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ABSTRACT

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to quantify the blood–brain barrier 
(BBB) permeability–surface area product. Serial measurements can indicate changes in BBB health, of interest to the 
study of normal physiology, neurological disease, and the effect of therapeutics. We performed a scan–rescan study 
to inform both sample size calculation for future studies and an appropriate reference change value for patient care. 
The final dataset included 28 healthy individuals (mean age 53.0 years, 82% female) scanned twice with mean interval 
9.9 weeks. DCE-MRI was performed at 3T using a 3D gradient echo sequence with whole brain coverage, T1 map-
ping using variable flip angles, and a 16-min dynamic sequence with a 3.2-s time resolution. Segmentation of white 
and grey matter (WM/GM) was performed using a 3D magnetization-prepared gradient echo image. The influx con-
stant Ki was calculated using the Patlak method. The primary outcome was the within-subject coefficient of variation 
(CV) of Ki in both WM and GM. Ki values followed biological expectations in relation to known GM/WM differences in 
cerebral blood volume (CBV) and consequently vascular surface area.
Subject-derived arterial input functions showed marked within-subject variability which were significantly reduced by 
using a venous input function (CV of area under the curve 46 vs. 12%, p < 0.001). Use of the venous input function 
significantly improved the CV of Ki in both WM (30 vs. 59%, p < 0.001) and GM (21 vs. 53%, p < 0.001). Further 
improvement was obtained using motion correction, scaling the venous input function by the artery, and using the 
median rather than the mean of individual voxel data. The final method gave CV of 27% and 17% in WM and GM, 
respectively. No further improvement was obtained by replacing the subject-derived input function by one standard 
population input function. CV of Ki was shown to be highly sensitive to dynamic sequence duration, with shorter 
measurement periods giving marked deterioration especially in WM. In conclusion, measurement variability of 3D 
brain DCE-MRI is sensitive to analysis method and a large precision improvement is obtained using a venous input 
function.
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1.  INTRODUCTION

Dynamic contrast-enhanced MRI (DCE-MRI) quantifies 
blood–brain barrier (BBB) permeability to an intravenous 
bolus of gadolinium-based contrast agent. Changes in T1 
relaxation time are related to contrast concentration mea-
sured in a tissue of interest and in a feeding vessel (input 
function). Tracer kinetic analysis of concentration–time 
curves derives the influx constant Ki, an index of blood-
to-brain transfer rate. According to the Crone–Renkin 
equation, Ki approximates the permeability–surface area 
product when the extraction fraction is low, as is the case 
for gadolinium contrast in the healthy brain or in neurolog-
ical disease featuring subtle BBB disruption. We have 
previously validated our technique as fulfilling the expec-
tations of Ki in relation to cerebral blood volume (CBV), 
cerebral blood flow (CBF), and tissue type (grey/white 
matter) (Varatharaj et al., 2019). Our group has employed 
DCE-MRI for predicting multiple sclerosis (MS) risk 
(Cramer et  al., 2015) and treatment response (Cramer 
et al., 2018; Knudsen et al., 2022), and many other groups 
have shown uses in dementia and neurological conditions 
(Montagne et al., 2022; Voorter et al., 2024).

Despite this, DCE-MRI has barriers to adoption in clin-
ical practice or as an outcome in clinical trials. One bar-
rier is the relative lack of data on measurement variability 
(Thrippleton, 2019), which poses challenges both for 
sample size calculation in trials and for interpretation of 
serial measurements in patient care. Variability is inherent 
in any measurement. Serial values of any biomarker 
within a subject will not be identical due to (1) analytical 
imprecision: variability in the method itself and (2) biolog-
ical variation: changes in the ground truth value occurring 
in the absence of any change in health or disease state.

One approach is to study analytical imprecision using 
a phantom, in which the effects of biological variation are 
removed (Freed et al., 2011). However, not all sources of 
imprecision operate within a phantom, and, therefore, it is 
difficult to apply the findings to in vivo measurements.

A scan–rescan study can be used to calculate mea-
surement variability, and when the interval between scans 
is very short (i.e., in the same session), it is assumed that 
the effect of biological variability is minimised, and ana-
lytical imprecision dominates. However, this value alone 
would be of limited use for clinical trials or patient care, 
where the inter-scan interval is likely to be much longer, 
with a greater component of biological variation; we do 
not have good data on biological variation in BBB perme-
ability (by DCE-MRI on any other method). Our approach 
is pragmatic; whilst it would be ideal to quantify the rela-
tive contribution of analytical and biological components 
to total variability, instead we study total within-subject 
scan–rescan variation in a population and time frame rel-

evant to a typical study using BBB permeability change 
as the primary outcome.

The aims of this study are, therefore, to (1) measure 
within-subject variability (reflecting both analytical and 
biological components) over an 8-week interval and (2) 
test which acquisition and post-processing parameters 
minimise this variability whilst fulfilling expectations of Ki 
in relation to CBV, CBF, and tissue type.

2.  METHODS

2.1.  Participants

Thirty healthy adult individuals were recruited by adver-
tisement. Inclusion criteria were as follows: age 40–
80 years, no systemic or neurological disease (including 
active migraine), no regular medication use, and no fam-
ily history of MS. All subjects were examined by a neurol-
ogist prior to inclusion. Baseline demographic and clinical 
data were collected at inclusion. The age range was cho-
sen to reflect a population relevant to our clinical practice 
and trials; younger individuals might have different bio-
logical variation in BBB permeability.

