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Abstract—Reconfigurable holographic surfaces (RHS) are in-
trinsically amalgamated with reconfigurable intelligent surfaces
(RIS), for beneficially ameliorating the signal propagation en-
vironment. This potent architecture significantly improves the
system performance in non-line-of-sight scenarios at a low power
consumption. Briefly, the RHS technology integrates ultra-thin,
lightweight antennas onto the transceiver, for creating sharp,
high-gain directional beams. We formulate a user sum-rate max-
imization problem for our RHS-RIS-based hybrid beamformer.
Explicitly, we jointly design the digital, holographic, and passive
beamformers for maximizing the sum-rate of all user equipment
(UE). To tackle the resultant nonconvex optimization problem,
we propose an alternating maximization (AM) framework for
decoupling and iteratively solving the subproblems involved.
Specifically, we employ the zero-forcing criterion for the digital
beamformer, leverage fractional programming to determine the
radiation amplitudes of the RHS and utilize the Riemannian
conjugate gradient algorithm for optimizing the RIS phase shift
matrix of the passive beamformer. Our simulation results demon-
strate that the proposed RHS-RIS-based hybrid beamformer
outperforms its conventional counterpart operating without an
RIS in multi-UE scenarios. The sum-rate improvement attained
ranges from 8 bps/Hz to 13 bps/Hz for various transmit powers
at the base station (BS) and at the UEs, which is significant.

Index Terms—Reconfigurable holographic surfaces (RHS), re-
configurable intelligent surfaces (RIS), beamforming, sum-rate,
alternating maximization (AM).

I. INTRODUCTION

The next-generation wireless communication systems pri-
marily aim for enhancing the reliable data transfer speeds,
for reduced latency, and for providing ubiquitous connectiv-
ity [1], [2]. In particular, the millimeter-wave (mmWave) band,
has emerged as one of the leading candidates for spectrum
exploitation to address the impending spectrum scarcity and
to facilitate high-speed data delivery. This mmWave band
presents clear advantages owing to the rapid advances in its
sophisticated circuit design [3]. In conjunction with the exist-
ing mmWave [4]–[6] bands, reconfigurable intelligent surfaces
(RIS) have been proposed for enhancing the performance
of future wireless systems [7]–[9]. Briefly, a RIS consists
of a metasurface having programmable reflecting elements
(PREs) that passively manipulate the incident waves, directing
them towards desired destinations, unlike traditional signal
relaying methods [10]. Thus, RIS address the limitations
of conventional wireless channels by harnessing the unique
capability of metasurfaces to manipulate the electromagnetic
waves [11]. This manipulation enables various applications,

including arbitrary aperture beamforming [11], polarization
conversion [12], and beam focusing [13].

Wireless signals in the mmWave bands experience signifi-
cant path loss, resulting in potential performance degradation.
To address this issue in mmWave systems, it is essential to
jointly design the active beamformer at the base station (BS)
and the passive beamformer at the RIS. As for the active
beamformer at the BS, originally analog beamforming was
proposed, which is based on a fully-connected (FC) architec-
ture, where each radio frequency (RF) chain was connected
to all antennas [14]. However, this approach required an
excessive number of phase shifters, even for a low number of
RF chains, leading to considerable power consumption. Hybrid
beamforming (HBF) emerged as a practical low-power solu-
tion, combining analog and digital (baseband) beamformers,
where each RF chain is connected to a subset of antennas [15].

Extensive research has been focused on the design of HBF,
with multiple studies investigating the challenging aspects
of this design [15], [22]–[27], including multiuser (MU)
HBF [22], [27]. A predominant focus of MU beamforming
is the maximization of sum-rate (SR). In [28], the authors
proposed a joint design of PREs and MU beamforming in
a narrow-band scenario to maximize the users’ sum-rate.
Additionally, weighted sum-rate (WSR) algorithms have been
proposed in a Multiple-Input Single-Output (MISO) multiuser
downlink scenario in [17], [18]. These algorithms jointly
optimize beamforming at the BS and the phase coefficients of
RIS elements to enhance the WSR. Furthermore, alternating
optimization methods have been proposed for maximizing the
achievable rate by jointly optimizing the transmit beamformer
and the non-diagonal RIS phase shift matrix in [19], [20]. In
the existing HBF techniques, phased arrays are used at the BS,
with a RIS positioned between the BS and the user equipments
(UEs) for preventing line-of-sight (LOS) blocking.

However, even when using phased arrays-based HBF in
the mmWave band, the associated hardware costs and power
consumption remain excessive, imposing a significant chal-
lenge [29]. This is because phased arrays require numerous
phase shifters and power amplifiers to construct phase-shifting
circuits for accurate beamforming. Additionally, as the op-
erating frequency of massive multiple-input multiple-output
(MIMO) systems increases, the implementation of phased
arrays becomes prohibitive, severely hindering their future
development. Therefore, there is an urgent need for developing
bespoke technologies to meet the exponentially increasing data
demands in next-generation wireless communications.



2

TABLE I: COMPARING OUR CONTRIBUTION TO THE EXISTING LITERATURE

[16] [17] [18] [19] [20] [21] [22] [23] Proposed
mmWave channel X X X X X X X
Multi-UE X X X X X X X X
Optimal power allocation X X X X X X X
Fractional programming X X X
Manifold optimization X X X
RIS X X X X X
Holographic beamformer X X
Sum-rate X X X X X X
Dinkelbach-based method X
RHS-RIS combination X
Mutual coupling at RHS X

In contrast to RIS, the reconfigurable holographic surfaces
(RHS) are capable of addressing the limitations of existing
antenna technologies [21], [30]–[32], such as conventional
phased array architectures. RHS, proposed as a representative
metamaterial antenna [33], leverages the holographic interfer-
ence principle to control the radiation amplitude of incoming
electromagnetic waves. For supporting flexible beam steering,
the RHS relies on a large number of metamaterial radiation
elements connected to RF chains and it is generally integrated
with the transceivers. This approach enables the creation
of large arrays, while maintaining compact and lightweight
transceiver hardware [34].

The physical structure of RHSs is different from that of
the reconfigurable intelligent surfaces (RISs) [7]. Specifically,
an RHS integrates its RF front end into a PCB, allowing
for convenient transceiver implementation without requiring
an extra control link to construct the holographic pattern.
By contrast, an RIS places its RF front end on the outside
in support of its reflective action, hence necessitating an
additional control link between the RIS and the transmitter to
adjust the phase shifts and/or radiation amplitudes. Because of
these structural differences, RHSs typically serve as transmit
and receive antennas, while RISs are commonly used as relays.
Consequently, the active and passive beamforming design of
RHSs and RISs are quite different.

