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A B S T R A C T

In this work, the authors address the Optimal Transport (OT) problem on graphs using a proximal stabilized
Interior Point Method (IPM). In particular, strongly leveraging on the induced primal–dual regularization,
the authors propose to solve large scale OT problems on sparse graphs using a bespoke IPM algorithm
able to suitably exploit primal–dual regularization in order to enforce scalability. Indeed, the authors prove
that the introduction of the regularization allows to use sparsified versions of the normal Newton equations
to inexpensively generate IPM search directions. A detailed theoretical analysis is carried out showing the
polynomial convergence of the inner algorithm in the proposed computational framework. Moreover, the
presented numerical results showcase the efficiency and robustness of the proposed approach when compared
to network simplex solvers.
1. Introduction

The Optimal Transport (OT) problem requires to move a certain
distribution of mass from one configuration into another, minimizing
the total cost required for the operation. It has been studied exten-
sively, from the early work of Kantorovich (Kantorovich, 1958), to
the development of ever faster algorithms for various OT formulations,
e.g. Cuturi (2013), Gottschlich and Schuhmacher (2014), Ling and
Okada (2007), Merigot (2011), Peyre and Cuturi (2019), Schrieber,
Schuhmacher, and Gottschlich (2017). Recently, there has been a grow-
ing interest in using Interior Point Methods (IPMs) (Gondzio, 2012a) in
applications that involve optimal transport, in particular for very large
scale instances of such problems, see e.g. Natale and Todeschi (2021),
Wijesinghe and Chen (2022), Zanetti and Gondzio (2023).

A particularly interesting problem is the optimal transport over
sparse graphs: in this case, the transport of mass is only possible along
a specific subset of connections, which is noticeably smaller than the
full list of edges of a fully connected bipartite graph, as it would
happen in a standard discrete OT formulation. The use of OT and
the Wasserstein distance (i.e. the optimal objective function of the OT
problem) is becoming more and more common in many practical appli-
cations, e.g. neural networks (Gulrajani, Ahmed, Arjovsky, Dumoulin,
& Courville, 2017), image processing (Haker, Zhu, Tannenbaum, &
Angenent, 2004), inverse problems (Métivier, Brossier, Mérigot, Oudet,
& Virieux, 2016) and in the analysis of large complex networks (Ni, Lin,
Luo, & Gao, 2019).

The specific formulation of the problem is the following: suppose
that 𝐺 = (𝑉 ,𝐸) is a connected graph with directed edges 𝐸 ⊂ 𝑉 × 𝑉
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and weights 𝐜 ∈ R|𝐸|

+ . Define the incidence matrix 𝐴 ∈ {−1, 0, 1}|𝑉 |×|𝐸|

as

𝐴𝑣𝑒 ∶=

⎧

⎪

⎨

⎪

⎩

−1, if 𝑒 = (𝑣,𝑤) for some 𝑤 ∈ 𝑉
1, if 𝑒 = (𝑤, 𝑣) for some 𝑤 ∈ 𝑉
0, otherwise.

We consider the optimal transport problem in the Beckmann form (Essid
& Solomon, 2018):

1(𝝆𝟎,𝝆𝟏) ∶=
⎧

⎪

⎨

⎪

⎩

min𝐱∈R|𝐸|

∑

𝑒∈𝐸 𝑐𝑒𝐱𝑒
𝑠.𝑡. 𝐴𝐱 = 𝝆𝟏 − 𝝆𝟎

𝐱 ≥ 0,
(1)

where 𝝆𝟎,𝝆𝟏 ∈ {𝝆 ∈ R|𝑉 | ∶ 𝟏𝑇 𝝆 = 1 and 𝝆 ≥ 0} =∶ 𝑃𝑟𝑜𝑏(𝑉 ). In the
following we will define |𝐸| ∶= 𝑛 and |𝑉 | ∶= 𝑚.

Assumption 1. In the remainder of this work we will assume that
the graph 𝐺 = (𝑉 ,𝐸) is sparse. In particular, we will assume that there
exists a constant 𝐶deg ∈ N independent of 𝑛 such that max𝑣∈𝑉 𝑑𝑒𝑔(𝑣) ≤
𝐶deg.

Moreover, we assume that the graph is not a trivial one and that it
has more edges than nodes, i.e. |𝐸| ≥ |𝑉 |.

Most practical sparse graphs satisfy this assumption and in partic-
ular the graphs used in the numerical experiments of the paper do.
Notice however that some particular sparse graphs may not satisfy this
assumption, e.g., if there exists a node in the graph having connections
to most or all of the other nodes.
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OT on graphs has been recently studied in Essid and Solomon
(2018), Facca and Benzi (2021) and, in this formulation, it is similar
to the more general minimum cost flow problem on networks (Ahuja,
Magnanti, & Orlin, 1993), which has also seen extensive use of IPMs,
e.g. Castro and Nasini (2021), Frangioni and Gentile (2004), Portugal,
Resende, Veiga, and Júdice (2000), Resende and Veiga (1993).

Sparse graphs have on average very few edges per node, which can
lead to nearly disconnected regions and seriously limit the possible
paths where mass can be moved. As a result, finding a solution to
the optimal transport problem on a sparse graph requires more so-
phisticated algorithms and may be more computationally challenging
compared to solving the same problem on a denser graph. In particular,
first order methods like the network simplex may struggle and move
slowly towards optimality, due to the limited number of edges avail-
able, while an interior point method manages to identify quickly the
subset of basic variables (i.e. the subset of edges with non-zero flow)
and converges faster.

In this work, the authors address the efficient solution of the opti-
mal transport problem (1) considering the Proximal-Stabilized Interior
Point framework (PS-IPM), recently introduced and analysed in Cipolla
and Gondzio (2023).

As originally observed in Portugal et al. (2000), when IPMs are used
to solve the minimum cost flow problem on networks, the normal form
of the related Newton systems is structured as a Laplacian matrix of the
graph (defined as the difference of the diagonal matrix of the vertex
degrees minus the adjacency matrix) and the iterates of IPM determine
the associate weights of this matrix, see also Eq. (38). In Daitch and
Spielman (2008), this observation was exploited to solve such Laplacian
linear systems (which are, in turn, particular instances of symmetric M-
matrices) through the fast specialized solution of 𝑂(ln𝑚) linear systems
involving symmetric diagonally dominant matrices (Spielman & Teng,
2014). We refer the interested reader to Vishnoi (2012) for a survey on
fast Laplacian solvers and to Frangioni and Serra Capizzano (2001) for
information concerning the distribution of Laplacian’s singular values.

1.1. Contribution and organization

This work focuses on the efficient solution of large scale OT prob-
lems on sparse graphs (see Assumption 1) using a bespoke IPM al-
gorithm able to suitably exploit primal–dual regularization in order
to enforce scalability. The organization of the work and its main
contributions can be summarized as follows:

• In Section 2, the authors briefly recall the proximal stabilized
framework responsible for the primal–dual regularization of the
IPMs here considered.

• In Section 3, the authors provide a detailed convergence analysis
of the inexact infeasible primal–dual regularized IPM, when a
proximal stabilization procedure is used. Moreover, they prove
its polynomial complexity.

• In Section 4, the authors prove that the normal form of the related
Newton system is naturally structured as a shifted Laplacian
matrix characterized by a strict diagonal dominance. Such feature
consistently simplifies the factorization of the normal equations
and allows the use of standard libraries for the solution of the cor-
responding linear systems. On the other hand, such factorizations
could incur a significant fill-in even when the original graph is
sparse, hence limiting the applicability of the proposed approach
for the solution of large scale problems.

• In Section 5, to overcome potential scalability issues related to
the fill-in mentioned above, the authors propose to generate IPM
search directions using sparsified versions of the IPM normal
equations. In particular, when classical primal–dual regularized
IPMs are considered, the normal matrix takes the form 𝐴(𝛩−1 +
𝜌𝐼)−1𝐴𝑇 + 𝛿𝐼 , where 𝜌, 𝛿 are regularization parameters and 𝛩 is
a diagonal matrix related to the IPM barrier parameter 𝜇; the
414
authors propose to use a perturbed normal matrix, where the
entries of (𝛩−1+𝜌𝐼)−1 that are sufficiently small (when compared
to 𝜇) are set to zero (completely ignoring the corresponding
columns of matrix 𝐴). This strategy reduces the time required
to assemble and solve the normal equations systems, providing
a fundamental advantage to the algorithm.
The resulting sparsified linear systems are solved either using a
Cholesky factorization (if that displays only negligible fill-in) or
using the conjugate gradient method and employing a simple and
inexpensive incomplete Cholesky preconditioner. In both these
cases either the complete or the incomplete Cholesky factoriza-
tion remains very sparse, and this translates into an outstanding
efficiency of the proposed method. Moreover, the authors are
able to interpret the Newton directions generated using sparsified
Newton matrices as inexact Newton directions. Relying on the
convergence theory developed in Section 3, the authors are able
to prove that, under suitable choice of the sparsification param-
eters, the above described approach gives rise to a polynomially
convergent algorithm.

• In Section 6, the authors present experimental results which
demonstrate the efficiency and robustness of the proposed ap-
proach. Extensive numerical experiments, involving very large
and sparse graphs coming from public domain random gener-
ators as well as from real world applications, show that, for
sufficiently large problems, the approach presented in this work
consistently outperforms, in terms of computational time, the
Lemon network simplex implementation (Kovacs, 2015), one of
the state-of-the-art solvers available for network problems.

1.2. Notation

In the paper, vectors are indicated with bold letters. ‖ ⋅ ‖ indicates
the Euclidean norm. 𝐼 represents the identity matrix and 𝐞 the vector
of all ones. Given a vertex 𝑣 of a graph 𝐺, we denote as 𝑑𝑒𝑔(𝑣) its
degree, i.e. the number of edges that are incident to 𝑣. Concerning
the variables inside the algorithm, we use a subscript 𝑘 to indicate the
external proximal iteration and a superscript 𝑗 to indicate the internal
IPM iteration. Given a sequence {𝜇𝑗}𝑗∈N and a continuous function 𝑓 ,
the big-O notation 𝑂(⋅) is used as follows:

𝑢𝑗}𝑗∈N ∈ 𝑂
(

𝑓 (𝜇𝑗 )
)

iff ∃ 𝐶 > 0 s.t. 𝑢𝑗 ≤ 𝐶𝑓 (𝜇𝑗 ) for all 𝑗 ∈ N.

. Computational framework

.1. Proximal-stabilized interior point method

Let us consider the following primal–dual formulation of a Linear
rogram (LP):

min
∈R𝑛

𝐜𝑇 𝐱

s.t. 𝐴𝐱 = 𝐛
𝐱 ≥ 0

max
𝐬∈R𝑛 , 𝐲∈R𝑚

𝐛𝑇 𝐲

s.t. 𝐜 − 𝐴𝑇 𝐲 − 𝐬 = 0

𝐬 ≥ 0

(2)

here 𝐴 ∈ R𝑚×𝑛 with 𝑚 ≤ 𝑛 is not required to have full rank. Notice
hat problem (1), under Assumption 1, is indeed formulated in this way.

We solve this problem using PS-IPM (Cipolla & Gondzio, 2023),
hich is a proximal-stabilized version of classic Interior Point Method.
roadly speaking, PS-IPM resorts to the Proximal Point Method (PPM)
Rockafellar, 1970) to produce primal–dual regularized forms of prob-
em (2). Indeed, given an approximation (𝐱𝑘, 𝐲𝑘) of the solution of such
roblem, PS-IPM uses interior point methods to produce the next PPM
tep (𝐱𝑘+1, 𝐲𝑘+1), which, in turn, represents a better approximation of
he solution of problem (2).
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In this regard, the problem that needs to be solved at every PPM
step takes the form

min
𝐱∈R𝑛
𝐲∈R𝑚

𝐜𝑇 𝐱 + 𝜌
2
‖𝐱 − 𝐱𝑘‖2 +

𝛿
2
‖𝐲‖2

s.t. 𝐴𝐱 + 𝛿(𝐲 − 𝐲𝑘) = 𝐛
𝐱 ≥ 0,

max
𝐱, 𝐬∈R𝑛
𝐲∈R𝑚

𝐲𝑇 𝐛−𝜌
2
‖𝐱‖2 − 𝛿

2
‖𝐲 − 𝐲𝑘‖2

s.t. 𝜌(𝐱 − 𝐱𝑘) − 𝐴𝑇 𝐲 − 𝐬 + 𝐜 = 0

𝐬 ≥ 0

.