Participants were scanned in two separate sessions 
as close as possible to 8 weeks apart. The time frame 
was selected as one over which, in a clinical setting, one 
might anticipate a treatment- or disease-related effect. 
First and second scans were performed in an interleaved 
fashion to prevent the possibility of systematic bias due 
to longitudinal scanner signal drift. In the event of an 
intercurrent infection, illness, or vaccination following the 
first scan, the second scan was delayed by at least 
6 weeks post-event or recovery to prevent confounding 
by a possible biological effect.

The study was approved by the National Research 
Ethics Service Committee London Surrey (reference 18/
LO/2015) and the institutional review board (ERGO 
46018). Experiments were conducted in accordance with 
the Declaration of Helsinki and all subjects gave informed 
written consent.

2.2.  MR acquisition protocol

Imaging was performed on a 3 T MR unit (Skyra, Sie-
mens, Erlangen, Germany) using a 20‐element phased‐
array head coil. The dynamic sequence comprised 3D 
gradient echo (TR 2.48 ms, TE 0.99 ms, flip angle 15°, 
linear phase ordering, GRAPPA with parallel imaging fac-
tor 2, acquired matrix 192  ×  144  ×  30, field-of-view 
250 × 188 × 150 mm3, voxel size 1.3 × 1.3 × 5.0 mm3, 
reconstructed into 30 slices of thickness 5.0  mm, 300 
frames, time resolution 3.2 s, total scan duration 16 min). 
We found no significant evidence of scanner drift over 
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this measurement period in both phantom and human 
experiments. Contrast agent was Gadovist (Bayer, New-
bury, UK) given as a split bolus of 0.05 mmol kg−1 at 10th 
and 45th timepoints with automated intravenous injector 
(Medrad, Newbury, UK) at a rate of 3 ml s-1 followed by 
30 ml saline flush. The rationale for a double bolus was to 
prevent signal truncation due to possible peak-dose T2* 
effects, as well as reduce the effect of input function tem-
poral mis-sampling (Roberts et  al., 2006). Baseline T1 
mapping used the same sequence as above with 
TR  =  10  ms, number of excitations averaged = 4, and 
variable flip angles (5, 15°) chosen to optimise accuracy 
and precision over the anticipated T1 range (Cheng & 
Wright, 2006) (in preliminary work we found no benefit 
with a third intermediate flip angle). A B1 map was 
acquired with the slice-selective preparation pulse 
method (Chung et al., 2010), with the same coverage as 
the T1 mapping sequence but acquired matrix 
64 x 64 x 15. Prior to the dynamic acquisition, we also 
performed a 3D magnetisation-prepared gradient echo 
(MP-RAGE) sequence (TR = 2,200 ms, TE = 2.45 ms, TI = 
900 ms, flip angle = 8°, field-of-view 263 × 350 × 350 mm3, 
voxel size 1.0 × 1.0 × 1.0 mm3).

2.3.  DCE analysis protocol

Tracer kinetic analysis with the Patlak model (Patlak et al., 
1983) was performed using custom code in MATLAB 
(Mathworks, Natick, USA) as previously described 
(Varatharaj et al., 2019), to derive estimates of Ki and CBV 
(as the slope and intercept of the Patlak plot, respec-
tively). CBF estimation was done using model-free 
deconvolution of the tissue concentration with the arterial 
input function (Larsson et al., 2008).

Ki measured in whole blood can be converted to 
plasma Ktrans, preferred by recent guidelines (Dickie 
et al., 2024), by correction using the haematocrit. How-
ever, measurement of the haematocrit adds an addi-
tional source of variability, and, when sampled from a 
large vein, is not representative of microvessel haema-
tocrit (Calamante et  al., 2016). Alternatively, if a fixed 
value for the haematocrit is used, as in many studies, 
then Ki and Ktrans simply scale. Therefore, in this study Ki 
was used.

At each timepoint, WM/GM probability maps were 
generated from the MP-RAGE using FSL-FAST (Zhang 
et  al., 2001), transformed to DCE-MRI space, and a 
threshold applied such that only voxels with at least 95% 
probability of classification to the selected tissue were 
included in the resulting mask. Voxels with more than 0% 
probability of classification as cerebrospinal fluid (CSF) 
were excluded. Manual quality control showed that this 
procedure operated rigorously throughout.

Several additional analysis factors were tested:

•	Motion correction (default = off): Two-step rigid reg-
istration of all dynamic frames to first T1 mapping 
image, via high-resolution MP-RAGE, using linear 
registration (FSL-FLIRT, FMRIB) (Jenkinson et  al., 
2002).

•	B1 mapping (default = off): The acquired B1 map 
was interpolated by cubic spline to match T1 map-
ping geometry and filtered with a 3D Gaussian ker-
nel (σ = 4.2, size = 10 mm) within a skull-stripped 
brain mask. Voxel-wise B1 values were used to cor-
rect flip angle values both during T1 mapping and in 
the conversion of dynamic signal to concentration.

•	Correction for incomplete spoiling (default = off): 
The efficiency of spoiling in a gradient echo 
sequence becomes compromised when using a 
very short TR (Preibisch & Deichmann, 2009), as is 
commonly the case in DCE-MRI. A published cor-
rection method was used to compensate, both in 
T1 mapping and in conversion of dynamic signal to 
concentration (Baudrexel et al., 2018).

