
Computational Optimization and Applications
https://doi.org/10.1007/s10589-024-00614-3

Proximal-stabilized semidefinite programming

Stefano Cipolla1 · Jacek Gondzio2

Received: 29 February 2024 / Accepted: 3 October 2024
© The Author(s) 2024

Abstract
A regularized version of the primal-dual Interior Point Method (IPM) for the solution
of Semidefinite Programming Problems (SDPs) is presented in this paper. Leveraging
on the proximal point method, a novel Proximal Stabilized Interior Point Method for
SDP (PS-SDP-IPM) is introduced. The method is strongly supported by theoretical
results concerning its convergence: the worst-case complexity result is established for
the inner regularized infeasible inexact IPM solver. The new method demonstrates
an increased robustness when dealing with problems characterized by ill-conditioning
or linear dependence of the constraints without requiring any kind of pre-processing.
Extensive numerical experience is reported to illustrate advantages of the proposed
method when compared to the state-of-the-art solver.

Keywords Semidefinite programming · Interior point method · Proximal point
methods · Primal–dual regularization

Mathematics Subject Classification 90C22 · 90C51 · 90C46 · 90C25 · 49N15

1 Introduction

Semidefinite Programming (SDP), see [40] for a detailed introduction to the area, is
a powerful mathematical framework that extends linear programming to optimization
problems involving positive semidefinite matrices. It finds applications in various
fields such as control theory, machine learning, combinatorial optimization [2, 39],
and quantum information theory [15, 25], to mention just a few. SDP provides a
versatile approach for solving optimization problems where the objective function

B Stefano Cipolla
s.cipolla@soton.ac.uk

B Jacek Gondzio
j.gondzio@ed.ac.uk

1 University of Southampton School of Mathematical Sciences, Southampton, UK

2 The University of Edinburgh School of Mathematics and Maxwell Institute for Mathematical
Sciences , Edinburgh, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-024-00614-3&domain=pdf
http://orcid.org/0000-0002-8000-4719

S. Cipolla, J. Gondzio

and constraints can be expressed in terms of symmetric matrices, and the feasibility
conditions involve positive semidefiniteness.

While SDP has proven to be a valuable tool in approximating and modelling chal-
lenging problems, it is also important to be aware of numerical instabilities that can
arise during the solution of SDP problems. Indeed, understanding and addressing
numerical challenges in SDP solvers is crucial for obtaining robust algorithms, espe-
cially when dealing with Interior Point Methods (IPM) [26] which are characterized
by a severe inherent ill-conditionings of the related linear algebra problems [11, 18].

This work contributes to the understanding of the tight interplay between numerical
linear algebra techniques and optimization algorithms when developing robust IPM-
type SDP solvers able to deal with instances which would otherwise challenge the
standard IPM-based solvers.

1.1 Motivations and problem statement

We consider a solution of a primal–dual pair of semi-definite programming problems
in the form:

min
X∈S n

h

2
X • X + C • X

s.t. A X = b

X � 0,

max
X , S∈S n , y∈Rm

yTb − h

2
X • X

s.t. h X + C − A T y − S = 0

S � 0,

(1)

where h ∈ R+, given {Ai }m
i=1 ∈ S n , (A X)i := Ai • X and A T y := ∑m

i=1 yi Ai is
the adjoint operator ofA with respect to the standard inner product inS n andRm and
where X � 0 means that X is symmetric positive-semidefinite. It is important to note
that the problem presented in (1) is slightly more general than a standard linear SDP
problem as it allows the presence of the simple quadratic term h

2 X • X . Clearly, for
h = 0 a classical (linear) SDP problem is recovered. The main motivation to consider
such a formulation is that we will deal with a primal–dual regularized version of
classical SDP problems where the presence of simple quadratic terms of the above
form arises naturally, see Sect. 2.1 for more details. It is also important to note, at this
stage, that (1) is a convexprogrammingproblemwhen the coneof positive-semidefinite
matrices is considered, see [13, Sec. 4].

In classical IPM for SDP, most of the computational effort lies in the solution of
a symmetric positive definite system of linear equations that determines the search
direction. Indeed, after suitable reformulation of the nonlinear IPM map, see Sect. 2.1
for more details, the computation of the Newton search direction can be reduced to
the solution of the following system of linear equations

A�AT v = q, (2)

where A is a suitable matrix representation of the operator A and � is a symmetric
positive definite matrix changing at every IPM iteration. See Sect. 6 more details.
Whenever thematrix A is full row rank, (2) is nonsingular and the IPM search direction

123

Proximal-stabilized semidefinite programming

is well defined. However, as IPM approaches optimality the scaling matrix � gets
increasingly ill-conditioned. In practice, even when a direct solver is employed for the
solution of (2), the quality of the search directionmay be degraded by the conditioning
of the matrix A�AT .

The inherent ill-conditioning of IPMs is a consequence of the nature of the matrix
� which acts as a continuos approximation of the indicator function for the zero
eigenvalues of the optimal solution and therefore exhibits a challenging structure of
eigenvalues with a subset of them going to infinity and another subset going to zero.
Additionally, the conditioning of matrix A�AT is also affected by the conditioning
of the matrix A itself. In particular, if the matrix A does not have full row rank, then
(2) becomes singular.

As a result, even when a direct method is used for the solution of such a linear
system, substantial numerical instabilities might occur. This issue usually manifests
itself in inaccurate search directions leading to either a slow convergence or the lack
of it. With developments presented in this paper we intend to remedy such situations
and improve the robustness of SDP solvers.

1.2 Contribution and related literature

Primal–dual regularization of IPM for linear and quadratic programming [1, 33] has
been introduced in order to alleviate some of the numerical difficulties related to the
linear system in (2). In essence, the technique amounts to adding diagonal regular-
ization terms to the augmented system formulation of the linear equations arising in
Newton method. Despite the fact that this strategy has proven to be effective in prac-
tice, to the best of our knowledge, very few attempts have been made to deliver a
better understanding of the theory behind such regularization techniques, specially in
the SDP case.

In thiswork,wewill investigate primal–dual regularized IPMbased on the Proximal
Point Method (PPM), see [32], for the solution of SDP problems.

The scheme here considered is exact in the sense that the PPM framework allows
to state the convergence to a primal–dual solution of (1) if such an optimal solution
exists, see Sect. 2.1. Every PPM sub-problem is solved using a primal–dual regularized
infeasible IPM for which we prove polynomial convergence, see Sect. 7. The results
presented here represent a non-trivial generalization of the results available for the
quadratic programming case [8, 9] and strongly rely on some surprising properties of
the Nesterov-Todd scaling direction for SDP [27, 28], see Sect. 6, and in particular
Lemma 7.

An immediate benefit of interpretting primal–dual regularization of IPM as derived
from the proximal point method is that the linear system (2) is modified as

(A(�−1 + ρ I)−1AT + δ I)v = q where ρ > 0 and δ > 0, (3)

and this allows to drop the requirement of A to have the full row rank. Indeed, the
presence of the regularization terms ρ and δ ensures the positive-definiteness of the
matrix in (3) and guarantees uniform bounds of its eigenvalues. This represents a

123

S. Cipolla, J. Gondzio

remarkable advantage for the linear algebra solvers used for (3). As a result, our
tuned-for-robustness general purposes IPM scheme is able to successfully solve SDP
instances characterized by an extreme ill-conditioning of matrices A for which state-
of-the-art solvers struggle or fail. For standard well-conditioned or moderately ill-
conditioned problems, the proposed regularized IPM scheme delivers comparable
performance to those of other solvers known from the literature, see Sect. 9.

Despite the fact that in the last few years several works addressed the possible
synergies occurring between the PPM and IPM, see e.g., [7–9, 30, 38], to the best of
our knowledge, only two works address in detail the primal–dual regularized IPM in
the SDP context, namely [17, 30]. In both cases, the starting point of the investiga-
tion is related to the application of the PPM to augmented Lagrangian method. The
method proposed in this paper differs from these two approaches becausewe frame our
derivation using a saddle reformulation of the problem, see Sect. 2. As a result of these
theoretical developments, we are able to prove the convergence of the overall scheme
without requiring the regularization parameters ρ, δ to be decreased to zero, which is
a novelty w.r.t. to [30]. Instead, when our contribution is compared to [17], we are able
to prove the convergence of the method without assuming that the primal–dual iterates
(X , y, S) remain bounded, see [17, Th. 10.5]. Finally, to the best of our knowledge,
the proof of polynomial convergence of the primal–dual regularized infeasible long-
step IPM considered in this paper (see Sect. 3) is completely new in the context of
SDP and generalises the techniques presented in [9] by relying strongly on particular
properties of the Nesterov-Todd scaling [27] and the related primal–dual regularized
IPM matrices, see Sect. 7.

1.3 Notation

The following notation will be used in the remaining part of this work.
R

n+ := {r ∈ R
n s.t. r ≥ 0}, i.e., the set of non-negative real numbers.

S n := {B ∈ R
n×n s.t. B = BT }, i.e., the set of symmetric matrices.

S n+ := {B ∈ S n s.t. B � 0}, i.e., the set of symmetric positive semi-definitematrices.
S n++ := {B ∈ S n s.t. B � 0}, i.e., the set of symmetric positive definite matrices.

Given X , Y ∈ R
n×n , we define X • Y := tr(X T Y) and ‖X‖ := √

tr(X T X).
Given X ∈ R

n×n with real spectrum, we denote by λ(X) the set of eigenvalues of X
ordered as λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).
We use the same symbol ‖ · ‖ to denote the Frobenius and the Euclidean norm. The
context will clarify the meaning.
Given a convex set D ⊂ S n × R

m , ND(X , y) denotes the normal cone to (X , y)
(see [14, Sec. 2.1] or [10, Sect. 4]). Finally, given a ∈ C, we denote �(a) and 	(a)

respectively, the real and imaginary part of a.

123

Proximal-stabilized semidefinite programming

2 Computational framework

In order to use rigorously the PPM framework, let us introduce the Lagrangian function
associated with (1)

L (X , y) := h

2
X • X + C • X − yT (A X − b) + ID(X , y), (4)

where ID(·) is the indicator function of the set D := S n+ × R
m .

We notice that the particular Lagrangian considered in (4) is, somehow, non-
standard in the IPM literature due to the presence of the term ID(X , y). This choice
allows us to consider variational formulation of the problem (1) (see (7)) suitable for
the application of the proximal point method [32]. In the following Lemma 1, we
briefly summarize the properties of the function ID(X , y) needed to obtain such a
variational formulation.

Lemma 1 Given X ∈ S n+, X = Q diag(λ)QT , the following properties are true:

1.

[V ,w] ∈ ND(X , y) ⇔
{

V = Q diag(NR
n+(λ))QT

wi = 0 for i = 1, . . . , m
, (5)

2. ∂X ID(X , y) = NS n+ (X) and ∂y ID(X , y) = {0}.
In our particular case, using Lemma 1, the saddle sub-differential operator related

to (4) can be written as

TL (X , y) :=
[

∂XL (X , y)
∂y(−L (X , y))

]

=
[

h X + C − A T y + ∂X ID(X , y)
A X − b

]

. (6)

The proper saddle functionL (X , y) satisfies the hypothesis of [31, Cor. 2, p. 249] and
hence the associated saddle operator, namely TL , is maximal monotone. In particular,
the solutions (X∗, y∗) ∈ S n+ × R

m of the problem 0 ∈ TL (X , y) are just the saddle
points of L , if any. It is important to note, at this stage, that since TL is maximal
monotone, T −1

L (0) is closed and convex.
Moreover, the problem of finding (X∗, y∗) s.t. 0 ∈ TL (X∗, y∗) can be alternatively

written as finding a solution of the following problem

−
[

hI −A T

A 0

] [
X
y

]

+
[−C

b

]

∈ ND(X , y), (7)

which represents the variational formulation of problem (6) (see [14, Sec. 2.1]).
Given (X∗, y∗) a solution of (7), we can recover a solution (X∗, y∗, S∗) of (1)

defining S∗ := −V ∗ where (V ∗,w∗) ∈ ND(X∗, y∗). Indeed, it is easy to see using a
standard Lagrangian and (5), that the matrix S∗ corresponds to the standard Lagrange
multiplier associated with the constraints corresponding to S n+.

123

S. Cipolla, J. Gondzio

Before concluding this section, let us stress the fact that in the remainder of this
work we make the following

Assumption 1 The (convex) set of saddle points ofL is non-empty, i.e., T −1
L (0) �= ∅,

and hence there exists at least one solution (X∗, y∗, S∗) of the problem (1).

2.1 Proximal point method

In this section we follow closely the developments of [8], specializing our discussion
for the operator TL . The proximal pointmethod [32] finds zeros ofmaximalmonotone
operators by recursively applying their proximal operator. In particular, starting from
an initial guess [X0, y0], a sequence [Xk, yk] of primal–dual pairs is generated as
follows:

(Xk+1, yk+1) = P(Xk, yk), where P = (I + �−1TL)−1

and � := blockdiag(ρ Id , δ Im), with ρ > 0, δ > 0.
(8)

Since�−1TL is also amaximalmonotone operator,P is single valued, non expansive
and the sequence by (8) converges to a solution [X∗, y∗] ∈ T −1

L (0) [32].
Evaluating the proximal operator P is equivalent to finding a solution (X , y) to

the problem

0 ∈ TL (X , y) + �((X , y) − (Xk, yk)),

which is guaranteed to be unique. In particular, evaluating the proximal operator is
equivalent to finding a solution of

0 ∈
[

h X + C − A T y + ∂X ID(X , y) + ρ(X − Xk)

A X − b + δ(y − yk)

]

,

which, in turn, corresponds to solving the primal dual regularized problem in (RP-k):

min
X∈Rn×n ,y∈Rm

h

2
X • X + C • X + ρ

2
‖X − Xk‖2 + δ

2
‖y‖2 (RP-k)

s.t. A X + δ(y − yk) = b

X � 0.

Moreover, the problem (RP-k), can be written in the following variational form:

−
[
(h + ρ)I −A T

A δI

] [
X
y

]

+
[−C + ρXk

b + δyk

]

∈ ND(X , y).

Let us introduce the Lagrangian for problem (RP-k)

Lk(X , y, S) =h + ρ

2
X • X + δ

2
‖y‖2 (RL)

+ (C − ρXk) • X − yT (A X + δ(y − yk) − b) − S • X ,

123

Proximal-stabilized semidefinite programming

where S ∈ S +
n . Using (RL), we write the KKT conditions

[
(h + ρ)I 0

0 δI

] [
X
y

]

+
[

C − ρXk

0

]

−
[

A T y
δy + (A X + δ(y − yk) − b)

]

−
[

S
0

]

= 0;
SX = 0;

X , S ∈ S n+.

We can then write the dual form of problem (RP-k) as

max
X ,S∈Rn×n , y∈Rm

yTb − h

2
X • X−ρ

2
‖X‖2 − δ

2
‖y − yk‖2 (RD-k)

s.t. (h + ρ)X + (C − ρXk) − A T y − S = 0

X , S ∈ S n+,

where we used the fact that A X + δy = b + δyk .