(PPM(𝑘))

efinition 1. Solution of problem (PPM(𝑘)) Using standard duality
theory, we say that (𝐱∗𝑘, 𝐲

∗
𝑘, 𝐬

∗
𝑘) is a solution of problem (PPM(𝑘)) if the

following identities hold

𝐴𝐱∗𝑘 + 𝛿(𝐲∗𝑘 − 𝐲𝑘) − 𝐛 = 0

𝜌(𝐱∗𝑘 − 𝐱𝑘) − 𝐴𝑇 𝐲∗𝑘 − 𝐬∗ + 𝐜 = 0 (3)
(𝐱∗𝑘)

𝑇 𝐬∗𝑘 = 0 and (𝐱∗𝑘, 𝐬
∗
𝑘) ≥ 0

More in particular, the PS-IPM here considered uses two nested
cycles to solve problem (2). The outer loop uses an inexact proximal
point method (Luque, 1984), as shown in Algorithm 1: the current
approximate solution (𝐱𝑘, 𝐲𝑘) is used to regularize the LP problem,
which is then solved using an IPM to find the next approximate solution
(𝐱𝑘+1, 𝐲𝑘+1) ≈ (𝐱∗𝑘, 𝐲

∗
𝑘). And indeed, at the inner loop level, an inexact

infeasible interior point method is used to solve the PPM sub-problems,
see Algorithm 2.

Notice that both methods are inexact : the outer cycle is inexact
because the sub-problems are solved approximately by an IPM; the IPM
is inexact because the Newton systems are also solved inexactly (see
Section 2.2 for more details). Notice also that the IPM is referred to as
infeasible because the intermediate iterates are not required to be inside
the feasible region. We also call the inner loop regularized, because it is
a primal–dual regularized version of the original LP (2).

Regularization in interior point methods was originally introduced
in Saunders and Tomlin (1996) and extensively used in Altman and
Gondzio (1999), as a tool to stabilize and improve the linear algebra
routines needed for their efficient implementation. In this work and
in Cipolla and Gondzio (2023), the regularization is introduced as
a result of the application of the PPM at the outer cycle level. To
summarize, in the following we use three acronyms: PPM refers to the
outer cycle; IPM refers to the inner cycle; PS-IPM refers to the overall
procedure, combining PPM and IPM.

Input: 𝑡𝑜𝑙 > 0, 𝜎𝑟 ∈ (0, 1), 𝜏1 > 0.
Initialization: Iteration counter 𝑘 = 0; initial point (𝐱0, 𝐲0)

1 while Stopping Criterion (43) False do
2 Use Algorithm 2 with starting point (𝐱0𝑘, 𝐲

0
𝑘) = (𝐱𝑘, 𝐲𝑘) to find

(𝐱𝑘+1, 𝐲𝑘+1) s.t.

‖𝐫𝑘(𝐱𝑘+1, 𝐲𝑘+1)‖ <
(𝜎𝑟)𝑘

𝜏1
min{1, ‖(𝐱𝑘+1, 𝐲𝑘+1) − (𝐱𝑘, 𝐲𝑘)‖} (4)

3 Update the iteration counter: 𝑘 ∶= 𝑘 + 1.
4 end

Algorithm 1: PPM, outer loop of PS-IPM
Concerning the stopping criteria, we finally highlight that Algorithm

1 is stopped based on the criterion (43). Algorithm 2 instead, is stopped
according to the accuracy that is required for the solution of current
sub-problem and based on the following natural residual, see Luque
(1984), of problem (PPM(𝑘)):

Definition 2 (Natural Residual).

𝐫𝑘(𝐱, 𝐲) ∶=
[

𝐱
𝐲

]

−𝛱𝐷

(

[

𝐱
𝐲

]

−
[

𝜌(𝐱 − 𝐱𝑘) + 𝐜 − 𝐴𝑇 𝐲
𝐴𝐱 − 𝐛 + 𝛿(𝐲 − 𝐲𝑘)

]

)

,

where

𝐷 ∶= R𝑛 × R𝑚
415

≥0
and where 𝛱𝐷 is the corresponding projection operator. Moreover, it
is easy to verify that (𝐱∗𝑘, 𝐲

∗
𝑘, 𝐬

∗
𝑘) is a solution of problem (PPM(𝑘)) if and

only if 𝐫𝑘(𝐱∗𝑘, 𝐲
∗
𝑘) = 0, Cipolla and Gondzio (2023, Sec. 2.3).

2.2. Interior point method

We now focus on the inner cycle and give a brief description of the
IPM used to solve problem (PPM(𝑘)). To this aim, we introduce the
following Lagrangian function which uses a logarithmic barrier to take
into account the inequality constraints

𝐿𝑘(𝐱, 𝐲) =
1
2
[𝐱𝑇 , 𝐲𝑇 ]

[

𝜌𝐼 0
0 𝛿𝐼

] [

𝐱
𝐲

]

+ [𝐜𝑇 − 𝜌𝐱𝑇𝑘 , 0]
[

𝐱
𝐲

]

− 𝐲𝑇 (𝐴𝐱 + 𝛿(𝐲 − 𝐲𝑘) − 𝐛) − 𝜇
𝑛
∑

𝑖=1
ln(𝑥𝑖).

(5)

The KKT conditions that arise from the gradients of the Lagrangian
(5) are

∇𝐱𝐿𝑘(𝐱, 𝐲) = 𝜌𝐱 − 𝐴𝑇 𝐲 + 𝐜 − 𝜌𝐱𝑘 −
⎡

⎢

⎢

⎢

⎣

𝜇
𝑥1
⋮
𝜇
𝑥𝑛

⎤

⎥

⎥

⎥

⎦

= 0;

− ∇𝐲𝐿𝑘(𝐱, 𝐲) = (𝐴𝐱 + 𝛿(𝐲 − 𝐲𝑘) − 𝐛) = 0.

Setting 𝑠𝑖 =
𝜇
𝑥𝑖

for 𝑖 ∈ {1,… , 𝑛}, we consider the following function

𝐹 𝜇,𝜎
𝑘 (𝐱, 𝐲, 𝐬) ∶=

⎡

⎢

⎢

⎣

𝜌(𝐱 − 𝐱𝑘) − 𝐴𝑇 𝐲 − 𝐬 + 𝐜
𝐴𝐱 + 𝛿(𝐲 − 𝐲𝑘) − 𝐛

𝑆𝑋𝐞 − 𝜎𝜇𝐞

⎤

⎥

⎥

⎦

, (6)

where 𝜎 ∈ (0, 1) is the barrier reduction parameter, 𝑆 = diag(𝐬) and
𝑋 = diag(𝐱). A primal–dual interior point method applied to problem
(PPM(𝑘)) relies on the use of Newton iterations to solve a nonlinear
problem of the form

𝐹 𝜇,𝜎
𝑘 (𝐱, 𝐲, 𝐬) = 0, 𝐱, 𝐬 > 0.

A Newton step for (6) from the current iterate (𝐱, 𝐲, 𝐬) is obtained by
solving the system

⎡

⎢

⎢

⎣

𝜌𝐼 −𝐴𝑇 −𝐼
𝐴 𝛿𝐼 0
𝑆 0 𝑋

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛥𝐱
𝛥𝐲
𝛥𝐬

⎤

⎥

⎥

⎦

= −𝐹 𝜇,𝜎
𝑘 (𝐱, 𝐲, 𝐬) =∶

⎡

⎢

⎢

⎣

𝝃𝑑
𝝃𝑝
𝝃𝜇,𝜎

⎤

⎥

⎥

⎦

, (7)

i.e., the following relations hold:

𝜌𝛥𝐱 − 𝐴𝑇 𝛥𝐲 − 𝛥𝐬 = 𝝃𝑑 (8)

𝐴𝛥𝐱 + 𝛿𝛥𝐲 = 𝝃𝑝 (9)

𝑆𝛥𝐱 +𝑋𝛥𝐬 = 𝝃𝜇,𝜎 , (10)

where (𝛥𝐱, 𝛥𝐲, 𝛥𝐬) is the Newton direction to be taken at each iteration
(with an appropriate stepsize).

The solution of (7) is delivered by the following computational
procedure
(

𝐴(𝛩−1 + 𝜌𝐼)−1𝐴𝑇 + 𝛿𝐼
)

𝛥𝐲 = 𝝃𝑝 − 𝐴(𝛩−1 + 𝜌𝐼)−1(𝑋−1𝝃𝜇,𝜎 + 𝝃𝑑 ) (11)

𝛩−1 + 𝜌𝐼)𝛥𝐱 = 𝐴𝑇 𝛥𝐲 + 𝝃𝑑 +𝑋−1𝝃𝜇,𝜎 (12)

𝛥𝐬 = (𝝃𝜇,𝜎 − 𝑆𝛥𝐱). (13)

here 𝛩 ∶= 𝑋𝑆−1. Before continuing let us give basic definitions used
n the remainder of this work.

efinition 3. Normal Matrix:

𝜌,𝛿 ∶= 𝐴(𝛩−1 + 𝜌𝐼)−1𝐴𝑇 + 𝛿𝐼. (14)

eighbourhood of the infeasible central path:

𝑘(𝛾̄ , 𝛾, 𝛾𝑝, 𝛾𝑑 ) ∶={(𝐱, 𝐲, 𝐬) ∈ R𝑛
>0 × R𝑚 × R𝑛

>0 ∶

𝛾̄𝐱𝑇 𝐬∕𝑛 ≥ 𝑥𝑖𝑠𝑖 ≥ 𝛾𝐱𝑇 𝐬∕𝑛 for 𝑖 = 1,… , 𝑛;

𝐱𝑇 𝐬 ≥ 𝛾𝑝‖𝐴𝐱 + 𝛿(𝐲 − 𝐲𝑘) − 𝐛‖;
𝑇 𝑇

(15)
𝐱 𝐬 ≥ 𝛾𝑑‖𝜌(𝐱 − 𝐱𝑘) − 𝐴 𝐲 − 𝐬 + 𝐜‖},
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where 𝛾̄ > 1 > 𝛾 > 0 and (𝛾𝑝, 𝛾𝑑 ) > 0.

The neighbourhood here considered is standard in the analysis of
nfeasible IPMs (Wright, 1997): it requires the iterates to be close
nough to the central path (according to parameters 𝛾̄ and 𝛾), and the

primal–dual constraint violations to be reduced at the same rate as
the complementarity product 𝐱𝑇 𝐬. Within this neighbourhood, 𝐱𝑇 𝐬 → 0
guarantees convergence to a primal–dual optimal solution.

Moreover, we consider an inexact solution of the linear system (11):

Assumption 2.

𝑆𝜌,𝛿𝛥𝐲 = 𝝃̄𝑝 + 𝜻 where ‖𝜻‖ ≤ 𝐶inexact 𝐱𝑇 𝐬, (16)

where 𝐶inexact ∈ (0, 1) and we defined

𝝃̄𝑝 ∶= 𝝃𝑝 − 𝐴(𝛩−1 + 𝜌𝐼)−1(𝑋−1𝝃𝜇,𝜎 + 𝝃𝑑 ).

It is important to note that the above Assumption 2 is a non-
standard requirement in inexact Newton methods (Dembo, Eisenstat, &
Steihaug, 1982; Kelly, 1995). Its particular form is motivated by the use
of IPM and the needs of the complexity analysis in Section 3. It is chosen
in agreement with the definition of the infeasible neighbourhood (15)
of the central path of the sub-problem considered. Using (12) and (16)
in (9), we have

‖𝐴𝛥𝐱 + 𝛿𝛥𝐲 − 𝝃𝑝‖ = ‖𝑆𝜌,𝛿𝛥𝐲 − 𝝃̄𝑝‖ = ‖𝜻‖,

whereas Eqs. (8) and (10) are satisfied exactly. Therefore the inexact
Newton directions computed according to (16) satisfy:

⎡

⎢

⎢

⎣

𝜌𝐼 −𝐴𝑇 −𝐼
𝐴 𝛿𝐼 0
𝑆 0 𝑋

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛥𝐱
𝛥𝐲
𝛥𝐬

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝝃𝑑
𝝃𝑝
𝝃𝜇,𝜎

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

0
𝜻
0

⎤

⎥

⎥

⎦

. (17)

Define

⎡

⎢

⎢

⎣

𝐱𝑗𝑘(𝛼)
𝐲𝑗𝑘(𝛼)
𝐬𝑗𝑘(𝛼)

⎤

⎥

⎥

⎦

∶=
⎡

⎢

⎢

⎣

𝐱𝑗𝑘
𝐲𝑗𝑘
𝐬𝑗𝑘

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝛼𝛥𝐱𝑗𝑘
𝛼𝛥𝐲𝑗𝑘
𝛼𝛥𝐬𝑗𝑘

⎤

⎥

⎥

⎦

, (18)

i.e. 𝐱𝑗𝑘(𝛼) is the point reached from 𝐱𝑗𝑘 after a step of length 𝛼 along the
ewton direction. Notice that, after selecting the correct stepsize 𝛼𝑗𝑘,
e define 𝐱𝑗+1𝑘 ∶= 𝐱𝑗𝑘(𝛼

𝑗
𝑘).

