the major
causes of disability globally and leading causes of death [10, 11].
However, these studies have often included a limited number of
cardiometabolic outcomes and have mainly captured adults who
have received a clinical diagnosis of ADHD. This is a potential
problem due to the low prevalence of ADHD diagnoses in older
adults, most likely due to underdiagnosis [3]. Studies using genetic

data may be useful to overcome this problem, as polygenic scores
can act as proxy for continuous ADHD risk in the general
population instead of relying on diagnoses.
A limited number of genetic studies, using family-based and

molecular genetic designs, have suggested genetic correlations
between ADHD and a number of cardiometabolic outcomes
[6, 12, 13]. A recent genetic study revealed weak-to-moderate
genetic correlations of ADHD with BMI, coronary artery disease
and levels of triglycerides and HDL cholesterol [12]. However,
conclusive and well-powered studies are still lacking. The reported
genetic correlations may reflect shared biology, whereby the same
genetic variants that increase the risk for ADHD also directly
increase risk for cardiometabolic conditions, or causality, where
ADHD may have causal effects on cardiometabolic conditions.
Furthermore, it is largely unknown to what extent estimates of the
effect of genetic risk of ADHD on cardiometabolic health are
confounded by familial genetic effects, by which parental genetic
risk for ADHD correlates with family-environmental factors (so
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called ‘genetic nurture’) that in turn increase risk for cardiometa-
bolic outcomes in offspring (e.g., socioeconomic status [SES],
lifestyle, diet, neighbourhood, household chaos). Within-sibling
PGS models take advantage of the random segregation of genetic
material at meiosis. Indeed, within-sibship differences in PGS must
be due to random genetic inheritance and are not correlated with
confounders shared by siblings. Therefore, sibling models are
thought to separate out direct genetic effects (i.e. causal individual
genetic effects originating from individual genome) from indirect
genetic effects (familial genetic effects originating in the genome
of family member, independent of genetic transmission), popula-
tion stratification (systematic allele frequency differences accord-
ing to ancestry) and assortative mating.
The aim of this large-scale population-based study was to

estimate the genetic associations between ADHD and cardiome-
tabolic diseases as well as a range of related biomarkers (e.g.
cholesterol, glucose levels, blood pressure). Insight into the links
between ADHD and different cardiometabolic biomarkers may
provide a better understanding of the biological mechanisms that
are implicated in individuals with adult ADHD. It is important for
research, in general, to establish these underlying mechanisms, as
the knowledge could in the long run guide clinical practice and
prevention strategies relating to cardiovascular health issues in
individuals with ADHD. We further aim to control for shared
familial factors, using a within-sibling design, and investigate
moderating factors (age, sex and SES) of the genetic association
between ADHD and cardiometabolic outcomes.

MATERIALS AND METHODS
Sample and data collection
Lifelines is a multi-disciplinary prospective population-based cohort study
examining in a unique three-generation design the health and health-
related behaviours of 167,729 persons living in the North of the
Netherlands. It employs a broad range of investigative procedures in
assessing the biomedical, socio-demographic, behavioural, physical and
psychological factors which contribute to the health and disease of the
general population, with a special focus on multi-morbidity and complex
genetics [14]. Between 2006 and 2013, randomly selected general
practitioners invited all their listed patients aged 25-50 years to participate
in the study. Self-reported questionnaires collected information on
demographics, family composition, work and education, health and
pharmacological treatment (using Anatomical Therapeutic Chemical
Classification System [ATC]). Blood and urine samples, blood pressure
and BMI were obtained during a physical examination. In the current study,
we used only baseline data and the following exclusion criteria: age <18,
missing genetic data or non-European ancestry. The final sample of
N= 50,768 participants was included in the analyses (see Supplementary
Fig. 1 for flow chart of genetic data processing). The authors assert that all
procedures contributing to this work comply with the ethical standards of
the relevant national and institutional committees on human experimenta-
tion (approved by the Medical Ethical Committee at the University Medical
Center Groningen) and with the Helsinki Declaration of 1975, as revised in
2008. Informed consent was obtained from all participating individuals.

Cardiometabolic disease
Using questionnaires, participants were asked to report the presence of
cardiometabolic diseases. The definition of diseases was based on the
structure of the International Classification of Diseases version 10 (ICD-10)
[15]. In line with past publications from Lifelines, operationalization
methods were developed to define four cardiometabolic diseases:
myocardial infarction, heart failure, atrial fibrillation [16] and type-2
diabetes [17]. These involved self-reported disease validated with
biomarkers or cardiovascular/diabetic medication (self-report) (Supple-
mentary Table 1 for definitions). Obesity was defined as having a BMI of 30
or above, measured using height and weight (kg/m2) obtained at the
physical examination.

