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Binary neutron star mergers are extreme astrophysical events. They involve mass
densities multiple times greater than that of an atomic nucleus, velocities nearing half
the speed of light, temperatures soaring up to 100 billion Kelvin, and gravitational
acceleration reaching up to 100 billion times that at the Earth’s surface. The binary
neutron star merger known as GW170817 marked a pivotal moment as the first
observation of a gravitational wave with an electromagnetic counterpart. The
complete evolution and dynamics of neutron star merger remnants remain not fully
understood, underscoring the need for further research. Investigation of these events
holds the potential to refine both our theories of gravity and our understanding of the
properties of matter at extreme densities and temperatures.
Numerical simulations are an appropriate tool to approach an understanding of these
complex processes. By employing such simulations, we can explore which physical
approximations and numerical techniques are sufficient to capture the range of
behaviours involved. However, binary neutron star merger remnants present a
formidable computational challenge due to the vast range of length scales involved
and the system of highly non-linear coupled partial differential equations governing
mass, momentum, and energy evolution.
Addressing this challenge, this project has involved the creation of a novel
three-dimensional physics code capable of simulating hydrodynamic evolution,
radiative transfer, and the general relativistic effects induced by fluid motion and
spacetime curvature. This code has been implemented into the AMReX software
framework to make use of block-structured adaptive mesh refinement for enhanced
accuracy and efficiency.
In this thesis, I present state-of-the-art simulations of binary neutron star merger
remnants. Making use of a pre-calculated merger simulation generated using the
Einstein Toolkit, and employing a tabulated physical equation of state. We find that
the introduction of a radiation field can disperse material surrounding a remnant
object, and that coordinate transforms can help reduce numerical advective flux
errors. Additionally, I utilize this code to explore uncertainty quantification by
modelling turbulent simulations and analysing the convergence of statistical solutions.

iii



iv



Table of Contents

Title Page i

Abstract iii

Table of Contents v

List of Figures and Tables ix

Declaration of Authorship xvii

Acknowledgements xix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Origins of Neutron Star Merger Remnants . . . . . . . . . . . . . 2

1.2.1 Progenitor Stars and Core-Collapse . . . . . . . . . . . . . . . 2
1.2.2 Neutron Star Properties . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Neutron Star Binaries . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Neutron Star Mergers . . . . . . . . . . . . . . . . . . . . . . 5
1.2.5 Neutron Star Merger Remnants . . . . . . . . . . . . . . . . . 5
1.2.6 Merger Simulation . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Radiative Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Relativistic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Statistical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 Other Physical Processes . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.10 Notation and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background Physics 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Spacetime in General Relativity . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 3+1 Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



2.2.2 Example Spacetime Metrics . . . . . . . . . . . . . . . . . . . 20
2.3 Relativistic Fluid and Radiation Fields . . . . . . . . . . . . . . . . . 22

2.3.1 Observer Frame Quantities . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Slow-Motion Limit . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Field Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Splitting the Energy-Momentum Tensor . . . . . . . . . . . . . . . . 27
2.6 Species Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Balance Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Closure Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.1 Fluid Equation of State . . . . . . . . . . . . . . . . . . . . . 30
2.8.2 Radiation Pressure Tensor . . . . . . . . . . . . . . . . . . . . 31
2.8.3 Opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Newtonian Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9.1 Newtonian Hydrodynamics . . . . . . . . . . . . . . . . . . . . 33
2.9.2 Newtonian Radiative Transfer . . . . . . . . . . . . . . . . . . 34

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Numerical Methods 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 The Method of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Initial Value Problem Methods . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 The Forward Euler Method . . . . . . . . . . . . . . . . . . . 45
3.3.2 The Mid-Point Method . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Heun’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.4 The Shu-Osher Method . . . . . . . . . . . . . . . . . . . . . . 46

3.4 The Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Quantity Reconstruction at Interfaces . . . . . . . . . . . . . . . . . . 47

3.5.1 Linear Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Parabolic Reconstruction . . . . . . . . . . . . . . . . . . . . . 49
3.5.3 WENO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Spacetime Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Approximate Riemann Solvers . . . . . . . . . . . . . . . . . . . . . . 52

3.7.1 The HLL(E) Riemann Solver . . . . . . . . . . . . . . . . . . 53
3.7.2 The HLLC Riemann Solver . . . . . . . . . . . . . . . . . . . 55

3.8 Time-Step Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.9 Operator Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.10 Energy-Momentum Exchange . . . . . . . . . . . . . . . . . . . . . . 59

3.10.1 Stiff Source Terms . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10.2 Local Thermodynamic Equilibrium . . . . . . . . . . . . . . . 59

3.11 Root Finding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.12 Primitive Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.12.1 Hydrodynamic Primitive Quantities . . . . . . . . . . . . . . . 63
3.12.2 Radiation Primitive Quantities . . . . . . . . . . . . . . . . . 64

3.13 Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . 66
3.13.1 Block-Structured AMR . . . . . . . . . . . . . . . . . . . . . . 67

vi



3.13.2 Sub-Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.13.3 Refluxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.13.4 Parallelisation and Scaling . . . . . . . . . . . . . . . . . . . . 70

3.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Test Problems and Results 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Special Relativistic Hydrodynamics . . . . . . . . . . . . . . . . . . . 76

4.2.1 Relativistic Isentropic Pulse . . . . . . . . . . . . . . . . . . . 76
4.2.2 With Adaptive Mesh Refinement . . . . . . . . . . . . . . . . 78
4.2.3 Relativistic Shock Tube . . . . . . . . . . . . . . . . . . . . . 78
4.2.4 2D Relativistic Shock . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.5 Relativistic Shock Grid . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Radiation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 Exchange Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.2 Optically Thick Pulse . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.3 Optically Thin Case . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.4 Shadow Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Special Relativistic Radiation Hydrodynamics Tests . . . . . . . . . . 95
4.5 General Relativistic Test . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Neutron Star Models 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Physical Equation of State . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Nuclear Statistical Equilibrium . . . . . . . . . . . . . . . . . 110
5.3 TOV Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 TOV Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Evolved Simulations . . . . . . . . . . . . . . . . . . . . . . . 113
5.5 TOV With Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.1 Evolved Simulations with Radiation . . . . . . . . . . . . . . . 122
5.6 TOV with Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6.1 Choosing a Velocity Field . . . . . . . . . . . . . . . . . . . . 126
5.6.2 Evolved Simulations with Rotation . . . . . . . . . . . . . . . 126

5.7 Evolved Simulation with Both Radiation and Rotation . . . . . . . . 127
5.8 Central Rest Mass Density . . . . . . . . . . . . . . . . . . . . . . . . 129
5.9 AMR Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . 131
5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Neutron Star Merger Remnant 139
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Merger Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 Implementation into the AMReX Code . . . . . . . . . . . . . . . . . 141
6.4 Remnant Initial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5 Remnant Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

vii



6.6 Radiation Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.6.1 Opacity Implementation . . . . . . . . . . . . . . . . . . . . . 155
6.6.2 Remnant Evolution with Radiation . . . . . . . . . . . . . . . 155

6.7 Low Advection Transformation . . . . . . . . . . . . . . . . . . . . . 158
6.7.1 Remnant Evolution with Low Flux Transformation . . . . . . 166

6.8 Remnant Central Rest Mass Density . . . . . . . . . . . . . . . . . . 171
6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7 Uncertainty Quantification 175
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.2 Relativistic Kelvin-Helmholtz Instability . . . . . . . . . . . . . . . . 177

7.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 178
7.3 Evolved Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3.1 Pointwise Convergence . . . . . . . . . . . . . . . . . . . . . . 179
7.4 Analysing a Distribution of Solutions . . . . . . . . . . . . . . . . . . 183
7.5 Convergence of a Distribution of Solutions with Spatial Resolution . 186
7.6 Wasserstein Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.7 Relativistic Radiation Hydrodynamic . . . . . . . . . . . . . . . . . . 188
7.8 Non-Local Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.8.1 Differential Operators . . . . . . . . . . . . . . . . . . . . . . 193
7.8.2 Integral Operators . . . . . . . . . . . . . . . . . . . . . . . . 202

7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8 Conclusions 207

References 211

viii



List of Figures

1.1 Neutron star mass-radius curves for various supernova equations of state. 4

2.1 A pair of adjacent space-like hypersurfaces showing how the lapse
function and shift vector describe changes in coordinates between them. 19

3.1 A one-dimensional illustration of a piecewise constant reconstruction of
cell-centred primitive quantities, with linear interpolation of spacetime
metric terms, and their resulting spatial gradients. . . . . . . . . . . . 48

3.2 An illustration of a two-wave evolution of a Riemann problem, in this
case the cell interface exists between the left and right-going waves. . 53

3.3 An illustration of a three-wave evolution of a Riemann problem. . . . 55
3.4 An illustration of the Newton-Raphson iteration converging on the root

of f(x) = x3 − 1/2, with an initial guess of x = 1/4. . . . . . . . . . . 62
3.5 Block-structured adaptive mesh refinement illustrating patches and

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 An illustration of a fine grid (in green) being sub-cycled, using informa-

tion from a time interpolated coarse grid (in blue). . . . . . . . . . . 69

4.1 Solution profiles for the isentropic pulse test. . . . . . . . . . . . . . . 79
4.2 Isentropic pulse test L2 error against spatial resolution for RK1, RK2,

and RK3 methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Isentropic pulse test, with two levels of factor-2 refinement. . . . . . . 82
4.4 Profiles for the relativistic shock tube test. . . . . . . . . . . . . . . . 84
4.5 The 2D diagonal SR shock tube test results at time 0.4. . . . . . . . . 85
4.6 The 2-by-2 hydrodynamic shock grid evolved to time 0.4. . . . . . . . 87
4.7 Illustration of the exchange of energy between fluid and radiation. . . 90
4.8 Diffusing radiation energy density profiles at times 0, 10, 30, 60, and 100. 92
4.9 Streaming radiation energy density profiles at times 0, 2, 4, 6, and 8. 94
4.10 Shadow test Radiation energy density surfaces at time 3. . . . . . . . 96
4.11 Shadow test radiation energy density surfaces at time 21. . . . . . . . 97
4.12 Test 1: a weakly relativistic fluid pressure dominated shock. . . . . . 100
4.13 Test 2: a mildly relativistic fluid pressure dominated shock. . . . . . . 101
4.14 Test 3: a highly relativistic fluid pressure dominated wave. . . . . . . 102
4.15 Test 4: a strongly coupled optically thick flow with mildly relativistic

fluid velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



4.16 Evolution of a narrow beam of anisotropic radiation in a flat spacetime. 106
4.17 Evolution of a narrow beam of anisotropic radiation in a Schwarzschild

spacetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.18 The expected path of this beam of radiation in a Schwarzschild spacetime.108

5.1 TOV solution fluid profiles against isotropic radius. . . . . . . . . . . 114
5.2 TOV solution spacetime profiles against isotropic radius. . . . . . . . 115
5.3 Initial neutron star model log-scale rest mass density, and electron

fraction profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4 Evolved TOV model profiles. The top row shows the evolved neutron

star model log-scale rest mass density, and electron fraction profiles.
The bottom row shows the absolute deviations from the initial profiles. 117

5.5 Evolved neutron star model fluid temperature, and fluid velocity mag-
nitude profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 TOV solution radiation profiles against isotropic radius. . . . . . . . . 120
5.7 Initial neutron star model (with radiation) log-scale opacity, and radia-

tion energy density profiles. . . . . . . . . . . . . . . . . . . . . . . . 122
5.8 Evolved TOV model with radiation profiles. The top row shows evolved

neutron star model (with radiation) log-scale rest mass density and
radiation energy density profiles. The bottom row shows the absolute
deviations from initial profiles. . . . . . . . . . . . . . . . . . . . . . . 124

5.9 Evolved neutron star model (with radiation) fluid temperature and
log-scale radiation flux magnitude profiles. The quantities are shown at
time t = 500 in geometric units. . . . . . . . . . . . . . . . . . . . . 125

5.10 Initial neutron star model (with rotation) fluid velocity magnitude profile.127
5.11 Evolved TOV model with rotation profiles. The top row shows the

evolved neutron star model (with rotation) log-scale rest mass density
profile. Left panels: z = 0 slice. Right panels: y = 0 slice. The bottom
row shows the log-scale deviation from the initial state. The quantities
are shown at time t = 500 in geometric units. . . . . . . . . . . . . . 128

5.12 Evolved neutron star model (with rotation) fluid velocity magnitude
profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.13 Evolved TOV model with radiation and rotation profiles. . . . . . . . 130
5.14 Central rest mass density evolution for the standard, with radiation,

and with rotation TOV simulations. . . . . . . . . . . . . . . . . . . . 132
5.15 Patch-based mesh refinement covering the region with a radius r = 8

in geometric units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.16 Plot of compute time used to reach simulation time t = 103 for a range

of levels of refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.17 Plot of the L1 deviation from the initial state at time t = 103 in

geometric units, for a range of levels of refinement. . . . . . . . . . . 136
5.18 Plot of L2 deviation from the initial state at time t = 103 in geometric

units, for a range of levels of refinement. . . . . . . . . . . . . . . . . 137

x



6.1 Remnant initial log-scale rest mass density profile. Top panel: z = 0
slice. Bottom panel: y = 0 slice. . . . . . . . . . . . . . . . . . . . . 143

6.2 Remnant initial log-scale fluid temperature profile. Top panel: z = 0
slice. Bottom panel: y = 0 slice. . . . . . . . . . . . . . . . . . . . . 144

6.3 Remnant initial electron fraction profile. Top panel: z = 0 slice. Bottom
panel: y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Remnant initial fluid velocity magnitude profile. Top panel: z = 0 slice.
Bottom panel: y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . 146

6.5 The remnant simulation employs a numerical mesh with seven levels
of factor-2 refinement. It uses the box-in-box approach. The central
compact object is highly spatially resolved compared to the background
atmosphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.6 Log-scale rest mass density profiles for the evolved remnant after a time
of 40 ms. The top panel shows the z = 0 slice, and the bottom panel
shows the y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.7 Log-scale fluid temperature profiles for the evolved remnant after a
time of 40 ms. The top panel shows the z = 0 slice, and the bottom
panel shows the y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . 150

6.8 Electron fraction profiles for the evolved remnant after a time of 40 ms.
The top panel shows the z = 0 slice, and the bottom panel shows the
y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.9 Fluid velocity magnitude profiles for the evolved remnant after a time
of 40 ms. The top panel shows the z = 0 slice, and the bottom panel
shows the y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.10 Slices through z = 0 showing zoomed-in evolved remnant profiles after
40 ms. The top panel shows log-scale fluid temperature. The bottom
panel shows fluid velocity magnitude. . . . . . . . . . . . . . . . . . 153

6.11 Remnant log-scale initial opacity profile. Top panel: z = 0 slice. Bottom
panel: y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.12 Remnant log-scale initial radiation energy density profile. Top panel:
z = 0 slice. Bottom panel: y = 0 slice. . . . . . . . . . . . . . . . . . 157

6.13 Log-scale rest mass density profiles for the evolved remnant after a time
of 40 ms. The top panel shows the z = 0 slice, and the bottom panel
shows the y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.14 Log-scale fluid temperature profiles for the evolved remnant after a
time of 40 ms. The top panel shows the z = 0 slice, and the bottom
panel shows the y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . 160

6.15 Slices through z = 0 showing zoomed-in evolved remnant profiles after
40 ms. The top panel shows log-scale rest mass density. The bottom
panel shows log-scale fluid temperature. . . . . . . . . . . . . . . . . 161

6.16 Log-scale opacity profiles for the evolved remnant after a time of 40 ms.
The top panel shows the z = 0 slice, and the bottom panel shows the
y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xi



6.17 Log-scale radiation energy density profiles for the evolved remnant after
a time of 40 ms. The top panel shows the z = 0 slice, and the bottom
panel shows the y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . 163

6.18 Log-scale radiation flux magnitude profiles for the evolved remnant
after a time of 40 ms. The top panel shows the z = 0 slice, and the
bottom panel shows the y = 0 slice. . . . . . . . . . . . . . . . . . . 164

6.19 Log-scale rest mass density profiles for the evolved remnant after a time
of 40 ms. The top panel shows the z = 0 slice, and the bottom panel
shows the y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.20 Log-scale fluid velocity magnitude profiles for the evolved remnant after
a time of 40 ms. The top panel shows the z = 0 slice, and the bottom
panel shows the y = 0 slice. . . . . . . . . . . . . . . . . . . . . . . . 168

6.21 Slices through z = 0 showing zoomed-in evolved remnant profiles after
40 ms. The top panel shows log-scale rest mass density. The bottom
panel shows log-scale fluid temperature. . . . . . . . . . . . . . . . . 169

6.22 Slices through z = 0 showing the zoomed-in evolved remnant fluid
velocity magnitude profile after 40 ms. . . . . . . . . . . . . . . . . . 170

6.23 The maximum rest mass density of the remnant as evolved in the three
situations discussed here. . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1 Initial set-up of a relativistic Kelvin-Helmholtz instability, showing
rest-mass density and fluid 3-velocity vectors. . . . . . . . . . . . . . 180

7.2 The rest mass density profile of the relativistic Kelvin-Helmholtz insta-
bility evolved to time t = 2 in geometric units. . . . . . . . . . . . . . 181

7.3 The rest mass density profiles for a series of relativistic Kelvin-Helmholtz
instabilities evolved to time t = 2 in geometric units. . . . . . . . . . 182

7.4 The L2-norm of the difference in rest-mass density profiles at spatial
resolutions 162 to 2562. . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.5 A block of relativistic Kelvin-Helmholtz instability simulations, with
each slice a separate realisation of initial condition perturbations,
evolved to time t = 2 in geometric units. . . . . . . . . . . . . . . . . 185

7.6 The mean (left) and variance (right) of rest-mass density profiles from
a set of relativistic Kelvin-Helmholtz simulations, each with distinct
initial condition perturbations, evolved to time t = 2 in geometric units.186

7.7 The mean profile converges to some continuum limit (in parameter
space) as the number of samples increases. . . . . . . . . . . . . . . . 187

7.8 The L2-norms of the difference in mean (top) and variance (bottom)
of rest-mass density from sets of distinct relativistic Kelvin-Helmholtz
simulations at spatial resolutions 162 to 5122, with linear regressions. 189

7.9 The Wasserstein metric of the difference between rest-mass density
distributions for lower and higher resolution simulations. . . . . . . . 190

xii



7.10 Single realisations (left column), means (central column), and vari-
ances (right column) of rest-mass density from purely hydrodynamic
(top row), weakly coupled radiation hydrodynamic (middle row), and
strongly coupled radiation hydrodynamic (bottom row) relativistic
Kelvin-Helmholtz simulations, evolved to time t = 2 in geometric units. 192

7.11 Two-norms of the difference in mean (top panel) and variance (bottom)
of rest-mass density from sets of distinct relativistic optically thin cou-
pled radiation hydrodynamic Kelvin-Helmholtz simulations at spatial
resolutions 162 to 1282, with linear regressions. . . . . . . . . . . . . . 194

7.12 Two-norms of the difference in mean (top panel) and variance (bottom)
of rest-mass density from sets of distinct relativistic optically thick cou-
pled radiation hydrodynamic Kelvin-Helmholtz simulations at spatial
resolutions 162 to 1282, with linear regressions. . . . . . . . . . . . . . 195

7.13 Wasserstein convergence of the difference in rest-mass density distribu-
tions for different spatial resolutions for radiation coupled hydrodynamic
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.14 The Wasserstein metric of the difference in mean rest-mass density
distributions between optically thin (top panel) and optically thick
(bottom panel) radiation hydrodynamic with the purely hydrodynamic
relativistic Kelvin-Helmholtz simulations at spatial resolutions 162 to
2562. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.15 A single realisation (in the left panel) and the mean of a set of distinct
simulations (on the right) of the vorticity field resulting from relativistic
Kelvin-Helmholtz simulations evolved to time t = 2 in geometric units. 198

7.16 The L2-norms of the difference in mean vorticity profiles from a set
of relativistic hydrodynamic KHI simulations for a range of spatial
resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.17 Single realisation (left panel) and mean from a set of distinct simulations
(right panel) of the magnitude of the spatial gradient of rest-mass density,
evolved to time t = 2 in geometric units. . . . . . . . . . . . . . . . . 200

7.18 The L2-norms of the difference in mean density gradient magnitude
profiles from a set of relativistic hydrodynamic KHI simulations for a
range of spatial resolutions. . . . . . . . . . . . . . . . . . . . . . . . 201

7.19 The L2-norm of the difference in mean optical depth optically thin (top)
and optically thick (bottom) relativistic Kelvin-Helmholtz simulations
for a range of spatial resolutions. Linear regressions are shown with
blue lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xiii



xiv



List of Tables

1.1 The key units used in this thesis, and how to convert between them. . 12

4.1 Isentropic pulse L2 error norms for a range of IVP solvers and spatial
resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Relativistic shock tube initial conditions. . . . . . . . . . . . . . . . . 83
4.3 Special relativistic hydrodynamic 2-by-2 grid initial conditions. . . . . 86
4.4 Special relativistic radiation hydrodynamics tube tests initial conditions. 98

5.1 Table of compute times required to reach simulation time of t = 103 in
geometric units and deviation from initial state for a range of levels of
refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xv



xvi



Declaration of Authorship

I, Grant Curtis Schomberg, declare that this thesis entitled Radiation in Neutron Star
Merger Remnant Simulations and the work presented in it are my own and have been
generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been
clearly stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself;

Signed:

Date:

xvii



xviii



Acknowledgements

As I look back on the past seven years dedicated to crafting this thesis, I am humbled
by the significant changes that have shaped my life. Throughout this journey, I have
had the privilege of crossing paths with an array of remarkable individuals who have
greatly influenced and supported me.

First and foremost, I am deeply grateful to my family, whose unwavering support has
been the bedrock of my journey. To my parents, thank you for your enduring
patience and belief in me. Your encouragement has been the driving force behind this
endeavour.

I’m also grateful to the many individuals who have played pivotal roles in shaping my
experience over these years. From the rotating cast of housemates I have had, to the
fellow doctoral students with whom I have shared the second floor research student
offices at the School of Mathematical Sciences, Building 54, Highfield Campus.

To my supervisor, Ian Hawke, I owe an immeasurable debt of gratitude. Ian’s
boundless supply of knowledge and guidance have been instrumental in both my
academic pursuits and personal growth. Without his patience and expert mentorship
this milestone would have remained out of reach. While my name may be printed on
the cover of this thesis, I recognise that its contents are a product of the collaborative
efforts and support of many. I am deeply appreciative of the sponsorship of this work
provided by AWE. The guidance and insights offered by my industry supervisors and
managers have been indispensable.

xix



xx



Chapter 1

Introduction

1.1 Motivation

A number of processes in astrophysics involve extreme conditions such as intense
mass-densities, temperatures, velocities, gravitational forces, and radiation energies.
The astrophysical events known as neutron star mergers are indeed extreme.

A binary neutron star is a pair of neutron stars orbiting about a common centre.
Over time the binary loses energy due to gravitational wave emission (see for example
[1]). Eventually the neutron stars will collide and merge. During a neutron star
merger, densities up to multiple times that of an atomic nucleus, velocities up to half
of the speed of light, and temperatures up to 100 billion Kelvin can be reached. This
process is described further in section 1.2.

The full evolution and dynamics of neutron star merger remnants are not yet fully
understood. Understanding these events has the potential to constrain both theories
of gravity, and our understanding of the properties of matter at extremes of densities
and temperatures. Numerical simulations are an appropriate tool to approach an
understanding of these processes. Numerical simulations allow us to model the
evolution of the dynamic system and investigate behaviours such as the stability of
the remnant object, observable signal generation, and the partitioning of energy
between thermal, rotational, and radiation forms. With numerical simulations we can
explore which physical approximations and numerical efficiencies are sufficient to
represent the full complex physics involved. A numerical model of a neutron star
merger remnant would at least require accurate modelling of hydrodynamics,
radiative transfer, and general relativistic effects. Further modelling capabilities may

1
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include magnetic fields and chemical processes.

Codes such as the Einstein toolkit [2] and GRaM-X [3] are designed to be general
purpose relativistic hydrodynamics codes, they make use of high order numerical
methods and are capable of evolving the spacetime. However they do not make full
use of flexible block-structured adaptive mesh refinement approaches. There exists a
gap for an efficient code which is specifically designed for approximately stationary
spacetimes, and is capable of taking advantage of the flexibility gained when using
many small refined patches. This project has involved the creation of a novel three
dimensional physics code. This code simulates hydrodynamic evolution, radiative
transfer, and the general relativistic effects due to fluid motion and a curved
background spacetime. This code has been implemented in a particularly efficient
computational framework and has been used to investigate neutron star merger
remnants.

1.2 The Origins of Neutron Star Merger
Remnants

1.2.1 Progenitor Stars and Core-Collapse

Neutron stars are compact objects which form from the gravitational collapse of the
core of a main sequence progenitor star of mass 8M⊙ ≲ M ≲ 30M⊙, resulting in an
astrophysical explosion known as a type-II core-collapse supernova [4].

Type-II supernovae are the core-collapse and resulting explosion of massive
(M ≳ 8M⊙) stars [5]. They are identified by the presence of hydrogen, which can be
identified by particular lines in the emission spectra of observed optical signals.

Throughout the lifetime of such a star, lighter elements are fused into heavier
elements, starting with the fusion of hydrogen into helium. These nuclear fusion
reactions become slower and release less energy as the elements involved become
heavier. As nuclear fuel is depleted the rate of energy released into the star’s core
drops below the threshold required to support against gravitational collapse, the core
of the star begins to compress resulting in increases in temperature and density. This
increase allows for the possibility of fusion reactions involving increasingly heavier
elements. This fusion process can continue up until the production of iron and nickel
for sufficiently massive stars (M ≳ 10M⊙). At this point no further energy is
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deposited into the core from fusion reactions, due to the products reaching maximal
binding energy.

With no more energy being released in the core of the star it begins to gravitationally
collapse in on itself. Once the mass of the core reaches the Chandrasekhar limit
(≈ 1.4M⊙ [6] [7]) the electron degeneracy pressure (arising from the Pauli exclusion
principle which forbids identical fermions from occupying the same energy states) is
no longer sufficient to support the core. It becomes energetically favourable for the
protons and electrons in the core to combine via electron capture, producing neutrons
and releasing neutrinos, forming a proto-neutron star. The density of this core
compresses beyond that of nuclear density and becomes supported by repulsive
neutron interactions and neutron degeneracy pressure, thus halting the collapse. The
infalling matter rebounds off of this core, creating an outgoing shock wave which
accelerates stellar material outwards. The neutrinos generated in the electron capture
process typically react very weakly with matter, but under such extreme conditions
about 1% of their energy is deposited into the shock wave. This small fraction is
believed to be sufficient to result in a supernova explosion. However, effects due to
magnetic fields and angular rotation may also play a role in this explosion mechanism,
this process is not yet fully understood. If the core mass reaches beyond the
Tolman-Oppenheimer-Volkoff (TOV) limit (≈ 2M⊙), then the neutron degeneracy
pressure is still insufficient to support against collapse, and the core collapses to a
black hole. If the core mass does not reach the Chandrasekhar limit, then the
progenitor star collapses to a white dwarf, and no supernova explosion occurs as there
is no neutrino emission.

1.2.2 Neutron Star Properties

Neutron stars typically have a mass in the range 1.4M⊙ ≲ M ≲ 3M⊙, and a radius in
the range 10 km ≲ R ≲ 15 km [6]. This is illustrated in figure 1.1. A neutron star’s
compactness ((M/M⊙)/(R/km)) is approximately 105 times greater than that of the
Sun. They are extremely dense objects, with very strong gravitational acceleration at
their surface, over 1012 m s−2. As a comparison the gravitational acceleration at the
surface of the Earth is around 10 m s−2, and at the surface of the Sun it is around
274 m s−2. There is significant spacetime curvature around neutron stars, requiring
general relativistic effects to be included for accurate modelling. Thus our
hydrodynamic and radiation evolution descriptions (introduced in section 2) must
include general relativistic effects.
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Figure 1.1: Neutron star mass-radius curves for various supernova equations of state.
The grey region covers the expected range of mass and radius for cold neutron stars
which have reached equilibrium states. Image from [8], Copyright © T. Fischer, M.
Hempel, I. Sagert, Y Suwa, and J Schaffner-Bielich.



1.2. The Origins of Neutron Star Merger Remnants 5

1.2.3 Neutron Star Binaries

For neutron star binaries, most often a pair of progenitor stars are ejected from a star
forming region, eventually leading to a pair of neutron stars [9, 10]. If the two
neutron stars are in a tight enough orbit to merge within the age of the universe
(Porbit ≲ 1 day) the system will lose energy in the form of gravitational waves. This
results in the system losing angular momentum, reducing the radius of the orbit at an
increasing rate until the two compact objects eventually merge.

There are thought to be up to a billion neutron stars throughout the Milky Way.
There are around 3, 200 known neutron stars in the Milky Way and the Magellanic
Clouds, and around 5% of them exist in a binary system (either with a main sequence
star, another neutron star, or a black hole). Ten double neutron star binaries are
currently known [11].

1.2.4 Neutron Star Mergers

Neutron star mergers feature some of the most extreme physical conditions to exist in
the entire universe, including densities greater than that of atomic nuclei, velocities
approaching half the speed of light, and temperatures exceeding 1011K. Neutron star
mergers are the source of some gravitational wave detections. In recent cases a
neutron star merger has been detected via multiple independent means. Specifically,
a gravitational wave detection can have an electromagnetic counterpart [12]. The
detection of multiple signals from astrophysical events is known as multi-messenger
astronomy. The gravitational waves originating from neutron star mergers include the
characteristic inspiral, merger, and post-merger (sometimes known as ringdown)
phases. The electromagnetic counterpart signals span a range of frequencies including
the optical and ultra-violet band [13], as well as radio, X-ray, and γ-ray emissions [14].

The gravitational wave detection GW170817 on the 17th of August 2017 was the first
observation of a gravitational wave with an electromagnetic counterpart. This optical
kilonova signal is thought to be caused by the radioactive decay of r-process
synthesised nuclei in the ejected matter.

1.2.5 Neutron Star Merger Remnants

The compact remnant of a neutron star merger can promptly collapse to a black hole
due to the mass of the remnant object significantly exceeding the TOV limit.
Alternatively, if the remnant object has sufficient total support from thermal and
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rotational effects, as the remnant cools, or as its rotation slows over time this support
can be reduced, leading to a delayed collapse to a black hole. The gravitational wave
observation GW170817 collapsed to a black hole within a couple of seconds. The
observations of objects in a mass range close to the TOV limit can help us to
constrain our models of relativistic equations of state.

This work focuses specifically on the case where a pair of (light) neutron stars merge,
and do not quickly collapse into a black hole, instead forming a (heavy) neutron star.
I aim to study the effects that photon transport has on the evolution of a binary
neutron star merger remnant. Radiative transfer can increase the energy loss and
cooling rate of the remnant providing a channel for the loss of thermal support. As
energy is exchanged between the fluid and the radiation field, energy-momentum can
be redistributed around the system affecting its angular momentum. A transition
from differential to uniform rotation can reduce the remnant’s rotational support.
These effects can sufficiently reduce the remnant’s support over time, leading to a
delayed collapse.

This effect would be noticeable in the observable gravitational wave and
electromagnetic wave signals. As the angular momentum is affected so too are the
observable gravitational waves emitted by the rotating remnant. Radiative transfer
plays a role in creating the observable electromagnetic signals, the luminosity,
spectrum, and timings of the signals depend directly on the photon transport.

1.2.6 Merger Simulation

To study this I will be making use of a precalculated binary neutron star merger
simulation. A pair of neutron stars have been hydrodynamically evolved through
inspiral to merger. The solution is reconstructed in a new code, and the evolution has
been continued in an efficient computational framework, which takes into account
radiative transfer effects.

The remnant consists of a hot, rotating, and oscillating (heavy) neutron star, with a
surrounding torus of ejected material. This is a complicated system. I build up
towards its description in chapter 6.
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1.3 Hydrodynamics

In astrophysical events such as neutron star mergers, the huge amount of material
involved renders a particle-based description inefficient and impractical. A more
effective approach involves adopting a fluid approximation. This method treats the
material as a continuous medium, using bulk properties such as mass density, velocity,
and pressure. Astrophysical phenomena often involve the motion of compressible
fluids. My goal is to model this fluid’s motion using hydrodynamic techniques,
enabling us to understand how these quantities evolve across the relevant domain.

A perfect fluid, often referred to as an ideal fluid, is characterized solely by its mass
density, energy density, and pressure, without accounting for any thermal
conductivity or viscous effects. It is expected that the main factors driving evolution
in the fluid will be bulk fluid motion, including shock waves. Any thermal or viscous
effects are expected to have minimal influence in comparison. Hence employing an
ideal fluid approximation is deemed sufficient at this stage.

The bulk properties of a compressible ideal fluid are governed by a set of balance laws
for mass, momentum, and energy. These quantities evolve due to their fluxes, and are
sometimes influenced by external factors such as gravitational forces which can induce
fluid acceleration. To close this system of conservation laws, an equation of state is
required. This equation allows for the calculation of the fluid pressure based on
known parameters such as the mass density and internal energy density. With this
framework in place, the evolution of bulk fluid motion and shock waves can be
accurately described.