Definition 1 Solution of (RP-k)–(RD-k)
Using standard duality theory, we say that (X∗

k , y∗
k , S∗

k) is a solution of problems
(RP-k)–(RD-k) if the following identities hold

A X∗
k + δ(y∗

k − yk) − b = 0

(h + ρ)X∗
k + (C − ρXk) − A T y∗

k − S∗
k = 0

X∗
k • S∗

k = 0 and X∗
k , S∗

k ∈ S n+.

3 Primal–Dual IPM for proximal point evaluations

In this Section we present the particular version of the IPM used to solve the primal
dual problems (RP-k) - (RD-k), see Algorithm 1. This algorithm is the inner solver
used at every PPM iteration and represents the building brick of our proposal, see
Sect. 4 for more details.

To this aim, we introduce the following Lagrangian function which uses a logarith-
mic barrier to take into account the semidefinite constraints

Lk(X , y, S) =h + ρ

2
X • X + δ

2
‖y‖2+

(C − ρXk) • X − yT (A X + δ(y − yk) − b) − μ ln(det X).

We write the corresponding KKT conditions

∇XLk(X , y) = (h + ρ)X − A T y + C − ρXk − μX−1 = 0;
−∇yLk(X , y) = (A X + δ(y − yk) − b) = 0.

123

S. Cipolla, J. Gondzio

Setting S = μX−1, we can consider the following IPM map

Fμ,σ
k (X , y, S) :=

⎡

⎣
(h + ρ)X − A T y + C − ρXk − S

A X + δ(y − yk) − b
X S − σμI

⎤

⎦ , (9)

where σ ∈ (0, 1) is the barrier reduction parameter and X � 0, S � 0. A primal–
dual interior-point method applied to problems (RP-k)–(RD-k) involves performing
Newton iterations to solve a nonlinear problem of the form

Fμ,σ
k (X , y, S) = 0, X � 0, S � 0.

In order to maintain the symmetry of the Newton updates, as in [41], we replace
the last equation in (9) with HP (X S) − σμI , where

HP (B) := 1

2
(P B P−1 + (P B P−1)T)

for some invertiblematrix P .With such a substitution, the nonlinearmap Fμ,σ
k (X , y, S)

takes the form

Fμ,σ
k (X , y, S) :=

⎡

⎣
(h + ρ)X − A T y + C − ρXk − S

A X + δ(y − yk) − b
HP (X S) − σμI

⎤

⎦ .

It is worth mentioning that the previous substitution maintains the symmetry of the
Newton’s updates without affecting the definition of the central path, as the following
proposition shows:

Proposition 1 ([41, Prop. 4.1]) Given M ∈ R
n×n with real spectrum, a nonsingular

P ∈ R
n×n and a scalar τ ,

HP (M) = τ I ⇔ M = τ I .

Corollary 1 If Hp(X S) = τ I , then X • S = nτ .

Proof Using Proposition 1, we have Hp(X S) = τ I ⇔ X S = τ I and hence X • S =
X • τ X−1 = nτ . ��

The proofs of the statement of Lemma 2 below follows using standard arguments.

Lemma 2 For all non singular P ∈ R
n×n and M ∈ R

n×n we have

– ‖HP (M)‖ ≤ ‖M‖

–

√
√
√
√

n∑

j=1

|λ j (M)|2 ≤ ‖M‖

123

Proximal-stabilized semidefinite programming

– if M ∈ S n

|λn(M)| ≤ ‖M‖.

We are now in the position to define the neighbourhood of the central-path consid-
ered in this work:

Definition 2 Neighbourhood of the infeasible P-scaled central path:

Nk(γ̄ , γ , γp, γd) := {(X , y, S) ∈ S n++ × R
m × S n++ :

γ̄ X • S/n ≥ λ(HP(X S)) ≥ γ X • S/n for i = 1, . . . , n;
X • S ≥ γp‖A X + δ(y − yk) − b‖;
X • S ≥ γd‖(h + ρ)X − ρXk − A T y − S + C‖},

where γ̄ > 1 > γ > 0 and (γp, γd) > 0.

In the following we consider inexact Newton steps for (12) obtained from the
current iterate (X , y, S) by solving the problem

⎡

⎣
(h + ρ)I −A T −I

A δI 0
E 0 F

⎤

⎦

⎡

⎣
�X
�y
�S

⎤

⎦ = −Fμ,σ
k (X , y, S) +

⎡

⎣
0
ζ

0

⎤

⎦, (10)

where I denotes the identity operator and

E := ∇X HP (X S) = P � P−T S,

F := ∇S HP (X S) = P X � P−T

where (G � Q)K := 1
2 (G K QT + QK T GT)

(11)

Hence E�X = ∇X HP (X S)�X = HP (�X S) and F�S = ∇S HP (X S)�S =
HP (X�S). Term ζ in the second block of the right hand side is the inexactness
introduced in the computational process (see Sect. 6 for more details).

Definition 3 For the sake of clarity, in the following we will define

⎡

⎣
�d

ξp

�μ,σ

⎤

⎦ := −Fμ,σ
k (X , y, S) =

⎡

⎣
−(h + ρ)X + A T y − C + ρXk + S

b − A X − δ(y − yk)

σμI − HP (X S)

⎤

⎦ , (12)

and

⎡

⎢
⎣

X j
k (α)

y j
k (α)

S j
k (α)

⎤

⎥
⎦ :=

⎡

⎢
⎣

X j
k

y j
k

S j
k

⎤

⎥
⎦ +

⎡

⎢
⎣

α�X j
k

α�y j
k

α�S j
k

⎤

⎥
⎦ . (13)

123

S. Cipolla, J. Gondzio

In Algorithm 1 we report a prototype IPM scheme for the solution of problems
(RP-k)–(RD-k). The fundamental steps involved in the algorithm are: computing the
Newton direction by solving (10) with a level of inexactness that satisfies (14), see
Line 2; finding the largest stepsize that guarantees to remain inside the neighbourhood
and to sufficiently reduce the complementarity products, see Line 7 and Eq. (N & C);
preparing the quantities to be used in the next iteration, see Lines 8-9.

In Sect. 7 we study the convergence and polynomial complexity of this algorithm.
Concerning the notation, let us notice that in (13) the subscript k is related to the
iteration count ofAlgorithm2 (PPM)whereas the superscript j is related to the iteration
of Algorithm 1 (IPM). However, if there is no danger of creating an ambiguity these
indices will be omitted to keep the notation simpler.

Input: σ, σ̄ ∈ (0, 1) barrier reduction parameters s.t. σ < σ̄ ;
Cinexact ∈ (0, 1) inexactness parameter s.t. γpCinexact < σ ;
εp,k > 0, εd,k > 0, εc,k > 0 optimality tolerances;
Initialization:
Iteration counter j = 0;
Primal–dual point (X0

k , y0k , S0k) ∈ Nk (γ̄ , γ , γp, γd)

Compute μ0
k := X0

k • S0k /n, �0
d,k , ξ

0
p,k and �0

μ0
k ,σ

.

1 while Stopping Criterion in (18) is False do

2 Solve the KKT system (10) using [� j
d,k , ξ

j
p,k , �

j

μ
j
k ,σ

]T with ‖ζ j
k ‖ ≤ CinexactX

j
k • S j

k to find

[�X j
k , �y j

k , �S j
k] ;

3 Define

α
∗, j
p := sup{α ∈ R : λn(X j

k (α)) ≥ 0}
α

∗, j
d := sup{α ∈ R : λn(S j

k (α)) ≥ 0}
and α∗, j := min{α∗, j

p , α
∗, j
d } ;

4 if (Xk (α∗, j), yk (α∗, j), Sk (α∗, j)) is a solution of (RP-k) - (RD-k) then
5 Stop
6 end

7 Find α
j
k as the maximum for α ∈ [0, 1] s.t.

(X j
k (α), y j

k (α), S j
k (α)) ∈ Nk (γ̄ , γ , γp, γd) and (N & C)

X j
k (α) • S j

k (α) ≤ (1 − (1 − σ̄)α)X j
k • S j

k ;

8 Set

⎡

⎢
⎣

X j+1
k

y j+1
k

S j+1
k

⎤

⎥
⎦ =

⎡

⎢
⎣

X j
k

y j
k

S j
k

⎤

⎥
⎦ +

⎡

⎢
⎣

α
j
k �X j

k
α

j
k �y j

k
α

j
k �S j

k

⎤

⎥
⎦ ;

9 Compute the infeasibilities �
j+1
d,k , ξ j+1

p,k , � j+1

μ
j+1
k ,σ

and barrier parameter

μ
j+1
k := X j+1

k • S j+1
k /n ;

10 Update the iteration counter: j := j + 1.
11 end

Algorithm 1: Infeasible IPM for problem (1)

123

Proximal-stabilized semidefinite programming

Assumption 2 – As outlined in [35], the transformation (10) can be viewed as a
linear transformation from S n++ × R

m × S n++ to itself and thus, under suitable
conditions, it will produce Newton directions (�X ,�y,�S) s.t.�X , �S ∈ S n .
For this reason, in the rest of our discussion, we will suppose that �X , �S are
symmetric.

– In the remainder of this work, we assume E to be non singular and E −T will
denote the inverse of the adjoint operator of E (see Sect. 6 for more details on this
assumption).

– Concerning the measure of inexactness ζ , we assume in the following that

‖ζ‖ ≤ Cinexact X • S, (14)

where Cinexact ∈ (0, 1).

The following results provide some extra clarification of details concerning Algo-
rithm 1.

Lemma 3 The following equalities hold:

F TE −T S = X , E −T S • �μ,σ = σμn − X • S

and

S • �X + X • �S = (σ − 1)X • S. (15)

Proof Concerning the first two equalities in the statement, we have, by direct compu-
tation and using the definitions in (11),

E T I = (PT � S P−1)I = S and F T I = (X PT � P−1)I = X ⇒ F T E−T S = X .

Hence

E−T S • �μ,σ = I • �μ,σ = σμn − tr
1

2
(P X S P−1 + (P X S P−1)T) = σμn − X • S.

The second part of the statement follows using the last equation in (12) and observ-
ing that

σμn − X • S = E −T S • �μ,σ = E −T S • E�X + E −T S • F�S ⇒
(σ − 1)X • S = S • �X + X • �S,

where the implication used the properties stated at the beginning of the proof. ��
As a result, using (15), we can state the following identity:

(X j + α�X j) • (S j + α�S j) = (1 + α(σ − 1))X j • S j + α2�X j • �S j . (16)

123

S. Cipolla, J. Gondzio

Finally, using the last block equation in (10), we have

λi (E�X + F�S) = σ
X • S

n
− λi (HP (X S)),

i.e.,

λi (HP (�X S + X�S)) = σ
X • S

n
− λi (HP (X S)) for all i = 1, . . . , n. (17)

Lemma 4 For all α ∈ [0, α∗, j] (see Algorithm 1 for the definition of α∗, j) and for all
P invertible, we have

λn(HP (X j (α)S j (α))) ≤ λ(X j (α)S j (α)) ≤ λ1(HP (X j (α)S j (α))).

Proof The proof is a result of the following observations:

1. λ(X j (α)S j (α)) = λ(S j (α)X j (α)) ⊂ R since

λ(X j (α)S j (α)
1/2

S j (α)
1/2

) = λ(S j (α)
1/2

X j (α)S j (α)
1/2

)

and X j (α) � 0, S j (α) � 0 by Line 3 of Algorithm 1.
2.

�(λ1(X j (α)S j (α))) = λ1(X j (α)S j (α)) = λ1(P X j (α)S j (α)P−1)

≤ λ1(
1

2
(P X j (α)S j (α)P−1 + (P X j (α)S j (α)P−1)T)) = λ1(HP (X j (α)S j (α))),

where the inequality follows using [22, Ex. 20, page 187];
3.

− λn(X j (α)S j (α)) = λ1(−X j (α)S j (α)) = λ1(−P X j (α)S j (α)P−1)

≤ λ1(−1

2
(P X j (α)S j (α)P−1 − (P X j (α)S j (α)P−1)T))

= λ1(−HP (X j (α)S j (α)))

= −λn(HP (X j (α)S j (α))),

where we used that for a matrix with a real spectrum R ∈ R
n×n it holds λ1(−R) =

−λn(R) and, also in this case, the inequality [22, Ex. 20, page 187]. ��

4 Proximal-stabilized interior point method for semidefinite
programming (PS-SDP-IPM)

The Proximal-Stabilized Interior Point Method for Semidefinite Programming (PS-
SDP-IPM) proposed and analysed in this work is presented inAlgorithm 2. It uses two

123

Proximal-stabilized semidefinite programming

nested cycles to solve problem (1). The outer loop uses an inexact PPM[24]: the current
approximate solution (Xk, yk) is used to regularize the original SDP problem, which
is then solved using an IPM to find the next approximate solution (Xk+1, yk+1) ≈
(X∗, y∗). And indeed, at the inner loop level, the inexact infeasible IPM presented in
Sect. 3 is used to solve the PPM sub-problems, see Algorithm 1. To summarize, in the
following we use three acronyms: PPM refers to the outer cycle; IPM refers to the
inner cycle; PS-SDP-IPM refers to the overall procedure, combining PPM and IPM.

Input: tol > 0, σr ∈ (0, 1), τ1 > 0.
Initialization: Iteration counter k = 0; initial point (X0, y0)

1 while Stopping Criterion False do
2 Use the IPM Algorithm 1 with starting point (X0

k , y0k) = (Xk , yk) to find (Xk+1, yk+1) s.t.

‖rk (Xk+1, yk+1)‖ <
(σr)k

τ1
min{1, ‖(Xk+1, yk+1) − (Xk , yk)‖} (18)

3 Update the iteration counter: k := k + 1.
4 end

Algorithm 2: PS-SDP-IPM

Let us highlight that the stopping criteria for Algorithm 2 see Line 1, are not well
defined at this stage and irrelevant for the current discussion (see Sect. 9 and in partic-
ular Eq. (39), for the ones used in our numerical experiments). Instead, it is important
to note that the inner solver, i.e., Algorithm 1, terminates when a required accuracy of
the solution of a sub-problem is reached. The criterion involves the following natural
residual of problems (RP-k)–(RD-k):

Definition 4 (Natural Residual)

rk(X , y) :=
[

X
y

]

− �D(

[
X
y

]

−
[
(h + ρ)X − ρXk + C − A T y

A X − b + δ(y − yk)

]

),

where

D := S n+ × R
m

and where �D is the corresponding projection operator. Moreover, it is easy to verify
that (X∗

k , y∗
k , S∗

k) is a solution of problems (RP-k)–(RD-k) if and only if rk(X∗
k , y∗

k) =
0, see [14, Sec. 2A]

Remark 1 The use of the natural residual rk(X , y) in the stopping condition (18) of
Algorithm 2would be fully theoretically justified by the existence of a constant τ1 > 0
s.t.