Cardiometabolic biomarkers
At the baseline assessment, participants were invited to visit one of twelve
Lifelines Research sites to undergo a physical examination and a series of

tests. Blood pressure was measured ten times over a 10-min period, and
the registered blood pressure was the average of the final three readings
in millimetres of mercury (mmHg). At the research sites, blood and 24-hour
urine were collected from participants and transported to the central
Lifelines laboratory in Groningen [16]. We included 27 biomarkers
(obtained during the physical examination), related to cardiometabolic
health across different functional groups: glucose metabolic, red blood
cells, lipid metabolism, liver function, kidney function, thyroid, inflamma-
tion and blood pressure.
Self-reported medication at baseline was used to extract information on

individuals who were on medication for cholesterol- or blood pressure-
lowering medication and diabetic medication (insulin or/and tablets).
Following standard measures, individuals on cholesterol-lowering medica-
tion had their pre-medication levels approximated by dividing the LDL
cholesterol value by 0.7 and the triglycerides value by 0.8 [18]. We adjusted
blood pressure values for medication use by adding 15 and 10mmHg to
systolic and diastolic blood pressure, respectively, for individuals reported
to be taking blood pressure-lowering medication [19]. We excluded the
glucose and haemoglobin A1c (HbA1c) measures for individuals on
diabetic medication.
In order to avoid biased resulting from measurement error, we deleted

values that were above or below four standard deviations of the mean.
Before running the statistical analyses, we log-transformed non-normally
distributed measures (leucocytes, HbA1c, glucose, HDL cholesterol,
triglycerides, alanine transaminase (ALAT), aspartate transaminase
(ASAT), alkaline phosphatase, gamma-glutamyl transferase (gamma-
GT), serum creatinine, creatinine clearance, urine albumin, uric acid,
thyroid stimulating hormone (TSH), free- triiodothyronine (free-T3), free-
thyroxine (free-T4), albumin-to-creatinine ratio (ACR), urinary albumin
excretion (UAE). We standardised all continuous measures before
performing statistical analyses.

Covariates
Age, sex and educational attainment were obtained through the baseline
questionnaire. We used educational attainment as a proxy for SES, as has
been done previously and because education is more differentiating than
income in the Dutch population [20, 21]. Education was measured by a
self-report question for participants, ‘What is the highest level of education
you have attained?’ Education year was defined as ‘no education (did not
finish primary school)’ as 1 year, ‘primary education’ as 7 years, ‘lower or
preparatory secondary vocational education’ or ‘junior general secondary
education’ as 10 years, ‘secondary vocational education’ or ‘senior general
secondary education’ as 13 years, and ‘higher vocational education’ or
‘university education’ as 20 years. Genotyping chip and eight genetic
principal components (PCs) were added as additional covariates.

Polygenic risk scores
DNA samples were genotyped using the Illumina Global Screening Array
and Illumina CytoSNP12v2 array. After quality control, both genotyping
datasets were imputed at the Sanger imputation server using the
Haplotype Reference Consortium panel v1.1 [22]. Details of genotyping,
quality control and imputation in Lifelines for both genotyping datasets
have been published elsewhere [23, 24]. After exclusion of non-European
individuals (determined by self-report, outlier analysis and population
stratification), 36 305 individuals genotyped using the Illumina Global
Screening Array and 14 463 using the Illumina CytoSNP12v2 array were
included in our analyses.
The PGS was calculated to represent the cumulative effects of many

common genetic variants. We built the PGS using the most recent, and
most sufficiently powered, meta genome-wide association study (GWAS) of
ADHD conducted in 38 691 ADHD cases and 186 843 controls of European
ancestry [12]. Multiallelic single nucleotide polymorphisms (SNPs) and
SNPs with ambiguous strands (A/T or C/G) were removed from ADHD
GWAS summary results. Overlapping SNPs across GWAS results and
Lifelines sample with minor allele frequency (MAF > 1%) and imputation
quality (INFO > 0.8) were kept. To obtain an independent set of SNPs, an
LD-driven clumping procedure was performed in PLINK (r2 < 0.1, 250 kb
window) using the LD reference panel of 503 European samples from 1000
Genomes phase 3 [25]. For each individual, PGS were calculated by
multiplying the risk allele dosages for each SNP by its respective weight
(the log of the odds ratio) and then summing all SNPs in the score. Scores
were constructed at 11 selected P-value thresholds (5e−8, 1e−7, 1e−6, 1e−5,
1e−4, 1e−3, 0.01, 0.05, 0.1, 0.5, 1) and standardised using z-score
transformations. Finally, principal component analysis (PCA) was
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performed on these scores and the first principal component was
extracted as the final PGS. This approach is called PGS-PCA approach,
which avoids optimising the parameters to construct the PGS and has
been shown to be an unbiased and powerful way to index polygenic risk
[26]. The data that support the findings of this study can be obtained
through the submission and approval of a scientific proposal via the
Lifelines biobank. Further details can be found at https://www.lifelines-
biobank.com/.