For improving the system’s sum-rate, it is beneficial to
simultaneously harness the advantages of both an RHS and
RIS. This joint deployment is particularly useful in dense
environments exhibiting blocked line-of-sight paths between
BS and UEs. Passive RIS beamforming enhances the received
signals, while RHS transmitters promptly adapt to fast-fading
channels. Despite the challenge of jointly designing the pas-
sive and holographic beamformers, integrating an RHS and
RIS significantly improves the signal quality, beamforming,
energy efficiency, coverage, and cost-effectiveness. This potent
combination promises to beneficially ameliorate the signal
propagation, enhance coverage and increase the capacity,
hence paving the way for advanced wireless communication
networks.

The authors of [21] introduced the RHS in a mmWave
system and solved a sum-rate maximization problem for RHS-
based HBF in the absence of a RIS. However, even with

improved beam control, RHS-aided systems yielded poor
performance in the absence of a stable line-of-sight link,
thereby emphasizing the need to employ an RIS [35]. In [36],
the authors exploit both RHS and RIS systems in the con-
text of a Dual-function radar-communications (DFRC) system
to maximize the radar signal-to-interference-plus-noise ratio
(SINR), while ensuring the required communication SINR for
all UEs. None of the existing works utilized both RHS and RIS
technologies and solved the problem of obtaining the sum-rate
expression for a mmWave multi-UE system.

Against the above background, this is the first piece of
work maximizing the sum-rate through the joint optimization
of digital, holographic, and passive beamformers. The resul-
tant optimization problem is nonconvex along with coupled
variables. To address this challenge, we decouple the problem
into several subproblems, which are then solved using an
alternating maximization (AM) algorithm [37]. Specifically,
we employ zero-forcing beamforming [38] for the digital
beamforming, utilize fractional programming [39] to deter-
mine the radiation amplitudes of the RHS elements, and
leverage the Riemannian conjugate gradient algorithm [40]
to obtain the optimal RIS phase shift matrix for the passive
beamformer. Simulation results demonstrate the effectiveness
of the proposed algorithm, exhibiting improvements over ex-
isting RHS-based methods operating without an RIS.
We summarize the main contributions of the paper as:

1) A RHS-RIS-aided MU mmWave MISO system model is
developed, for supporting single-antenna UEs. The end-
to-end channel gains are determined for this system, con-
sidering scenarios both with and without the RIS. Subse-
quently, a sum-rate maximization problem is formulated
to determine the joint active and passive beamformers
for the RIS system with the objective of maximizing the
system’s sum-rate. Again, this optimization problem is
non-convex.

2) We proposed an alternating maximization algorithm for
HBF design, aiming for maximizing the sum-rate of
the UEs. The front-end digital beamformer matrix is
obtained via the zero-forcing technique, followed by
optimal power allocation. The holographic beamforming
subproblem is solved using fractional programming. The
unit modulus constraints of the RIS phase shift matrix
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define a Riemannian manifold, leading us to propose a
manifold optimization-based algorithm.

3) Extensive simulations demonstrate the remarkable ben-
efits of the proposed algorithm in terms of the signal-
to-interference-plus-noise ratio (SINR) and the number
of UEs in the system. The numerical results indicate a
substantial sum-rate improvement.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model. In Section III, the proposed
AM algorithm is discussed. The performance of the proposed
algorithm is discussed in Section IV and we conclude in
Section V.

Notation: Scalars are denoted by italic letters, lower (upper)
case bold letters denote column vectors (matrices). The super-
scripts (.)−1, (.)∗, (.)H represent inverse, complex conjugate,
and Hermitian operators, respectively. The symbol |.|F denotes
the Frobenius norm of a matrix, the ◦ operator denotes the
element-wise product, while <. and =. represent the real
and imaginary part, respectively. For a matrix A, A(i, i)
represents the i-th diagonal element, and Tr(A) denotes its
trace. Furthermore, Ai,j denotes the element in the i-th row
and the j-th column. For a vector a, a(i) represents the i-th
element, diag(a) denotes the diagonal matrix whose diagonal
elements are the corresponding elements in a, and 1K is an
all-one vector of dimension K × 1.

II. SYSTEM MODEL

In this section, we will first present the system model and
channel model of the mmWave MISO system considered. Then
we formulate the RHS-RIS-aided HBF problem.1

Consider the mmWave multi-UE MISO downlink (DL)
scenario, as illustrated in Fig. 1. The system consists of a
uniform planar array (UPA) having Nt RHS elements at the
BS, an RIS featuring NRIS elements, and K UEs having a
single receive antenna (RA) each. The antennas at the BS
(RIS) along the x- and y-axes are denoted as Nx

t (Nx
RIS) and

Ny
t (Ny

RIS), respectively. The BS transmits K data streams,
and each UE receives a single data stream from the BS. To
enhance the beamforming capabilities, a RHS is employed at
the BS, utilizing holographic techniques. The RHS is fed by
NRF radio-frequency (RF) chains, eliminating the need for
phase-shifters.

Let s ∈ CK×1 represent the transmitted symbol before
beamforming at the BS, where s = [s1, . . . , sK ]T , and sk
denotes the information signal of the k-th UE, for k =
1, . . . ,K. The symbols sk are assumed to be independent with
an average power of one, i.e., E[ssH ] = IK . The symbol
vector s is first precoded by the digital beamformer matrix
F = [f1, . . . , fK ] ∈ CNRF×K and subsequently passed through
the RF chains to the RHS beamformer Mv ∈ CNt×NRF . The
RIS is assumed to have a diagonal phase shift matrix ΘRIS =
diag{ejθ1 , . . . , ejθNRIS } ∈ CNRIS×NRIS with NRIS non-zero
diagonal entries.

The matrices Hd = [hd,1, . . . ,hd,K ]H ∈ CK×Nt ,
HR = [hR,1, . . . ,hR,K ]H ∈ CK×NRIS and GR =

1In this work we have considered switch-controlled RHS-aided beamform-
ing architecture [21], [41], [42].

[gR,1, . . . ,gR,Nt ] ∈ CNRIS×Nt represent the direct channel
spanning from the BS to K UEs, from the RIS to K UEs,
and from the BS to RIS, respectively. Therefore, the effec-
tive channel emerging from the BS to the K UEs can be
expressed as Htot = Hd + HRΘRISGR. In other words,
we have Htot = [htot,1, . . . ,htot,K ]H , where hHtot,k ∈ C1×Nt

(k = 1, 2, . . . ,K) represents the complete channel vector from
the BS to the k-th single-antenna UE.