1.4 Radiative Transfer

In neutron star mergers fluid temperatures can reach levels where effects due to
radiative transfer significantly influence the fluid’s physical properties. The fluid
behaves as a black-body emitter, emitting electromagnetic radiation according to
Planck’s Law. The wide range of temperatures and densities encountered in neutron
star mergers leads to varying opacities. The mean-free-paths of emitted radiation
determine whether energy is absorbed back into the system or radiated outward.
Radiation emission can escape as observable signals, providing valuable insights into
the processes occurring during the merger, as demonstrated in the observed signal
from GW170817 [14].
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The radiative transfer equation describes the motion, emission, absorption, and
scattering of a radiation intensity field. By integrating angular moments of this
equation, we can describe the evolution of radiation energy and radiation momentum,
determined by their respective fluxes and source terms. These evolution equations are
linked to the hydrodynamic evolution equations through absorption and emission
mechanisms, allowing for the exchange of energy and momentum between radiation
and fluid. To fully describe the evolution of the radiation field, a closure relation is
required. This approximates the radiation pressure tensor from known quantities such
as the radiation energy density and the radiation flux. This tensor transitions from a
fully isotropic form in diffusive scenarios to a fully anisotropic form in free-streaming
scenarios. This transition depends on the magnitude of radiation flux relative to
radiation energy density. For minimal flux magnitudes, the radiation evolves
diffusively, whilst for flux magnitudes comparable to radiation energy density, the
radiation streams freely.

1.5 Relativistic Effects

The aftermath of a binary neutron star merger results in the formation of a compact
object. This object has significant gravitational forces at its surface. The resulting
neutron star or black hole significantly curves the surrounding spacetime, leading to
relativistic phenomena such as gravitational time dilation. Furthermore, the rotation
of compact objects induces frame dragging effects. The curvature of spacetime around
these compact objects can be described with a spacetime metric.

During a neutron star merger, the fluid velocities can reach a significant fraction of
the speed of light. This high-speed fluid motion causes special relativistic effects such
as Lorentz contraction, which can significantly affect the fluid’s evolution.

In order to accurately incorporate these relativistic effects, I measure quantities in
both the observer reference frame and the fluid reference frame. The conservation
equations governing mass, momentum, and energy, whilst accounting for general
relativistic effects, can be mathematically expressed through the vanishing covariant
derivative of the mass density current and the energy-momentum tensor. This tensor
has contributions from both the fluid and the radiation field and can be split into its
distinct fluid and radiation components. Consequently, this framework results in a
system of balance laws which govern the evolution of mass, fluid momentum, fluid
energy, radiation momentum, and radiation energy. These equations involve fluxes,
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and sources which arise from gravitational forces and radiation-hydrodynamic
coupling.

1.6 Numerical Methods

The hydrodynamic evolution of the fluid within a neutron star merger remnant is
complex, largely due to the nonlinear behaviour of propagating shock fronts.
Consequently, it is appropriate to employ numerical techniques to compute a solution.
Closed-form solutions and perturbation approaches, whilst valuable in certain
contexts, lack the generality required to accurately capture the diverse range of
behaviors expected in this scenario.

The set of balance laws form a system of partial differential equations which involve
temporal and spatial derivatives. These equations are designed to evolve quantities
which may contain sharp spatial gradients, reflecting the nature of the astrophysical
phenomena I aim to model. such as the propagation of shock waves.

I make use of high-resolution shock-capturing methods which are capable of handling
discontinuities and traveling shock fronts. Employing the method of lines, I discretise
the system of balance laws through a finite volume scheme. This approach involves
calculating the fluxes at cell interfaces and evaluating the source terms at cell centres,
allowing us to update the cell-centred conserved quantities.

In order to calculate the fluxes at cell interfaces, the known cell-centred quantities
must be reconstructed to either side of the cell interfaces. Polynomial reconstruction
approaches determine the spatial order of accuracy of the numerical scheme. The
reconstruction must be limited so as to avoid introducing any new local extremal
values. Once quantities have been reconstructed to either side of a cell interface, it is
treated as a Riemann problem. The signal speeds either side of the interface dictate
how the interface flux will be calculated, and whether the wave is a shock, rarefaction,
or a contact wave. With the flux and source terms calculated, the evolved quantities
can be updated by a single time-step. For this system to be solved explicitly the
time-step must be restricted by the time taken for the fastest wave-speed to traverse
a single cell-width, this Courant–Friedrichs–Lewy (CFL) condition is a requisite for
numerical stability. The evolved quantities can be updated with a time integration
technique such as a Runge-Kutta method, this determines the temporal order of
accuracy for the numerical scheme. Once the evolved quantities have been updated,
the set of primitive quantities must be recovered. From these the fluxes and source
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terms can be calculated for the next update. In this case the primitive quantity
recovery requires iterative approaches.

1.7 Adaptive Mesh Refinement

The spatial scales involved in binary neutron star mergers, on which these
hydrodynamic quantities vary, range from the vast diameter of the debris torus
(≈ 106 m), all the way down to the widths of the shock fronts propagating through
the fluid, and the resulting turbulent flows which form behind them (≈ 10−3 m). An
efficient numerical approach to a problem involving such a vast range of spatial scales
is the use of adaptive mesh refinement (AMR), in which certain regions of the spatial
domain are adaptively discretised at a higher spatial resolution than they otherwise
would be. The adaptivity can be implemented to track features of interest throughout
the simulation. Regions of interest can be tagged for refinement based on the values
of physical quantities within them. In numerical simulations, unphysical
approximations at the domain boundaries can cause errors to propagate into the
regions of interest. AMR allows for the domain boundaries to be placed significantly
far away, such that the effects of these errors are sufficiently small, take a long time to
affect results, or are able to dissipate.

1.8 Statistical Results

In astrophysical contexts, encounters between dense, cool fluids and hot, rarefied
fluids are frequent occurrences. Examples include various phenomena such as the
interstellar medium, circumgalactic medium, intracluster medium, as well as
supernova remnants, superbubbles, cosmic filaments, galactic winds, protoplanetary
disks, protostellar jets, and active galactic nuclei jets. Burning and energy release
often takes place within the turbulent media in stellar interiors and during supernova
events [15]. These fluids typically maintain an approximate state of hydrostatic and
local thermodynamic equilibrium. At the interface where these fluids shear against
each other, a mixing layer forms, leading to the onset of a Kelvin-Helmholtz
instability (KHI).

In scenarios where KHI occurs, it is often challenging to precisely determine the
initial conditions with the required accuracy to replicate the resulting turbulence
using physics models. However, by conducting numerous simulations with initial
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conditions covering a range of likely scenarios, we can obtain a distribution of results.
This distribution allows us to predict the expected behavior with a quantified level of
uncertainty.

In the Newtonian limit of hydrodynamics, it has been observed that in numerical
simulations of KHI, a conserved quantity does not converge locally as spatial
resolution increases. However, conducting numerous simulations with a range of
initial condition perturbations, leading to varied turbulent motion, reveals that both
the mean and variance of the quantity taken across multiple samples does indeed
converge with increasing spatial resolution. This convergence also extends to other
ensemble statistics derived from the conserved quantities.

I investigate whether the same statistical results hold for relativistic hydrodynamics,
and how introducing radiative transfer affects the solutions.

1.9 Other Relevant Physical Processes Outside
the Scope of this Project

Other physical processes which are expected to affect the evolution of astrophysical
phenomena are magnetic fields, electrically charged fluids, neutrino radiative transfer,
non-ideal fluid effects, and chemical processes. These mechanisms will not be the
focus of this project. However neutrino radiative transfer shares many similarities
with electro-magnetic radiative transfer processes.

1.10 Notation and Units

Throughout this report Greek indices indicate all four spacetime dimensions (eg.
λ, µ, ν ∈ {0, 1, 2, 3}), whereas Latin indices indicate the three spatial dimensions (eg.
i, j, k ∈ {1, 2, 3}). The mostly-positive spacetime metric signature (−, +, +, +) is used.
The geometric unit system is employed, such that the speed of light in a vacuum, the
gravitational constant, and the solar mass are all set to unity: c = G = M⊙ = 1. A
summary of the conventions and unit conversions is given in table 1.1.
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Quantity cgs units Geometric units
Length 1 cm 6.771 × 10−6

Mass 1 g 5.028 × 10−34

Time 1 s 2.030 × 105

Density 1 g/cm3 1.619 × 10−18

Energy 1 g·cm2/s2 5.593 × 10−55

Speed 1 cm/s 3.336 × 10−11

Opacity 1 cm2/g 9.117 × 1022

Attenuation 1 /cm 1.477 × 105

c 2.998 × 1010 cm/s 1
G 6.674 × 10−8 cm3/g/s2 1
M⊙ 1.989 × 1033 g 1
mp 1.661 × 10−24 g 2.338 × 10−56

Table 1.1: The key units used in this thesis, and how to convert between them. For the
fluid temperature we multiply by the Boltzmann constant kB = 8.617×10−5 eV / K such
that 1 K corresponds to 8.617×10−11 MeV, and for the radiation constant arad = 4σ/c,
where σ is the Stefan-Boltzmann constant, arad = 7.5657 × 10−15g cm−1 s−2 K−4 =
2.472721 × 10−13MeV−4.

1.11 Summary

In chapter 2 of this report I outline the background physics necessary for
understanding extreme astrophysical phenomena such as neutron star mergers. I will
describe compressible hydrodynamics, radiative transfer, general relativistic effects,
and appropriate closure schemes. This description results in a system of balance laws
for evolving radiation hydrodynamic quantities in a curved spacetime.

In chapter 3 the system of evolution equations is discretised for numerical evaluation,
employing a finite volume scheme, reconstruction methods, approximate Riemann
solvers, time integration techniques, and primitive recovery algorithms.

In this thesis a new general relativistic radiation hydrodynamics code has been
created. In chapter 4, a series of test problems are described to verify and validate
that the numerical methods employed are capable of accurately recovering the desired
physics, and that the physics implemented is appropriate to explain the astrophysical
phenomena of interest. These tests include relativistic hydrodynamic evolution in
both smooth and discontinuous regimes, radiative transfer in both diffusive and
streaming limits, radiation hydrodynamic coupling, evolution in curved spacetimes,
and adaptive mesh refinement performance.

In chapter 5 I create neutron star models, and investigate how they evolve within our
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numerical simulation. This includes novel treatments of the coordinates to address
rotational effects.

In chapter 6 I take remnant data from a precalculated binary neutron star merger
simulation and use my numerical code to model the continued evolution, investigating
its properties, behaviours, and characteristics.

In chapter 7 I conduct uncertainty quantification using the numerical evolution code
to model Kelvin-Helmholtz instabilities. These involve discontinuous and turbulent
features similar to the shock-turbulence interactions occurring in extreme
astrophysical phenomena. These experiments explore how statistical results in
Newtonian hydrodynamics extend to the relativistic hydrodynamic and relativistic
radiation hydrodynamic regimes.

Finally in chapter 8, I will conclude and briefly discuss extensions of this research.

The novel work done in this thesis is primarily contained in chapters 5, 6, and 7. The
key results which rely on the efficiency of the new code implemented and discussed
here are presented in chapters 5-6. The uncertainty quantification results discussed in
chapter 7 are aided by the efficiency of the new code and the insights gained from the
remnant evolution, but are conceptually separate.
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Chapter 2

Background Physics

2.1 Introduction

In this chapter I will outline the background physics required to describe the
evolution of extreme astrophysical phenomena. This includes compressible fluid
dynamics, radiative transfer, and general relativistic effects. In this thesis we ignore
the impact of magnetic fields, although in general these will be crucial for describing
such astrophysical behaviour. We will focus on neutron stars as the most extreme
objects requiring matter in their description.

Neutron stars have extreme gravitational forces at their surfaces. I have used general
relativity to describe how these gravitational forces affect the fluid and radiation
fields we are interested in modelling. Compact objects such as white dwarfs, neutron
stars, and black holes significantly curve their surrounding spacetime, resulting in
general relativistic effects such as gravitational time dilation, and in cases of rotating
compact objects, frame dragging effects. The spacetime curvature can be described
with a spacetime metric.

Due to the extremely large amount of material involved in astrophysical phenomena
such as neutron star mergers, a particle description would not be efficient or practical,
a fluid approximation would be more appropriate as outlined in [16–18]. A viable
approach is to treat the material as a continuum, and work with its bulk properties
such as mass density, velocity, and pressure. The astrophysical phenomena we are
interested in involve the motion of a compressible fluid as discussed in [19]. I have
described the motion of this fluid with hydrodynamic processes to capture the
evolution of these quantities throughout the region of interest.

15
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The properties of a fluid can be described with an energy-momentum tensor. An ideal
fluid (or perfect fluid) is fully characterised by its mass density and its pressure tensor.
It assumes negligible thermal conductivity and viscous effects within the fluid. When
considering supernova explosions and neutron star mergers it is expected that shock
waves and bulk fluid motion will be the dominant source of evolution and any thermal
or viscous behaviour would have comparatively little effect, thus an ideal fluid
approximation will suffice at this stage. The accuracy of the ideal fluid approximation
depends on the size of the viscosity coefficients, the isotropic shear terms, and the
timescale of interest. For neutron star merger remnants we consider sub-second
timescales, and on average small viscosity coefficients (as discussed in [19]). As the
purpose of this thesis is to make remnant simulations efficient, in order to run to
longer times, as a first approximation the simpler ideal fluid approximation is used.

The bulk properties of a compressible ideal fluid obey balance laws for mass,
momentum, and energy. Their evolution is determined by their fluxes, and in some
cases by source terms describing a gravitational field, within which the fluid is
evolving, resulting in acceleration of the fluid. Balance laws are capable of describing
smooth motion as well as discontinuities and shocks. An equation of state is required
to close the system of balance laws. This equation of state allows the calculation of
the fluid pressure from known quantities such as the internal energy density.

The temperatures of the fluid involved in neutron star mergers can reach sufficiently
high values that effects arising from the transport of emitted radiation can have a
significant impact on how the physical properties of the fluid evolve. For example,
[20] sees temperatures above 50 MeV ≈ 6 × 1011 K in the post-merger phase. The
high temperature fluid emits electromagnetic radiation as a black-body emitter, with
a spectrum described by Planck’s Law [21]. The vast range of temperatures and
densities involved in a neutron star merger result in a correspondingly vast range of
material opacities. Thus the mean-free-paths of the emitted spectral radiation dictate
where energy may be deposited within the system via re-absorption, or if the energy
can radiate out of the system. Radiation can escape as an observable signal revealing
information about the processes involved, as was observed in the signal from
supernova (SN)1987A [22], the electromagnetic counterpart of the gravitational wave
signal from binary neutron star merger GW 170817, GRB 170817A and AT 2017gfo
[12, 23, 24].

The radiative transfer equation describes the motion, emission, absorption, and
scattering of a radiation intensity field [25]. Taking the angularly integrated moments
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of this transfer equation describes the evolution of radiation energy density and
radiation momentum, determined by their fluxes and source terms. This is analogous
to the conservation laws describing the evolution of a fluid’s energy and momentum.
These evolution equations can couple to the hydrodynamic evolution equations via
radiation absorption and emission source terms, allowing energy and momentum to
be exchanged between the radiation and fluid. This system of evolution equations for
the radiation field also requires a closure relation, similar to the equation of state for
the fluid equations. This closure relation approximates the radiation pressure tensor.
The radiation pressure tensor transitions from a fully isotropic form in the case of
diffusion radiation, to a fully anisotropic form in the case of streaming radiation. This
transition can be approximated using the radiation flux magnitude relative to the
radiation energy density. For very small flux magnitudes the radiation evolves
diffusively, conversely, for flux magnitudes comparable to the radiation energy density
the radiation streams freely along its direction of travel.

The fluid velocities reached during a neutron star merger can approach a significant
fraction of the speed of light (see, for example, [26]). Fluid motion at relativistic
velocities results in special relativistic effects, which can affect the evolution of the
fluid. In order to track any relativistic effects, quantities can be calculated in both the
observer reference frame and the co-moving, fluid reference frame. The conservation
of mass, momentum, and energy accounting for general relativistic effects can be
described by the vanishing of the 4-divergence (covariant derivative) of the mass
density current and the energy-momentum tensor. The energy-momentum tensor has
contributions from both the fluid and the radiation field and can be split into fluid
and radiation parts. This results in a system of balance laws for evolving mass, fluid
momentum, fluid energy, radiation momentum, and radiation energy, involving fluxes,
and source terms from gravitational forces and radiation-hydrodynamic coupling.

I build up towards the complex system of coupled radiation and hydrodynamic
evolution equations on a curved spacetime background, fully detailed in section 2.7.
This system of equations form the basis for a numerical simulation code outlined in
chapter 3.

2.2 Spacetime in General Relativity

The extreme mass density of a neutron star (exceeding that of an atomic nucleus)
curves its surrounding spacetime, resulting in strong gravitational forces near its
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surface. The evolution of the fluid and radiation around this compact object is
affected by this curvature in spacetime. The spacetime curvature is dominated by the
mass contained within the compact neutron star, allowing us to approximate the
spacetime as stationary, and treat the evolving surrounding material as
non-self-gravitating (a test fluid). This stationary spacetime approximation (the
Cowling approximation [27]) allows us to avoid the expensive calculations required for
spacetime evolution.

2.2.1 3+1 Split

The general relativistic spacetime interval (line-element) describes the differential
distance in spacetime,

ds2 = gµνdxµdxν , (2.1)

where gµν is the spacetime 4-metric. Following the standard 3 + 1 decomposition of
spacetime [28, 29], the four dimensional spacetime is foliated into a set of
non-intersecting space-like hypersurfaces Σt [30], where t is a coordinate time used to
label each hypersurface. This 3+1 decomposition is useful because we wish to arrive
at a system of hyperbolic partial differential equations, in the form of an initial value
problem, with which we will calculate the time evolution of an initial condition on a
set of coordinates within a spatial domain. The lapse function α is used to measure
the proper time between adjacent hypersurfaces, and the shift vector βi measures the
change of coordinates between hypersurfaces. The spatial 3-metric γij is used to
describe the spatial curvature within a hypersurface [30]. These quantities are
illustrated in Figure 2.1.

The spacetime line-element in equation (2.1) can be written in terms of this 3 + 1
decomposition,

ds2 =
(︂
−α2 + βkβk

)︂
dt2 + 2βkdxkdt + γijdxidxj. (2.2)

The spacetime 4-metric and its inverse can be used to switch between the covariant
and contravariant forms of tensors, Vµ = gµνV ν , and V µ = gµνVν . The spacetime
4-metric can be written in terms of the 3 + 1 decomposition,

gµν =
⎛⎝ −α2 + βkβk βi

βj γij

⎞⎠ , (2.3)
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Figure 2.1: A pair of adjacent space-like hypersurfaces showing how the lapse
function and shift vector describe changes in coordinates between them. Image from
[31], Copyright © 2020 Palenzuela.
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gµν =
⎛⎝ −α−2 βiα−2

βjα−2 γij − βiβjα−2

⎞⎠ . (2.4)

The future pointing, time-like unit vector orthogonal to the space-like hypersurface is

nµ =
(︂
α−1, −βiα−1

)︂
, (2.5)

nµ = (−α, 0i) . (2.6)

This can be used to project tensors along the direction orthogonal to the space-like
hypersurface.

2.2.2 Example Spacetime Metrics

Here some standard spacetime metrics are introduced, they illustrate the convenience
of the 3+1 split, and will be useful for validation tests with simple spacetimes in
section 4.

Minkowski Spacetime

The Minkowski spacetime metric describes the flat, static spacetime used in special
relativity [32]. It uses the simple Euclidean space and allows for time-dilation,
Lorentz-contraction, and non-rest-mass special relativistic effects. Its 3 + 1
decomposed description in the Cartesian coordinate system gives the spacetime
interval

ds2 = −dt2 + dx2 + dy2 + dz2, (2.7)

and thus the spacetime metric components are,

α = 1, (2.8)
βi = 0i, (2.9)
γij = δij. (2.10)

For spherically symmetric situations of interest, spherical polar coordinates can
provide a convenient description. In spherical polar coordinates the Minkowski
spacetime interval is

ds2 = −dt2 + dr2 + r2dΩ2, (2.11)
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where dΩ2 = dθ2 + sin2 θdϕ2, and r, θ, ϕ are the radial, polar and equatorial
coordinates respectively. The corresponding spacetime metric has the non-zero
components

α = 1, (2.12)
γrr = 1, (2.13)
γθθ = r2, (2.14)
γϕϕ = r2 sin2 θ. (2.15)

Schwarzschild Spacetime

The exterior Schwarzschild spacetime metric describes the spherically symmetric
static spacetime surrounding a non-rotating and uncharged compact object, in a
vacuum. It is the unique solution to the Einstein equations for the exterior spacetime
for any compact object such as a black hole or neutron star under these conditions.
The 3 + 1 decomposed description in Schwarzschild coordinates of the spacetime
interval is

ds2 = −
(︃

1 − 2GM

c2r

)︃
dt2 +

(︃
1 − 2GM

c2r

)︃−1
dr2 + r2dΩ2, (2.16)

and thus its non-zero metric components are

α =
√︄

1 − 2GM

c2r
, (2.17)

γrr =
(︃

1 − 2GM

c2r

)︃−1
, (2.18)

γθθ = r2, (2.19)
γϕϕ = r2 sin2 θ. (2.20)

Here M is the mass of the compact object resulting in the spacetime curvature, G is
the gravitational constant, and c is the speed of light in a vacuum, included explicitly.
The Schwarzschild spacetime contains a physical singularity at r = 0. There are other
coordinate systems that could be used to, for example, show that the singularity at
r = 2GM/c2 is purely a coordinate effect. However, we will not need them further in
this work.
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2.3 Relativistic Fluid and Radiation Fields

In order to evaluate the equations for general relativistic radiation hydrodynamic
evolution, they must first be written in terms of calculable quantities. The rest-mass
density as measured in the co-moving fluid reference frame is ρ = ∑︁

x Nxmx, where
summation is over baryon species, mx is the baryon mass and Nx is the number of
baryons of that type per unit volume. The matter current density (Jµ) is the product
of this rest-mass density and the fluid’s 4-velocity (uµ). The 4-velocity is the rate of
change of 4-position along an object’s world line, with respect to its proper time
(αdt), which is the time as measured by the object. From this we have

Jµ = ρuµ. (2.21)

The fluid’s 4-velocity can be related to the fluid’s 3-velocity (vi) via

uµ = W
(︂
α−1, vi − βiα−1

)︂
, (2.22)

uµ = W
(︂
−α + vkβk, vi

)︂
. (2.23)

Here we have used the Lorentz factor

W = 1√
1 − vkvk

, (2.24)

to measure special relativistic effects. It is necessary for accurate calculation when the
fluid velocity is a significant fraction of the speed of light in a vacuum [33, 34]. We
remember that in this work we choose units where the speed of light is set to c = 1.

The energy-momentum tensor for an ideal fluid can be written as

T µν
M = ρ (1 + ϵ) uµuν + P (gµν + uµuν), (2.25)

where P is the isotropic fluid pressure and ϵ is the specific internal energy as
measured in the co-moving fluid frame [33–35]. These are related to the specific
enthalpy of the fluid h = 1 + ϵ + P/ρ.

The ideal fluid approximation assumes negligible heat conduction and viscosity terms.
The contraction of this energy-momentum tensor with the fluid’s 4-velocity and any
rank-1 tensor orthogonal to the 4-velocity vanishes. This shows that the ideal fluid
pressure tensor has no anisotropic components as measured in the co-moving fluid
frame. For a non-ideal fluid we would not be able to write the rightmost term as
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P (gµν + uµuν) with a scalar fluid pressure, due to anisotropic components in the fluid
frame pressure tensor.

The radiation field can be considered a fluid composed of photons, as opposed to
baryons. It too can be described with an energy scalar, momentum vector, and
pressure tensor. The energy-momentum tensor for a radiation field can be written as

T µν
R = Euµuν + F µuν + F νuµ + P µν , (2.26)

where E, F µ, P µν are the radiation energy density, momentum density, and pressure
tensor as measured in the fluid frame. Their temporal components can be calculated
from orthogonality conditions, F µuµ = 0, P µνuµ = 0ν . Thus F 0 = viF

i/(α − vkβk),
P i0 = vjP

ij/(α − vkβk), and P 00 = vivjP
ij/(α − vkβk)2. In general we would have

non-zero anisotropic components arising from the P µν and F µ tensors.

2.3.1 Observer Frame Quantities

The co-moving fluid frame quantities (ρ, ϵ, P, E, F i, P ij) can be used to define the
fluid and radiation tensors in terms of the fluid 4-velocity (uµ). We now require these
energy-momentum tensors in terms of the time-like normal vector (nµ), to show how
these quantities appear in the coordinates used in our numerical simulation. This
gives (as shown in [36, 37]),

T µν
M = Unµnν + Sµnν + Sνnµ + W µν , (2.27)

T µν
R = Unµnν + S

µ
nν + S

ν
nµ + W

µν
. (2.28)

Here U , Sµ, and W µν are the energy, momentum, and pressure tensors as measured
in the observer-frame (here an overline is used to denote the radiation quantities).
These are obtained by projecting the known fluid-frame energy-momentum tensors
along the time-like normal, and into the space-like hypersurfaces. They are related to
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the fluid-frame quantities via

U = T µν
M nµnν = ρhW 2 − P,

Si = −T µν
M nµγi

ν = ρhW 2vi,

W ij = T µν
M γi

µγj
ν = ρhW 2vivj + Pγij,

U = T µν
R nµnν = EW 2 + 2WαF 0 + α2P 00,

S
i = −T µν

R nµγi
ν = EW 2vi + W [F 0(αvi + βi) + F i] + αP i0,

W
ij = T µν

R γi
µγj

ν = EW 2vivj + W [(F i + βiF 0)vj + (F j + βjF 0)vi] + P ij,

(2.29)

with S0 = S
0 = 0, and W µ0 = W

µ0 = 0µ.

The numerous terms involved illustrate the apparent anisotropic stresses resulting
from the use of coordinates defined by the time-like normal, which are not aligned
with the fluid’s 4-velocity.

2.3.2 Slow-Motion Limit

When the fluid velocity magnitude is sufficiently small the slow-motion approximation
can be used to simplify the equations involved. This is useful to compare with the
Newtonian limit, in which much of our intuition is derived. Taking the limit as
vi → 0i, so that W → 1,

D = ρ (2.30)
U = ρ + ρϵ (2.31)
Si = 0i (2.32)

W ij = Pγij (2.33)
U = E (2.34)
S

i = F i (2.35)
W

ij = P ij. (2.36)

We will discuss the Newtonian equations in more detail in section 2.9.

2.4 Field Evolution

The covariant derivative (also known as the 4-divergence) of the rest-mass density
current Jµ vanishes, ∇µ (Jµ) = 0, and gives the relativistic continuity equation. This
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equation describes the conservation of the number of baryons within a given control
volume. The covariant derivative of a rank-1 tensor is

∇µ (Jµ) = 1
α

√
γ

∂µ (α√
γJµ) (2.37)

= 0. (2.38)

This gives the rest-mass density evolution equation,

∂µ (α√
γJµ) = 0. (2.39)

This is the continuity equation written in terms of partial derivatives in the
coordinate system defined by our 3 + 1 decomposition. We can re-write this as

∂t

(︂
α

√
γJ0

)︂
+ ∂i

(︂
α

√
γJ i

)︂
= 0. (2.40)

Here the differential operator has been split into its temporal and spatial parts. The
4-dimensional volume element is given as α

√
γ = √

−g, where γ = det (γij) and
g = det(gµν) are the determinants of the spatial 3-metric and spacetime 4-metric
respectively.

From the Einstein equation and the Bianchi identities, the covariant derivative of the
energy-momentum tensor T µν also vanishes, ∇µ (T µν) = 0ν . This leads to the
relativistic balance laws for energy and momentum.

The covariant derivative contracted with a rank-2 tensor such as the
energy-momentum tensor gives [29, 35]

∇µ (T µν) = 1
α

√
γ

∂µ (α√
γT µν) − T µλΓν

µλ (2.41)

= 0ν . (2.42)

Here geometric source terms are introduced, unlike in the relativistic continuity
equation, they involve Christoffel symbols Γν

µλ which contain derivatives of the
spacetime metric,

Γν
µλ = 1

2gνκ (∂µgκλ + ∂λgµκ − ∂κgµλ) . (2.43)

These geometric source terms describe the effect the spacetime curvature has on the
energy-momentum tensor, such as gravitational acceleration and frame dragging
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effects.

Contracting equation (2.41) with nν gives

∇µ (T µνnν) = nν∇µ(T µν) + T µν∇µ(nν) = T µν∇µ(nν). (2.44)

Recalling that nν = (−α, 0i), so that

∇µ

(︂
−αT µ0

)︂
= T µν∇µ(nν), (2.45)

this gives the relativistic conservation of energy equation

∂µ

(︂
α2√γT µ0

)︂
= −α

√
γT µν∇µ(nν). (2.46)

This source term can be expanded as [35]

−α
√

γT µν∇µ(nν) = √
γ
(︂
αT ikKik − αT j0∂jα

)︂
, (2.47)

where Kµν = −(δλ
µ + nλnµ)∇λ(nν) is the extrinsic curvature, and is orthogonal to the

time-like normal (Kµνnµ = 0ν). Thus its temporal components are Ki0 = βiKij and
K00 = βiβjKij.

When the spacetime is stationary this source term can be written as [35]

−α
√

γT µν∇µ(nν) = √
γ
(︃1

2T ikβj∂jγik + T j
i ∂jβ

i − αT j0∂jα
)︃

. (2.48)

The energy-momentum equation (2.41) can be expanded as

∇µ (T µν) = 1
α

√
γ

∂µ (α√
γT µν) − T µλΓν

µλ (2.49)

= gνλ

[︄
1

α
√

γ
∂µ (α√

γT µ
λ ) − 1

2T αβ∂λgαβ

]︄
(2.50)

= 0ν . (2.51)

Restricting the free index ν to the spatial index j gives the relativistic conservation of
momentum equations [35]

∂µ

(︂
α

√
γT µ

j

)︂
= 1

2α
√

γT µλ∂jgµλ. (2.52)
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These source terms can be expanded as [35]

1
2α

√
γT µλ∂jgµλ = √

γ
(︃1

2αT ik∂jγik + αT 0
i ∂jβ

i − α2T 00∂jα
)︃

. (2.53)

The equations for conservation of energy (2.46) and momentum (2.52) contain
sufficiently in-depth information about the energy-momentum tensor that in
conjunction with the continuity equation (2.39), we can use them to model the fluid’s
evolution.

2.5 Splitting the Energy-Momentum Tensor

For radiation-hydrodynamics calculations the total energy-momentum tensor can be
split into its matter part and its radiation part,

T µν = T µν
M + T µν

R , (2.54)

where T µν
M is the matter contribution to the energy-momentum tensor, and T µν

R is the
radiation contribution to the energy-momentum tensor. Introducing this split to the
energy-momentum conservation equations returns a system of balance laws involving
coupling source terms,

∇µ (T µν) = ∇µ (T µν
M + T µν

R ) (2.55)
= ∇µ (T µν

M ) + ∇µ (T µν
R ) (2.56)

= 0ν , (2.57)
∇µ (T µν

M ) = Gν , (2.58)
∇µ (T µν

R ) = −Gν , (2.59)

where Gν is the radiation 4-force, which allows energy and momentum to be
transferred between fluid and radiation forms. By decomposing Gν with respect to
the fluid 4-velocity, and comparing with the Newtonian limit, we can write its most
general form using both thermal and scattering opacities χt and χs, and a radiation
emission term Θ,

Gν = χt (E − Θ) uν +
(︂
χt + χs

)︂
F ν . (2.60)
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2.6 Species Conservation

When the fluid represents a mixture of different particles, the different constituent
species can be tracked. For example, consider the populations of electrons, protons,
and neutrons within a fluid volume. We aim to construct equations of motion for
each separate species.

Let Nx be the number density for electrons, protons, or neutrons, where x ∈ {e, p, n}.
Here the only baryons taken into consideration are protons and neutrons. Therefore
we define the number density of baryons to be Nb = Np + Nn. We assume that the
masses of the baryons are approximately equal (mb = mp = mn), and that the
electron mass is negligible (me = 0). Thus the total number of baryons in the fluid
volume can be determined by Nb = ρ/mp. In addition, in an electrically neutral fluid
the number of electrons and protons is equal, Ne = Np. We define the species per
baryon fractions to be Yx = Nx/Nb ∈ [0, 1]. We therefore have that Ye = Yp and,
Yp + Yn = 1.

From these definitions we can modify the continuity equation to obtain a species
number conservation equation. The species number density can be advected around
the spatial domain along with the fluid flux, giving

∇µ (YxJµ) = 0. (2.61)

This encodes that there are no reactions to change the local particle number, which
would not be the case were neutrinos considered, as discussed in [26].