‖(X , y) − P(Xk, yk)‖ ≤ τ1‖rk(X , y)‖, (19)

i.e., that ‖rk(X , y)‖ is a global error bound for the SDP problem (RP-k). This is true
in general for the QP case, see [8, Sec. 2.3] but might have theoretical limitation in

123

S. Cipolla, J. Gondzio

the SDP context here considered. And indeed, despite that other types of error bounds
are available in the literature for the SDP case, see, e.g., [34] and reference therein, to
the best of our knowledge, no clear results are given for the natural residual rk(X , y)
here considered. On the other hand, the computational results presented in Sect. 9 will
show that the use of such criterion is largely effective in practice as stopping criterion
for the inner IPM solver in Algorithm 2, and, for the computational purposes of this
work, we postulate that a version of (19) holds. Finally, it is important to note that
when the validity of (19) is assumed, the inexact version of the PPM considered in
Algorithm 2 is globally convergent, see [24].

As a final observation regarding Algorithm 2, it is important to note that every call to
the inner solver, Algorithm 1, is hot-started, that is, choosing (X0

k , y0k) = (Xk, yk), i.e.,
using the previous approximation generated by the PPMmethod as an initial approxi-
mation for the computation of (Xk+1, yk+1). This is a well understood computational
practice and it is theoretically justified by the fact that, in general, the Proximal Point
operator is Lipschitz. This argument was pointed out and extensively used in [8, Sec.
3.1] for the Quadratic Programming case and, for the sake of completeness, we present
here the adapted reasoning. Defining η as the Lipschitz constant of the proximal oper-
ator, see [23, Theorem 4], we have that

‖P(Xk, yk) − (Xk, yk)‖
≤ ‖P(Xk, yk) − P(Xk−1, yk−1)‖ + ‖P(Xk−1, yk−1) − (Xk, yk)‖
≤ η‖(Xk, yk) − (Xk−1, yk−1)‖ + ‖P(Xk−1, yk−1) − (Xk, yk)‖.

(20)

Since we are assuming that (19) holds, i.e., that the natural residual is a valid error
bound, the inexact PPM considered here is convergent (see Remark 1) and we have
that

‖(Xk, yk) − (Xk−1, yk−1)‖ → 0 and ‖P(Xk−1, yk−1) − (Xk, yk)‖ → 0,

and hence ‖P(Xk, yk) − (Xk, yk)‖ → 0. Such observation suggests that, eventually,
‖P(Xk, yk) − (Xk, yk)‖ will become sufficiently small so that the fast final conver-
gence of IPM holds immediately and the IPM converges fast. As a result, we expect
that each proximal subproblem will need a non-increasing number of IPM iterations
to be solved. And indeed, we observe this behaviour in practice (see all the numerical
results presented in Sect. 9): typically one IPM iteration per PPM swipe is sufficient
to deliver enough of the accuracy required to satisfy condition (18), and hence the
convergence of the overall scheme.

5 Preliminary results for convergence

As mentioned in Sect. 4, the particular inexact version of the PPM scheme considered
here has been proved to be convergent, see [24]. To prove the overall soundnesses of
our proposal, we need then to prove the convergence of Algorithm 1. In this section we

123

Proximal-stabilized semidefinite programming

start such analysis proving that the particular infeasible and inexact IPM considered
here (see Algorithm 1), used as inner solver in Algorithm 2, is well defined.

Before continuing, let us observe that the PPM iteration counter k is fixed through
this section and, for the sake of readability, will be used only in relation to the fixed
PPM iteration (Xk, yk, Sk) and not in the context of the IPM iterations (X j

k , y j
k , S j

k).
We start from analysing the progresses made in a single Newton iteration. Using

the first two blocks in (10) we obtain

(h + ρ)X j (α) − ρXk − A T y j (α) − S j (α) + C

= ((h + ρ)X j − ρXk − A T y j − S j + C) + α((ρ + h)�X j − A T �y j − �S j)

= (1 − α)((ρ + h)X j − ρXk − A T y j − S j + C), (21)

A X j (α) + δ(y j (α) − yk) − b

= (A X j + δ(y j − yk) − b) + α(A �X j + δ�y j)

= (1 − α)(A X j + δ(y j − yk) − b) + αζ j . (22)

We are now ready to demonstrate that Algorithm 1 is well defined.

Theorem 1 Suppose that (X j , y j , S j) ∈ Nk(γ̄ , γ , γp, γd) s.t. X j • S j > 0 is given.
If the stopping conditions at Line 4 of Algorithm 1 are not satisfied, then there exists
0 < α̂ j < α∗, j such that conditions (N & C) are satisfied for all α ∈ [0, α̂ j].
Proof In this proof we omit also the IPM iterate counter j , i.e., (X j , y j , S j) ≡
(X , y, S). Let us define the following functions:

f
n
(α) :=λn(HP ((X + α�X)(S + α�S))) − γ (X + α�X) • (S + α�S)/n

f̄1(α) :=γ̄ (X + α�X) • (S + α�S)/n − λ1(HP ((X + α�X)(S + α�S)))

h(α) :=(1 − (1 − σ̄)α)X • S − (X + α�X) • (S + α�S)

gd(α) :=(X + α�X) • (S + α�S)

− γd‖(h + ρ)(X + α�X) − ρXk − A T (y + α�y) − (S + α�S) + C‖
gp(α) :=(X + α�X) • (S + α�S)

− γp‖A (X + α�X) + δ(y + α�y − yk) − b‖.
Using (21) in the expressions of gd(α) we have

gd (α) = (X + α�X) • (S + α�S) − γd (1 − α)‖(ρ + h)X − ρXk − A T y − S + C‖,

whereas, using (22) in the expressions of gp(α), we have

gp(α) ≥ (X + α�X) • (S + α�S) − γp((1 − α)‖A X + δ(y − yk) − b‖ + α‖ζ‖).

We start from demonstrating that there exists α̂ j > 0 such that

f
n
(α) ≥ 0, f̄1(α) ≥ 0, h(α) ≥ 0, gp(α) ≥ 0, gd(α) ≥ 0 for all α ∈ [0, α̂ j].

123

S. Cipolla, J. Gondzio

In the following, we will use extensively the identities in (16) and (17) and the fact
that (X , y, S) ∈ Nk(γ̄ , γ , γp, γd). Moreover, due to the symmetry of the operator
HP (·) in (23) and (24) we will use the inequalities (obtained using standard arguments
for symmetric matrices):

λn(HP ((X + α�X)(S + α�S))) ≥ λn(HP (X S)) + αλn(HP (�X S + X�S))

+α2λn(HP (�X�S))

and

λ1(HP ((X + α�X)(S + α�S))) ≤ λ1(HP (X S)) + αλ1(HP (�X S + X�S))

+α2λ1(HP (�X�S)).

We have

f
n
(α) ≥ (1 − α)(λn(HP (X S)) − γ

X • S

n
)

︸ ︷︷ ︸
≥0

+α2(λn(HP (�X�S))

− γ
�X • �S

n
) + ασ(1 − γ)

X • S

n

≥α2(λn(HP (�X�S)) − γ
�X • �S

n
) + ασ(1 − γ)

X • S

n
.

(23)

Since X • S > 0, using a simple continuity argument, we can infer the existence of
a small enough α f

n
> 0 s.t. f

n
(α) ≥ 0 for all α ∈ [0, α f

n
]. Reasoning analogously,

we have:

f̄1(α)≥ (1 − α)(γ̄
X • S

n
− λ1(HP (X S)))

︸ ︷︷ ︸
≥0

+ α2(γ̄
�X • �S

n
− λ1(HP (�X�S))) + ασ(γ̄ − 1)

X • S

n

≥ α2(γ̄
�X • �S

n
− λ1(HP (�X�S))) + ασ(γ̄ − 1)

X • S

n
,

(24)

and hence there exists a small enough α f̄1 > 0 s.t. f̄1(α) ≥ 0 for all α ∈ [0, α f̄1].
Concerning h(α) we have:

h(α) = (σ̄ − σ)αX • S − α2�X • �S, (25)

and, since (σ̄ − σ)X • S > 0, there exists αĥ > 0 small enough s.t. h(α) ≥ 0 for all
α ∈ [0, αĥ].

123

Proximal-stabilized semidefinite programming

Concerning gd(α) we have:

gd(α) = (1 − α)
(
X • S − γd‖(h + ρ)X − ρXk − A T y − S + C‖)

︸ ︷︷ ︸
≥0

+ ασ X • S + α2�X • �S ≥ ασ X • S + α2�X • �S,

(26)

and hence there exists αĝd > 0 small enough s.t. gd(α) ≥ 0 for all α ∈ [0, αĝd].
Finally, concerning gp(α) we have:

gp(α) ≥ (1 − α)(X • S − γp‖A X + δ(y − yk) − b‖)
︸ ︷︷ ︸

≥0

+ ασ X • S + α2�X • �S − αγp‖ζ‖
≥α(σ − γpCinexact)X • S + α2�X • �S,

(27)

and hence there exists ĝp > 0 small enough s.t. gp(α) ≥ 0 for all α ∈ [0, αĝp].
Let us define

α̂ j = min{α f
n
, α f̄1 , αĥ, αĝd , αĝp , 1} > 0.

To prove the thesis, it remains to show that α∗, j > α̂ j , i.e., that

(X(α), y(α), S(α)) ∈ S n++ × R
m × S n++ for all α ∈ [0, α̂ j].

To this aim, let us suppose, reasoning by contradiction, thatα∗, j ≤ α̂ j . By definition
of α∗, j , we have λn((X + α∗, j�X)(S + α∗, j�S)) = 0. Using Lemma 4, we have
λn(HP ((X + α∗, j�X)(S + α∗, j�S))) = 0 and hence

f
n
(α∗, j) = −γ X(α∗, j) • S(α∗, j)/n ≥ 0 ⇒ X(α∗, j) • S(α∗, j) = 0.

This last implied result used together with the definition of gd(α∗, j) and gp(α
∗, j)

yields

A X(α∗, j) + δ(y(α∗, j) − yk) − b = 0

(h + ρ)X(α∗, j) + (C − ρXk) − A T y(α∗, j) − S(α∗, j) = 0,

which means that (X(α∗, j), y(α∗, j), S(α∗, j)) is a solution of problems (RP-k) -
(RD-k). Therefore, we have obtained a contradiction because we have assumed that
Algorithm 1 did not stop at Line 4. ��
Corollary 2 The right-hand sides of the Newton systems are uniformly bounded.

123

S. Cipolla, J. Gondzio

Proof As a consequence of Theorem 1, there exists of a sequence of iterates
{(X j , y j , S j)} j∈N produced by Algorithm 1 s.t.

(X j , y j , S j) ∈ Nk(γ̄ , γ , γp, γd).

Since, by construction X j • S j ≤ X0 • S0, we have

‖A X j + δ(y j − yk) − b‖ ≤ X0 • S0/γp,

‖(ρ + h)X j − ρXk − A T y j − S j + C‖ ≤ X0 • S0/γd .

Moreover, we have,

‖HP (X j S j) − σμ j I‖ ≤ ‖HP (X j S j)‖ + σμ j‖I‖
=

√
tr(HP (X j S j)2) + σμ j√n ≤ √

nλ1(HP (X j S j)) + σμ j√n

≤ γ̄√
n

X j • S j + σ√
n

X j • S j ≤ γ̄ + σ√
n

X0 • S0.

��

6 Vectorization and the Nesterov–Todd (NT) direction

Through this section we will assume that X , S ∈ S n++. To compute the Newton step
(�X ,�y,�S), it is easier to express the linear systems of Eq. (10) in the standard
matrix–vector form by using the symmetrized Kronecker products, see [35, Appendix].

Definition 5 We start defining an operator transforming symmetric matrices into vec-
tors: if U ∈ S n , svec(U) is defined by

svec : S n → R
n(n+1)/2

svec(U) := (u11,
√
2u21, . . . ,

√
2un1, u22,

√
2u32, . . . ,

√
2un2, . . . , unn)T .

It is important to note that svec is an isometry, i.e., svec(U)T svec(V) = U • V ,
see [35, Appendix: Property 10]. We denote by smat the inverse map of svec.

We also define the symmetrized Kronecker product of the matrices G, K as the
square matrix of order n(n + 1)/2, the action of which on a vector svec(U) for
U ∈ S n is given by

(G ⊗S K) svec(U) = 1

2
svec(KU GT + GU K T)

123

Proximal-stabilized semidefinite programming

Finally, defining AT := [svec(A1), . . . , svec(Am)], we can write the system of
Eq. (10) as

⎡

⎣
(h + ρ)I −AT −I

A δ I 0
E 0 F

⎤

⎦

⎡

⎣
�x
�y
�s

⎤

⎦ =
⎡

⎣
ξd

ξp + ζ

ξμ,σ

⎤

⎦ , (28)

where �x := svec(�X), �s := svec(�S), ξd := svec(�d), ξμ,σ = svec(�μ,σ) and

E := P ⊗S P−T S and F := P X ⊗S P−T .

Thepresence of the error ζ in (28) is justified by the following computational procedure
used to solve such linear system (generally know as reduction to the normal equation):

(
A(�−1 + (h + ρ)I)−1AT + δ I

)
�y

= ζ + ξ p − A(�−1 + (h + ρ)I)−1(F−1ξμ,σ + ξd) (29)

(�−1 + (h + ρ)I)�x = AT �y + ξd + F−1ξμ,σ (30)

F�s = (ξμ,σ − E�x). (31)

where � := E−1F . It is important to note that the form of the right hand side in (28)
originates fromour assumption that an inexactness ζ is present only in the computation
of (29). Hence, we assume in the following, that (30) and (31) are satisfied exactly.
Before continuing, let us give basic definitions used in the remainder of this work:

Definition 6 Normal Matrix:

Sρ,δ := A(�−1 + (h + ρ)I)−1AT + δ I . (32)

Moreover we define

ξ̄ p := ξ p − A(�−1 + (h + ρ)I)−1(F−1ξμ,σ + ξd).

Using (29) and (32), we have

‖A�x + δ�y − ξ p‖ = ‖Sρ,δ�y − ξ̄ p‖ = ‖ζ‖,

which then clarifies the particular form of (28).
In our convergence analysis we will focus on the Nesterov-Todd direction [27, 28].

For the sake of readability and completeness, in the remainder of this section, we
will introduce and review some of the useful basic definitions and properties. All the
material presented here is borrowed from [35].

Let us consider the metric-geometric mean of the matrices X and S−1, defined as:

W := X
1
2 (X

1
2 SX

1
2)−

1
2 X

1
2 = S− 1

2 (S
1
2 X S

1
2)

1
2 S− 1

2 ∈ S n+

123

S. Cipolla, J. Gondzio

Lemma 5 W satisfies the following identities:

– W −1X W −1 = S and W SW = X;
– W −1/2X W −1/2 = W 1/2SW 1/2 ∈ S n+ ⇒ W −1/2X SW 1/2 = W 1/2SX W −1/2.

Definition 7 The Nesterov-Todd (NT) direction is obtained when P = W −1/2.

Lemma 6 summarizes some of the properties of the NT direction/scaling needed in
the analysis later.