A. Channel model
A realistic channel model should account for both the large-

scale fading and small-scale fading characteristics. However,
the fading channel models commonly used in traditional MISO
systems may not accurately represent the characteristics of
mmWave channels. This discrepancy arises from the signifi-
cant free-space path loss and the presence of large, closely-
packed antenna arrays in mmWave environments. Therefore, to
accurately capture the characteristics of mmWave propagation,
the Saleh-Valenzuela channel model [4], [43] is utilized. The
mmWave channel can be represented as

hHd,k =

√
Nt
Ld

Ld∑
ld=1

αldar(φ
r
ld

)at(φ
t
ld
, ϕtld)H , (1)

hHR,k =

√
NRIS
Lru

Lru∑
lu=1

αluar(φ
r
lu)at(φ

t
lu , ϕ

t
lu)H , (2)

GR =

√
NRISNt
Lbr

Lbr∑
lb=1

αlbar(φ
r
lb
, ϕrlb)at(φ

t
lb
, ϕtlb)

H , (3)

where Ld, Lru and Lbr denote the number of multipath
components in hd,k,hR,k, and GR, respectively. Let the first
path in hR,k and GR denote the line-of-sight components.
Furthermore, αl∗ denotes the complex channel gain of the
l∗-th path, while (φr∗, ϕ

r
∗) and (φt∗, ϕ

t
∗) refer to the physical

angle of arrival and angle of departure, respectively. The
vectors ar(φ

r
∗, ϕ

r
∗) and at(φ

t
∗, ϕ

t
∗) represent the antenna array

response vectors. It is assumed that each UE has a single
receive antenna, and thus, we have ar(φ

r
lu

) = ar(φ
r
ld

) = 1.
The array response vectors can be written as

az (φ, ϕ) =

√
1

NxNy

[
1, . . . , ej

2π
λ d(n

x sinφ sinϕ+ny cosϕ), . . . ,

ej
2π
λ d((N

x−1) sinφ sinϕ+(Ny−1) cosϕ)

]T
. (4)

Here, z ∈ {r, t} and, 0 ≤ nx ≤ (Nx − 1) and 0 ≤ ny ≤
(Ny − 1). The variables Nx and Ny represent the number of
horizontal and vertical elements, respectively, of the UPA in
the 2D plane. The inter-element spacing along the x- and y-
axes for the UPA at the BS and the RIS is denoted by d, which
is dependent on the wavelength λ. Additionally, φ ∈ [0, 2π]
and ϕ ∈ [0, π/2] represent the azimuth and elevation angles,
respectively.

B. RHS Transmitter
The RHS lacks digital processing capability, requiring the

BS to perform signal processing at the baseband. As shown
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Fig. 1: Overview of the RHS-RIS MU-MISO system having K UEs with one receive antenna, a BS with Nt RHS elements and an RIS
with NRIS elements.

in Fig. 1, the BS encodes K distinct data streams using a
digital beamformer matrix F and subsequently up-converts the
processed signals to the carrier frequency through RF chains.
Each RF chain is linked to a feed on the RHS, aligning the
number of RF chains with the number of feeds NRF . Every
RF chain transmits the up-converted signals to its connected
feed. The feed then converts the high-frequency current into
an electromagnetic wave (reference wave) propagating on the
RHS. Since the feeds of the RHS directly connect with the RF
chains, there is no channel or attenuation between the BS and
the RHS [21]. To generate the desired beams, the radiation
amplitude of the reference wave at each element is controlled
by a holographic beamformer matrix M.

The RHS has NRF feeds and (Nx
t ×N

y
t ) discrete elements.

The electromagnetic response is given by

Mv = MV ∈ CN
x
t N

y
t ×NRF , (5)

where each element of the matrix V is represented as
V(p, q) = e−2πγDp,q/λ, where Dp,q denotes the distance
between the p-th RHS element and the q-th feed. The matrix
M = diag[m1,1, . . . ,m1,Nyt

, . . . ,mNxt ,1
, . . . ,mNxt ,N

y
t

] is a
diagonal matrix, with amplitude-control beamformer values
0 ≤ mx,y ≤ 1 for each (x, y)-th RHS element. 2

The dimensions of the holographic surface are represented
by Nx

t and Ny
t . The parameter γ denotes the refractive index

of the material on the RHS. Thus, when the structure of the
holographic surface is fixed, the matrix V is pre-determined.

1) Holographic interference principle: An RHS functions
as a leaky-wave antenna comprising three layers, i.e., NRF
feeds connect with the corresponding RF chain embedded in
the lowest layer. The waveguide structure in the middle layer
guides the reference wave to the Nt discrete sub-wavelength
metamaterial elements integrated on the top layer [44]. Specif-
ically, at the (x, y)-th RHS element, the reference wave im-
ported from the q-th feed and the desired wave propagating in
the target direction (φ0, ϕ0) are characterized by the following

2We use the terms BS antennas and RHS elements interchangeably.

expressions, respectively:

Ψobj(rx,y, φ0, ϕ0) = exp(−jkf (φ0, ϕ0) · rx,y), (6)
Ψref (rqx,y) = exp(−jkr · rqx,y). (7)

Here, kf represents the desired directional channel vector
in free space, kr is the channel vector of the reference wave,
rx,y is the position vector of the (x, y)-th radiation element,
and rqx,y is the distance vector of the link between the feed
q and (x, y)-th radiation element. The interference between
the reference wave and the desired object wave is defined as
follows:

Ψintf (rqx,y, φ0, ϕ0) = Ψobj(rx,y, φ0, ϕ0)Ψ∗ref (rqx,y). (8)

The RHS can only generate the holographic pattern using
the fixed reference wave given in (8). When the holographic
pattern is excited by the reference wave, we have the following
result:

Ψintf (rqx,y, φ0, ϕ0)Ψref (rqx,y) ∝
Ψobj(rx,y, φ0, ϕ0)|Ψref (rqx,y)|2. (9)