We report in Algorithm 2 a prototype IPM scheme for the solution
f problem (PPM(𝑘)). The fundamental steps involved in the algo-
ithm are: computing the Newton direction by solving (17) with a
evel of inexactness that satisfies (16), see Line 2; finding the largest
tepsize that guarantees to remain inside the neighbourhood and to
ufficiently reduce the complementarity products, see Line 7; preparing
he quantities to be used in the next iteration, see Lines 8–9.

We study the convergence of Algorithm 2 in Section 3. Concerning
he notation, recall that the subscript 𝑘 is related to the iteration
ount of the outer Algorithm 1 (PPM) whereas the superscript 𝑗 is
elated to the iteration of the inner Algorithm 2 (IPM). To avoid over-
omplicating the notation, notice that in the following we use 𝝃𝑗𝑝,𝑘 and
𝑗
𝑑,𝑘 instead of (𝝃𝑝)

𝑗
𝑘 and (𝝃𝑑 )

𝑗
𝑘.

. Convergence and complexity

In this section, we show that the particular inexact IPM in Algorithm
, used as inner solver in Algorithm 1, is convergent. Moreover, at the
nd of the present section, we show that such IPM converges to an
−accurate solution in a polynomial number of iterations. Our implant
f the proof is inspired by the works (Armand & Benoist, 2013; Bellavia,
998; Cornelis & Vanroose, 2021; Friedlander & Orban, 2012; Kojima,
egiddo, & Mizuno, 1993; Korzak, 2000) but consistently differs from

he hypothesis and techniques used there.
Before continuing, let us observe that the PPM iteration counter 𝑘 is
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ixed through this section and, for the sake of readability, is used only r
Input: 0 < 𝜎, 𝜎̄ < 1, barrier reduction parameters s.t. 𝜎 < 𝜎̄;
𝐶inexact ∈ (0, 1) inexactness parameter s.t. 𝛾𝑝𝐶inexact < 𝜎;
Initialization:
Iteration counter 𝑗 = 0;
Primal–dual point (𝐱0𝑘, 𝐲

0
𝑘, 𝐬

0
𝑘) ∈ 𝑘(𝛾̄ , 𝛾, 𝛾𝑝, 𝛾𝑑 )

Compute 𝜇0
𝑘 ∶= 𝐱0𝑘

𝑇 𝐬0𝑘∕𝑛, 𝝃0𝑑,𝑘, and 𝝃0𝑝,𝑘.
1 while Stopping Criterion (4) False do
2 Solve the KKT system (17) using [𝝃𝑗𝑑,𝑘, 𝝃

𝑗
𝑝,𝑘, 𝝃

𝑗
𝜇𝑗𝑘 ,𝜎

]𝑇 with

‖𝜻 𝑗𝑘‖ ≤ 𝐶inexact(𝐱
𝑗
𝑘)

𝑇 𝐬𝑘 to find [𝛥𝐱𝑗𝑘, 𝛥𝐲
𝑗
𝑘, 𝛥𝐬

𝑗
𝑘]

𝑇 ;
3 Compute

𝛼∗,𝑗𝑝 = sup{𝛼 ∈ R ∶ 𝐱𝑗𝑘(𝛼) ≥ 0}

𝛼∗,𝑗𝑑 = sup{𝛼 ∈ R ∶ 𝐬𝑗𝑘(𝛼) ≥ 0}

and define 𝛼∗,𝑗 ∶= min{𝛼∗,𝑗𝑝 , 𝛼∗,𝑗𝑑 };
4 if (𝐱𝑘(𝛼∗,𝑗 ), 𝐲𝑘(𝛼∗,𝑗 ), 𝐬𝑘(𝛼∗,𝑗 )) is a solution of (PPM(𝑘)) then
5 Stop
6 end
7 Find 𝛼𝑗𝑘 as the maximum 𝛼 ∈ [0, 1] s.t. for all 𝛼 ∈ [0, 𝛼𝑗𝑘]

(𝐱𝑗𝑘(𝛼), 𝐲
𝑗
𝑘(𝛼), 𝐬

𝑗
𝑘(𝛼)) ∈ 𝑘(𝛾̄ , 𝛾, 𝛾𝑝, 𝛾𝑑 ) and

𝐱𝑗𝑘(𝛼)
𝑇 𝐬𝑗𝑘(𝛼) ≤ (1 − (1 − 𝜎̄)𝛼)𝐱𝑗𝑘

𝑇 𝐬𝑗𝑘;
(19)

8 Set
⎡

⎢

⎢

⎢

⎣

𝐱𝑗+1𝑘
𝐲𝑗+1𝑘
𝐬𝑗+1𝑘

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐱𝑗𝑘
𝐲𝑗𝑘
𝐬𝑗𝑘

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝛼𝑗𝑘𝛥𝐱
𝑗
𝑘

𝛼𝑗𝑘𝛥𝐲
𝑗
𝑘

𝛼𝑗𝑘𝛥𝐬
𝑗
𝑘

⎤

⎥

⎥

⎦

;

9 Compute the infeasibilities 𝝃𝑗+1𝑑,𝑘 , 𝝃𝑗+1𝑝,𝑘 and barrier parameter
𝜇𝑗+1
𝑘 ∶= (𝐱𝑗+1𝑘 )𝑇 𝐬𝑗+1𝑘 ∕𝑛 ;

10 Update the iteration counter: 𝑗 ∶= 𝑗 + 1.
11 end

Algorithm 2: IPM: inner loop of PS-IPM

when writing the fixed PPM iteration (𝐱𝑘, 𝐲𝑘, 𝐬𝑘) and not in the context
of the IPM iterations (𝐱𝑗𝑘, 𝐲

𝑗
𝑘, 𝐬

𝑗
𝑘).

We start from analysing the progress made in a single Newton
iteration. Using (6), (7), and (8) we obtain

𝜌(𝐱𝑗 (𝛼) − 𝐱𝑘) − 𝐴𝑇 𝐲𝑗 (𝛼) − 𝐬𝑗 (𝛼) + 𝐜
= (𝜌(𝐱𝑗 − 𝐱𝑘) − 𝐴𝑇 𝐲𝑗 − 𝐬𝑗 + 𝐜) + 𝛼(𝜌𝛥𝐱𝑗 − 𝐴𝑇 𝛥𝐲𝑗 − 𝛥𝐬𝑗 )
= (1 − 𝛼)(𝜌(𝐱𝑗 − 𝐱𝑘) − 𝐴𝑇 𝐲𝑗 − 𝐬𝑗 + 𝐜),

(20)

whereas, using (6) and (17) we have

𝐴𝐱𝑗 (𝛼) + 𝛿(𝐲𝑗 (𝛼) − 𝐲𝐤) − 𝐛
= (𝐴𝐱𝑗 + 𝛿(𝐲𝑗 − 𝐲𝐤) − 𝐛) + 𝛼(𝐴𝛥𝐱𝑗 + 𝛿𝛥𝐲𝑗 )
= (1 − 𝛼)(𝐴𝐱𝑗 + 𝛿(𝐲𝑗 − 𝐲𝐤) − 𝐛) + 𝛼𝜻 𝑗 .

(21)

The last block equation in (17) yields

(𝐬𝑗 )𝑇 𝛥𝐱𝑗 + (𝐱𝑗 )𝑇 𝛥𝐬𝑗 = −(𝐱𝑗 )𝑇 𝐬𝑗 + 𝜎𝑛𝜇𝑗 = (𝜎 − 1)(𝐱𝑗 )𝑇 𝐬𝑗 (22)

and

𝑠𝑖𝛥𝑥𝑖 + 𝑥𝑖𝛥𝑠𝑖 = 𝜎 𝐱
𝑇 𝐬
𝑛

− 𝑥𝑖𝑠𝑖 . (23)

Finally, using (22), we state the following identity

(𝐱𝑗 + 𝛼𝛥𝐱𝑗 )𝑇 (𝐬𝑗 + 𝛼𝛥𝐬𝑗 ) = (𝐱𝑗 )𝑇 𝐬𝑗 (1 + 𝛼(𝜎 − 1)) + 𝛼2(𝛥𝐱𝑗 )𝑇 𝛥𝐬𝑗 . (24)

With the next Theorem 1 we prove that Algorithm 2 is well-defined:
at each iteration, there exist a non-empty interval of values for the
stepsize 𝛼 such that the next iterate still lies in the neighbourhood
𝑘(𝛾̄ , 𝛾, 𝛾𝑝, 𝛾𝑑 ) and such that the complementarity product (𝐱𝑗𝑘)

𝑇 𝐬𝑗𝑘 is
educed by a sufficient amount, as required in (19).
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Theorem 1. Let us suppose that (𝐱𝑗 , 𝐲𝑗 , 𝐬𝑗 ) ∈ 𝑘(𝛾̄ , 𝛾, 𝛾𝑝, 𝛾𝑑 ) s.t.
(𝐱𝑗 )𝑇 𝐬𝑗 > 0 is given. If the stopping conditions at Line 4 of Algorithm 2
are not satisfied, then there exists 0 < 𝛼̂𝑗< 𝛼∗,𝑗 such that conditions (19)
are satisfied for all 𝛼 ∈ [0, 𝛼̂𝑗 ].

Proof. In this proof we omit also the IPM iterate counter 𝑗, i.e. (𝐱𝑗 , 𝐲𝑗 ,
𝐬𝑗 ) ≡ (𝐱, 𝐲, 𝐬). Let us define the following functions, for all 𝑖 = 1,… , 𝑛

𝑓𝑖(𝛼) ∶=(𝑥𝑖 + 𝛼𝛥𝑥𝑖)(𝑠𝑖 + 𝛼𝛥𝑠𝑖) − 𝛾(𝐱 + 𝛼𝛥𝐱)𝑇 (𝐬 + 𝛼𝛥𝐬)∕𝑛,

𝑓𝑖(𝛼) ∶=𝛾̄(𝐱 + 𝛼𝛥𝐱)𝑇 (𝐬 + 𝛼𝛥𝐬)∕𝑛 − (𝑥𝑖 + 𝛼𝛥𝑥𝑖)(𝑠𝑖 + 𝛼𝛥𝑠𝑖),

ℎ(𝛼) ∶=(1 − (1 − 𝜎̄)𝛼)𝐱𝑇 𝐬 − (𝐱 + 𝛼𝛥𝐱)𝑇 (𝐬 + 𝛼𝛥𝐬),

𝑔𝑑 (𝛼) ∶=(𝐱 + 𝛼𝛥𝐱)𝑇 (𝐬 + 𝛼𝛥𝐬)

− 𝛾𝑑‖𝜌(𝐱 + 𝛼𝛥𝐱 − 𝐱𝑘) − 𝐴𝑇 (𝐲 + 𝛼𝛥𝐲) − (𝐬 + 𝛼𝛥𝐬) + 𝐜‖,

𝑔𝑝(𝛼) ∶=(𝐱 + 𝛼𝛥𝐱)𝑇 (𝐬 + 𝛼𝛥𝐬)

− 𝛾𝑝‖𝐴(𝐱 + 𝛼𝛥𝐱) + 𝛿(𝐲 + 𝛼𝛥𝐲 − 𝐲𝑘) − 𝐛‖.

Using (20) in the expressions of 𝑔𝑑 (𝛼) we have

𝑔𝑑 (𝛼) = (𝐱 + 𝛼𝛥𝐱)𝑇 (𝐬 + 𝛼𝛥𝐬) − 𝛾𝑑 (1 − 𝛼)‖𝜌(𝐱 − 𝐱𝑘) − 𝐴𝑇 𝐲 − 𝐬 + 𝐜‖,

whereas using (21) in the expressions of 𝑔𝑝(𝛼) we have

𝑔𝑝(𝛼) ≥ (𝐱 + 𝛼𝛥𝐱)𝑇 (𝐬 + 𝛼𝛥𝐬) − 𝛾𝑝((1 − 𝛼)‖𝐴𝐱 + 𝛿(𝐲 − 𝐲𝑘) − 𝐛‖ + 𝛼‖𝜻‖).