Lemma 6 The following statements are true:

1. W and P = W −1/2 ∈ S n++;
2. E, F are invertible;
3. E−1F = W ⊗S W ∈ S n++;
4. (F−1E)1/2 = W −1/2 ⊗S W −1/2.

Proof The proof of Item 1. follows observing that X , S ∈ S n+. Item 2. follows observ-
ing that (see [35, Sec. 3.3])

E = (I ⊗S W 1/2SW 1/2)(W −1/2 ⊗S W −1/2)

F = (W −1/2X W −1/2 ⊗S I)(W 1/2 ⊗S W 1/2)

and that, in both cases, the factors are invertible (see properties of symmetrized Kro-
necker products [35, Appendix: Property 11]). To prove Item 3. let us observe that

E(W ⊗S W) = (W −1/2 ⊗S W 1/2S)(W ⊗S W) = W 1/2 ⊗S W 1/2SW

= W 1/2SW ⊗S W 1/2 = W −1/2X W −1/2W 1/2 ⊗S W 1/2 = F,

where in the third equality we used [35, Appendix: Property 2] whereas in the fourth
equality we used Lemma 5. The proof of Item 4. follows from Item 3. observing that
F−1E = W −1 ⊗S W −1 (see [35, Appendix: Property 5]) and from [35, Appendix:
Property 7]. ��

Finally, we state the following Lemma 7 which will be crucial in the proof of
polynomial complexity:

Lemma 7 The following equalities hold:

1. HW−1/2(X S) = W −1/2X SW 1/2 and HW−1/2(X S)1/2 = W −1/2X W −1/2

= W 1/2SW 1/2

2. svec(σμI − HW−1/2(X S)) = ((W −1/2X W −1/2) ⊗S I) svec(σμW 1/2X−1W 1/2

− W 1/2SW 1/2)

3. W −1/2 ⊗S W −1/2 = F−1(W −1/2X W −1/2) ⊗S I , i.e. F(F−1E)1/2 = (W −1/2

X W −1/2) ⊗S I

Proof 1. Follows from observing that

HW−1/2(X S) = 1

2
(W −1/2X SW 1/2 + W 1/2SX W −1/2) = W −1/2X SW 1/2

123

Proximal-stabilized semidefinite programming

= (W −1/2X W −1/2)2 = (W 1/2SW 1/2)2,

where in the second, third and fourth equalities we used Lemma 5.
2. Follows from observing that

svec(σμI − W −1/2X W −1/2W 1/2SW 1/2)

= svec(
1

2
W −1/2X W −1/2(σμW 1/2X−1W 1/2 − W 1/2SW 1/2)

+ 1

2
(σμW 1/2X−1W 1/2 − W 1/2SW 1/2)W −1/2X W −1/2)

= ((W −1/2X W −1/2) ⊗S I) svec(σμW 1/2X−1W 1/2 − W 1/2SW 1/2),

where in the second equality we used the commutativity of the matrices

W 1/2SW 1/2 = W −1/2X W −1/2.

3. Follows from observing that

FW −1/2 ⊗S W −1/2 = (W −1/2X W −1/2 ⊗S I)(W 1/2 ⊗S W 1/2)(W −1/2 ⊗S W −1/2)

= (W −1/2X W −1/2 ⊗S I),

where, in the second equality we used [35, Appendix: Property 7]. ��

7 Convergence and polynomial complexity

In this section we show that Algorithm 1 converges to an ε-accurate solution in a
polynomial number of iterations. As knowledgeably pointed out by an anonymous
referee, the complexity analysis of feasible IPM schemes for linear and quadratic SDP
could be obtained, in principle, adapting arguments from [16]. On the other hand,
we consider here an infeasible-inexact version of the interior point framework. The
implant of the proof presented here generalizes the one in [9] for the SDP case and
relies heavily on the fact that when primal–dual regularization is introduced, it is
possible to exploit the particular form of the inverses of the Newton matrices and
some properties of the Nesterov-Todd scaling, to give explicit bounds on the norm of
the generated Newton directions in terms of the complementarity product μ. In the
following we will omit the index j when this does not lead to ambiguities.

As it is customary in IPM literature, in this section we make the following assump-
tion:

Assumption 3 The norm of A, i.e., ‖A‖, is independent of n.

123

S. Cipolla, J. Gondzio

It is important to note that the linear system in (28) can be written in an alternative
form as follows:

⎡

⎣
(h + ρ)I AT −I

A −δ I 0
E 0 F

⎤

⎦

︸ ︷︷ ︸
=:J

⎡

⎣
�x

−�y
�s

⎤

⎦ =
⎡

⎣
ξd

ξp + ζ

ξμ,σ

⎤

⎦ .

Let us define � = E−1F . By direct computation (see also [3, Remark 1]), we have
that

J−1 =
⎡

⎣
H−1 1

δ
H−1AT H−1F−1

1
δ

AH−1 1
δ2

AH−1AT − 1
δ

I 1
δ

AH−1F−1

−�−1H−1 − 1
δ
�−1H−1AT (I − �−1H−1)F−1

⎤

⎦ , (33)

where H := (h + ρ)I + �−1 + 1
δ

AT A.

Remark 2 H ∈ S n+ since � ∈ S n+ (see Lemma 6).

To prove polynomial complexity, we start by bounding the terms that appear in the
expression (33). The next two technical results are useful in this sense.

Lemma 8 We have that

‖H−1‖ ∈ O(‖A‖‖AT ‖).

Proof Using the Sherman–Morrison–Woodbury formula, we get

H−1 = ((ρ + h)I + �−1)−1 − 1

δ
((h + ρ)I + �−1)−1AT

(I + 1

δ
A((ρ + h)I + �−1)−1AT)−1A((ρ + h)I + �−1)−1.

(34)

Since � ∈ S +
n (see Lemma 6), we can write � = V �V T with � ∈ S n+ diagonal

and V T V = V V T = I . Then we have

�−1 + (h + ρ)I = V (�−1 + (h + ρ)I)V T ⇒ (�−1 + (h + ρ)I)−1

= V (�−1 + (h + ρ)I)−1V T

and

(�−1 + (h + ρ)I)−1
i i = λi (�)

(h + ρ)λi (�) + 1
= (h + ρ)λi (�)

(h + ρ)λi (�) + 1

1

(h + ρ)
<

1

h + ρ

(35)

123

Proximal-stabilized semidefinite programming

and hence

‖H−1‖ ≤‖((h + ρ)I + �−1)−1‖(1 + 1

δ
‖AT ‖‖A‖‖(I + 1

δ
A((h + ρ)I

+ �−1)−1AT)−1‖‖((h + ρ)I + �−1)−1‖)

≤ 1

(h + ρ)
(1 + 1

δ(h + ρ)
‖AT ‖‖A‖),

where we used that ‖(I + 1
δ

A((h + ρ)I + �−1)−1AT)−1‖ ≤ 1. ��
Corollary 3 We have that

‖�−1H−1‖ ∈ O(‖A‖‖AT ‖)

Proof Using (35), we observe that

λi (�
−1((h + ρ)I + �−1)−1) = �−1

i i (�−1 + (h + ρ)I)−1
i i = 1

(h + ρ)λi (�) + 1
≤ 1

and hence, using (34), we have

‖�−1H−1‖ ≤ ‖�−1((h + ρ)I + �−1)−1‖·
(
1 + 1

δ
‖AT ‖‖A‖‖

(

1 + 1

δ
A(ρ I + �−1)−1AT

)−1

‖‖(ρ I + �−1)−1‖)

≤ 1 + 1

δ(h + ρ)
‖AT ‖‖A‖,

where we used, again, (35). ��
Before continuing, let us observe that in the following we define

C3 := max{C1, C2} where ‖H−1‖ ≤ C1 and ‖�−1H−1‖ ≤ C2.

Theorem 2 Let us assume that an iterate j of IPM Algorithm 1 belongs to the wide
infeasible neighbourhood (see Definition 3). There exists a polynomial p1(n) of degree
at most one s.t.

‖�x j‖, ‖ �y j‖, ‖�s j‖ ≤ p1(n)

√

μ j for all j ∈ N.

Proof Using (33), we have

�x j = (H j)−1ξ
j

d + 1

δ
(H j)−1AT (ξ

j
p + ζ j) + (H j)−1(F j)−1ξ

j
σ,μ j

− �y j = 1

δ
A(H j)−1ξ

j
d + (

1

δ2
A(H j)−1AT − 1

δ
I)(ξ j

p + ζ j)

+ 1

δ
A(H j)−1(F j)−1ξ

j
σ,μ j ,

123

S. Cipolla, J. Gondzio

and hence,

‖�x j‖ ≤ ‖(H j)−1‖‖ξ j
d ‖ + 1

δ
‖(H j)−1‖‖AT ‖‖(ξ j

p + ζ j)‖
+ ‖(H j)−1/2‖‖(H j)−1/2(F j)−1 svec(σμ j I − HW−1/2(X j S j))‖

≤ ‖(H j)−1‖‖ξ j
d ‖ + 1

δ
‖(H j)−1‖‖AT ‖‖(ξ j

p + ζ j)‖
+ ‖(H j)−1/2‖‖(H j)−1/2(F j)−1(W −1/2X W −1/2 ⊗S I)‖
‖ svec(σμ j W 1/2X−1W 1/2 − W 1/2SW 1/2)‖

≤ C3nμ j

γd
+ C3‖AT ‖(n(1 + γpCinexact))μ

j

δγp
+ C3(

√
γ̄ n + σ

√
n√
γ

)

√

μ j

≤ p�x(n)

√

μ j ,

(36)

where in the second inequality we used Lemma 7, whereas in the third inequality we
used the fact that svec is an isometry and

‖ svec(σμ j W 1/2X−1W 1/2 − W 1/2SW 1/2)‖
≤ ‖ svec(σμ j W 1/2X−1W 1/2)‖ + ‖ svec(W 1/2SW 1/2)‖
≤ σμ j‖W 1/2X−1W 1/2‖ + ‖W 1/2SW 1/2‖
≤ σμ j

√
tr((W 1/2X−1W 1/2)2) +

√
tr((W 1/2SW 1/2)2)

≤ σμ j
√
tr(HW−1/2(X S)−1) +

√
tr((W 1/2SW 1/2)2)

≤ σμ j
√

n

λn(HW−1/2(X S))
+ √

nλ1(HW−1/2(X S))

≤ σμ j

√
n2

γ X • S
+ √

γ̄ X • S

= σ

√
μ j

√
γ

√
n + √

γ̄ n
√

μ j .

Finally, the fourth inequality in 36, follows observing that μ j ≤ √
μ j

√
μ j ≤√

μ0
√

μ j and defining p�x as a suitable polynomial of degree one.
Analogously,

‖�y j‖ ≤ 1

δ
‖A‖‖(H j)−1‖‖ξ j

d ‖ + (
1

δ2
‖(H j)−1‖‖A‖‖AT ‖ + 1

δ
)‖(ξ j

p + ζ j)‖

+1

δ
‖A‖‖(H j)−1/2‖‖(H j)−1/2(F j)−1 svec(σμ j I − HP (X j S j))‖

≤ ‖A‖C3nμ j

δγd
+ (C3‖AT ‖‖A‖ + δ)(n(1 + γpCinexact))μ

j

δ2γp

123

Proximal-stabilized semidefinite programming

+C3‖A‖
δ

(
√

γ̄ n + σ

√
n√
γ

)

√

μ j

≤ p�y(n)

√

μ j , (37)

where we used similar reasoning as in the previous case and where p�y is a suitable
polynomial of degree one. Finally, using the fact that �s = (h + ρ)�x− AT �y− ξd

and using (36), (37) and the definition ofNk(γ̄ , γ , γp, γd), we have

‖�s‖ = (h + ρ)‖�x‖ + ‖AT ‖‖�y‖ + ‖ξd‖

≤ (h + ρ)p�x(n)

√

μ j + ‖AT ‖p�y(n)

√

μ j + nμ j

γd

≤ p�s(n)

√

μ j ,

where, also in this case, p�s is a suitable polynomial of degree one. ��
Corollary 4 There exists a polynomial p2(n) of degree at most two s.t.

|λn(HW−1/2(�X�S)) − γ
�X • �S

n
| ≤ p2(n)μ

|γ̄ �X • �S

n
− λ1(HW−1/2(�X�S))| ≤ p2(n)μ

|�X • �S| ≤ p2(n)μ.

(38)

Proof We have

|λn(HW−1/2(�X�S)) − γ
�X • �S

n
| ≤ |λn(HW−1/2(�X�S))| + |γ �X • �S

n
|

≤ ‖HW−1/2(�X�S)‖ + γ

n
‖�X‖‖�S‖ ≤ ‖�X�S‖ + γ

n
‖�X‖‖�S‖

≤ ‖�X‖‖�S‖ + γ

n
‖�X‖‖�S‖ ≤ p2(n)μ

where in the third inequality we used Lemma 2. The remaining part of the statement
follows from similar arguments. ��

We can now apply the previous results and obtain a lower bound on the step-size
that depends polynomially on the size of the problem n. This is the last fundamental
step before the polynomial complexity result will be stated.

Theorem 3 There exists α∗ s.t. the stepsize α j in Algorithm 1 satisfies

α j ≥ α∗ ≥ 1/q(n),

where q(n) is a polynomial of degree at most two.

123

S. Cipolla, J. Gondzio

Proof Using (38) in Eqs. (23), (24), (25), (26), (27) we have:

f
n
(α) ≥α2(λn(HW−1/2(�X�S)) − γ

�X • �S

n
) + ασ(1 − γ)

X • S

n
≥ − p2(n)μα2 + ασ(1 − γ)μ;

f̄1(α) ≥α2(γ̄
�X • �S

n
− λ1(HW−1/2(�X�S))) + ασ(γ̄ − 1)

X • S

n
≥ − p2(n)μα2 + ασ(γ̄ − 1)μ;

h(α) =(σ̄ − σ)αX • S − α2�X • �S,

≥nμ(σ̄ − σ)α − p2(n)μα2

gd(α) ≥ασ X • S + α2�X • �S ≥ nμσα − p2(n)μα2

gp(α) ≥α(σ − γpCinexact)X • S + α2�X • �S ≥ nμ(σ − γpCinexact)α − p2(n)μα2.

Hence, defining

α∗ ≥ min{σ(1 − γ)

p2(n)
,

σ (γ̄ − 1)

p2(n)
,

(σ̄ − σ)n

p2(n)
,

σn

p2(n)
,

(σ − γpCinexact)n

p2(n)
},

thesis follows from the definition of α j . ��
Theorem 4 Algorithm 1 has polynomial complexity, i.e., given ε > 0 there exists
K ∈ O(n2 ln(1

ε
)) s.t. μ j ≤ ε for all j ≥ K .

Proof Thesis follows from observing that

X j • S j ≤ (1 − (1 − σ̄)α∗) j X0 • S0 ≤ (1 − (1 − σ̄)
1

q(n)
) j X0 • S0.

��

8 On the computation of the NT direction

As proved in [35, Th. 3.5], the NT direction can be computed using as P any matrix
such that PT P = W −1 and indeed, the choice made in the previous sections, i.e.,
P = W −1/2 is only one of the many possible. From the computational point of view
other choices might show some advantages and, in this section, we will briefly review
the results obtained in [35, Sec. 3.5] for the practical computation of W and briefly
outline the procedures we used to assemble the related normal Eq. (29). To this aim,
consider the following Cholesky and SVD decompositions:

X = L LT , S = R RT and RT L = U DV T .