•	 Input function location (default = artery): The arterial 
input function was derived from the supraclinoid 
segment of the internal carotid artery (ICA), whilst the 
venous input function was derived from the posterior 
segment of the superior sagittal sinus (SSS) near the 
torcula. Use of the vein is recommended by consen-
sus guidelines due to reduction of partial volume, 
inflow, and motion artefacts (Thrippleton et al., 2019).

•	 Input function method (default = manual): For the 
manual method, the input function region of interest 
(ROI) was created by a single operator (A.V.). Exam-
ples are shown in Supplementary Figure 1. For the 
automated method, we first generated standard 
binary masks of the supraclinoid ICA and posterior 
SSS using high-resolution atlases of brain arterial 
(Forkert et al., 2013) and venous (Huck et al., 2019) 
anatomy, respectively. For each scan, the auto-
mated pipeline then used a two-step process to 
transform each mask from standard space to sub-
ject MP-RAGE space using FSL’s non-linear regis-
tration tool FNIRT (Andersson, Jenkinson, & Smith), 
and then to dynamic space using FLIRT (Jenkinson 
et  al., 2002). The signal–time curves of all voxels 
within either artery or vein mask were then evalu-
ated according to published criteria of area under 
the curve and roughness (Mouridsen et al., 2006) to 
delineate an input function ROI.

•	 Input function scaling (default = off): Assuming neg-
ligible uptake, arterial signals were scaled by venous 
signal to account for inflow artefact, according to  
a published method (Hansen et al., 2009). Venous 
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Fig. 1.  Illustration of how data were truncated to test the effect of dynamic sequence duration.

signals were time shifted to match the arterial bolus 
peak according to the same method.

•	Averaging level (default = signal-wise): For the 
signal-wise method, the average signal for all vox-
els in the tissue mask was converted to concentra-
tion and passed to model fitting, whereas for the 
parameter-wise method, concentration–time curves 
and tracer kinetic models were fitted for each indi-
vidual voxel in the mask, and the resulting parame-
ters averaged. Representative voxel-wise parameter 
maps are shown in Supplementary Figure 2.

•	Averaging method (default = mean): Either mean or 
median.

Since the effect of factors may interact, a factorial 
analysis was conducted. With all possible factor combi-
nations, 28 = 256 unique analysis variants were tested for 
each scan. The “default” analysis (as outlined above) was 
used as a comparator, and is the same as we used in a 
previous study (Varatharaj et al., 2019).

An a priori decision was made regarding negative Ki 
values, which sometimes arise in Patlak fitting. Random 
noise can generate a positive as well as a negative Ki. If 
the true value of BBB permeability is close to zero (as is 
likely in the healthy brain), then random noise could give 
rise to negative Ki values. Negative values can also arise 
if contrast effluxes back into the intravascular space (vio-
lating the Patlak assumption of irreversible trapping), as 
this would bias Ki towards lower values and, therefore, 
increase the likelihood of negative values due to superim-
posed noise. In other studies, negative values have been 
removed by a variety of methods (Huisa et  al., 2015; 
Wong et al., 2017). Since the object of this study was to 
account for analytical imprecision including random 
noise components, no positivity constraint was applied 
to the data (the proportion of voxels with negative Ki val-
ues is shown in Supplementary Table 1).

To separate the effect of input function variability, the 
highest ranked analysis was re-run but for each individual 
subject replacing the subject-derived input function with 
one standard input function derived from an external 
population (Parker et al., 2006), which was used for all 
subjects at both timepoints. Whether this population-
derived input function is more representative of the true 
input function for each individual is debatable, but by 
definition, this removes any within-subject variability in 
the measurement of a subject-derived input function.

To simulate the effect of DCE protocols with shorter 
post-contrast acquisition times, the highest ranked anal-
ysis was re-run but truncating the data to 1-min incre-
ments between 5 and 16 min (see Fig. 1) and reporting 
the effect on Ki and its coefficient of variation (CV).

2.4.  Statistics

All analyses were reported for white matter (WM) and 
grey matter (GM) separately.

Absolute Ki values were reported by taking the mean 
of both timepoints as the per-subject value. Results from 
each analysis were tested against the criteria previously 
described for the biological expectations of Ki (Varatharaj 
et al., 2019), namely:

	 1.	� Higher Ki in GM versus WM, tested in a paired  
t-test and examining the within-subject GM/WM 
ratio.

	 2.	� Dependence of Ki on CBV, tested in a step-wise 
multiple regression of Ki against CBV, CBF, and 
tissue type (for each continuous variable, taking 
the mean of both timepoints as the per-subject 
value).

	 3.	� No relationship between Ki and CBF, tested in the 
above regression (if CBF explained no variance in 
addition to CBV, it was not included in the model).
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The primary outcome was within-subject coefficient of 
variation of Ki across two timepoints, expressed as a per-
centage. CV is the ratio of the within-subject standard 
deviation (SDws) to the within-subject mean.

	 CV = SDws /Meanws  ⋅100 	 Eq. 1

However, to correctly calculate the mean CV for a 
group requires averaging the within-subject variances, 
rather than averaging CV estimated for each individual 
subject; this can be done by either a log-transformed or 
root mean square (RMS) approach, with similar results 
(M. Bland, 2006). In this dataset where negative values 
sometimes arise, a log-transformation would not be suit-
able and, therefore, we used the RMS method.