We start proving that there exists 𝛼̂𝑗 > 0 such that

𝑓𝑖(𝛼) ≥ 0, 𝑓𝑖(𝛼) ≥ 0, ℎ(𝛼) ≥ 0, 𝑔𝑝(𝛼) ≥ 0, 𝑔𝑑 (𝛼) ≥ 0

for all 𝑖 = 1,… , 𝑛 and for all 𝛼 ∈ [0, 𝛼̂𝑗 ]. In the following we will use
extensively the identity (24). We have

𝑓𝑖(𝛼) = (1 − 𝛼)(𝑥𝑖𝑠𝑖 − 𝛾 𝐱
𝑇 𝐬
𝑛

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

+𝛼2(𝛥𝑥𝑖𝛥𝑠𝑖 − 𝛾
(𝛥𝐱)𝑇 𝛥𝐬

𝑛
) + 𝛼𝜎(1 − 𝛾)𝐱

𝑇 𝐬
𝑛

≥ 𝛼2(𝛥𝑥𝑖𝛥𝑠𝑖 − 𝛾
(𝛥𝐱)𝑇 𝛥𝐬

𝑛
) + 𝛼𝜎(1 − 𝛾) 𝐱

𝑇 𝐬
𝑛

.

(25)

Since 𝐱𝑇 𝐬 > 0, using a simple continuity argument, we can infer the
existence of a small enough 𝑓

𝑖
> 0 s.t. 𝑓𝑖(𝛼) ≥ 0 for all 𝛼 ∈ [0, 𝑓

𝑖
].

easoning analogously, we have

𝑖̄(𝛼) = (1 − 𝛼)(𝛾̄ 𝐱
𝑇 𝐬
𝑛

− 𝑥𝑖𝑠𝑖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

+𝛼2(𝛾̄
(𝛥𝐱)𝑇 𝛥𝐬

𝑛
− 𝛥𝑥𝑖𝛥𝑠𝑖) + 𝛼𝜎(𝛾̄ − 1) 𝐱

𝑇 𝐬
𝑛

≥ 𝛼2(𝛾̄
(𝛥𝐱)𝑇 𝛥𝐬

𝑛
− 𝛥𝑥𝑖𝛥𝑠𝑖) + 𝛼𝜎(𝛾̄ − 1) 𝐱

𝑇 𝐬
𝑛

,

(26)

and hence there exists a small enough 𝑓𝑖 > 0 s.t. 𝑓𝑖(𝛼) ≥ 0 for all
∈ [0, 𝑓𝑖].

Concerning ℎ(𝛼), we have

(𝛼) = 𝐱𝑇 𝐬(𝜎̄ − 𝜎)𝛼 − 𝛼2(𝛥𝐱)𝑇 𝛥𝐬, (27)

and, since 𝐱𝑇 𝐬(𝜎̄ − 𝜎) > 0, there exists ℎ̂ > 0 small enough s.t. ℎ(𝛼) ≥ 0
for all 𝛼 ∈ [0, ℎ̂].

Concerning 𝑔𝑑 (𝛼), we have

𝑔𝑑 (𝛼) = (1 − 𝛼)(𝐱𝑇 𝐬 − 𝛾𝑑‖(𝜌(𝐱 − 𝐱𝑘) − 𝐴𝑇 𝐲 − 𝐬 + 𝐜)‖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

+𝛼𝜎𝐱𝑇 𝐬 + 𝛼2(𝛥𝐱)𝑇 𝛥𝐬

≥ 𝛼𝜎𝐱𝑇 𝐬 + 𝛼2(𝛥𝐱)𝑇 𝛥𝐬,

(28)

and hence there exists 𝑔̂𝑑 > 0 small enough s.t. 𝑔𝑑 (𝛼) ≥ 0 for all
𝛼 ∈ [0, 𝑔̂ ].
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𝑑

Finally, concerning 𝑔𝑝(𝛼), we have

𝑔𝑝(𝛼) ≥ (1 − 𝛼)(𝐱𝑇 𝐬 − 𝛾𝑝‖(𝐴𝐱 + 𝛿(𝐲 − 𝐲𝑘) − 𝐛)‖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

+𝛼𝜎𝐱𝑇 𝐬+

+ 𝛼2(𝛥𝐱)𝑇 𝛥𝐬 − 𝛼𝛾𝑝‖𝜻‖

≥ 𝛼(𝜎 − 𝛾𝑝𝐶inexact)𝐱𝑇 𝐬 + 𝛼2(𝛥𝐱)𝑇 𝛥𝐬,

(29)

nd hence there exists 𝑔̂𝑝 > 0 small enough s.t. 𝑔𝑝(𝛼) ≥ 0 for all
∈ [0, 𝑔̂𝑝].

Let us define

𝛼̂𝑗 = min{min
𝑖

𝑓
𝑖
, min

𝑖
𝑓𝑖, ℎ̂, 𝑔̂𝑑 , 𝑔̂𝑝, 1} > 0.

To prove the thesis, it remains to show that 𝛼∗,𝑗 > 𝛼̂𝑗 , i.e. that

(𝐱(𝛼), 𝐲(𝛼), 𝐬(𝛼)) ∈ R𝑛
>0 × R𝑚 × R𝑛

>0 for all 𝛼 ∈ [0, 𝛼̂𝑗 ].

To this aim, let us suppose by contradiction that 𝛼∗,𝑗 ≤ 𝛼̂𝑗 . By definition
of 𝛼∗,𝑗 , there exists 𝓁 ∈ {1,… , 𝑛} s.t. (𝑥𝓁 + 𝛼∗,𝑗𝛥𝑥𝓁)(𝑠𝓁 + 𝛼∗,𝑗𝛥𝑠𝓁) = 0.
We have hence

𝑓𝓁(𝛼
∗,𝑗 ) = −𝛾(𝐱

(

𝛼∗,𝑗 )
)𝑇 𝐬(𝛼∗,𝑗 )∕𝑛 ≥ 0 ⇒ (𝐱

(

𝛼∗,𝑗 )
)𝑇 𝐬(𝛼∗,𝑗 ) = 0.

From the above implication, using 𝑔𝑑 (𝛼∗,𝑗 ) and 𝑔𝑝(𝛼∗,𝑗 ), we obtain that

𝐴𝐱(𝛼∗,𝑗 ) + 𝛿(𝐲(𝛼∗,𝑗 ) − 𝐲𝑘) − 𝐛 = 0

𝜌(𝐱(𝛼∗,𝑗 ) − 𝐱𝑘) − 𝐴𝑇 𝐲(𝛼∗,𝑗 ) − 𝐬(𝛼∗,𝑗 ) + 𝐜 = 0,

i.e. (𝐱(𝛼∗,𝑗 ), 𝐲(𝛼∗,𝑗 ), 𝐬(𝛼∗,𝑗 )) is a solution of problem (PPM(𝑘)). We have
ence obtained a contradiction since we are supposing that Algorithm
did not stop at Line 4. □

Before proving the convergence of Algorithm 2 we would like to
mphasize that the above proof complements and expands (Kojima
t al., 1993, Remark 3.1).

The next two results establish that Algorithm 2 converges to a
olution of problem (PPM(𝑘)). This is done by establishing that the
ight-hand sides of the Newton systems are uniformly bounded and by
howing that the complementarity product (𝐱𝑗 )𝑇 𝐬𝑗 cannot be bounded
way from zero.

orollary 1. The right-hand sides of the Newton systems are uniformly
ounded.

roof. As a consequence of Theorem 1, we can suppose the existence
f a sequence of iterates {(𝐱𝑗 , 𝐲𝑗 , 𝐬𝑗 )}𝑗∈N produced by Algorithm 2 s.t.

(𝐱𝑗 , 𝐲𝑗 , 𝐬𝑗 ) ∈ 𝑘(𝛾̄ , 𝛾, 𝛾𝑝, 𝛾𝑑 ).

ince by construction (𝐱𝑗 )𝑇 𝐬𝑗 ≤ (𝐱0)𝑇 𝐬0, we have from (15)

𝐴𝐱𝑗 + 𝛿(𝐲𝑗 − 𝐲𝑘) − 𝐛‖ ≤ (𝐱0)𝑇 𝐬0∕𝛾𝑝,
𝜌(𝐱𝑗 − 𝐱𝑘) − 𝐴𝑇 𝐲𝑗 − 𝐬𝑗 + 𝐜‖ ≤ (𝐱0)𝑇 𝐬0∕𝛾𝑑 .

oreover, we have

𝑆𝑗𝑋𝑗𝐞 − 𝜎𝜇𝑗𝐞‖ ≤ ‖𝑆𝑗𝑋𝑗𝐞‖ + 𝜎𝜇𝑗
‖𝐞‖

≤ 𝛾̄
√

𝑛
(𝐱𝑗 )𝑇 𝐬𝑗 + 𝜎

√

𝑛
(𝐱𝑗 )𝑇 𝐬𝑗 ≤ 𝛾̄ + 𝜎

√

𝑛
(𝐱0)𝑇 𝐬0. □

Theorem 2. Algorithm 2 produces a sequence of iterates in𝑘(𝛾̄ , 𝛾, 𝛾𝑝, 𝛾𝑑 )
s.t. lim(𝐱𝑗 )𝑇 𝐬𝑗 = 0, i.e. (𝐱𝑗 , 𝐲𝑗 , 𝐬𝑗 ) converges to a solution of problem
(PPM(𝑘)).

Proof. Let us argue by contradiction supposing that there exists 𝜀∗ > 0
s.t. (𝐱𝑗 )𝑇 𝐬𝑗 > 𝜀∗ for all 𝑗 ∈ N.

Claim 1 There exists a constant 𝐶1 dependent only on 𝑛 s.t.

‖[𝛥𝐱𝑗 , 𝛥𝐲𝑗 , 𝛥𝐬𝑗 ]𝑇 ‖ ≤ 𝐶1 for all 𝑗 ∈ N.

The proof of this fact follows observing that the Newton matrices
in (17) satisfy all the hypothesis of Armand and Benoist (2013, Th. 1),
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|

a
b

⎡

⎢

⎢

⎣

⏟

U

𝐽
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𝐻

C

‖

P

(

w

‖

f
t

u
p
a
t
s

T

‖

i.e. they have a uniformly bounded inverse, and that the right-hand
sides are uniformly bounded, see Corollary 1. As a consequence, there
exists another constant 𝐶2 s.t.

|𝛥𝑥𝑗𝑖𝛥𝑠
𝑗
𝑖 − 𝛾

(𝛥𝐱𝑗 )𝑇 𝛥𝐬𝑗
𝑛

| ≤ 𝐶2,

|𝛾̄
(𝛥𝐱𝑗 )𝑇 𝛥𝐬𝑗

𝑛
− 𝛥𝑥𝑗𝑖𝛥𝑠

𝑗
𝑖 | ≤ 𝐶2,

(𝛥𝐱𝑗 )𝑇 𝛥𝐬𝑗 | ≤ 𝐶2.

(30)

Claim 2 There exists 𝛼∗ > 0 s.t. 𝛼𝑗 ≥ 𝛼∗ for all 𝑗 ∈ N.
Using (30) in Eqs. (25), (26), (27), (28), (29) we have

𝑓𝑖(𝛼) ≥ 𝛼2(𝛥𝑥𝑗𝑖𝛥𝑠
𝑗
𝑖 − 𝛾

(𝛥𝐱𝑗 )𝑇 𝛥𝐬𝑗
𝑛

) + 𝛼𝜎(1 − 𝛾)
(𝐱𝑗 )𝑇 𝐬𝑗

𝑛
≥ − 𝐶2𝛼

2 + 𝛼𝜎(1 − 𝛾)𝜀∗∕𝑛,

𝑓𝑖(𝛼) ≥ (𝛾̄
(𝛥𝐱𝑗 )𝑇 𝛥𝐬𝑗

𝑛
− 𝛥𝑥𝑗𝑖𝛥𝑠

𝑗
𝑖 ) + 𝛼𝜎(𝛾̄ − 1)

(𝐱𝑗 )𝑇 𝐬𝑗
𝑛

≥ − 𝐶2𝛼
2 + 𝛼𝜎(𝛾̄ − 1)𝜀∗∕𝑛,

ℎ(𝛼) = (𝐱𝑗 )𝑇 𝐬𝑗 (𝜎̄ − 𝜎)𝛼 − 𝛼2(𝛥𝐱𝑗 )𝑇 𝛥𝐬𝑗

≥ 𝜀∗(𝜎̄ − 𝜎)𝛼 − 𝐶2𝛼
2,

𝑔𝑑 (𝛼) ≥ 𝛼𝜎(𝐱𝑗 )𝑇 𝐬𝑗 + 𝛼2(𝛥𝐱𝑗 )𝑇 𝛥𝐬𝑗 ≥ 𝜀∗𝜎𝛼 − 𝐶2𝛼
2,

𝑔𝑝(𝛼) ≥ 𝛼(𝜎 − 𝑞𝛾𝑝)(𝐱𝑗 )𝑇 𝐬𝑗 + 𝛼2(𝛥𝐱𝑗 )𝑇 𝛥𝐬𝑗 ≥ 𝜀∗𝛼(𝜎 − 𝛾𝑝𝐶inexact) − 𝐶2𝛼
2.