Statistical analysis
We estimated associations between ADHD-PGS and outcomes using
generalised estimating equations implemented in the R-package DrGEE
[27], and adjusted the standard errors for the non-independence of family
data (siblings/parents/children/partners) using a sandwich estimator. For
binary outcomes, we used the logit link function and reported Odds Ratios
(ORs) (with 95% Confidence Intervals [95%CIs]). For continuous outcomes,
we used the linear link function and reported standardised beta values
(with 95%CIs). To assess the predictive ability of the ADHD-PGS, we
calculated R2 (linear models) and Nagelkerke pseudo-R2 (logistic models)
to represent the percentage variance explained by ADHD-PGS for each
outcome. Nagelkerke pseudo-R2 was estimated for the full model (all
covariates including ADHD-PGS) and the null model (not including ADHD-
PGS). Percentage variance explained by ADHD-PGS for each outcome was
calculated as the difference between the two (ΔR2).
We used a family fixed effects approach (i.e., comparing full siblings

from the same family) to adjust associations for shared familial factors

(using the same R-package DrGEE). We ran these analyses for outcomes
that showed significant association with ADHD-PGS in the main results.
Siblings within a family were treated as a separate stratum, thereby
removing influences from factors shared between full siblings from the
same family (see Fig. 1 for visual representation of analytical sibling
design) [28]. Such factors include correlations between the PGS and
shared family-environmental factors (e.g., environmentally mediated
genetic effects such as SES, lifestyle, diet, household chaos, neighbour-
hood), population structure and assortative mating [29]. We tested for
significant differences between the ADHD-PGS coefficients in the within-
and between-sibling tests, to formally test if the effect of the ADHD-PGS
statistically significantly attenuated after adjusting for shared familial
factors [30].
In secondary analyses, we stratified the main analyses by age at baseline

(younger/older than 60 years), sex (male/female) and educational
attainment (low/high) to explore if there are differences in the aetiological
associations between ADHD and cardiometabolic outcomes based on
these factors. Moderation effects (ADHD-PGS*age, sex and educational
attainment, respectively) were tested by including an interaction term to
the main analyses, in separate models. Low educational attainment was
defined as maximum primary school, or completed lower or secondary
schooling, and high educational attainment was defined as completed
higher vocational schooling or university education [21, 31]. In sensitivity
analyses, we re-ran the main analyses excluding individuals with self-
reported ADHD. If the associations remained, it would suggest that
increased risk of cardiometabolic outcomes in ADHD is present even in
those with subclinical ADHD. We also re-ran the main analyses additionally

Fig. 1 Analytical sibling design to estimate direct genetic effects. Note: Square = observed variable, circle = unobserved/latent variable;
direct genetic effects (controlling for indirect genetic effects) are represented with solid arrows. Icons from. www.thenounproject.com.
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adjusting for baseline BMI, to investigate if the associations between
ADHD-PGS and specific cardiometabolic outcomes were primarily
explained by higher BMI levels.
In the statistical models, we adjusted for age, sex, genotyping chip, eight

genetic principal components (PCs) accounting for population stratifica-
tion, and interactions between genotyping chip and each genetic PC. We
obtained false-discovery rate (FDR) corrected p-values using the
Benjamini–Hochberg method to safeguard against multiple testing of all
main and secondary tests (324 tests).

RESULTS
A total of 50,768 individuals were included in the study (27,819
(59%) females, 18–90 years at baseline (mean age=44.36,
standard deviation [SD]= 13.60) (Table 1 for descriptive statistics).
Within the study sample, 17,692 were full siblings from 7920
families. 383 (0.82%) individuals reported having an ADHD
diagnosis, and the ADHD-PGS explained 0.83% of variance in
self-reported ADHD (OR= 1.36 [95%CI= 1.23, 1.51], P= 4.3e−8).