In many analyses, the within-subject standard devia-
tion was positively correlated with the within-subject 
mean (tested with rank correlation coefficient), hence 
within-subject standard deviation could not be used as 
an index of measurement variability for method compari-
son. The repeatability coefficient (RC) was also reported 
(J. M. Bland & Altman, 1996) but not used as the primary 
outcome for the same reason.

	 RC = 1.96 ⋅ SDws. 	 Eq. 2

The intra-class correlation coefficient (ICC) was also 
reported using the two-way mixed effects, absolute 
agreement, and single rater model as recommended for a 
test–retest study (Koo & Li, 2016).

	
ICC =  MSR −MSE

MSR + k −1( )MSE
 +  k

n
MSC −MSE( ),

	
Eq. 3

where k = number of measurements, n = number of sub-
jects, and MS = mean square for rows (MSR), columns 
(MSC), and error (MSE), from the analysis of variance 
(ANOVA) table. MATLAB code for ICC calculation used 
open-source tools developed by the University of 
Wisconsin-Madison (Molloy, 2016). Although ICC relates 
between-subject variance to total variance (and, there-
fore, within-subject variance) using the relationship 
shown in the equation, we are here interested in within-
subject variation and not in between-subject variation. 
Moreover, whereas classically between-subject variance 
usually exclusively represents biological variation and 
within-subject variance usually exclusively represents 
analytical variation, in this study, biological variation is 
present both between and within subjects. For these rea-
sons, CV and not ICC was used as the primary outcome.

Reference change values (RCV) were reported accord-
ing to published methods to define the change in two 
within-subject serial measurements which can be con-
sidered significant (Fraser, 2011).

	
RCV = 21/2  ⋅ Z  ⋅ (CV 2 )1/2, 	 Eq. 4

where Z = the number of standard deviations for a desired 
probability (here set as 1.96 for 95%).

We could not strictly partition variability between bio-
logical and analytical sources but instead calculated the 
total variability and tested the effect of analysis factors. 
We did this in two ways: (1) univariate: modified a single 
analysis factor and tested the CV compared with the 
“default” analysis, by paired t-test, (2) factorial: gener-
ated results for all 256 possible combinations of analysis 
factors and ranked these according to CV. For both uni-
variate and factorial tests, analysis factor combinations 
were only considered acceptable if meeting the biologi-
cally expected criteria defined above.

For the best performing analysis pipeline, further anal-
yses examined the effect of age and inter-scan interval 
on variability, as well as tested for proportional bias using 
Bland–Altman plotting.

Analyses were performed in MATLAB and SPSS ver-
sion 28 (IBM, Armonk, NY, United States).

3.  RESULTS

3.1.  Participants

Thirty participants completed the study. All scans were 
reported by an experienced neuroradiologist, and none 
showed evidence of small vessel disease, neurodegener-
ative disease, or any other pathology (other than two 
small pineal cysts and one choroid fissure cyst).

Two subjects had intercurrent infection (one chest infec-
tion and one tonsillitis, both requiring antibiotics), and inter-
scan intervals were extended per protocol to allow for 
recovery (28.3 and 30.2 weeks). However, on examination 
of individual CV values from the default method, both were 
clear outliers (Z-scores > 2). Both subjects were, therefore, 
excluded from further analysis on the suspicion of a bio-
logical effect on BBB permeability (Varatharaj & Galea, 
2017). Therefore, 28 participants were included in the anal-
ysis (mean age 53.0 ± 5.8 years, age range 44–65, 82.1% 
female). Mean inter-scan interval was 9.9  ±  2.2  weeks 
(range 7.0–16.0 weeks). Mean (SD) time-of-day difference 
between paired scans was 101 (116) min.

Though the primary outcome of this study is the 
within-subject CV of Ki, data on input functions and 
absolute Ki values are given below to aid interpretation.

3.2.  Input functions

Figure 2 shows input function examples obtained from a 
single participant when changing one analysis factor at a 
time. Across all scans for all participants, the manually 
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delineated input function mask was significantly larger for 
the vein compared with the artery (21.45 ± 6.33 vs. 16.9 
± 5.6 voxels, p < 10-4, paired t-test for all comparisons in 
this section). Input function peak height was significantly 
higher for the vein (11.85 ± 5.15 vs. 8.46 ± 7.42 mmol/L, p 
= 0.007) but area under the curve (AUC) was not 
(1,146.13  ±  207.57 vs. 1,202.59  ± 672.33  s·mmol/L, p = 
0.54). Within-subject CV for mask size was no different 
between artery and vein (25 vs. 27%, p = 0.80); however, 
within-subject CV for peak height and AUC was signifi-
cantly lower for the vein compared with the artery (peak 
height: 32 vs. 59%, p = 0.005, AUC: 12 vs. 46%, p = 0.0002).

3.3.  Absolute values, univariate testing

Figure  3 shows Patlak plots for WM derived from an 
example case.

The effect of changing one analysis factor at a time on 
the absolute value of group mean Ki is reported in Table 1 
(per-subject value is the mean of both visits). For WM, 
significant increases were seen with spoiling correction 
and the median, whilst a significant decrease was seen 
with B1 correction and input function scaling. Results for 
GM were similar except that the median gave a signifi-
cant decrease rather than an increase.

