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Abstract—Remote sensed mapping data and seafloor in-situ
imagery are often gathered to infer benthic habitat distributions.
However, leveraging multimodal data is challenging because
of inherent inconsistencies between measurement modes (e.g.,
resolution, positional offsets, shape discrepancies). We investigate
the impact of using location metadata in multimodal, self-
supervised feature learning on habitat classification. Experiments
were carried out on a multimodal dataset gathered using and
Autonomous Underwater Vehicle (AUV) at the Darwin Mounds
Marine Protected Area (MPA). Introducing location metadata
improved F1 classification performance of a Bayesian classifier
by an average of 27.7% over all conditions tested in this work,
with a larger improvement of 32.9% achieved when multiple
remote sensing data modes are combined for the analysis.

Index Terms—multimodal feature learning, seafloor habitat
classification, self-supervised learning, inference

I. INTRODUCTION

Evaluating habitat distributions is an important part of
understanding seafloor environments. One way to collect infor-
mation about habitats is to use camera equipped Autonomous
Underwater Vehicles (AUVs) to photograph the seafloor at
sub-cm resolution. However, the strong attenuation of light
in water limits seafloor imaging altitudes to 2-10 m, where the
small image footprint (edge lengths of 2-10 m) is compounded
by the slow speed and low endurance of AUVs (0.2-1 m/s
with deployments lasting hours to days). Area cover ranges
between 1,400-40,000 m2/h, which is significantly smaller than
the extent over which habitat distributions typically need to
be understood, e.g., UK marine protected areas (MPAs) are 4-
100,000 km2. Acoustic remote sensing methods such as Side-
Scan Sonar (SSS) and Multibeam Echo Sonar (MBES) [1]
cover significantly larger areas than imaging, gathering lower
resolution (tens of cm to metre order) information about
different aspects of the environment. For example, calibrated
SSS intensities are a proxy for seafloor hardness, while MBES
reveals the depth and slope of the seafloor. Although these data
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modes do not directly identify habitat types, when combined
with models or expert human judgement, they form priors
that help infer likely habitat distributions over the spatial
scales that are more relevant for statutory monitoring. The
combined use of remote sensing with seafloor imaging for
habitat class verification is becoming increasingly routine in
seafloor monitoring.

Both feature engineering and feature learning have been
used to extract information from remote sensed environmen-
tal priors [2]. Although feature engineering requires human
expertise to extract and combine appropriate features, fea-
ture learning automatically extracts feature combinations from
the data using machine-learning techniques. An examples of
feature engineering is [1], where Grey Level Co-occurrence
Matrices (GLCM) were deployed to extract 64 features to
represent environmental priors over various spatial footprints,
which were then combined for downstream classification
tasks. The need for manual selection and combination in
feature engineering limits how well a particular set of features
generalises to capture information across different datasets.
In contrast, feature learners automatically adapt the features
they extract to best describe the data they are trained on.
This automatic optimisation to the data is beneficial when
multiple data modalities need to be considered and combined
as it bypasses effort intensive optimisation studies needed for
effective feature engineering.

Deep-learning convolutional neural networks (CNN) can
learn features from geospatial data using supervised learn-
ing techniques. However, this requires large labelled training
datasets, where the appearance of remote sensed seafloor
dataset differs significantly from the terrestrial satellite im-
agery that constitutes most geospatial training repositories.
Since preparation of reliable repositories for the diverse
seafloor sensing modalities and classification targets is time-
consuming, self-supervised learning approaches form an at-
tractive alternative as as they can efficiently learn features
that describe intrinsic patterns in unlabelled training datasets.
These features can be subsequently used in downstream clas-
sification tasks where recent examples of semi-supervised
learning have achieved state-of-the-art performance using far



fewer labelled class examples than conventional supervised
learning [11]. Contrastive learning is a self-supervised ap-
proach that augments the same data in different ways and
generates a feature space that embeds them nearby [3], [4].
In [5], a contrastive approach that ensures consistency of
clustering outputs between different augmentations of the same
data was developed. In [11], the authors developed a location-
guided contrastive approach that embeds data augmentations
from nearby locations to nearby regions of the feature space.
Recently, transformer models based on advances in natural
language processing have also been used for self-supervised
feature learning [6], achieving comparable performance to
CNNs.