2.7 Balance Laws

Expanding the relativistic balance laws for continuity, matter, radiation, and species
conservation (equations (2.39), (2.58), (2.59), and (2.61)) into temporal and spatial
components, including any geometric and coupling source terms results in a system of
partial differential equations to be solved for the evolution of our general relativistic
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radiation hydrodynamics calculation. These are

∂t

(︂
α

√
γJ0

)︂
+ ∂i

(︂
α

√
γJ i

)︂
= 0,

∂t

(︂
α

√
γYxJ0

)︂
+ ∂i

(︂
α

√
γYxJ i

)︂
= 0,

∂t

(︂
α2√γT 00

M

)︂
+ ∂i

(︂
α2√γT i0

M

)︂
= √

γ
(︂
αT ik

M Kik − αT j0
M ∂jα + α2G0

)︂
,

∂t

(︂
α

√
γT 0

Mj

)︂
+ ∂i

(︂
α

√
γT i

Mj

)︂
= √

γ
(︂

1
2αT ik

M ∂jγik + αT 0
Mi∂jβ

i − α2T 00
M ∂jα + αGj

)︂
,

∂t

(︂
α2√γT 00

R

)︂
+ ∂i

(︂
α2√γT i0

R

)︂
= √

γ
(︂
αT ik

R Kik − αT j0
R ∂jα − α2G0

)︂
,

∂t

(︂
α

√
γT 0

Rj

)︂
+ ∂i

(︂
α

√
γT i

Rj

)︂
= √

γ
(︂

1
2αT ik

R ∂jγik + αT 0
Ri∂jβ

i − α2T 00
R ∂jα − αGj

)︂
.

(2.62)

These equations are in a form convenient for numerical evolution [38, 39]. The source
terms only contain spatial derivatives of the spacetime metric terms, not the matter
or radiation quantities. Hence they are well behaved around discontinuities in the
matter or fluid fields.

The system of coupled balance laws for general relativistic radiation hydrodynamics
can be written in the Valencia formulation [33] as (following [18])

∂

∂t
(U) + ∂

∂xi

(︂
F i
)︂

= S. (2.63)

Here U is the vector of conserved quantities,

U = √
γ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D

YxD

Sj

τ

Sj

U

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.64)

The vector F i contains their corresponding fluxes,

F i = √
γ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αDvi − βiD

αYxDvi − βiYxD

αW i
j − βiSj

α(τ + P )vi − βiτ

αW
i

j − βiSj

αS
i − βiU

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.65)
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The geometric and coupling source terms are contained in the vector S,

S = √
γ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

1
2αW ik∂jγik + Si∂jβ

i − (τ + D) ∂jα

αW ikKik − Sj∂jα
1
2αW

ik
∂jγik + Si∂jβ

i − U∂jα

αW
ik

Kik − S
j
∂jα

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ √

γ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

αGj

α2Gt

−αGj

−α2Gt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.66)

To simplify notation we have defined the non-rest mass density D = ρW = J0. In
addition we have defined τ = U − D = ρhW 2 − P − ρW , which is a useful way to
reformulate the fluid energy equation (2.46) because in non-relativistic cases, the
mass density is the dominant source of energy density, meaning the fluid energy U

tends to the mass D.

A set of primitive quantities from which each of the fluid and radiation terms in these
balance laws can be calculated is {ρ, vi, P, F i, E}, the rest-mass density, fluid velocity,
fluid pressure, radiation flux and radiation energy density respectively. These
primitive quantities provide an efficient approach to computing each of the terms
required for evolution. This will be discussed further in section 3.12.

2.8 Closure Schemes

The set of balance laws requires further information to close the system of equations.
This information loosely encapsulates the microscopic behaviour of the material
which has been lost when moving to the continuum approximation.

2.8.1 Fluid Equation of State

The isotropic fluid pressure can be calculated from known quantities, such as the fluid
temperature and mass density, with an equation of state.

A simple example is the Gamma-law equation of state, requiring a material
dependent adiabatic index Γ,

P = (Γ − 1)ρϵ. (2.67)

As a more general example, the fluid pressure can be determined from rest mass
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density, fluid temperature, and electron fraction,

P = P (ρ, T, Ye). (2.68)

The isotropic pressure depends on the small scale forces between particles, their
temperature dependent fluctuations, and the types of particles involved. Hence the
fluid’s composition, which is encoded in the species fraction can be a useful quantity
to keep track of. For our purposes the effect of the electron fraction dominates this.

We have access to the CompOSE library of tabulated equations of state [6, 40]. A
particularly relevant equation of state is the three parameter SFHx (with electrons)
table, which is useful for neutron stars from core collapse supernova calculations and
accounts for the electron fraction.

2.8.2 Radiation Pressure Tensor

The radiation pressure tensor can be fully isotropic in the co-moving fluid frame,
which recovers diffusive radiation behaviour in the optically thick case. This simple
approximation is known as the Eddington closure, and takes the form
P αβ = 1

3E(gαβ + uαuβ). This is known as the M0 closure, as it only depends on the
zeroth moment of the radiation field (E).

Alternatively the radiation pressure tensor can be fully anisotropic, which recovers
streaming behaviour in the optically thin case. Our approach is to approximate the
physical radiation pressure tensor with an interpolation between these two limiting
cases. This interpolation relies on the fluid-frame radiation quantities E and F i. This
closure scheme is known as the M1 method, as it requires up to the first moment of
the radiation field. In this case

P αβ = 3χ(ξ) − 1
2 P αβ

thin + 3[1 − χ(ξ)]
2 P αβ

thick, (2.69)

P αβ
thin = F αF β

E
, (2.70)

P αβ
thick = 1

3E(gαβ + uαuβ). (2.71)

The interpolation factor χ(ξ) can take numerous forms. Multiple closure options are
explored in [41]. We will focus on the simple interpolation given by the Kershaw
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closure,

χ(ξ) = 1 + 2ξ2

3 , (2.72)

where the anisotropy measure ξ =
√︂

FµF µ/E ∈ [0, 1], and χ(ξ) ∈ [1/3, 1]. As
required, where the radiation flux is small compared to the radiation energy, the
diffusive, fully isotropic radiation pressure tensor is recovered, and when the radiation
flux is of similar magnitude to the radiation energy, the streaming, fully anisotropic
radiation pressure tensor is recovered.

2.8.3 Opacity

The opacity values are required to evaluate the radiation 4-force terms from equation
(2.60). In the Newtonian limit they determine the rate of energy and momentum
exchange between matter and radiation forms. For a detailed discussion of the
calculation of the opacities in some situations, which I have used for the basis of the
radiation hydrodynamics simulations here, see [42]. The thermal and scattering
attenuation coefficients are given the forms

χt = 1.928 × 1017 Y 2
e ρ2 T −7/2, (2.73)

χs = 4.387 × 10−24 Ye ρ, (2.74)

here the mass density is in geometric units, the fluid temperature is in MeV, and
attenuation coefficients are the inverse mean-free-path in geometric units. The
thermal opacity varies as ρ2 T −7/2; this is referred to as a Kramers opacity. For our
applications we expect the scattering opacity to have a negligible contribution
compared to the thermal opacity, this is due to the difference in magnitude of their
constant coefficients. These opacities take into account the mass density, electron
fraction, and fluid temperature, which are quantities we have access to in our
radiation hydrodynamic evolution model.

2.9 Newtonian Limit

In the Newtonian limit, we recover simplified formulations for hydrodynamics and
radiation evolution. With fluid velocities significantly less than the speed of light in a
vacuum, and negligible spacetime curvature, we obtain equations for radiation and
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hydrodynamic evolution appropriate for terrestrial applications. From these
Newtonian evolution equations a huge amount of numerical techniques have been
developed for efficient computational simulation. Many of these techniques are also
applicable to the general relativistic regime.

2.9.1 Newtonian Hydrodynamics

The Newtonian limit of hydrodynamic motion introduces a system of equations in
conservation form. These equations describe how fluid momentum and pressure can
affect the evolution of the fluid quantities [43]. Newtonian gravitational effects can be
included via source terms, forming a set of balance laws [44]. This set of equations
requires a closure relation which can be included with a material dependent equation
of state.

The system of conservation laws describing Newtonian hydrodynamics is

∂

∂t
(U) = ∂

∂xi

(︂
F i
)︂

+ S, (2.75)

where U is the vector of conserved quantities: mass density, momentum densities and
total energy density E,

U =

⎛⎜⎜⎜⎝
ρ

ρvj

E

⎞⎟⎟⎟⎠ . (2.76)

The vector F j contains the fluxes corresponding to these conserved quantities,

F i =

⎛⎜⎜⎜⎝
ρvi

ρvivj + Pδij

(E + P ) vi

⎞⎟⎟⎟⎠ . (2.77)

The vector S contains any source terms. For example gravitational source terms
would be described by,

S =

⎛⎜⎜⎜⎝
0

−ρ∂iϕ

−ρvj∂jϕ

⎞⎟⎟⎟⎠ . (2.78)

where ϕ is the Newtonian gravitational potential. In simple cases ϕ = gz, when using
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uniform gravitational acceleration towards the negative z-direction.

This Newtonian balance law is analogous to the fluid parts of the general relativistic
balance law in equation (2.63).

The equation for conservation of mass density states that mass is advected and there
are no source (or sink) terms, meaning that mass is never created or destroyed. The
equations for conservation of momentum density state that momenta are advected,
there is an acceleration from spatial gradients of fluid pressure, and there can be
acceleration effects due to gravitational source terms. The equation for conservation
of total energy density states that total energy is advected, there is work done by the
pressure term and there can be changes in kinetic energy due to a gravitational
source term.

2.9.2 Newtonian Radiative Transfer

The quasi-Newtonian radiative transfer equations introduce how the evolution of the
radiation field couples to the fluid properties. Radiation absorption and emission
allows the transfer of energy between the radiation and fluid fields.

The time dependent radiative transfer equation (to first order v/c) is a Boltzmann
transport equation describing how the intensity field I for electro-magnetic radiation
changes over time due to absorption, emission and scattering,

1
c

∂

∂t
I + n̂ · ∇I = −

(︂
χt + χs

)︂
I + η + χs 1

4π

∫︂
4π

IdΩ. (2.79)

Here, χt, χs are the absorption and scattering opacities respectively, η is the radiation
emission term, and Ω is a solid-angle variable (note: the speed of light in a vacuum is
written explicitly as c). Accounting for thermal radiation emission the emission term
η = χtB, where B is the Planckian distribution for black-body emission. In Local
Thermodynamic Equilibrium (LTE) the radiation field (I) matches the thermal
emission.

The time dependent radiative transfer equation is a seven dimensional equation
(x, t, n̂, ν) (three spatial, three momentum, and one temporal, we choose to link the
three momentum coordinates to two angles and one frequency), which would be
incredibly expensive and complex to solve. To reduce the cost of calculating a
numerical solution, approximations are required to reduce the dimensionality of the
problem.
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Diffusion Approximation

An approach to removing the two angular dimensions from the time dependent
radiative transfer equation involves taking the zeroth moment of the radiative
transfer equation by integrating it over its angular dependence,

∂E

∂t
+ ∂F i

∂xi
= −cχa

(︃
E − 4π

c
B
)︃

. (2.80)

This Newtonian approach is analogous to the M0 closure we introduced for general
relativistic radiation evolution in section 2.8.2. Here the radiation energy density E

and the radiation fluxes F i are related to the radiation intensity via,

E = 1
c

∫︂
4π

IdΩ, (2.81)

F =
∫︂

4π
n̂IdΩ, (2.82)

where n̂ are directional unit vectors. This zeroth moment equation can be viewed as a
balance law for radiation energy density, with advective transport and a source term
coupling it to radiation emission and absorption processes.

In the diffusion approximation the radiation flux is approximated as proportional to
the spatial gradient of the radiation energy density. This proportionality factor D is
known as the diffusion coefficient,

F i = D
∂E

∂xi

, (2.83)

D = −c

3 (χt + χs) . (2.84)

This approximation is appropriate for the case of large opacities, and thus short mean
free paths. This approach assumes an isotropic radiation intensity and results in the
radiation diffusion equation,

∂E

∂t
= ∂

∂xi

(︄
c

3 (χt + χs)
∂E

∂xi

)︄
− cχt

(︃
E − 4π

c
B
)︃

. (2.85)

The diffusion approximation to the radiative transport equation can be solved with
implicit numerical techniques, allowing for significantly larger time steps.
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Two Moment Approximations

The isotropic restriction on the radiation intensity can be relaxed by taking the first
moment of the radiative transfer equation, along with the zeroth moment. Again this
Newtonian approach is analogous to the M1 method we introduced for general
relativistic radiation evolution in equation (2.69). This requires calculating the
radiation fluxes using information from the radiation pressure tensor P ij,

∂F j

∂t
+ c2 ∂P ij

∂xi
= −c

(︂
χt + χs

)︂
F j. (2.86)

The radiation pressure tensor is related to the radiation intensity via

P = 1
c

∫︂
4π

n̂n̂IdΩ. (2.87)

The system of zeroth and first moment equations is in balance law form, and
numerical solutions can be found using the same approach as for the hydrodynamic
conservation laws. These first moment equations can be viewed as balance laws for
radiation momentum density, with advective transport and flux dependent source
terms.

The radiation pressure must be determined via a closure relation, relating it to known
or previously calculated quantities, just as was required in the general relativistic case
described in section 2.8.2.

Fluid-Radiation Coupling

For radiation coupled fluid dynamics calculations, the energy density of the fluid can
be coupled to the radiation field via the material balance equation, which accounts
for radiation emission and absorption by the fluid. This is given by

ρ
∂ϵ

∂t
= c

∫︂ ∞

0
χa

(︃
Eν − 4π

c
B
)︃

dν. (2.88)

When using a constant (but fluid dependent) specific heat capacity at constant
volume (CV ) the fluid temperature (T ) can be obtained with T = ϵ/CV . The
material balance equation involves integrating radiation quantities over the entire
frequency spectrum. When using a multi-group approach this can be approximated
by summation over the frequency groups used.
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Multi-group Radiation

The radiative transfer equations can be applied to monochromatic (spectral), narrow
band, wide band, or full-spectrum frequencies of electro-magnetic radiation. One
approach to reducing the expense of working with the time dependent radiative
transfer equation is to discretise the continuous frequency (energy) variable. The
entire frequency domain can be integrated over to give a ‘grey’ radiation
approximation, or the frequency range of interest can be split into a set of ‘frequency
groups’. The grey radiation approach can be thought of as using a single, very large
frequency group. Discretising the frequency domain can drastically reduce the
computational cost of radiative transfer equations compared to highly resolved
monochromatic methods. The radiation calculations can be completed for each
frequency group separately. The radiation energy density contained within a
particular frequency group g, can be calculated by integrating radiation energy
density over the corresponding frequency interval,

Eg =
∫︂ νg+1/2

νg−1/2

Edν. (2.89)

Radiation quantities such as radiation flux and radiation pressure for a given
frequency group can be calculated in terms of the multi-group radiation energy
density.

The opacity of a material for a given frequency group can be found via a weighted
average of the spectral radiation opacities. Two common averaging methods are the
Planck mean and the Rosseland mean.

The Planck mean opacity χP is optimised for use in the radiation emission in the low
opacity regime,

χP =
∫︁ νg+1/2

νg−1/2
χνBdν∫︁ νg+1/2

νg−1/2
Bdν

, (2.90)

where the weighting function B is a function of both frequency and temperature.
This weighting function is the Planckian distribution for black-body emission,

B(T, ν) = hν3

2c

(︂
ehν/kT − 1

)︂−1
. (2.91)

The Rosseland mean opacity χR is optimised for use in the radiation flux in the high
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opacity regime,

χ−1
R =

∫︁ νg+1/2
νg−1/2

χ−1
ν

∂B
∂T

dν∫︁ νg+1/2
νg−1/2

∂B
∂T

dν
, (2.92)

where a harmonic average has been employed.

Some advantages of using a multi-group radiation scheme are that it captures
behaviours at different frequencies, the regions of the frequency spectrum to
concentrate on can be chosen freely, there are less computations involved than with a
monochromatic approach, and it introduces a convenient format for storage of
radiation quantities and data such as the multi-group opacities. However some
disadvantages of using a multi-group scheme are that it may become computationally
expensive as more frequency groups are used, and the black-body emission term B

requires numerical integration over each frequency group. The grey black-body
emission integrated over all frequencies has a very simple form,

∫︂ ∞

0
B(T, ν)dν = σ

π
T 4, (2.93)

where σ is the Stefan-Boltzmann constant.

2.10 Summary

In this chapter I have introduced a system of balance laws which describe the
evolution of a compressible fluid and a radiation field within a curved spacetime
(equations (2.63)). These physical processes have previously been described by
[18, 36].

The fluid takes the ideal approximation, and its isotropic fluid-frame pressure can be
dependent on numerous fluid quantities. The radiation field is capable of both
diffusive and streaming behaviour. Its pressure tensor can utilise up to the first
moment of the radiation field.

A more complete model could include further complexities such as multi-group
radiation [45], magnetodynamics [46], and non-ideal fluid properties such as thermal
conduction and viscosity [26].

This system of balance laws will form the basis for a numerical simulation code,
employing computational techniques which were initially developed for terrestrial
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radiation hydrodynamic evolution in the Newtonian limit, but can be extended to
also find application in numerical relativity, as outlined in chapter 3.
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Chapter 3

Numerical Methods

3.1 Introduction

The system of balance laws for radiation hydrodynamic evolution within a curved
spacetime, as outlined in chapter 2 equation (2.63), in combination with appropriate
initial conditions, boundary conditions, and closure schemes, can form the basis of a
numerical simulation code.

In this chapter I have detailed the discretisation methods, numerical approximations,
and computational efficiencies which will allow the creation of a general relativistic
radiation hydrodynamic evolution code. The outlined numerical methods are relevant
for modelling astrophysical phenomena of interest such as post-bounce core collapse
supernova explosions and neutron star merger remnants. These events involve smooth
spacetimes which evolve on slow timescales compared to the fluid motion, a regime in
which our stationary spacetime approximation is valid.

The hydrodynamic evolution of the fluid involved in a neutron star merger remnant is
sufficiently complex due to the non-linear properties of propagating shock fronts
(especially when not assuming any symmetries), that it is appropriate to employ
numerical techniques to calculate a solution [47]. Closed-form analytic solutions and
perturbation approaches are not general enough to capture the range of behaviours
expected.

As our focus is on modelling the evolution of neutron star merger remnants, we will
explore a collection of numerical techniques optimised to the range of lengthscales
and timescales we expect to encounter for these scenarios. A particular challenge

41
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involves capturing an appropriate level of detail in the resulting turbulent flows
within the spiralling material thrown off of the compact remnant during the merger
phase, whilst still maintaining sufficient accuracy of the larger problem as a whole. A
code which uses 1st or 2nd order accuracy everywhere will not be sufficient, as it
would accumulate significant errors over time, as we will discuss in section 4. The
radiation field we consider is coupled to both this fast moving, detailed fluid, as well
as the comparatively slow, smooth spacetime.

The numerical techniques employed for binary black hole merger simulations will not
necessarily be applicable for our uses. These focus on capturing the gravitational
wave signal, accounting for the signal’s wavelength, and concentrate on maintaining
phase accuracy. Wave phases are not a priority for us, thus we will not be using a
spectral method like those used in the SpEC code [48]. Furthermore the numerical
approaches employed for terrestrial applications such as vehicle-drag and ventilation
calculations are also unlikely to be directly applicable to our purposes. They can be
very detailed, but not scalable to the spatial distances we require.

The balance laws consist of a system of first order hyperbolic partial differential
equations involving both temporal and spatial derivatives. They are intended to
evolve quantities which may possess steep spatial gradients, as the astrophysical
phenomena we are interested in modelling can involve propagating shock waves.

Results from computational fluid dynamics suggest a number of efficient techniques
to assist in achieving this objective. In order to discretise the system of balance laws
for numerical evaluation [33], I introduce a computational grid to represent the
spatial domain of interest. The resolution of this grid is linked to the accuracy of the
numerical evaluation, quantified by the order of accuracy p, where the error is
proportional to the grid spacing to the power p. The efficiency of a numerical
simulation is given by its accuracy and the runtime taken to complete the calculation.
Increasing the complexity of the numerical schemes used can increase the order of
accuracy with respect to the grid resolution. The spatial order of accuracy is given by
the spatial distribution of quantities reconstructed from cell-centred volume averaged
data, such as piecewise constant, linear, or parabolic reconstructions.

Difficulties arise when attempting to represent shock fronts with high order spatial
reconstructions as they can oscillate and smear out the steep gradient around the
discontinuity [43, 49]. To avoid this, reconstructions can be restricted to employ low
order, piecewise constant reconstruction around shocks. Reconstructions are also
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restricted to avoid introducing new local extremal values, which qualifies the scheme
as total variation diminishing (TVD). Numerical schemes which recover high order
reconstruction in regions of smooth data and low order reconstruction around
discontinuities whilst conserving appropriate quantities are known as ‘high resolution
shock capturing schemes’. It is appropriate to employ high resolution shock capturing
methods which can cope with shocks and travelling shock fronts when modelling
supernova explosions and neutron star mergers. Since the problems we are interested
in modelling involve the motion and interaction of shock waves we shall be employing
high resolution shock capturing schemes in our numerical simulation code.

To reduce the cost of computation, adaptive mesh refinement (AMR) may be used.
When using AMR, regions of the spatial domain can be refined to a sufficiently high
resolution to capture any detailed structure or behaviour of interest. Simultaneously
the large bulk of the domain away from these regions can be kept at a significantly
coarser resolution [50]. This is advantageous over a uniform mesh approach which
would require high resolution throughout the domain, and thus much more
computation time to capture the same complex behaviour.

3.2 The Method of Lines

The conservation laws for relativistic radiation hydrodynamics form a system of first
order hyperbolic partial differential equations (PDEs) involving both temporal and
spatial derivatives. A numerical approach to solving this system aims to progress the
vector of conserved quantities from one computational time-step to the next. This
progression begins with the initial conditions describing the physical problem to be
simulated.

We aim to evolve this initial value problem by means of the method of lines, similar
to that used by live spacetime codes such as the Einstein Toolkit [2]. This is opposed
to a direct explicit update seen in the IAMR, Maestro, and Castro codes [51–53]
which make use of corner-transport-upwind methods. The method of lines approach
is more convenient when we need to account for the coupling between the fluid,
radiation, and the spacetime.

The methods which I use have up to third order temporal convergence. Higher order
methods like those employed by spectral methods will not be necessary as we are not
concerned about gravitational wave phase accuracy accumulating global error.
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The system of balance laws (2.63) can be re-arranged to involve purely temporal
gradients on the left hand side and purely spatial gradients and source terms on the
right hand side,

∂

∂t
(U) = − ∂

∂xi

(︂
F i
)︂

+ S. (3.1)

By applying a spatial discretisation, the spatial domain can be split into a finite
number of locations which can be described with a three dimensional grid. Each
discretised location represents a zone (cell) of the spatial domain within which the
physical quantities can be described with an approximate distribution. Using the
values of the physical quantities at only the discretised locations allows the spatial
derivatives to be represented with algebraic expressions (as will be discussed in
section 3.4) and allows the system of PDEs to be written as a system of
time-dependent initial value problems (IVPs) [54],

∂

∂t

(︂
U j

)︂
= f (xj, t) . (3.2)

Here the equations have been restricted to a single spatial dimension, and the
subscript index j denotes discretised spatial location. This system of IVPs is to be
solved for each discretised spatial location, thus evolving the entire discretised spatial
domain forwards in time [43, 49, 55].

3.3 Initial Value Problem Methods

The right hand side of our system of IVPs can be collected into a single term which is
dependent on the conserved quantities we aim to evolve,

∂

∂t
U = f (U) . (3.3)

The vector of conserved quantities can be progressed in time by applying a temporal
discretisation and employing an explicit numerical technique to evolve the quantities
from one time-step to the next.

The solution at an earlier time (Un) can be used to obtain the solution at a later time
(Un+1). For a multi-step method we can make use of a number of intermediate
solutions (U (m)). Below we introduce a number of minimum storage explicit
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Runge-Kutta methods, with the particular Shu-Osher representation [56]:

U (m+1) = amUn + (1 − am)U (m) + bm∆tf
(︂
U (m)

)︂
. (3.4)

For an s-step method we have m = 0, · · · , s − 1. The method is started using
U (0) = Un and completed with U (s) = Un+1.

3.3.1 The Forward Euler Method

The simplest approach to the numerical evolution of the simulation is the forward
Euler method. The forward Euler method is the explicit, one-step, first-order in time
method (the first-order explicit Runge-Kutta method). It involves evaluating the
right-hand side term at the beginning of the time-step to approximate a temporal
gradient for the conserved quantities, and uses that temporal gradient to extrapolate
a solution for the conserved quantities at the end of the time-step,

Un+1 = Un + ∆tf (Un) , (a0, b0) = (1, 1) . (3.5)

3.3.2 The Mid-Point Method

The mid-point method is an explicit, two-step, second-order in time method in the
family of second-order Runge-Kutta methods. It involves calculating half of a forward
Euler step to obtain a solution at the mid-point of the time-step, hence the method’s
name. This mid-point solution is then used to calculate a new temporal gradient for
the conserved quantities, which in turn is used to extrapolate the conserved quantities
from the beginning of the time-step to the end,

U (1) = Un + 1
2∆tf (Un) , (a0, b0) =

(︃
1,

1
2

)︃
, (3.6)

Un+1 = Un + ∆tf
(︂
U (1)

)︂
, (a1, b1) = (1, 1) . (3.7)

3.3.3 Heun’s Method

Heun’s method (also known as the explicit trapezoidal rule) is another explicit,
two-step, second-order in time method, in the family of second-order Runge-Kutta
methods.

U (1) = Un + ∆tf (Un) , (a0, b0) = (1, 1) , (3.8)
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Un+1 = 1
2Un + 1

2U (1) + 1
2∆tf

(︂
U (1)

)︂
, (a1, b1) =

(︃1
2 ,

1
2

)︃
. (3.9)

This method is strong stability preserving (SSP, sometimes referred to as total
variation diminishing (TVD)). This gives some mathematical guarantees about the
growth rate of solutions [57], and avoids oscillatory evolution when using a stable
time-step. SSP methods satisfy the condition that the total variation of the solution
does not increase as it is evolved, such that

∑︂
j

⃓⃓⃓
Un+1

j+1 − Un+1
j

⃓⃓⃓
≤
∑︂

j

⃓⃓⃓
Un

j+1 − Un
j

⃓⃓⃓
. (3.10)

3.3.4 The Shu-Osher Method

A minimum storage, third-order in time, explicit, SSP Runge-Kutta method is given
by [58]

U (1) = Un + ∆tf (Un) , (a0, b0) = (1, 1) , (3.11)

U (2) = 3
4Un + 1

4U (1) + 1
4∆tf

(︂
U (1)

)︂
, (a1, b1) =

(︃3
4 ,

1
4

)︃
, (3.12)

Un+1 = 1
3Un + 2

3U (2) + 2
3∆tf

(︂
U (2)

)︂
, (a2, b2) =

(︃1
3 ,

2
3

)︃
. (3.13)

3.4 The Finite Volume Method

The discretised zones of our spatial domain form a collection of finite volumes. Here
we work towards obtaining a finite volume method (FVM) which evolves the volume
integrated averages of our conserved quantities.

The spatial derivative terms in our system of balance laws (2.63) represent a
divergence of fluxes. Integrating these balance laws over the finite volume allows us to
apply the divergence theorem, replacing the divergence term with surface integrals.
These represent the sum of fluxes though the surfaces of the finite volume. We obtain
an exact expression for the volume averaged conserved quantities (shown here
restricted to a single spatial dimension)

∂

∂t

(︂
U j

)︂
= − 1

∆x

(︂
F j+1/2 − F j−1/2

)︂
+ Sj. (3.14)

Keeping the surface flux between neighbouring finite volumes consistent allows for the
creation of conservative methods.
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At the spatial domain boundaries obtaining the cell-interface flux may require data
from outside of the spatial domain. We can achieve this whilst maintaining our
cell-centred data structure by introducing ghost cells. We grow our numerical grid to
add external computational zones, and populate them with data to satisfy any
physical boundary conditions we require, such as reflective, transmissive, or
in/outflow. The number of zones we grow our computational grid by is determined by
the stencil size we decide to use for the interface flux calculation.

3.5 Quantity Reconstruction at Interfaces

Here examples of techniques known as high resolution shock capturing methods are
described [59]. High resolution shock capturing methods are beneficial as the
discontinuities between the discretised physical quantities used in the balance laws
can evolve as shock fronts.

The finite-volume discretised evolution equations (3.14) require flux values at cell
interfaces. We calculate these fluxes from the adjacent cell-centred primitive
quantities as in the PIZZA, GRHydro, and Whisky codes [60–62]. We choose to
reconstruct the primitive quantities over the conserved quantities, as it is much more
straightforward to calculate the flux terms from them, otherwise a root-find would be
required at every cell interface, a very computationally expensive process. We are
unable to avoid evaluating this root-find entirely, but we aim to reduce the number of
times it must be calculated, as will be discussed in section 3.12.

The approximation to the distribution of the primitive quantities within a
computational cell can be chosen. For numerical stability the chosen distributions
should avoid introducing artificial oscillations or new extremal points, and recover the
cell integrated values required for the finite volume method. The simplest distribution
approximation to use is that of a uniform profile. The disadvantage to using a
constant profile is that it leads to substantial discontinuity jumps at cell boundaries,
even for smooth solutions, and results in only first order convergence with spatial
resolution. A larger difference in physical quantity either side of a cell boundary
results in a more dissipative evolution of the numerical simulation. The magnitude of
the discontinuity jumps can be influenced by employing higher order intra-cell
distributions.

An illustration of a piecewise constant reconstruction of primitive quantities is shown
in figure 3.1. Within each computational zone the quantity is uniform, and at zone
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Figure 3.1: A one-dimensional illustration of a piecewise constant reconstruction of
a cell-centred primitive quantity. These interface values can be used by a Riemann
solver to obtain interface fluxes.

interfaces there can be a discontinuity. These values can be used by a Riemann solver
to obtain interface flux values.

A danger of employing high order reconstruction methods is that they can introduce
large, unwanted oscillations around discontinuities, similar to Runge’s and Gibbs
phenomena [63, 64]. To avoid this we aim to use lower order reconstructions around
discontinuities or limit the magnitude of the reconstruction.

3.5.1 Linear Profiles

From cell-centred primitive quantities, we can linearly reconstruct values to either
side of each cell interface [49, 65–67]. Let q represent some primitive quantity, and

Ri = qi+1 − qi

qi − qi−1
, (3.15)

then the interface values can be reconstructed with some slope limiting function ϕ, as

qL
i+1/2 = qi + 1

2ϕ(Ri)(qi − qi−1), (3.16)

qR
i−1/2 = qi − 1

2ϕ(1/Ri)(qi+1 − qi). (3.17)
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Here the L and R superscripts indicate projection on to a cell interface from the left
and right sides respectively, and the ϕ function calculates appropriate slopes from
surrounding values [68]. These linear reconstructions require a stencil of size three,
specifically {xi−1, xi, xi+1}, corresponding to at least two required ghost zones at each
boundary.

Possible choices for such a slope calculating function include

ϕMM(R) = min (1, R) , (3.18)

ϕV L(R) = 2R

1 + R
, (3.19)

the MinMod and VanLeer methods [43]. Here ϕ(R) = 0 if (qi+1 − qi)(qi − qi−1) ≤ 0
for all such methods. The slope functions are only non-zero with strictly monotonic
data, ensuring that new local extrema are not introduced, and the methods are total
variation diminishing.

Using piecewise linear profiles can result in the numerical method having
second-order convergence with spatial resolution in regions of smoothly varying
physical quantities. In regions of non-smooth physical quantities such as where
shock-fronts are propagating through the fluid, a first-order method is maintained,
preserving the robust and stable behaviour which is desired.

3.5.2 Parabolic Reconstruction

Approximating the spatial distribution of the primitive quantities as piecewise
parabolic can result in a third order reconstruction in smoothly varying regions.
Using the volume averaged values (in 1D) of a computational cell and its adjacent
neighbours we can find a system of linear equations which can be solved for the
coefficients of a quadratic polynomial distribution. Evaluating this polynomial at the
cell interfaces gives a third order reconstruction for the interface values.

These interface values can be written as projections from the central value based on
the differences in the primitive quantity between the neighbouring cell centres. In
order to avoid introducing any new extremal values and to not overshoot the
neighbouring values, and thus be total variation diminishing (TVD), this projection is
limited to only be non-zero for locally strictly monotonic spatial primitive
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distributions. This is the Koren slope limiter as defined in [69]

ϕK(R) = min
(︃

2, 2R,
1 + 2R

3

)︃
. (3.20)

This parabolic reconstruction also requires the three point stencil {xi−1, xi, xi+1} and
at least two ghost zones at each boundary.

3.5.3 WENO

Weighted essentially non-oscillatory (WENO) schemes are a class of high order
reconstruction methods. They can be used to reconstruct the value of primitive
quantities at cell-interfaces from surrounding discrete cell-centred data points (qi).
They employ a convex linear combination of stencils to obtain high order
reconstruction, whilst avoiding the undesirable oscillations resulting from high order
reconstructions around discontinuities (see Runge’s and Gibb’s phenomena [63, 64]).
This is achieved by giving any discontinuity containing stencils a lower weighting in
the linear combination, as explained further in [70–72].

If used in conjunction with patch-based adaptive mesh refinement (AMR), each patch
would require at least the minimum number of ghost cells demanded by the WENO
stencil size (conversely the maximum stencil size available is restricted by the number
of ghost cells at the domain boundaries). As AMR requires patch communication,
this becomes more expensive with more ghost cells, limiting stencil size, and tying it
to computational cost. AMR is discussed further in section 3.13.