3.4.  Variability in univariate testing

CV for the default analysis pipeline (as described in Meth-
ods) was 59% in WM and 53% in GM. The effect of 
changing one analysis factor at a time is reported in 
Table  3. The largest and most significant improvement 
was seen with the venous input function (WM CV: 30 vs. 
59%, p < 0.001, GM CV: 21 vs. 53%, p < 0.001).

Fig. 2.  Input functions obtained from an example case using different analysis factors. Greater peak height when using 
the vein was significant in the whole group analysis.
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Fig. 3.  Patlak plots for white matter obtained from an example case (the same case as in Fig. 2) using different analysis 
factors. Red points are those included in the model, black points are excluded (rapid concentration changes during bolus 
injection), and the blue line is the fit.

Table 1.  Effect of changing one analysis factor at a time on the absolute value of group mean Ki.

WM GM

Analysis

Group mean 
(SD) Ki  

(ml 100 g-1 
min-1)

Mean (SD) 
difference in Ki 

compared  
with default  

(ml 100 g-1 min-1)

p-Value for 
comparison 
with default

Group  
mean (SD) Ki 
(ml 100 g-1 

min-1)

Mean (SD) in Ki 
compared  

with default  
(ml 100 g-1 min-1)

p-Value for 
comparison 
with default

Default 0.055 (0.025) n/a n/a 0.094 (0.048) n/a n/a
Motion correction 0.136 (0.332) 0.081 (0.333) 0.22 0.110 (0.069) 0.012 (0.039) 0.12
B1 correction 0.046 (0.020) -0.009 (0.008) <0.001 0.085 (0.041) -0.009 (0.011) <0.001
Spoiling correction 0.057 (0.025) 0.002 (0.001) <0.001 0.096 (0.048) 0.002 (0.001) <0.001
Venous input function 0.051 (0.016) -0.004 (0.021) 0.29 0.099 (0.037) 0.005 (0.045) 0.57
Automated input  
function

0.045 (0.029) -0.010 (0.035) 0.14 0.084 (0.052) -0.013 (0.069) 0.33

Input function scaling 0.043 (0.017) -0.012 (0.023) 0.01 0.074 (0.036) -0.020 (0.046) 0.03
Parameter-wise  
average

0.066 (0.039) 0.011 (0.028) 0.06 0.199 (0.290) 0.105 (0.266) 0.05

Median 0.058 (0.026) 0.003 (0.003) <0.001 0.077 (0.037) -0.017 (0.018) <0.001

p-Values are by paired t-test. Ki results were compared with the pre-defined biologically expected criteria (Table 2). The criteria were met 
in all cases, except when using motion correction alone where the GM/WM Ki difference was lost (p = 0.42).
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3.5.  Variability in factorial testing

Analysis factor combinations were ordered according to 
CV, as shown in Figure 4. Use of the vein clearly domi-
nated improvements in CV.

The combination of analysis factors with optimal CV 
for both WM and GM is shown in Table 4, giving CV of 
27% and 17% for WM and GM, respectively. The pre-
defined biological criteria were met: WM/GM ratio 
1.49 ± 0.46 (mean ± SD), p < 0.001 (one-sample t-test 
comparing ratio to 0), β for CBV for predict Ki  =  0.63, 
p  <  0.001, CBF not included in model). For WM, the 
“best” method did not affect absolute Ki (0.057 vs. 0.055, 
p = 0.74) and improvement in CV compared with default 
(27% vs. 59%, p < 0.001). For GM, the “best” method 
gave a trend to decrease absolute Ki (0.078 vs. 0.094, 
p  =  0.06) and an improvement in CV (17% vs. 53%, 
p < 0.001).

There was little difference in CV between the highest 
ranking analysis factor combinations. A small and non-
significant further improvement in CV could be obtained 
for WM by using B1 correction (26 vs. 27%, p = 0.47), 
and for GM by using spoiling correction (15 vs. 17%, 
p = 0.74).

Plotting of per-subject Ki values for first and second 
scans was used to visualise the improved absolute 
agreement of within-subject values (see Fig.  5). With 
the default method, there was no correlation between 
paired within-subject values (WM: p  =  0.87, Kendall’s 
τ = -0.03, GM: p = 0.38, τ = 0.12); however, using the 
“best” method a significant positive correlation emerged 
(WM: p = 0.01, τ = 0.34, GM: p < 0.001, τ = 0.55). In a 
one-tailed William’s test, p-values for the improvement 
in correlation were 0.09 and 0.04 for WM and GM, 
respectively.

Table 2.  Effect of changing one analysis factor at a time on the pre-defined acceptability criteria for Ki, namely the ratio 
between white matter (WM) and grey matter (GM), and the relationship with cerebral blood volume (CBV) and flow (CBF).

Within-subject  
GM/WM Ki ratio

β (p-value) for 
CBV to predict KiAnalysis Mean (SD) p-Value

Default 1.82 (0.64) <0.001 0.73 (<0.001)
Motion correction 1.37 (0.93) 0.42 0.42 (0.03)
B1 correction 1.97 (0.71) <0.001 0.75 (<0.001)
Spoiling correction 1.79 (0.64) <0.001 0.71 (<0.001)
Venous input function 2.10 (0.67) <0.001 0.79 (<0.001)
Automated input function 1.77 (0.63) <0.001 0.78 (<0.001)
Input function scaling 1.83 (0.64) <0.001 0.70 (<0.001)
Parameter-wise average 2.80 (2.15) 0.01 0.74 (<0.001)
Median 1.42 (0.45) <0.001 1.05 (<0.001)

In the step-wise regressions, CBF did not improve the variance explained and so was not included in any model. The p-value is for a 
paired t-test comparing within-subject GM and WM Ki values.