Association between ADHD-PGS and cardiometabolic diseases
The ADHD-PGS was statistically significantly associated with
increased risk of developing any metabolic disease (OR= 1.10
[95%CI= 1.08, 1.13], R2= 0.25%, P < 8.6e−15) and each separate
metabolic disease: type-2 diabetes, obesity and hypertension
(ORrange=1.04–1.24, R2range= 0.03–0.50%). The ADHD-PGS was
also significantly associated with increased risk of having any

cardiovascular disease (OR= 1.10 [95%CI= 1.06, 1.15], R2= 0.12%,
P= 9.0e-5). The ADHD-PGS was significantly associated with two of
the nine specific cardiovascular diseases after adjustment for
multiple testing: thrombosis and history of coronary artery bypass
grafting (ORrange=1.14–1.17, R2range= 0.16–0.23%) (Fig. 2) (Table 2
for descriptive statistics, Supplementary Table 2 for full test
estimates).

Association between ADHD-PGS and cardiometabolic
biomarkers
The ADHD-PGS was statistically significantly associated with 19 of
the 27 biomarkers (P < 0.05), after correction for multiple testing.
Associations were statistically significant for measures across the
different functional groups: glucose metabolic
(Betarange= 0.02–0.03, R2range= 0.03–0.07%), red blood cells
(Beta= 0.01, R2= 0.01%), lipid metabolism
(Betarange=−0.04–0.04, R2range= 0.02–0.16%), liver function
(Betarange= 0.03–0.04, R2range= 0.06–0.15%), kidney function
(Betarange=−0.01–0.02, R2range= 0.01–0.05%), inflammation
(Betarange= 0.03–0.04, R2range= 0.08–0.16%) and blood pressure
(Beta= 0.02, R2= 0.03%) (Fig. 3) (Supplementary Table 3 for
estimates).

Within-sibling analyses
We first re-ran the main analyses in the sibling subsample
(between-siblings) (N= 17,692) to create a reference for the

Table 1. Descriptive characteristics of study population.

Full sample (N= 50,768) Sibling subsample (N= 17,692)

Age in years at baseline (Mean [SD]) 44.36 (13.60) 40.32 (12.86)

Females/Males (N [% Females]) 27,819/19,372 (59%) 9267/6145 (60%)

Completion of higher education (N [%]) 13,460 (26.51%) 4495 (25.41%)

Average age difference between sibling pairs (Mean [SD]) NA 4.91 (3.66)

SD standard deviation.

Fig. 2 Associations between cardiometabolic diseases and ADHD-PGS (N= 50,768). Note: Plot of change in risk of each outcome associated
with one standard deviation increase of the ADHD-PGS. Statistically significant associations with ADHD-PGS (adjusted p < 0.05): Any metabolic
disease, Type 2 diabetes, Obesity, Hypertension, Any cardiovascular disease, Thrombosis, History of coronary artery bypass grafting.
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within-sibling analyses (Supplementary Table 4). This ensured that
any attenuation of associations in the within-sibling analyses were
not mainly due to loss of statistical power or any difference in
study population. In the sibling subsample, 12 cardiometabolic
outcomes remained significantly associated with ADHD-PGS. The
ADHD-PGS was still significantly associated with having any
metabolic disease (OR= 1.11 [95%CI= 1.07, 1.16], P= 4.38e-6) but
not any cardiovascular disease (P= 0.50). We did not re-run
analyses for the distinct metabolic and cardiovascular diseases
due to the low sample sizes of these subgroups of siblings with
distinct diseases.
In the within-sibling analyses, when comparing full siblings,

there only remained one statistically significant association with
ADHD-PGS; namely metabolic disease (OR= 1.11 [95%CI= 1.02,
1.20], P= 0.03) (Table 3). Overall, when adjusting for shared
familial factors, the PGS-outcome association effect sizes attenu-
ated on average 56%. These within-sibling effect size estimates
were statistically significantly different from estimates in the
between-sibling analyses for metabolic disease and nine (out of
19) of the biomarker measures (P < 0.05).

Sensitivity analyses
The main results did not change in terms of effect sizes and
statistical significance when we excluded individuals with self-
reported ADHD (Supplementary Tables 5, 6). When the main
analyses were additionally adjusted for baseline BMI levels, all the
associations with cardiometabolic diseases remained statistically
significant except for the association between ADHD-PGS and
hypertension (P= 0.89). Most of the associations with cardiometa-
bolic biomarkers, however, were no longer statistically significant
after adjusting for BMI, with the exception of HDL cholesterol,
triglycerides, gamma-GT, creatinine, TSH levels and leucocytes
(Supplementary Tables 7, 8).

Analyses stratified by sex, age and SES
The associations between ADHD-PGS and cardiometabolic out-
comes were overall similar across the sex, age and educational
attainment groups, and very few moderation effects (of sex, age
and educational attainment) with ADHD-PGS were statistically
significant (Supplementary Tables 9-14).