To generate the desired wave in the direction (φ0, ϕ0) we
control the interference as described in (8). Furthermore, it
is clear from the (8) and (9) that generating the interference
waves requires phase adjustment. However, in contrast to
conventional phased arrays, the elements of a RHS can only
adjust the radiation amplitude of the reference wave. Each
radiation element is electrically tuned to resonate at a specific
frequency and to emit a reference wave. The specific elements
whose emitted waves are aligned in phase with the desired
directional beam (i.e., the sum of all radiation elements’
waves) are tuned to emit strongly, while those that are out
of phase are adjusted to radiate weakly or not at all [34].
The real part of the interference (i.e., Re[Ψintf ]) represents
the cosine of the phase difference between the object wave
and the reference wave. As this phase difference increases,
Re[Ψintf ] decreases, meeting the requirement for amplitude
control. Thus, Re[Ψintf ] serves as a measure of the radiation
amplitude for each radiation element. To ensure non-negative
values, Re[Ψintf ] is normalized to a range of [0, 1]. The
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radiation amplitude of each radiation element required for
generating a wave propagating in the direction (φ0, ϕ0) can
then be mathematically formulated as:”

mx,y(rqx,y, φ0, ϕ0) =
Re[Ψintf (rqx,y, φ0, ϕ0)] + 1

2
. (10)

According to (10), it is observed that the particular elements
whose reference waves closely match the object wave (i.e.,
have a large amplitude) are tuned to emit strongly. Conversely,
the radiation elements that do not closely match are tuned
down or even turned off. For the multi-beam design of the
holographic pattern, the amplitude of each element is then
determined accordingly as

mx,y(rqx,y, φ0, ϕ0) =

K∑
k=1

NRF∑
q=1

ak,qmx,y(rqx,y, φk, ϕk) ∀(x, y).

(11)
Here, ak,q denotes the amplitude ratio for the beam directed
towards the k-th UE from the q-th feed, and it must satisfy
the condition:

∑K
k=1

∑NRF
q=1 ak,q = 1. This condition ensures

that the total amplitude contribution across all directions and
feeds sums to 1, which also ensures 0 ≤ mx,y ≤ 1.

C. Received Signal at the k-th UE

The intended signal vector for K UEs is s ∈ CK×1. Conse-
quently, the signals transmitted from the BS are expressed by
the vector Fs. Therefore, the signal received by the k-th UE,
denoted as yk, can be expressed as follows:

yk = hHtot,kMvFs + nk, (12)

= hHtot,kMvfksk︸ ︷︷ ︸
Intended signal

+ hHtot,kMv

∑
k′ 6=k

fk′sk′︸ ︷︷ ︸
Interference

+ nk︸︷︷︸
Receiver noise

, (13)

where nk ∼ CN (0, σ2) denotes the additive white Gaussian
noise (AWGN) at the k-th UE.

D. Mutual Coupling

Mutual coupling in wireless communication systems refers
to the interaction between closely placed antennas in an array,
where the electromagnetic fields generated by one antenna
affect the performance of neighboring antennas [45], [46].
Let the effects of mutual coupling among RHS elements be
fully captured by the coupling matrix C, which generally
depends on the positions and radiation power patterns of
the antenna elements. If the mutual coupling effect is not
considered, the coupling matrix C is assumed to be an identity
matrix (INt×Nt ). In the RHS transmitter model associated with
Nt discrete elements, the electromagnetic response including
mutual coupling is given by

Mv = CMV,

{
C = I Without mutual coupling
C 6= I With mutual coupling.

(14)

With mutual coupling, the signal received by the k-th UE is
given by

yk = hHtot,kCMVFs + nk. (15)

We consider the Nt RHS elements at the BS to be isotropic,
with equal spacing between the successive elements [47].
The elements in the mutual coupling matrix C are modeled
according to [48], and the coupling matrix is given by

C = D−1/2, (16)

where the matrix D = {cn′,n} is an Nt ×Nt matrix, and for
the element positions {tn | n = 1, 2, . . . , Nt}, cn′,n is given
by

cn′,n = sinc (2‖tn′ − tn‖2/λ), (17)

where ‖tn′ − tn‖2 represents the distance between the RHS
elements n′ and n. It can be observed that for an antenna array
having a given geometrical deployment, where all the RHS
antenna elements are isotropic, the coupling matrix C in (16)
is deterministic and only has to be computed once, offline. This
approach is based on coupling-agnostic transceiver designs,
which may result in a loss of performance. The corresponding
simulations, with and without the effects of mutual coupling,
are presented in the simulation results section for the proposed
and existing methods. For simplicity, the coupling matrix C is
assumed to be the identity matrix I for the rest of the paper,
as this does not affect the analysis.

E. Beamformer Design

The achievable rate of the k-th UE is given by

Rk = log2

(
1 +

|hHtot,kMvfk|2

σ2 +
∑
k′ 6=k |hHtot,kMvfk′ |2

)
. (18)

Our objective is to maximize the achievable DL sum-rate
through the optimization of the digital beamformer matrix F,
the holographic beamformer matrix M, and the RIS phase
shift matrix ΘRIS . The optimization problem is formulated
as follows:

max
{F,M,ΘRIS}

K∑
k=1

Rk

s.t. Tr(MVFFHVHMH) ≤ PT ,
0 ≤ mx,y ≤ 1, ∀x, y,
|ΘRIS(i, i)|2 = 1, ∀i (19)

where PT represents the total transmit power available at
the BS. The amplitudes mx,y of the holographic beamformer
are constrained to a maximum value of 1. Additionally, the
constraint on ΘRIS specifies that the RIS elements reflect
the impinging signal without any loss of energy. The problem
described in (19) is non-convex due to the product of opti-
mization variables. Therefore, we rely on the AM algorithm,
where in each step, we solve a subproblem, which is convex.

III. ALTERNATING MAXIMIZATION ALGORITHM

In this section, we implement an AM algorithm [37] to
address the sum-rate maximization problem of the RHS-
RIS-aided multi-UE communication system. The considered
joint optimization problem is tackled by decomposing it into
three subproblems: the digital beamforming subproblem, the
holographic beamforming subproblem, and the RIS phase shift
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matrix optimization subproblem. In the AM approach, the
fundamental concept involves decomposing the optimization
variables into multiple blocks. Subsequently, each block is
updated following specific rules, while keeping the remaining
blocks fixed at their previous updated values.

A. Problem Decomposition

To address the optimization problem described in (19)
and achieve the best sum-rate, we decouple the nonconvex
optimization problem into three subproblems outlined below.
We solve these subproblems sequentially to obtain the optimal
values for F, M and ΘRIS .