Defining Q := L−1X1/2, we have that Q is unitary since X1/2L−T L−1X1/2 = I .

123

Proximal-stabilized semidefinite programming

We have then

X1/2SX1/2 = QT LT R RT L Q = QT V D2V T Q.

Since QT V is orthogonal, we have

(X1/2SX1/2)−1/2 = (QT V)D−1(V T Q),

and hence

W : = X
1
2 (X

1
2 SX

1
2)−

1
2 X

1
2 = L Q(QT V)D−1(V T Q)QT LT = GGT ,

where G := LV D−1/2. We observe that G−T G−1 = W −1, and hence P := G−1

satisfies PT P = W −1. It is important to note also that

GT SG = G−1XG−T = D,

i.e., G scales X and S to the same diagonal matrix and we have

HG−1(X S) = 1

2
(G−1X SG + GT SXG−T) = D2.

Finally, let us observe that

E−1F = W ⊗S W = GGT ⊗S GGT = (G ⊗S G)(GT ⊗S GT)

= (G ⊗S G)(G ⊗S G)T

and, analogously,

F−1E = W −1 ⊗S W −1 = G−T G−1 ⊗S G−T G−1 = (G−T ⊗S G−T)(G−1 ⊗S G−1).

We are ready now to highlight the computational procedure used to compute the
Schur complement arising in (29), i.e.,

A(�−1 + (h + ρ)I)−1AT + δ I .

Let us define W =: QW �W QT
W . Using [35, Appendix: Property 7]), we have then

�−1 = W −1 ⊗S W −1 = (QW �−1
W QT

W) ⊗S (QW �−1
W QT

W)

= (QW ⊗S QW)(�−1
W ⊗S �−1

W)(QT
W ⊗S QT

W),

where (QW ⊗S QW)(QT
W ⊗S QT

W) = I ⊗S I = I . We have, hence,

A(�−1 + (h + ρ)I)−1AT = A(QW ⊗S QW)((�−1
W ⊗S �−1

W)

+(h + ρ)I)−1(QT
W ⊗S QT

W)AT .

123

S. Cipolla, J. Gondzio

Finally, it is worth noticing that the computation of the Newton directions
�x,�y,�s, see (28), requires also the computation of

F−1ξμ,σ = F−1E(E−1ξμ,σ) = W −1 ⊗S W −1 svec(σμS−1 − X)

= (G−T ⊗S G−T)(G−1 ⊗S G−1) svec(σμS−1 − X)

= (G−T ⊗S G−T) svec(σμG−1S−1G−T − G−1XG−T)

= (G−T ⊗S G−T) svec(σμD−1 − D),

where, in the second equality, we used [35, eq. (37)].

9 Numerical results

All the computational tests discussed in this section are performed using a Dell Pow-
erEdge R740 running Scientific Linux 7 with 4× Intel Gold 6234 3.3G, 8C/16T,
10.4GT/s, 24.75M Cache, Turbo, HT (130W) DDR4-2933, with 500GB of memory.
The PS-SDP-IPM implementation closely follows the one from [8] and is written in
Matlab® R2022a. All the code is available at https://github.com/Stefano
Cipolla/PS-SDP-IPM.

The proposed method is compared with SDPT3 [36, 37], which represents, to the
best of our knowledge, one of the most efficient and robust IPM-based solvers for
the solution of SDPs. And indeed, in our implementation we use many of the SDPT3
features such as the choice of the initial guess X0 and S0, the same stopping criteria
and an analogous predictor-corrector technique, see [37, Sec. 2]. See, respectively,
Sects. 9.1, 9.2 and 9.3 for more details.

At the same time, our implementation differs form SDPT3 inmany aspects. Among
the most noticeable ones: 1] we do not exploit any block-structures present in the SDP
problems; 2] we do not use highly optimized mex routines to assemble the normal
Eq. (29); 3] in order to simplify the implementation, in a similar way as [19], we use
the standard Kronecker product “⊗” rather than the symmetrised version “⊗S”; 4]
we do not perform any form of preprocessing. In particular, our implementation does
not exploit any form of block-diagonal structure in the data and does not perform any
kind of analysis to detect the presence of (nearly) dependent constraints.

Before we present the details of our implementation and related numerical experi-
ments, we should emphasize that our purpose here is to demonstrate that the proposed
framework for solving (1) (based on the PPM, see Algorithm 2) is sound and it is more
robust than SDPT3 when applied to solve numerically challenging problems, and that
this extra stability comes without adversely affecting the overall number of interior
point iterations. Indeed, our implementation aims mainly at showcasing the developed
theory and demonstrating that the proposed framework may be adopted as prototype
based on which other, more sophisticated and tailor-made algorithms can be designed
for solving SDPs originating from challenging real-world applications.

123

Proximal-stabilized semidefinite programming

9.1 Initial point

For the choice of the infeasible initial point, we use a similar strategy to the one
implemented in SDPT3, see [36]. In particular, we set:

X0 = ψ I , y0 = 0, and S0 = ηI ,

where

ψ = max{10,√n, n max
k=1,...,m

{ 1 + |bk |
‖A(k, :)‖}}

and

η = max{10,√n,max{‖C‖, ‖A(k :,)‖, k = 1, . . . , m}}.

9.2 Stopping criteria

Algorithm 2 is stopped when

max{relgap,pinfeas,dinfeas} ≤ toll, (39)

where toll is a fixed number and

• the normalized violation of the linear constraints are:

pinfeas := ‖A X − b‖
1 + ‖b‖ , dinfeas := ‖h X + C − A T y − S‖

1 + ‖C‖ ;

• the normalized duality gap is:

relgap := X • S

1 + | h
2 X • X + X • C | + |bT y − h

2 X • X | .

It is important to note that when h = 0, the above stopping criterion is the same
as used in SDPT3, see [36].

9.3 Predictor corrector

In our implementation, as in SDPT3 [36], we use a Predictor-Corrector strategy. In
particular, when the second order correction proposed in [35, Sec. 4.3] is used, the last
equation in the linear system (28) becomes

E�x + F�s = svec(σμI − HG−1(X S) − HG−1(δXδS))

123

S. Cipolla, J. Gondzio

where δXδS is an approximation of the search direction�X�S. The normal equations
in (29), (30) and (31) then become

(
A(�−1 + (h + ρ)I)−1AT + δ I

)
�y

= ξ p + ζ − A(�−1 + (h + ρ)I)−1(F−1(ξμ,σ − svec(HG−1(δXδS))
) + ξd)

(�−1 + (h + ρ)I)�x = AT �y + ξd + F−1(ξμ,σ − svec(HG−1(δXδS))
)

F�s = (
ξμ,σ − svec(HG−1(δXδS))

) − E�x.

For the sake of giving the full details of the implementation, it is important to note
that in the previous formulae the following equalities hold

F−1 svec(HG−1(δXδS)) = F−1E(E−1 svec(HG−1(δXδS)))

= (G−T ⊗S G−T)(G−1 ⊗S G−1)(G ⊗S G) svec(RN T)

= (G−T ⊗S G−T) svec(RN T),

where, in the third equality we used [35, eq. 45] and where

RN T := HG−1(δXδS)./(deT + edT),

where d := diag(D) and “./" denotes the element-wise division.

9.4 Dataset

To evaluate the performance of our Proximal-Stabilised Interior-Point Method, for
the case h = 0, we consider representative problems from the following classes of
standard test sets:

(D1) SDPLIB Collection, see [6];
(D2) DIMACS Challenge test problems [29];
(D3) de Klerk & Sotirov Library [12];
(D4) Atomic Structure Problems [42].

Moreover, in order to showcase the advantages of the introduced primal–dual reg-
ularization, we also consider ill-conditioned problems. In particular, we generate
ill-conditioned feasible SDP problems adapting a routine from F. Jarre. The Mat-
lab code displayed in Function 1, extracted from our routine for randomly generating
test problems, is presented to clarify the details of the procedure.

In Lines 12–28 we generate two matrices X , S s.t. X S = 0 and s.t. λ1(X)
λn(X)

= xcond

and λ1(S)
λn(S)

= scond see, in particular, Lines 16 and 23. Subsequently, the common
eigenvector basis of the matrices X and S is obtained using a random unitary matrix,
see Line 26. Lines 31–43 are coded to generate the ill-conditioned matrix A. And
indeed, our main modification of Jarre’s routine is reported in Line 34 of Function 1:
aiming at generating non-trivially ill-conditioned matrices A, we force the singular
values of A to be logarithmically uniformly distributed in the interval [10−2, 102]

123

Proximal-stabilized semidefinite programming

(Moderately ill-conditioned) or [10−4, 103] (Highly ill-conditioned). Indeed, it is
expected that the robustness of IPM-type scheme is related to the conditioning of the
normal equations matrix AAT . Understandably, the accuracy of Newton directions
deteriorates when AAT is ill-conditioned, see Eq. (2) and related comments. Finally,
Lines 41–49 are used to ensure that, once X , S, A are generated as above, the remainder
data for the SDP problem form a primal–dual feasible instance, i.e., b, y and C are s.t.
Ax = b and that AT y − S + C = 0. The full version of Function 1 can be obtained
at the link indicated at the beginning of Sect. 9.

Function 1 Randomly Generated SDP Problems

1 function [A,b,C,X,S,y] = sdp_generator(n,dx,ds ,x_cond,s_cond,fname)
2 % Generate a random SDP−problem with the following input :
3 % n −− dimension of X, S
4 % dx−− number of positive eigenvalues of X with condition x_cond,
5 % ds −− number of positive eigenvalues of S with condition s_cond,
6 % fname −− name of output f i le for SDPA−format , in quotes
7 % Returned data : A, b, C
8 % X : optimal X
9 % S : complementary to X.

10 % y : some vector so that Â T*y+C−S=0
11 ...
12 d = n−dx−ds ; % lack of s t r i c t complementarity when d > 0
13 xs = abs(rand(n,1)) ; % data for x and s
14 x = zeros(n,1) ;
15 tmp = xs(1:dx) ; % positive part of x
16 dtmp = max(tmp) /x_cond−min(tmp) ; % to be added to positive part of x
17 tmp = tmp + dtmp; % with condition about x_cond
18 x(1:dx) = tmp;
19 s = zeros(n,1) ; % likewise for s
20 tmp = xs(dx+1:dx+ds) ;
21 dtmp = max(tmp) /s_cond−min(tmp) ;
22 tmp = tmp + dtmp;
23 s(dx+1:dx+ds) = tmp;
24 X = diag(x) ;
25 S = diag(s) ;
26 a = randn(n) ; [U,R]=qr(a) ; % this gives some random unitary matrix U
27 X = U*X*U. ' ; X = 0.5*(X+X') ;
28 S = U*S*U. ' ; S = 0.5*(S+S') ;
29 p1 = dx*(dx+3)/2;
30 m = p1;
31 A = sprand(n*n,m,0.1 ,1e−5);
32 A = full (A) ;
33 [UU,~ ,VV] = svd(A,"econ") ;
34 exp1 = 3;
35 exp2 = −4;
36 yy = logspace(exp1,exp2,m) ; % Controls the conditioning of A
37 SS = spdiags(yy. ' ,0 ,m,m) ;
38 A = UU*SS*VV. ' ;
39 for i = 1:m% slightly overdetermined optimal part of x
40 tmp = (reshape(A(: , i) ,n,n) + reshape(A(: , i) ,n,n) . ') . /2.0 ;
41 A(: , i) = reshape(tmp,n*n,1) ;
42 end
43 A = A. ' ;
44 a = randn(m) ;
45 A = a*A;

123

S. Cipolla, J. Gondzio

46 b = A*X(:) ;
47 y = randn(m,1) ;
48 Asy = A. '*y;
49 Asy = reshape(Asy,n,n) ;
50 Asy = 0.5*(Asy+Asy') ;
51 C = Asy+S;
52 ...
53 end

Finally, in order to showcase the performance of our proposal for the case h �= 0
we consider:

(SD1) the Invalid Nearest Correlation Matrix (INCM) dataset [21]. Indeed, given a
symmetric matrix C , the Nearest Correlation Matrix (NCM) problem [20] has
form:

min
X∈S n

1

2
‖X − C‖2

s.t. diag(X) = e

X � 0,

which can be easily reformulated as an SDP problem of the form (1);
(SD2) randomly generated problems obtained by modifying Line 49 of Function 1 as

Function 2 Randomly Generated Quadratic SDP Problems

1 ...
2 h = 1;
3 C = Asy+S−h*X;
4 ...

As already mentioned, we do not perform any kind of preprocessing on the con-
straint matrix A for test problems presented above. Finally, it is important to note that,
since our algorithm is a primal–dual method storing the primal-dual iterates X and
S, we are unable to solve some of the largest problems in all the above mentioned
test classes due to their excessive memory requirements, see e.g., [4, 5] for IPM-type
approaches able to avoid the storage of both the primal-dual iterates.

9.5 Numerical results

In all the following numerical results we use toll = 10−5. Concerning the regu-
larization parameters we use ρ = δ = 10−7 for datasets (D1), (D2), (D3) and (D4)
whereas ρ = δ = 10−4 for the randomly generated test problems (see Sect. 9.4 for
more details about the datasets). It is important to note that, for particular problems,
different values of the regularization parameters might lead to better performance in
terms of IPM iterations, but we prefer to use the same parameters consistently across
different datasets to show the robustness of the method presented in this paper. Con-
cerning the parameters used in (18), we set σr = 0.7 and τ1 = 10−5, i.e.,

‖rk(Xk+1, yk+1)‖ < 105(0.7)k min{1, ‖(Xk+1, yk+1) − (Xk, yk)‖}.

123

Proximal-stabilized semidefinite programming

Ta
bl
e
1

PS
-S
D
P-
IP
M

vs
SD

PT
3.