In our case we construct a fifth order scheme from a set of third order accurate
quadratic fits {p1(x), p2(x), p3(x)}. Focusing on approaching the cell interface at
xi+1/2 from the left. The fit pj(x) is centred on xi−2+j, and utilises the three-point
stencil Sj = {xi−3+j, xi−2+j, xi−1+j}. The set of third order fits reconstruct the
interface value to be

qi−1
i+1/2 = p1(xi+1/2) = 1

3qi−2 − 7
6qi−1 + 11

6 qi, (3.21)

qi
i+1/2 = p2(xi+1/2) = −1

6qi−1 + 5
6qi + 1

3qi+1, (3.22)

qi+1
i+1/2 = p3(xi+1/2) = 1

3qi + 5
6qi+1 − 1

6qi+2. (3.23)

The fifth order reconstruction can be found from a convex linear combination of the
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third order reconstructions as

q5th
i+1/2 = 1

30qi−2 − 13
60qi−1 + 47

60qi + 9
20qi+1 − 1

20qi+1 (3.24)

= a1q
i−1
i+1/2 + a2q

i
i+1/2 + a3q

i+1
i+1/2, (3.25)

aj =
(︃ 1

10 ,
3
5 ,

3
10

)︃
. (3.26)

To avoid issues such as undesired oscillations, due to discontinuous data, an
alternative convex combination of these quadratic fits can be found using smoothness
indicators (dj). In smooth regions the full fifth order reconstruction is recovered, and
around discontinuities an at least third order reconstruction is created, free from the
excessive oscillations. The alternative combination used here is

qW ENO
i+1/2 = b1q

i−1
i+1/2 + b2q

i
i+1/2 + b3q

i+1
i+1/2, (3.27)

where

bj = cj∑︁
k ck

, (3.28)

cj = aj

(dj + 10−6)2 , (3.29)

dj =
2∑︂

l=1
∆x2l−1

∫︂ xi+1/2

xi−1/2

(︄
dl

dxl
pj(x)

)︄2

dx, (3.30)

d1 = 13
12(qi−2 − 2qi−1 + qi)2 + 1

4(qi−2 − 4qi−1 + 3qi)2, (3.31)

d2 = 13
12(qi−1 − 2qi + qi+1)2 + 1

4(qi−1 − qi+1)2, (3.32)

d3 = 13
12(qi − 2qi+1 + qi+2)2 + 1

4(3qi − 4qi+1 + qi+2)2. (3.33)

The surrounding cell-centred data points can be reverse-ordered to reconstruct data
to the right of the interface xi+1/2.

Where a reconstruction over or under-shoots the surrounding data-points, introducing
new local extrema, physical restrictions can placed on the interpolation, such as
limiting how low mass-density, temperature, or energy can become, to avoid vacuum
or negative values.

The stencils used for this fifth order WENO scheme require three ghost zones at each
boundary.
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3.6 Spacetime Evaluation

The flux terms in our balance laws require the spacetime metric terms (lapse-function,
shift-vector, and spatial-metric) to be reconstructed at the cell-interfaces, as seen in
equation (2.65). We make the assumption that they are smoothly varying everywhere.
For a numerical simulation with at least three ghost zones we are able to employ up
to a sixth order Lagrange polynomial interpolation,

q2nd
i+1/2 = qi + qi+1

2 , (3.34)

q4th
i+1/2 = −qi−1 + 9qi + 9qi+1 − qi+2

16 , (3.35)

q6th
i+1/2 = 3qi−2 − 25qi−1 + 150qi + 150qi+1 − 25qi+2 + 3qi+3

256 . (3.36)

The geometric source terms in our balance laws require the gradients of the spacetime
metric terms at cell-centres, as seen in equation (2.66). Again with at least three
ghost zones and smoothly varying quantities, we can employ up to a sixth order finite
difference approximation to the spacetime gradients,

∂xq2nd
i = −qi−1 + qi+1

2 , (3.37)

∂xq4th
i = qi−2 − 8qi−1 + 8qi+1 − qi+2

12 , (3.38)

∂xq6th
i = −qi−3 + 9qi−2 − 45qi−1 + 45qi+1 − 9qi+2 + qi+3

60 . (3.39)

Provided that the quantities are smoothly varying in space, the higher order
approximations are more accurate. In practice we use the highest order
approximation we can, given the number of ghost cells available. Even the sixth order
methods shown here are computationally inexpensive to evaluate.

3.7 Approximate Riemann Solvers

The system of IVPs in equation (3.14) require the evaluation of the flux terms at the
cell interfaces. The interfaces separating the computational cells can have
discontinuous physical quantities on either side. A conservation law with
discontinuous initial conditions is known as a Riemann problem [43, 66, 73]. The
fluxes through these cell interfaces can be calculated with the use of Riemann solvers.
Treating each cell interface as a Riemann problem is known as a Godunov scheme.
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Figure 3.2: An illustration of a two-wave evolution of a Riemann problem, in this
case the cell interface exists between the left and right-going waves.

Here we consider cell interfaces in the x-direction (the y and z-direction cases are
equivalent),

∂tU + ∂xF x = S. (3.40)

We aim to capture the evolution of waves propagating away from the discontinuity,
such as shock waves, rarefaction waves, and if applicable, contact waves. We will
require their wave-speeds in order to determine the state of the flux at the cell
interface, as in [43].

3.7.1 The HLL(E) Riemann Solver

The HLLE Riemann solver (often simply HLL) is an approximate Riemann solver
which assumes a simple two-wave evolution of the discontinuity. The leftmost and
rightmost waves have wave-speeds λ− and λ+ respectively, as in [34, 43, 74–76]. The
location of the cell interface relative to the waves used by the approximate Riemann
solver depends on the wave-speed approximations, this is illustrated in figure 3.2.

The interface fluxes are chosen depending on where in the wave-pattern the
stationary cell interface sits,

F i+1/2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F L if 0 ≤ λ−,

F HLL if λ− < 0 < λ+,

F R if λ+ ≤ 0.

(3.41)
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Here the L subscript indicates that the physical quantities on the left side of the cell
interface have been used in the calculation, and the R subscript indicates that the
physical quantities on the right side of the cell interface have been used in the
calculation. The upwind fluxes are used where appropriate. In the subsonic case, the
conserved quantities UHLL and their corresponding fluxes F HLL in between the two
waves in the HLL approximation are calculated as

UHLL = λ+UR − λ−UL + F L − F R

λ+ − λ− , (3.42)

F HLL = λ+F L − λ−F R + λ−λ+(UR − UL)
λ+ − λ− . (3.43)

For relativistic hydrodynamic simulations the wave-speeds are dependent on the fluid
velocity and the local sound-speed cs of the fluid. As in [77] the fastest left and right
hydrodynamic wave-speeds propagating from a discontinuity at a cell interface are

λ± = α

1 − v2c2
s

[︃
vx
(︂
1 − c2

s

)︂
± cs

√︂
(1 − v2) [γxx(1 − v2c2

s) − vxvx(1 − c2
s)]
]︃

− βx.

(3.44)

When fluid motion is perpendicular to the cell interface (i.e. vy = vz = 0), this
reduces to

λ± = α
(︃

vx ± cs

1 ± vxcs

)︃
− βx. (3.45)

When using a Gamma-law equation of state (as introduced in section 2.8.1) the local
hydrodynamic sound speed is given as cs =

√︂
ΓP/hρ. These wave-speeds are

calculated at the interface using values reconstructed from either side, the minimum
of the two left wave-speeds and maximum of the two right wave-speeds are taken.

For simulations involving radiation the radiation wave-speeds can be much larger
than the hydrodynamic wave-speeds. The radiation wave-speeds can be
over-approximated with the speed of light in a vacuum. An over-approximation of
wave-speed results in a more dissipative approximation to the evolution of the
simulation. However this is safer than under-approximating the wave-speeds which
can lead to instabilities in the simulation.
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Figure 3.3: An illustration of a three-wave evolution of a Riemann problem.

3.7.2 The HLLC Riemann Solver

The HLL(E) Riemann solver is robust and reliable, however in astrophysical
simulations such as for supernova and relativistic jets, a more physical description of
the wave-pattern is required. Another approximate Riemann solver, more physical
than the HLL(E) solver, is the HLLC Riemann solver. The HLLC solver assumes a
3-wave evolution of the discontinuity by restoring the contact discontinuity λ∗ in the
resulting wave pattern [73, 78], this is illustrated in figure 3.3.

As with the HLL(E) Riemann solver, the fluxes are chosen depending on where in the
wave pattern the stationary cell interface exists,

F i+1/2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F L if λ− ≥ 0,

F ∗
L if λ− < 0 ≤ λ∗,

F ∗
R if λ∗ ≤ 0 < λ+,

F R if λ+ ≤ 0.

(3.46)

The ∗ indicates quantities in a region which has been affected by the propagating
wave-fronts, with ∗

L indicating quantities to the left of the contact discontinuity, and ∗
R

indicating quantities to the right of the contact discontinuity. The conserved
quantities and their corresponding fluxes in the affected region are related via

F ∗
K = F K + λK (U∗

K − UK) , (3.47)

where K ∈ {L, R}. The location of the cell interface relative to the three waves of the
HLLC approximation depends on the set of wave-speeds {λ−, λ∗, λ+}.
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For one-dimensional relativistic hydrodynamics, using the Valencia Formulation as in
(2.63) [33],

U = √
γ

⎛⎜⎜⎜⎝
D

Sx

τ

⎞⎟⎟⎟⎠ , F x = √
γ

⎛⎜⎜⎜⎝
D(αvx − βx)

Sx(αvx − βx) + αP

τ(αvx − βx) + αPvx

⎞⎟⎟⎟⎠ . (3.48)

The relativistic hydrodynamic flux is dependent on the conserved quantities, from
equation (3.47) we have that

F ∗
K (U∗

K) = F K + λK (U∗
K − UK) . (3.49)

Rearranging this for the components of U∗
K , we have that

D∗
K = DK(αvx

K − βx − λK)
(αvx∗ − βx − λK) ,

S∗
xK = SxK(αvx

K − βx − λK) + α(PK − P ∗)
(αvx∗ − βx − λK) ,

τ ∗
K = τK(αvx

K − βx − λK) + α(PKvx
K − P ∗vx∗)

(αvx∗ − βx − λK) .

(3.50)

Once these conserved quantities are obtained we can calculate the HLLC interface
fluxes from equation (3.47).

Calculating vx∗ and P ∗

We use that vx∗ and P ∗ are constant across the contact discontinuity, which lies
between λL and λR. Only ρ is discontinuous in this region. We use the HLL(E)
Riemann solver to calculate UHLL

D , UHLL
Si

, UHLL
τ , and F HLL

Sx
. Similar to [78], let

UHLL
Sx = (UHLL

τ + UHLL
D + √

γP ∗)vx∗. (3.51)

The term on the left can be calculated with the known HLL(E) quantities and the
spatial metric via

UHLL
Sx = UHLL

Si
γix. (3.52)

Additionally we let

F HLL
Sx

= UHLL
Sx

(αvx∗ − βx) + α
√

γP ∗. (3.53)
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From the two relations (3.51) and (3.53), eliminating P ∗ leads to a quadratic
equation for vx∗

vx∗F HLL
Sx

− αUHLL
Sx = vx∗UHLL

Sx
(αvx∗ − βx) − α(UHLL

τ + UHLL
D )vx∗, (3.54)

where

vx∗ = −b ±
√

b2 − 4ac

2a
, (3.55)

a = αUHLL
Sx

, (3.56)
b = −F HLL

Sx
− βxUHLL

Sx
− α(UHLL

τ + UHLL
D ), (3.57)

c = αUHLL
Sx . (3.58)

Requiring that λL ≤ λ∗ = αvx∗ − βx ≤ λR, we take the appropriate of the two roots
of the quadratic equation. In the case a = 0, then we have that vx∗ = −c/b. Now P ∗

can be calculated from rearranging (3.53) as

P ∗ = F HLL
Sx

− UHLL
Sx

(αvx∗ − βx)
α

√
γ

. (3.59)

Given λ∗ = αvx∗ − βx and P ∗ we can now evaluate equations (3.50) and (3.47) in
order to obtain the HLLC interface fluxes.

3.8 Time-Step Calculation

For numerical stability the time-step must be limited by the time it takes for the
fastest wave-speed to propagate from the discontinuity on one side of a computational
cell to the opposite side, as described in [43, 49]. This limit must hold throughout the
spatial domain, so the minimum allowed time-step should be taken over all cells
involved in the simulation. This limit can be ensured by including a CFL factor
cCF L ∈ (0, 1] [79],

∆t = cCF L min
(︄

∆x

|λK |

)︄
. (3.60)

In practice we have found it safe to use cCF L = 1/10, if excessively so. Since our
wave-speeds are bound by the speed of light in a vacuum (max |λK | ≤ 1), we can
safely use ∆t = cCF L∆x.
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3.9 Operator Splitting

Our situation of evolving the general relativistic radiation hydrodynamics equations
in the form of a system of balance laws contain contributions from directional fluxes,
geometric sources, and energy-momentum exchange terms, as seen in equation (2.63).
These contributions can be considered a series of non-linear sub-problems, and may
benefit from being solved in isolation.

Consider an initial value problem, composed of linear operators L1 and L2

∂ty = L1y + L2y. (3.61)

We can find the analytic evolution for this problem. Let yn = y(n∆t), then

yn+1 = e(L1+L2)∆tyn (3.62)
= eL1∆teL2∆tyn. (3.63)

We could introduce an intermediate solution ˜︁yn+1 where

˜︁yn+1 = eL1∆tyn, (3.64)
yn+1 = eL2∆t˜︁yn+1. (3.65)

Noticing how each step solves a sub-problem, we can split our initial value problem
into a series of these sub-problems

∂ty = L1y, (3.66)
∂ty = L2y. (3.67)

This approach proves to still be useful when generalised to consider non-linear
differential operators.

We have strict limits on the effect that radiation-fluid energy exchange can have, but
not on what the effect the combined flux and exchange contributions can have. In
order to enforce these strict limits, our series of non-linear differential operators
benefit from operator splitting.
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3.10 Energy-Momentum Exchange

The energy-momentum exchange operator in the Newtonain limit, and with constant
opacity, describes exponential decay towards an equilibrium state. From this linear
approximation we expect that the energy-momentum exchange between the fluid and
radiation approaches the local thermodynamic equilibrium state (LTE), but does not
overshoot it. In cases of large opacities or large time-steps an explicit update is likely
to overshoot this LTE state, it could even return negative energies.

3.10.1 Stiff Source Terms

In cases where opacity is large the energy and momentum exchange can evolve on a
much faster timescale than the advective fluxes. We operator split our system of
balance laws in order to isolate the energy and momentum exchange source term
(SRH),

∂

∂t
U = − ∂

∂xi
F i + Sgeo, (3.68)

∂

∂t
U = SRH . (3.69)

The sub-problem of energy-momentum exchange can now be updated separately from
the flux and geometric source update. This allows the change in conserved quantities
due to the fluxes and spacetime to not affect the physical restrictions placed on the
exchange update: ˜︁Un+1 = Un + ∆tSRH .

3.10.2 Local Thermodynamic Equilibrium

The fluid and radiation exchange energy and momentum via radiation absorption and
emission. Considering only the sub-problem of the energy-momentum exchange source
terms in our system of balance laws we have from equations (2.63) and (2.60) that

∂

∂t

√
γ

⎛⎜⎜⎜⎜⎜⎜⎝
Sj

τ

Sj

U

⎞⎟⎟⎟⎟⎟⎟⎠ = √
γ

⎛⎜⎜⎜⎜⎜⎜⎝
αGj

α2G0

−αGj

−α2G0

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.70)

Gν = χt (E − Θ) uν +
(︂
χt + χs

)︂
F ν . (3.71)
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Here the source term is the radiation 4-force introduced in section 2.5. The timescale
of the exchange is determined by the opacities. The larger the opacity, the faster the
exchange occurs, and the faster the local thermodynamic equilibrium state is reached.
The stationary equilibrium solution is attained when Gµ = 0µ. When the radiation is
co-moving with the fluid (such that F i = 0i) this equilibrium occurs when
E := Θ(TR) = Θ(TM), where TM and TR are the fluid and radiation temperatures
respectively. The radiation emission is related to the fluid temperature via
Θ(TM ) = aradT 4

M , and the radiation energy is related to the radiation temperature via
E = Θ(TR) = aradT 4

R. An equilibrium is reached when the radiation flux vanishes in
the fluid frame, and the radiation temperature is equal to the fluid temperature
(TM = TR = TLT E).

From equation (3.70) we can see that the total energy is conserved during the
exchange,

∂

∂t

√
γ
(︂
τ + U

)︂
= 0, (3.72)

τ (TLT E) + U (TLT E) = τn + U
n
. (3.73)

The temperature dependent energies are

τ(T ) = [ρ + ρϵ(T ) + P (T )] W 2 − P (T ) − ρW, (3.74)

U(T ) = 4
3E(T )W 2 + 2WαF 0 − 1

3E(T ). (3.75)

Here we are employing the Eddington closure, as near LTE the radiation flux should
be small compared to radiation energy density.

A root finding algorithm can be used to converge on the equilibrium temperature
TLT E, which, from equation (3.73), is the root of the function

f(T ) = τ(T ) + U(T ) − τn − U
n
. (3.76)

We can use initial guesses based on the fluid temperature (i.e., T [0] = TM , and
T [−1] = 1.1TM). Root finding algorithms will be discussed in section 3.11.

Having evaluated the equilibrium temperature to within an acceptable tolerance, the
fluid and radiation equilibrium energies are obtained, τLT E = τ(TLT E), and
ELT E = E(TLT E).

The continuous analytic solution would behave like a smooth monotonic decay from
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initial energy towards the equilibrium energy. Evolved energies due to emission or
absorption should not overshoot their equilibrium values, and certainly should not
become negative. When using an explicit update, this can occur when time-steps are
large, or when the opacities are large. The change in fluid energy must be equal in
magnitude and opposite in sign to the change in radiation energy. A limit on |G0| can
be found which corresponds to the maximum permissible change in energy which does
not overshoot the equilibrium solution. From a simple explicit temporal discretisation
of the energy equations from (3.70), this limit is

|G0
lim| = |τLT E − τn|

α2∆t
=

⃓⃓⃓
U

LT E − U
n
⃓⃓⃓

α2∆t
. (3.77)

We aim to find a restricted source term G
ν which does not exceed this limit.

If G0 is positive, then the material energy will increase, and correspondingly the
radiation energy will decrease, we require that G0 is not too positive,

G
0 = min

(︂
G0, k

⃓⃓⃓
G0

lim

⃓⃓⃓)︂
. (3.78)

If G0 is negative, then the material energy will decrease, and correspondingly the
radiation energy will increase, we require that G0 is not too negative,

G
0 = max

(︂
G0, −k

⃓⃓⃓
G0

lim

⃓⃓⃓)︂
. (3.79)

Here k ∈ (0, 1] is some safety factor to prevent overshooting equilibrium in a single
time-step (in practice we use k = 1/2).

When the energy exchange source is restricted, the momentum exchange sources are
scaled by the same amount,

G
i = Gik

⃓⃓⃓⃓
⃓G0

lim

G0

⃓⃓⃓⃓
⃓ . (3.80)

3.11 Root Finding Algorithm

As seen when dealing with stiff source terms in the previous section 3.10, root finding
algorithms are a crucial part of solving non-linear equations. They will prove useful
again when we approach the problem of recovering primitive quantities from updated
conserved quantities in section 3.12. Here a one-dimensional root finding method is
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Figure 3.4: An illustration of the Newton-Raphson iteration converging on the root
of f(x) = x3 − 1/2, with an initial guess of x = 1/4.

introduced. However they can be generalised to arbitrary dimensions for use when
dealing with systems of non-linear equations.

A convenient root finding approach is a Newton-Raphson iteration. We aim to find x∗

such that f(x∗) = 0. We do this by constructing a sequence of guesses xn using

xn+1 = xn − f(xn)
f ′(xn)

n→∞−−−→ x∗. (3.81)

We stop when the relative change in successive guesses (|xn+1 − xn|/|xn|) shrinks to
within some satisfactory tolerance (in practice this tolerance = 10−6). This algorithm
has second order convergence, assuming that the multiplicity of the root is one, and
that the function is smooth. An illustration of this root-finding procedure is shown in
figure 3.4.

When the derivative is inconvenient to evaluate, a finite difference approximation can
be substituted into equation 3.81 in its place. This leads to the secant method

f ′(xn) ≈ f(xn) − f(xn−1)
xn − xn−1

, (3.82)
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xn+1 = xn−1f(xn) − xnf(xn−1)
f(xn) − f(xn−1)

. (3.83)

This method requires two distinct initial guesses near the root, and has golden ratio(︂[︂
1 +

√
5
]︂

/2 ≈ 1.618
)︂

order convergence. The practical implementations we use
always employ the secant method.

3.12 Primitive Recovery

Once the system of balance laws (equation (2.63)) has been updated, and the
conserved quantities have been evolved to the next time-step, it is standard practice
to recover the set of primitive variables. This is because it may not be possible to
evaluate the updated flux terms and source terms in the system of equations for the
next time-step purely from the updated conserved quantities themselves [74]. Due to
relativistic terms the set of equations relating the conserved quantities to the
primitive quantities is not algebraically closed. Fortunately an iterative approach can
be used to converge on an accurate solution for the updated primitive quantities. We
follow methodologies from the HARM and RePrimAnd codes [80, 81].

3.12.1 Hydrodynamic Primitive Quantities

The fluid primitive quantities can be recovered using only the fluid conserved
quantities. We have the observer frame conserved quantities D, Si, and τ , and we
require the primitive quantities ρ, vi, and P . The species fractions are recovered
trivially from the conserved quantities by Yx = YxD/D. In order to obtain an initial
estimate, it is assumed that the change in fluid pressure P is small during the update.
In the calculation for the Lorentz factor the value of the fluid pressure from the
beginning of the time-step is used as an initial approximation ˜︁P for the value of the
fluid pressure at the end of the time-step, such that

˜︂W =

⎛⎜⎝1 − SiS
i(︂

τ + D + ˜︁P)︂2

⎞⎟⎠
−1/2

. (3.84)

This approximation to the updated Lorentz factor is then used to approximate the
updated rest-mass density, specific enthalpy, and specific internal energy,

˜︁ρ = D˜︂W , (3.85)
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˜︁h = τ + D + ˜︁P
D˜︂W , (3.86)

˜︁ϵ = ˜︁h − 1 −
˜︁P˜︁ρ . (3.87)

The equation of state can now be used to calculate an improved approximation to the
fluid pressure from these approximate hydrodynamic quantities,

P∗ = P (˜︁ρ, ˜︁ϵ) (3.88)
= (Γ − 1) ˜︁ρ˜︁ϵ, when using a Gamma-law EoS. (3.89)

If the initial fluid pressure approximation was accurate, then it will match the
pressure value returned by the equation of state

(︂
P∗ ≈ ˜︁P)︂. A sufficiently accurate

value for the fluid pressure can be converged upon with a root finding algorithm (as
described in section 3.11) for the function f(P ) = P∗ − P . When using a Gamma-law
equation of state, the derivative of this function can be approximated with
f ′(P ) = viv

ic2
s − 1 where,

vi = Si

τ + D + P∗
, (3.90)

c2
s = ΓP∗˜︁ρ˜︁h . (3.91)

Otherwise a finite difference approximation can be used. This iterative root find can
be a severe bottleneck for computation time, as it must be computed for every cell
within the simulation at each time-step. Once an accurate fluid pressure has been
obtained, the remaining primitive quantities (ρ and vi) found during the process are
sufficiently accurate to be carried forwards to the next time-step.

3.12.2 Radiation Primitive Quantities

Once the hydrodynamic primitive quantities have been recovered the fluid velocities
can be utilised in the radiation primitive quantity recovery. We have the observer
frame conserved quantities S

j and U , and we require the fluid frame primitive
quantities F i and E. We have that

E = Mµνuµuν = W 2
(︂
U − 2S

i
vi + W

ij
vivj

)︂
F i = −Mµνhi

µuν = W
[︂(︂

U − S
j
vj

)︂
hi

µnµ +
(︂
S

j − W
jk

vk

)︂
hi

j

]︂ (3.92)
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where hµν = gµν + uµuν .

A closure relation is required to determine W
ij. It can be interpolated between fully

isotropic (thick) and fully anisotropic (thin) limits,

W
ij = 3χ(ξ) − 1

2 W
ij
thin + 3 [1 − χ(ξ)]

2 W
ij
thick, (3.93)

W
ij

thin = S
i
S

j

U
, (3.94)

W
ij
thick = EthickW 2vivj + W (F i

thickvj + F j
thickvi) + P ij

thick. (3.95)

Here χ(ξ) is some chosen closure scheme, with the anisotropy measure
ξ =

√︂
FµF µ/E ∈ [0, 1], as described in section 2.8.2 and [41].

The values Ethick and F i
thick can be determined assuming the Eddington closure

scheme. We have from equation (2.29) that

U = EthickW 2 + 2WαF 0
thick + α2P 00

thick, (3.96)
S

i = EthickW 2vi + W
(︂
αF 0

thickvi + F i
thick

)︂
+ αP i0

thick, (3.97)

with F 0 = F kvk/(α − viβ
i) and P µν

thick = 1
3Ethickhµν . Constructing S

i
vi allows us to

invert these coupled linear equations, returning

Ethick = 3
2W 2 + 1[(2W 2 − 1)U − 2W 2S

i
vi], (3.98)

αF 0
thick = W

U(4 − 4W 2) + S
i
vi(4W 2 − 1)

2W 2 + 1 . (3.99)

From this we can rearrange (3.97) and obtain

F i
thick = S

i

W
− Ethick

4Wvi

3 − αF 0
thick

(︄
vi + βi

α

)︄
. (3.100)

Now that we can evaluate both W
ij

thin and W
ij

thick, all we require to obtain W
ij is the

anisotropy measure ξ. In order to construct a reasonable initial guess, the assumption
is made that the change in ξ is small over one time-step. An initial approximation ˜︁ξ
can be found using the values for E and F µ from the beginning of the time-step.
Then W

ij is approximated and used to update E and F i (as in equation (3.92)) [82].
If the initial anisotropy approximation was accurate then it will match the anisotropy
value returned by the newly calculated energy and fluxes (that is ˜︁ξ =

√︂
FµF µ/E).
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A root finding algorithm (as described in section 3.11) can be used to converge upon
an accurate anisotropy measure by approximating the zero of the scaled function

f(ξ) = E2ξ2 − F αFα

U
2 . (3.101)

The derivative f ′(ξ) can be approximated by finite differencing,

f ′(ξ) ≈ f(ξ+) − f(ξ−)
ξ+ − ξ− , (3.102)

ξ+ = min(1, ξ + 10−6), (3.103)
ξ− = max(0, ξ − 10−6), (3.104)

ensuring that all approximations to ξ are in the valid range [0, 1].

If the Eddington closure is being used, this radiation primitive recovery simplifies as
ξ ≡ 0. This results in the thick limits being taken (Ethick, F i

thick), and no iterative
root find is required.

3.13 Adaptive Mesh Refinement

To reduce the cost of computation, adaptive mesh refinement (AMR) may be used.
When using AMR, regions of the spatial domain can be refined to a higher resolution
to increase numerical accuracy, and capture any detailed structure or behaviour of
interest. Simultaneously the large bulk of the domain away from these regions can be
kept at a significantly coarser resolution [50]. This is advantageous over a uniform
mesh approach which would require high resolution throughout the domain, and thus
much more computation time to capture the same complex behaviour.

An alternative approach to increasing numerical accuracy would be to use higher
order numerical methods. However low order methods have the advantages of being
relatively robust, simple, and fast. The AMR approach allows for accurate
simulations whilst using relatively low order methods.

Regions of interest where high resolution patches may be concentrated include
shock-fronts, defined as where the spatial gradients of physical variables become
steeper than some given critical threshold. As these regions of interest appear,
disappear, and move around the mesh, the higher resolution regions can be adaptively
created, destroyed, or moved in order to track them. This focuses high numbers of
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computational cells where they are useful, and maintains low numbers of
computational cells where the resolution requirements can be relaxed.

I am using the AMReX library [83] developed at LBNL to implement adaptive mesh
refinement into my simulation code. The AMReX library is a software framework
containing all the functionality required to write massively parallel, block-structured
adaptive mesh refinement applications.

3.13.1 Block-Structured AMR

A type of structured AMR is patch-based AMR, which is useful when using Cartesian
meshes [84]. With patch-based AMR the cells on the coarsest level (referred to as the
base level, or level-0, see the black grid in figure 3.5 [85]) which meet some refinement
criteria are tagged for refinement, such as large pressure gradients or high velocities,
which may result in larger errors or slower convergence in calculations. A load
balancing algorithm then constructs rectangular patches of cells which cover these
tagged locations [86], whilst aiming to optimise the balance between the memory cost
of increasing the number of cells, and keeping the total number of patches small, as
they will require a exchange of data at their boundaries. These patches are at a
higher resolution than the base level, according to some refinement ratio (often twice
the resolution of the underlying cells). This collection of refined patches are referred
to as level-1 (see the blue grid in figure 3.5). This process can be repeated, nesting
more levels until the desired resolution (or maximum number of levels) is reached.
Typically level-0 is the coarsest level and covers the entire domain, with higher
resolution levels being concentrated around regions of interest. Our system of balance
laws can be solved on an individual patch. In order to use our spatial reconstruction
schemes (such as the linear and WENO methods introduced in section 3.5) each
AMR patch requires an appropriate number of ghost cells. At the interface between
patches on the same level, these ghost cells can be filled by copying the data from the
neighbouring patch. At a level boundary overlaying a coarser grid, the ghost cells can
be filled by copying data up from the lower level, and up-scaling its resolution. At
domain boundaries the AMR patch ghost cells can be filled according to the physical
boundary conditions describing the problem to be modelled.



68 Chapter 3. Numerical Methods

Figure 3.5: Block-structured adaptive mesh refinement illustrating patches and
levels. In this example the black grid is level-0, the blue grid is level-1, and the red
grid is level-2. © Copyright 2023, Rob Farber.

3.13.2 Sub-Cycling

In order to obtain a stable evolution, and satisfy time-step constraints which are
linked to the spatial resolution (as in section 3.8), refined regions of the domain can
be sub-cycled in time. This involves evolving a coarse level by a full time-step, and
evolving a fine level by half of a time-step. The coarse solution is then interpolated in
time to obtain a coarse solution at the half time-step, which is up-scaled and used to
fill the ghost cells in the patch boundaries of the fine solution (any ghost cells at
domain boundaries can be populated using the physical boundary conditions at the
half time-step). Now the fine solution has the information it requires to evolve the
remaining half time-step, re-synchronising with the coarse solution. The data on the
fine grid is likely to be more accurate than that on the coarse grid. To take advantage
of this the fine solution can be down-scaled and copied into the coarse grid, aiming to
reduce its error. This process is illustrated in figure 3.6. This sub-cycling procedure is
implemented recursively to account for multiple levels of refinement. Temporal
sub-cycling allows the evolution to be stable, whilst improving computational
efficiency by avoiding updating the entire domain with the smallest time-step
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Figure 3.6: An illustration of a fine grid (in green) being sub-cycled, using information
from a time interpolated coarse grid (in blue). Image from github.com/IanHawke [87].
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determined by the highest resolution region.

3.13.3 Refluxing

A potential issue with patch-based AMR is that a fine level is updated with fluxes
and source terms computed from high resolution data, whilst a coarse level is updated
with fluxes and source terms computed from low resolution data. At the level
interface we can have inconsistent fluxes, due to the differing data sources. This can
lead to required quantities not being conserved.

This issue of inconsistent fluxes can be fixed with a process known as refluxing,
discussed in [83]. Refluxing is a process which keeps track of level-boundary fluxes,
and corrects the coarse solution with the difference in coarse and fine fluxes.

However this does not take into account that the coarse and fine solutions have been
updated with different source terms. In Newtonian simulations the differences from
gravitational sources can be re-synchronised as in the gravitational synchronisation
step used in the Castro code [88].

Our source terms involve the coupling between radiation and fluid fields, where the
energies and momenta evolve towards the local thermodynamic equilibrium (LTE)
state, as in section 3.10.2. The coupling source terms are sensitive to the radiation
and fluid temperatures (proportional to T 4), and the refluxing process may push the
solutions away from their LTE limits.

Another approach to avoiding the coarse-fine flux mismatch is to avoid having
shock-waves pass through level boundaries, as it is around shock-fronts where this
mismatch in fluxes can cause larger errors. Our AMR patches can track propagating
shocks, preventing their interaction with level boundaries until they have dissipated
and weakened, or left the region of study. In our implementation we do not employ a
refluxing procedure, as the flux inconsistency may be preferable to introducing LTE
inconsistencies.

3.13.4 Parallelisation and Scaling

With an AMR level spatially decomposed into a number of patches, this allows
efficient parallel computing algorithms to distribute the collection of patches amongst
multiple processors. The evolution equations can be solved on the AMR patches in
parallel, with any information required at the patch boundaries already being
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accessible from the ghost-zones.

In order to evolve our system of balance laws on an AMR patch, the processor
requires knowledge of the primitive quantities on the patch and in its ghost cells. It
also requires knowledge of the appropriate closure information, such as any tabulated
equations of state, radiation pressure tensor formulae, and opacity data.