1) Digital Beamforming: Given the holographic beam-
former matrix M and the RIS phase shift matrix ΘRIS , the
digital beamforming subproblem can be formulated as

P1 : max
{F}

K∑
k=1

Rk, s.t. Tr(MvFFHMH
v ) ≤ PT . (20)

2) Holographic Beamforming: Given the optimal digital
beamformer matrix F of P1 and the RIS phase shift matrix
ΘRIS , the subproblem can be formulated as

P2 : max
{M}

K∑
k=1

Rk, s.t. 0 ≤ mx,y ≤ 1, ∀x, y. (21)

3) RIS phase optimization: Given the optimal digital beam-
former matrix F of P1 and the optimal holographic beam-
former matrix M of P2, the RIS phase shift matrix design
subproblem can be formulated as

P3 : max
{ΘRIS}

K∑
k=1

Rk, s.t. |ΘRIS(i, i)|2 = 1, ∀i. (22)

The AM algorithm iterates between P1, P2, and P3 to
obtain the optimal values for F, M, and ΘRIS .

B. Digital Beamformer Design (P1)

The digital beamforming subproblem, obtained by substituting
Rk from (18) into P1 is presented as follows:

P1 : max
{F}

K∑
k=1

log

(
1 +

|hHtot,kMVfk|2

σ2 +
∑
k′ 6=k |hHtot,kMVfk′ |2

)
,

s.t. Tr(MVFFHMVH) ≤ PT . (23)

The problem P1 is a well-known one, typically addressed
using zero-forcing beamforming. In [38], it has been demon-
strated that zero-forcing beamforming can achieve near-
optimal solutions at low complexity. Therefore, we opt for
employing zero-forcing beamforming along with power alloca-
tion as the low-dimensional digital beamformer at the BS. This
decision is motivated by the need to mitigate the inter-user
interference. The digital beamformer matrix can be expressed
as follows:

F = QH(QQH)−1P
1
2 = F̃P

1
2 , (24)

where Q = [VHMHhtot,1, . . . ,V
HMHhtot,K ] ∈ CK×NRF ,

P = diag(p1, . . . , pK) is a diagonal matrix, and pk repre-
sents the power received at the k-th UE. Using (24) and by

leveraging the properties of zero-forcing beamforming, i.e.,
hHtot,kMVfk =

√
pk and hHtot,kMVfk′ = 0,∀k′ 6= k, the

digital beamforming subproblem may be simplified into a
power allocation problem, as presented below:

max
{pk}

K∑
k=1

log2

(
1 +

pk
σ2

)
,

s.t. Tr
(
P

1
2 F̃HVHMHMVF̃P

1
2

)
≤ PT , pk ≥ 0. (25)

The optimal p∗k can be obtained by the water-filling algo-
rithm [49] as

p∗k =
1

µk
max

{
1

ε
− µkσ2, 0

}
, (26)

where µk is the k-th diagonal element of F̃HVHMHMVF̃,
and ε is a normalization factor satisfying

∑K
k=1max{ 1ε −

µkσ
2, 0} = PT . By obtaining the p∗k values from (26), we

obtain the matrix P, upon substituting the matrix P into
F = F̃P

1
2 , we can then derive the optimal digital beamformer

matrix F.

C. Holographic Beamformer Design (P2)

The optimization problem described in (19) differs from
the traditional phase-controlled analog beamforming design.
The objective function in P2 is nonconvex as it involves
optimization variables in fractional form. Consequently, the
existing algorithms like the semi-definite programming (SDP)
[19] and the gradient ascent algorithm [50] are unable to
handle this. To address this challenge, we employ fractional
programming [39] based optimization, which solves the prob-
lem P2 as a series of optimization problems discussed in this
section:

P2 : max
{M}

K∑
k=1

log

(
1 +

|hHtot,kMVfk|2

σ2 +
∑
k′ 6=k |hHtot,kMVfk′ |2

)
,

s.t. 0 ≤ mx,y ≤ 1, ∀x, y, (27)

P2.1 : max
{M}

K∑
k=1

(
|hHtot,kMVfk|2

σ2 +
∑
k′ 6=k |hHtot,kMVfk′ |2

)
,

s.t. 0 ≤ mx,y ≤ 1, ∀x, y. (28)

The subproblem P2 is not convex. To address P2, we approx-
imate the logarithmic term log(1 +x) by its first-order Taylor
series expansion, which gives x. Therefore, P2.1 is solved to
tackle P2.
Upon reformulating P2.1 as follows:

P2.1 : max
04m41

K∑
k=1

 mT<
(
ΣP2

k

)
m

mT<
(
Σ̃P2

k

)
m + σ2

 , (29)

where we have m = MT1Nt , the matrices ΣP2

k and Σ̃P2

k are
defined as

ΣP2

k = diag(Vfk)htot,kh
H
tot,kdiag(Vfk)H , (30)

Σ̃P2

k = diag(Vfk′)htot,kh
H
tot,kdiag(Vfk′)

H . (31)
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Algorithm 1: Alternating maximization algorithm

Input: Initialize digital beamformer matrix F(0),
holographic beamformer matrix M(0) and RIS
phase shift matrix Θ

(0)
RIS . Set t = 1.

Output: Optimal F, M and ΘRIS

1 Compute the digital beamformer matrix F(t) using
M(t−1), Θ

(t−1)
RIS and (24).

2 Compute the holographic beamformer matrix M(t)

using F(t), Θ
(t−1)
RIS and (32).

3 Compute the RIS phase shift matirx Θ
(t)
RIS using

F(t), M(t) and the Riemannian conjugate gradient
algorithm to solve (37).

4 Set t = t+ 1;
5 repeat steps 1 to 4
6 until The value of the objective function in (19)

converges or maximum iteration reached.

Note that P2.1 is still nonconvex due to the fractional quadratic
objective function. Hence, we simplify it by harnessing the
first-order Taylor approximation as

P2.2 :

max
04m41

K∑
k=1

(2m(0)T<
(
ΣP2

k

)
m−m(0)T<

(
ΣP2

k

)
m(0)

mT<
(
Σ̃P2

k

)
m + σ2

)
,

(32)

where P2.2 is a standard fractional maximization prob-
lem that can be solved using the popular Dinkelbach-based
method [51]. The Algorithm 2 in Appendix summarizes the
solving method for problem P2.2.