D
at
as
et
s
(D

1)
,(
D
2)
,(
D
3)

PS
-S
D
P-
IP
M

SD
PT

3
Pr
ob
le
m

n
m

co
nd

(
A

A
T
)

PP
M

It
IP
M

It
O
bj
.V

al
IP
M

It
O
bj
.V

al

th
et
a1

50
10

4
1.
00

00
00

e+
02

11
11

−2
.2
99

98
9e
+
01

9
−2

.2
99

98
0e
+
01

th
et
a2

10
0

49
8

2.
00

00
00

e+
02

11
11

−3
.2
87

88
1e
+
01

10
−3

.2
87

90
8e
+
01

th
et
a3

15
0

11
06

3.
00

00
00

e+
02

11
11

−4
.2
16

63
6e
+
01

10
−4

.2
16

68
6e
+
01

th
et
a4

20
0

19
49

4.
00

00
00

e+
02

12
12

−5
.0
32

09
9e
+
01

10
−5

.0
32

07
7e
+
01

th
et
a5

25
0

30
28

5.
00

00
00

e+
02

12
12

−5
.7
23

21
0e
+
01

10
−5

.7
23

19
4e
+
01

th
et
a6

30
0

43
75

6.
00

00
00

e+
02

12
12

−6
.3
47

67
8e
+
01

10
−6

.3
47

64
7e
+
01

th
et
aG

11
80

1
24

01
5.
80

82
90

e+
05

18
18

−3
.9
99

99
1e
+
02

18
−3

.9
99

93
7e
+
02

th
et
aG

51
10

01
69

10
3.
25

99
08

e+
06

29
29

−3
.4
89

99
3e
+
02

27
−3

.4
89

95
4e
+
02

tr
us
s1

13
6

2.
09

99
99

e+
01

10
10

9.
00

00
06

e+
00

7
9.
00

00
25

e+
00

tr
us
s2

13
3

58
3.
05

90
87

e+
02

14
14

1.
23

38
08

e+
02

10
1.
23

38
07

e+
02

tr
us
s3

31
27

3.
59

99
98

e+
01

11
11

9.
11

00
07

e+
00

11
9.
11

00
01

e+
00

tr
us
s4

19
12

3.
59

99
98

e+
01

9
9

9.
01

00
41

e+
00

7
9.
01

00
53

e+
00

tr
us
s5

33
1

20
8

5.
60

83
27

e+
02

15
15

1.
32

63
58

e+
02

13
1.
32

63
58

e+
02

123

S. Cipolla, J. Gondzio

Ta
bl
e
1

co
nt
in
ue
d

PS
-S
D
P-
IP
M

SD
PT

3
Pr
ob
le
m

n
m

co
nd

(
A

A
T
)

PP
M

It
IP
M

It
O
bj
.V

al
IP
M

It
O
bj
.V

al

tr
us
s6

45
1

17
2

5.
04

47
09

e+
04

23
23

9.
01

00
35

e+
02

18
9.
01

01
07

e+
02

tr
us
s7

30
1

86
2.
53

91
70

e+
04

22
22

9.
00

00
36

e+
02

17
9.
00

00
53

e+
02

tr
us
s8

62
8

49
6

5.
60

83
27

e+
02

17
17

1.
33

11
46

e+
02

13
1.
33

11
50

e+
02

ha
m
m
in
g_

7_
5_

6
12

8
17

93
6.
40

00
00

e+
01

10
10

−4
.2
66

64
5e
+
01

7
−4

.2
66

66
3e
+
01

ha
m
m
in
g_

8_
3_

4
25

6
16

,1
29

1.
28

00
00

e+
02

10
10

−2
.5
59

98
2e
+
01

8
−2

.5
59

99
9e
+
01

ha
m
m
in
g_

9_
8

51
2

23
05

2.
56

00
00

e+
02

11
11

−2
.2
39

97
6e
+
02

8
−2

.2
39

99
9e
+
02

to
ru
sg
3-
8

51
2

51
2

1.
00

00
00

e+
00

11
11

−4
.8
34

07
6e
+
07

12
−4

.8
34

08
5e
+
07

to
ru
sp
m
3-
8-
50

51
2

51
2

1.
00

00
00

e+
00

10
10

−5
.2
78

01
5e
+
02

12
−5

.2
78

06
7e
+
02

L
au
re
nt
_A

(1
9,
6)

66
8

15
7

2.
41

23
83

e+
09

27
27

2.
54

48
04

e−
03

28
2.
44

46
82

e−
03

L
au
re
nt
_A

(2
6,
10

)
10

45
22

8
1.
87

72
36

e+
13

28
30

3.
65

76
11

e−
05

37
4.
26

27
35

e−
05

Q
A
P_

E
sc
16

e_
pa
rt
_r
ed

35
1

90
3.
48

56
06

e+
03

14
14

−2
.6
33

67
5e
+
01

22
−2

.6
33

67
8e
+
01

Sc
hr
ijv

er
_A

(1
9,
6)

63
2

15
6

1.
34

47
95

e+
09

20
23

1.
28

59
46

e+
03

24
1.
27

90
46

e+
03

cr
os
si
ng

_K
_7

n
13

5
56

9.
53

49
46

e+
02

15
15

−4
.3
59

29
7e
+
00

17
−4

.3
59

26
8e
+
00

cr
os
si
ng

_K
_8

n
62

0
23

9
2.
22

04
46

e+
03

26
26

−
5.
85

99
47

e+
00

25
−5

.8
59

95
8e
+
00

ki
ss
in
g_

3_
5_

5
22

0
29

7
4.
48

03
25

e+
04

23
23

1.
18

72
14

e+
01

18
1.
18

72
12

e+
01

ki
ss
in
g_

4_
7_

7
48

8
69

5
1.
57

53
57

e+
06

27
27

2.
35

80
16

e+
01

22
2.
35

79
86

e+
01

123

Proximal-stabilized semidefinite programming

Ta
bl
e
2

PS
-S
D
P-
IP
M

vs
SD

PT
3.

D
at
as
et
(D

4)

PS
-S
D
P-
IP
M

SD
PT

3
Pr
ob
le
m

n
m

co
nd

(
A

A
T
)

PP
M

It
IP
M

It
O
bj
.V

al
IP
M

It
O
bj
.V

al

B
H
+
_2

Si
gm

a+
_S

T
O
-6
G
N
5r
12

g1
T
2

14
06

94
8

5.
34

97
33

e+
02

20
20

2.
69

83
55

e+
01

20
2.
69

79
84

e+
01

B
H
2_

2A
1_

ST
O
-6
G
N
7r
14

g1
T
2

21
66

17
43

6.
70

53
49

e+
02

26
26

3.
04

50
58

e+
01

22
3.
04

30
63

e+
01

B
H
_1

Si
gm

a+
_S

T
O
-6
G
N
6r
12

g1
T
2

14
06

94
8

5.
47

70
18

e+
02

24
24

2.
72

13
11

e+
01

22
2.
72

06
55

e+
01

B
eH

_2
Si
gm

a+
_S

T
O
-6
G
N
5r
12

g1
T
2

14
06

94
8

5.
34

97
33

e+
02

21
21

1.
66

96
37

e+
01

20
1.
66

93
74

e+
01

C
H
+
_1

Si
gm

a+
_S

T
O
-6
G
N
6r
12

g1
T
2

14
06

94
8

5.
34

43
17

e+
02

23
23

4.
07

02
03

e+
01

21
4.
06

93
34

e+
01

C
H
-_
3S

ig
m
a-
_S

T
O
-6
G
N
8r
12

g1
T
2

14
06

94
8

5.
45

09
27

e+
02

24
24

4.
09

63
14

e+
01

19
4.
09

07
23

e+
01

C
H
2_

1A
1_

ST
O
-6
G
N
8r
14

g1
T
2

21
66

17
43

6.
53

49
70

e+
02

24
24

4.
48

65
75

e+
01

22
4.
48

54
27

e+
01

C
H
2_

3B
1_

ST
O
-6
G
N
8r
14

g1
T
2

21
66

17
43

6.
53

49
70

e+
02

25
25

4.
50

84
14

e+
01

21
4.
50

29
68

e+
01

C
H
_2

Pi
_S

T
O
-6
G
N
7r
12

g1
T
2

14
06

94
8

5.
46

43
75

e+
02

26
26

4.
10

75
70

e+
01

21
4.
10

22
74

e+
01

H
2O

+
_2

B
1_

ST
O
-6
G
N
9r
14

g1
T
2

21
66

17
43

6.
68

50
36

e+
02

25
25

8.
42

89
21

e+
01

22
8.
42

17
11

e+
01

H
2O

_1
A
1_

ST
O
-6
G
N
10

r1
4g

1T
2

21
66

17
43

6.
67

49
51

e+
02

23
23

8.
49

54
06

e+
01

21
8.
49

24
60

e+
01

H
F+

_2
Pi
_S

T
O
-6
G
N
9r
12

g1
T
2

14
06

94
8

5.
43

84
45

e+
02

23
23

1.
04

09
31

e+
02

18
1.
03

88
61

e+
02

H
F_

1S
ig
m
a+

_S
T
O
-6
G
N
10

r1
2g

1T
2_

5
14

06
94

8
5.
42

73
31

e+
02

21
21

1.
10

39
19

e+
02

18
1.
04

72
10

e+
02

L
iH

_1
Si
gm

a+
_S

T
O
-6
G
N
4r
12

g1
T
2

14
06

94
8

5.
45

57
22

e+
02

20
20

8.
96

87
91

e+
00

20
8.
96

73
24

e+
00

N
H
+
_2

Pi
_S

T
O
-6
G
N
7r
12

g1
T
2

14
06

94
8

5.
46

43
75

e+
02

25
25

5.
79

30
60

e+
01

21
5.
78

60
29

e+
01

N
H
-_
2P

i_
ST

O
-6
G
N
9r
12

g1
T
2

14
06

94
8

5.
43

84
45

e+
02

24
24

5.
81

82
09

e+
01

19
5.
80

54
95

e+
01

N
H
2_

2B
1_

ST
O
-6
G
N
9r
14

g1
T
2

21
66

17
43

6.
68

50
36

e+
02

25
25

6.
30

36
61

e+
01

22
6.
29

80
52

e+
01

N
H
_3

Si
gm

a-
_S

T
O
-6
G
N
8r
12

g1
T
2

14
06

94
8

5.
45

09
27

e+
02

24
24

5.
84

65
79

e+
01

18
5.
83

91
48

e+
01

O
H
+
_3

Si
gm

a-
_S

T
O
-6
G
N
8r
12

g1
T
2

14
06

94
8

5.
31

86
34

e+
02

24
24

7.
89

82
88

e+
01

18
7.
88

87
14

e+
01

O
H
-_
1S

ig
m
a+

_S
T
O
-6
G
N
10

r1
2g

1T
2_

5
14

06
94

8
5.
42

73
31

e+
02

22
22

8.
34

02
27

e+
01

19
7.
91

68
59

e+
01

O
H
_2

Pi
_S

T
O
-6
G
N
9r
12

g1
T
2

14
06

94
8

5.
30

63
76

e+
02

24
24

7.
96

31
76

e+
01

18
7.
94

67
75

e+
01

123

S. Cipolla, J. Gondzio

Ta
bl
e
3

PS
-S
D
P-
IP
M

vs
SD

PT
3.

M
od
er
at
el
y
ill
-c
on
di
tio

ne
d
ra
nd
om

ly
ge
ne
ra
te
d
pr
ob
le
m
s.

∗ :
m
ax
im

um
nu

m
be
r
of

IP
M

re
ac
he
d
w
ith

ou
tr
ea
ch
in
g
th
e
pr
es
cr
ib
ed

ac
cu
ra
cy

PS
-S
D
P-
IP
M

SD
PT

3
Pr
ob
le
m

n
m

co
nd

(
A

T
A
)

PP
M

It
IP
M

It
O
bj
.V

al
IP
M

It
O
bj
.V

al

R
an
SD

P5
0_

t1
50

35
0

3.
28

08
47

e+
10

12
12

6.
04

93
42

e+
00

14
6.
04

93
31

e+
00

R
an
SD

P5
0_

t1
0

50
35

0
5.
95

27
04

e+
09

10
10

1.
13

00
83

e+
02

12
1.
13

00
79

e+
02

R
an
SD

P5
0_

t2
50

35
0

3.
59

89
61

e+
09

11
11

2.
97

40
20

e+
01

12
2.
97

40
14

e+
01

R
an
SD

P5
0_

t3
50

35
0

9.
76

18
29

e+
11

10
10

6.
77

55
53

e+
01

11
6.
77

55
52

e+
01

R
an
SD

P5
0_

t4
50

35
0

7.
73

63
74

e+
10

11
11

−1
.1
88

37
3e
+
01

13
−1

.1
88

38
1e
+
01

R
an
SD

P5
0_

t5
50

35
0

1.
39

39
05

e+
09

10
10

6.
58

36
60

e+
01

12
6.
58

36
48

e+
01

R
an
SD

P5
0_

t6
50

35
0

1.
77

51
91

e+
09

10
10

−4
.6
81

98
7e
+
01

11
−4

.6
81

99
8e
+
01

R
an
SD

P5
0_

t7
50

35
0

3.
53

78
64

e+
09

12
12

−9
.4
02

45
6e
+
00

13
−9

.4
02

44
9e
+
00

R
an
SD

P5
0_

t8
50

35
0

6.
61

77
39

e+
11

12
12

8.
09

71
01

e+
00

13
8.
09

70
90

e+
00

R
an
SD

P5
0_

t9
50

35
0

8.
42

84
66

e+
09

11
11

4.
42

25
63

e+
01

12
4.
42

25
62

e+
01

R
an
SD

P1
00

_t
1

10
0

13
25

1.
61

54
91

e+
10

11
11

−2
.9
17

34
8e
+
02

12
−2

.9
17

35
4e
+
02

R
an
SD

P1
00

_t
10

10
0

13
25

2.
42

81
05

e+
13

13
13

2.
51

21
44

e+
01

13
2.
51

21
55

e+
01

R
an
SD

P1
00

_t
2

10
0

13
25

1.
89

79
62

e+
11

14
14

−1
.8
90

51
8e
+
01

13
−1

.8
90

50
9e
+
01

R
an
SD

P1
00

_t
3

10
0

13
25

1.
67

24
07

e+
11

12
12

−1
.7
37

97
5e
+
02

12
−1

.7
37

98
3e
+
02

R
an
SD

P1
00

_t
4

10
0

13
25

3.
70

58
97

e+
10

12
12

−1
.0
47

90
5e
+
02

12
−1

.0
47

90
4e
+
02

R
an
SD

P1
00

_t
5

10
0

13
25

2.
92

91
56

e+
12

12
12

5.
09

43
88

e+
01

13
5.
09

43
19

e+
01

R
an
SD

P1
00

_t
6

10
0

13
25

7.
79

99
53

e+
10

12
12

1.
00

12
56

e+
02

12
1.
00

12
59

e+
02

R
an
SD

P1
00

_t
7

10
0

13
25

4.
93

15
40

e+
10

12
12

−7
.0
71

98
1e
+
01

12
−7

.0
71

95
6e
+
01

R
an
SD

P1
00

_t
8

10
0

13
25

1.
10

51
26

e+
19

12
12

−2
.1
43

41
8e
+
02

12
−2

.1
43

41
7e
+
02

R
an
SD

P1
00

_t
9

10
0

13
25

1.
33

25
17

e+
11

12
12

−1
.4
19

99
6e
+
02

12
−1

.4
19

99
4e
+
02

123

Proximal-stabilized semidefinite programming

Ta
bl
e
3

co
nt
in
ue
d

PS
-S
D
P-
IP
M

SD
PT

3
Pr
ob
le
m

n
m

co
nd

(
A

T
A
)