DISCUSSION
In this large-scale population study, we showed that polygenic
load for ADHD, based on the latest meta-GWAS [12], was
significantly associated with poorer cardiometabolic health, as

Table 2. Descriptive statistics on measures of ADHD, cardiometabolic
diseases and biomarkers.

ADHD, cardiometabolic
diseases and biomarkers

Sample size Prevalence (%)

ADHD 50,768 383 (0.82)

Metabolic disease 50,768 14,133 (30.38)

Type 2 diabetes 50,768 1345 (2.66)

Obesity 50,768 6685 (13.21)

Hypertension 50,768 9621 (20.53)

Cardiovascular disease 50,768 2450 (5.19)

Thrombosis 50,768 598 (1.27)

History of coronary artery
bypass grafting

50,768 658 (1.39)

Myocardial infarction 50,768 449 (0.95)

Atherosclerosis 50,768 226 (0.48)

Stroke 50,768 344 (0.73)

Narrowing carotid arteries 50,768 115 (0.24)

Heart failure 50,768 242 (0.51)

Atrial fibrillation 50,768 242 (0.51)

Heart valve disorders 50,768 492 (1.04)

Aneurysm 50,768 130 (0.28)

Cardiometabolic biomarker Sample size Mean (Standard
deviation)

Glucose metabolic

Glucose (mmol/L) 43,424 4.96 (0.73)

HbA1c (%) 43,411 5.49 (0.32)

Red blood cells

Haematocrit (v/v) 46,985 0.42 (0.03)

Haemoglobin (mmol/L) 46,969 8.76 (0.76)

Lipid metabolism

Total cholesterol (mmol/L) 47,052 5.09 (1.02)

LDL cholesterol (mmol/L) 47,055 3.25 (0.93)

HDL cholesterol (mmol/L) 47,039 1.47 (0.37)

Triglycerides (mmol/L) 46,723 1.11 (0.57)

Apolipo A1 in serum (g/L) 5245 1.61 (0.27)

Apolipo B100 (g/L) 5248 0.93 (0.24)

Liver function

ALT (U/L) 23,750 22.18 (11.26)

AST (U/L) 23,790 23.88 (6.33)

Alkaline Phosphatase (U/L) 23,884 62.15 (16.71)

Gamma-GT (U/L) 23,734 24.44 (14.77)

Kidney function

Creatinine (µmol/L) 46,997 73.29 (12.14)

Creatinine 24 h urine
(mmol/L)

46,834 8.09 (3.74)

Estimated Glomerular
Filtration Rate (eGFR)

47,088 99.85 (15.21)

Urinary albumin excretion
(UAE) 24 h

23,902 11.53 (100.87)

Urinary albumin-creatinine
ratio (UACR)

23,022 5.07 (47.02)

Uric acid (mmol/L) 58,470 0.29 (0.07)

Thyroid

Free T3 (pmol/L) 13,875 5.22 (0.62)

Free T4 (pmol/L) 13,887 15.74 (2.05)

Table 2. continued

ADHD, cardiometabolic
diseases and biomarkers

Sample size Prevalence (%)

TSH (mU/L) 13,798 2.45 (1.51)

Inflammation

hsCRP (mg/L) 22,781 2.90 (2.90)

Leucocytes (109/L) 46,872 5.98 (1.50)

Blood pressure

Systolic BP 46,711 126.59 (16.56)

Diastolic BP 46,760 74.27 (10.08)

Sample size=Genotyped individuals with measured questionnaire or lab-
based data. Values ± >4 SDs are excluded.
BP blood pressure, hsCRP high-sensitivity C-reactive protein, TSH Thyroid
stimulating hormone, Free T4 free thyroxine, Free T3 free triiodothyronine,
Apolipo Apolipoprotein, Gamma-GT Gamma-glutamyl transferase, AST
Aspartate aminotransferase, ALT Alanine transaminase, HDL high-density
lipoprotein, LDL low-density lipoprotein, HbA1c Haemoglobin A1c.
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indexed by metabolic and cardiovascular diseases, as well as a key
biomarkers. Adjustment for familial factors shared by siblings
attenuated most of the associations between ADHD-PGS and
cardiometabolic outcomes (on average 56% attenuated effect
sizes) and only metabolic disease remained statistically significant.
Associations were generally similar across age, sex and SES.
One SD increase in the ADHD-PGS was associated with a 10%