In this research, we investigate the effectiveness of location-
guided self-supervised learning [11] for multimodal feature
extraction. A factor that can impact performance is the stage at
which multimodal information is fused. Three different stages
for fusion are recognised in the literature [7]; early fusion,
middle fusion and late fusion. Early fusion merges raw data
before any feature extraction takes place (i.e., fusing raw or
pre-processed data before any extraction of information). In
our context, this ensures joint features can be captured from
spatially overlapping regions. However, early fusion is suscep-
tible to artifacts such as the positional offsets that can exist
between data modes due to limitations in sub-sea localisation.
Middle fusion extracts feature from individual data modes and
fuses these in a hidden layer. The fused features are used
to generate the final results. Late fusion employs completely
separate models to extract features from different types of data,
and these features are directly used for classification tasks.
Compared to early fusion, middle fusion and late fusion are
less sensitive to mismatches between raw data modes, but risk
missing correlation between potentially useful patterns. Here,
we investigate early fusion, and specifically whether fusion of
multiple data modes improves performance, and if location-
guiding improves robustness when identifying geospatial pat-
terns in multimodal data.

II. METHOD

Our approach predicts visual class distributions over large,
remotely sensed areas that have only partially been imaged.
A location-guided contrastive learning approach [11] is used
to learn features from early-fused multimodal remote sens-
ing data. Gaussian Processes (GP) are trained to model the
relationship between these features and the visual-class deter-
mined for overlapping images. An advantage of using GPs is
that in addition to making class predictions, they also predict
the class uncertainty, which is important as remote sensed
features are not guaranteed to capture relevant information
about an associated visual classes. The following factors also
require consideration:

• Non-uniform data resolutions and extents between data
modes

• Physical change in the mapped environment between
acquisition of different data modes

• Positional offsets and deformation due to imperfect in-
strument calibration and localisation errors

We assess the performance of our approach on a multimodal
dataset gathered at the Darwin Mounds MPA, where SSS,
MBES and imaging data were acquired in overlapping regions
on seperate AUV dives, where each data mode is pre-pocessed
to compensate for any instrument calibration and attenuation
effects.

A. Feature learning

Different remote sensed environmental priors are early fused
before feature learning takes place. Each data mode is pre-
processed using standard workflows to remove artifacts and
reflect instrument calibrations. Since the patterns that describe
substrates and habitats cover various spatial scales [1], [8],
[9], it is important to consider how these can be captured
in the learning process. CNNs consider a spatial footprint
that is upper bounded by the size of the convolutional
window in their first layer. Within this footprint, or patch,
patterns of various scale are captured by layers in the CNN
architecture. Although, patterns larger than the patch size
typically do not influence learning, location-guided feature
learners address this limitation by implementing a proximity
assumption: Locations that are physically close are more likely
to have similar seafloor characteristics than locations that
are far-apart. This has been demonstrated through the use
of modified autoencoder loss functions [14] and contrastive
learning by assuming similarity of sample pairs taken within
some distance constraint [11]. Although these methods allow
features learning to capture information over various scales,
the CNN patch size still determines the resolution of the final
class maps and must and must satisfy some constraints.

To capture spatial patterns the patch must contain multiple
pixels across all data modalities. A sensible range is between
32 × 32 pixels [15] and 256 × 256 pixels [16] based on the
literature. The patch must also be sufficiently large to absorb
the impact of positional offsets between different data modes
that are being combined. Positional offsets can occur due to
the inherent localisation uncertainty of AUVs, typically 1 %
depth with acoustic localisation and 1 % of distance travelled
with relying on Doppler aided inertial navigation. Other factors
that can affect positional offsets include instrument calibration,
and actual change in the environment for asynchronously
acquired data. Conventional SSS does not consider terrain
profile and so contains inherent projection errors that are not
present in fully 3D measurement modes such as MBES. While
it may be possible to match features between data modes,
here we focus on understanding the impact of such geometric
distortions on classification performance. For actual change in
the environment, this depends on the habitats in the study area,
where for targets that exhibit seasonal patterns and have rapid
change (e.g., seagrass, hydrothermal vents) are inherently more
sensitive to the interval between different remote sensing and
imaging data acquisition than slower changing habitats (e.g.,
cold water coral, substrates, managanese deposites). Finally,
the patch must be smaller than the scale of the habitats that



are being characterised. This can be determined using methods
such as autocolerration or based on prior knowledge of habitats
at the site.

After considering these pointsm the survey region is split
into patches of uniform geo-spatial dimensions and a convo-
lutional kernel Ks of size rd × rd is applied to fuse the data
from each mode s as follows [10]:

y(N,E) =

S∑
s=1

rd/2∑
m,n=−rd/2

Is(N +m,E +n) ·Ks(m,n) (1)

where N,E represents the north-south geographical location.
Is shows the intensity of the remote sensed data and the
subscript s is the index of modes being combined. The
Kernel location is determined by m, n. y forms the early
fused multimodal input for feature learning. This early fusion
strategy is applicable to most CNN models, and can also be
applied to vision transformer models, where image patches are
converted to embeddings via a learnable CNN block.