Table 3.  Variability results obtained in univariate testing (changing one analysis factor at a time).

WM GM

Analysis CV (%)

p-Value for  
comparison  
with default ICC CV (%)

p-Value for  
comparison 
with default ICC

Default 59 n/a 0.01 53 n/a 0.06
Motion correction 61 0.74 0.03 53 0.57 0.23
B1 correction 58 0.36 0.06 52 0.14 0.08
Spoiling correction 57 0.03 0.01 53 0.01 0.07
Venous input function 30 <0.001 0.61 21 <0.001 0.80
Automated input function 52 0.30 0.55 40 0.04 0.49
Input function scaling 34 0.001 0.66 30 0.002 0.68
Parameter-wise average 60 0.37 0.08 58 0.16 0.08
Median 58 0.53 0.03 51 0.27 0.05

p-Values are by paired t-test. ICC = intra-class correlation coefficient (two-way mixed effects, absolute agreement, single rater model).
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3.6.  Differences in variability between subjects

The analysis method ranked best for CV was taken for-
ward to test for differences in variability between subjects. 
There was no correlation between CV and age (WM: 
p = 0.82, τ = 0.03, GM: p = 0.48, τ = -0.01). There was no 
correlation with inter-scan interval in WM (p  =  0.49, 
τ  =  -0.10), though there was a trend in GM (p  =  0.07, 
τ = -0.25). There was no correlation between time-of-day 
difference and CV (WM: p = 0.71, τ = 0.08, GM: p = 0.81, 
τ = -0.05). There was no effect of gender (WM: p = 0.77, 
GM: p = 0.83).

Bland–Altman plots showed no evidence of propor-
tional bias (Fig. 6), and correspondingly there was no cor-
relation between means and differences of Ki over scan 
sessions (WM: p = 0.28, τ = 0.15, GM: p = 0.23, τ = -0.16). 

The 95% limits of agreement were 0.073 and 0.078 
ml/100 g/min for WM and GM, respectively.

3.7.  Effect of removing input function variability

Repeating the highest ranked method but replacing the 
subject-derived input function with one standard input 
function derived from an external population did not sig-
nificantly affect CV (WM: 26.8 vs. 26.6%, p = 0.08, GM: 
14 vs. 17%, p = 0.16).

3.8.  Effect of dynamic sequence duration

Figure 7 shows results obtained by repeating the highest 
ranked method but with the dynamic sequence truncated 

Fig. 4.  Ordering of analysis factor combinations according to coefficient of variation (CV). Those using the artery are 
shaded red, those using the vein are shaded blue. The vertical line indicates the “default” method. The methods with 
lowest CV are generally those using the vein.

Table 4.  Details of analysis pipeline with lowest coefficient of variation (CV), obtained from factorial testing of all 
combinations of analysis factors.

Factor Default Best

Motion correction Off On
B1 correction Off Off
Spoiling correction Off Off
Input function location Artery Vein
Input function method Manual Manual
Input function scaling Off On
Averaging level Signal-wise Signal-wise

Averaging method Mean Median

WM GM WM GM

Mean (SD) Ki (ml/100 g/min) 0.055 (0.025) 0.094 (0.048) 0.057 (0.016) 0.078 (0.025)
CV (%) 59 53 27 17
Reproducibility coefficient (ml/100 g/min) 0.096 0.175 0.036 0.039
Reference change value (%) 164 147 75 47
ICC 0.01 0.06 0.50 0.73

Changes from the default method are shown in bold. ICC = intra-class correlation coefficient (two-way mixed effects, absolute agreement, 
single rater model).
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to 1-min increments between 5 and 16 min (i.e., restrict-
ing the amount of post-contrast data available). The 
deterioration in CV was most marked in WM.

4.  DISCUSSION

4.1.  Summary

In this study, we performed scan–rescan measurements 
using brain DCE-MRI in 30 adults with an interval of 

approximately 10 weeks. We found agreement with bio-
logical expectations of Ki as a compound marker of per-
meability and surface area, with higher values in GM 
compared with WM.

Relatively small changes in absolute values occurred 
with analysis factors such as B1 and spoiling correction 
and using the median instead of the mean. In contrast, 
measurement variability was highly dependent on analyt-
ical factors, predominantly related to input function 

Fig. 5.  Scatter plot showing Ki values for each subject obtained at first and second timepoints, with line of equality, for 
the default (red crosses) and “best” methods (blue circles).

Fig. 6.  Bland–Altman plots for white matter (WM) and grey matter (GM). The horizontal lines show mean difference and 
95% limits.
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selection. Using the vein as input function was the single 
most effective parameter in terms of improving CV. 
Through factorial testing, we identified the optimal com-
bination of factors, giving a CV of 27 and 17% in WM and 
GM, respectively. There was no evidence of proportional 
bias, and we did not identify any subject factors associ-
ated with variability. Finally, we showed a significant 
effect on dynamic sequence duration, both on variability 
and absolute Ki values. The results from this study will 
inform analysis methods and sample size calculation for 
future studies using DCE-MRI.