With modern high performance computing (HPC) we are able to massively parallelise
our domain decomposed simulation with the use of MPI [89]. However memory
restrictions become a significant bottleneck, as the required closure information can
reach multiple gigabytes of data. This is difficult for CPU parallelisation, and
unfeasible for GPU parallelisation. In our case we have low memory requirements for
our empirical formulae for opacity and radiation pressure tensor calculations.
However our fluid equation of state table (the three parameter SFHx data discussed
in section 2.8.1) is very large. To overcome this we have used the shared memory
capability available with OpenMP [90] to fit the EoS table into the shared memory,
which can be accessed by each of the OpenMP threads updating the AMR patches. I
have made use of the AMReX libraries capability to implement hybrid MPI and
OpenMP parallelisation.

When spatially decomposing the domain into AMR patches, consideration must be
taken of the number of patches being created. A naive approach would be to create a
tiny patch for each coarse cell tagged for refinement. This would have the benefit of
completely avoiding introducing fine cells over regions which do not require
refinement. However each of these many tiny patches would require sufficient ghost
zones for our spatial reconstruction scheme. The copying and up-scaling of data from
the coarse grid into each of these ghost zones would become incredibly
computationally expensive. Processor communication can become more expensive
than computation, harshly reducing the code’s performance. At the other extreme a
significant proportion of the spatial domain could be used to create a single huge
refined patch. This would have the benefit of minimising the number of ghost zones
at the patch boundaries, and thus minimising the processor communication required
to copy and upscale the coarse data. This approach would not be very useful as many
unnecessary refined cells would be created, maximising the number of cells which
would require updating. This would be equivalent to simply constructing a uniform
grid at a higher resolution, avoiding any benefits we could attain from using AMR.
We aim to approach some optimal balance, to minimise the number of fine cells to
update, and minimise the number of ghost zones to populate via processor
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communication. Such a load balancing algorithm is included within the AMReX
library and appropriate methodologies are discussed in [91].

The AMReX software framework supports the development of block-structured AMR
algorithms for solving systems of partial differential equations on machines from
laptops to exascale supercomputer architectures [85]. Alternative mesh refinement
capable codes include the Einstein Toolkit, which makes use of the Carpet
environment, allowing for fixed mesh refinement (FMR, also referred to as
box-in-box). The Einstein Toolkit code’s uniform grid capability (using the PUGH
driver) is highly scalable, up to 130,000 cores [92]. Its AMR capability (using Carpet
driver) has demonstrated scalability to over 10,000 cores on a weak scaling test [2].

A simulation code’s weak scaling is how its computation time varies with the number
of processors, whilst keeping the problem size per processor constant. An alternative
measure of a code’s scalability is the strong scaling. This is how the computation time
varies with the number of processors, whilst keeping the total problem size fixed. The
strong scaling is limited by the parts of the calculation which cannot be parallelised.

The CarpetX and GRaM-X projects are working to implement AMReX
block-structured AMR algorithms into the Einstein Toolkit code, described in [3, 93].
This highlights the expectation in the field that AMReX will be useful for numerical
relativity, supporting our choice of approach.

3.14 Summary

The techniques used to discretise the system of balance laws described in section 2.7
for implementation into a computational code are described in this chapter. The
balance laws are spatially discretised with a finite volume scheme, requiring the fluxes
to be calculated at cell interfaces and the sources to be cell-centred allowing the
update of cell centred quantities. In order to calculate the fluxes at cell interfaces, the
known cell-centred quantities must be reconstructed to either side of the cell
interfaces. Constant, linear, parabolic, and high order WENO reconstruction schemes
allow the numerical scheme to be 1st, 2nd, 3rd, and higher order in space respectively.
The reconstruction must be limited so as to avoid introducing any new local extremal
points, such reconstructions are total variation diminishing (TVD). Once quantities
have been reconstructed at either side of a cell interface, it is treated as a Riemann
problem. The signal speeds either side of the interface dictate how the interface flux
will be calculated, and whether the wave is a shock, rarefaction or a contact wave.
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With the flux and source terms calculated, the evolved quantities can be updated by
a single time-step. For this system to be solved explicitly the time-step must be
restricted by the time taken for the fastest wave speed to traverse a single cell-width.
This CFL condition is a requisite for numerical stability. The evolved quantities can
be updated with explicit time integration schemes such as Runge-Kutta methods.
Once the evolved quantities have been updated, the primitive quantities must be
recovered, from which the fluxes and source terms can be calculated for the next
update. In our case the primitive quantity recoveries require iterative approaches.

Software packages such as AMReX [94, 95] contain libraries of routines which can be
used to manage AMR patches during a numerical simulation. These AMR routines
make use of a patch-solver which can be written to solve the required system of ODEs
on each individual patch.

I have implemented a general relativistic radiation coupled hydrodynamics patch
solver into the AMReX framework. This patch solver solves the set of balance laws to
conserve mass, momentum, and total energy on a curved spacetime as described in
(2.63). It uses the HLLC Riemann solver for the hydrodynamic equations and the
HLL Riemann solver for the radiation equations. The radiation wave-speeds are
over-estimated with the speed of light in a vacuum. The code is up to fifth order in
space due to the WENO reconstruction used for projecting cell-centred quantities to
cell faces, and the up to third order in time from the three-step third-order SSP
Runge-Kutta time integration scheme.

Test problems demonstrating the performance of the numerous aspects of the general
relativistic radiation hydrodynamics code are described and their results shown in
chapter 4.
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Chapter 4

Test Problems and Results

4.1 Introduction

For the purposes of simulating a hot, dense, complex material in a slowly evolving
spacetime, I have written a code which evolves fluid and radiation within a fixed yet
general background spacetime. As outlined in chapters 2 and 3, this code has been
designed for general relativistic radiation hydrodynamics simulations. This chapter
provides a description and discussion of a series of test problems aimed at validating
and verifying that the numerical methods employed can accurately recover the
desired physical processes, and that the processes implemented are appropriate to
describe astrophysical phenomena of interest.

I quantitatively test smooth relativistic fluid flow, and make measurements of the
order of accuracy. The qualitative properties I test include the accurate evolution of
discontinuities and shocks, radiative transfer in both diffusive and streaming limits,
radiation and fluid coupling, and how well the expected behaviours are maintained for
high fluid velocities and curved background spacetimes.

I confirm that the adaptive mesh refinement can track features of interest and can
improve numerical accuracy without increasing the spatial resolution everywhere. In
some situations this can allow for more practical simulation times, due to maintaining
a reduced number of computational cells (this will be demonstrated with 3D
simulations in the next chapter).

Many of the following test scenarios can be found in [96, 97] which focus on
relativistic simulations for black hole accretion problems. While these scenarios are

75
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not our intended application, they involve fluid and radiation evolution at relativistic
velocities and utilise a fixed background spacetime, making them appropriate tests for
reproduction.

A method of quantitatively measuring the accuracy of a numerical simulation is to
calculate the deviation from an exact solution. One simple way of measuring this
deviation is with an Lp-norm

Lp

(︂ ˜︁f)︂ =
(︄

N∑︂
n=1

⃓⃓⃓
f(xn) − ˜︁fn

⃓⃓⃓p
∆xn

)︄1/p

. (4.1)

The numerical error for a simulation should decrease as the resolution is increased.
The rate of this decrease indicates the spatial order of accuracy of the simulation. I
will use the L2 error metric in the following quantitative validation tests.

In this chapter I continue to use the c = G = M⊙ = 1 unit system.

4.2 Special Relativistic Hydrodynamics

The tests in this section are used to validate the code’s capability to model
hydrodynamic evolution involving special relativistic effects. These include non-rest
mass, Lorentz contraction, and special relativistic time dilation. These effects are
expected to occur in the fluid involved in neutron star merger remnants, where fluid
velocities are expected to exceed 40% of the speed of light.

4.2.1 Relativistic Isentropic Pulse

This 1D test simulates the smooth hydrodynamic flow of a pulse of fluid travelling at
relativistic velocities [96]. It is used to validate the accurate reconstruction of
primitive quantities at zone interfaces. For smooth fluid profiles I expect greater than
first order accuracy from the WENO reconstruction scheme introduced in section 3.5.
As this test involves velocities over 0.5 it is also a validation test of special relativistic
effects.

The initial pulse-shaped density profile is defined as

ρ(x) =
⎧⎨⎩ 1 +

[︂
(x/L)2 − 1

]︂2
, x ∈ (−L, L),

1, x /∈ (−L, L).
(4.2)
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A polytropic equation of state
(︂
P = KρΓ = (Γ − 1)ρϵ

)︂
is used to obtain the initial

pressure profile. The sound speed can be obtained with cs =
√︂

ΓP/hρ, where
h = 1 + ϵ + P/ρ. The Riemann invariants are given by

J± = tanh−1(v) ± 2√
Γ − 1

tanh−1
(︄

cs√
Γ − 1

)︄
. (4.3)

One of the Riemann invariants (J−) is kept constant, and can be evaluated from a
reference state where ρ = 1 and v = 0. This can then be used to obtain the velocity
profile which keeps the Riemann invariant constant

v = tanh
(︄

J− + 2√
Γ − 1

tanh−1
(︄

cs√
Γ − 1

)︄)︄
. (4.4)

An analytic solution can be found from characteristic analysis. The other Riemann
invariant (J+) is not constant. Its initial profile can be found with equation (4.3). It
is invariant along the characteristic paths

x = x0 + t
v(x0, 0) + cs(x0, 0)
1 + v(x0, 0)cs(x0, 0) , (4.5)

leading to J+(x, t) = J+(x0, 0). For any position x and time t we can use a numerical
root-finding algorithm to solve the equation

J+(x0, 0) = J+

(︄
x − t

v(x0, 0) + cs(x0, 0)
1 + v(x0, 0)cs(x0, 0) , 0

)︄
, (4.6)

obtaining x0, allowing us to evaluate J+(x, t) = J+(x0, 0).

With both Riemann invariants we can recover the velocity profile from equation (4.3),

v(x, t) = tanh
(︄

J− + J+(x, t)
2

)︄
. (4.7)

Then equation (4.3) can be used to recover the sound speed, which in turn can be
used to recover the pressure and density profiles.

I expect to see the pulse travel towards to the right, maintaining its width and height,
with the front of the pulse steepening and approaching a shock-front. Eventually a
shock will form, this simulation is stopped before this time. Behind the travelling
pulse the fluid returns to its reference state.
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For this problem I use the parameters L = 0.3, K = 100, and Γ = 5/3, leading to the
constant Riemann invariant J− ≈ −8.463. I use the domain x ∈ [−0.35, 1], discretised
into 80 zones. The fluid is evolved to a time of 0.8.

Numerical results for the density, pressure, and velocity profiles have been plotted in
figure 4.1. The results are consistent with those shown in [96]. The plots show the
initial condition with a dashed curve, highlighting how the pulse has clearly travelled
to the right, maintaining its height and width. Solid curves show the analytic
solutions found via characteristic analysis. It can be seen that the numerical results
shown with circle markers agree very closely with the analytic solutions.

This close agreement can be quantified with the L2 error norm (4.1). The numerical
test has been repeated with a range of explicit Runge-Kutta initial value problem
solvers introduced in section 3.3, the first order Forward Euler method (RK1), the
second order Heun’s method (RK2), and the third order Shu-Osher method (RK3).
For each method the numerical test has been repeated to cover a range of spatial
resolutions Nx ∈ {20, 40, 80, 160, 320, 640}. With this information I can find how the
error changes with spatial resolution for each method. The results are tabulated in
table 4.1, and plotted in figure 4.2 along with linear regressions (which exclude the
outlier Nx = 20 points). The RK1 method shows close to first order convergence, and
the RK2 and RK3 methods show close to second order convergence. For practical
purposes the RK2 and RK3 methods show qualitatively indistinguishable errors.

4.2.2 With Adaptive Mesh Refinement

In order to verify that the code’s AMR meshing works as intended, the test has been
repeated using the RK2 method, with two levels of factor-2 refinement covering the
region ρ ≥ 1.01. The refined patches adaptively track the density pulse. I discretise
the coarsest level with Nx = 80 zones, which means the effective resolution is 320
zones. The results are shown in figure 4.3. This AMR simulation has an L2-error of
2.389 × 10−3, improving on the uniform grid Nx = 160 case, but is not quite as good
as the comparable Nx = 320 uniform grid, highlighting the benefit of AMR.

4.2.3 Relativistic Shock Tube

This test is used to validate the code’s capability to accurately capture shock waves,
rarefaction waves, and contact discontinuities. This is expected from the
implementation of the HLLC Riemann solver introduced in section 3.7.2.
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Figure 4.1: Solution profiles for the isentropic pulse test. Quantities are, top-to-
bottom: rest-mass density, fluid pressure, and fluid 3-velocity. The initial profiles are
shown with dashed curves and circle markers indicate the numerical results at time
0.8. We can see that the pulse width and height remains constant, with the leading
front steepening over time reproducing the results in [96] and matching the exact
solutions shown by the solid curves.
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Scheme Nx L2-error Convergence Rate
RK1 20 5.857 × 10−2 −

40 5.265 × 10−2 0.154
80 3.011 × 10−2 0.8059

160 1.670 × 10−2 0.851
320 8.856 × 10−3 0.915
640 4.770 × 10−3 0.893

RK2 20 7.151 × 10−2 −
40 3.139 × 10−2 1.188
80 1.061 × 10−2 1.565

160 3.141 × 10−3 1.756
320 7.939 × 10−4 1.984
640 2.250 × 10−4 1.819

RK3 20 7.151 × 10−2 −
40 3.181 × 10−2 1.168
80 1.083 × 10−2 1.555

160 3.214 × 10−3 1.753
320 8.280 × 10−4 1.957
640 2.558 × 10−4 1.695

Table 4.1: Isentropic pulse L2 error norms for a range of IVP solvers and spatial
resolutions. The final column shows the convergence rates. In each case the rate
approaches the optimal value (1st or 2nd order convergence) expected.
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Figure 4.2: Isentropic pulse test L2 error against spatial resolution for RK1, RK2,
and RK3 methods. Convergence rates are 0.87, 1.80, and 1.76 respectively. The
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methods return qualitatively indistinguishable results.
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ρL PL vL ρR PR vR

10 40/3 0 1 10−8 0

Table 4.2: Relativistic shock tube initial conditions.

It is a 1D hydrodynamic test, modelling the evolution of a pressure and density
discontinuity. The setup is as described in [96, 97]. The initial conditions are given in
table 4.2, and describe two uniform physical states separated by a discontinuity. Here
the ideal fluid equation of state with Γ = 5/3 has been used.

The initial discontinuity produces a shock wave which reaches relativistic velocities
exceeding 0.7. It is a further verification test that special relativistic effects are
captured accurately. I use the spatial domain x ∈ [−1/2, 1/2], discretised into 200
zones, and evolve to time 0.4 using the second order Heun’s method for temporal
integration (as introduced in section 3.3), the fifth order WENO spatial
reconstruction scheme (as introduced in section 3.5), and the three wave HLLC
Riemann solver (as introduced in section 3.7.2).

I can obtain exact solutions from the Riemann solver code included in [34]. I expect
to see the discontinuity evolve into a right-travelling shock wave, a left-travelling
rarefaction wave, and a contact discontinuity in the density field.

Numerical results for the density, pressure, and velocity profiles are shown in figure
4.4. These match very well with results in both [96, 97]. The solid curves show the
exact solutions generated by the code from [34]. It can be seen that the numerical
results shown with circle markers agree very closely with the exact solutions.

4.2.4 2D Relativistic Shock

To validate that the code can accurately model special relativistic hydrodynamics
with shock waves, rarefaction waves, and contact discontinuities in multiple
dimensions, a 2D test has been constructed using the initial data and methods from
section 4.2.3, given in table 4.2, with the initial discontinuity at a 45 degree angle to
the Cartesian mesh. The density, pressure, and horizontal and vertical velocity
surfaces at time 0.4 have been plotted in figure 4.5. The results are consistent with
the 1D tests. It can be seen that effects from the unaligned boundaries are
propagating into the domain from the top left and bottom right corners. This
highlights the usefulness of AMR schemes to set the boundaries far away from
features of interest.
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Figure 4.4: Profiles for the relativistic shock tube test. From top to bottom, are
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shock front, rarefaction wave, and a contact discontinuity have formed, and there are
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4.2. Special Relativistic Hydrodynamics 85

-0.5 0 0.5
x

-0.5

0

0.5

y

0 0.2 0.4 0.6

-0.5 0 0.5
x

0 0.2 0.4 0.6

-0.5

0

0.5

y

2 4 6 8 10 2 4 6 8 10 12

vx vy

; P

Figure 4.5: The 2D diagonal SR shock tube test results at time 0.4. The top left
panel shows ρ, top right P , bottom left vx, and bottom right vy. Effects propagating
in from boundaries can be seen in the top left and bottom right corners of each panel.



86 Chapter 4. Test Problems and Results

quadrant ρ P vx vy

x < 0, y < 0 0.5 1 0 0
x > 0, y < 0 0.1 1 0 0.87
x < 0, y > 0 0.1 1 0.87 0
x > 0, y > 0 0.1 0.01 0 0

Table 4.3: Special relativistic hydrodynamic 2-by-2 grid initial conditions.

4.2.5 Relativistic Shock Grid

This test is a further verification that the code can accurately model
multidimensional special relativistic hydrodynamics involving shock waves. In more
than 1D, effects due to tangential velocities can affect the solution structure. With
larger velocities more extreme special relativistic effects are to be expected. This test
involves a Lorentz factor greater than two.

This hydrodynamics test simulates the evolution of a 2-by-2 grid of uniform physical
states separated by discontinuities. The initial conditions are described in table 4.3,
similar to those in [96]. Here Γ = 5/3 is used, with a spatial domain
(x, y) ∈ [−0.5, 0.5]2 discretised into 1002 zones, and evolved up to a time of 0.4.

The log-density, pressure, and horizontal and vertical velocity surfaces are shown in
figure 4.6. The numerical results are qualitatively consistent with those shown in [96].

4.3 Radiation Tests

This set of tests verify the code’s capability to model the evolution of radiation in a
variety of optical thicknesses, and its coupling to a fluid via radiation absorption and
emission.

4.3.1 Exchange Test

This test is used to validate the code’s accurate exchange of energy between fluid and
radiation fields via radiation emission and absorption. It evolves in time only, with no
spatial dependencies. It is similar to the coupling test setup found in [82].

The exchange of energy is governed by the equations

∂tτ = χa(E − Θ), (4.8)
∂tE = χa(Θ − E). (4.9)
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Here τ and E are the fluid and radiation energy densities, χa is the absorption
opacity, and Θ is the radiation emission term.

In order to find an analytic solution against which to validate the code, the equations
have been linearised. A constant absorption opacity is used, and the energy densities
and emission are related to the fluid and radiation temperatures (TM and TR) via

τ = ρCV T 4
M , (4.10)

E = aradT 4
R, (4.11)

Θ = aradT 4
M . (4.12)

Here ρ is the mass density, CV is the specific heat capacity, and arad is the radiation
constant.

I expect the fluid and radiation to exchange energy, each approaching the local
thermodynamic equilibrium temperature (TLT E). The exchange equations conserve
total energy such that

τLT E + ELT E = τ(0) + E(0). (4.13)

From this the equilibrium temperature can be obtained,

TLT E =
[︄

ρCV T 4
M(0) + aradT 4

R(0)
ρCV + arad

]︄1/4

. (4.14)

The analytic evolution of the fluid and radiation energy densities are

τ(t) = ρCV

[︂
T 4

LT E +
(︂
TM(0)4 − T 4

LT E

)︂
e−t(χa+aradχa/ρCV )

]︂
, (4.15)

E(t) = arad

[︂
T 4

LT E +
(︂
TR(0)4 − T 4

LT E

)︂
e−t(χa+aradχa/ρCV )

]︂
. (4.16)

For this test the parameters are ρ = CV = χa = 1 and arad = 10, with initially
distinct temperatures TM (0) = 10 and TR(0) = 1. The setup is evolved to a time of 1.
It is repeated with a fine timestep (∆t = 0.01) without the local thermodynamic
equilibrium overshoot prevention method introduced in section 3.10.2 (as the small
timestep would not require it), and a coarse timestep (∆t = 0.1) both with and
without the overshoot prevention method.

The fluid and radiation energy densities are shown in the top panel of figure 4.7, their
corresponding temperatures are shown in the bottom panel. The fluid quantities are



4.3. Radiation Tests 89

shown in red, and radiation quantities are shown in blue. The black dot-dashed line
indicates the total energy, which can be seen to be kept constant, as is expected. The
dotted lines indicate the LTE limits. The fine-timestep numerical results (dashed
curves) agree very closely with the analytic evolution (solid cuves), and are
qualitatively consistent with the behaviours seen in [82]. The ‘X’ markers show the
coarse-timestep numerical results without the overshoot prevention method. We can
see that the LTE limit is indeed overshot, resulting in unphysical oscillatory
behaviour. This overshoot very nearly caused the fluid energy and temperature to
become negative, due to more energy being absorbed out of the fluid within a single
update than is available. This would have occurred if the coarse timestep were slightly
larger, and if not caught could potentially crash the simulation. The circle markers
show the coarse-timestep numerical results with the overshoot prevention method. We
can see that the LTE overshoot does not occur, however the LTE limit is approached
more slowly. We take this to be a worthwhile trade-off, as it prevents the troublesome
unphysical oscillatory behaviour and negative energy and temperature issues.

4.3.2 Optically Thick Pulse

The purpose of this test is to validate the spatial evolution of a radiation field in the
optically thick regime (χs ≫ 0). I use a highly scattering, but not absorbing or
emitting fluid. I employ a similar optically thick pulse setup as found in [82, 97]. In
the diffusion limit the governing 1D radiation equations reduce to

∂tE = ∂x (D∂xE) . (4.17)

This is a diffusion equation where the diffusion coefficient D and the scattering
opacity χs are related via D = 1/3χs. The radiation pressure tensor approaches full
isotropy.

An initial smooth 1D pulse is constructed

E(x, 0) = A + Be−x2/4D, (4.18)

with vanishing initial radiation flux F (x, 0) = 0. When using a spatially uniform
opacity the analytic evolution of this pulse follows

E(x, t) = A + Be−x2/4D(1+t) 1√
1 + t

. (4.19)
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Figure 4.7: Illustration of the exchange of energy between fluid and radiation. The
top panel shows the fluid and radiation energy density evolution. The bottom panel
shows the fluid and radiation temperature evolution. Fluid quantities are indicated in
red, and radiation quantities in blue. The dotted lines show the LTE limits and the
black dot-dashed line shows total energy. The solid curves show analytic solutions, and
the dashed curves show numerical results calculated with a fine timestep (∆t = 0.01).
The ‘X’ markers indicate numerical results calculated with coarse timestep (∆t = 0.1)
without the overshoot prevention method, and the circle markers indicate numerical
results calculated with a coarse timestep with the overshoot prevention method.
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For this test the parameters are A = 1, B = 100 − A, and D = 1/30. This uniform
diffusion coefficient corresponds to a scattering opacity of χ = 10, and a photon mean
free path of 0.1. With a spatial domain two orders of magnitude larger, x ∈ [−10, 10],
this is sufficiently optically thick to lead to diffusive behaviour. The spatial domain
has been discretised into 200 zones, and the pulse is allowed to evolve to a time of 100.

I expect to see the pulse of radiation energy density spread out, approaching a linear
distribution, whilst conserving total energy within the spatial domain.

The radiation energy density profiles are shown in figure 4.8 for times 0, 10, 30, 60,
and 100. The solid lines show the analytic solutions, and markers indicate the
numerical results. They are qualitatively consistent with those shown in [97]. We can
see that the numerical results agree very closely with the analytic solutions.

4.3.3 Optically Thin Case

The purpose of this test is to validate the spatial evolution of a radiation field in the
optically thin regime (χ ≈ 0). I use a neither scattering, nor absorbing or emitting
fluid. In the free streaming limit the governing 1D radiation equations reduce to

∂ttE = ∂xxE. (4.20)

This is a wave equation with speed of light wavespeed. The radiation pressure tensor
becomes fully anisotropic.

I use the same initial smooth 1D pulse as in equation (4.18)

E(x, 0) = A + Be−x2/4D, (4.21)

this time with maximal initial radiation flux in the positive direction
F x(x, 0) = E(x, 0). This is a one dimensional analogue to the multidimensional
optically thin pulse setup in [82, 97], differing in that I am initialising with
non-vanishing radiation flux, to emphasise the free streaming wave behavior we wish
to see. The analytic evolution of this pulse follows

E(x, t) = A + Be−(x−t)2/4D. (4.22)

For this test the parameters are A = 1, B = 100 − A, D = 1/30. With a vanishing
opacity the photon mean free path becomes unbounded, leading to free streaming



92 Chapter 4. Test Problems and Results

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

10 0

10 1

10 2

E

t=0
t=10
t=30
t=60
t=100

Figure 4.8: Diffusing radiation energy density profiles at times 0, 10, 30, 60, and 100.
Analytic solutions are shown with solid lines and numerical results are indicated with
markers. We see the initial pulse diffusing out approaching a uniform distribution as
expected, consistent with the results found in [97].
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behaviour. With a spatial domain of x ∈ [−10, 10], discretised into 200 zones, the
pulse is allowed to evolve to a time of 8.

I expect to see the pulse of radiation energy density travel in the direction of its flux
at the speed of light, maintaining its shape and amplitude, thus conserving the total
energy within the domain.

The radiation energy density profiles are shown in figure 4.9 for times 0, 2, 4, 6, and 8.
The solid lines show the analytic solutions, and markers indicate the numerical
results. They are qualitatively consistent with those shown in [97]. We can see that
the numerical results agree very closely with the analytic solutions.

4.3.4 Shadow Test

The purpose of this test is to validate that the code can accurately model the
multidimensional evolution of a radiation field within a domain containing both
optically thick and optically thin regions. This shadow test simulates the 2D
evolution of radiation around an opaque region illuminated from below. The setup is
similar to those in [82, 97].

Within the domain (x, y) ∈ [0, 2] × [−2, 4], I set the density profile to transition (both
smoothly and steeply) from a high density circular region to a low density
background,

ρ(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
106,

√
x2 + y2 ≤ 0.9,

10−6 + (106 − 10−6) 1 − sin (5π(r − 1))
2 ,

√
x2 + y2 ∈ (0.9, 1.1),

10−6,
√

x2 + y2 ≥ 1.1.

(4.23)

The fluid is non-scattering, but has an absorption opacity of χa = ρ. This results in a
dense, high opacity circular region, embedded within a low opacity background. The
domain is initially empty of radiation: E(x, y, 0) = F x(x, y, 0) = F y(x, y, 0) = 0. The
radiation emission term is set to zero (Θ = 0), so that radiation is not being emitted
anywhere within the domain.

At the lower boundary (yL = −2) the domain is illuminated with a high radiation
energy density, with maximal radiation flux in the positive vertical direction,
E(x, yL, t) = F y(x, yL, t) = 106.

I run this simulation twice, once with the fully isotropic Eddington closure, and once
with Kershaw closure introduced in equation (2.69), allowing the radiation pressure
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Figure 4.9: Streaming radiation energy density profiles at times 0, 2, 4, 6, and 8.
Analytic solutions are shown with solid lines and numerical results are indicated with
markers. We see the initial pulse travelling in the direction of its flux as expected,
consistent with the results found in [97].
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tensor to vary between fully isotropic and fully anisotropic forms.

When using the Eddington closure I expect to see the radiation field exhibit only
diffusive behaviour, diffusing around the opaque region, and filling in the area behind
it.

Conversely, with the Kershaw closure I expect to see a much more physical solution,
with the radiation continuing to stream freely past the opaque region, and the opaque
region blocking all incoming radiation, casting a shadow behind it.

The radiation energy density surfaces have been plotted for the early time evolution
(t = 3) in figure 4.10. Density contours are shown in white, and the radiation flux
vectors are indicated with black arrows. The solutions calculated with the Eddington
closure are shown in the left panels, and the solutions calculated with the Kershaw
closure are shown on the right. We can see the difference in radiation front
propagation speeds. For the streaming behaviour the front is propagating at the
speed of light (c = 1), and for the diffusive motion it is propagating at a speed of
around 0.6. These are the expected wavespeeds for streaming and diffusing radiation
respectively. The later time evolution (t = 21) in shown figure 4.11. At this time the
solutions are approximately stationary. We can see that with the Eddington closure
the energy density slowly diffuses around the opaque region and fills in the area
behind it. However with the Kershaw closure a sharp shadow is indeed cast as
radiation streams past the opaque region. These results are qualitatively consistent
with those found in [82, 97].

4.4 Special Relativistic Radiation
Hydrodynamics Tests

The purpose of these tests is to validate the code’s accurate evolution of coupled fluid
and radiation fields involving relativistic velocities.

This set of tests evolve 1D piecewise constant initial conditions separated by a
discontinuity at x = 0. Tests 1, 2, and 3 approach stationarity, and can be compared
to analytic solutions. Test 4 is an exception and does not have stationary solution,
however can still be qualitatively validated. The fluid and radiation are initialised in
local thermodynamic equilibrium with E = Θ = 4σB(P/ρ)4. For consistency with
previous work by other authors the Eddington closure is used for these tests. The
initial conditions and parameters for the four tests are given in table 4.4. These tests
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Figure 4.10: Shadow test Radiation energy density surfaces at time 3. Showing
density contours in white, and with radiation flux vectors indicated by black arrows.
The left panel shows a solution calculated using the Eddington closure, allowing for
diffusive radiation behaviour only. The right panel shows a solution calculated using
the Kershaw closure, allowing for both diffusive and streaming radiation behaviour.
There is a clear difference in radiation front propagation speeds due to the closure
schemes used.
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Figure 4.11: Shadow test radiation energy density surfaces at time 21. Showing
density contours in white, and with radiation flux vectors indicated by black arrows.
The left panel shows a solution calculated using the Eddington closure, allowing for
diffusive radiation behaviour only. The right panel shows a solution calculated using
the Kershaw closure, allowing for both diffusive and streaming radiation behaviour.
The solutions have reached an approximately stationary state by this time.
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Test Left State Right State Γ σB χa/ρ tend

1 ρL = 1 ρR = 2.4 5/3 3.085 × 109 0.4 104

PL = 3 × 10−5 PR = 1.61 × 10−4

ux
L = 1.5 × 10−2 ux

R = 6.25 × 10−3

EL = 10−8 ER = 2.51 × 10−7

2 ρL = 1 ρR = 3.11 5/3 1.953 × 104 0.2 500
PL = 4 × 10−3 PR = 4.512 × 10−2

ux
L = 0.25 ux

R = 8.04 × 10−2

EL = 2 × 10−5 ER = 3.46 × 10−3

3 ρL = 1 ρR = 8 2 3.858 × 10−8 0.3 20
PL = 60 PR = 2.34 × 103

ux
L = 10 ux

R = 1.25
EL = 2 ER = 1.14 × 103

4 ρL = 1 ρR = 1 2 3.858 × 10−8 103 15
PL = 60 PR = 60
ux

L = 1.25 ux
R = 1.1

EL = 2 ER = 2

Table 4.4: Special relativistic radiation hydrodynamics tube tests initial conditions.
Here the fluid 3-velocity can be obtained with vx = ux/

√︂
1 + (ux)2.

can be found amongst [18, 39, 97, 98]. The fluids involved are non-scattering, but are
capable of both emitting and absorbing radiation.

I have used the spatial domain x ∈ [−20, 20], discretised with 400 uniform zones.

Test 1 simulates the evolution of a weakly relativistic fluid pressure dominated shock,
with a maximum velocity of around 0.015. Results are shown in figure 4.12 and are
qualitatively consistent with those shown in [18, 39, 97].

Test 2 simulates the evolution of a mildly relativistic fluid pressure dominated shock,
with a maximum velocity of around 0.243. Results are shown in figure 4.13 and are
qualitatively consistent with those shown in [18, 39, 97], including the spike in
radiation energy density near the shock front.

Test 3 simulates the evolution of a highly relativistic fluid pressure dominated wave,
with a maximum velocity of around 0.995. The solution has reached a stationary
state in the region x ∈ [−5, 10], with small waves continuing to slowly propagate away
from the initial discontinuity. Results are shown in figure 4.14 and are qualitatively
consistent with those shown in [18, 39, 97].

Test 4 simulates the evolution of a strongly coupled optically thick flow with mildly
relativistic fluid velocities. The maximum velocity is around 0.781. It results in a pair
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of separating shockwaves which are continuing to approach the edges of the domain.
This test does not have an asymptotic stationary solution. Results are shown in
figure 4.15 and are qualitatively consistent with those shown in [97, 98].

4.5 General Relativistic Test

The purpose of this test is to verify that the code can accurately evolve a radiation
field within a curved spacetime. This test simulates a beam of light curving near a
black hole.