Our study uses GeoCLR [11], which is a location-guided
contrastive feature learner that extends SimCLR [12] to deal
with geospatial data. SimCLR [12] generates augmented views
of the same patch by applying random distortions (e.g., crop,
colour distortion) and ensures these are embedded nearby in
the feature space. GeoCLR implements the proximity assump-
tion by sampling patches within some fixed relative-distance
constraint, and ensures these appear nearby in the feature space
after applying random distortions (see Fig. 1). We investigate
the impact of location-guiding by comparing the performance
of these methods.

B. Predicting visual classes

Gaussian Process Regression (GPR) is used to model
the relationship between the multimodal features extracted
from remote sensed priors with visual classes. GPs are non-
parametric models that can learn relationships using labelled
training data. Important characteristics of GPs for this work
are their robustness when trained over a range of small to
medium sized datasets, and their ability to predict not just
class probabilities, but also the uncertainty of their predictions.
For the first point, our method guarantees visual class labels
to train the GPs at any patch that has overlapping images.
However, the number of patches with overlapping images
depends on both the patch size and the survey design and so
robust performance over a wide range of training data sizes
is important. GPs are known to be slow when fitting large
volumes of training data (>5000). This can be mitigated by
randomly sub-sampling training data to a manageable size,
while still maintaining robust performance when available
training examples are limited (<500).

In general, the patches from which multimodal features are
extracted are larger than the footprint of a single AUV image
frame. Therefore, if overlapping images exist, patches can
have several corresponding images that may represent different
visual classes. We deal with this by assigning probabilities for

Fig. 1: GeoCLR takes nearby patches and applies random
distortions to these in a similar way to SimCLR. It embeds
these similar pairs (e.g. zi and zj) closer in the feature space
than a dissimilar pair (e.g. zi and zn) sampled from a random
location.

each visual class based on their normalised frequency within
each patch. The GPR models the probability of each visual
class given each set of multimodal features wherever images
overlap with the multimodal patches. Once trained, the models
predict class probabilities for all patches in the dataset.

III. RESULTS AND ANALYSIS

A. Dataset description

We investigate our approach using a multimodal dataset
collected at the Darwin Mounds MPA in the UK in 2019 at a
depth of 1000 m. The Darwin Mounds MPA is home to cold-
water-coral that grow around the edges of small mounds that
are approximately 70 m in length and <10 m high. The rest
of the seafloor consists of sediments, with tails formed in the
wake of the mounds, where large numbers of Xenophyophores
are found.

Approximately 19,000 images, where Sediment, Tail,
Mound Edge, and Mound Top represent 81%, 16%, 2%,
and 1% respectively, were collected from 5 m altitude using
the National Oceanography Centre’s Autosub6000 equipped
with the University of Southampton’s BioCam 3D camera
system [17]. Fig. 2 shows examples of visual classes at the



Fig. 2: Example seafloor images representing four visual
classes, (left) Mound Top, Mound Edge, Tail and (right)
Sediment. These were classified using the methods described
in [18]

site. All images were classified following the method described
in [18].

SSS and MBES data were also collected using Autosub6000
during the same cruise on a separate dive within days of
the image survey. Since this is a slow changing environment
((cold-water-coral growth is < 3 mm per year [13])) no
detectable change is expected. The majority of positional off-
sets between the remote sensing data modes and imagery are
expected to be due to AUV positional offsets (approximately
10 m at this depth) and instrument calibration and projec-
tion effects. Although the surveyed region is slightly sloped
downward to the west, the dominant habitat characteristics
are related to the mounds, and so our analysis considered the
relative depth (RD) of each patch about its mean depth, and not
the absolute depth of the seafloor. In addition, the resolution of
the SSS and RD used in this study is 0.2m/pixel and 2m/pixel.
They are divided into 50 × 50 patches with an overlap of
25× 25.

B. Evaluation metrics

We evaluate the performance of single and multimodal
models by utilizing features obtained through SimCLR and
GeoCLR. To measure performance, the data set is divided
into 80% for training and 20% for testing. The classification
accuracy is then assessed using the F1 score, as defined in Eq.
refeq:F1 score.