higher risk of developing any metabolic and any cardiovascular
disease, respectively. The specific disorders that were significantly
associated with ADHD-PGS were type-2 diabetes, obesity,
hypertension, thrombosis and history of coronary artery bypass
grafting. These findings are consistent with recent research
findings on phenotypic and genetic links between ADHD and
metabolic disease, peripheral vascular disease, ischaemic heart
disease and heart failure [6, 8, 12]. We further extended previous
research by showing that ADHD-PGS was significantly associated
with numerous cardiometabolic biomarkers. The strongest asso-
ciations were seen for measures related to lipid metabolism, liver
function and inflammation. For example, a one SD increase in the
ADHD-PGS was associated with a 0.04 SD lower HDL cholesterol
(mmol/L) value (ADHD-PGS explained 0.16% of variance in HDL
cholesterol). The directions of effects largely implicate poorer
biological health profiles in those with higher polygenic load for
ADHD. While there is very limited research investigating biomarker
measures in individuals with ADHD, mostly consisting of small,
clinical paediatric studies (where the effect of ADHD medication
may influence results), our results are in line with past findings
implicating more inflammation, more detrimental lipid levels and
glucose dysregulation in individuals with ADHD compared to
those without [32–35]. Our results also confirmed, and extended,
findings from the latest meta-GWAS on ADHD reporting genetic
correlations between ADHD and higher levels of HbA1c,
triglycerides, urate and hypertension and lower levels of HDL
cholesterol [12]. Our results further showed that BMI levels largely
explained the associations between ADHD-PGS and several blood-

based cardiometabolic biomarkers, specifically relating to glucose
metabolism, LDL cholesterol, blood pressure and certain measures
of kidney and liver function. As BMI is a modifiable risk factor, our
findings strongly suggest that weight loss may be a highly
effective target for prevention and intervention strategies for
cardiometabolic health issues in individuals with ADHD. Overall,
our findings warrant further investigation into the specific
biological mechanisms that are implicated in adult ADHD, and
which may explain the link with cardiometabolic events.
An important finding is that polygenic load for ADHD was

associated with cardiometabolic outcomes in the general
population, even when individuals with self-reported ADHD
were excluded. This suggests that the increased risks of
cardiometabolic diseases and poor health indicators in ADHD
may not be driven by negative effects from clinically diagnosed
ADHD, such as medication treatment and may be present in
those with subclinical ADHD and higher ADHD genetic burden.
While these conclusions should be cautiously considered in light
of the relatively low predictive ability of the ADHD-PGS on
cardiometabolic outcomes, they are consistent with recent
genetic and epidemiological evidence [7, 13, 36]. These recent
studies have confirmed the associations between ADHD and
cardiometabolic outcomes in unmedicated populations [7, 13],
and shown that elevated ADHD symptoms increase the risk for
cardiometabolic disorders in the general population [36]. This is
important to highlight given that ADHD medication rates are
high in clinical populations [37], and it has been suggested that
ADHD medications may confer increased risk of health out-
comes, such as cardiovascular disease, although evidence for
this is limited [38].
We found that the PGS-cardiometabolic associations were

largely attenuated by shared familial factors. These attenuations
were generally consistent across outcomes, and were statistically
significant for metabolic disease and several biomarker measures,
suggesting influence from shared family-environmental factors.

Fig. 3 Associations between cardiometabolic biomarkers and ADHD-PGS (N= 47 189). Note: Plot of change in standard deviation of each
biomarker associated with one standard deviation increase of the ADHD-PGS. BP Blood pressure, hsCRP High-sensitivity C-reactive protein,
Free T4 Free thyroxine, Free T3 Free triiodothyronine, eGFR Estimated glomerular filtration rate, Apolipo B100 Apolipoprotein B100, Gamma-
GT Gamma-glutamyl transferase, AST Aspartate aminotransferase, ALT Alanine transaminase, HDL High-density lipoprotein, LDL Low-density
lipoprotein, HbA1c Haemoglobin A1c. Statistically significant associations with ADHD-PGS (adjusted p < 0.05): Glucose, HbA1c, Haematocrit,
Hemaglobin, Total/LDL/HDL cholesterol, Triglycerides, Apolipo B100, ALT, Alkaline phosphatase, Gamma-GT, Creatinine, Creatinine 24 h urine,
Uric acid, hsCRP, Leucocytes, Systolic/Diastolic blood pressure.
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Such family-environmental factors may include the association
between ADHD and lower parental SES (income, educational
attainment, neighbourhood SES) or poor lifestyle (relating to diet
and physical activity), which may be elevated when a parent has
ADHD and are associated with higher risk of cardiometabolic
diseases [29, 39–42]. Future studies should study specific family-
environmental factors in further detail, to inform targeted
interventions for cardiometabolic disease in families of individuals
with ADHD. It is also important to note that the association with
self-reported metabolic disease did not attenuate and remained
significant, suggesting that the increased risk of metabolic disease
may be to some extent directly driven by an individuals’ polygenic
load for ADHD than via family-environmental factors, to a larger
extent than cardiovascular diseases. Mendelian randomisation
studies could be used to further investigate to what extent this
association is causal, rather than explained by pleiotropic effects.
Indeed, preliminary results from a recent mendelian randomisa-
tion study found support for a causal role of ADHD on childhood
obesity [43].
Within-sibling PGS analyses adjust for similar environments