Hence 𝛼𝑗 ≥ 𝛼∗, where

𝛼∗ ∶= min
{

1,
𝜎(1 − 𝛾)𝜀∗∕𝑛

𝐶2
,
𝜎(𝛾̄ − 1)𝜀∗∕𝑛

𝐶2
,
(𝜎̄ − 𝜎)𝜀∗

𝐶2
, 𝜎𝜀

∗

𝐶2
,
(𝜎 − 𝛾𝑝𝐶inexact)𝜀∗

𝐶2

}

.

(31)

The convergence claim follows observing that the inequality

𝜀∗ ≤ (𝐱𝑗 )𝑇 𝐬𝑗 ≤ (1 − (1 − 𝜎̄)𝛼∗)𝑗 (𝐱0)𝑇 𝐬0

leads to a contradiction for 𝑗 → ∞. □

3.1. Polynomial complexity

In this section we show that the number of iterations needed to
reduce 𝜇𝑗 below a certain tolerance 𝜀 grows polynomially with the
size of the problem. Moreover, it is important to note that, from
the definition of the central path 𝑘(𝛾̄ , 𝛾, 𝛾𝑝, 𝛾𝑑 ), the same number of
iterations is sufficient to reduce also the primal and dual infeasibility
below the tolerance 𝜀.

As it is customary in IPM literature, in this section we make the
following assumption:

Assumption 3. The norm of 𝐴, i.e., ‖𝐴‖, is independent of 𝑛.

In the following we will omit the index 𝑗 when this does not lead to
mbiguities. It is important to note that the linear system in (17) can
e written in an alternative form as follows
𝜌𝐼 𝐴𝑇 −𝐼
𝐴 −𝛿𝐼 0
𝑆 0 𝑋

⎤

⎥

⎥

⎦

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐽

⎡

⎢

⎢

⎣

𝛥𝐱
−𝛥𝐲
𝛥𝐬

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝝃𝑑
𝝃𝑝 + 𝜻
𝝃𝜇,𝜎

⎤

⎥

⎥

⎦

.

sing (Armand & Benoist, 2013, Remark 1), we have that

−1 =

⎡

⎢

⎢

⎢

⎣

𝐻−1 1
𝛿𝐻

−1𝐴𝑇 𝐻−1𝑋−1

1
𝛿𝐴𝐻

−1 1
𝛿2
𝐴𝐻−1𝐴𝑇 − 1

𝛿 𝐼
1
𝛿𝐴𝐻

−1𝑋−1

−𝛩−1𝐻−1 − 1
𝛿𝛩

−1𝐻−1𝐴𝑇 (𝐼 − 𝛩−1𝐻−1)𝑋−1

⎤

⎥

⎥

⎥

⎦

, (32)

where 𝐻 ∶= 𝜌𝐼 + 𝛩−1 + 1
𝛿𝐴

𝑇𝐴.
To prove polynomial complexity, we start by bounding the terms

hat appear in the expression (32). The next two technical results are
418

seful in this sense.
Lemma 1. We have that

‖𝐻−1
‖ ∈ 𝑂(‖𝐴‖‖𝐴𝑇

‖).

roof. Using the Sherman–Morrison–Woodbury formula, we get

−1 = (𝜌𝐼+𝛩−1)−1− 1
𝛿
(𝜌𝐼+𝛩−1)−1𝐴𝑇 (𝐼+ 1

𝛿
𝐴(𝜌𝐼+𝛩−1)−1𝐴𝑇 )−1𝐴(𝜌𝐼+𝛩−1)−1.

(33)

We observe

(𝜌𝐼 + 𝛩−1)−1𝑖𝑖 =
𝛩𝑖𝑖

𝜌𝛩𝑖𝑖 + 1
=

𝜌𝛩𝑖𝑖
𝜌𝛩𝑖𝑖 + 1

1
𝜌
< 1

𝜌
(34)

and hence

‖𝐻−1
‖ ≤ ‖(𝜌𝐼 + 𝛩−1)−1‖⋅

⋅
(

1 + 1
𝛿
‖𝐴𝑇

‖‖𝐴‖‖
(

𝐼 + 1
𝛿
𝐴(𝜌𝐼 + 𝛩−1)−1𝐴𝑇 )−1

‖‖

(

𝜌𝐼 + 𝛩−1)−1
‖

)

≤ 1
𝜌
(1 + 1

𝛿𝜌
‖𝐴𝑇

‖‖𝐴‖),

where we used that ‖
(

𝐼 + 1
𝛿𝐴(𝜌𝐼 + 𝛩−1)−1𝐴𝑇 )−1

‖ ≤ 1. □

orollary 2. We have that

𝛩−1𝐻−1
‖ ∈ 𝑂(‖𝐴‖‖𝐴𝑇

‖).

roof. Using (34), we observe that

𝛩−1(𝜌𝐼 + 𝛩−1)−1
)

𝑖𝑖 =
1

𝜌𝛩𝑖𝑖 + 1

and hence, using (33), we have

‖𝛩−1𝐻−1
‖ ≤ ‖𝛩−1(𝜌𝐼 + 𝛩−1)−1‖ ⋅

(

1 + 1
𝛿
‖𝐴𝑇

‖‖𝐴‖‖
(

1 + 1
𝛿
𝐴(𝜌𝐼 + 𝛩−1)−1𝐴𝑇 )−1

‖‖

(

𝜌𝐼 + 𝛩−1)−1
‖

)

≤ 1 + 1
𝛿𝜌

‖𝐴𝑇
‖‖𝐴‖,

here we used (34). □

Therefore, we know that

𝐻−1
‖ ≤ 𝐶3 and ‖𝛩−1𝐻−1

‖ ≤ 𝐶4,

or some positive constants 𝐶3 and 𝐶4 independent of 𝑛, see Assump-
ion 3. Let us define 𝐶5 ∶= max{𝐶3, 𝐶4}.

Now that we have bounded the terms in (32), we look for an
pper bound on the norms of the Newton directions that depend
olynomially on the size of the problem 𝑛. This is a crucial step to find
polynomial lower bound on the minimum stepsize (31) which leads

o the polynomial complexity result mentioned at the beginning of this
ection.

heorem 3. There exists a positive constant 𝐶6 independent of 𝑛 s.t.

[𝛥𝐱𝑗 , 𝛥𝐲𝑗 , 𝛥𝐬𝑗 ]𝑇 ‖ ≤ 𝐶6𝑛
√

𝜇𝑗 for all 𝑗 ∈ N.

Proof. Using (32), we have

𝛥𝐱𝑗 = (𝐻 𝑗 )−1𝝃𝑗𝑑 + 1
𝛿
(𝐻 𝑗 )−1𝐴𝑇 (𝝃𝑗𝑝 + 𝜻

𝑗 ) + (𝐻 𝑗 )−1(𝑋𝑗 )−1𝝃𝑗
𝜎,𝜇𝑗

,

− 𝛥𝐲𝑗 = 1
𝛿
𝐴(𝐻 𝑗 )−1𝝃𝑗𝑑 +

( 1
𝛿2

𝐴(𝐻 𝑗 )−1𝐴𝑇 − 1
𝛿
𝐼
)

(𝝃𝑗𝑝 + 𝜻
𝑗 )

+ 1𝐴(𝐻 𝑗 )−1(𝑋𝑗 )−1𝝃𝑗 ,

𝛿 𝜎,𝜇𝑗
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and hence

‖𝛥𝐱𝑗‖ ≤ ‖(𝐻 𝑗 )−1‖‖𝝃𝑗𝑑‖ +
1
𝛿
‖(𝐻 𝑗 )−1‖‖𝐴𝑇

‖‖𝝃𝑗𝑝 + 𝜻
𝑗
‖

+‖(𝐻 𝑗 )−1∕2‖‖(𝐻 𝑗 )−1∕2(𝑋𝑗 )−1∕2(𝑆𝑗 )1∕2‖

‖(𝑋𝑗 )1∕2(𝑆𝑗 )1∕2𝐞 − 𝜎𝜇𝑗 (𝑋𝑗 )−1∕2(𝑆𝑗 )−1∕2𝐞‖

≤
𝐶5𝑛𝜇𝑗

𝛾𝑑
+

𝐶5‖𝐴𝑇
‖(1 + 𝛾𝑝𝐶inexact)𝑛𝜇𝑗

𝛿𝛾𝑝
+ 𝐶5

(

√

𝛾̄𝑛 + 𝜎

√

𝑛
√𝛾

)

√

𝜇𝑗

≤
(

𝐶5

√

𝜇0

𝛾𝑑
+

𝐶5‖𝐴𝑇
‖(1 + 𝛾𝑝𝐶inexact)

√

𝜇0

𝛿𝛾𝑝
+ 𝐶5

(

√

𝛾̄ + 𝜎 1
√𝛾

)

)

𝑛
√

𝜇𝑗

≤ 𝐶𝛥𝑥𝑛
√

𝜇𝑗 ,

(35)

here we used
‖(𝑋𝑗 )1∕2(𝑆𝑗 )1∕2𝐞 − 𝜎𝜇𝑗 (𝑋𝑗 )−1∕2(𝑆𝑗 )−1∕2𝐞‖

≤ ‖(𝑋𝑗 )1∕2(𝑆𝑗 )1∕2𝐞‖ + ‖𝜎𝜇𝑗 (𝑋𝑗 )−1∕2(𝑆𝑗 )−1∕2𝐞‖,

𝜇𝑗 =
√

𝜇𝑗
√

𝜇𝑗 ≤
√

𝜇0
√

𝜇𝑗 and
√

𝑛 ≤ 𝑛, and where 𝐶𝛥𝑥 is a positive
onstant independent of 𝑛 thanks to Assumption 3.

Analogously

𝛥𝐲𝑗‖ ≤ 1
𝛿
‖𝐴‖‖(𝐻 𝑗 )−1‖‖𝝃𝑗𝑑‖ +

( 1
𝛿2

‖(𝐻 𝑗 )−1‖‖𝐴‖‖𝐴𝑇
‖ + 1

𝛿

)

‖𝝃𝑗𝑝 + 𝜻
𝑗
‖

+1
𝛿
‖𝐴‖‖(𝐻 𝑗 )−1∕2‖‖(𝐻 𝑗 )−1∕2(𝑋𝑗 )−1∕2(𝑆𝑗 )1∕2‖⋅

⋅ ‖(𝑋𝑗 )1∕2(𝑆𝑗 )1∕2𝐞 − 𝜎𝜇𝑗 (𝑋𝑗 )−1∕2(𝑆𝑗 )−1∕2𝐞‖

≤
‖𝐴‖𝐶5𝑛𝜇𝑗

𝛿𝛾𝑑
+

(𝐶5‖𝐴𝑇
‖‖𝐴‖ + 𝛿)(1 + 𝛾𝑝𝐶inexact)𝑛𝜇𝑗

𝛿2𝛾𝑝
+

+
𝐶5‖𝐴‖

𝛿

(

√

𝛾̄𝑛 + 𝜎

√

𝑛
√𝛾

)
√

𝜇𝑗

≤
(

‖𝐴‖𝐶5
√

𝜇0

𝛿𝛾𝑑
+

(𝐶5‖𝐴𝑇
‖‖𝐴‖ + 𝛿)(1 + 𝛾𝑝𝐶inexact)

√

𝜇0

𝛿2𝛾𝑝
+

+
𝐶5‖𝐴‖

𝛿

(

√

𝛾̄ + 𝜎 1
√𝛾

)

)

𝑛
√

𝜇𝑗

≤ 𝐶𝛥𝑦𝑛
√

𝜇𝑗 ,

(36)

where 𝐶𝛥𝑦 is a positive constant independent of 𝑛, see, once more,
ssumption 3. Finally, using the fact that 𝛥𝐬𝑗 = 𝜌𝛥𝐱𝑗 −𝐴𝑇 𝛥𝐲𝑗 − 𝝃𝑗𝑑 and
sing (35), (36), and the definition of 𝑘(𝛾̄ , 𝛾, 𝛾𝑝, 𝛾𝑑 ), we have

‖𝛥𝐬𝑗‖ =𝜌‖𝛥𝐱𝑗‖ + ‖𝐴𝑇
‖‖𝛥𝐲𝑗‖ + ‖𝝃𝑗𝑑‖

≤ 𝜌𝐶𝛥𝑥𝑛
√

𝜇𝑗 + ‖𝐴𝑇
‖𝐶𝛥𝑦𝑛

√

𝜇𝑗 +
𝑛𝜇𝑗

𝛾𝑑

≤
(

𝜌𝐶𝛥𝑥 + ‖𝐴𝑇
‖𝐶𝛥𝑦 +

√

𝜇0

𝛾𝑑

)

𝑛
√

𝜇𝑗

≤ 𝐶𝛥𝑠𝑛
√

𝜇𝑗 ,

where 𝐶𝛥𝑠 is a positive constant independent of 𝑛. The thesis follows
setting 𝐶6 = max(𝐶𝛥𝑥, 𝐶𝛥𝑦, 𝐶𝛥𝑠). □

The next straightforward technical result specializes the polynomial
bound of Theorem 3 to the terms that appear in Eqs. (25)–(29).