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(2)

where TP is the number of true positives, FN is the number
of false negatives, FP is the number of false positives. The
F1 score is a more appropriate metric compared to accuracy
due to the significant class imbalance present in the dataset.

C. Classification results

We perform the single-mode class inference using SSS and
RD, respectively and multimodal class inference for the early-
fused multi-modal input, i.e. SSS+RD. Tab.I gives F1 scores
for single-mode and multimode class inference. In single-mode

TABLE I: F1 scores (%) of single-mode and multimodal class
inference for SimCLR and the location-guided GeoCLR

Environmental priors SimCLR GeoCLR

SSS 56.2± 1.2 75.6± 0.3

RD 31.3± 3.7 62.0± 2.0

SSS+RD 46.1± 1.2 79.0± 1.7

class inference, the F1 score for SSS is substantially higher
than for RD. In addition, GeoCLR improves performance by
27.7 % over SimCLR on average, demonstrating more effective
feature learning by making use of location metadata. For multi-
modal class inference, GeoCLR improves over SimCLR by
32.9 %. Significantly, SimCLR where combining data modes
reduces performance compared to the best performing single
mode by -10.1 %, GeoCLR improves performance by 3.4 %. A
possible explanation is that spatial inconsistencies between the
data modes may cause confusion during the feature learning
process in SimCLR if spatial offsets are large relative to the
patch size. However, with location guiding, patterns larger
than a single patch can influence feature learning, which may
improve robustness to positional offsets between data modes.

Fig. 4 shows the TSNE distribution of single-mode (SSS)
and multimodal (SSS+RD) features for SimCLR and GeoCLR.
The colours represent the visual classes. For SimCLR, the
Mound Edge, Mound Top and Tail classes become signifi-
cantly more scattered in the multimodal feature space (Fig.
4 (c)), compared to the single-mode feature space (Fig. 4 (a)),
which makes it inherently more difficult for the GPRs to model
the feature to visual class relationship. With GeoCLR however,
the same three classes show a similar level of grouping in
the multi-modal and single-mode feature spaces (Fig. 4 (d,a)),
respectively.

Fig. 5(a)-(d) shows the probabilities of each class when
using the multimodal feature space. The background classes
Tails and Sediment both occur in flat areas with some distinct
texture in the SSS data (see Fig. 3(b,c)). Mound Top and
Mound Edge are well distinguished as seen in Fig. 5(a,b),
with clear boundaries as seen in the reference visual classes
extracted from the imagery (Fig. 3(a)). Fig. 5(e) shows the
prediction uncertainties derived from the relative entropy. It
demonstrates the regions where the classifier lacks confidence
in its predictions, indicating the necessity for a more thorough
survey in those areas.

IV. CONCLUSION AND FUTURE DIRECTIONS

We propose a method to predict seafloor visual classes
onto wide-area multimodal remote sensing data. Our results
show that location-guiding can improve the habitat class
prediction of self-supervised feature learners for both single-
and multi-modal remote sensing data. Furthermore, location-
guiding allows feature learners to take advantage of early fused
multi-modal inputs in scenarios where conventional feature
learning cannot. It is thought that this relates to improved
robustness to positional offsets between data modes when



(a) (b) (c)

Fig. 3: Data from the Darwin Mounds MPA. (a) Visual classes determined for the seafloor images using the approach described
in [18]. The colors correspond to Fig. 2; (b) and (c) show SSS intensity and seafloor depth derived from MBES. In our study,
the relative depth (RD) is used to capture habitat relevant terrain features. This is combined with the SSS intensities to form
multimodal inputs for the feature learner.

(a) (b) (c) (d)

Fig. 4: TSNE distribution of features in single-mode and multimodal class inference. Panels (a) and (b) depict single-mode
class inference using SimCLR and GeoCLR, respectively, while panels (c) and (d) present multimodal class inference utilizing
both SimCLR and GeoCLR.



(a) (b) (c) (d) (e)

Fig. 5: Probabilities of class inference. (a), (b), (c) and (d) reveal the probability of Mounds Top, Mounds Edge, Tails and
Sediment. Illustrated colours correspond to those in Fig. 3a. (e) shows the prediction uncertainties

larger-scale spatial patterns are taken into account during the
feature learning process.

The use of GPRs to model the relationship between features
extracted from multimodal remote sensing data and overlap-
ping visual classes extracted from imagery allows both the
visual class probabilities and the prediction uncertainties to be
determined. The final aspect can potentially be used to develop
novel survey strategies, where efforts in data acquisition are
focused on minimising predictive uncertainty to improve con-
fidence in our understanding of seafloor habitat distributions.
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