shared by siblings (indirect parental genetic effects) as well as
population stratification and assortative mating, which can bias
PGS effects in non-sibling models. Thus, it is thought that
sibling analyses can estimate direct genetic effects. In support
of this method, a study comparing indirect parental genetic
effects of PGS on educational outcomes found consistent
results across adoption, parent-offspring and sibling designs—
each with their own sets of limitations and potential bias [44].

The study findings suggested that parental cognitive and non-
cognitive skills influenced offspring education through the
environment, with indirect genetic effects explained 36–40% of
population PGS associations [44]. However, it has recently been
highlighted that PGS sibling-comparison results should be
interpreted with caution [45], as the models may introduce
other types of bias, such as from correlations between (non-
genetically influenced) environmental factors affecting the two
siblings, and as the models rely on assumptions that direct and
indirect effects are easily separable [45]. Further research is
needed to investigate the direct and indirect genetic effects of
the ADHD-PGS on cardiometabolic outcomes using triangula-
tion with different study designs, and more detailed investiga-
tions into specific environmental factors that mediate parent
PGS effects.
We did not find strong evidence for differences in the ADHD-

PGS associations as a function of age, sex, or SES. Previous PGS
studies examining genetic associations between ADHD and health
outcomes also failed to find strong evidence for moderation
effects of educational attainment and sex, based on the previous
ADHD GWAS [13, 46], and a recent large-scale family-based
register study also did not find support for sex differences [6].
While these results suggest that there are no substantial sex, age
and SES moderation effects of the genetic associations between
ADHD and cardiometabolic outcomes, it is challenging to detect
interaction effects using PGS as it requires large and well-powered
studies. Further, disorder PGSs may not necessarily capture the
genetic variants linked to a differential susceptibility to risk-factors

Table 3. Within-sibling associations between cardiometabolic outcomes and ADHD-PGS (unique individuals N= 17 692).

Condition Prev. (%) / Mean (SD) OR/Beta (95%CI) % change log(OR)/Beta Pbetween-within sib