Corollary 3. There exists a positive constant 𝐶7 independent of 𝑛 such
hat, for all 𝑖

𝛥𝑥𝑖𝛥𝑠𝑖 − 𝛾
(𝛥𝐱)𝑇 𝛥𝐬

𝑛
|

|

|

≤ 𝐶7𝑛
2𝜇,

|

|

|

𝛾̄
(𝛥𝐱)𝑇 𝛥𝐬

𝑛
− 𝛥𝑥𝑖𝛥𝑠𝑖

|

|

|

≤ 𝐶7𝑛
2𝜇,

|(𝛥𝐱)𝑇 𝛥𝐬| ≤ 𝐶7𝑛
2𝜇.

(37)

We can now apply the previous results and obtain a bound similar to
(31), but that depends polynomially on the size of the problem 𝑛. This
is the last fundamental step before the polynomial complexity result
can be stated.
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Theorem 4. There exists a constant 𝛼̃ s.t. 𝛼𝑗 ≥ 𝛼̃ for all 𝑗 ∈ N and

𝛼̃ ≥ 𝐶8𝑛
−2,

where 𝐶8 is a positive constant independent of 𝑛.

Proof. Using (37) in Eqs. (25), (26), (27), (28), (29) we have:

𝑓𝑖(𝛼) ≥ 𝛼2
(

𝛥𝑥𝑖𝛥𝑠𝑖 − 𝛾
(𝛥𝐱)𝑇 𝛥𝐬

𝑛

)

+ 𝛼𝜎(1 − 𝛾) 𝐱
𝑇 𝐬
𝑛

≥ − 𝐶7𝑛
2𝜇𝛼2 + 𝛼𝜎(1 − 𝛾)𝜇,

𝑓𝑖(𝛼) ≥ 𝛼2
(

𝛾̄
(𝛥𝐱)𝑇 𝛥𝐬

𝑛
− 𝛥𝑥𝑖𝛥𝑠𝑖

)

+ 𝛼𝜎(𝛾̄ − 1) 𝐱
𝑇 𝐬
𝑛

≥ − 𝐶7𝑛
2𝜇𝛼2 + 𝛼𝜎(𝛾̄ − 1)𝜇,

ℎ(𝛼) = 𝐱𝑇 𝐬(𝜎̄ − 𝜎)𝛼 − 𝛼2(𝛥𝐱)𝑇 𝛥𝐬 ≥ 𝑛𝜇(𝜎̄ − 𝜎)𝛼 − 𝐶7𝑛
2𝜇𝛼2,

𝑔𝑑 (𝛼) ≥ 𝛼𝜎𝐱𝑇 𝐬 + 𝛼2(𝛥𝐱)𝑇 𝛥𝐬 ≥ 𝑛𝜇𝜎𝛼 − 𝐶7𝑛
2𝜇𝛼2,

𝑔𝑝(𝛼) ≥ 𝛼(𝜎 − 𝛾𝑝𝐶inexact)𝐱𝑇 𝐬 + 𝛼2(𝛥𝐱)𝑇 𝛥𝐬 ≥ 𝑛𝜇𝛼(𝜎 − 𝛾𝑝𝐶inexact) − 𝐶7𝑛
2𝜇𝛼2.

Hence, defining

𝛼̃ ∶=min
{

1,
𝜎(1 − 𝛾)

𝐶7𝑛2
,
𝜎(𝛾̄ − 1)
𝐶7𝑛2

,
(𝜎̄ − 𝜎)
𝐶7𝑛

, 𝜎
𝐶7𝑛

,
(𝜎 − 𝛾𝑝𝐶inexact)

𝐶7𝑛

}

,

the thesis follows observing that, by definition, 𝛼𝑗 ≥ 𝛼̃. □

Finally, we are ready to show that the number of iterations required
to reduce 𝜇 below a certain tolerance 𝜀 is proportional to 𝑛2.

Theorem 5. Algorithm 2 has polynomial complexity, i.e. given 𝜀 > 0 there
xists 𝐾 ∈ 𝑂(𝑛2 ln( 1𝜀 )) s.t. 𝜇

𝑗 ≤ 𝜀 for all 𝑗 ≥ 𝐾.

Proof. Thesis follows observing that

(𝐱𝑗 )𝑇 𝐬𝑗 ≤
(

1 − (1 − 𝜎̄)𝛼̃
)𝑗 (𝐱0)𝑇 𝐬0 ≤

(

1 − (1 − 𝜎̄)
𝐶8

𝑛2
)𝑗

(𝐱0)𝑇 𝐬0. □

Before concluding this section it is important to note that, with a
simple modification of the arguments here contained, it is possible to
prove polynomial convergence also when ‖𝐴‖ grows linearly with the
dimension 𝑛. Nevertheless, in this case the term 𝑂(𝑛2 ln( 1𝜀 )) appearing
in the statement of Theorem 5 has to be replaced with 𝑂(ℎ(𝑛) ln( 1𝜀 )) for
a suitable polynomial ℎ(𝑛) of degree strictly greater than two.

4. Properties of the regularized normal equations system

In this section we show some properties of matrix 𝑆𝜌,𝛿 that are useful
or the analysis performed in the next section.

For the original graph 𝐺(𝑉 ,𝐸), we define the adjacency matrix  ∈
|𝑉 |×|𝑉 | such that 𝑖𝑗 = 1 if there exists an edge between nodes 𝑖
nd 𝑗 and 𝑖𝑗 = 0 otherwise. Notice that for an undirected graph

is symmetric; we assume that there are no self-loops, so that the
iagonal of  is made of zeros. Let us define the degree matrix of a
raph  ∈ R|𝑉 |×|𝑉 | such that  is diagonal and 𝑗𝑗 is the degree of
ode 𝑗. Notice that 𝑗𝑗 = (𝐞)𝑗 .

Let us define also the Laplacian matrix of a graph as  ∈ R|𝑉 |×|𝑉 |

uch that  =  − . An important relation between the Laplacian 
nd the node-arc incidence matrix 𝐴 is that  = 𝐴𝐴𝑇 .

Given a diagonal matrix 𝛩 and a parameter 𝜌, we define the re-
eighted graph 𝐺𝛩 as the graph with the same connectivity of 𝐺, in

hich the weight of every edge 𝑗 is scaled by a factor
√

𝛩𝑗𝑗
1+𝜌𝛩𝑗𝑗

. The
djacency matrix of the new graph 𝛩 has the same sparsity pattern
f , but takes into account the new weight of the edges. The same
appens for the degree matrix 𝛩. The incidence matrix therefore
ecomes 𝐴𝛩 = 𝐴(𝛩−1 + 𝜌𝐼)−1∕2.

The new Laplacian matrix thus reads 𝛩 = 𝛩 − 𝛩 and can be
ritten as

𝑇 −1 −1 𝑇

𝛩 = 𝐴𝛩𝐴𝛩 = 𝐴(𝛩 + 𝜌𝐼) 𝐴 .
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We have just shown that the normal equations matrix can be
interpreted as the Laplacian matrix of the original graph, where the
edges are weighted according to the diagonal entries of matrix 𝛩.
This result is important because solving linear systems that involve
Laplacian matrices is much easier than solving general linear systems.
We summarize this result in the following Lemma.

Lemma 2. The matrix 𝐴(𝛩−1 + 𝜌𝐼)−1𝐴𝑇 is the Laplacian of a weighted
ndirected graph and hence, for every 𝛩 ∈ R𝑛×𝑛

+

(𝛩−1 + 𝜌𝐼)−1𝐴𝑇 = 𝛩 −𝛩, (38)

here 𝛩 and 𝛩 are the degree and adjacency matrices of the weighted
raph.

The next result shows that the normal matrix is strictly diagonally
ominant, due to the presence of dual regularization. This property is
ignificant because it assures that the incomplete Cholesky factorization
f the normal equations matrix 𝑆𝜌,𝛿 can always be computed without
he algorithm breaking down (in exact arithmetic), see e.g. Manteuffel
1980).

emma 3. If 𝛿 > 0 the matrix 𝑆𝜌,𝛿 is strictly diagonally dominant.

roof. From Lemma 2, we have that 𝐴(𝛩−1 + 𝜌𝐼)−1𝐴𝑇 = 𝛩 −𝛩 and
ence

𝑗≠𝑖
|(𝑆𝜌,𝛿)𝑖𝑗 | =

∑

𝑗≠𝑖
| − (𝛩)𝑖𝑗 | =

∑

𝑗≠𝑖
(𝛩)𝑖𝑗 < (𝛩)𝑖𝑖 + 𝛿 = (𝑆𝜌,𝛿)𝑖𝑖. □

The next two technical results are related to the distribution of
igenvalues of the normal matrix. They are used in the next section to
how that the inexactness introduced when sparsifying the normal ma-
rix remains bounded. Moreover, when Lemma 4 is used in conjunction
ith the sparsity Assumption 1, proves that the polynomial complexity

tated in Theorem 5 holds. Indeed, Lemma 4 implies that Assumption 3
s satisfied for the class of problems considered in this work.

emma 4. ‖𝐴‖2 ∶= 𝜆𝑚𝑎𝑥(𝐴𝐴𝑇 ) ≤ 2max𝑣∈𝑉 𝑑𝑒𝑔(𝑣) ≤ 2𝐶deg.

roof. The proof of the first inequality is a straightforward application
f the Gershgorin’s Circles Theorems, whereas the second one follows
rom Assumption 1. □

emma 5. The eigenvalues 𝜆 of matrix 𝑆𝜌,𝛿 satisfy

≤ 𝜆 < 𝛿 + 2
𝜌
max
𝑣∈𝑉

𝑑𝑒𝑔(𝑣).

Proof. Using the Rayleigh quotient, for some vector 𝐮 and 𝐯 = 𝐴𝑇 𝐮,
he eigenvalues can be written as

=
𝐯𝑇 (𝛩−1 + 𝜌𝐼)−1𝐯

𝐯𝑇 𝐯
𝐮𝑇𝐴𝐴𝑇 𝐮

𝐮𝑇 𝐮
+ 𝛿

he lower bound 𝜆 ≥ 𝛿 is trivial; the upper bound follows from
emma 4 and (34). □

. Sparsification of the reduced matrix

We now propose a technique to reduce the number of nonze-
os in the normal equations 𝑆𝜌,𝛿 , based on the weights of the edges
n the re-weighted graph (according to Lemma 2). We then show
hat this sparsification strategy is sound and produces a polynomially
onvergent interior point algorithm.

In this section we omit the IPM iteration counter 𝑗 and we consider
ll the IPM-related quantities as a function of 𝜇 → 0. As IPMs progress
owards optimality, we expect the following partition of the diagonal
atrix 𝛩 contributed by the barrier term:

∶= {𝑖 = 1,… , 𝑛 s.t. 𝑥𝑖 → 𝑥∗𝑖 > 0, 𝑠𝑖 → 𝑠∗𝑖 = 0}
∗ ∗
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∶= {𝑖 = 1,… , 𝑛 s.t. 𝑥𝑖 → 𝑥𝑖 = 0, 𝑠𝑖 → 𝑠𝑖 > 0},
here the optimal solution (𝐱∗, 𝐲∗, 𝐬∗) was defined in (3). Notice that
, ) is the partition corresponding to the optimal solution.

ssumption 4. We suppose that the following asymptotic estimates
old

𝑖 ∈ 𝑂(𝜇) and 𝑥𝑖 ∈ 𝑂(1) for 𝑖 ∈ 

𝑖 ∈ 𝑂(𝜇) and 𝑠𝑖 ∈ 𝑂(1) for 𝑖 ∈ 
(39)

nd, since 𝑥−1𝑖 𝑠𝑖 ≈ 𝜇𝑥−2𝑖 when an IPM iterate is sufficiently close to the
entral path, using (39), we suppose
−1
𝑖𝑖 = 𝑥−1𝑖 𝑠𝑖 = 𝑂(𝜇) for 𝑖 ∈  and 𝛩−1

𝑖𝑖 = 𝑥−1𝑖 𝑠𝑖 = 𝑂(𝜇−1) for 𝑖 ∈  .