PP
M

It
IP
M

It
O
bj
.V

al
IP
M

It
O
bj
.V

al

R
an
SD

P1
50

_t
1

15
0

29
25

2.
51

28
40

e+
13

12
12

1.
49

12
74

e+
02

13
1.
49

12
69

e+
02

R
an
SD

P1
50

_t
10

15
0

29
25

4.
54

11
85

e+
12

12
12

−4
.4
73

98
9e
+
02

12
−4

.4
73

98
0e
+
02

R
an
SD

P1
50

_t
2

15
0

29
25

4.
65

49
24

e+
11

13
13

−8
.9
21

86
8e
+
01

13
−8

.9
21

83
5e
+
01

R
an
SD

P1
50

_t
3

15
0

29
25

4.
40

40
52

e+
13

12
12

−3
.0
12

44
9e
+
02

12
−3

.0
12

44
7e
+
02

R
an
SD

P1
50

_t
4

15
0

29
25

4.
12

24
06

e+
11

12
12

1.
89

64
13

e+
02

13
1.
89

64
05

e+
02

R
an
SD

P1
50

_t
5

15
0

29
25

2.
18

54
39

e+
12

13
13

1.
08

00
80

e+
02

13
1.
08

00
77

e+
02

R
an
SD

P1
50

_t
6

15
0

29
25

6.
74

41
48

e+
12

14
14

3.
09

01
96

e+
01

13
3.
09

01
30

e+
01

R
an
SD

P1
50

_t
7

15
0

29
25

9.
81

18
52

e+
10

13
13

4.
31

31
45

e+
01

13
4.
31

31
59

e+
01

R
an
SD

P1
50

_t
8

15
0

29
25

2.
38

40
02

e+
13

14
14

−4
.9
68

97
8e
+
01

13
−4

.9
68

99
2e
+
01

R
an
SD

P1
50

_t
9

15
0

29
25

2.
12

33
93

e+
13

12
12

−1
.6
26

49
9e
+
02

12
−1

.6
26

49
8e
+
02

R
an
SD

P2
00

_t
1

20
0

51
50

3.
10

06
88

e+
15

13
13

3.
71

32
80

e+
02

13
3.
71

32
80

e+
02

R
an
SD

P2
00

_t
10

20
0

51
50

4.
81

25
19

e+
13

12
12

−9
.7
52

46
0e
+
02

12
−9

.7
52

45
7e
+
02

R
an
SD

P2
00

_t
2

20
0

51
50

2.
73

16
86

e+
12

15
15

−4
.4
25

39
3e
+
01

14
−4

.4
25

39
4e
+
01

R
an
SD

P2
00

_t
3

20
0

51
50

4.
26

25
95

e+
11

13
13

−2
.0
72

39
9e
+
02

13
−2

.0
72

39
9e
+
02

R
an
SD

P2
00

_t
4

20
0

51
50

2.
33

12
55

e+
12

12
12

−6
.1
89

91
4e
+
02

12
−6

.1
89

90
4e
+
02

R
an
SD

P2
00

_t
5

20
0

51
50

2.
07

78
03

e+
14

12
12

6.
10

78
89

e+
02

12
6.
10

78
95

e+
02

R
an
SD

P2
00

_t
6

20
0

51
50

6.
28

11
61

e+
12

13
13

−1
.6
60

90
0e
+
02

13
−1

.6
60

90
2e
+
02

R
an
SD

P2
00

_t
7

20
0

51
50

1.
92

15
63

e+
12

12
12

3.
68

91
54

e+
02

12
3.
68

91
52

e+
02

R
an
SD

P2
00

_t
8

20
0

51
50

2.
03

16
91

e+
12

13
13

−3
.9
73

19
5e
+
02

13
−3

.9
73

19
9e
+
02

R
an
SD

P2
00

_t
9

20
0

51
50

2.
80

32
09

e+
12

16
16

7.
04

35
34

e+
01

13
7.
04

35
63

e+
01

123

S. Cipolla, J. Gondzio

Ta
bl
e
4

PS
-S
D
P-
IP
M

vs
SD

PT
3.

H
ig
hl
y
ill
-c
on
di
tio

ne
d
ra
nd
om

ly
ge
ne
ra
te
d
pr
ob
le
m
s PS
-S
D
P-
IP
M

SD
PT

3
Pr
ob
le
m

n
m

co
nd

(
A

T
A
)

PP
M

It
IP
M

It
O
bj
.V

al
IP
M

It
O
bj
.V

al

R
an
SD

P5
0_

t1
50

35
0

2.
24

04
44

e+
18

10
10

9.
04

42
35

e+
02

13
9.
04

68
14

e+
02

R
an
SD

P5
0_

t1
0

50
35

0
4.
69

27
43

e+
18

9
9

8.
33

56
53

e+
03

16
8.
33

57
18

e+
03

R
an
SD

P5
0_

t2
50

35
0

7.
22

43
67

e+
18

11
11

5.
84

97
02

e+
02

10
0*

2.
09

33
54

e+
06

R
an
SD

P5
0_

t3
50

35
0

2.
07

28
69

e+
18

10
10

1.
60

23
52

e+
03

12
1.
60

24
92

e+
03

R
an
SD

P5
0_

t4
50

35
0

6.
81

27
93

e+
18

10
10

8.
45

58
33

e+
02

14
8.
45

67
25

e+
02

R
an
SD

P5
0_

t5
50

35
0

3.
27

49
62

e+
18

9
9

2.
87

21
98

e+
03

13
2.
87

24
09

e+
03

R
an
SD

P5
0_

t6
50

35
0

2.
78

56
05

e+
18

9
9

−2
.0
23

33
1e
+
03

47
−2

.0
22

28
8e
+
03

R
an
SD

P5
0_

t7
50

35
0

1.
88

26
60

e+
19

10
10

1.
77

67
46

e+
03

10
0*

2.
29

68
94

e+
03

R
an
SD

P5
0_

t8
50

35
0

3.
66

86
48

e+
18

10
10

1.
48

86
78

e+
03

14
1.
48

88
48

e+
03

R
an
SD

P5
0_

t9
50

35
0

3.
87

56
49

e+
18

10
10

1.
41

33
80

e+
03

35
1.
41

97
78

e+
03

R
an
SD

P1
00

_t
1

10
0

13
25

1.
83

09
21

e+
19

9
9

−1
.3
81

49
7e
+
04

10
0*

−1
.2
06

08
9e
+
04

R
an
SD

P1
00

_t
10

10
0

13
25

2.
78

55
60

e+
19

12
12

−1
.5
89

26
9e
+
03

10
0*

1.
08

80
38

e+
03

R
an
SD

P1
00

_t
2

10
0

13
25

7.
15

98
70

e+
19

10
10

6.
91

37
46

e+
03

10
0*

8.
46

06
35

e+
03

R
an
SD

P1
00

_t
3

10
0

13
25

6.
63

12
53

e+
19

11
11

2.
44

63
07

e+
03

10
0*

5.
22

04
33

e+
03

R
an
SD

P1
00

_t
4

10
0

13
25

1.
58

82
25

e+
20

10
10

−7
.6
13

46
7e
+
03

10
0*

−6
.8
61

25
5e
+
03

R
an
SD

P1
00

_t
5

10
0

13
25

1.
33

08
09

e+
19

11
11

−1
.5
12

67
5e
+
03

10
0*

2.
17

41
32

e+
04

R
an
SD

P1
00

_t
6

10
0

13
25

1.
50

17
02

e+
19

13
13

2.
56

21
24

e+
02

10
0*

1.
43

68
20

e+
05

R
an
SD

P1
00

_t
7

10
0

13
25

1.
43

95
86

e+
19

11
11

−2
.9
70

30
4e
+
03

10
0*

2.
78

08
61

e+
05

R
an
SD

P1
00

_t
8

10
0

13
25

8.
08

09
43

e+
18

10
10

−1
.2
54

68
2e
+
04

10
0*

−1
.0
68

60
6e
+
04

123

Proximal-stabilized semidefinite programming

Ta
bl
e
4

co
nt
in
ue
d

PS
-S
D
P-
IP
M

SD
PT

3
Pr
ob
le
m

n
m

co
nd

(
A

T
A
)

PP
M

It
IP
M

It
O
bj
.V

al
IP
M

It
O
bj
.V

al

R
an
SD

P1
00

_t
9

10
0

13
25

7.
53

69
49

e+
20

11
11

1.
66

33
61

e+
03

10
0*

2.
84

76
24

e+
03

R
an
SD

P1
50

_t
1

15
0

29
25

2.
53

74
10

e+
20

9
10

7.
90

88
58

e+
03

10
0*

9.
47

20
64

e+
03

R
an
SD

P1
50

_t
10

15
0

29
25

5.
38

95
32

e+
20

9
10

−9
.1
66

51
5e
+
03

10
0*

−5
.6
61

50
4e
+
03

R
an
SD

P1
50

_t
2

15
0

29
25

1.
66

28
07

e+
19

11
12

8.
37

81
11

e+
02

10
0*

−1
.7
07

74
7e
+
05

R
an
SD

P1
50

_t
3

15
0

29
25

7.
70

97
99

e+
19

10
11

−4
.0
82

93
1e
+
03

10
0*

−3
.4
89

32
7e
+
02

R
an
SD

P1
50

_t
4

15
0

29
25

9.
89

00
38

e+
19

9
10

8.
54

60
68

e+
03

10
0*

1.
14

86
28

e+
04

R
an
SD

P1
50

_t
5

15
0

29
25

6.
42

23
03

e+
19

9
10

1.
02

42
58

e+
04

10
0*

−2
.4
87

29
5e
+
05

R
an
SD

P1
50

_t
6

15
0

29
25

1.
62

94
80

e+
20

9
10

1.
69

33
71

e+
04

10
0*

2.
15

00
13

e+
04

R
an
SD

P1
50

_t
7

15
0

29
25

6.
70

89
34

e+
19

9
10

−1
.2
12

90
5e
+
04

10
0*

−8
.9
33

21
4e
+
03

R
an
SD

P1
50

_t
8

15
0

29
25

4.
29

87
07

e+
19

10
11

−4
.2
17

62
0e
+
03

10
0*

4.
54

89
03

e+
02

R
an
SD

P1
50

_t
9

15
0

29
25

5.
12

77
15

e+
19

10
11

−3
.4
35

61
8e
+
03

10
0*

5.
05

63
00

e+
03

R
an
SD

P2
00

_t
1

20
0

51
50

1.
11

02
33

e+
20

10
11

1.
16

91
01

e+
04

10
0*

1.
55

21
14

e+
04

R
an
SD

P2
00

_t
10

20
0

51
50

1.
39

59
10

e+
21

8
9

−5
.6
26

16
1e
+
04

10
0*

−5
.2
40

75
3e
+
04

R
an
SD

P2
00

_t
2

20
0

51
50

8.
98

67
21

e+
19

10
11

−7
.0
59

15
7e
+
03

10
0*

−6
.4
13

60
7e
+
02

R
an
SD

P2
00

_t
3

20
0

51
50

1.
97

50
22

e+
20

11
12

3.
95

91
34

e+
03

10
0*

7.
97

21
33

e+
03

R
an
SD

P2
00

_t
4

20
0

51
50

5.
01

08
76

e+
20

10
11

−1
.2
59

07
7e
+
04

10
0*

−1
.0
15

48
6e
+
04

R
an
SD

P2
00

_t
5

20
0

51
50

1.
38

91
50

e+
21

9
10

3.
60

83
57

e+
04

10
0*

4.
21

58
30

e+
04

R
an
SD

P2
00

_t
6

20
0

51
50

1.
63

12
63

e+
20

10
11

8.
27

69
66

e+
03

10
0*

1.
10

26
10

e+
04

R
an
SD

P2
00

_t
7

20
0

51
50

2.
64

20
89

e+
20

10
11

1.
34

22
02

e+
04

10
0*

1.
77

98
50

e+
04

R
an
SD

P2
00

_t
8

20
0

51
50

1.
61

69
44

e+
20

10
11

−1
.4
77

35
2e
+
04

10
0*

−1
.0
46

30
9e
+
04

R
an
SD

P2
00

_t
9

20
0

51
50

2.
62

77
17

e+
20

9
10

2.
53

87
13

e+
04

10
0*

2.
92

16
44

e+
04

∗ :
m
ax
im

um
nu

m
be
r
of

IP
M

re
ac
he
d
w
ith

ou
tr
ea
ch
in
g
th
e
pr
es
cr
ib
ed

ac
cu
ra
cy

123

S. Cipolla, J. Gondzio

Table 5 PS-SDP-IPM. Quadratic SDP for the INCM problems

PS-SDP-IPM
Problem n m cond(AAT) PPM It IPM It Obj. Val

bccd16 3250 3250 1.00e+00 14 14 4.221402e+02

beyu11 12 12 1.00e+00 9 9 4.615181e−05

bhwi01 5 5 1.00e+00 6 6 1.133672e−02

cor1399 1399 1399 1.00e+00 12 12 1.424832e+02

cor3120 3120 3120 1.00e+00 12 12 7.852472e+00

fing97 7 7 1.00e+00 7 7 1.204831e−03

high02 3 3 1.00e+00 6 6 1.392826e−01

mmb13 6 6 1.00e+00 6 6 8.481240e−02

tec03 4 4 1.00e+00 7 7 7.006153e−04

tyda99r1 8 8 1.00e+00 6 6 9.863876e−01

tyda99r2 8 8 1.00e+00 6 6 3.000524e−01

tyda99r3 8 8 1.00e+00 6 6 2.259734e−01

Table 6 PS-SDP-IPM. Randomly generated ill-conditioned quadratic SDP

PS-SDP-IPM
Problem n m cond(AAT) PPM It IPM It Obj. Val

QRanSDP50_t1 50 350 1.763103e+19 11 11 8.545588e+03

QRanSDP50_t10 50 350 6.756846e+19 8 9 8.350068e+04

QRanSDP50_t2 50 350 1.803095e+19 12 13 2.940637e+03

QRanSDP50_t3 50 350 1.629658e+19 11 11 1.417986e+04

QRanSDP50_t4 50 350 5.409830e+18 9 10 8.735685e+03

QRanSDP50_t5 50 350 7.504560e+19 9 10 2.561732e+04

QRanSDP50_t6 50 350 3.095987e+19 9 10 −1.742617e+04

QRanSDP50_t7 50 350 2.898951e+19 10 11 1.689618e+04

QRanSDP50_t8 50 350 2.079713e+19 9 10 1.489532e+04

QRanSDP50_t9 50 350 9.792608e+18 9 10 1.390878e+04

QRanSDP100_t1 100 1325 1.981206e+22 9 10 −1.218284e+05

QRanSDP100_t10 100 1325 7.203900e+19 12 13 −1.375624e+04

QRanSDP100_t2 100 1325 1.066704e+20 11 12 6.749437e+04

QRanSDP100_t3 100 1325 6.560960e+20 11 12 3.542514e+04

QRanSDP100_t4 100 1325 6.153031e+19 10 11 −7.398956e+04

QRanSDP100_t5 100 1325 1.234334e+20 11 12 −2.191720e+04

QRanSDP100_t6 100 1325 4.479179e+20 14 15 −2.043313e+03

QRanSDP100_t7 100 1325 4.302334e+20 12 13 −2.795626e+04

QRanSDP100_t8 100 1325 1.290912e+20 9 10 −1.176504e+05

QRanSDP100_t9 100 1325 4.718468e+19 11 12 2.302458e+04

123

Proximal-stabilized semidefinite programming

Table 6 continued

PS-SDP-IPM
Problem n m cond(AAT) PPM It IPM It Obj. Val

QRanSDP150_t1 150 2925 2.642363e+20 11 12 7.790669e+04

QRanSDP150_t10 150 2925 1.313787e+20 12 13 −7.236711e+04

QRanSDP150_t2 150 2925 3.678462e+20 11 13 1.994142e+04

QRanSDP150_t3 150 2925 2.482740e+21 12 13 −3.281267e+04

QRanSDP150_t4 150 2925 7.906075e+20 11 12 8.326368e+04

QRanSDP150_t5 150 2925 2.544165e+21 11 12 1.019804e+05

QRanSDP150_t6 150 2925 8.523443e+20 11 12 1.712954e+05

QRanSDP150_t7 150 2925 1.288282e+20 11 12 −1.326542e+05

QRanSDP150_t8 150 2925 2.149135e+20 10 12 −4.143799e+04

QRanSDP150_t9 150 2925 4.223481e+20 12 13 −2.870646e+04

QRanSDP200_t1 200 5150 4.951223e+21 10 12 1.039708e+05

QRanSDP200_t10 200 5150 1.284591e+20 9 11 −5.189842e+05

QRanSDP200_t2 200 5150 4.932134e+21 11 13 −6.275959e+04

QRanSDP200_t3 200 5150 9.532349e+20 11 13 4.476215e+04

QRanSDP200_t4 200 5150 4.560851e+20 10 12 −7.484321e+04

QRanSDP200_t5 200 5150 1.100976e+21 9 11 3.427802e+05

QRanSDP200_t6 200 5150 3.313887e+20 10 12 8.971560e+04

QRanSDP200_t7 200 5150 1.857750e+20 10 12 1.203676e+05

QRanSDP200_t8 200 5150 1.129208e+21 10 12 −1.447227e+05

QRanSDP200_t9 200 5150 4.793225e+20 9 11 2.611253e+05

Indeed, in our computational experience, we have found that driving the IPM solver
to a high accuracy in the initial PPM iterations is unnecessary and, usually, leads to a
significant deterioration of the overall performance.