Setting up an exterior Schwarzschild spacetime, the spacetime interval is given by

ds2 = −α2dt2 + γrrdr2 + r2dΩ2, (4.24)
dΩ2 = dθ2 + sin2 θdϕ2. (4.25)

Here the lapse function and radial spatial metric are

α =
√︄

1 − 2M

r
, (4.26)

γrr =
(︃

1 − 2M

r

)︃−1
. (4.27)

In order to use this spacetime on a Cartesian grid, I transform this spacetime to
isotropic coordinates. Introducing the isotropic radius (r), we desire a spacetime
interval of the form

ds2 = −α2dt2 + γrr

(︂
dr2 + r2dΩ2

)︂
, (4.28)

γrr = γxx = γyy = γzz, (4.29)
dr2 + r2dΩ2 = dx2 + dy2 + dz2, (4.30)

r =
√︂

x2 + y2 + z2. (4.31)

We can transform between Schwarzschild and isotropic radii with the relations

r =
√

r2 − 2Mr + r − M

2 , (4.32)

r = r
(︃

1 + M

2r

)︃2
. (4.33)
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Figure 4.12: Test 1: a weakly relativistic fluid pressure dominated shock. The
plots show rest-mass density, fluid pressure, fluid 3-velocity, radiation energy density,
and radiation flux at time 104. The discontinuities have evolved correctly and the
stationary solution matches that in [18, 39, 97].
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Figure 4.13: Test 2: a mildly relativistic fluid pressure dominated shock. The
plots show rest-mass density, fluid pressure, fluid 3-velocity, radiation energy density,
and radiation flux at time 500. The discontinuities have evolved correctly and the
stationary solution matches that in [18, 39, 97].
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Figure 4.14: Test 3: a highly relativistic fluid pressure dominated wave. The plots
show rest-mass density, fluid pressure, fluid 3-velocity, radiation energy density, and
radiation flux at time 20. The discontinuities have evolved correctly and the solution
in the stationary region matches that in [18, 39, 97].
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Figure 4.15: Test 4: a strongly coupled optically thick flow with mildly relativistic
fluid velocities. The plots show rest-mass density, fluid pressure, fluid 3-velocity,
radiation energy density, and radiation flux at time 15. The discontinuities have
evolved correctly and the solution matches those in [97, 98].
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The lapse function and the isotropic spatial metric in terms of the isotropic radius are
given by

α = M − 2r

M + 2r
, (4.34)

γrr =
(︃

1 + M

2r

)︃4
. (4.35)

With a solar mass black hole, M = M⊙ = 1. I use a 2D domain (x, y) ∈ [0, 2.5]2 and
z = 0, discretised with 1002 zones. The spacetime is capped to r ≥ 2.5 (that is
r ≳ 1.309), to avoid event horizon (at r = 2 and r = 0.5) and black hole interior
considerations. The domain is initially empty of radiation,
E(x, y, 0) = F x(x, y, 0) = F y(x, y, 0) = 0. At the lower boundary (yL = 0), in the
interval r ∈ [3, 3.1] (corresponding to the isotropic interval xin ∈ [1.866, 1.973]), high
radiation energy density is injected into the domain, with maximal radiation flux in
the positive vertical direction E(xin, yL, t) = F y(xin, yL, t) = 106.

With zero opacity (χ = 0) no radiation scattering, or emission or absorption occurs.
The radiation does not couple to any fluid allowing the radiation to stream freely
with a highly anisotropic pressure tensor. This setup is similar to those from [82, 97].

Two problems have been simulated, one without any compact object centred at the
origin resulting in a flat spacetime, allowing the light beam to travel along a straight
line through the mesh. The other problem contains a solar mass black hole centred at
the origin, resulting in a Schwarzschild spacetime which is expected to curve the
radiation beam’s path into a circular orbit.

The radiation energy density surfaces are shown for the flat spacetime in figure 4.16
and for the Schwarzschild spacetime in figure 4.17. Lapse function contours are shown
in white, and the radiation flux vectors are indicated with black arrows. The
numerical evolution of the radiation energy density field approximately follows that of
a geodesic light path calculation and is qualitatively consistent with the results shown
in [82, 97]. Due to numerical dissipation and diverging geodesics in the Schwarzschild
spacetime case (as the radiation beam has a finite width), the radiation beam spreads
out as it travels and decreases in intensity.

The expected path of the radiation beam has been refined with two levels of factor-2
refinement, this was set up at initialisation and not created with the dynamic tagging
capability. The resulting mesh is shown in figure 4.18. As the path of the curved
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beam does not align with the Cartesian mesh, grid effects can be seen in the solution.

It is important to note that the refined grids are made up of many patches. This
contrasts with other mesh refinement algorithms used in the field, such as the Carpet
code used in the Einstein Toolkit. Carpet uses a box-in-box style approach where a
few large grids as nested inside each other. This approach is very efficient for the bulk
of a binary inspiral but does not effectively capture asymmetric features of the sort
that appear in the remnant and the outflows. The ability of AMReX to efficiently
work with these grids will be important in the problems tackled later.

4.6 Summary

The results from these test problems show that the numerical simulation performs as
expected for both smooth and discontinuous fluid motion at relativistic velocities.
The evolution of a radiation field transitions between diffusive behaviour and
streaming behaviour appropriately. The radiation hydrodynamic coupling behaves as
intended. The benefits of using adaptive mesh refinement have been demonstrated.
The code can perform calculations with a curved spacetime. The results from the
tests in this chapter show that the code is performing well enough to simulate
problems of interest.

I have yet to demonstrate situations involving a more complex spacetime and more
physical equations of state. These are both important for evolving neutron star
merger remnants and will be tested in the next chapter.
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Figure 4.16: Evolution of a narrow beam of anisotropic radiation in a flat spacetime.
We can see that the radiation travels along a straight path through the mesh.
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Figure 4.17: Evolution of a narrow beam of anisotropic radiation in a Schwarzschild
spacetime. We can see that the path of the radiation is curved around the compact
object, following along a circular geodesic curve at r ≈ 1.866. The beam spreads out
and reduces in intensity at it travels due to numerical dissipation and from following
diverging geodesics. These results are qualitatively consistent with those seen in
[82, 97].
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Figure 4.18: The expected path of this beam of radiation in a Schwarzschild
spacetime. The ring r ∈ [1.866, 1.973], is covered with two levels of factor-2 mesh
refinement.



Chapter 5

Neutron Star Models

5.1 Introduction

I want to validate that the code (as detailed in section 3) can accurately evolve a
setup involving a physical fluid within a curved spacetime. I can obtain a model
curved spacetime, induced by a horizonless compact object like a neutron star or
neutron star merger remnant, with the Tolman-Oppenheimer-Volkoff (TOV) equation
(which will be described in equation (5.1)). In this chapter I design setups to mimic a
neutron star merger remnant, and ensure that the code is capable of evolving such
setups as expected.

I make use of a physical three parameter equation of state (EoS). This is one which
takes into account electrons and relativistic effects (such as relativistic mean field
interactions). When setting up the initial data, in order to reduce the number of
degrees of freedom available from this EoS (as with the initialisation of the Einstein
Toolkit merger simulation which will be discussed in chapter 6) a uniform fluid
temperature is chosen (the isothermal approximation), and β-equilibrium is enforced.
This uses the assumption that the β-reactions via the Urca processes have had
sufficient time to reach nuclear statistical equilibrium (NSE).

5.2 Physical Equation of State

To validate that the code can use a more complex and physical equation of state (and
for compatibility with the Einstein Toolkit merger simulation discussed in chapter 6)
I want to use an equation of state which takes into account temperature effects (such

109
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as from shock heating) so will be dependent on the fluid temperature (T ), and out of
β-equilibrium (nuclear statistical equilibrium) effects so will be dependent on the
electron per baryon fraction (Ye).

The β-reactions are assumed to occur sufficiently slowly that they do not have time
to affect the electron fraction during the merger time (and hence they are not
included in the merger evolution). In cold neutron star matter the β-reactions
primarily involve the direct and modified Urca processes [99]. These account for
neutron decay and electron capture reactions [20, 100], which affect the electron
fraction of the fluid, and thus can affect its pressure.

A library of tabulated equations of state are available from the online service
CompOSE. I have chosen to use the SFHx (with electrons) EoS [40] as I have access
to a merger simulation which uses this EoS, and it covers the rest mass density, fluid
temperature, and electron fraction ranges expected in remnant evolution. It returns
consistent mass and radius ranges with observed data when used to calculate TOV
solutions for spherically symmetric neutron star profiles.

This equation of state provides the fluid pressure (P ), specific internal energy (ϵ), and
sound speed (cs) dependent on rest mass density (ρ), fluid temperature (T ), and
electron per baryon fraction (Ye). The available quantities are interpolated from
tabulated data points.

5.2.1 Nuclear Statistical Equilibrium

I aim to construct a neutron star model such that all of the fluid is in β-equilibrium.
This is referred to as nuclear statistical equilibrium (NSE). This model would be an
approximation to a neutron star which has had sufficient time for its β-reactions to
reach equilibrium.

Following the discussions of β-equilibrium for neutron star initialisation found in
chapters 8 and 9 of [26], there are numerous considerations (including temperature,
neutrinos, and strong interactions) regarding when β-equilibrium is attained. For
simplicity using the three parameter equation of state eg. P = P (ρ, T, Ye), I find the
slice though the tabulated data such that the lepton chemical potential (available
from the equation of state table) vanishes, i.e. µe(ρ, T, Ye) = 0. This is valid for ‘cold’
equilibrium (T ≲ 1MeV), and any thermal effects on the equation of state become
less pronounced for temperatures reaching T ≳ 10MeV. That is to say for each pair of
tabulated rest mass density and fluid temperature values I interpolate the table to
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find the electron fraction which satisfies this chemical potential condition. This has
the effect of reducing the dimensionality of our equation of state. I use this when
finding a TOV solution for neutron star model initialisation, allowing us to use
relations of the form P = P (ρ, T ) and Ye = Ye(ρ, T ). When evolving the data through
time the full three parameter table is used, allowing for out of β-equilibrium fluid.

5.3 TOV Equations

An important demonstration that the code can perform as expected with a curved
spacetime is the ability to maintain the hydrostatic equilibrium of a
Tolman-Oppenheimer-Volkoff (TOV) solution. This is an isolated, spherically
symmetric, and self-gravitating compressible fluid. A TOV solution can be
constructed to approximate an isolated neutron star. A merger remnant is similar to
the TOV solution in that they both have a central region of high density above that
of atomic nuclei, which drops off with radius, and that the inwards and outwards
forces are approximately balanced. They differ in that for a merger remnant the fluid
and spacetime are rotating and still (slowly) evolving. Furthermore they do not have
the spherical symmetry of the one dimensional TOV solution, and they have a
surrounding cloud of ejected material.

The TOV equations (as described in the Einstein Toolkit documentation [101]) can
be used to integrate out the central fluid pressure (P ) and enclosed gravitational
mass (m, including mass-energy contributions). The equations take the form

dP

dr
= − [ρ + ρϵ + P ] m + 4πr3P

r(r − 2m) , (5.1)

dm

dr
= 4πr2 [ρ + ρϵ] . (5.2)

Once the fluid pressure and enclosed mass profiles have been calculated, the resulting
spacetime can be found with

dϕ

dr
= m + 4πr3P

r(r − 2m) . (5.3)

Here the gravitational potential ϕ is related to the lapse function α via ϕ = ln(α).
The radial component of the spatial metric is given by the relation
γrr = (1 − 2m/r)−1.
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5.4 TOV Solutions

I choose the central mass density (ρc) above nuclear density (which is
≈ 2.5 × 1014 g/cm3), and an isothermal fluid temperature (Tc) (common values I have
used are ρc = 7.913 × 1014 g/cm3 = 1.28 × 10−3 in c = G = M⊙ = 1 units, and
Tc = 10 MeV). We can acquire the central electron fraction (Yec) required for
β-equilibrium, and we can obtain the central fluid pressure (Pc), the central specific
internal energy (ϵc), along with the central sound speed (csc) from the three
parameter SFHx (with electrons) equation of state.

With the TOV equations (5.1) we can numerically advance the fluid pressure
outwards from the centre with an IVP solver (as introduced in section 3.3). Given the
fluid pressure (Pn) at some radius (rn), I want to find the mass density, fluid
temperature, and electron fraction at this same radius (ρn, Tn, and Yen). If we
assume an isothermal profile, then the temperature will be spatially uniform
(Tn = Tn−1). At this point I want to satisfy the equation P (ρn, Tn, Yen) = Pn, where
Yen = Ye(ρn, Tn). I use a root finding algorithm (as introduced in section 3.11) to
solve the equation P (ρ, Tn, Ye(ρ, Tn)) = Pn for the mass density ρn. I use the initial
guess ρn−1, as for this scenario I do not expect very large jumps across any
discontinuities in the mass density profile. Once the mass density has been found the
required specific internal energy (ϵn) can be obtained from the equation of state.

I now have the necessary quantities required to use the TOV equations (5.1) to
advance the fluid pressure and enclosed mass outwards further, and begin the process
again. This outwards integration is repeated until the mass density drops below some
atmospheric threshold, at which point I define the neutron star’s surface, obtaining
its radius (R∗) and its total gravitational mass (M∗).

I am now in a position to match the lapse function (α) to the external Schwarzschild
spacetime, which gives the exact spacetime representation outside of the TOV surface
(R∗). I obtain that α (r ≥ R∗) =

√︂
1 − 2M∗/r. From here I can numerically integrate

the gravitational potential (ϕ) back towards the centre of the TOV solution using
equation (5.3). I thus obtain the internal TOV spacetime profile.

As in the curved spacetime test in section 4.5, in order to use this TOV spacetime on
a Cartesian grid I transform to an isotropic coordinate system following (4.32). The
coordinate transformation in the interior of the TOV solution (for r < R∗) requires
modification and follows the procedure in [101].
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The TOV solution for an isothermal temperature profile at T = 10 MeV, in
β-equilibrium, with a central density of ρc = 1.28 × 10−3, using the SFHx (with
electrons) equation of state [40] has been calculated. The fluid profiles are illustrated
in figure 5.1, with the spacetime profiles shown in figure 5.2. As expected I obtain a
high density central region which decreases with radius. It reaches an atmospheric
threshold ρatm = 10−10 at an isotropic radius of around R∗ = 10.2. This gives a total
mass of M∗ = 1.48 M⊙. In the electron fraction profile we can see a small peak near
the isotropic radius r = 6, at this same radius the mass density reaches its steepest
decrease although the fluid pressure profile remains smooth throughout the profile (as
is expected). This peak corresponds to a phase change in the equation of state. This
TOV solution has a central lapse function of αc = 0.634.

5.4.1 Evolved Simulations

The TOV solution described in section 5.4 has been created on a Cartesian
computational domain covering (x, y, z) ∈ [−24, 24]3, with a uniform discretisation
using 1923 zones. This solution has been calculated using the tabulated equation of
state, and has been transformed onto an isotropic coordinate system. The initial rest
mass density and electron fraction profiles are illustrated in figure 5.3, which shows
the z = 0 slice through the domain.

As this is a hydrostationary configuration, a perfect simulation should maintain its
stationarity. However due to the finite spatial discretisation of the initial profiles and
the numerical reconstruction and evolution methods, there is likely to exist a discrete
numerical stationary configuration, qualitatively similar but quantitatively different
to the continuous stationary configuration. Due to this I expect to see (ideally small)
oscillations in the solution’s evolution, as the numerical approximations break the
precise continuous stationarity. These oscillations will be seen in section 5.8.

This initial state has been evolved to a time of 500 in geometric units (approximately
2.5 ms) with the HLLC Riemann solver, fifth order WENO reconstruction, and second
order temporal integration. The evolved rest mass density and electron fraction
profiles are shown in figure 5.4, along with their deviation from the initial states. We
can see that the evolved profiles are qualitatively very close to the initial states, they
maintain close to spherical symmetry, and the magnitudes and radial profiles values
are well preserved. The four-lobed symmetry structure visible in these slices are a
result of Cartesian grid imprinting effects. We still see a high density and neutron
rich core region transitioning to a low density atmosphere of symmetric nuclear
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Figure 5.1: TOV solution fluid profiles against isotropic radius. The top left panel
shows mass-density, the top right shows fluid pressure, the bottom left shows electron
fraction, and the bottom right shows the enclosed gravitational mass. The peak in
the electron fraction profile at a radius of around 6 corresponds to a phase transition
in the equation of state. Here and throughout this chapter the radius is given in
geometric units.
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Figure 5.2: TOV solution spacetime profiles against isotropic radius. The top panel
shows the lapse function, and the bottom shows the isotropic spatial metric.
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Figure 5.3: Initial neutron star model log-scale rest mass density, and electron
fraction profiles.

matter. The deviation from initial state is at most approximately a 10% change.

The fluid temperature field is initially uniform, and the fluid velocity field is initially
static. The evolved temperature and velocity fields are shown in figure 5.5. The fluid
temperature field is showing thin shells of heating and cooling, approximately
doubling in temperature in some regions, but away from these shells the temperature
remains stable, the velocity magnitude has grown to reach a peak of nearly 12% of
the speed of light. As with the rest mass density and electron fraction these
deviations from the initial state are not problematic, indicating that the code can
indeed maintain the stationary configuration of a physical fluid within a non-trivial
curved spacetime. Waves passing through the phase transition at around r = 6 result
in oscillations with cell-width wavelength. These oscillations are visible in the evolved
mass density, electron fraction, fluid temperature, and fluid velocity fields. This is
most likely due to the Riemann solver (described in section 3.7.2) lacking dissipative
behaviour at low sound speeds (where the wave structure degenerates as the sound
speed drops to zero). A naively more dissipative Riemann solver would have
undesirable effects on the bulk density. I choose to accept these small scale oscillations
to prioritise long term accuracy of evolution of bulk fluid and radiation properties.
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Figure 5.4: Evolved TOV model profiles. The top row shows the evolved neutron
star model log-scale rest mass density, and electron fraction profiles. The bottom row
shows the absolute deviations from the initial profiles. The quantities are shown at
time t = 500 in geometric units.
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Figure 5.5: Evolved neutron star model fluid temperature, and fluid velocity magni-
tude profiles. The quantities are shown at time t = 500 in geometric units.

5.5 TOV With Radiation

If we wish to include radiation during the construction of the TOV fluid and
spacetime profiles, a radiation field can be created to both contribute towards and
balance against the spacetime curvature. The TOV equations can be split by
considering both radiation and fluid components of the energy and pressure terms.
Here the total energy is Etot = ρ + ρϵ + ER, and the total pressure is Ptot = P + PR.
These split TOV equations take the form

∂P

∂r
= − [ρ + ρϵ + P ] m + 4πr3(P + PR)

r(r − 2m) , (5.4)

∂PR

∂r
= − [ER + PR] m + 4πr3(P + PR)

r(r − 2m) , (5.5)

∂m

∂r
= 4πr2 [ρ + ρϵ + ER] , (5.6)

dϕ

dr
= m + 4πr3(P + PR)

r(r − 2m) . (5.7)

Here the fluid pressure equation takes into account the fluid energy and fluid pressure,
the radiation pressure equation accounts for the radiation energy and radiation
pressure, the gravitational mass equation contains contributions from both the fluid
and the radiation energies, and the gravitational potential equation is affected by
both the fluid and the radiation pressures.
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From a chosen central fluid temperature, I can obtain the central radiation energy
density using local thermodynamic equilibrium (LTE): ERc = aradT 4

c , where
arad = 2.473 × 10−13 MeV−4 with geometric units. With this the radiation pressure
can be obtained from the Eddington closure (as introduced in section 2.8.2):
PR = ER/3. As I am seeking a stationary solution, it is appropriate to assume that
the radiation flux is small, and thus the radiation pressure tensor is near fully
isotropic, a regime in which the Eddington closure is accurate. Using these LTE and
Eddington relations I can integrate out the radiation pressure with the TOV
radiation equation, obtaining radiation energy density and LTE temperature profiles.
This approach to determining the temperature replaces the isothermal constraint
used in section 5.4.

The TOV solution with a stationary and LTE radiation field, for a central
temperature of Tc = 10 MeV, in β-equilibrium, with a central density of
ρc = 1.28 × 10−3, using the SFHx (with electrons) equation of state [40] has been
calculated. The radiation and temperature profiles are shown in figure 5.6. The mass
density, fluid pressure, electron fraction, enclosed gravitational mass, and the
spacetime profiles remain qualitatively unchanged by the introduction of this
radiation field. This is a result of the radiation field having a much lower energy
density than the fluid at the temperatures involved. The radiation field drops off with
radius much slower than the mass density and fluid pressure does.

However, for a pre-calculated fluid and spacetime solution, I have a choice of
approaches to including a radiation field on top of the given fluid and spacetime
profiles. One approach is to construct a stationary radiation field balancing against
(but not contributing towards) the pre-calculated spacetime

dPR

dr
= − (ER + PR) m + 4πr3P

r(r − 2m) , (5.8)

where

dϕ

dr
= m + 4πr3P

r(r − 2m) (5.9)

as in equation (5.3). I use the Eddington closure as I expect the radiation flux to be
small when in a stationary configuration, giving ER = 3PR. This leads to radiation
energy density varying only with the lapse function, such that ER(r) = kα(r)−4. The
remaining degree of freedom allows us to fix the radiation field to be in local
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Figure 5.6: TOV solution radiation profiles against isotropic radius. The top panel
shows the radiation energy density, and the bottom shows the local thermodynamic
equilibrium temperature of the fluid and radiation.
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thermodynamic equilibrium with the fluid at a single point, but not globally. For
simplicity I can choose this point to be at the centre of the TOV solution, leading to

ER(r) = aradT 4
c α4

cα(r)−4. (5.10)

An alternative approach is to create a radiation field which is in local thermodynamic
equilibrium with the fluid everywhere, leading to

ER(r) = aradT (r)4. (5.11)

With an isothermal TOV solution this leads to a spatially uniform radiation field.
This approach results in the radiation pressure gradient not balancing against the
spacetime curvature (other than at the symmetry condition at the centre), nor
contributing towards it, and is thus not a stationary configuration.

Each of the above approaches to introducing a radiation field to a TOV solution can
lead to a configuration where the radiation energy density does not drop off quickly
with radius. This is potentially problematic as I do not expect to see large radiation
energy densities far away from a neutron star merger remnant. Another issue is that
significant amounts of radiation energy-momentum could be lost through the
boundaries of the numerical domain. This would require computationally expensive
large spatial domains. Adaptive mesh refinement can be used to mitigate this issue by
adding a large and coarse resolution grid around the simulation domain. An alternate
way forward is to construct a radiation field in local thermodynamic equilibrium with
the fluid only where the opacity is large (some threshold must be chosen). In this
region I would expect LTE to be attained relatively quickly. These large opacities are
found in the central, high mass density region of the TOV solution. In regions with
low opacity I include no radiation field, as I would expect to see far away from a
neutron star merger remnant. In these low opacity regions I expect the radiation to
interact with the fluid relatively slowly, and have time to propagate away from the
compact object. My numerical simulations have shown that having a radiation field
out of balance with the spacetime curvature does not cause significant issues. The
evolution equations allow the radiation field to rearrange towards a stable
configuration in a smooth way.

I use the absorption opacity formula introduced in section 2.8.3. I do not include the
scattering opacity as it has a negligible contribution to the evolution. The absorption
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Figure 5.7: Initial neutron star model (with radiation) log-scale opacity, and radiation
energy density profiles.

opacity varies between 10−7 in the background atmosphere, and around 105 in the
high density core.

5.5.1 Evolved Simulations with Radiation

As in section 5.4.1 the TOV solution has been created on a Cartesian computational
domain covering (x, y, z) ∈ [−24, 24]3, with a uniform discretisation using 1923 zones.
However here a radiation field has been introduced in local thermodynamic
equilibrium with the isothermal fluid, in the region where the opacity is greater than
unity in geometric units. The initial opacity and resulting radiation profiles are
illustrated in figure 5.7.

This initial state has been evolved to a time of t = 500 in geometric units. The
evolved rest mass density and radiation energy density profiles are shown in figure 5.8,
along with their deviation from initial states. As was the case with the hydrodynamic
setup in section 5.4.1, the evolved profiles are again qualitatively very close to the
initial states. Spherical symmetry is still maintained, and the magnitudes and radial
profiles are still well preserved. The deviation is similar to the hydrodynamic case,
with the rest mass density changing by up to 10% around the surface of the TOV
solution. This change was expected as the initial configuration was not stationary.
The radiation field was not balanced against the spacetime curvature, and contained
steep radiation pressure gradients. The radiation field has evolved to smooth out
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these steep pressure gradients, whilst simultaneously exchanging energy and
momentum with the fluid. The effect of this evolution can be seen in the fluid
temperature and radiation flux magnitude profiles shown in figure 5.9. The fluid has
cooled and heated in shells just like in the purely hydrodynamic case. The opacity is
around unity in this region, and the radiation field is initially far out of local
thermodynamic equilibrium. The central short-wavelength oscillations are visible in
fluid and radiation fields. These expected behaviours indicate that the code is
capable of accurately evolving coupled radiation and fluid fields with a non-trivial
curved spacetime.

5.6 TOV with Rotation

A more realistic neutron star merger remnant model requires a non-vanishing fluid
velocity and shift vector. The TOV equations can provide a lapse function α, and
diagonal spatial metric γab. From these I can construct a 4-velocity uα and diagonal
spacetime 4-metric gαβ, which take the form

uα = (1/α, 0a) , (5.12)

gαβ =
⎛⎝ −1/α2 0a

0b γab

⎞⎠ . (5.13)

Here the shift vector and fluid velocity are zero: β
a = va = 0a. Overlined quantities

denote the TOV coordinate system, with Greek spacetime indices {α, β} and Latin
spatial indices {a, b}.

To investigate the effect of non-trivial velocities and spacetime backgrounds, I aim to
perform a coordinate transformation of the static solution. In the full remnant
simulation my goal is to use this freedom to minimise the impact of the physical
rotation on the numerical solution.

I intend to transform this TOV solution to a new coordinate system, one in which I
am free to choose the fluid 3-velocities vi. In this new coordinate system we have a
general 4-velocity uµ and spacetime metric gµν , given by

uµ = W
(︂
1/α, vi − βi/α

)︂
, (5.14)

gµν =
⎛⎝ −1/α2 βi/α2

βj/α2 γij − βiβj/α2

⎞⎠ , (5.15)
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Figure 5.8: Evolved TOV model with radiation profiles. The top row shows evolved
neutron star model (with radiation) log-scale rest mass density and radiation energy
density profiles. The bottom row shows the absolute deviations from initial profiles.
The quantities are shown at time t = 500 in geometric units.



5.6. TOV with Rotation 125

-20 -10 0 10 20
x

-20

-15

-10

-5

0

5

10

15

20

y

5 10 15

-20 -10 0 10 20
x

-13 -12 -11 -10

T log10(F )

Figure 5.9: Evolved neutron star model (with radiation) fluid temperature and
log-scale radiation flux magnitude profiles. The quantities are shown at time t = 500
in geometric units.

with Greek spacetime indices {µ, ν} and Latin spatial indices {i, j}.

A coordinate transformation Λα
µ can be used to obtain the new 4-velocity and

spacetime metric from the TOV ones,

uµ = Λµ
αuα, (5.16)

gµν = Λµ
αΛν

βgαβ. (5.17)

With the freely chosen fluid velocities we can construct the coordinate transform

Λµ
α =

⎛⎝ 1 0i

va/α δi
a/W

⎞⎠ , (5.18)

where the new Lorentz factor W = (1 − vivi/γii)−1/2.

This particular coordinate transform results in a new set of spacetime quantities

α = Wα, (5.19)
βi = αvi, (5.20)
γij = γij/W 2 + vivj. (5.21)
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The contravariant 4-velocity remains unchanged by this transformation, such that
uµ = uµ.

5.6.1 Choosing a Velocity Field

I choose a simple (piecewise linear) triangle function in cylindrical radius(︂
rc =

√
x2 + y2

)︂
and height (z). A cylindrically symmetric torus shaped velocity

magnitude V (rc, z), for |z| < Zheight, can be constructed as

V (rc, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Vmax

Rpeak

rc

(︄
1 − |z|

Zheight

)︄
, rc ≤ Rpeak,

−Vmax

Rout − Rpeak

(rc − Rout)
(︄

1 − |z|
Zheight

)︄
, rc ∈ (Rpeak, Rout),

0, rc ≥ Rout.

(5.22)

In order to mimic simulated neutron star merger remnant conditions, I choose that:
Vmax = 0.4, Rpeak = 10, Rout = 20, and Zheight = 10. With a clockwise rotation, the
fluid velocity components can be obtained with

vx = V

rc

(−y), (5.23)

vy = V

rc

(x), (5.24)

vz = 0. (5.25)

I have chosen to use piecewise linear velocity profiles due to their simplicity, and
because simulation experiments have shown that the stationary fluid configuration is
better maintained when the divergence of the velocity field is small. These profiles
minimise the spatial region with non-vanishing velocity divergence whilst still
reaching the peak velocity magnitudes in the appropriate regions to mimic the
remnant velocity field.

5.6.2 Evolved Simulations with Rotation

Following the simulation described in section 5.4.1, the TOV solution profiles have
been created on a Cartesian computational domain covering (x, y, z) ∈ [−24, 24]3,
with a uniform discretisation of 1923 zones. A torus-shaped velocity field (as
described in section 5.6.1) has been imposed, with the corresponding coordinate and
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Figure 5.10: Initial neutron star model (with rotation) fluid velocity magnitude
profile. Left panel: z = 0 slice. Right panel: y = 0 slice.

spacetime quantity transformations (as introduced in section 5.6). The resulting
initial velocity magnitude profile is illustrated in figure 5.10. The diamond shaped
structure is a result of the triangular profiles in rc and z.

This initial state has been evolved to a time of t = 500 in geometric units. The
evolved rest mass density is shown in figure 5.11, along with its deviation from the
initial state, and the evolved velocity magnitude is shown in figure 5.12. The
differentially rotating fluid results in shearing velocities, and the Cartesian
discretisation induces perturbations which lead to turbulent vortices. This turbulent
behaviour is visible in the rest mass density field around the TOV solution’s surface
only where the fluid velocities are largest, outside of the toroidal region the evolution
remains smooth. Even with these detailed features the deviation from initial state is
still around 10%, suggesting that the code is capable of accurately evolving a rotating
fluid within a rotating spacetime, whilst maintaining hydrostationary behaviour.

5.7 Evolved Simulation with Both Radiation and
Rotation

The TOV setup including both radiation and rotation has been evolved to a time of
t = 500 in geometric units. The evolved rest mass density and radiation energy
density profiles are shown in figure 5.13, along with their deviation from the initial
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Figure 5.11: Evolved TOV model with rotation profiles. The top row shows the
evolved neutron star model (with rotation) log-scale rest mass density profile. Left
panels: z = 0 slice. Right panels: y = 0 slice. The bottom row shows the log-scale
deviation from the initial state. The quantities are shown at time t = 500 in geometric
units.
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Figure 5.12: Evolved neutron star model (with rotation) fluid velocity magnitude
profile. Left panel: z = 0 slice. Right panel: y = 0 slice. The quantities are shown at
time t = 500 in geometric units.

states. We can see that the spherical symmetry, magnitudes, and radial profiles are
approximately maintained. These results exhibit features from both the previous
radiation and rotation simulations. The radiation field has evolved to smooth out
steep gradients, balance against the spacetime curvature, and exchange energy with
the fluid. The rotation and shearing motion has resulted in turbulent vortices around
the surface of the TOV solution.

5.8 Central Rest Mass Density

The previous qualitative analyses in sections 5.4.1, 5.5.1, 5.6.2, and 5.7 discuss
features in 2D slices of profiles at a single evolved time allowing us to conclude that
deviations from a stationary configuration are small. I now conduct detailed
quantitative comparisons using the time evolution of a single point in space. Our
focus is the long term evolution of central rest mass density (as is the standard
quantitative diagnostic used in [102, 103], and in the same theme as in [60]) which
allows us to quantify the dissipation of the numerical schemes used.

The central rest-mass density is output for each time-step. This is a convenient
diagnostic for observing how the fluid is evolving in time. This diagnostic can also
reveal how changes such as varying the opacity values, or modifying the numerical
fluxes affects the evolution of the fluid fields without relying on memory intensive
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Figure 5.13: Evolved TOV model with radiation and rotation profiles. The top
row shows evolved neutron star model (with both radiation and rotation) log-scale
rest mass density and radiation energy density profiles. The bottom row shows the
absolute deviations from initial profiles. The quantities are shown at time t = 500 in
geometric units.
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three-dimensional outputs.

For each of the preceding simulations in this chapter (5.4.1, 5.5.1, 5.6.2, and 5.7) the
evolution of the relative deviation of central rest mass density from initial value
(which is calculated as |ρc(t) − ρc(0)|/ρc(0)) is shown in figure 5.14. The oscillations
in relative deviation are small, with magnitudes of order 10−3. They oscillate around
a stable value with negligible long term growth or decay. The evolved solution finds a
stable discretised configuration which is not necessarily the same as the continuous
equilibrium due to grid resolution and reconstruction schemes. This further suggests
that the code is capable of accurately maintaining stable configurations with a
physical equation of state and a curved spacetime obtained from a numerical TOV
solver (not an analytic spacetime profile such as the Schwarzschild solution which was
used in section 4.5).

The numerical reconstruction schemes I use have the effect of clipping local extremal
values. This can introduce errors which move the system away from a strict
hydrostationary configuration, and thus result in bulk or oscillatory motion. The
standard TOV central rest mass density oscillations reveal the fundamental mode
(and overtones) of the TOV solution’s hydrodynamic system. The TOV with
radiation shows the fundamental modes of the full fluid and radiation coupled system,
introducing an additional channel within which energy and momentum can be
exchanged. The fluid can emit and absorb a small amount of energy into and out of
the radiation field. This can act to smooth the fluid oscillations, resulting in the loss
of higher frequency oscillations, and increasing the oscillation magnitude at low
frequencies. The rotating TOV case has the same system as the standard
hydrodynamic setup, however there is an added source of rotational motion. This
removes some lower frequency oscillations, but introduces new higher frequencies as
the coordinates pass through the mesh in a non-grid-aligned way.