This assumption makes sense given the neighbourhood that is con-
idered, see e.g. Gondzio (2012b).

Due to Assumption 4, we consider the following asymptotic esti-
ates of (𝛩−1 + 𝜌𝐼)−1

𝛩−1 + 𝜌𝐼)−1𝑖𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑂( 1
𝜌+𝜇 ) if 𝑖 ∈ 

𝑂( 𝜇
1+𝜌𝜇 ) if 𝑖 ∈  .

The diagonal entries of 𝛩 give a specific weight to each column of
matrix 𝐴 (or equivalently, give a weight to each edge of the original
sparse graph, as shown in Lemma 2). The columns for which the
corresponding 𝛩𝑖𝑖 is 𝑂(𝜇) have a very small impact on the normal
matrix, but still contribute to its sparsity pattern. In order to save
time and memory when forming (complete or incomplete) Cholesky
factorizations, we propose the following sparsification strategy: we
introduce a suitable threshold 𝐶𝑡 ∈ R+ and define

(𝛩†
𝐶𝑡𝜇,𝜌

)𝑖𝑖 ∶=

⎧

⎪

⎨

⎪

⎩

(𝛩−1 + 𝜌𝐼)−1𝑖𝑖 if (𝛩−1 + 𝜌𝐼)−1𝑖𝑖 ≥ 𝐶𝑡𝜇
1+𝜌𝜇

0 if (𝛩−1 + 𝜌𝐼)−1𝑖𝑖 < 𝐶𝑡𝜇
1+𝜌𝜇 .

(40)

We define the 𝜇-sparsified version 𝑆𝐶𝑡𝜇
𝜌,𝛿 of 𝑆𝜌,𝛿 as

𝑆𝐶𝑡𝜇
𝜌,𝛿 ∶= 𝐴𝛩†

𝐶𝑡𝜇,𝜌
𝐴𝑇 + 𝛿𝐼. (41)

otice that this matrix completely ignores some of the columns of
(and some of the edges of the graph). The dual regularization 𝛿𝐼

guarantees that the resulting matrix is non-singular, irrespective of the
level of sparsification chosen. In this paper, we consider using inexact
Newton directions produced by solving linear systems with matrix 𝑆𝐶𝑡𝜇

𝜌,𝛿 ,
rather than 𝑆𝜌,𝛿 .

Remark 1. It is important to note that, in general, the sparsity pattern
of the matrix 𝑆𝐶𝑡𝜇

𝜌,𝛿 depends on the choice of the parameter 𝐶𝑡 and on
the partitioning (, ). Indeed, when 𝜇 is sufficiently small, we expect
that
|

|

|

{

𝑖 ∈ {1,… , 𝑛} s.t. (𝛩−1 + 𝜌𝐼)−1𝑖𝑖 ≥
𝐶𝑡𝜇

1 + 𝜌𝜇

}

|

|

|

= ||.

Let us now show how the algorithm is affected by the use of the
roposed sparsified normal matrix. Notice that the results presented
elow depend strongly on two facts: the optimization problem in-
olves an incidence matrix of a graph and thus the normal matrix is a
aplacian, with very desirable properties; the considered IPM employs
rimal–dual regularization.

We start by showing how much the normal matrix deviates from its
parsified counterpart.

heorem 6. The sparsification strategy in (40) produces a matrix which
s close to the original 𝑆𝜌,𝛿 , in the sense that there exists a constant 𝐶9
independent of 𝑛 such that

‖𝑆𝜌,𝛿 − 𝑆𝐶𝑡𝜇
‖≤ 𝐶9

𝐶𝑡𝜇 .
𝜌,𝛿 1 + 𝜌𝜇
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Proof. We have that 𝑆𝜌,𝛿 − 𝑆𝐶𝑡𝜇
𝜌,𝛿 = 𝐴𝐸𝜇𝐴𝑇 where 𝐸𝜇 is the diagonal

matrix defined as

𝐸𝜇
𝑖𝑖 ∶= (𝛩−1+𝜌𝐼)−1𝑖𝑖 −(𝛩†

𝐶𝑡𝜇,𝜌
)𝑖𝑖 =

⎧

⎪

⎨

⎪

⎩

0 if (𝛩−1 + 𝜌𝐼)−1𝑖𝑖 ≥ 𝐶𝑡𝜇
1+𝜌𝜇

(𝛩−1 + 𝜌𝐼)−1𝑖𝑖 if (𝛩−1 + 𝜌𝐼)−1𝑖𝑖 < 𝐶𝑡𝜇
1+𝜌𝜇 .

Hence we have 𝜆𝑚𝑎𝑥(𝐸𝜇) ≤ 𝐶𝑡𝜇
1+𝜌𝜇 . Thesis follows using Lemma 4 and

bserving that

𝐯𝑇 (𝑆𝜌,𝛿 − 𝑆𝐶𝑡𝜇
𝜌,𝛿 )𝐯

𝐯𝑇 𝐯
=

𝐯𝑇 (𝐴𝐸𝜇𝐴𝑇 )𝐯
𝐯𝑇 𝐯

≤ 𝜆𝑚𝑎𝑥(𝐸𝜇)𝜆𝑚𝑎𝑥(𝐴𝐴𝑇 ). □

We now show that the condition number of both matrices, 𝑆𝜌,𝛿 and
𝑆𝐶𝑡𝜇
𝜌,𝛿 , is uniformly bounded. This is an important property when using

iterative Krylov solvers to find the Newton directions.

Lemma 6. When 𝜇 is sufficiently small, the condition numbers of 𝑆𝜌,𝛿 and
𝑆𝐶𝑡𝜇
𝜌,𝛿 satisfy

𝑘2(𝑆𝜌,𝛿) ∈ 𝑂
(

1 + 1
𝛿(𝜌 + 𝜇)

)

and 𝑘2(𝑆
𝐶𝑡𝜇
𝜌,𝛿 ) ∈ 𝑂

(

1 + 1
𝛿(𝜌 + 𝜇)

)

.

Proof. The thesis follows from Lemma 4 and observing that for 𝐯 =
𝐴𝑇𝐰

𝛿 ≤
𝐰𝑇𝑆𝜌,𝛿𝐰
𝐰𝑇𝐰

≤ 𝛿 +
𝐯𝑇 (𝛩−1 + 𝜌𝐼)−1𝐯

𝐯𝑇 𝐯
𝐰𝑇𝐴𝐴𝑇𝐰

𝐰𝑇𝐰
≤ 𝛿 + 𝑂

( 1
𝜌 + 𝜇

(

2max
𝑣∈𝑉

𝑑𝑒𝑔(𝑣)
)

)

.

A similar argument holds for 𝑆𝐶𝑡𝜇
𝜌,𝛿 . □

We now show that the solution of the sparsified linear system is
‘‘close’’ to the solution of the original one, and the bound depends on
𝜇. This result depends on the spectral distributions results shown in the
previous section.

Theorem 7. For all 𝐯 ∈ R𝑚 we have that

(𝑆𝐶𝑡𝜇
𝜌,𝛿 )−1𝐯 = 𝑆−1

𝜌,𝛿𝐯 + 𝝍

where ‖𝝍‖ ≤ 𝐶10
𝐶𝑡𝜇

𝛿2(1+𝜌𝜇)‖𝐯‖ where 𝐶10 is independent of 𝑛.

roof. Using Lemma 5 and Theorem 6, we have that

𝐼 − 𝑆−1
𝜌,𝛿𝑆

𝐶𝑡𝜇
𝜌,𝛿 ‖ ≤ ‖𝑆−1

𝜌,𝛿‖‖𝑆𝜌,𝛿 − 𝑆𝐶𝑡𝜇
𝜌,𝛿 ‖≤ 𝐶10

𝐶𝑡𝜇
𝛿(1 + 𝜌𝜇)

,

and hence

‖(𝑆−1
𝜌,𝛿 − (𝑆𝐶𝑡𝜇

𝜌,𝛿 )−1)𝐯‖ ≤ ‖(𝑆𝐶𝑡𝜇
𝜌,𝛿 )−1‖‖𝑆−1

𝜌,𝛿‖‖(𝑆𝜌,𝛿 − 𝑆𝐶𝑡𝜇
𝜌,𝛿 )𝐯‖

∈ 𝑂
(

𝐶𝑡𝜇
𝛿2(1 + 𝜌𝜇)

‖𝐯‖
)

.
□

The next technical result is useful for the proof of Corollary 4.

emma 7. ‖𝝃̄𝑗𝑝‖ is uniformly bounded w.r.t. the IPM iterates 𝑗, i.e., there
xists a constant 𝐶11 > 0 independent of 𝑛 such that for all 𝑗 ∈ N

𝝃̄𝑗𝑝‖ ≤ 𝐶11𝑛

roof. For the sake of notational clarity, we do not include the index
in the proof. To bound ‖𝝃̄𝑝‖, consider the following estimate

𝝃̄𝑝‖ ≤ ‖𝝃𝑝‖ + ‖𝐴‖
(

‖(𝛩−1 + 𝜌𝐼)−1𝑋−1𝝃𝜇,𝜎‖ + ‖(𝛩−1 + 𝜌𝐼)−1‖‖𝝃𝑑‖
)

.

e already know the following estimates

𝝃𝑝‖ ≤ 𝜇𝑛
𝛾𝑝

≤ 𝜇0𝑛
𝛾𝑝

, ‖𝝃𝑑‖ ≤ 𝜇𝑛
𝛾𝑑

≤ 𝜇0𝑛
𝛾𝑑

, ‖(𝛩−1 + 𝜌𝐼)−1‖ ≤ 1
𝜌
.

To estimate ‖(𝛩−1 + 𝜌𝐼)−1𝑋−1𝝃𝜇,𝜎‖, we proceed as in (35):

‖(𝛩−1 + 𝜌𝐼)−1𝑋−1𝝃 ‖ = ‖(𝛩−1 + 𝜌𝐼)−1(𝑆𝐞 − 𝜎𝜇𝑋−1𝐞)‖ ≤
421

𝜇,𝜎
≤ ‖(𝛩−1 + 𝜌𝐼)−1∕2‖‖(𝛩−1 + 𝜌𝐼)−1∕2𝑋−1∕2𝑆1∕2
‖

(

‖𝑋1∕2𝑆1∕2𝐞‖ + 𝜎𝜇‖𝑋−1∕2𝑆−1∕2𝐞‖
)

.

It is straightforward to prove that

‖(𝛩−1 + 𝜌𝐼)−1∕2‖ ≤ 1
𝜌1∕2

, ‖(𝛩−1 + 𝜌𝐼)−1∕2𝑋−1∕2𝑆1∕2
‖ ≤ 1.

he remaining terms can be bounded using the properties of the
eighbourhood

𝑋1∕2𝑆1∕2𝐞‖ ≤
√

𝜇𝛾̄𝑛, 𝜎𝜇‖𝑋−1∕2𝑆−1∕2𝐞‖ ≤ 𝜎
√

𝜇𝑛
𝛾
.

Since 𝜇 ≤ 𝜇0, we deduce that ‖𝝃̄𝑝‖ ≤ 𝐶11𝑛, for some positive constant
11. □

Finally, we show that, for a small enough constant 𝐶𝑡 independent
f 𝑛, the inexactness introduced by the sparsification strategy satisfies
he condition in (16). Therefore, an algorithm that includes such a
parsification strategy retains the polynomial complexity of the inexact
PM shown in Section 3.

orollary 4. If in Algorithm 2 we generate the search directions using
𝑆𝐶𝑡𝜇
𝜌,𝛿 )−1 with 𝐶𝑡 sufficiently small, i.e. if we compute the search directions
sing (11), (12) and (13) where 𝑆𝐶𝑡𝜇

𝜌,𝛿 substitutes 𝑆𝜌,𝛿 , then Algorithm 2 is
onvergent.

roof. Using Theorem 7, we have

𝑆𝐶𝑡𝜇
𝜌,𝛿 )−1𝝃̄𝑝 = 𝑆−1

𝜌,𝛿 𝝃̄𝑝 + 𝝍

here , using Lemma 7 we have

𝝍‖ ≤ 𝐶10
𝐶𝑡𝜇

𝛿2(1 + 𝜌𝜇)
‖𝝃̄𝑝‖ ≤ 𝐶10𝐶11𝑛

𝐶𝑡𝜇
𝛿2(1 + 𝜌𝜇)

(42)

for some constants 𝐶10, 𝐶11 > 0 independent of 𝑛. Hence

𝑆𝜌,𝛿 (𝑆
𝐶𝑡𝜇
𝜌,𝛿 )−1𝝃̄𝑝

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=𝛥𝐲

= 𝝃̄𝑝 + 𝑆𝜌,𝛿𝝍 .

sing Lemma 5, Assumption 1 and Eq. (42), we have that there exists
constant 𝐶12 > 0 independent of 𝑛 s.t.