D. RIS Phase Shift Matrix Design (P3)
Next we focus on the RIS phase optimization subproblem.

For ease of representation, we define the effective channels for
the direct link and the RIS link. From (12) and (13) we have

yk = hHtot,kMvFs + nk,

= hHd,kMvFs︸ ︷︷ ︸
Direct link

+ hHR,kΘRISGRMvFs︸ ︷︷ ︸
RIS-aided link

+nk,

= (hHd,k + hHR,kΘRISGR)MvFs + nk,

= (hHd,k + hHR,kΘRISGR)Mv

K∑
k=1

fksk + nk. (33)

To make expression (33) more tractable, we further define
θRIS = [ejθ1 , . . . , ejθNRIS ]H and HR,k = diag(hHR,k)GR.
The received signal yk is equivalently represented as

yk =
(
hHd,k + θHRISHR,k

)
Mv

K∑
k=1

fksk + nk. (34)

For the sake of notational simplicity, let us define the effective
channels for the direct link and the RIS link as follows:

ak′,k = HR,kMvfk′ , (35)

bk′,k = hHd,kMvfk′ , (36)

respectively. The phase optimization subproblem P3 can be
expressed as a function of θRIS as follows:

P3 : max
{θRIS}

f(θRIS)

s.t. |θRIS(i)|2 = 1, ∀i = 1, · · · , NRIS (37)

where we have:

f(θRIS) =

K∑
k=1

Rk,

=

K∑
k=1

log2

1 +

∣∣θHRISak,k + bk,k
∣∣2∑

k′ 6=k

∣∣θHRISak′,k + bk′,k
∣∣2 + σ2

 .

(38)

It can be observed that f(θRIS) is both continuous and
differentiable. Additionally, the constraint set of θRIS forms
a complex circle manifold. Consequently, the stationary so-
lution of P3 can be obtained via the Riemannian conjugate
gradient algorithm [40]. The Riemannian conjugate gradient
algorithm exhibits better robustness to initialization than the
family of gradient-based methods in Euclidean spaces. Due
to the constant modulus constraint in (37), the problem is
known to be NP-hard. Other approaches, such as the semi-
definite relaxation with randomization, and the majorization-
minimization framework, could also be used, but they incur
relatively high computational costs due to the non-convex con-
stant modulus constraint. The Riemannian conjugate gradient
algorithm naturally incorporates the physical constraints of
RIS systems, such as the constant modulus constraint, making
it particularly effective in handling the complex non-convex
optimization problems associated with RIS phase shifts on
a manifold. Conceptually, the Riemannian conjugate gradient
algorithm involves three key steps in each iteration:

1) Compute the Riemannian Gradient: For a smooth func-
tion f defined on a Riemannian manifoldM, the Riemannian
gradient (gradf ) is the orthogonal projection of the Euclidean
gradient ∇f onto the complex circle formulated as:

gradf = ∇f − Re {∇f ◦ θ∗RIS} ◦ θRIS , (39)

where the Euclidean gradient is

∇f =

K∑
k=1

2Ak, (40)

in conjunction with

Ak =

∑
k′ ak′,ka

H
k′,kθRIS +

∑
k′ ak′,kb

∗
k′,k∑

k′

∣∣θHRISak′,k + bk′,k
∣∣2 + σ2

−
∑
k′ 6=k ak′,ka

H
k′,kθRIS +

∑
k′ 6=k ak′,kb

∗
k′,k∑

k′ 6=k
∣∣θHRISak′,k + bk′,k

∣∣2 + σ2
.

(41)

2) Search Direction: In general, the search direction is
given by the opposite of the Riemannian gradient. The tangent
vector conjugate of gradf gives the search direction:

η = −gradf + β1T (η̄), (42)
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Fig. 2: Flow chart of the proposed AM algorithm for sum-rate.

where T (.) is the vector transport function defined as

T (η) = η̄ − Re {η ◦ θ∗RIS} ◦ θRIS , (43)

while β1 is the conjugate gradient update parameter, and η̄ is
the previous search direction.

3) Retraction: The retraction step updates the current point
on the manifold using the search direction to ensure that
the next iteration remains on the manifold. By projecting the
tangent vector back to the complex circle manifold we get

θRIS(n)← (θRIS + β2η)n
|(θRIS + β2η)n|

, (44)

where θRIS(n) represents the n-th component of the vector
θRIS and β2 is the Armijo step size, which determines the size
of the step taken along the search direction in each iteration.

To gain a clear understanding of the variable updating
process in each step, please refer to the detailed procedure
formulated by Algorithm in 1.

E. Computational Complexity

In this section we first calculate the complexity of the
algorithms for three subproblems separately and then com-
pute the overall computational complexity of the alternating
maximization algorithm in 1.

• For the update of the digital beamforming matrix F, we
use the zero-forcing algorithm to mitigate interference
by applying a pseudo-inverse of the channel matrix
to the received signal. The complexity of this step is
O(K2NRF ). The normalization factor ε is obtained by
solving the equation

∑K
k=1max{ 1ε − µkσ

2, 0} = PT ,
which has a complexity of O(K2). Following that, the
optimal received power p∗k is obtained by (26) with a
complexity of O(K). Therefore, the total complexity of
the digital beamforming is O(K2NRF ).

• At each inner iteration of the Dinkelbach-based method,
the problem is solved by CVX using the interior-point
method, which generally has a complexity of O(N3

t ) for
the update of the holographic beamformer matrix M.
Given a total of lM inner iterations in Algorithm 2, the
complexity is O(lMN

3
t ).

• To update the RIS phase shift matrix ΘRIS , we use
the Riemannian conjugate gradient algorithm. The com-
plexity of the Riemannian conjugate gradient algorithm
is dominated by the computation of the Euclidean gra-
dient, which is O(K2N2

RIS). The retraction step also
requires iteratively searching for β2 with a complexity

of O(K2NRIS), which can be ignored when NRIS is
large.

Therefore the total complexity for each outer iteration of the
proposed AM algorithm is O(K2NRF + lMN

3
t +K2N2

RIS).

F. Convergence

In the AM Algorithm 1 convinced for digital beamform-
ing, the sum-rate (Rsum) in (18) becomes non-decreasing
after optimizing the digital beamformer matrix F, given the
holographic beamformer M(t−1) and RIS phase shift matrix
Θ

(t−1)
RIS in the t-th iteration, i.e.,

Rsum(F(t),M(t−1),Θ
(t−1)
RIS ) ≥ Rsum(F(t−1),M(t−1),Θ

(t−1)
RIS ).
(45)

Secondly, given the digital beamformer matrix F(t) and the
RIS phase shift matrix Θ

(t−1)
RIS , the holographic beamformer

matrix M(t−1) is optimized using an algorithm proposed in 2,
so that we obtain

Rsum(F(t),M(t),Θ
(t−1)
RIS ) ≥ Rsum(F(t),M(t−1),Θ

(t−1)
RIS ).