5.9 AMR Runtime Performance

Three dimensional simulations stand to benefit the most from adaptive mesh
refinement, as the alternative approach of increasing spatial resolution throughout the
entirety of the domain results in cubic growth in the number of grid cells. In this
section I evolve the standard TOV solution described in section 5.4.1, whilst varying
the number of AMR levels. The inner region (R ≤ 8) is maintained at a spatial
resolution of ∆x = 0.25, as the outer regions are coarsened. An example setup is
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Levels of refinement 0 1 2 3
Compute time / min 9332 1499 1362 1314

L1 deviation 7.837 × 10−8 2.517 × 10−7 3.053 × 10−7 3.068 × 10−7

L2 deviation 5.723 × 10−7 1.572 × 10−6 1.833 × 10−6 1.843 × 10−6

Table 5.1: Table of compute times required to reach simulation time of t = 103 in
geometric units and deviation from initial state for a range of levels of refinement.

shown in figure 5.15 with three levels of refinement.

The evolution is repeated with zero, one, two, and three levels of factor-2 refinement.
As a metric I use the compute time taken to reach a simulation time of t = 103 in
geometric units, and measure any increases in error at this time with a volume
integrated deviation from the initial condition using the L1 and L2 norms (as
introduced in (4.1)). The results are shown in table 5.1 and figures 5.16, 5.17, and
5.18.

In this setup there is a large compute time benefit to using one level of mesh
refinement (with relatively small increase in error). However there are diminishing
returns for adding more levels (further coarsening the outer regions). This could be
due to the outer regions being computationally cheap to evolve as it is (due to fast
convergence of primitive recovery iterations compared to in the central region), and
increasing efficiency here yields little net gain in calculation time. However this
confirms that I could use additional levels of refinement to increase the domain size
which will be important for the full merger simulation. These results also show that
the flexibility of AMReX in producing the relatively complex patch structure seen in
figure 5.15 does not negatively impact the runtime. This will be important in
simulations with more complex small-scale features such as to be expected in a
neutron star merger remnant.

5.10 Summary

In this chapter I have created setups designed to mimic a neutron star merger
remnant. This has involved using a three parameter tabulated equation of state
which is more physical than the simpler Gamma-law models employed in section 4. I
have used the TOV equations (5.1) to construct stationary fluid and spacetime
configurations with a central rest mass density in the range expected for a neutron
star merger remnant. The resulting spacetime is more general than the analytic
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Figure 5.15: Block-structured mesh refinement covering the region with a radius
r = 8 in geometric units. The log-scale rest mass density field is shown to highlight
that the high density core is finely resolved.
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Figure 5.16: Plot of compute time used to reach simulation time t = 103 for a range
of levels of refinement.
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Figure 5.17: Plot of the L1 deviation from the initial state at time t = 103 in
geometric units, for a range of levels of refinement.
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Figure 5.18: Plot of L2 deviation from the initial state at time t = 103 in geometric
units, for a range of levels of refinement.
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solution used in section 4.5. I have implemented a radiation field according to physical
emission and opacity parameters, and added relativistic fluid rotation according to
the velocity profile of a neutron star merger simulation. This rotation implementation
has involved a coordinate transform which resulted in non-trivial spacetime metric
components, allowing me to validate that the code is capable of using even more
general spacetime quantities. These TOV solutions have been evolved for multiple
milliseconds (requiring thousands of computational time steps) and the features and
deviations from initial configuration have been discussed. The central rest mass
density evolution in each case has been shown, revealing the expected oscillations,
and how they are affected by the presence of a radiation field and rotational velocities.
I conclude that the code is indeed capable of accurately evolving a physical fluid at
relativistic velocities within a general curved background spacetime, whilst
interacting with a radiation field. I then experiment with making use of adaptive
mesh refinement, and quantify the effect this has on calculation time. I conclude that
it would be beneficial to make use of AMR to increase the spatial domain size whilst
simultaneously keeping high spatial resolution around the compact remnant object.



Chapter 6

Neutron Star Merger Remnant

6.1 Introduction

The focus of this research has been on the effects that photon transport has on the
evolution of a binary neutron star merger remnant. These include how the transport
of radiation affects the cooling rate and energy loss of the remnant, and how energy is
redistributed around the system, thus affecting its angular momentum. As the
angular momentum is affected so too are the gravitational waves emitted by the
rotating remnant. Photon transport plays an important role in the generation of
observable signals. The luminosity, spectrum, and timings of the electromagnetic
wave signals depend directly on the photon transport.

Further effects of photon transport on a remnant’s evolution include the remnant’s
collapse to a black hole. I will not be modelling this due to my use of the stationary
spacetime approximation, however it further highlights the usefulness of investigating
radiation fields in relativistic scenarios. As energy is exchanged from the fluid to the
radiation field, or as energy is removed from the system via radiative cooling, the
pressure will be reduced, and thus may not be sufficient to support against collapse.
Furthermore the changes to the angular momentum of the system due to photon
transport could reduce the remnant’s rotational support against collapse. As the
differentially rotating remnant transitions towards uniform rotation its rotational
support is reduced. This collapse could be noticeable in the observable gravitational
wave signal as it would be cut off when the black hole is formed, and also in the
electromagnetic signal as the surrounding material could be accreted towards the
recently formed black hole remnant and lead to a short gamma-ray burst as observed

139
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in GRB 170817A [23].

I make use of a precalculated binary neutron star merger simulation provided by P.
Hammond [20] using the Einstein Toolkit code. The required hydrodynamic and
spacetime quantities have been reconstructed on an AMReX mesh, and the evolution
is continued within my radiation hydrodynamics code (as detailed in chapter 3 and
validated in chapters 4 and 5).

The Einstein Toolkit differs from my radiation hydrodynamics code in that it can
evolve the spacetime quantities, however it does not have the capability to evolve a
radiation field. I make use of the Cowling approximation as we assume that the
spacetime is evolving sufficiently slowly. This has the benefit of avoiding issues which
arise when evolving spacetime quantities across mesh refinement boundaries. The
AMReX mesh is able to refine around much smaller spatial regions than the Einstein
Toolkit as it can make use of many small patches. The large patches used in the
Einstein Toolkit minimise the surface of refinement boundaries, allowing for accurate
gravitational wave calculations. I expect to see a speedup in runtime due to the
efficiencies gained from the flexibility in using many small AMR patches, as shown in
chapter 5, and from avoiding spacetime evolution calculations.

In this chapter I make use of a pre-calculated binary neutron star merger remnant
(soon after merging) and continue its evolutions in my code. I then look at
approaches to including a radiation field onto the remnant initial condition, and how
this could affect the evolution. I also explore the possibility to improve numerical
calculation by applying a coordinate transform with the intent of reducing the
numerical fluxes. Lastly I discuss how these modifications could affect oscillations of
the central mass density.

6.2 Merger Simulation

A binary neutron star merger has been simulated by P. Hammond [26]. A pair of
equal mass, corotating neutron stars (from TOV solutions) in approximate
hydrostationary equilibrium (calculated with the LORENE code [104]), initialised in
β-equilibrium, with a uniform fluid temperature, have been hydrodynamically evolved
through inspiral to merger using the Einstein Toolkit code. Although the neutron
stars are initialised in β-equilibrium there are no β-reactions occurring during the
evolution. The electron number density has been advected along with the fluid
allowing the material to become out of β-equilibrium. This simulation has made use
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of the tabulated three parameter equation of state SFHx (with electrons) [40], from
the CompOSE library (as introduced in section 5.2). The spacetime has been evolved
numerically using the BSSNOK formulation [105] with the aim of extracting the
gravitational wave signals. The remnant object is hot and differentially rotating. This
calculation did not involve any radiation field or radiative transfer. The spatial
domain is discretised with a 3D Cartesian grid spanning [−1584, 1584]3 (in geometric
units) with eight levels of factor two mesh refinement and a coarsest cell width of 36
(also in geometric units).

6.3 Implementation into the AMReX Code

At some point after merger when the spacetime evolution is sufficiently slow, the fluid
and spacetime quantities are transferred over to an AMReX mesh for further
evolution within the radiation hydrodynamics code. This code assumes the Cowling
approximation and does not evolve the spacetime quantities, the spacetime from the
merger simulation is held stationary. This greatly reduces the computational expense
of continuing the merger remnant evolution. The code’s radiation wavespeed
restricted timestep is comparable to the hydrodynamic timestep when modelling
neutron star fluid. By utilising a large number of small patches, the adaptive mesh
refinement is capable of refining much smaller spatial regions as spacetime evolution
across resolution boundaries will not be an issue.

A linking code was required to construct the AMReX mesh and populate it with
values extracted from the Einstein Toolkit mesh. The radiation hydrodynamics code
does not take advantage of the symmetry of the problem in the same way that the
Einstein Toolkit does. The spatial domain was duplicated four times over to
reproduce reflective and rotational symmetries of the problem. The code required a
number of necessary capabilities in order to continue the evolution of the merger
remnant. In order to be compatible with the three parameter EoS and the associated
algorithm for recovering the primitive quantities from the conserved quantities, the
code requires access to rest mass density, fluid temperature, and electron fraction
fields.

The energy evolution equations include source terms involving spacetime quantities.
With a general remnant setup it is inaccurate to treat the spacetime as truly
stationary. I can include this effect by making use of the extrinsic curvature in the
energy equation geometric source terms. As shown in section 2.4 the relativistic
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energy evolution equation is

∂µ

(︂
α2√γT µ0

)︂
= −α

√
γT µν∇µ(nν). (6.1)

The geometric source term can be expanded as shown in [35] to give

−α
√

γT µν∇µ(nν) = √
γ
(︂
αT ikKik − αT j0∂jα

)︂
. (6.2)

Here Kµν = −(δλ
µ + nλnµ)∇λ(nν) is the extrinsic curvature. It is orthogonal to the

time-like normal such that (Kµνnµ = 0ν). Thus its temporal components are
Ki0 = βiKij and K00 = βiβjKij. The remnant initial data from the Einstein Toolkit
simulation gives us access to the extrinsic curvature quantities Kij. These can then
be copied into the AMReX mesh along with the fluid and other spacetime quantities.
In truly stationary spacetime cases, this source term can be written in terms of the
energy momentum tensor and spacetime metric components only, as

−α
√

γT µν∇µ(nν) = √
γ
(︃1

2T ikβj∂jγik + T j
i ∂jβ

i − αT j0∂jα
)︃

. (6.3)

6.4 Remnant Initial Data

The data from the Einstein Toolkit simulation, roughly 8ms (or 1600 in geometric
units) after merger, is taken to be approximately hydrostationary and used as initial
data for the radiation hydrodynamic simulation of the remnant within the AMReX
code. It is centred at coordinates (x, y, z) = (0, 0, 0). The initial quantity profiles are
shown in figures 6.1, 6.2, 6.3, and 6.4. These show slices through z = 0 and y = 0.
The cell widths on the coarsest grid level are 36 in geometric units. Eight AMR levels
are used in total, each with a refinement factor of two. The computational grid
created using the AMReX framework is illustrated in figure 6.5, showing a slice
through z = 0. We can see that the remnant consists of a dense and hot central
object, which is highly spatially resolved. It has a rotating torus of surrounding cooler
and lower density material. The remnant and torus are neutron rich (indicated by the
low electron fraction), within a cold and rarefied background atmosphere of
symmetric nuclear matter.
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Figure 6.1: Remnant initial log-scale rest mass density profile. Top panel: z = 0
slice. Bottom panel: y = 0 slice.
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Figure 6.2: Remnant initial log-scale fluid temperature profile. Top panel: z = 0
slice. Bottom panel: y = 0 slice.



6.4. Remnant Initial Data 145

Figure 6.3: Remnant initial electron fraction profile. Top panel: z = 0 slice. Bottom
panel: y = 0 slice.
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Figure 6.4: Remnant initial fluid velocity magnitude profile. Top panel: z = 0 slice.
Bottom panel: y = 0 slice.
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Figure 6.5: The remnant simulation employs a numerical mesh with seven levels of
factor-2 refinement. It uses the box-in-box approach. The central compact object is
highly spatially resolved compared to the background atmosphere.
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6.5 Remnant Evolution

The remnant initial state has been evolved for a further t = 8 × 103 in geometric
units, which corresponds to around 40 ms. The evolved rest mass density, fluid
temperature, electron fraction, and fluid velocity magnitude profiles are shown in
figures 6.6, 6.7, 6.8, and 6.9 using z = 0 and y = 0 slices. Zoomed in profiles for fluid
temperature and velocity magnitude are shown in figure 6.10.

We can see that the central compact object and its peak rest mass density have been
maintained. The torus of surrounding material is comparable but has qualitatively
evolved – it is now “puffed up” in the z direction. The outer shell of material has
expanded, with significant outflow away from the poles of the remnant. The peak
temperature has increased from around 38 MeV to about 70 MeV, whilst the peak
fluid velocity has decreased from 0.46 to 0.24 in geometric units. The electron fraction
has evolved to substantially follow the fluid, with the most noticeable changes being
the visible ejection of symmetric matter along the poles. The velocity of the (low
density) matter ejected along the poles is high compared to the rest of the matter in
the system, but at less than 25% of the speed of light is still not extremely relativistic.

The qualitative behaviour of the remnant post-merger is not dissimilar to existing
cases in the literature such as those shown by [26]. In particular, the ejection of
matter from the system is expected to be crucial in the potential formation of a jet
and a kilonova. In this scenario, the matter along the poles needs to be rapidly
ejected to allow the jet to form. However, a fully self-consistent simulation of jet
formation requires the inclusion of magnetic fields, so any conclusions drawn here are
necessarily incomplete.

The detailed evolution of the temperature and velocity profiles will depend on the
local features of the simulation, the transport of energy-momentum, the precise
microphysics included, and the numerical accuracy. The temperatures seen here are
within the range of those seen in the literature [26], but the peak temperatures are on
the high side. The qualitative features (cold spots within the “cores” of the original
merged neutron stars, the surrounding hot region that will see the largest change in
the radiation opacity, and the spiral arm features involving internal shocks due to the
outflowing matter) are comparable to other simulations [26].

With the qualitative features now shown for a purely hydrodynamical simulation, I
can move on to introducing a radiation field.
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Figure 6.6: Log-scale rest mass density profiles for the evolved remnant after a time
of 40 ms. The top panel shows the z = 0 slice, and the bottom panel shows the y = 0
slice.
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Figure 6.7: Log-scale fluid temperature profiles for the evolved remnant after a time
of 40 ms. The top panel shows the z = 0 slice, and the bottom panel shows the y = 0
slice.



6.5. Remnant Evolution 151

Figure 6.8: Electron fraction profiles for the evolved remnant after a time of 40 ms.
The top panel shows the z = 0 slice, and the bottom panel shows the y = 0 slice.
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Figure 6.9: Fluid velocity magnitude profiles for the evolved remnant after a time
of 40 ms. The top panel shows the z = 0 slice, and the bottom panel shows the y = 0
slice.
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Figure 6.10: Slices through z = 0 showing zoomed-in evolved remnant profiles after
40 ms. The top panel shows log-scale fluid temperature. The bottom panel shows
fluid velocity magnitude.
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6.6 Radiation Initialisation

The remnant initial condition provides us with both the spacetime and fluid profiles.
I aim to avoid modifying these when introducing a radiation field. As discussed with
the TOV model in section 5.5 I have the options of adding a radiation field in local
thermodynamic equilibrium with the fluid temperature, or adding the radiation
pressure to balance against the spacetime forces - constructing a mechanical
equilibrium. Having a single radiation field and two separate conditions to satisfy
appears to be an over-constrained problem. From numerical experiments I have seen
that a non-mechanically stable radiation field will re-arrange itself towards a stable
distribution without issues (such as violent waves or overshooting expected limits). A
non LTE radiation field in high opacity regions will quickly approach the LTE state,
and in low opacity regions will slowly approach the LTE state. A practical solution is
to satisfy only the most demanding and problematic condition in each region, with
the expectation that the unsatisfied conditions will not cause significant qualitative
changes to the bulk evolution. Therefore I initialise the radiation field in LTE in
regions with high opacity (greater than some threshold), and include no radiation
field whatsoever in low opacity regions. Here the fluid is allowed to slowly emit
radiation until it reaches LTE over a long duration, and the radiation field is allowed
to smoothly redistribute to reduce any non-mechanical equilibrium effects.

In the high opacity region a radiation field is calculated with an energy density in LTE
with the fluid’s radiation emission. This is determined from the fluid temperature and
is assumed to have had enough time to relax to the thermodynamic equilibrium state:
E = aradT 4. I initialise this radiation field co-moving with the fluid, with a vanishing
net radiation flux in the fluid frame, and thus an isotropic pressure tensor.

At the temperatures reached in this remnant this results in a radiation field with a
small fraction of the fluid’s internal energy density. It is likely that any energy
exchange between the fluid and radiation would not be overly disruptive to the
remnant’s hydrodynamic stability, whilst still having some noticeable effect on its
evolution. Some disruption is to be expected as I am adding in the radiation energy
on top of the fluid energy already present in the domain, breaking any strict
equilibrium between the total pressure gradient and the background spacetime.

It is preferable to have small radiation energy amplitudes away from the central
merger object to prevent any atmospheric fluctuations or artefacts significantly
affecting the radiation evolution.
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6.6.1 Opacity Implementation

I use the frequency averaged functional form opacity formula from [42] introduced in
section 2.8.3,

χ = 1.928 × 1017 Y 2
e ρ2 T −7/2. (6.4)

I do not include scattering opacities in the simulation, as they are many orders of
magnitude smaller than the absorption opacity, and would have a negligible effect on
the evolution.

With this opacity formula the opacities in the merger simulation range between
6.8 × 10−8L−1 in the background atmosphere, and 3.0 × 1010L−1 in the high density
core region, where L is the appropriate length scale. The threshold above which
radiation is initialised in LTE with the fluid is therefore chosen as 1 × L−1. In the
most extreme case at the centre of the remnant, the large opacity scales the coupling
source term, and would require an explicit numerical time step of around 10−11 (in
geometric units) to accurately resolve. The LTE overshoot prevention method allows
the use of much larger time steps dependent only on the grid resolution and physical
wave-speeds involved.

The artificial atmosphere required for stable numerical hydrodynamics, which avoids
having regions of near-zero mass density within the computational domain, is
prevented from artificially increasing the opacity. This could potentially cause energy
and momentum exchange issues. In regions where the artificial atmosphere is used
(ρ ≲ 10−10 in geometric units) the opacity is set to zero. Otherwise the opacity would
remain artificially high, where I would expect it to decrease significantly when away
from the remnant material.

6.6.2 Remnant Evolution with Radiation

The remnant initial state with the introduction of a radiation field as described above
has been evolved for a further t = 8 × 103 in geometric units, which corresponds to
around 40 ms. The evolved rest mass density and fluid temperature profiles are
shown in figures 6.13 and 6.14, with zoomed in profiles shown in figure 6.15. The
evolved opacity, radiation energy density, and radiation flux magnitudes are shown in
figures 6.16, 6.17, and 6.18.

Compared to the evolution of the purely hydrodynamic case shown in figures 6.6-6.10
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Figure 6.11: Remnant log-scale initial opacity profile. Top panel: z = 0 slice.
Bottom panel: y = 0 slice.
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Figure 6.12: Remnant log-scale initial radiation energy density profile. Top panel:
z = 0 slice. Bottom panel: y = 0 slice.
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we can see that the core, high density neutron star remnant is qualitatively similar,
but the surrounding material is substantially different. The outer layers of material
have rapidly dispersed, and all quantities have been “smoothed out”. This seems to
be driven by the evolution of the radiation field: the exchange of energy-momentum
with the radiation, leading to isotropic emission and transfer of energy, has a
substantial impact on the lower density (and hence lower opacity) matter.

In the profile shown in 6.15 we see that the radiation has not yet managed to smooth
out the cold spots at very high density (and high opacity) that correspond to the
original neutron star cores. The peak temperature has dropped (it is around 48 MeV,
compared to the 70 MeV reached in the purely hydrodynamic case), but the timescale
on which radiation can evolve, propagate, and diffuse in this spacetime region is
considerably slower. The peak opacity has decreased by a factor of around 300. This
is driven in part by the change in temperature, but is also sensitive to low-density
features of the equation of state. This change in the opacity is however not sufficient
to accelerate the diffusion of radiation into the core. The peak radiation energy
density has increased from around 5 × 10−7 to around 1.3 × 10−6. This corresponds
very closely with the increase in fluid temperature. The shape of the radiation energy
density field also corresponds closely with the fluid temperature profile. This suggests
that the radiation field has remained near to local thermodynamic equilibrium with
the fluid, as is expected in the high opacity central region where they are strongly
coupled. The radiation flux profiles highlight the nearly isotropic behaviour of the
radiation fields, but do show how the high opacity regions inhibit the propagation of
radiation energy-momentum.

6.7 Low Advection Transformation

The rotational behaviour of the hydrodynamical evolution of the remnant is strong,
and dominates over the isotropic behaviour in the purely hydrodynamic case. As I
am simulating on a Cartesian mesh, we have seen in chapter 5 that the motion of a
fluid with respect to the mesh or the coordinates can lead to numerical inaccuracy. I
have used the coordinate transformation introduced in section 5.6.2 to minimize the
apparent rotation of the matter with respect to the computational coordinates.
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Figure 6.13: Log-scale rest mass density profiles for the evolved remnant after a
time of 40 ms. The top panel shows the z = 0 slice, and the bottom panel shows the
y = 0 slice.
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Figure 6.14: Log-scale fluid temperature profiles for the evolved remnant after a
time of 40 ms. The top panel shows the z = 0 slice, and the bottom panel shows the
y = 0 slice.
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Figure 6.15: Slices through z = 0 showing zoomed-in evolved remnant profiles after
40 ms. The top panel shows log-scale rest mass density. The bottom panel shows
log-scale fluid temperature.
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Figure 6.16: Log-scale opacity profiles for the evolved remnant after a time of 40 ms.
The top panel shows the z = 0 slice, and the bottom panel shows the y = 0 slice.
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Figure 6.17: Log-scale radiation energy density profiles for the evolved remnant
after a time of 40 ms. The top panel shows the z = 0 slice, and the bottom panel
shows the y = 0 slice.
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Figure 6.18: Log-scale radiation flux magnitude profiles for the evolved remnant
after a time of 40 ms. The top panel shows the z = 0 slice, and the bottom panel
shows the y = 0 slice.
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Taking the coordinate transform

Λµ
α =

⎛⎝ 1 λi

0a δi
a

⎞⎠ (6.5)

I can transform the contravariant fluid 4-velocity and spacetime metric to a new
coordinate system

uµ = Λµ
αuα, (6.6)

gµν = Λµ
αΛν

βgαβ. (6.7)

Here overlined quantities denote those in the Einstein Toolkit coordinate system.

I can now obtain the new transformed spacetime quantities and fluid velocity

α = α, (6.8)
βi = β

i − λi, (6.9)
γij = γij, (6.10)
vi = vi. (6.11)

The lapse function, spatial metric, and fluid velocities remain unchanged, however
this transformation allows us to modify the shift vector. This results in a transformed
contravariant 4-velocity of the form

ui = W
[︂
vi −

(︂
β

i − λi
)︂

/α
]︂

. (6.12)

If we choose for the coordinate transform to use λi = β
i − αvi, then the new shift

vector becomes βi = αvi, and the 4-velocity vanishes ui = 0i. This would have the
effect of removing the advective flux terms from the evolution equations, in the
remnant initial condition setup. As the fluid velocities evolve due to non-advective
terms (such as geometric and reaction source terms and pressure gradients), this
zero-advection result will no longer be exact.

As in the TOV rotation approach, I can construct a cylindrically symmetric torus
shaped approximation λi ≈ β

i − αvi, leading to ui ≈ 0i. This reduces, on average, the
size of the 4-velocity components. This thus reduces the impact of the advective flux
terms. If we assume an approximately axially symmetric motion to the remnant,
which is expected, then this advective flux reduction will continue to hold beyond the
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initial condition.

From the remnant initial data, I use the parameters Rpeak = 10, Rout = 60,
λpeak = 0.3, and Zheight = 50. I can then construct the toroidal function λ with the
rotational profile

λ(rc, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λpeak

Rpeak

rc

(︄
1 − |z|

Zheight

)︄
, rc ≤ Rpeak,

−λpeak

Rout − Rpeak

(rc − Rout)
(︄

1 − |z|
Zheight

)︄
, rc ∈ (Rpeak, Rout),

0, rc ≥ Rout.

(5.22)

The components can then be obtained with

λx = λ

rc

(−y), (6.13)

λy = λ

rc

(x), (6.14)

λz = 0. (6.15)

We must also apply this coordinate transform to the extrinsic curvature tensor
Kµν = Λµ

αΛν
βK

αβ.

6.7.1 Remnant Evolution with Low Flux Transformation

The remnant initial state with the flux-reducing coordinate transformation, as
described above, has been evolved for a further 40 ms. The evolved rest mass density
and fluid velocity magnitude are shown in figures 6.19 and 6.20. Zoomed in rest mass
density, fluid temperature, and fluid velocity magnitude profiles are shown in figures
6.21 and 6.22.

As expected, the large scale qualitative behaviour is comparable to the original purely
hydrodynamical simulation shown in figures 6.6-6.10. The key differences can be seen
by looking at the details of the zoomed profiles, particularly the velocity magnitudes
comparing figure 6.10 with figure 6.22. We can see that the coordinate transformation
allows for the details of the spiral arm evolution to be much more sharply captured.
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Figure 6.19: Log-scale rest mass density profiles for the evolved remnant after a
time of 40 ms. The top panel shows the z = 0 slice, and the bottom panel shows the
y = 0 slice.
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Figure 6.20: Log-scale fluid velocity magnitude profiles for the evolved remnant
after a time of 40 ms. The top panel shows the z = 0 slice, and the bottom panel
shows the y = 0 slice.
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Figure 6.21: Slices through z = 0 showing zoomed-in evolved remnant profiles after
40 ms. The top panel shows log-scale rest mass density. The bottom panel shows
log-scale fluid temperature.
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Figure 6.22: Slices through z = 0 showing the zoomed-in evolved remnant fluid
velocity magnitude profile after 40 ms.
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6.8 Remnant Central Rest Mass Density

As in the TOV models in chapter 5, and as particularly discussed in section 5.8, the
evolution of the maximum density is useful for discussing the qualitative behaviour of
the system. In this case, where the remnant solution is approximately but not exactly
hydrostationary, there is no reason to believe that the true solution is that the
maximum density should be constant. However, the effective behaviour seen in
section 5.8 should still hold: the solution is approximately given by a hydrostationary
background with a (possibly large) perturbation, leading to an approximately
constant maximum density profile superimposed with oscillations driven by the
fundamental mode of the remnant. There may in addition be long-term secular
behaviour due to changes in pressure support in the core, which could indicate the
eventual collapse to a black hole.

In figure 6.23 the maximum density evolution is tracked for the three different cases
evolved in this chapter.

We see that the result is approximately stable in all cases. The discretisation effects
have not lead to significant inflation or collapse of the remnant, instead they
introduce small amplitude oscillations which decay over time, as was seen in section
5.8. The purely hydrodynamic simulations are evolving to very similar equilibrium
solutions. The advantages of the use of the rotational coordinate transform are clear:
the improved numerical accuracy allows the fundamental oscillation mode about the
approximate equilibrium to be clearly seen. Advective fluxes due to non-grid-aligned
4-velocities can introduce numerical errors, transforming the coordinates to reduce
the 4-velocities can work to reduce these errors. The remaining fluxes will be due to
pressure gradients which largely balance against the geometric source terms in
approximately stationary configurations. Here we see that this coordinate transform
has the effect of reducing early time high and low frequency perturbations, whilst
introducing steady frequency small oscillations which decay over time.

The addition of radiation to the system gives another channel for energy-momentum
exchange. Again, the smoothing effect of this additional channel is clearly seen.
However, the combined effect of the additional radiation energy and the impact on
the low-density fluid matter leads to an increase in the core density which only decays
over a long time period.



172 Chapter 6. Neutron Star Merger Remnant

0 5 10 15 20 25 30 35 40
t = ms

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

[;
m

a
x
(t

)
!
;

0
]=
;

0

Standard remnant
With Radiation
With Rotation

Figure 6.23: The maximum rest mass density of the remnant as evolved in the
three situations discussed here. We see that the result is approximately stable in all
cases. The purely hydrodynamical simulations are evolving to very similar equilibrium
solutions. The advantages of the use of the rotational coordinate transform are clear:
the improved numerical accuracy allows the fundamental oscillation mode about the
approximate equilibrium to be clearly seen. The addition of radiation to the system
gives another channel for energy-momentum exchange. Again, the smoothing effect of
this additional channel is clearly seen. However, the combined effect of the additional
radiation energy and the impact on the low-density fluid matter leads to an increase
in the core density that only slowly reduces.
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6.9 Summary

In this chapter I have used the efficient general relativistic radiation hydrodynamics
code developed and described in chapters 3-5 to evolve a neutron star remnant. This
has allowed us to explore the impact of including photon radiation as an additional
aspect of the physical model. I have also explored the use of a novel coordinate choice
to improve the numerical accuracy of the rotating fluid remnant.

We have seen that, even with limited computational resources, using a flexible and
efficient mesh refinement framework allows us to accurately evolve the complex
multiphysics problem of a neutron star remnant. The improved accuracy from the
novel rotating coordinate choice is most clearly seen in the capturing of the
fundamental mode oscillations in section 6.8. This highlights that the approach of
constructing numerical methods and techniques targeted to specific astrophysical
situations can lead to substantial efficiency gains.

We have also seen the qualitative impact of the addition of photon radiation through
the results in section 6.6. The smoothing effect of the additional radiation is also
clearly seen in the impact on the maximum density oscillations.

The qualitative impact of the physical model choices (such as the inclusion of
radiation) and precise numerical choices (such as the use, or not, of the rotating
coordinates) lead to the question of the robustness and precision of the results
computed here. This will be tackled more precisely in the next chapter.
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Chapter 7

Uncertainty Quantification

7.1 Introduction

In chapter 6 I performed general relativistic radiation hydrodynamic simulations of a
neutron star merger remnant. To do this I had to make choices. There are physical
choices, such as which equation of state to use, or which radiation treatment to
impose. Then there are “purely numerical” choices, such as at which time to transfer
the data from the Einstein Toolkit grid to the AMReX grid, or which numerical
solvers to use. We need to know how robust our results are to variations in these
choices.

Our setup consists of a system of partial differential equations (the balance laws
introduced in section 2.7), a set of boundary conditions, multiple closure options, and
precise initial conditions to describe each quantity at the start time. Each of these
aspects can be parameterised but they are not fully constrained. Physical observations
can be used to constrain the closure schemes used. For example the measurement of
gravitational waves can be used to constrain the fluid equation of state. There is
uncertainty in the numerical setup which we use, particularly in our choice of the
initial conditions. Small changes in these parameters can propagate, qualitatively
affecting the solutions. The detailed study of this is called uncertainty quantification.
Formally, uncertainty quantification is the modelling and approximation of the
propagation of uncertainty in the solution due to uncertainty in the inputs [106].

A significant source of uncertainty is in our implementation of the radiation field.
The initialisation of the radiation field is a purely computational choice, not a
physical process which could be constrained by observation. We choose for it take the

175
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form of being in local thermodynamic equilibrium with the fluid, and we choose the
time at which these fluid temperatures are used. The temperatures are still evolving
soon after merger. We make use of this ad-hoc approach as we do not have a
radiation field available from the binary neutron star inspiral and merger simulation.

Most fluid simulations involve some degree of turbulent behaviour. During the
neutron star merger process both shearing motion and the propagation of shock
waves significantly influence the evolution of the system [107]. As we saw in section 6
turbulence is present in remnant evolution. Shocks and shearing motion in the spiral
arms induce Kelvin-Helmholtz-like vortices. Kelvin-Helmholtz instabilities involve
both discontinuities and small-scale turbulent behaviour, hence in this chapter I use
this an appropriate model to begin studying uncertainties in shock-turbulence
interaction.

It has been shown by [106] that in the Newtonian regime shocks and turbulence can
lead to complications when quantifying uncertainty. For example pointwise properties
do not converge with resolution, but summary statistics (such as the mean and
variance) can. To formalise this, the idea of a “statistical solution” has been
introduced (see, for example, [108]), which looks at the numerical convergence of the
distribution of quantities.

The quantification of uncertainty in Kelvin-Helmholtz instabilities has been
investigated in Newtonian hydrodynamics by [108]. In this chapter this novel research
explores how these results extend to relativistic hydrodynamics and relativistic
radiation hydrodynamics (this is introduced in [19]). I expect for the Newtonian
conclusions to carry over: that pointwise quantities will not convergence, but that
their distribution (and summary statistics of the distribution) will. I explore what
observables I can make use of, and if the results are robust, meaningful, and useful.