Metabolic disease 3926 (25.47%) 1.108 (1.023, 1.199)a −1.72 0.03a

Cardiovascular disease 556 (3.58%) 1.055 (0.879, 1.266) +19.06 0.31

Biomarkers

Glucose (mmol/L) 4.86 (0.50) −0.005 (−0.031, 0.020) −129.41 0.90

HbA1c (%) 5.47 (0.31) −0.005 (−0.029, 0.019) −50.00 0.02a

Haematocrit (v/v) 0.42 (0.03) 0.015 (−0.006, 0.036) −21.05 0.15

Haemoglobin (mmol/L) 8.76 (0.77) 0.016 (−0.005, 0.036) −11.11 0.05a

Total cholesterol (mmol/L) 5.02 (1.01) 0.001 (−0.022, 0.025) −93.33 0.08

LDL cholesterol (mmol/L) 3.19 (0.93) −0.001 (−0.024, 0.022) −105.88 0.26

HDL cholesterol (mmol/L) 1.48 (0.37) −0.022 (−0.045, 0.001) −40.54 7.30e-8a

Triglycerides (mmol/L) 1.08 (0.56) 0.022 (−0.003, 0.048) −42.11 7.36e-3a

Apolipo B100 (g/L) 0.92 (0.24) 0.032 (−1.017, 0.165) −25.71 0.96

ALT (U/L) 21.86 (11.16) 0.002 (−0.039, 0.043) −88.23 0.66

Alkaline Phosphatase (U/L) 61.36 (16.57) 0.018 (−0.023, 0.059) −48.57 0.15

Gamma-GT (U/L) 23.79 (14.37) 0.026 (−0.015, 0.066) −36.58 0.02a

Creatinine (µmol/L) 72.90 (11.87) −0.011 (−0.031, 0.009) −31.25 9.12e-3a

Creatinine 24 h urine (mmol/L) 8.23 (3.78) 0.023 (−0.001, 0.047) −8.00 2.99e-8a

Uric acid (mmol/L) 0.29 (0.07) −0.001 (−0.036, 0.033) −105.26 0.65

hsCRP (mg/L) 2.08 (2.45) −0.011 (−0.062, 0.039) −142.31 0.11

Leucocytes (10^9/L) 5.97 (1.50) 0.031 (0.004, 0.058) −22.50 7.30e-8a

Systolic BP 124.96 (15.69) −0.008 (−0.031, 0.015) −140.00 0.31

Diastolic BP 73.39 (9.95) 0.003 (−0.021, 0.028) −87.50 0.85

Fixed effects models controlling for genotyping chip, 8 PCs, PC*chip, sex, age.
Average attenuation in within-sibling (compared to between-sibling) models for cardiometabolic measures: −56%.
The within-sibling analyses are performed for outcomes that showed significant association with ADHD-PGS in main analyses (Figs. 1, 2). Did not include
apolipoproteins due to low sample sizes.
BP Blood pressure, hsCRP High-sensitivity C-reactive protein, Apolipo Apolipoprotein, Gamma-GT Gamma-glutamyl transferase, ALT Alanine transaminase, HDL
high-density lipoprotein, LDL low-density lipoprotein, HbA1c Haemoglobin A1c.
aStatistically significant (p < 0.05) FDR-adjusted p value. Pbetween-within sib= statistical comparison of ADHD-PGS estimate in between-sibling versus within-
sibling model.
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exposure. This could potentially explain why we did not find
strong evidence for moderation effects in this study.

Strengths and limitations
The strengths of this study include the use of a large population-
based cohort study, with rich phenotypic, genetic and family-level
data. Our PGS was built on the most recent GWAS on ADHD,
which is considerably more well-powered than the previous
GWAS [12].
Limitations include the low predictive ability of the ADHD-

PGS, which has previously been shown to explain up to 5.5% of
the variance in ADHD case-control status [47]. This should be
considered when interpreting the results, as a lack of statistical
significance for specific outcomes does not necessarily mean
that there is no true association with the ADHD-PGS. The low
predictive ability is especially an issue in the stratified analyses,
where the sample sizes were smaller and statistical power lower
than in the main analyses. However, we have emphasised the
general trends in results from the secondary analyses rather
than focused on significance testing of specific outcomes.
Furthermore, ADHD-PGS only captures part of the ADHD
heritability [12], thus, an absence of an associations does not
mean that there is definitely no association or moderation
effect. Even larger studies and more powerful ADHD-PGS will be
needed in future studies to more precisely confirm and further
interpret findings. Second, we used self-report measures for
several disease outcomes, which includes more subjective (e.g.,
recall) bias than clinical diagnoses, and may have led to
underestimations of the cardiometabolic diseases. While this is
important to consider when interpreting our results, a recent
study showed that ADHD-PGS associations with cardiometabolic
diseases were overall similar across definitions using self-report
and clinical diagnoses, supporting the general reliability of our
findings [13]. Specifically with regard to the secondary analyses
in which we removed individuals with ADHD, underestimation
not only results from recall problems but also from under-
diagnosis of ADHD in adulthood. That is, individuals reported on
clinically diagnosed ADHD and it is likely that not all adults with
ADHD were left out of these analyses. Another potential
limitation to highlight in terms of cardiometabolic outcomes is
that we adjusted specific biomarker measures based on use of
medications that target those measures. However, the medica-
tions may have wider impact beyond the target biomarkers. For
example, cholesterol-lowering medication may have indirect
impact on apolipoprotein B100, and blood pressure-lowering
medications on renal function [48, 49]. While we used standard
procedures to adjust for medication effects, as has been done in
previous research [18, 19], it is important to interpret results
with caution and consider that other biomarkers may have been
influenced by medication use. Furthermore, individuals in the
Lifelines study have been found to have a somewhat higher SES
and be slightly healthier than the general population. However,
a comparison study using the Dutch Population Register showed
that the Lifelines cohort was broadly representative of the adult
population of the northern part of Netherlands [50]. Higher
ADHD genetic liability has further been negatively associated
with study participation [51]. Therefore, any observed associa-
tions were likely attenuated compared to those in the general
population and in clinical ADHD samples. Finally, we only
included individuals with European ancestry in these genetic
analyses, which will limit generalisability to more diverse
populations.

CONCLUSION
Our findings suggest that higher ADHD genetic liability is linked to
several metabolic and cardiovascular diseases and biomarkers in
adults. These genetic associations were observable in the general

population, even in the absence of individuals with ADHD and
were in part explained by indirect effects via familial factors
shared by siblings.
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