(46)
After updating the two variables, given the digital beamformer
matrix F(t) and the holographic beamformer matrix M(t), the
RIS phase shift matrix Θ

(t−1)
RIS is optimized using manifold

optimization. Consequently, we obtain

Rsum(F(t),M(t),Θ
(t)
RIS) ≥ Rsum(F(t),M(t),Θ

(t−1)
RIS ).

(47)
This means that in each update step of the proposed algo-
rithm, the objective function value (i.e., sum-rate) does not
decrease. Additionally, the sequence of objective function
values obtained during the iteration steps is both monotonic
and bounded, ensuring that the overall algorithm will converge.

G. Power Consumption and Hardware Cost

In this section, we compare the power consumption and
hardware cost of phased array and RHS systems. Let us
consider the hardware cost of a phased array module as ξph
and the hardware cost of an RHS module as ξrhs. We define
the cost ratio Cr as the ratio of the phased array’s cost to
the RHS cost, i.e., Cr = ξph

ξrhs
. For a phased array system

with Nt antennas, the hardware cost is NtCrξrhs. Similarly,
for an RHS system having Nt elements, the total hardware
cost is Ntξrhs. In the RHS prototype [52], it is shown that
in array grids, RHSs typically have about 2.5 times as many
elements as a phased array system having the same antenna
directivity. Additionally, the radiation power to total power
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consumption for phased array and RHS systems is 4% and
25%, respectively. In this case, the total hardware cost of an
RHS system is 2.5Ntξrhs and for the phased array system, it
is NtCrξrhs. Given that the typical value of Cr is 10 [52], the
hardware cost of the phased array system is higher than that
of the RHS system. This demonstrates that RHS provides a
powerful solution to reduce hardware costs with lower power
consumption, while guaranteeing better directivity in practice.

IV. SIMULATION RESULTS

In this section, we present simulation results for character-
izing the performance of the proposed approach. We focus
exclusively on the far-field region, as both the RIS and UEs
are positioned beyond the Rayleigh distance (DR = 2D2/λ)
from the BS, where D denotes the array aperture. The AM
algorithm put forward in this study leverages perfect channel
state information (CSI) to achieve the optimal sum-rate for the
system.

TABLE II: Simulation Parameters

Parameters Values
Number of RHS elements (Nt) 16 to 64
Number of RIS elements (NRIS) 20 to 100
Number of RF chains (NRF ) 8
Number of UEs (K) 2 to 4
Number of antennas at each UE 1
Number of multipaths 10
(Ld, Lbr, Lru)
Operating frequency (fc) in GHz 28
Distance between the RIS
elements (d = λ/2) in cm 0.53
Distance between the RHS
elements (d = λ/4) in cm 0.265
Transmit power of the BS 3 to 30
(PT ) in W
Noise power (dBm) -90
Path loss for LOS link (dB) 61.4 + 20 log(di) + 5.8
Path loss for NLOS link (dB) 72 + 29.2 log(di) + 8.7

(0, 30 m)

BS at origin (0,0)

p

(100 m, 0)

RIS

GR

p

HR

UEs

Fig. 3: Overview of the simulated RHS-RIS system having K UEs
with one receive antenna, a BS with Nt RHS elements and an RIS
with NRIS elements.

The simulations rely on a configuration, where random
initial values are assigned to F, M, and ΘRIS . The iterative

process of updating one variable, while holding the others con-
stant is applied to all three variables. This iterative procedure
continues until a specified stopping criterion is satisfied, as
defined in Algorithm 1. The solutions to the three subproblems
optimizing F, M, and ΘRIS are either near-optimal or locally
optimal, as analyzed in the previous subsections. Therefore,
the term ‘optimal’ describes the best solution obtained within
the constraints of a specific algorithm, but it does not neces-
sarily represent the global optimum of the overall problem.
The parameters used for the simulations are given in Table II.
The simulation results are averaged over 100 independent
channel realizations. The wireless channels are generated using
the mmWave channel model (3) discussed in Section II. The
flow chart of the joint sum-rate optimization algorithm is
summarized in Fig. 2. We compare the performance of the
proposed method to a range of benchmark schemes: (a) an
RHS system without an RIS, and (b) an RHS system with
a randomly configured RIS. In the latter case, we consider a
random selection of the passive RIS phase shift matrix ΘRIS .
For a fair comparison, we employ the same objective function
and constraints across all benchmark schemes, using the sum-
rate as the performance metric.3

The BS is equipped with Nt = 64 elements located at
(0m, 0m), and 4 single-antenna UEs (K = 4) uniformly and
randomly distributed in a circle centered at (100m, 30m) with
radius 10 m. We assume that the RIS is deployed at (100m,
0m), and the UEs location is fixed once randomly generated
as shown in Fig. 3. The NRF RF chains are connected to the
Nt RHS elements through NRF feeds that convert the carrier
frequency current into an electromagnetic wave. This wave
propagates through the waveguide of the RHS and radiates
the energy into the free space from the Nt RHS elements, as
shown in Fig. 1.

For the mmWave model, the channel gains αl∗ are
generated independently, following the distribution αl∗ ∼
CN (0, 10−0.1PL(di)). The quantity PL(di) represents the path
loss dependent on the distance di associated with the corre-
sponding link. The modified path loss model described in [4]
is considered, and the path loss in dB is given by the following
equation

PL(di) = a+ 10b log10(di) + κ, (48)

where κ ∈ CN (0, σ2
κ). The values of a, b and σ2

κ are set
to a = 61.4, b = 2 and σ2

κ = 5.8 dB for the line-of-sight
paths. For the non-line-of-sight (NLOS) paths, the values are
set to a = 72, b = 2.92 and σ2

κ = 8.7 dB. To evaluate
the effectiveness of the RIS more accurately, we assume that
each path of Hd is a NLOS path that faces partial blockage
from obstacles and experiences an additional penetration loss
of 40 dB. The carrier frequency (fc) is set to 28 GHz, the
bandwidth (B) is set to 250 MHz and thus the noise power is
−174 + 10 log10B = −90 dBm. For simplicity, we consider
each UE to experience the same number of paths from both
the BS and the RIS. Moreover, we set the number of paths to
Li = 10, i ∈ {d, ru, bu}. The antenna spacing at the RHS and
RIS is set to d = λ/4 and λ/2, respectively.