4.2.  Interpretation

Our finding of a precision benefit with using the vein sup-
ports published guidance (Thrippleton et al., 2019) and 
recent experimental data (Lewis et al., 2022). We found 
that the artery had lower peak height, suggesting con-
tamination by inflow artefact. Arterial regions-of-interest 
were also smaller, giving greater susceptibility to partial 
volume artefact. Both reasons likely contributed to the 
finding of significantly greater inter-scan variation (in 
AUC) of input functions derived from the artery compared 
with those from the vein. Since the subject-derived input 
function is a major source of uncertainty (Garpebring 
et al., 2013), it is reasonable to consider replacing individ-
ual input function measurement with a population stan-
dard; however, in this study we did not find this to give 
any significant precision improvement over that of using 
the vein. Also, another recent study showed no signifi-
cant impact of input function selection on variability 
(Cramer et al., 2023). The findings of our study suggest 

that the precision benefit of using the vein is strongly 
technique dependent; in this case likely reflecting the dif-
ferences between our 3D acquisition and the reported 2D 
protocol, where slice placement for the input function is 
carefully optimised for the flow direction of the ICA 
(Cramer et al., 2023). However, extending these findings 
from a relatively homogeneous healthy control group to 
subjects with pathology requires caution, as there is likely 
to be greater inter-individual variation in the true input 
function, which if not included in the model fit may 
obscure important differences (Keil et  al., 2017). Novel 
approaches have been suggested for compromise, such 
as normalising each individual input function to match 
the area under the curve of a population standard 
(Kleppesto et al., 2022).

We did not find a precision improvement with B1 map-
ping despite this often being mentioned as an important 
component of T1 mapping by the VFA method (Bane 
et al., 2018). This could be an issue with our choice of B1 
mapping technique, though we chose a validated method 
(Chung et al., 2010) which we also tested with a phantom 
on our scanner (data not shown). It is important to con-
sider that whilst B1 mapping might improve the accuracy 
of parameter estimation (Manning et al., 2021), the addi-
tional noise introduced by B1 mapping could actually 
reduce overall precision (Lee et al., 2017). Indeed, this is 
true for many of the factors, as this study examined only 
precision not accuracy.

We also showed a marked effect of dynamic sequence 
duration on variability, as has been previously reported 
(Cramer & Larsson, 2014; Wong et al., 2017). This is likely 
due to an increased signal-to-noise ratio (SNR) obtained 

Fig. 7.  Effect of dynamic sequence duration on the coefficient of variation (CV, black circles, solid line) and Ki (orange 
crosses, dashed line) for both white matter (WM) and grey matter (GM). Data for the 7-min timepoint are not shown, as 
due to a high proportion of negative Ki estimates, summary statistics become highly unstable.
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with greater tissue concentrations at longer durations, 
and hence is most prominent in WM.

Though we could not partition variability between bio-
logical and analytical sources, we can say that analytical 
imprecision must be less than the total variability of 17–
27%. To what degree biological variation is relevant 
remains unknown, but inferences can be drawn from the 
literature. Firstly, since Ki is also determined by the vas-
cular surface area (which is indirectly reflected by CBV), 
biological variation in CBV will also contribute to variation 
in Ki measurements. Changes in CBV may occur in the 
context of functional activation (Krieger et  al., 2012), 
which could easily vary between scanning sessions. 
Using measured data and the regression model, a 
1 ml/100 g increment in microvascular volume such as 
might occur in the occipital cortex during visual stimula-
tion (Krieger et al., 2012) would give a CV of 14% for GM 
Ki between two sessions, that is, comparable with the 
observed CVs. Secondly, although the study protocol 
sought to avoid the effect of intercurrent infections, 
asymptomatic fluctuations in inflammatory state are not 
uncommon (Stuart et al., 2020) and could contribute to 
variability in BBB permeability (Varatharaj & Galea, 2017).

Another study of variability in brain DCE-MRI reported 
lower CV (12 and 14% in WM and GM), though the inter-
scan interval was much shorter (typically 1 day) and neg-
ative Ki values were removed (Wong et al., 2017). It also 
appears that the CV in this study was calculated using the 
group mean, which may give an underestimate (M. Bland, 
2006). A comparable study reported a better ICC for WM 
(0.79) and similar for GM (0.71), though again the interval 
was much shorter than here (1 week) and the population 
significantly younger (Cramer et al., 2023). Although we 
did not see overt changes of cerebrovascular disease in 
any of our subjects on conventional imaging, age-related 
BBB disruption (Montagne et al., 2015) would be expected 
to increase biological variability. However, we did not find 
an effect of age on variability within our cohort.

Other studies have reported higher variability in GM 
compared with WM (Cramer et  al., 2023; Wong et  al., 
2017), hypothesised due to a greater susceptibility to 
partial volume artefact from CSF and vessels, especially 
in cortical GM. However, we found the opposite, a lower 
CV in GM. Since signal changes were summarised by the 
median within a strict tissue mask, our method is likely to 
have been robust to outliers. However, this does not 
explain why those same factors failed to further improve 
CV in WM. Since the absolute value of Ki is lower in WM, 
one would expect a lower tissue concentration and, 
therefore, a lower SNR than in GM. The greater noise 
contribution would contribute to greater analytical impre-
cision in WM compared with GM. Also, radiofrequency 
penetration effects are likely to give greater B1 inhomo-

geneity in WM than cortical GM, which (assuming imper-
fect correction) would contribute to imprecision. There is 
also the possibility of tissue differences in biological vari-
ability, though this study cannot comment on these.