Finally, the linear systemswhich are solved for the predictor and corrector direction
terms and involve the normal Eq. (32), see Sect. 9.3 for more details, use a Cholesky
factorization computed resorting on Matlab’s chol function.

In Tables 1 and 2 we report the comparison of PS-SDP-IPM vs SDPT3 for datasets
(D1), (D2),(D3) and (D4), respectively. In Table 4we report similar comparison but for
randomly generated ill-conditioned SDP problems. The analysis of results presented
in Tables 1 and 2 confirms that the number of IPM iterations recorded for PS-SDP-
IPM is comparable to the number of IPM iterations of SDPT3 on well and moderately
conditioned problems. On the other hand, already from the results there reported, it is
possible to trace a very interesting feature of PS-SDP-IPM: for ill-conditioned prob-
lems, the number of IPM iterations needed to reach the required accuracy is, in general,
smaller than the number of IPM iterations needed by SDPT3, see, e.g., the problems
Laurent_A(26,10), Schrijver_A(19,6). The existence of such trend is
further confirmed by the results presented in Tables 3 and 4 concerning, respectively,
Moderately and Highly ill-conditioned randomly generated SDP examples. Whilst
SDPT3 is able to reach the desired accuracy for all the problems in Table 3, it fails

123

S. Cipolla, J. Gondzio

to solve the majority of the problems presented in Table 4. In contrast, PS-SDP-IPM
solves all the problems from these test sets.

Finally, in Tables 5 and 6 we report the results of preliminary experiments which
illustrate the behaviour of PS-SDP-IPM on quadratic SDP problems when h = 1. The
regularized IPM proposed in this paper is able to solve all the problems in the selected
dataset including the consistently ill-conditioned ones, see Table 6. Despite the fact
that the experiments reported here are merely meant to showcase the effectiveness of
our proposal in solving the particular quadratic SDP problems, it is important to note
that, analogously to what was observed for the pure SDP case (cfr. the conditioning
and the total number of IPM iterations in Tables 3 and 4), also in this case the total
number of IPM steps needed to achieve the prescribed accuracy depends very little on
the conditioning of AT A (cfr. Tables 5 and 6). As a concluding comment regarding
all the experiments presented in this section, we would like to mention the fact that
accordingly to what was theoretically outlined at the end of Sect. 4, one or two IPM
iterations per PPM step are always sufficient to deliver enough of the accuracy pre-
scribed by the inexactness criterion used in Line 2 of Algorithm 2 (cfr. the columns
PPM It. and IPM It. in all the tables in this section).

10 Conclusions

In this work a tuned-for-robustness version of interior point solver for semidefinite
programming problems has been introduced. The computational framework of the
proposed algorithm relies on the proximal point method which uses a primal–dual reg-
ularized interior point method as proximal solver. The proposed technique is sound:
a polynomial convergence guarantee has been established for the inner inexact regu-
larized interior point solver when the Nesterov–Todd scaling is employed. Extensive
computational experience confirms that the proposed method is significantly more
robust than the state-of-the-art solver when applied to challenging SDPs with ill-
conditioned constraint matrices.

Acknowledgements The authors are grateful to Dr. Filippo Zanetti for the insightful discussions regarding
the efficient computation of the normal equations arising in interior point methods when solving SDP
problems.

Data availability statement The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.

Declarations

Conflict of interest This study does not have any conflicts to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123

Proximal-stabilized semidefinite programming

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear
and quadratic optimization. Optim. Methods Softw. 11/12(1–4), 275–302 (1999). https://doi.org/10.
1080/10556789908805754

2. Anjos, M.F., Lasserre, J.B.: Handbook on Semidefinite, Conic and Polynomial Optimization, vol. 166.
Springer, Berlin (2011)

3. Armand, P., Benoist, J.: Uniform boundedness of the inverse of a Jacobian matrix aris-
ing in regularized interior-point methods. Math. Program. 137(1–2 Ser. A), 587–592 (2013).
https://doi.org/10.1007/s10107-011-0498-3

4. Bellavia, S., Gondzio, J., Porcelli, M.: An inexact dual logarithmic barrier method for solving sparse
semidefinite programs. Math. Program. 178(1–2), 109–143 (2019). https://doi.org/10.1007/s10107-
018-1281-5

5. Bellavia, S., Gondzio, J., Porcelli, M.: A relaxed interior point method for low-rank semidefinite
programming problems with applications to matrix completion. J. Sci. Comput. 89(2), Paper No. 46,
36 (2021). https://doi.org/10.1007/s10915-021-01654-1

6. Borchers, B.: SDPLIB 1.2, library of semidefinite programming test problems. Interior point methods.
pp. 683–690 (1999). https://doi.org/10.1080/10556789908805769

7. Chouzenoux, E., Corbineau, M.C., Pesquet, J.C.: A proximal interior point algorithm
with applications to image processing. J. Math. Imaging Vision 62(6–7), 919–940 (2020).
https://doi.org/10.1007/s10851-019-00916-w

8. Cipolla, S., Gondzio, J.: Proximal stabilized interior point methods and low-frequency-update precon-
ditioning techniques. J. Optim. Theory Appl. 197(3), 1061–1103 (2023)

9. Cipolla, S., Gondzio, J., Zanetti, F.: A regularized interior point method for sparse optimal transport
on graphs. Eur. J. Oper. Res. 319: 413-426 (2024)

10. Clason, C., Valkonen, T.: Introduction to nonsmooth analysis and optimization. arXiv (2020). https://
doi.org/10.48550/ARXIV.2001.00216

11. D’Apuzzo, M., De Simone, V., di Serafino, D.: On mutual impact of numerical linear algebra and
large-scale optimization with focus on interior point methods. Comput. Optim. Appl. 45(2), 283–310
(2010)

12. de Klerk, E., Sotirov, R.: A new library of structured semidefinite programming instances. Optim.
Methods Softw. 24(6), 959–971 (2009). https://doi.org/10.1080/10556780902896608

13. Dehghani, A., Goffin, J.L., Orban, D.: A primal-dual regularized interior-point method for semidefinite
programming. Optim. Methods Softw. 32(1), 193–219 (2017)

14. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer Monographs
in Mathematics. Springer, Dordrecht (2009). https://doi.org/10.1007/978-0-387-87821-8

15. Fawzi, H., Fawzi, O.: Efficient optimization of the quantum relative entropy. J. Phys. A: Math. Theor.
51(15), 154003 (2018)

16. Faybusovich, L.: Euclidean Jordan algebras and interior-point algorithms. Positivity 1(4), 331–357
(1997). https://doi.org/10.1023/A:1009701824047

17. Friedlander, M.P., Orban, D.: A primal–dual regularized interior-point method for convex quadratic
programs. Math. Program. Comput. 4(1), 71–107 (2012). https://doi.org/10.1007/s12532-012-0035-
2

18. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587–601 (2012). https://
doi.org/10.1016/j.ejor.2011.09.017

19. Habibi, S., Kočvara, M., Stingl, M.: Loraine: an interior-point solver for low-rank semidefinite pro-
gramming (2023) (preprint hal-04076509)

20. Higham, N.J.: Computing the nearest correlation matrix—a problem from finance. IMA J. Numer.
Anal. 22(3), 329–343 (2002). https://doi.org/10.1093/imanum/22.3.329

21. Higham, N.J., Strabić, N.: Bounds for the distance to the nearest correlation matrix. SIAM J. Matrix
Anal. Appl. 37(3), 1088–1102 (2016). https://doi.org/10.1137/15M1052007

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/10556789908805754
https://doi.org/10.1080/10556789908805754
https://doi.org/10.48550/ARXIV.2001.00216
https://doi.org/10.48550/ARXIV.2001.00216
https://doi.org/10.1080/10556780902896608
https://doi.org/10.1007/978-0-387-87821-8
https://doi.org/10.1023/A:1009701824047
https://doi.org/10.1007/s12532-012-0035-2
https://doi.org/10.1007/s12532-012-0035-2
https://doi.org/10.1016/j.ejor.2011.09.017
https://doi.org/10.1016/j.ejor.2011.09.017
https://doi.org/10.1093/imanum/22.3.329
https://doi.org/10.1137/15M1052007

S. Cipolla, J. Gondzio

22. Horn, R.A., Johnson, C.R.: Topics inMatrix Analysis. CambridgeUniversity Press, Cambridge (1991).
https://doi.org/10.1017/CBO9780511840371

23. Liao-McPherson, D., Kolmanovsky, I.: FBstab: a proximally stabilized semismooth algorithm for con-
vex quadratic programming. Automatica J. IFAC (2020). https://doi.org/10.1016/j.automatica.2019.
108801

24. Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim.
22(2), 277–293 (1984). https://doi.org/10.1137/0322019

25. Mironowicz, P.: Semi-definite programming and quantum information (2023) arXiv:2306.16560
26. Nesterov, Y., Nemirovskii, A.: Interior-point Polynomial Algorithms in Convex Programming. SIAM,

Philadelphia (1994)
27. Nesterov, Y.E., Todd, M.J.: Self-scaled barriers and interior-point methods for convex programming.

Math. Oper. Res. 22(1), 1–42 (1997). https://doi.org/10.1287/moor.22.1.1
28. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim.

8(2), 324–364 (1998). https://doi.org/10.1137/S1052623495290209
29. Pataki, G., and Schmieta, S.: The DIMACS library of mixed semidefinite-quadratic-linear programs.

http://dimacs.rutgers.edu/Challenges/Seventh/Instances
30. Pougkakiotis, S., Gondzio, J.: An interior point-proximal method of multipliers for linear positive

semi-definite programming. J. Optim. Theory Appl. 192(1), 97–129 (2022). https://doi.org/10.1007/
s10957-021-01954-4

31. Rockafellar, R.T.: Monotone operators associated with saddle-functions and minimax problems. In:
Nonlinear Functional Analysis (Proceedings of Symposia in Pure Mathematics, Vol. XVIII, Part 1,
Chicago, Ill., 1968), pp. 241–250. American Mathematical Society, Providence, R.I. (1970)

32. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim.
14(5), 877–898 (1976). https://doi.org/10.1137/0314056

33. Saunders, M., Tomlin, J.A.: Solving regularized linear programs using barrier methods and KKT
systems. Technical Report SOL 96-4, SystemsOptimization Laboratory, Dept. of Operations Research,
Stanford University, Stanford, CA 94305, USA (1996)

34. Sremac, S., Woerdeman, H.J., Wolkowicz, H.: Error bounds and singularity degree in semidefinite
programming. SIAM J. Optim. 31(1), 812–836 (2021). https://doi.org/10.1137/19M1289327

35. Todd, M.J., Toh, K.C., Tütüncü, R.H.: On the Nesterov–Todd direction in semidefinite programming.
SIAM J. Optim. 8(3), 769–796 (1998). https://doi.org/10.1137/S105262349630060X

36. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a MATLAB software package for semidefinite
programming, version 1.3. Interior point methods. pp. 545–581 (1999). https://doi.org/10.1080/
10556789908805762

37. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3.
Computational semidefinite and second order cone programming: the state of the art, pp. 189–217
(2003). https://doi.org/10.1007/s10107-002-0347-5

38. Valkonen, T.: Interior-proximal primal–dual methods. Appl. Anal. Optim. 3(1), 1–28 (2019)
39. Vandenberghe, L., Boyd, S.: Applications of semidefinite programming. Appl. Numer. Math. 29(3),

283–299 (1999)
40. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algo-

rithms, and Applications, vol. 27. Springer, Berlin (2012)
41. Zhang, Y.: On extending some primal–dual interior-point algorithms from linear programming

to semidefinite programming. SIAM J. Optim. 8(2), 365–386 (1998). https://doi.org/10.1137/
S1052623495296115

42. Zhao, Z., Braams, B.J., Fukuda, M., Overton, M.L., Percus, J.K.: The reduced density matrix method
for electronic structure calculations and the role of three-index representability conditions. J. Chem.
Phys. 120(5), 2095–2104 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.1016/j.automatica.2019.108801
https://doi.org/10.1016/j.automatica.2019.108801
https://doi.org/10.1137/0322019
http://arxiv.org/abs/2306.16560
https://doi.org/10.1287/moor.22.1.1
https://doi.org/10.1137/S1052623495290209
http://dimacs.rutgers.edu
https://doi.org/10.1007/s10957-021-01954-4
https://doi.org/10.1007/s10957-021-01954-4
https://doi.org/10.1137/0314056
https://doi.org/10.1137/19M1289327
https://doi.org/10.1137/S105262349630060X
https://doi.org/10.1080/10556789908805762
https://doi.org/10.1080/10556789908805762
https://doi.org/10.1007/s10107-002-0347-5
https://doi.org/10.1137/S1052623495296115
https://doi.org/10.1137/S1052623495296115

	Proximal-stabilized semidefinite programming
	Abstract
	1 Introduction
	1.1 Motivations and problem statement
	1.2 Contribution and related literature
	1.3 Notation

	2 Computational framework
	2.1 Proximal point method

	3 Primal–Dual IPM for proximal point evaluations
	4 Proximal-stabilized interior point method for semidefinite programming (PS-SDP-IPM)
	5 Preliminary results for convergence
	6 Vectorization and the Nesterov–Todd (NT) direction
	7 Convergence and polynomial complexity
	8 On the computation of the NT direction
	9 Numerical results
	9.1 Initial point
	9.2 Stopping criteria
	9.3 Predictor corrector
	9.4 Dataset
	9.5 Numerical results

	10 Conclusions
	Acknowledgements
	References