3In the simulation, the UE locations are (98.3m, 27.8m), (99.8m, 30.1m),
(100.2m, 30.7m) and (99m, 32.9m)
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The RIS is applied to provide a high-quality link between
the BS and UEs, where we assume that the LOS component
is included in the channel between the BS and RIS, and in
the channel between the RIS and each UE. Benefited from
the directional reflections of the RIS, the BS-RIS-UE link is
usually stronger than other multipaths as well as the degraded
direct link between the BS and the UE. Five iterations of the
proposed algorithm have been considered in this analysis. In
each iteration, the three sub problems are solved alternatively.
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RF

 = 8, Hybrid beamforming

Optimal F, F
BB

, w/o RIS, N
t
 = 32

Optimal F, M, w/o RIS, N
t
 = 64

Fig. 4: The sum-rate for hybrid beamforming using active phased arrays
and holographic beamforming is compared across different values of PT for
the case where K = 4.

In Fig. 4, the sum-rate comparison for hybrid beamforming
using active phased arrays and holographic beamforming with-
out an RIS is presented across different PT values for K = 2.
The analog beamforming matrix using active phased arrays
is represented by FBB with the distance between elements
set to λ/2. In contrast, for holographic beamforming, the
distance between RHS elements is λ/4. This allows for twice
the number of smaller RHS elements to be accommodated
within the same space. It is evident that the sum-rate gain
is consistently higher when using holographic beamforming
compared to analog beamforming with active phased arrays.

In Figs. 5a, 5b, and 5c, the sum-rate is illustrated for
K = 2, 3 and 4 and for different PT values. It can be observed
that when there is no RIS in the system, the performance
gain in sum-rate is always less than that of the system
relying on an RIS. If the phase shift matrix ΘRIS is not
optimized, the performance gain achieved by deploying an RIS
is insignificant, as expected. For example, observe in Fig. 5c
that hybrid beamforming and the phase optimization scheme
applied by the system achieve about 13 bps/Hz improvement
in sum-rate at PT = 15 W. It is observed that the proposed
algorithm relying on an optimized phase shift matrix ΘRIS

exhibits the highest sum-rate for all the values of PT across
all methods. Clearly, for higher values of PT at the BS we
can have an increased sum-rate, while keeping the remaining
system parameters constant.

In Fig. 6 the sum-rate is illustrated for K = 2, 3 and 4 and
for a PT value of 15 W. Again, it can be observed that when

there is no RIS in the system and when using a random phase
shift matrix, the sum-rate gain is always less than that of the
system with an optimized RIS. For example, in Fig. 6, the
system achieves about 11.5 bps/Hz improvement in sum-rate
at K = 3 upon using phase optimization. It is also observed
that the proposed algorithm having an optimized phase shift
matrix ΘRIS exhibits the highest sum-rate for all the values of
K for all methods. Clearly, for higher values of K at the BS
we have an increased sum-rate, while keeping the remaining
system parameters constant.

In Fig. 7, a comparison of the sum-rate is illustrated for
NRIS ranging from 20 to 100 with a PT value of 15 W.
Once again, it is evident that the sum-rate gain is consistently
lower, when using a random phase shift matrix compared to
a system with an optimized phase shift matrix ΘRIS for all
values of NRIS . Clearly, for higher values of NRIS we have
an increased sum-rate, while keeping the remaining system
parameters constant.

In Fig. 8, a comparison of the sum-rate is illustrated for
RHS elements ranging from 16 to 64 with a PT value of
15 W. With an optimized phase shift matrix, increasing the
number of RHS elements from 16 to 64 results in a sum-rate
improvement of 13 bps/Hz. Once again, it can be observed
that in the absence of an RIS and when using a random phase
shift matrix, the sum-rate gain is consistently lower than that
achieved by the system having an optimized phase shift matrix
ΘRIS for all values of Nt. Clearly, for higher values of Nt,
we have an increased sum-rate, while keeping the remaining
system parameters constant.

Fig. 9 presents a comparison of the sum-rate for both perfect
and imperfect CSI, evaluating the robustness of the proposed
sum-rate maximization algorithm against channel estimation
errors [17], [21]. In the imperfect CSI case, we assume that the
channel matrix from the RHS to the k-th UE Hk, lies within
a ball of radius 0.1‖Hk‖ around the estimated channel matrix,
Ĥk. This is expressed as Hk = {Ĥk+δk | ‖δk‖ ≤ 0.1‖Hk‖},
where δk represents the channel estimation error, with its norm
assumed to be bounded by 0.1‖Hk‖. A slight drop in the sum-
rate can be observed, indicating the inherent robustness of the
proposed algorithm against channel estimation errors.

In Fig. 10, the sum-rate in the presence of mutual coupling
is illustrated for K = 4 across different PT values. It can be
observed that when the distance between the RHS elements
is λ/4 and the system operates at mmWave frequencies, the
high mutual coupling leads to a significant loss in sum-rate
performance. However, the proposed algorithm, which relies
on an optimized phase shift matrix ΘRIS consistently achieves
the highest sum-rate for all PT values across all methods, even
in the presence of mutual coupling. This demonstrates that our
proposed method performs well in both scenarios, regardless
whether mutual coupling is present or absent.

V. SUMMARY AND CONCLUSION

We proposed a novel AM algorithm designed for maximiz-
ing the sum-rate of a mmWave multi-UE system. The proposed
manifold optimization-based AM algorithm leveraged all the
new wireless technologies like RHS and RIS in the face of a
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Fig. 5: The sum-rate is compared across different values of PT for the case where K = 2, 3 and 4, considering a given set of parameters including
Nt, NRF , and NRIS
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mmWave channel. The numerical results revealed a significant
enhancement in the sum-rate when employing our proposed
algorithm. The sum-rate improvement attained ranges from
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Fig. 8: The sum-rate is compared across different Nt RHS elements, for a
given set of parameters including NRF , K and PT .
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Fig. 9: The sum-rate for both perfect and imperfect CSI is compared across
different values of PT for the case where K = 4.

8 bps/Hz to 13 bps/Hz for K values ranging from 2 to 4
and for various PT values, which is significant. This confirms
the effectiveness of our algorithm over existing methods in
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mmWave multi-UE systems.
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APPENDIX

In the Dinkelbach-based method, m(0) represents the ran-
domly initialized value of m, ΣP2 is defined as the summation
of ΣP2

k for k from 1 to K, and Σ̃P2 is defined as the
summation of Σ̃P2

k for k from 1 to K. The optimal value of
m obtained after solving (32) using Algorithm 2 is denoted
by m∗. Dinkelbach method can be convergent to the global
optimal solution [53].
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