I have also extended the Newtonian investigation to look at non-local quantities such
as those involving differential and integral operators. One example is the vorticity –
the curl of the velocity field. Differential operators appear in magnetic fields and in
dissipative non-ideal hydrodynamic treatments such as bulk and shear viscocities and
heat fluxes (see, for example, [26]). An alternative observable would be light curve
calculations, which depend on the optical depth. This is a non-local quantity
involving an integral operator. I investigate whether or not these non-local quantities
converge with spatial resolution. It is expected that gradients may steepen as spatial
resolution increases, so differential operators may not converge pointwise or with
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summary statistics. Conversely integral operators may be insensitive to spatial
resolution, so we may expect both pointwise and statistical quantities to converge.

In this chapter I investigate the statistical behaviour of computational simulations of
Kelvin-Helmholtz instabilities in the relativistic hydrodynamic and relativistic
radiation hydrodynamics regimes. I quantify the convergence behaviour of individual
scenarios as resolution is increased. I also quantify the convergence behaviour of the
mean and variance of a set of solutions as resolution is increased. I investigate
whether the same statistical results hold for relativistic hydrodynamics, and how
introducing radiative transfer affects the solutions.

7.2 Relativistic Kelvin-Helmholtz Instability

A dense cool fluid moving relative to a hot rarefied fluid is a common occurrence in
astrophysical phenomena. Examples include the interstellar medium, circumgalactic
medium, intracluster medium, supernova remnants and superbubbles, cosmic
filaments, galactic winds, protoplanetary disks, protostellar jets and jets from active
galactic nuclei. Burning and energy release in turbulent media takes place in stellar
interiors and in supernovae [15]. These fluids are often in hydrostatic and local
thermodynamic equilibrium. A mixing layer occurs at the shearing interface in these
fluids leading to a Kelvin-Helmholtz instability (KHI).

In phenomena where KHI occurs it is very unlikely that the initial conditions are
known to an accuracy where the resulting turbulence can be precisely reproduced
with physics models. However if numerous simulations are calculated, with initial
conditions sampling the space of likely initial conditions, then the distribution of
results allows us to predict the expected behaviour with a quantified uncertainty.

In the Newtonian limit of hydrodynamics it has been shown that for numerical
simulations of KHI, a conserved quantity does not converge locally with increasing
spatial resolution [106]. However when numerous simulations are run with varying
perturbations in initial conditions leading to varying turbulent motion, then the mean
and variance of the quantity taken over the numerous samples does indeed converge
with increasing spatial resolution. This same result is seen with algebraic functions of
the conserved quantities.

The numerical experiments in this chapter analyse the rest-mass density field as an
example of the statistical properties of algebraic functions of conserved quantities.
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The properties of integral and differential operations on conserved quantities are also
investigated.

For a detailed investigation I conduct uncertainty quantification with flat spacetime
in two spatial dimensions. I set up Kelvin-Helmholtz initial conditions and extend the
work in [106] to special relativistic regimes. My approach differs to the standard in
relativistic hydrodynamics which uses a smeared interface with perturbations in the
velocity field. I make use of a sharp interface with perturbations in the interface
location. I have used relatively large perturbation magnitudes, however [106] shows
that the resulting instabilities are insensitive to this amplitude.

7.2.1 Problem Definition

I set up a square spatial domain with x ∈ [0, 1], y ∈ [−1/2, 1/2], and with periodic
boundary conditions. The domain is split into three horizontal sections. The fluid in
the top and bottom sections initially flows towards the right, and the fluid in the
middle section flows towards the left. Small perturbations are made to the interface
positions. The shearing velocities at the perturbed interfaces induce vortices which
grow into turbulent flow. The initial rest mass density and horizontal relativistic fluid
velocity profiles are given by

ρ(x, y) =
⎧⎨⎩ 1, y−(x) < y < y+(x),

1
10 , else,

(7.1)

vx(x, y) =
⎧⎨⎩ −1

2 , y−(x) < y < y+(x),
1
2 , else.

(7.2)

Here y±(x) are the perturbed interface locations. The initial fluid pressure is given by
P = 1, the vertical fluid velocity is vy = 0, and an adiabatic index Γ = 4/3 is used.

This set-up is similar to [109] in quantity values, however the domain size has been
reduced to increase interaction between the upper and lower resulting vortices. The
interface perturbations are as in [108] using a perturbation in position rather than in
vertical fluid velocity. The upper and lower interface perturbations are each a linear
combination of sinusoidal waves, with amplitudes and phase shifts generated using a
pseudo random number generator [108]

y±(x) = ±1
4 + 1

10

10∑︂
n=1

a±
n cos(b±

n + 2πnx). (7.3)
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The amplitudes (a±
n ) are scaled to sum to unity, and the phase shifts are linearly

transformed to the interval b±
n ∈ (−π, π]. The coefficients an, bn are drawn from a

uniform random distribution.

Figure 7.1 shows a visualisation of the initial set-up of the mass-density and velocity
fields.

7.3 Evolved Solutions

The Kelvin-Helmholtz instability setup is evolved to a time t = 2 in geometric units.
The evolved rest mass density field is shown in figure 7.2. In this case the spatial
domain used a uniform discretisation with 5122 zones. Although still at early time we
can see qualitative features of interest such as shock waves, the rollup of vortices, and
turbulent behaviour. It shows that the numerical code can capture and simulate the
qualitative features expected of this type of hydrodynamic instability. The
discontinuities in the rest mass density field within the higher density layer are
stronger than in Newtonian cases due to special relativistic effects.

7.3.1 Pointwise Convergence

I have run a series of Kelvin-Helmholtz instability simulations using identical initial
condition perturbations with a range of spatial resolutions. Figure 7.3 shows the rest
mass density profile for spatial resolutions using 162, 322, 642, 1282, 2562, and 5122

zones. We can see that the large scale qualitative features are comparable. There are
internal shocks, and vortices appear to roll up at similar locations. However as the
resolution increases, tighter and smaller vortices are able to form leading to more
detailed turbulent behaviour.

A quantitative check for convergence is required. Here I will be using the L2-norm (as
introduced in section 4.1) of the difference in rest-mass density profiles between two
simulations at different resolutions. To allow a numerical comparison each lower
resolution solution is up-scaled to match the higher resolution solution assuming
piecewise constant data. For our two dimensional discretised solutions this error
metric takes the form

L2
(︂
qlo
)︂

=
⎛⎝ 1

N2

N∑︂
i=1

N∑︂
j=1

(︂
qhi

ij − qlo
ij

)︂2
⎞⎠1/2

. (7.4)
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Figure 7.1: Initial set-up of a relativistic Kelvin-Helmholtz instability, showing
rest-mass density and fluid 3-velocity vectors. We can see the two uniform states
separated by a random number based wave interface as in [108].
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Figure 7.2: The rest mass density profile of the relativistic Kelvin-Helmholtz insta-
bility evolved to time t = 2 in geometric units. We can see the formation of vortices
and turbulent behaviour. This is a relativistic version of the results in [108].
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Figure 7.3: The rest mass density profiles for a series of relativistic Kelvin-Helmholtz
instabilities evolved to time t = 2 in geometric units. Each simulation had identical
initial condition definitions, however spatial resolutions varied from 162 to 5122.
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Here qhi is the higher resolution solution, and qlo is the lower. For this study I
compare to the highest resolution available (5122), treating it as the best case
solution. If this error metric decreases as the spatial resolution increases then we have
Cauchy convergence.

Figure 7.4 shows the L2-norm of the difference in rest-mass density profiles at spatial
resolutions 162 to 2562. This has been repeated for a set of 32 different initial
condition perturbations. As can be seen in figure 7.4 none of the individual
realisations of initial condition perturbations are converging with increasing spatial
resolution. Accordingly the mean of the set of L2-norms is also not converging. These
results have previously been shown for the Newtonian hydrodynamic regime in [108].

At first glance, this is catastrophic for our numerical simulations. It indicates that
there is no continuum limit for the quantities, and suggests the problem is not well
posed. As discussed in, for example, [108], well-posedness and the utility of numerical
solutions for these problems, can be recovered by considering their statistical
properties.

7.4 Analysing a Distribution of Solutions

The Newtonian results, as extended to the relativistic regime above, show that
pointwise convergence can be lost in shock-turbulence interaction simulations.
However, the idea of statistical solutions is to look at the convergence of the
distribution of quantities, and the summary statistics of those distributions. This
requires computing many samples, and hence many simulations.

With a 3+1 dimensional simulation code numerous 2+1 simulations can be calculated
simultaneously. I run a separate instance of the problem on each slice in (for example)
the z-direction. The initial conditions for each slice are generated using the z-index
as the random number generator seed. Effectively the z-index has become a
proxy-parameter for the initial condition perturbation. To prevent the separate
simulations from interacting with each other the fluxes in the z-direction are set to
zero (F z = 0). Figure 7.5 shows the rest-mass density profiles for a simulation block
with 32 slices for a series of relativistic Kelvin-Helmholtz instabilities evolved to a
time of t = 2 in geometric units.

At each (xi, yj) location there exists a distribution of values over the number of
samples calculated. I can calculate the mean and variance of a quantity (q) over these
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Figure 7.4: The L2-norm of the difference in rest-mass density profiles at spatial
resolutions 162 to 2562. This has been repeated for a set of 32 different initial condition
perturbations (dashed black lines), with the mean of the L2-norms (solid red line), and
the linear regression (solid blue line). This figure suggests that individual realisations
do not converge to a continuum limit. This is consistent with the results in [108].



7.4. Analysing a Distribution of Solutions 185

Figure 7.5: A block of relativistic Kelvin-Helmholtz instability simulations, with
each slice a separate realisation of initial condition perturbations, evolved to time
t = 2 in geometric units.

numerous samples as

q = 1
K

K∑︂
k=1

qk, (7.5)

qvar = 1
K

K∑︂
k=1

(qk − q)2. (7.6)

Here the mean and variance are calculated over K samples.

Figure 7.6 shows the mean and variance of the rest-mass density profile over a set of
relativistic Kelvin-Helmholtz instability simulations evolved to time t = 2 in
geometric units. As can be seen in figure 7.6 the asymmetries in the x-direction are
being washed out, converging towards symmetric solutions as the size of the
simulation sample set increases. This has previously been shown in the Newtonian
hydrodynamic regime [108].

Figure 7.7 suggests that the mean of the rest-mass density profiles converges towards
some continuum limit as the number of samples increases. Here I have used the mean
rest mass density profile over 256 samples to approximate the best case solution. This
does not suggest (yet) that we have recovered well-posedness of the solution, as that
would require looking at convergence towards the continuum limit (in both space and
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Figure 7.6: The mean (left) and variance (right) of rest-mass density profiles from a
set of relativistic Kelvin-Helmholtz simulations, each with distinct initial condition
perturbations, evolved to time t = 2 in geometric units. This figure shows that
statistical properties such as mean and variance appear to be robust and tend towards
independence on x-position. This is consistent with the Newtonian case shown in
[108].

time). This instead suggests that the statistical limit of an infinite number of random
samples (the continuum limit in parameter space) is well behaved.

7.5 Convergence of a Distribution of Solutions
with Spatial Resolution

By perturbing the initial condition by a small amount we can obtain a distribution of
solutions. I am interested in how this distribution of solutions behaves as the spatial
resolution is increased.

Again I take the highest resolution results available as the best case approximation to
the continuum limit. I calculate the L2-norm of the difference in mean and variance
of the rest-mass density between lower resolutions and the highest, with the lower
resolutions up-scaled assuming piecewise-constant data.

Figure 7.8 shows that as spatial resolution increases, both the mean and the variance
of the rest-mass density over numerous instances do indeed converge towards a
continuum limit. This has previously been shown in the Newtonian hydrodynamic
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Figure 7.7: The mean profile converges to some continuum limit (in parameter space)
as the number of samples increases.
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regime by [108].

Recall the conclusions drawn from figure 7.4: this shows that the mean of the
L2-norm of the difference in the rest-mass density does not decrease with spatial
resolution. Therefore the sequence of means of errors at different resolutions is not
strongly convergent. However figure 7.8 shows that the L2-norm of the difference in
the mean rest-mass density does decreases with spatial resolution. This sequence of
the difference of the means of the errors is weakly convergent. The order of operations
is important implying weak convergence and not strong convergence.

7.6 Wasserstein Metric

The one-point Wasserstein metric (also known as the earth mover’s distance) is a
measure of the difference between two probability distributions. The metric
corresponds to the cheapest way to rearrange one distribution into the shape of the
other. This is a more complete comparison of probability distributions than just
comparing means and variances since the entire distribution is considered, not just
the first moments. The Wasserstein metric has previously been used to check the
(weak) convergence with spatial resolution of the distribution of rest-mass density
fields for Newtonian Kelvin-Helmholtz simulations [106, 108].

Figure 7.9 shows that the Wasserstein metric is converging towards a continuum limit
as the spatial resolution increases. This suggests that for the range of initial
conditions used, there is a continuum limit for the distribution of solutions, and the
numerical method is finding it.

Special relativistic hydrodynamics leads to consistent conclusions as with the
Newtonian results by [106, 108]. The pointwise quantities do not converge with
spatial resolution but the distribution of solutions, including the summary statistics
such as the mean and variance, does weakly converge towards a continuum limit as
the spatial resolution increases.

7.7 Relativistic Radiation Hydrodynamic

I now aim to check if these conclusions extend to radiation hydrodynamics and
whether the radiation parameters (for example, the strength of the opacity) can be
distinguished in a statistical sense.
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Figure 7.8: The L2-norms of the difference in mean (top) and variance (bottom)
of rest-mass density from sets of distinct relativistic Kelvin-Helmholtz simulations
at spatial resolutions 162 to 5122, with linear regressions. This figure shows that
statistical properties such as mean and variance do converge to a continuum limit.
This is consistent with the Newtonian regime shown in [108].
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Figure 7.9: The Wasserstein metric of the difference between rest-mass density
distributions for lower and higher resolution simulations. We can see that as the
spatial resolution increases the distribution of rest-mass density values converges to a
continuum limit. This is consistent with the Newtonian regime shown in [108].
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A radiation field is introduced to the previously defined hydrodynamic
Kelvin-Helmholtz initialisation. This radiation field is in local thermal equilibrium
with the fluid (E = aradT 4) leading to

E =
⎧⎨⎩ 1, y−(x) < y < y+(x),

104, else.
(7.7)

It has zero net flux with respect to the fluid (F x = F y = 0). I vary strength of the
radiation hydrodynamic coupling by considering an optically thin case with
χa = 10−4ρ, and an optically thick case with χa = 10−3ρ.

As with the hydrodynamic simulations the radiation hydrodynamic initial conditions
are evolved to time of t = 2 in geometric units. I obtain a set of solutions in each case
by initialising with a range of interface perturbations.

Figure 7.10 shows the rest mass density profile for a single realisation (on the left
column), the mean solution (the centre column), and variance of the solutions (the
right column). The different cases shown are the purely hydrodynamic (the top row),
optically thin (the centre row), and and optically thick (the bottom row) relativistic
radiation hydrodynamic Kelvin-Helmholtz simulations. The purely hydrodynamic
case can be thought of as having zero radiation hydrodynamic coupling.

The differences in the solution due to the introduction of the radiation field, both
weakly coupled and strongly coupled, can be seen in the individual realisations, the
means, and the variances. In the radiation hydrodynamic simulations there has been
more motion in the y-direction than in the purely hydrodynamic case. Additionally
the central horizontal strip of larger rest-mass density is beginning to split into upper
and lower bands with a region of lower rest-mass density separating them. This effect
is more severe in the larger opacity case since the strength of the radiation
hydrodynamic coupling is increased.

I am interested in whether the mean and variance of the rest-mass density converges
with increasing spatial resolution even when there is radiation hydrodynamic
coupling. Recalling the process used for figure 7.8 the highest resolution case is taken
as a best approximation to the continuum limit for the mean and variance. I
calculate the L2-norm of the difference in mean and variance of rest-mass density
profiles between lower resolutions and the highest, with the lower resolutions being
up-scaled assuming piecewise-constant data.

Figures 7.11 and 7.12 show that as the spatial resolution increases both the mean and
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Figure 7.10: Single realisations (left column), means (central column), and variances
(right column) of rest-mass density from purely hydrodynamic (top row), weakly
coupled radiation hydrodynamic (middle row), and strongly coupled radiation hy-
drodynamic (bottom row) relativistic Kelvin-Helmholtz simulations, evolved to time
t = 2 in geometric units. This figure shows that different physical models produce
different results, and that features which are hard to distinguish between models
when comparing individual realisations are clearly distinguishable in the statistical
properties.
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variance of rest-mass density do indeed weakly converge for both the optically thin
and the optically thick cases.

As in section 7.6 I check to see if the distribution of solutions is converging and well
behaved for the optically thin and thick radiation hydrodynamic KHI simulations.
The results shown in figure 7.13 suggest that they indeed do.

In order to quantitatively confirm that introducing a radiation field with non-zero
fluid coupling modifies the solution, even as spatial resolution is increased, the
Wasserstein metric of the difference between the mean rest-mass density distributions
from radiation hydrodynamic cases and the purely hydrodynamic case is calculated
for a range of spatial resolutions. This is shown in figure 7.14 for both the optically
thin and thick cases.

The lack of convergence here confirms that the radiation hydrodynamic solutions are
indeed converging towards a different distribution to the purely hydrodynamic case.
The optically thick case has a consistently larger Wasserstein metric than the
optically thin case. This suggests that the thick case is more different to the purely
hydrodynamic case than the thin case is. This indicates a monotonic dependence on
the opacity: χa = 0, 10−4ρ, and 10−3ρ for the non-coupled, optically thin, and the
optically thick cases respectively. We can clearly distinguish between purely
hydrodynamic and coupled radiation hydrodynamic models for a range of opacities.
This approach could be extended to identify the smallest change in opacity which
could be detected with this quantitative method.

7.8 Non-Local Operators

In this section I investigate the statistical properties of non-local quantities, such as
those involving differential and integral operators. As discussed in the introduction to
this chapter, differential and integral operators are relevant to neutron star merger
remnant evolution as they can appear in non-ideal hydrodynamics and in optical
depth calculations. Here I use the vorticity (the curl of the fluid velocity field) and
the density gradient magnitude as representative differential operators.

7.8.1 Differential Operators

A fluid’s vorticity can be used to help characterise its turbulent flow. It is calculated
using a differential operator on the primitive fluid quantities, namely the curl of the
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(a) Convergence of mean in the optically thin case.
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(b) Convergence of variance in the optically thin case.

Figure 7.11: Two-norms of the difference in mean (top panel) and variance (bottom)
of rest-mass density from sets of distinct relativistic optically thin coupled radiation
hydrodynamic Kelvin-Helmholtz simulations at spatial resolutions 162 to 1282, with
linear regressions. This figure shows that statistical properties still converge to a
continuum limit, even for relativistic radiation hydrodynamics.
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(a) Convergence of mean in the optically thick case.
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(b) Convergence of variance in the optically thick case.

Figure 7.12: Two-norms of the difference in mean (top panel) and variance (bottom)
of rest-mass density from sets of distinct relativistic optically thick coupled radiation
hydrodynamic Kelvin-Helmholtz simulations at spatial resolutions 162 to 1282, with
linear regressions. This figure shows that statistical properties still converge to a
continuum limit, even for strongly coupled relativistic radiation hydrodynamics.
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(b) Strong Coupling

Figure 7.13: Wasserstein convergence of the difference in rest-mass density distribu-
tions for different spatial resolutions for radiation coupled hydrodynamic simulations.
The optically thin case is shown in the top panel, and the optically thick case on the
bottom. This figure shows that the distributions still converge to a continuum limit,
even for strongly coupled relativistic radiation hydrodynamics.
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(a) The optically thin case.
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(b) The optically thick case.

Figure 7.14: The Wasserstein metric of the difference in mean rest-mass density
distributions between optically thin (top panel) and optically thick (bottom panel)
radiation hydrodynamic with the purely hydrodynamic relativistic Kelvin-Helmholtz
simulations at spatial resolutions 162 to 2562. A linear regression is shown in blue.
The lack of even weak convergence suggest that the different physics models used,
and the differences in their parameters can be clearly distinguished in the statistical
properties.
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Figure 7.15: A single realisation (in the left panel) and the mean of a set of distinct
simulations (on the right) of the vorticity field resulting from relativistic Kelvin-
Helmholtz simulations evolved to time t = 2 in geometric units. We can see that the
upper and lower shearing mixing layers between the two initial states contain vortices
with opposing rotational directions. Taking the mean over numerous simulations
approaches independence in the x-dimension, just as in the rest-mass density field
shown in 7.6.

fluid velocity field (w = ∇ × v). For a 2D velocity field (here I use the x-y plane) only
the z-component of the vorticity can be non-zero, given by wz = ∂xvy − ∂yvx.

In the left panel of figure 7.15 we see a single realisation of the vorticity field for the
relativistic hydrodynamic Kelvin-Helmholtz instability simulation introduced in
section 7.2.1. We can identify qualitative features such as the vorticity being
strongest in the mixing layer, and the vortices corresponding to the centres of the roll
up features visible in figure 7.2. The vortices in the upper and lower mixing layers
have opposing rotational directions, as a result of following the rotational fluid flow.
The shocks present in the central higher density layer are difficult to distinguish in
the vorticity profile. The right panel of figure 7.15 shows the mean vorticity field
taken over a number of individual solutions. We can see that this quantity
approaches an independence in the x-dimension, similar to the mean rest-mass
density field shown in 7.6.

Figure 7.16 shows that the mean over a set of realisations of the vorticity field
struggles to converge towards a continuum limit as the spatial resolution is increased.
This is to be expected as finer spatial resolutions allow for tighter vortices before the
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Figure 7.16: The L2-norms of the difference in mean vorticity profiles from a set of
relativistic hydrodynamic KHI simulations for a range of spatial resolutions.

fluid becomes averaged over a single computational cell, and hence allows for more
extreme vorticity. The finer resolution allows for the existence of more extreme local
maxima and minima, whilst preserving volume averaged quantities, thus allowing for
ever steepening spatial gradients.

This can be qualitatively discussed by considering what the continuum limit of the
vorticity at a shock means, or would converge to. The shock itself is defined
distributionally as a discontinuity. The vorticity, as a derivative of that, would “look
like a δ function” at the shock. This should not be expected to converge to a
pointwise solution. The results shown here indicate that a statistical distribution of δ

function-like behaviour also should not be expected to converge pointwise, even in a
weak sense.

To check that this is not an artefact of the curl, I look at a different type of differential
operator. The magnitude of the gradient of the rest-mass density is also a differential
operator, and is given by |∇ρ|. For a 2D problem this reduces to [(∂xρ)2 + (∂yρ)2]1/2.

In the left panel of figure 7.17 we see a single realisation of the density gradient field
for the relativistic hydrodynamic Kelvin-Helmholtz instability simulation introduced
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Figure 7.17: Single realisation (left panel) and mean from a set of distinct simulations
(right panel) of the magnitude of the spatial gradient of rest-mass density, evolved
to time t = 2 in geometric units. We can see how the initial discontinuity in rest-
mass density has rolled up to follow the vortex flow. New discontinuities have been
introduced in between the mixing layers due to internal interactions. Taking the
mean over numerous simulations the average profile approaches independence in the
x-location, as in the rest-mass density field shown in 7.6. This approach is very slow
due to the sharpness of the the gradient magnitudes.

in section 7.2.1. This highlights steep changes in the rest mass density field such as
the discontinuities found around shocks. We can identify the steep changes in the
mixing layers, and internal shocks throughout the solution. The right panel of figure
7.17 shows the mean density gradient field taken over a number of realisations. The
small scale details in this profile suggest that a very large number of samples would
be required to obtain a smooth mean solution. Furthermore such a smooth mean
solution would exhibit independence of the x-position, just as with the mean curl
profile and the rest mass density profiles in figure 7.6.

In figure 7.18 we can see that, as with the vorticity, the mean over a set of
realisations of density gradient struggles to converge towards a continuum limit as the
spatial resolution is increased. This is also to be expected as finer spatial resolution
allows for the existence of increasingly sharp gradients. Just like in the vorticity
analysis, the δ function-like limit would not be expected to converge to a pointwise
solution. These results indicate that a distribution of resolved density gradient
profiles do not (even weakly) converge to a statistical solution.
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Figure 7.18: The L2-norms of the difference in mean density gradient magnitude
profiles from a set of relativistic hydrodynamic KHI simulations for a range of spatial
resolutions.
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7.8.2 Integral Operators

I am interested in whether non-local quantities involving integral operators such as
the optical depth converge towards a continuum limit as the spatial resolution is
increased. The optical depth of a volume of fluid is useful in determining its rate of
radiative cooling, and how a radiation field evolves within the fluid due to radiative
transfer. The optical depth can be obtained by integrating the opacity along a line of
sight. It is non-locally defined and involves an integral operator as opposed to a
differential operator, as discussed in section 7.8.1. The optical depth is given by

τ =
∫︂ y1

y0
χady. (7.8)

For this analysis I choose the opacity to equal the rest-mass density: χa = ρ.

The optical depths are calculated by integrating the rest-mass density fields over the
y-direction: τk(xi) =

∫︁ 1
0 ρk(xi, y)dy. At each x-position there is a distribution of

optical depths, each corresponding to a uniquely generated initial condition.

The L2-norm of the difference in mean optical depths has been used to quantify the
effect of increasing the spatial resolution on the distribution τk(xi) (where the lower
resolution simulations have been upscaled to allow numerical comparison). This has
been reproduced for the optically thin and optically thick coupled radiation
hydrodynamic models. Figure 7.19 shows that in both cases the mean optical depth
does indeed weakly converge towards a continuum limit as the spatial resolution
increases.

7.9 Summary

All numerical simulations of neutron stars, including our evolutions of neutron star
merger remnants in chapter 6, have the same issue: key quantities are uncertain. In
some cases the aim is to constrain these uncertainties by experiment (the
microphysical equation of state being the key quantity here). In other circumstances
there is very little chance of constraining the property experimentally, or the property
is purely an artefact of the numerical simulation process (such as aspects of the
initial-boundary conditions). In these circumstances we need to quantify the
systematic uncertainties introduced in the numerical modelling process.

Statistical results from Newtonian hydrodynamic turbulence simulations have
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Figure 7.19: The L2-norm of the difference in mean optical depth optically thin (top)
and optically thick (bottom) relativistic Kelvin-Helmholtz simulations for a range of
spatial resolutions. Linear regressions are shown with blue lines.
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suggested that there are fundamental problems with uncertainty quantification in the
case of shock turbulence interaction. In particular, it is possible that quantities may
not converge pointwise. The suggested solution is to consider the (weak) convergence
of statistical properties. These do converge in Newtonian cases, rescuing
well-posedness. This chapter has shown that precisely the same issues and solution
methods appear for relativistic hydrodynamic and relativistic radiation
hydrodynamics simulations.

I have shown that for an individual realisation of initial condition perturbations,
which grow into turbulent flow, the numerical solution evolved with relativistic
hydrodynamics does not converge with increasing spatial resolution. I have shown
that when a sufficient number of solutions are calculated, each generated from
randomly sampled initial condition perturbations, then the mean and variance do
indeed weakly converge with increasing spatial resolution. Thus the expected
distribution of solutions arising from a distribution of initial conditions can be
calculated.

These experiments have been reproduced involving radiation fields, including both
optically thin and optically thick cases. I have shown that the mean of radiation
hydrodynamic solutions converge to distinct solutions to the purely hydrodynamic
case.

Introducing radiation modifies the fluid evolution by inducing additional motion in
the y-direction. The horizontal region of larger rest mass density splits into upper
and lower bands, with a region of lower density separating them. This effect becomes
more exaggerated for the larger opacity as this increases the strength of the coupling
between the radiation and fluid. This allows us to state a minimum opacity for which
we can genuinely see differences between purely hydrodynamic and radiation coupled
hydrodynamic systems. This observable difference manifests in both the single
simulation results and the averaged results, indicating that the differences in solution
caused by introducing radiation transport are independent of the perturbations in the
initial condition. There are clear distinctions between the solutions of purely
hydrodynamic, weakly coupled radiation hydrodynamic, and strongly coupled
radiation hydrodynamic simulations.

The statistical properties of non-local operators, such as differential and integral
operators of conserved quantities have been investigated. The fluid’s vorticity is
composed of spatial gradients of the fluid velocity field. Neither the individual
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realisations of the vorticity, nor the mean over a set of realisations of the vorticity
converges as the spatial resolution is increased. This is to be expected as finer
resolutions allow for tighter vortices before the fluid becomes averaged over the
smallest computational cell, and hence allows for more extreme vorticity. The finer
resolution allows for the existence of more extreme local maxima and minima, whilst
preserving volume averaged quantities, thus allowing ever steepening spatial gradients.
The magnitude of the gradient of the rest-mass density is also a differential operator,
and as expected also exhibits this non-convergent statistical property. We cannot
make any statistical conclusions about non-locally defined differential quantities such
as vorticity and rest-mass density gradient: they are not considered observable
quantities.

The optical depth of a volume of fluid can be obtained by integrating its opacity
along a line of sight. It is non-locally defined and involves an integral operator as
opposed to a differential operator. The optical depth appears to converge towards a
continuum limit with increasing spatial resolution when analysing the mean over a
number of samples. This successful convergence test works for the purely
hydrodynamic and the coupled radiation hydrodynamic models for a range of
opacities. This suggests that integral non-local operators are to be preferred when
using the results of nonlinear numerical simulations as experimental observables.
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Chapter 8

Conclusions

In this thesis I have investigated the impact of photon radiation on neutron star
merger remnants. The numerical simulations I have conducted suggest that the
presence of a radiation field can cause the rapid dispersion of material surrounding a
remnant object. This could have repercussions for the material available to accrete
onto the remnant at a later time. Additionally, discretised advective fluxes can be
significant source of error in numerical fluid simulations, in certain situations, for
example with approximately hydrostationary configurations, a coordinate transform
can be applied to reduce this effect. Through the implementation of a new general
relativistic radiation hydrodynamics code I have looked at the importance of flexible
and efficient mesh refinement and numerical methods on the results. I have also
looked at uncertainty quantification, seeing how the uncertainties in (for example) the
initial data can have a qualitative impact on the observables.

Chapters 3-5 have concentrated on the introduction and validation of the new code.
The important contributions are the use of the AMReX framework, and the
“ground-up” reconsideration of the methods to be used in the context of neutron star
merger remnants. We have seen that within a modern framework it is possible to
build a complex multiphysics code for efficiently simulating a specific astrophysical
phenomenon. Whilst frameworks such as the Einstein Toolkit allow a much broader
range of problems to be tackled, the use of fixed spacetimes, and the careful choice of
numerical methods, allow for substantial numerical efficiencies. This has been
quantified in chapters 4 and 5.

I emphasise again that the code designed and implemented here differs from other
state of the art codes in the field. We can compare with GRaM-X [3] which is a

207
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recent AMReX based GRMHD code which uses the standard approaches from the
Einstein Toolkit but makes use of the AMReX functionality to do the grid
management. GRaM-X is designed, as the Einstein Toolkit was, to be a general
purpose code. It primarily uses AMReX in order to get the best performance on
modern exascale machines. In particular it relies on AMReX’s GPU functionality but
still uses numerical methods with broad stencils and evolves the spacetime as well as
the matter. In our case I have concentrated on using AMReX for its flexibility and
efficient patch structures. I make additional efficiency gains by also targeting a
specific astrophysical case, which also allows us to make efficient choices of numerical
methods and to use a fixed spacetime.

An illustration of the utility of this approach is given by the low computational cost
of the merger remnant simulations shown in chapter 6. The astrophysical conclusions
of the impact of radiation on the post-merger remnant would be considerably more
costly and complex to compute using, for example, the standard Einstein Toolkit
approach.

Efficiency is also important in the discussion of uncertainty quantification in chapter
7. The need to run many samples to quantify the uncertainty in parameter space
means that computational efficiency is essential. Building on the efficiency gains, I
have extended the results of Newtonian work on statistical solutions and convergence
in two ways. Firstly I have shown that the strong (pointwise) convergence of solutions
to relativistic (radiation) hydrodynamic equations with shock-turbulence interaction
may fail, but that this can be rescued using weak (statistical) convergence. Secondly,
I have extended this work to look at the convergence of non-local operators of the
evolved variables, showing that non-local integral operators do converge cleanly in all
cases, but that non-local differential operators fail to converge even weakly.

Further questions remain to be investigated from this work. Here I highlight just
three.

Firstly from an astrophysics point of view the main source of radiation emission in
neutron star mergers is currently believed to be neutrinos rather than photons. The
implementation of neutrinos is conceptually similar but practically more complex,
hence our focus on photon radiation here. Extending to neutrinos would be
important to compare with astrophysical observations. It would require more complex
absorption and emission terms and likely more complex numerical methods.

Secondly from a numerical point of view the treatment of stiff source terms should be
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investigated in more detail. The approach used in chapter 3 prevents overshoots in
the evolution of energy and temperature. However for more complex situations such
as the inclusion of neutrinos it is likely that more accurate methods will be required.
Possible approaches include semi-implicit methods (as in [110]) and spectral deferred
corrections (as in [111]).

Finally from a mathematical point of view we need to understand how to efficiently
extend the uncertainty quantification work in chapter 7 to functional uncertainties.
Here the important case is the uncertainties in the equation of state (or similar
closure relations). Constraining the properties of the equation of state is a
fundamental goal of multi-messenger astronomy. The current work shows that
quantifying the uncertainty with which the equation of state can be constrained is,
even in principle, a very complex process.
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