We have avoided specifying a cutoff value for mea-
surement variability since this is dependent on the use 
case; instead, we present our findings to be appraised by 
users of DCE-MRI. However, it is relevant to mention the 
measurement variability of some other physiological 
parameters, to place these values in context. Consider-
ing another technique assessing the cerebral vascula-
ture, CBF measured by phase contrast MRI has a CV of 
4–15% (in younger and older subjects, respectively) 
(Ismaili et al., 2018). Thinking of a much simpler and more 
established method, the CV of blood pressure is 10–17% 
(Marshall, 2008). Of course, each of these studies has 
differences in patient population, measurement interval, 
and biological variability of the measurand, but the values 
give an idea of what is considered an “acceptable” mea-
surement variability for other widely used techniques. For 
researchers, the adequacy of the CV is relative to the 
sample size and expected effect size in a given study, 
and users can and employ our results for this purpose.

We quote the RCV since this is widely used for report-
ing measurement variability of laboratory analytes, and, 
therefore, places our data in a wider context. For exam-
ple, C-reactive protein (CRP) measurement is used ubiq-
uitously in clinical practice and analytical imprecision for 
a widely used automated system is 1–5% (Zimmerman 
et al., 2015). However, biological variation in CRP is 34% 
(European Federation of Clinical Chemistry and 
Laboratory Medicine, n.d), giving an RCV of 94–95%. 
This compares favourably with the RCVs for the opti-
mised method reported here.

4.3.  Strengths

This study had a good sample size in comparison with 
other scan–rescan studies in the field, and adherence to 
the pre-defined protocol was robust. There was no missing 
data, and except for two outliers with a plausible biological 
explanation, all data were included in the final analysis.

In terms of absolute values, K
i reported here is similar 

to healthy control values measured by PET (Iannotti et al., 
1987) using 68-Ga-DTPA, a hydrophilic compound with 
comparable molecular weight to Gadovist (440 vs. 604 
Daltons). A study using a comparable protocol at a differ-
ent site reported similar values for segmented GM though 
lower values for WM (Cramer et al., 2023). However, other 
studies have reported values an order of magnitude lower 
(Montagne et al., 2015), and some of the factors covered 
in this study may explain this, if they differed between cen-
tres. Inter-centre differences and possible explanations  
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have been reviewed in detail elsewhere (Raja et al., 2018) 
and there are ongoing efforts to standardise acquisition 
and analysis methods (Thrippleton et al., 2019). In partic-
ular, signal drift may significantly affect results (Heye 
et al., 2016), and better methods for detection and cor-
rection are needed.

Underestimation of the arterial signal due to inflow arte-
fact would be expected to overestimate parameter values 
(Lavini, 2015), and we did find lower absolute Ki values 
when using the vein (though not a significant difference).

4.4.  Weaknesses

The study design was pragmatic; however, the addition 
of further timepoints (including one with a much shorter 
interval) would have helped to pick apart biological varia-
tion from analytic imprecision. However, this was weighed 
against burden and acceptability to participants.

Our acceptability criteria for Ki values were determined 
by biological expectations. However, our assumption that 
higher vascular density in GM (Lierse & Horstmann, 1965) 
should lead to higher surface area and, therefore, higher Ki 
may be overly simplistic. Recent evidence suggests that 
WM vessels, though on average less dense, tend to be 
wider (Hase et al., 2019); this would tend to cancel out the 
effect of density on surface area. There is also consider-
able regional heterogeneity in vascular architecture (Lierse 
& Horstmann, 1965) and transcriptome (Bryant et  al., 
2023), raising the possibility that regional differences in 
both permeability and surface area may be too granular to 
reasonably use a large tissue mask to characterise an 
entire tissue. Also, one needs to consider the reduction in 
vascular density that occurs with ageing (mean age of 
study population here was 53  years), and whether this 
could skew the WM/GM ratio; there is evidence to suggest 
that the rate of loss in healthy individuals (without vascular 
dementia) is greater in the cortex than in the white matter 
(Brown et al., 2007; Leenders et al., 1990).

The study population was 82% female. There is evi-
dence that sex hormone levels influence BBB permeabil-
ity (Wilson et al., 2008), and we did not account for either 
menstruation or menopause in our study, though there 
was no effect of gender on variability.

There are many other physiological factors which 
could potentially influence BBB permeability, which we 
did not control for in this study. For example, subclinical 
systemic inflammation (Varatharaj & Galea, 2017), caf-
feine intake (Chen et  al., 2010), and physical exercise 
(Malkiewicz et al., 2019).

Others have examined the causes of systematic errors 
in DCE-MRI (Manning et al., 2021), and our protocol did 
exclude early post-injection data as suggested. However, 
we used a bolus instead of a slow injection, as we wished 

to also measure CBF in the same session. Our slice thick-
ness (5 mm) was relatively large, reflecting a compromise 
between the desired spatial and temporal resolutions, 
coverage, and SNR.

5.  CONCLUSION

In conclusion, this study provides data on measurement 
variability of brain DCE-MRI over a time frame applicable 
to clinical and research use. The metrics reported here can 
be used for sample size calculation and to guide judge-
ment of a significant effect in longitudinal assessments.
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