𝑆𝜌,𝛿𝝍‖ ≤ 𝐶12𝑛
𝐶𝑡𝜇

𝛿2(1 + 𝜌𝜇)
The thesis follows using Eq. (16) and observing that

𝐶12𝑛
𝐶𝑡𝜇

𝛿2(1 + 𝜌𝜇)
≤ 𝐶inexact𝐱𝑇 𝐬

holds if

𝐶𝑡 <
𝛿2(1 + 𝜌𝜇)𝐶inexact

𝐶12
. □

6. Numerical results

The proposed method is compared with Lemon (Library for Effi-
cient Modelling and Optimization on Networks) (Kovacs, 2015), an
extremely efficient C++ implementation of the network simplex method
(Orlin, 1997), that has been shown to significantly outperform other
popular implementations, like Cplex, see e.g. Castro and Nasini (2021),
Zanetti and Gondzio (2023). The network simplex method has been
shown (Schrieber et al., 2017) to be very competitive against other
algorithms specifically developed for discrete OT, while remaining very
robust and adaptable to many types of problems. Let us highlight that
the other algorithms available in Lemon (cost scaling, capacity scaling,
cycle cancelling) produced worse results than the network simplex.

All the computational tests discussed in this section are performed
using a Dell PowerEdge R740 running Scientific Linux 7 with 4× Intel
Gold 6234 3.3G, 8C/16T, 10.4GT/s, 24.75M Cache, Turbo, HT (130 W)
DDR4-2933, with 500 GB of memory. The PS-IPM implementation
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Fig. 1. Comparison of sparsified and full normal equations approach, using full Cholesky factorization or incomplete Cholesky as preconditioner for PCG, in terms of IPM iterations
and computational time, for problems pref and kleinberg.
M

closely follows the one from Cipolla and Gondzio (2023) and is written
in Matlab®. The software versions used for the numerical experiments
are as follows: Matlab R2022a, Lemon 1.3.1 and GCC 4.8.5 as the C++
ompiler.

We stop Algorithm 1, when

𝐠 − 𝐴𝑇 𝐲 − 𝐬‖∞ ≤ 𝑅 ⋅ 𝑡𝑜𝑙 ∧ ‖𝐛 − 𝐴𝐱‖1 ≤ 𝑅 ⋅ 𝑡𝑜𝑙 ∧ 𝐶𝐱,𝐬 ≤ 𝑡𝑜𝑙, (43)

here

𝑜𝑙 = 10−10, 𝑅 ∶= max{‖𝐴‖∞, ‖𝐛‖1, ‖𝐜‖1},

and

𝐶𝐱,𝐬 ∶= max
𝑖
{min{|(𝐱𝑖𝐬𝑖)|, |𝐱𝑖|, |𝐬𝑖|}}.

oncerning the choice of the parameters in Algorithm 1, we set 𝜎𝑟 =
.7. Moreover, to prevent wasting time on finding excessively accurate
olutions in the early PPM sub-problems, we set 𝜏1 = 10−4, i.e. we use
s inexactness criterion for the PPM method

𝐫𝑘(𝐱𝑘+1, 𝐲𝑘+1)‖ < 104𝜎𝑘𝑟 min{1, ‖(𝐱𝑘+1, 𝐲𝑘+1) − (𝐱𝑘, 𝐲𝑘)‖}.

ndeed, in our computational experience, we have found that driving
he IPM solver to a high accuracy in the initial PPM iterations is
nnecessary and usually leads to a significant deterioration of the
verall performance.

Concerning Algorithm 2, we set as regularization parameters 𝜌 =
0−4 and 𝛿 = 10−6. Moreover, in order to find the search direction, we
mploy a widely used predictor–corrector method (Mehrotra, 1992).
his issue represents the main point where practical implementation
eviates from the theory in order to gain computational efficiency and
s a quite common procedure in the IPM community. We refer the
nterested reader to Gondzio (2012a, Sec. 4.4 ) and references therein
or further explanation of such predictor–corrector technique.

Finally, concerning the test problems, in all the following experi-
ents we generate the load vector 𝝆𝟏−𝝆𝟎 in (1) randomly and such that

he sum of its entries is zero (to guarantee feasibility of the optimization
roblem), with only 10% of them being nonzeros. Moreover, we fix the
eight of each edge at 1.

.1. Analysis of the sparsification strategy

In this section, we compare three possible solution strategies inside
422

he PS-IPM: Cholesky factorization (using Matlab’s chol function)
applied to the full normal equations matrix (14); Cholesky factoriza-
tion (always using Matlab’s chol function) applied to the sparsified
matrix (41); preconditioned conjugate gradient (PCG) (using Matlab’s
pcg function) applied to the sparsified matrix (41) with incomplete
Cholesky preconditioner (computed using Matlab’s ichol function).

ore in particular, as sparsification parameter in (40) we use 𝐶𝑡 = 0.4,
‘𝚍𝚛𝚘𝚙𝚝𝚘𝚕′ = 10−3 in ichol and ‘𝚝𝚘𝚕′ = 10−1𝜇 in pcg.

We test the above mentioned solution strategies on various instances
generated with the CONTEST generator (Taylor & Higham, 2009); in
particular, we considered the graphs pref, kleinberg, smallw and
erdrey, with a fixed number of 100,000 nodes and different densities
(i.e. average number of edges per node). Therefore, for these instances,
𝑚 = |𝑉 | = 100, 000 and 𝑛 = |𝐸| = 𝑚 ⋅ density.

In the upper panels of Figs. 1 and 2 we report the computational
time of the three approaches for various values of densities (chosen in
relation to the properties of the graph), whereas in the lower panels we
report the total number of IPM iterations. From the presented numerical
results, it is clear that the sparsification strategy, in conjunction with
the iterative solution of the linear systems, provides a clear advantage
over the use of a direct factorization. As can be expected, the iterative
method and the sparsification strategy become more advantageous
when the size of the problem (number of edges) increases. On the other
hand, it is important to note that the use of the sparsified Newton
equations in conjunction with the full Cholesky factorization presents
only limited advantages in terms of computational time when compared
to the Cholesky factorization of the full Newton normal equation. This
is the case because the resulting inexact IPM requires, generally, more
iterations to converge (see lower panels of Figs. 1 and 2). Advantages
of the proposed approach become clearer when the graphs are denser.

6.2. Results on randomly generated graphs

In this section, we compare the PS-IPM algorithm, using the sparsi-
fied normal equations matrix and the PCG, with the network simplex
solver of Lemon. For PS-IPM we use the same parameters as proposed
in Section 6.1. The graphs used in this section come from the gen-
erator developed in Viger and Latapy (2005) and already used for
OT on graphs in Essid and Solomon (2018). This generator produces
random connected graphs with a number of nodes varying from 1000

to 10, 000, 000 and degrees of each node in the range [1, 10], with an



European Journal of Operational Research 319 (2024) 413–426S. Cipolla et al.

a
u

I
n
t

d
d
s
P

e
r
s
R
s

Fig. 2. Comparison of sparsified and full normal equations approach, using full Cholesky factorization or incomplete Cholesky as preconditioner for PCG, in terms of IPM iterations
and computational time, for problems erdrey and smallw.
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average of 5 edges per node. For each size, 10 graphs and load vectors
re generated and tested. These parameters closely resemble the ones
sed in Essid and Solomon (2018).

Fig. 3 shows the comparison of the computational time between PS-
PM and Lemon: for each size of the problem (indicated by the total
umber of edges), we report the summary statistics of the execution
imes using Matlab’s boxplot.

For small size problems, Lemon is the clear winner, by two or-
ers of magnitude; however, as the size increases, the performance
ifference between the two methods reduces and for the largest in-
tance considered, Lemon becomes one order of magnitude slower than
S-IPM.

Fig. 4 shows the average computational time against the number of
dges (from 5000 to 50𝑀) in a logarithmic scale, the corresponding
egression lines and their slopes. From the computational results pre-
ented, we can estimate the practical time complexity of both methods.
ecall that, in a log–log plot, polynomials of the type 𝑥𝑚 appear as
traight lines with slope 𝑚. Using linear regression, we can estimate
423

r

hat the time taken by Lemon grows with exponent approximately 2.06,
hile the time taken by PS-IPM grows with exponent approximately
.28, providing a considerable advantage for large sizes and confirming
hat, in practice, a polynomial-type convergence can be expected for the
S-IPM here introduced.

Finally, looking at the full set of results as reported in Fig. 3, let
s mention the fact that the variance of the computational times over
he 10 runs for a given problem size is smaller when using PS-IPM,
specially for large sizes, indicating that the method is more robust
nd less dependent on the specific problem being solved. This is a very
esirable property.

.3. Results on SuiteSparse graphs

Results on randomly generated problems do not necessarily repre-
ent the ability of an optimization method to tackle problems coming
rom real world applications. Therefore, in this section, we show the

esults of applying PS-IPM and Lemon to some sparse graphs from the



European Journal of Operational Research 319 (2024) 413–426S. Cipolla et al.

P

(
t

S
o
e
a
g

Fig. 4. Logarithmic plot of the computational time for randomly generated graphs. The time taken by Lemon (blue circles) grows as (number of edges)2.06; the time taken by
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uiteSparse matrix collection (Davis & Hu, 2011). The characteristics
f the graphs considered are shown in Table 1: the number of nodes,
dges and the average number of edges per node. All the graphs
re undirected and connected. Due to the fact that the considered
raphs are particularly sparse, in the numerical results presented in
424

w

his section, we solve the sparsified normal equations using the full
holesky factorization.

Fig. 5 shows the computational times for the eight problems con-
idered, using PS-IPM and Lemon. Apart from the problem nc2010,
hich represents a relatively small instance in out dataset, on all the
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Table 1
Details of the graphs from the SuiteSparse matrix collection, ordered by increasing
number of edges.

Name Nodes Edges Density

nc2010 288,987 1,416,620 4.9
NACA0015 1,039,183 6,229,636 6.0
great-britain-osm 7,733,822 16,313,034 2.1
hugetric-00010 6,592,765 19,771,708 3.0
hugetric-00020 7,122,792 21,361,554 3.0
hugetrace-00010 12,057,441 36,164,358 3.0
hugetrace-00020 16,002,413 47,997,626 3.0
delaunay-n23 8,388,608 50,331,568 6.0

other problems PS-IPM consistently outperforms Lemon in terms of re-
quired computational time. In particular, for the problems hugetric-
00010, hugetric-00020, hugetrace-00010 and hugetrace-
00020, which reach up to 16 million nodes and 48 million edges,
PS-IPM is one order of magnitude faster than Lemon.

Notice that graphs of these sizes (and larger) appear in many
modern practical applications, e.g. social networks, PageRank, analysis
of rail/road networks, energy models, to mention a few.

Looking at the regression lines and their slopes, we notice that the
time taken by Lemon grows with exponent approximately 2.07 while
the time taken by PS-IPM grows with exponent approximately 1.40.
These values are very close to the ones found previously for randomly
generated graphs. The data of Fig. 5 however has a more erratic
behaviour than the times shown in Fig. 4, because the properties of
each graph considered are different and because we are not averaging
over 10 different instances of each problem.

Let us highlight also that the time taken by Lemon seems to be more
problem dependent, while PS-IPM looks more consistent and robust.

7. Conclusion

An efficient computational framework for the solution of Optimal
Transport problems on graphs has been presented in this paper. Such
framework relies on Proximal-Stabilized Interior Point Method and
clever sparsifications of the normal Newton equations to compute
the inexact search directions. The proposed technique is sound and
polynomial convergence guarantee has been established for the inner
inexact IPM. Extensive numerical experiments show that for large
scale problems, a simple prototype Matlab implementation is able
to outperform consistently a highly specialized and very efficient C++
implementation of the network simplex method.

We highlight also that Interior Point Methods are more easily paral-
lelizable than simplex-like methods; for huge scale problems, for which
high performance computing resources need to be used, the use of IPMs
with proper parallelization may be the only viable strategy to solve
these problems.
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